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Resumo

Veículos autónomos subaquáticos tem sido amplamente usado como ferramentas em operações
subaquáticas. Autonomia significa a capacidade de um planeamento deliberativo integrado sem
qualquer interação humana. Os níveis de autonomia de veículos subaquáticos têm vindo a aumen-
tar ao longo dos anos. Um facilitador essencial para a operação autónoma tem sido o docking.
Docking autónomo irá permitir que os veículos possam operar independentemente da intervenção
humana, em regiões remotas. O conceito de docking vai desde estações de docking subaquáticas
até ao lançamento e resgate através de embarcações de superfície autónomas.

O Laboratório de Sistemas e Tecnologias Subaquáticas (LSTS) tem vindo a desenvolver e
usar este tipo de veículos há mais de vinte anos e por isso surgiu a necessidade de desenvolver
uma forma de docking.

Esta dissertação pretende desenvolver uma abordagem ao docking entre dois veículos exis-
tentes na frota do LSTS. Estes veículos seriam o Veiculo Autónomo de Superfície (ASV) Caravela
e um Veiculo Autónomo Subaquático (LAUV).

Por esta razão, foi estudado e discutido a derivação e simplificação de equações de movimento
para veículos de superfície e subaquáticos e conhecidas as abordagens ao docking, entre uma doca
fixa ou em movimento.

Foi estudado uma forma de obter a localização entre os dois veículos, recorrendo ao Sistema de
Posicionamento Global (GPS) e/ou Ultra-Short Baseline (USBL) e a Unidade de Medida Inercial
(IMU) atualmente disponíveis nos sistemas.

Várias máquinas de estado foram implementadas para que houvesse uma manobra de docking
otimizada e à prova de falhas, mesmo quando existe perturbações externas, tais como correntes
marinhas sobre a abordagem de docking.

Toda a abordagem foi implementada usando a toolchain desenvolvida no LSTS (DUNE, IMC,
Neptus).
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Abstract

Autonomous Underwater Vehicles have been used as tools for underwater operations. Autonomy
means the capability to perform deliberative planning on-board without any human interaction.
The levels of autonomy of underwater vehicles have been increasing over the years. One essential
enabler for autonomous operation concerns docking. Autonomous docking will allow vehicles
to operate independently of human interaction in remote areas. Docking concepts range from
underwater docking stations to launch and recovery from autonomous surface vessels.

The Underwater Systems and Technologies Laboratory (LSTS) has been developing and using
this type of vehicles for more than twenty years and therefore the need of automatic docking of
vehicles has emerged.

This dissertation aims to develop an approach for docking between two existing vehicles from
the LSTS fleet. The vehicles would be an Autonomous Surface Vehicle (ASV) Caravela and a
Light Autonomous Underwater Vehicle (LAUV).

For this reason, we study and discuss the derivation and simplification of motion equations for
underwater and surface vehicles and known approaches for docking, between a fixed or a moving
dock.

We studied a way to have localization between the two vehicles using Global Positioning
System (GPS) and/or Ultra-Short Baseline (USBL) and the internal Inertial Measurement Unit
(IMU), currently available on the systems.

Several state machines where implemented in order to have an optimized and fail-safe docking
maneuver even having external disturbances like sea-currents on the docking approach.

The whole approach was implemented using the tool-chain developed in LSTS (DUNE, IMC
and Neptus).
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Chapter 1

Introduction

1.1 Motivation

The planet Earth is covered by a large body of water, whether is oceans, lakes or rivers. This

water mass has a great influence on ecosystems and therefore hugely important to study it. Also

the problem of climate change has been a subject that has impulsed the studies of the Earth’s body

water masses. Hence, its necessary to build the essential tools for the research of technological

and scientific approaches in exploration and analysis of aquatic environments.

One of the most known technological breakthrough in aquatic exploration is the Autonomous

Underwater Vehicle which is a torpedo-like shaped vehicle with the capability of being operated

remote and independently.

Since the vehicles have internal power and wide range of scientific sensors, such as sonar for

sweeping the ocean floor or water analysis sensor, to analyze the values of pH and Rhodamine in

water samples. Being autonomous also means that they can work for long periods of time without

human intervention with a predefined plan.

Ocean exploration has been the motivation for the Underwater Systems and Technologies Lab-

oratory (LSTS) to develop a great variety of autonomous vehicles.

Some of this systems are Autonomous Surface Vehicles (ASV), Autonomous Underwater Ve-

hicles (AUV) and Remotely Operated Vehicles.

Autonomous Surface Vehicle are a catamaran-based shape vehicles capable of have a huge

load of sensors and actuators and are extremely capable of moving on the surface of the water.

1



2 Introduction

Figure 1.1: A typical Autonomous Surface Vehicle. Source - LSTS

Autonomous Underwater Vehicles are a powerful tool in underwater data gathering. They

have a torpedo shape and operate independently from the surface, having no physical link. This

vehicle are capable of having a huge payload under a small package and are capable of making a

mission with different objectives, simultaneously.

Figure 1.2: A typical Autonomous Underwater Vehicle. Source - LSTS

Remotely Operated Vehicles are submersibles physically connected to the surface by an um-

bilical cable that provides power and communications. They are specialized vehicles capable of

perform many operations such as operate in hazardous environments or underwater inspections.
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Figure 1.3: A typical Remotely Operated Vehicle. Source - LSTS

The LSTS has contributed to a positive evolution of knowledge and technology by having

a structured ocean exploration approach using multiple vehicles simultaneously. Their vision is

to implement a network multi-vehicle operation consisting in a number of underwater vehicles,

supported by other systems and platforms[1].

This dissertation intents to have a docking approach between two systems of the LSTS fleet in

order to perform an autonomous retrieve of the vehicle and data/power transfer over two systems.

1.2 Related Work

Docking of two autonomous systems has been widely published in literature with the motivation

being the ability to dock two vehicles for recharging, data upload and inspection [Singh et.al [2]].

There are some examples of docking systems that use acoustic homing to obtain range and heading

from the target, as described by Stokey et. al. [3] and McEwen et. al. [4]. Similar approaches

were applied by Freezor et. al. [5] using electromagnetic guidance. Using different types of

sensors combined, docking with vision and acoustics was proposed by Evans et. al. [6] where

acoustic homing is used until the vehicle gets within the visual range of the target and uses visual

identification for the final stage of the docking. A docking approach where the docking station is

movable was proposed by Braga [7] where it was implemented a hierarchical control approach for

the docking between a ROV and an AUV.



4 Introduction

1.3 Objectives

This dissertation intents to create a docking approach using the LSTS fleet and toolchain. The

vehicles would be an Autonomous Surface Vehicle (ASV) named "Caravela" and a Light Au-

tonomous Underwater Vehicle (LAUV) from the lab fleet. The main objective is to develop an

effective approach to the docking problem, with two systems that are not intended to. A maneuver

should be implemented and controllers should be built in order to have the vehicles performing the

approach with success. There should be some way to communicate between the vehicles and the

interface that plans the maneuver. A collision avoidance between the two vehicles must be applied

in order to not destroy the vehicles while attempting the maneuver. All the tests must be simulated

first using the toolchain capabilities for such.

1.4 Outline

• Chapter 1 introduces the motivation and objectives of this dissertation.

• Chapter 2 shows the background material required to the development of this dissertation.

• Chapter 3 presents the current state of the art of autonomous docking system for underwater

vehicles.

• Chapter 4 declares the existing problem associated with autonomous docking.

• Chapter 5 demonstrates the problem approach to solve the described problems.

• Chapter 6 displays the results of the practical approach of the problem.

• Chapter 7 justifies the conclusions of this work and includes some guidelines for future work

regarding autonomous docking systems.



Chapter 2

Background

This chapter introduces the background required to the development of this dissertation. Models of

Marine Vehicles are presented and studied. Hybrid systems theory is introduced and an application

example is shown. An overview of the LSTS toolchain is displayed.

2.1 Models of Marine Vehicles

This section elaborates the mathematical approach of the AUV and ASV kinematics and dynamic

models. It follows Fossen [8] who presented the six degrees of freedom (DOF) equations of motion

(EOM) for marine vehicles.

2.1.1 Kinematics

In order to determine the position and orientation of a marine vehicle in a given location, six

coordinates are necessary. The first three coordinates are related with the position and translational

motion along x-, y- and z axes. The last three coordinates deal with the attitude and angular rates.

In marine vehicles, the six different motion components are typically defined as: surge, sway,

heave, roll, pitch and yaw.

2.1.1.1 Coordinate frames

When conceptualizing the motion of marine vehicles in 6 DOF it’s convenient to define two coor-

dinate frame as indicate in 2.1.

5
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Figure 2.1: Coordinate frames between body-fixed and earth-fixed

The moving coordinate frame Xb,Yb,Zb is fixed to the vehicle and is called the body-fixed

reference frame. This frame is described to an inertial reference frame and for marine vehicles

it’s usually assumed that the accelerations of a point on the surface of the Earth hardly affects low

speed vehicles.

DOF
Forces and
Moments

Linear and
angular velocity

Position and
Euler angles

1 Motion in the x-direction (surge) X u x
2 Motion in the y-direction (sway) Y v y
3 Motion in the z-direction (heave) Z w z
4 Rotation about the x-axis (roll) K p φ

5 Rotation about the y-axis (pitch) M q θ

6 Rotation about the z-axis (yaw) N r ψ

Table 2.1: Notation used for marine vehicles

Has seen in figure 2.1, we usually have two reference frames, where W-frame is coupled to the

world, the x-axis points to north, the y-axis to the east and z-axis points forward to the center of

the Earth. The B-frame is coupled to the body of the vehicle and the x-axis points to the forward

direction, the y-axis to the right of the vehicle and the z-axis vertically down. Given this, all the

DOF for the B-frame and W-frame can be listed in a vector form in

χ =
[
surge sway heave roll pitch yaw

]T
=
[
xB yB zB φB θB ψB

]T
(2.1)
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and

η =
[
xW yW zW ϕW θW ψW

]
(2.2)

2.1.1.2 Euler Angles

This section presents the equations that associate the body-fixed reference frame to the earth-fixed

reference frame for a vehicle of 6 DOF. If defined:

η = [ηT
1 ,η

T
2 ] where η1 = [x,y,z] η2 = [φ ,θ ,ψ]

ν = [νT
1 ,ν

T
2 ] where ν1 = [u,v,w] ν2 = [p,q,r]

(2.3)

where η is the position and orientation of the vehicle expressed in the earth-fixed reference

frame and ν is the linear and angular velocities of the vehicle in the body-fixed reference frame.

The relation between η and ν if:

η̇1 = J1(η2)ν1 (2.4)

where J1(η2) is a transformation matrix which is related through the functions of the Euler

angles: roll (φ), pitch (θ) and yaw (ψ):

J1(η2) =

cψcθ −sψcφ + cψsθsφ sψsφ + cψcφsθ

sψcθ cψcφ + sψsθsφ −cψsφ + sθsψcφ

−sθ cθsφ cθcφ

 (2.5)

where s(·) = sin(·) and c(·) = cos(·).

The relation between the body-fixed angular velocity ν2 =
[

p q r
]T

and the rate of change

of the Euler angles
[
φ θ ψ

]T
is given by:

η̇2 = J2(η2)ν2 (2.6)

where J2(η2) is also a transformation related to Euler angles and expressed by:

J1(η2) =

1 sψtθ cφ tθ

0 cφ −sφ

0 sφ

cθ

cφ

cθ

 (2.7)

where s(·) = sin(·), c(·) = cos(·) and t(·) = tan(·).
It’s important to notice that J2(η2) is undefined for a pitch angle of θ = ±90◦since it has a

singularity in that point. However this problem is not considered in the systems since the vehicles

never reach this operational point.
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In conclusion, the defined kinematics equation is:

η̇ =

[
J1(η2) 0

0 J2(η2)

]
ν (2.8)

2.1.1.3 State space representation of the AUV

A state space representation is defined to provide a compact way to model and analyze the kine-

matics of an AUV. The vector notation includes the position vectors χ (2.1) and η( 2.2) for the B

and W-frame. The velocity vectors v and η̇ for the B and W-frame, respectively

v =
[
ẋB ẏB żB φ̇B θ̇B ψ̇B

]T
=
[
u v w p q r

]T
(2.9)

and

η̇ =
[
ẋ ẏ ż φ̇ θ̇ ψ̇

]
(2.10)

and the force/torque vector ς of the thruster input,

ς =
[
ςu ςv ςw ςϕ ςθ ςψ

]
(2.11)

2.1.2 Rigid-body dynamics

In this section, the rigid-body equations of motion in six degrees of freedom will be deduced.

Newtonian and Lagragian mechanics will not be discussed. An introduction to translational and

rotational equations can be found in Fossen [8] and Healey [9]. A summarized form of the kine-

matic and dynamic equations of motion are summarized in 2.7 which gives the relative velocity

form, including current drift effects. All hydrodynamics forces and moments are expressed in
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relative velocity and acceleration.

Surge Equation of Motion
m[u̇r−νrr+wq− xg(q2 + r2)+ yG(pq− ṙ)+ zG(pr+ q̇)]+(W −B)sinθ = X f +m(rvc−qwc)

Sway Equation of Motion
m[v̇r +ur−wr p+ xg(pq+ ṙ)− yG(p2 + r2)+ zG(qr− ṗ)]− (W −B)cosθsinϕ = Yf +m(pwc− ruc)

Heave Equation of Motion
m[ẇr−urq+ vr p+ xG(pr− q̇)+ yG(qr+ ṗ)− zG(p2 +q2)]− (W −B)cosθcosϕ = Z f +m(quc− pvc)

Roll Equation of Motion
Ix ṗ+(Iz− Iy)qr+ Ixy(pr− q̇)− Iyz(q2− r2)− Ixz(pq+ ṙ)+m[yG(ẇ−urq+ vr p)− zG(ṙ+urr−wr p)]

−(ygW − yBB)cosθcosϕ +(zGW − zBB)cosθsinϕ = K f +myG(ucq− vc p)−mzg(wc p−ucr)

Pitch Equation of Motion
Iyq̇+(Ix− Iz)pr− Ixy(qr+ ṗ)+ Iyz(pq− ṙ)+ Ixz(p2− r2)−m[xG(ẇr−urq+ vr p)− zG(u̇r− vrr +wrq)]

+(xGW − xBB)cosθcosϕ +(zGW − zBB)sinθ = M f +mzG(vcr−wcq)−mxG(ucq− vc p)

Yaw Equation of Motion
Izṙ+(Iy− Ix)pq− Ixy(p2−q2)− Iyz(pr+ q̇)+ Ixz(qr− ṗ)+m[xG(v̇r +urr−wr p)− yG(u̇r +wrq)]

−(xGW − xBB)cosθsinϕ− (yGW − yBB)sinθ = N f +mxG(wc p−ucr)−myG(vcr−wcq)
(2.12)

where m is the vehicle mass, Ix, Iy and Iz are the moments of inertia about x−,y− and z− axis

of the body-frame and Ixy, Ixz and Iyz are the products of inertia. (xG,yG,zG) are the coordinates of

the vehicle’s center of gravity (CG) and (xB,yB,zB) are the coordinates of the vehicle’s center of

buoyancy (CB), both expressed in the vehicle body-fixed reference frame.

2.1.2.1 Hydrodynamic forces and moments

1. Radiation-Induced Forces - forces on the body when it is forced to oscillate with the wave

excitation frequency and there are no incident waves. They can be identified has:

• added mass due to the inertia of surrounding fluid;

• damping, caused by surface friction (laminar and turbulent) and vortex shredding;

• restoring forces due to Archimedes (weight and buoyancy).

2. Froude-Kriloff and Diffraction Forces - forces on the body when it is restrained from oscil-

lating and there are incident regular waves.

The 6-DOF rigid-body dynamic equations of motion in 2.12 can therefore be expanded with

the equation for the forces and moments actuating in the vehicle:

Mυ̇ +C(υ)υ +D(υ)υ +g(η) = τ (2.13)
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η̇ = J(η2)υ (2.14)

where M is the constant of inertia and added mass matrix, C(υ) is the Coriolis matrix, D(υ) is

the damping matrix, g(η) is the vector of restoring forces and moments and τ is the vector of the

body.fixed forces from the actuators. The following sections will explain each one of the equation

parameters.

The Constant Inertia and Added Mass Matrix M is expressed in the following way:

M = MRB +MA (2.15)

where MRB is the rigid-body inertia matrix and MA is the added mass matrix. The added mass

matrix MA represents the inertial reaction to the fluid particles surrounding the body that are ac-

celerated by the movement of the body itself. For a rigid body in a ideal fluid, the added mass

matrix will be symmetrical, i.e., MA = MT
A . Under this assumption the inertia matrix, M , will also

be symmetrical, thus positive definite:

M = MT > 0 (2.16)

Hence, M takes the form:

M =



m−Xu̇ −Xv̇ −Xẇ −Xṗ mzG−Xq̇ −myG−Xṙ

−Xv̇ m−Yv̇ −Yẇ −mzG−Yṗ −Yq̇ mxG−Yṙ

−Xẇ −Yẇ m−Zẇ myG−Zṗ −mxG−Zq̇ −Zṙ

−Xṗ −mzG−Yṗ myG−Zṗ Ix−Kṗ −Ixy−Kq̇ −Izx−Kṙ

mzG−Xq̇ −Yq̇ −mxG−Zq̇ −Ixy−Kq̇ Iy−Mq̇ −Iyz−Mṙ

−myG−Xṙ mxG−Yṙ −Zṙ −Izx−Kṙ −Iyz−Mṙ Iz−Nṙ


(2.17)

This notation, based on SNAME [10], indicates the degrees of freedom on which the hydrody-

namics added mass force actuates, as well the origin of it.

The Coriolis and Centripetal Matrix C(v) is represented by:

C(v) =CRB +CA(v) (2.18)
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where the CRB consists in the rigid-body Coriolis and centripetal matrix and CA is the hydrody-

namic Coriolis and centripetal matrix.

CA(v) =



0 0 0 0 −a3 a2

0 0 0 0 a3 −a1

0 0 0 −a2 a1 0

0 −a3 a2 0 −b3 b2

a3 0 −a1 b3 0 −b1

−a2 a1 0 −b2 b1 0


(2.19)

where
a1 = Xu̇u+Xv̇v+Xẇw+Xṗ p+Xq̇q+Xṙr

a2 = Xv̇u+Yv̇v+Yẇw+Yṗ p+Yq̇q+Yṙr

a3 = Xẇu+Yẇv+Zẇw+Zṗ p+Zq̇q+Zṙr

b1 = Xṗu+Yṗv+Zṗw+Kṗ p+Kq̇q+Kṙr

b2 = Xq̇u+Yq̇v+Zq̇w+Kq̇ p+Mq̇q+Mṙr

b3 = Xṙu+Yṙv+Zṙw+Kṙ p+Mṙq+Nṙr

(2.20)

Damping Matrix D(v) represents the hydrodynamic damping for ocean vehicles which is

manly caused by the sum of the following components: Dp(v) is the radiation-induced potential

damping due to forced body oscillations, Ds(v) is the linear skin friction due to laminar bound-

ary layers and quadratic skin friction due to turbulent boundary layers. Dw(v) is the wave drift

damping and DM(v) is the damping due to vortex shedding, based on Morison’s equation.

The Vector of Restoring Forces and Moments g(η) is a representation in hydrodynamics termi-

nology of gravitational and buoyant forces. The gravitational force fG will act through the center

of gravity (CG) of the body of the vehicle and, similarly, fB, the buoyant force, will act through

the center of buoyancy (CB).

g(η) =



(W −B)sθ

−(W −B)cθsφ

−(W −B)cθcφ

−(yGW − yBB)cθcφ +(zGW − zBB)cθsφ

(ZGW −ZBB)sθ +(xGW − xBB)cθcφ

−(xGW − xBB)cθcφ − (yGW − yBB)sθ


(2.21)

2.1.3 Current-Induced Forces and Moments

This section presents that the current-induced forces and moments can be included in dynamic

equations of motion. This methods are based on the assumption that equations of motion can be

represented in terms of velocity of the vehicle relative to the ocean currents and expressed in the
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body-fixed reference frame:

vr = v− vc (2.22)

where vc = [uc,vc,wc,0,0,0]T is a vector of non-rotational body- fixed current velocities. From

the 6 degrees of freedom equations of motion 2.13 it is possible to define:

Mυ̇r +C(υr)υr +D(υr)υr +g(η) = τ (2.23)

η̇ = J(η)υ = J(η)(υr +υc) (2.24)

and recall that its possible to compute the earth-fixed current velocity vector(ve
c) as follows

ve
c = J(η)vc (2.25)

where ve
c = [ue

c,v
e
c,w

e
c,0,0,0]

T .

Next, the kinematic equations 2.8 can be modified to include a new state variable vr and a

vector vE
c describing the earth-fixed current velocity:

η̇ = J(η)vr + vE
c (2.26)

2.2 Coordinate Systems and Transformations

2.2.1 Coordinate Systems

In navigation of autonomous vehicles, being them maritime, terrestrial or aerial, there are a several

coordinate systems that are intensively used in design and analysis. This section, which is heavily

based on Unmanned Rotorcraft Systems [11], introduces the coordinate systems studied which

include

1. the geodetic coordinate system,

2. the earth-centered earth-fixed (ECEF) coordinate system,

3. the local north-east-down (NED) coordinate system,

4. the vehicle-carried NED coordinate system,

5. the body coordinate system.

The relations between the coordinate systems are also introduced for application proposes and

are presented in figure 2.2 for ECEF and NED and 2.1 for Body and NED .
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Figure 2.2: Geodetic, ECEF coordinate systems. Source: Unmanned Rotorcraft Systems

2.2.1.1 Geodetic Coordinate System

The geodetic coordinate system seen in figure 2.2 is used in GPS-based applications. It character-

izes a coordinate point on earth’s surface with longitude(ϕ), latitude(λ ) and height(h). Longitude

measures the rotational angle, from −π to π between the Prime Meridian and the measured point

while the latitude measures the angle, from−π

2 to π

2 between the equator and the normal of the ref-

erence ellipsoid that passes through the measured point. The height (or depth) is the local vertical

distance between the measured point and the reference ellipsoid. Coordinate vectors are expressed

in terms of the geodetic frame are denoted by

Pg =

 λ

ϕ

h

 (2.27)

There is some important parameters that are associated with the geodetic frame that must be noted

1. the semi-major axis REa,

2. the flattening factor f ,

3. the semi-minor axis REb,

4. the first eccentricity e,
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5. the meridian radius of curvature ME ,

6. the prime vertical radius of curvature NE .

were some parameters are either defined (item 1 and 2) or derived (items 3 t o 6) and are all based

on the WGS84 (world geodetic system 84, proposed in 1984 and updated in 2004 [12]) ellipsoid

model. More specifically

REa = 6,378,137.0m, (2.28)

f =
1

298.257223563
, (2.29)

REb = REa(1− f ) = 6,356,752.0m, (2.30)

e =

√
R2

Ea−R2
Eb

REa
= 0.081181919, (2.31)

ME =
REa(1− e2)

(1− e2sin2ϕ)
3
2
, (2.32)

NE =
REa√

1− e2sin2ϕ
, (2.33)

2.2.1.2 Earth-Centered Earth-Fixed Coordinate System

The ECEF coordinate system rotates with the earth, around its spin axis. As such, a fixed point

on earths surface will have a fixed set of coordinates. The origin and axes of ECEF can be seen in

figure 2.2 and are defined:

1. The origin Oe is located at the center of the earth.

2. The Z-axis Ze is along the spin axis and points to the north pole.

3. The X-axis Xe intersects the sphere of the earth at 0o latitude and 0o longitude.

4. The Y-axis Ye is orthogonal to the Z- and X-Axes based on the right hand rule.

The representation of the coordinate vectors of ECEF frame is similar to the geodetic system

and is denoted by

Pe =

 xe

ye

ze

 (2.34)
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2.2.1.3 Local North-East-Down Coordinate System

NED coordinate system is also known as a navigation or ground coordinate system. It’s a frame

fixed to earth’s surface. The origin and axes, has seen in figure 2.2 are base on the WGS84 ellipsoid

model and are defined has the following:

1. The origin On is arbitrary fixed to a point on earth’s surface.

2. The X-axis Xn points toward the ellipsoid north (geodetic north).

3. The Y-axis Yn points toward the ellipsoid east (geodetic east).

4. The Z-axis Zn points downward along the ellipsoid normal.

The local NED frame carries a very important role in the vehicles navigation since it is nor-

mally in this frame. Coordinate vectors are Pn for the position, Vn for the velocity and an for the

acceleration. They are defined as:

Pn =

 xn

yn

zn

 ,Vn =

 un

vn

wn

 ,ae =

 aX ,n

aY,n

aZ,n

 (2.35)

2.2.1.4 Vehicle-Carried North-East-Down Coordinate System

The vehicle-carried NED system is associated with the vehicle and its origin and axes (2.1) are

given by the following:

1. The origin Onv is located at the CG of the vehicle.

2. The X-axis Xnv points toward the ellipsoid north (geodetic north).

3. The Y-axis Ynv points toward the ellipsoid east (geodetic east).

4. The Z-axis Znv points downward along the ellipsoid normal.

Strictly speaking, the axis directions of the vehicle-carried NED frame vary with respect of

the vehicle movement and thus are not aligned with those of the local NED frame. But since the

vehicle only moves through a small region with low speed, the directional difference is completely

small. As such, is reasonable to assume that the directions of the vehicle-carried and local NED

coordinate systems constantly coincide with each other. The velocity and acceleration vectors of

the vehicle-carried NED frame are defined

Vnv =

 unv

vnv

wnv

 ,anv =

 aX ,nv

aY,nv

aZ,nv

 (2.36)
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2.2.1.5 Body Coordinate System

The body coordinate system is vehicle-carried and is directly defined on the body of the vehicle.

Its origin and axes are represented in figure 2.1 and are given by the following:

1. The origin Ob is located at the CG of the vehicle.

2. The X-axis Xb points forward, lying in the symmetric plane of the vehicle.

3. The Y-axis Yb is starboard (right side of the vehicle).

4. The Z-axis Zb points downward to comply with the right-hand rule.

The coordinate vectors of the body frame are defined

Vb =

 ub

vb

wb

 ,ab =

 ax

ay

az

 (2.37)

2.2.2 Coordinate Transformations

In many applications, a coordinate transformation is needed in order to process with the navigation

of the vehicle. In this section we introduce the coordinate transformations among the coordinate

systems.

2.2.2.1 Geodetic and ECEF Coordinate Systems

The position vector from the geodetic system to the ECEF is a step to convert GPS position mea-

surement to the local NED system. Given a point in the geodetic system

Pg =

 λ

ϕ

h


its coordinate in ECEF frame is

Pe =

 xe

ye

ze

=

 (Ne +h)cosϕcosλ

(Ne +h)cosϕsinλ

[Ne(1− e2)+h]sinϕ

 (2.38)

where e and Ne are given in 2.30 and 2.32 respectively.

2.2.2.2 ECEF and Local NED Coordinate Systems

The position transformation from ECEF to local NED is required together with the transformation

from geodetic system to ECEF in order to have a complete position conversion from geodetic to

local NED.
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We have

PN = R n
e
(Pe−Pe,re f ) (2.39)

where Pe,re f is the position of the origin of NED in the ECEF coordinate system and R n
e

is the

rotation matrix from the ECEF frame to the local NED, which is

R n
e

=

−sinλre f cosλre f −sinϕre f sinλre f cosϕre f

−sinϕre f cosλ re f 0

−cosϕre f cosλre f −cosϕre f sinλre f −sinϕre f

 (2.40)

where λre f and ϕre f are the geodetic longitude and latitude corresponding to Pe,re f .

2.2.2.3 Geodetic and Vehicle-Carried NED Coordinate System

The derivative of the kinematic relationship between geodetic position and vehicle-carried NED

velocity is expressed as the following:

λ̇ =
vnv

(NE +h)cosϕ
(2.41)

ϕ̇ =
unv

ME +h
(2.42)

and

ḣ =−wnv (2.43)

The first two equations are derived based on spherical triangles and the third one can be ob-

tained from the definitions of h and wnv.

The derivatives of the vehicle-carried NED velocities are

˙unv =−
v2

nvsinϕ

(NE +h)cosϕ
+

unvwnv

ME +h
+amx,nv (2.44)

˙vnv =
unvvnvsinϕ

(NE +h)cosϕ
+

vnvwnv

NE +h
+amy,nv (2.45)

and

ẇnv =−
v2

nv

(NE +h)
+

u2
nv

ME +h
+amz,nv (2.46)

where

amea,nv =

 amx,nv

amy,nv

amz,nv

 (2.47)
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is a projection of amea,b, the acceleration measured on the body frame onto the vehicle-carried

NED frame.

2.2.2.4 Vehicle-Carried NED and Body Coordinate Systems

Kinematical relationships between vehicle-carried NED and the body frame of the vehicle are

important to dynamics modeling and automatic movement control. We have

Vb = Rb/nvVnv, (2.48)

ab = Rb/nvanv (2.49)

and

amea,b = Rb/nvamea,nv (2.50)

where Rb/nv is the rotation matrix from vehicle-carried NED to the body frame and is given by

Rb/nv =

 cθ cψ cθ sψ −sθ

sφ sθ cψ − cφ sψ sφ sθ sψ + cφ cψ sφ cθ

cφ sθ cψ + sφ sψ cφ sθ sψ − sφ cψ cφ cθ

 (2.51)

where s∗ and c∗ denote sin(*) and cos(*), respectively.

For the rotational kinematics, the angular velocity vector ωb
b/nv which describes the rotation

of the vehicle-carried NED frame with respect to the body, has the following definition of Euler

Angles(see 2.1.1.2). It can be expressed as

ω
b
b/nv =

 p

q

r

=

 φ̇

0

0

+Rb/int2


 0

θ̇

0

+Rint2/int1

 0

0

ψ̇


= S

 φ̇

θ̇

ψ̇

 (2.52)

where p, q and r are the standard symbols adopted for the components ωb
b/nv, Rint2/int1 and

Rb/int2 are given by

Rint2/int1 =

cosθ 0 −sinθ

0 1 0

sinθ 0 cosθ

 (2.53)



2.3 Hybrid Systems 19

and

Rb/int2 =

1 0 0

0 cosφ sinφ

0 −sinφ cosφ

 (2.54)

and lastly

S =

1 0 −sinθ

0 cosφ sinφcosθ

0 −sinφ cosφcosθ

 (2.55)

2.2.2.5 Local and Vehicle-Carried NED Coordinate Frames

Assuming that there is no directional difference between the local and vehicle-carried NED, as

mentioned at 2.2.1.4, we have

Vn =Vnv,ω
b
b/n = ω

b
b/nv,an = anv,amea,n = amea,nv (2.56)

where amea,n is the proper acceleration measured on the body frame onto the local NED frame.

2.3 Hybrid Systems

Nowadays, more and more real-life processes, from elevators to aircraft, are controlled by pro-

grams. Being them reactive programs, they must react to the environment and apply changes in

real time. A hybrid system represents a discrete program within an analog environment. Hybrid

Automata are generalized finite-state machines for modeling hybrid systems. Discrete transitions

of program are modeled by a change in the program counter, which ranges over a finite set of

control locations. Hybrid systems have been extensively use and because of that, its possible to

have a more in-depth study where Varaiya et. al. have an extended published work about Hybrid

Systems ([13],[14],[15]) and Hespanha [16] class notes. The Hybrid automaton model presented

next [17] is a generalization of other models introduced in literature(Alur et. al. [18] and Puri et.

al. [19]).

A hybrid transition system is a tuple

H = (Q,Rn,∑,E,Φ) (2.57)

where Q is the finite set of discrete states and Rn is the set of continuous state. ∑ is the finite set

of discrete events.

E ⊂ Q×P(Rn)×∑×{Rn→ Rn}×Q (2.58)



20 Background

E is the finite set of edges1. The edges model of the discrete event dynamics of the system. An

edge e ∈ E is denoted as

(qe,Xe,Ve,re,qnew
e ) (2.59)

and is enabled when the discrete state is qe and the continuous state is in Xe. When a transition

through e is taken, the event Ve ∈ ∑ is accepted by the system. The continuous state is then reset

according to the map re, and the system enters the discrete state qnew
e .

Φ = {Fq : Rn→ P(R)n\0|q ∈ Q} (2.60)

is a set of differential inclusions that the model the continuous dynamics of the system. When

the discrete state is q, the continuous state evolves according to the differential inclusion.

A hybrid automaton essentially consists of a graph with discrete states as vertices’s and with

edges between the discrete states.

Let’s take figure 2.3 has an example.

Figure 2.3: Example of a Hybrid Automaton

Each discrete state (Q) is labeled with a specific differential inclusion (Φ) and every edge(E)

is labeled with a guard condition and jump relation. The state is pair (q,x) where q is the discrete

state and x ∈ Rn is the continuous state. The initial state is (q0,x0) and the trajectory evolves

with the discrete state remaining constant and the continuous state x evolving accordingly with the

differential inclusion expressed in the discrete state. When the guard condition of an edge from

the discrete state qi to other discrete state qk is satisfied a jump can be performed to a new state qk.

1P(·) denotes the power set(or, the set of all subsets) of (·)
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When performing the jump, the continuous state may get initialized to a new value xk being this

the reset condition. The new state pair is (qk,xk). The continuous state x now moves with the new

differential inclusion. This is the general state transition algorithm for hybrid systems.

Considering again figure 2.3, now has an example, the state transition will be:

1. The hybrid system starts with a continuous state x = 0 and a discrete state q = 0 and because

of that it enters the Q1 state.

2. Entering the state Q1 x will be ẋ = a and the discrete state q will be q = 1 and will have a

guard condition between states Q1 and Q2 of x > h1.

3. If the state of the system increases in a way that the limit is overflown, then the state will

jump to Q2 having ẋ = c,q = 2.

4. In case of some disturbance happens in the system where x > 2h1 then the state will jump

to Q3 updating ẋ = b and q = 3.

5. When the state of the system returns to normal levels (x < h1) the discrete state returns to

Q1 either from Q2 or Q3.

2.4 LSTS Toolchain

There have been a huge development on sub-aquatic autonomous systems that need to be easily

controlled remotely. The Underwater Systems and Technologies Laboratory (LSTS) has devel-

oped different algorithms and technologies that allow to operate this vehicles in a simple and

efficient way to the operator. The toolchain of LSTS consists in a control architecture which

includes:

• Neptus.

• Inter-Module Communication (IMC).

• DUNE Unified Navigation Environment (DUNE).

The figure 2.4 show the common scheme of actuation of all parts of the toolchain.
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Figure 2.4: Structured top-down view of the LSTS Toolchain. Source: LSTS

2.4.1 Neptus

Neptus is a Command and Control software used to control and monitor the autonomous systems.

It provides basic functions by using plugins where there is possible to have a communication

infrastructure, several layout mechanisms, means of showing notifications to the operator of the

mission and a map that can be extended with new layers and interaction mechanisms. This results

in consoles supporting the full extent of mission life-cycles in an integrated interface. It is written

in Java and it currently runs in Linux and Microsoft Windows operating systems. A typical mission

life-cycle executed in Neptus comprises three phases:

1. Planning
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2. Execution

3. Review

The planning phase generally is performed prior to the mission. The operator, equipped with

the mission objectives and the knowledge of possible obstacles, depths, tides, traffic, choose the

best location for the command center, communication placement and location aids and starts doing

rough simulations of the mission plans.

The figure 2.5 shows and example of maneuver planning for a mission, in Neptus.

Figure 2.5: Mission planning. Source: LSTS

In execution phase, the operator is in charge of preparing the vehicles for deployment, monitor

the systems telemetry and execute/adapt the mission plans. The figure 2.6 shows the execution

and all the important parts to manage to successfully perform the mission.



24 Background

Figure 2.6: Mission execution. Source: LSTS

The review and analysis phase (MRA) takes place on site or after concluded the mission. It

serves to process and analyzed the collected data in order to compile mission results or evaluate

individual plan execution to adjust and re-plan to achieve another desired outcome of the mis-

sion. In this phase, logs are generated with the information required by the operator, for example,

sidescan imagery has seen on figure 2.7 and vehicles path, on figure 2.8.

Figure 2.7: Sidescan imagery analysis. Source: LSTS
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Figure 2.8: Vehicle estimated and real position. Source: LSTS
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2.4.2 Inter-Module Communication

Inter-Module Communication (IMC) protocol is a message-oriented protocol designed and im-

plemented to build interconnected systems of vehicles, sensors and human operators. Has they

pursue a common goal of cooperatively exchange real-time information about the environment

or update objectives, IMC abstracts the hardware and communication by providing a shared set

of messages that can be serialized and transferred over different means. Native support can be

automatically generated for different programming languages resulting in an optimized code that

can be used both network nodes and inter-process or inter-thread communication. An example of

communication between systems can be seen in figure 2.9.

Figure 2.9: IMC communications between multiple systems. Source: LSTS

2.4.3 DUNE Unified Navigation Environment

DUNE Unified Navigation Environment(DUNE) is the on-board running on the vehicle, which

is responsible to every interaction with sensors, payload, actuators, communications, navigation,

control, maneuvering, plan execution and vehicle supervision. It is CPU architecture and oper-

ating system independent and due to its modularity and versatility, DUNE does not only run in

ASVs, ROVs,AUVs, and UAVs but also in LSTS Manta communications gateways. DUNE’s ar-

chitecture is a collection of tasks, hierarchically structured that usually run in separate threads of

execution. They can communicate with each other using the IMC protocol by forwarding IMC

messages from the producers to the consumers. Each task follows a common life-cycle and also

has method handlers for all messages it consumes. The figure 2.10 shows a base example of

DUNE architecture.
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Figure 2.10: DUNE architecture. Source: LSTS

2.5 Conclusions

In this chapter we discussed an overview of models of marine vehicles (2.1). Several system of

equations have been addressed in the kinematics section (2.1.1) where was described the coordi-

nate frames associated with the movement of the vehicle and it’s position, Euler angles, where

were presented the equations associated with the body-fixed reference frame to the earth-fixed ref-

erence frame. A deduction was made towards the rigid-body equation of motion in (2.1.2). It was

presented Current-Induced Forces and Moments in (2.1.3) where the equations of motion were

represented in terms of velocity of the vehicle relative to the ocean currents.

It was presented a simple explanation about coordinate systems of autonomous vehicles (2.2)

where we show the existing coordinate systems (2.2.1) and the possible transformations between

them (2.2.2).

A brief explanation about Hybrid Systems (2.3) was shown in order to present how it is possi-

ble to describe a real-life process through a simple modeled program.

Finally, the LSTS toolchain was described in (2.4) where was made a brief analysis of the var-

ious components of the toolchain, showing the operation of the interface Neptus 2.4.1, how IMC

protocol (2.4.2) works towards a multi-system communication and how DUNE (2.4.3) manages

to make a bridge between low level components like actuators and sensors, parse the information

through the various tasks and send it to a higher level tasks.





Chapter 3

State of the Art in Autonomous Docking
Systems

3.1 Introduction

There is already a great number of underwater docking systems developed by the research commu-

nity, although some are still at present at prototype stage of development. Improvements are being

developed to have a better performance of energy storage technology, precision of navigation in-

struments and reliability of acoustic communications. This enables progress on the development of

homing/docking systems throughout the last two decades. Such improvements, made a profound

impact on the ocean exploration.

This overview address the various techniques implements towards the development of docking

systems.

One of the main problems for extended oceanic exploration is the shortcoming of the present

technology, e.g. unavailability of affordable as suitable platforms that can be deployed for various

science missions. The Autonomous Docking Systems (ADS) enhances the capability of underwa-

ter exploration and data collection by increasing the level of autonomy of the AUVs. With this, the

AUVs can be deployed for extended periods of time, data can be easily transferred and batteries

can be recharged.

3.2 Overview of underwater docking systems

In literature, some of the works specifically deal with docking maneuvers where some take homing

maneuvers into consideration. With this, the following definitions are given the intention to clarify

the difference between docking and homing in ADS systems.

Docking - As the name suggests, underwater docking is the final sequence of the maneuver of

the underwater vehicle to dock on the docking station, being the former stationary or in motion.

Such maneuver, typically is initiated between 50 to 500 meters from the dock.

29
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Homing - This is the last but one sequence of the maneuver to perform the docking. This

phase is primarily used to guide the vehicle to an optimal position, within the range of the sensors

placed on the dock. Such phase, usually is initiated from 500m to 2Kms from the dock. Once the

communication between the dock and the vehicle is established, the docking maneuver is initiated.

3.2.1 Existing docking systems and approaches

"A Docking System for REMUS, an Autonomous Underwater Vehicle" - Stokey, Purcell,
and et. al.

Autonomous docking using Ultra-Short Baseline (USBL)1 acoustic homing array were demon-

strated by Stokey, Purcell, and et. al [3] when they developed a docking system to be used on RE-

MUS (Remote Environmental Monitoring Unit), low cost AUV designed by the Oceanographic

Systems Laboratory at Woods Hole Oceanographic Institution (WHOI). Their work discusses so-

lutions for enabling the vehicle to dock inside a stationary conical shaped docking station, as

seen in figure 3.1, where acoustically they find and home the AUV to the docking station. They

managed to build procedures for mechanically latching the vehicle to the dock, applied some

electro-mechanical techniques for power and data transfer from the docking system to the vehicle,

and download data remotely and upload new mission without the need to open the vehicle casing.

They also developed and algorithm for the docking sequence using state machines. This al-

gorithm uses the technique of way-point following and minimization of cross-track error2. The

docking maneuver happens in the following sequence: First the vehicle navigates to a position

fifty meters from the dock along the track into dock. Once the criteria has been met, the vehicle

attempts to follow the path leading into the dock. When the vehicle determines that is entering

the dock it straightens the fins out, and continues thrusting at constant RPM for fifteen seconds.

This period forces the vehicle all the way into the guide tube. This approach is important be-

cause it addresses all the components of a typical docking system, including the dock, charging

mechanism and communication circuitry, AUV navigation and the vehicle software and docking

algorithm. Some disadvantages with the system are a navigational problem, since the vehicle could

not merely head towards the dock. The vehicle had to orient itself on the proper glide path. The

system was tested at Woods Hole harbor. Some disadvantages with the system are a navigational

problem, since the vehicle could not merely head towards the dock. The vehicle had to orient itself

on the proper glide path. This docking system did not consider a model of the AUV nor the ocean

currents in the control hoop, therefore it was not a robust control method. Thus, convergence was

not guaranteed.

The work is further explained in [20] and [21].

1USBL is a method of underwater positioning. A complete USBL system, consists in a transceiver, which is typi-
cally mounted on a pole under a ship, and a transponder/responder on the sea floor or in an underwater vehicle.

2Distance between the vehicle and a given path.
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Figure 3.1: Docking system for Remus AUV. Source: Stokey et. al.

"Autonomous Underwater Vehicle Homing/Docking via Electromagnetic Guidance" - Fee-
zor et. al.

An electromagnetic (EM) homing system was developed by Feezor et. al. [5] for a AUV named

SeaGrant Odyssey IIb to dock inside a stationary conical shaped docking station. The docking sta-

tion had embedded systems that can emit magnetic fields strong enough to be accurately detected

by the AUV and thus, perform the docking. The system would achieve a precision up to 20cm to

the dock. Still the maximum range of the Electro Magnetic (EM) system was limited to twenty-

five or thirty meters. In this approach, there were no communications between the underwater

vehicle and the dock.

The docking sequence follows: the AUV was programmed to travel outbound from the launch

point for sixty seconds, execute one hundred and eighty degrees turn to point towards the dock

station and travel back towards the ship and dock. The AUV remains in dead reckoning3 until

the magnetic field is sensed. A series of tests were conducted in Buzzards Bay, where they failed

when the AUV was aligned more than thirty degrees off the dock the dock axis when acquired the

EM signal. In this cases, the AUV slipped during the turn to the dock and hit the outside edge of

the dock during homing.

3Dead Reckoning is the process of calculating one’s current position, based on a previous position and the estimated
speed over elapsed time an course.
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Figure 3.2: Diagram of EM homing system showing the field lines and the dock. Source: Feezor
et. al.

"Underwater Docking of Autonomous Undersea Vehicles using Optical Terminal Guidance"
- Cowen, Steve and Briest

Cowen et. al. [22] presents an optical terminal guidance system which tracks the light source pro-

vided by the dock, using two AUVs for sea trials, more specifically, the SeaGrant Odyssey IIb and

the NRaD Flying Plug. In this approach, the light is tracked by the vehicles. It was demonstrated to

be very accurate and robust for the vehicle terminal guidance during field operations and provided

target accuracy of one centimeter under real-world conditions even with present disturbances. The

control of the vehicle was achieved through the application of a conventional closed loop Propor-

tional–Integral–Derivative (PID) control. One of the main disadvantages of this technique is that

the sunlight would interfere with docking when on shallow water.

"Docking for an autonomous ocean sampling network" - Singh, Bellingham, Hover et.al.

All the previous systems use a cone dock for the docking system but Singh, Bellingham, Hover

et.al. [2] have tested an omni-directional docking system for the Odyssey vehicle (figure 3.3)

using USBL system for AUV to approach the dock from any direction by determining the range

and bearing of the transponder mounted on the dock. After the vehicle reached the dock, a latch

mechanism would lock to a pole mounted on the dock. The advantage of system is the robustness

to errors, being them the presence of ocean currents and magnetic anomalies. This work presented

solutions for several failure model to ensure reliability of the system, including failure of a task

to complete, communications failure, mechanical failures, conflicting sensor data, missing AUV

and software lockups. They developed a layered hierarchical control architecture for autonomous

control of the AUV during the docking procedures using a high level Finite-State Machine (FSM)

model to monitor and supervise the whole operation. The system was divided into four different

states in a higher level of abstraction:

• State 0 - Power on sequence of the vehicle.

• State 1 - Vehicle ready for mission, docked in the Docking station.
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• State 2 - Docking Station is empty, vehicle in mission.

• State 3 - Vehicle ends mission, return to Docking Station.

An USBL system on the vehicle is used to calculate the azimuth4 and elevation relative to

the docking station. The Line-of-Sight (LOS) technique, which is used in the homing algorithm,

works by nullifying the bearing5 to the docking station. A PID control loop ensures that the

heading σ follows the desired heading ψd . The algorithm for the homing system is explained as

follows: homing is typically initiated at a distance of one hundred to two hundred meters away

from the dock. When the homing beacon is detected, the vehicle attempts to null the bearing to

the dock. This approach was successfully tested with cross currents to test the robustness of the

system in presence of disturbances.

Figure 3.3: The AUV centric components of the docking system. The AUV passively latches
onto a pole and a aligning inductive cores on the AUV and the dock to enable data and motorized
assembly drives down power transfer. Source: Singh et. al.

Autonomous docking for intervention-auvs using sonar and video-based real-time 3d pose
estimation - Evans et.al.

This approach to a docking system, uses a sonar and video sensor processing techniques for real-

time control of the AUV to perform tracking and three dimensions pose. Developed by Evans

et. al. [6] it was developed for Intervention-AUV (I-AUV), the Autonomous Light Intervention

Vehicle (ALIVE). Its purpose was to latch the vehicle onto a fixed sub-sea structure. A num-

ber of techniques implemented to guarantee a precise positioning on the docking sequence are

what follows: real-time sonar-based feature tracking, video-based position control, Inertial Nav-

igation Systems (INS) and video-base Dynamic Positioning (DP) and high-bandwidth acoustic

video transmission. This comprises a three stages process:

1. Transit - This vehicle is monitored at the surface station by a periodic data acquisition

through the acoustic modems.

4Horizontal angular distance between the heading of the vehicle and the reference direction.
5Angular direction measured from one’s position to another geographical reference lines.
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2. Approach - In this phase, the docking system uses the sonar scans to continuously track

the vehicles position relative to the intervention docking panel. The vehicle gather this

information and uses it to maneuver within a safe zone of approximately two a three meters

from the panel. Once close enough, is trigger the video systems to start, a begins the docking

phase,

3. Docking - When in the docking phase, sensory fusion of the sonar and video control sys-

tem get the vehicle stabilized within ten centimeters from the panel. Finally, the docking

manipulators extended and dock the vehicle through a latch mechanism.

The results obtain from this approach where good when done in deep water trials.

Docking control system for a 54-cm-diameter (21-in) AUV - McEwen et.al.

At Monterey Bay Aquarium Research Institute (MBARI), McEwen et. al. [4] proposed a solution

of a docking system for a fifty-four-centimeter-diameter AUV and a docking station (see figure

3.4). The AUV proceeds to the homing sequence using USBL. The docking station is a benthic6,

fixed-heading cone. The homing and docking sequence is the following:

1. Locate and home to the docking station - the vehicle locates the docking station and

proceeds with the homing sequence using pursuit guidance (LoS Path following). This keep

the heading of the vehicle control system pointing towards the beacon on the station. This

method doesn’t compensate for external disturbances, since ocean current can be blown

downwind while making the approach. The main advantage is that is keeps the USBL

pointed at the beacon for maximum strength.

2. Compute a position fix - While USBL keeps a good signal strength with the beacon, the

vehicle uses its compass heading and USBL bearing and range to compute a position fix.

3. Fly to the start of the final approach path - the approach path is along the cone centerline,

and begins about three hundred meters out. The disadvantage of this method is that it may

require the vehicle to turn away from the dock and temporarily lose USBL contact.

4. Execute final approach - The vehicle approaches along the cone centerline using a cross-

track controller instead of pure pursuit. This will correct external disturbances since it ac-

quires a drift correction angle if the ocean current has a lateral component. The vehicle

slows down to one meter per second at two hundred meters from the dock. This has two

purposes: first, it allows the control loop to zero the cross-track error and second, it prevents

the vehicle from hitting on the dock with too much force.

5. Latch the vehicle on the dock - it uses a inductive position sensor and an Ethernet contact

to determine if it has fully entered. Then it raises a peg and latches the vehicle.

6Stays on the bottom of the body of water.
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The system was successfully tested in the Monterey Inner Shelf Observatory and operated by

the Naval Postgraduate School.

Figure 3.4: AUV in the dock in a seawater test tank. Source: McEwen et. al.

A Docking and Control System for an Autonomous Underwater Vehicle - Lee et.al.

Lee et.al. [23] presented a docking system for an AUV to dock in an underwater docking station

with a camera. Here, an optical flow model of a camera is mounted on the AUV, where a charge-

coupled device (CCD) camera was installed on the nose of the AUV. They combined the optical

flow equation of the camera with the AUV linearized equations of motion (EOM), deriving the

state equation for servoing AUV. With this, they merge the AUV model with the optical flow

equation, allowing to obtain more accurate control of the docking sequence. The mathematical

model of the visual servoing AUV included a system of disturbances vector, for modeling errors

and uncertainties of the AUV correction and white noise vector for measurement disturbances.

The control objective was to move the AUV to the docking station while having the cam-

era centered on the target point. A control law was designed based on optimal one-step ahead

predictive controller by minimizing a cost function, reflecting the distance between y(k+ 1) and

yd(k+ 1) where yd is the desired position in the CCD plane for an object and the attitude of the

AUV in one step ahead. In the simulation they neglected the roll-induced(θ ) velocities.

Numerical integration was conducted using the Euler method.

The results were presented by docking the AUV to a target station using the six degrees of

freedom (DOF) non-linear equations of REMUS of WHOI and CCD camera.

Experiments on vision guided docking of an autonomous underwater vehicle using one cam-
era - Park, Jun, Lee et. al.

Park, Jun, Lee et. al. expanded the work in [23] where they present a vision guided underwater

docking algorithm for an AUV, applying light in the dock to serve as a visual guide of the vehicle

during the last state of docking sequence (see figure 3.5). The dock remains stationary during
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the docking maneuver of the AUV. This algorithm allows the vehicle to identify the dock lights,

eliminating luminary noises and successfully estimate both the center of the dock and the distance

to it. The control was implemented based on the decoupled equations of motion for steering and

diving by Healey and Lienard[24]. To track heading and depth, a conventional PID control loop

was applied. The developed algorithm was based on pure pursuit guidance law. In this, there is

no way to compensate external disturbances such, e.g. ocean current. No alignment of the AUV’s

heading with the dock direction was applied.

Figure 3.5: Vision guided docking system - Source: Park et. al.

Improvement of vision guided underwater docking for small AUV ISiMI - Park et.al.

In [25], they developed a conceptual idea to overcome the problems presented before. If there

is an environment disturbance, i.e ocean current, the AUV approaches to the dock with a side

slope angle (β ). Since the AUV is an under-actuated system, the agreement of the three state,

being vehicle heading, course and dock heading, at the moment of the docking, is impossible.

They assumed that a final approach and docking with the side-slip angle is more dangerous than

the docking discrepancy between the course and the dock heading. It is assumed that the dock

heading is fixed at ψdock = 0 and the AUV know his own heading. The current is also assumed

to be regular and uniform. Only lateral current was considered. This was to generate a cross-

track error to compensate the effects of cross currents, combined with a predetermined heading

relative to the ocean currents that will drive the state of the AUV to the final state inside the

docking station. The necessary equations to derive the references for the cross-track errors and

desired heading (ψAUV ) are presented. Figure 3.6 presented the compensation of the effect of

lateral currents.
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Figure 3.6: Ocean current compensation - Source: Park et. al.

Control of underwater vehicles on autonomous docking maneuvers - Braga

A control solution for docking of underwater vehicles is given by Braga [7]. That is, a hierarchical

architecture of control is introduced specifically for the problem introduced. Hybrid Automata is

used for the high level control to supervise and execute the basic maneuvers. Medium level con-

trollers execute the way-point tracking of reference signals generated by medium level controllers.

In this approach, the docking station is considered to be applied on a Remotely Operated Vehicle

(ROV).

3.3 Acoustic positioning systems

Acoustic positioning systems exist to provide relative positioning, underwater. These systems

have a varying levels of capability as a Dynamic Positioning (DP). They can provide a position

reference from 3,700m with an absolute accuracy of 3-5m and a relative accuracy of <2m. Also

there are available systems with shorter range, higher resolution. The table 3.1 shows the relation

between the frequency bands and the maximum range of the systems.

Frequency Range
Maximum

range

Typical
relative, static

accuracy
Low frequency (LF) 8kHz to 16kHz ∼ 10km 2m to 5m

Medium frequency (MF) 18kHz to 36kHz 2km to 3.5km 0.25m to 1m
High frequency (HF) 30kHz to 60kHz 1, 500m 0.15m to 0.25m
Extra high frequency

(EHF)
50kHz to 110kHz <1, 000m <0.05m

Very high frequency
(VHF)

200kHz to 300kHz <100m <0.01m

Table 3.1: Frequency Bands and Maximum Range - Source: Vickery

The decision of using a particular frequency band is made based on the application at hand.

The lower the frequency range used for interrogation, the higher the effective range, and lower the
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accuracy. The depth of operation is central to this decision. The deeper the area of operation the

lower the frequency band used. The simple reason being higher frequencies are attenuated more

than lower ones.

The distance between acoustic baselines is what defines the acoustic positioning system. Vick-

ery [26] presents the three primary types of acoustic positioning systems:

• LBL - Long Baseline (Baseline Length from 100m to 6,000m+ )

• SBL - Sort Baseline (Baseline Length from 20m to 50m )

• USBL - Ultra Short Baseline (Baseline Length <10cm )

3.3.1 Long Baseline

Figure 3.7: Long Baseline - Source: Vickery

As said previously, Long Baseline (LBL) system take their name from the distance between seabed

beacons. The conventional LBL acoustic position systems normally use a Kalman Filter7 correc-

tion to handle the problem of positional error has described by Cheng [27]. A typical configura-

tion of the system, consists in one transceiver and at least three transponders. The transceiver is

mounted on a AUV or surface vessel which is the target to be positioned. The transponder form

an array (see figure 3.7). This transponders are deployed before, on the sea-floor and it’s position

are know precisely. To determine the location of the vehicle, it usually follows the sequence:

1. The vehicle emits and acoustic pulse from its transceiver.

2. The pulse travels through the water to each LBL transponder.

7Kalman filter, also known as Linear Quadratic Estimation is an algorithm that uses a series of measurements
observed over time, with noise and produces estimates of unknown variables.
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3. The transponders detect the signal and respond with a acoustic pulse of a unique frequency.

4. The transponders pulse return through the water to the vehicle’s transceiver.

5. The vehicle’s processor determines the travel time of each transponder and calculates the

range of each with a given sound speed of water.

There are some advantages or disadvantages about the LBL system that are described by Vickery

[26] which the advantages follows:

• Very good position accuracy independent of the water depth.

• Observation redundancy.

• Can provide high relative accuracy positioning over large areas.

• Small transducer - only one deployment machine/pole.

and disadvantages are:

• Complex system requiring expert operators.

• Large arrays of expensive equipment.

• Operational time consumed for deployment/recovery

3.3.2 Short Baseline

Figure 3.8: Short Baseline - Source: Vickery

Short Baseline (SBL) is similar to Long Baseline technique. It does not require any sea-floor

mounted instruments since three or more transceivers are installed on the hull of a ship or on a

surface platform (see figure 3.8). The transponder is attached to the AUV to be positioned. One of
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the transceivers sends out an acoustic signal and the transponder responds it with another signal

on a different frequency. This signal is received by the transceiver array and the two-way time-of-

flight from the transponder to the transceiver is measured and converted to a range at sound speed

on site. The AUV’s position is then known using the trilateration method8.

The SBL positioning accuracy improves with the operating range and the spacing between

the transceivers on the surface platform. Compared to LBL systems, the low system complexity

makes SBL easy to use. Since the transceivers are applied in the surface platform, there is no need

to deploy them on the sea-floor. The advantages of the SBL system proposed by Vickery [26] are:

• Good update rate when used with a pinger.

• Good range accuracy with time of flight system.

• Spatial redundancy built-in.

• Ship based system - no need to deploy transponders on the sea-floor.

• Low system complexity makes SBL an easy tool to use.

• Small transducers values.

and the disadvantages:

• System needs large baselines for accuracy in deep water (>30m).

• Very good dry dock/structure calibration required.

• Detailed offshore calibration of system required - usually not rigorously completed.

• Absolute position accuracy depends on additional sensors - ship’s gyro and vertical refer-

ence unit.

• >3 transceiver deployment poles/machines needed.

8Trilateration is the process to determining absolute or relative locations of points by measurement of distances,
using geometry of circles, triangles or spheres.
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3.3.3 Ultra-Short Baseline

Figure 3.9: Ultra-Short Baseline - Source: Vickery

Ultra-Short Baseline (USBL) is a system of acoustic positioning which is similar to SBL where

it uses an array of transceivers(three or more) and is typically fixed onto a surface vessel. The

transponder is attached to underwater vehicle that is to be located (see figure 3.9). An acoustic

pulse is transmitted by he transceiver and detected by the transponder on the underwater vehicle

which replies with its own acoustic pulse. The returning pulse is detected by the surface vessel

transceivers array. The time from the transmission of the initial acoustic pulse until the reply is

detected, measured and converted into a range. The difference from the SBL system is that, instead

of using trilateration to calculate a sub-sea position, the USBL system measures both range and

angle from the underwater vehicle to the transceiver array. To avoid ambiguity in phase angles

measurement, the transceivers in the array are typically separated only be half of the wavelength (

10cm or less) of the acoustic signal. Hence, to determine the azimuth angle θ , the phase difference

of the signal between two receivers in the array is measured relative to the array’s baseline. The

angle is defined as the angle between the positive X-axis and the target position vector projected

onto the horizontal XY plane. If a third receiver is used, orthogonal to the previous two, the

elevation angle ψ can be determined. The distance from the transceiver to the target r is the

amplitude of the target vector. It is obtained by measuring the time of arrival as in LBL and SBL

systems. The figure 3.10 and the Cartesian coordinate (x,y,z) both given by Zhou [28] explains

better the previous approach:

x = rsinψcosθ (3.1)

y = rsinψsinθ (3.2)
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z = rcosψ (3.3)

Figure 3.10: USBL Range and Angle Measurements - Source: Zhou

The transceivers in a USBL system usually are built into a single assembly in close proximity,

which make USBL systems easier to be deployed. There is no need to deploy or calibrate the

transponders array on the sea-floor. Since the range and the bearing measured in an USBL system

is referenced to the transceivers mounted, additional sensors are needed to provide a position that

is sea-floor reference. Giving this, the advantages of the USBL system are presented:

• Low system complexity makes USBL an easy tool to use.

• Ship based system - no need to deploys a transponder array on the sea-floor.

• Only a single transceiver at the surface - one pole/deployment machine.

• Good range accuracy with time of flight systems.

and the disadvantages:

• Detailed calibration of the system is required - usually no rigorously completed

• Absolute position accuracy depended on additional sensors - ship’s gyro and vertical refer-

ence unit.

• Large transceiver/transducer gate valve or pole required with a high degree of repeatability

of alignment

The typical sequence of event to determine the location of the underwater vehicle is as follows:
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1. The USBL system emits a specific acoustic pulse to query the transponders in the vicinity.

2. The pulse travels through the water to the transponder.

3. The transponder detects the USBL signal and responds with a unique transponder acoustic

pulse

4. The transponder pulse return through the water to the USBL array.

5. The USBL array detects the transponder signal and determines the round trip acoustic travel

time and phase delay of the signal to each of the transducers in the USBL array.

6. The sound speed at the USBL array is used to calculate the received bearing and range of

the transponder signal.

3.4 Conclusions

In this chapter we discussed the state of the art of autonomous docking system, where it was made

an overview of the problem associated with docking (3.1), it was explained the difference between

docking and homing (3.2) and it was shown a series of examples in literature about docking system

that already exist and have been tested (3.2.1).

It was presented a brief explanation about Acoustic Positioning Systems (3.3) where it was

presented the more used systems such has Long Baseline, Short Baseline and Ultra-Short Baseline.

It was shown the advantages and disadvantages of each system in underwater positioning.





Chapter 4

Problem Statement

This chapter describes the docking problem between an AUV and an ASV. The concept in this

section is influenced by methodology presented for Mobile Offshore Base (MOB) [29] by Girard,

Sousa and Hedrick([30],[31] and [32]).

4.1 Introduction

In order to expand the AUV’s autonomy it is important to have some sort of system that allows the

vehicle to transfer power and data. This dissertation aims to develop a control strategy to allow a

successful docking between an AUV and a ASV (see figure 4.1).

Figure 4.1: Docking between ASV and AUV

To achieve this goal the two systems are required to:

• The AUV must reach the position for docking defined by the operator.

• The ASV must find the AUV and proceed to the docking maneuver.

45
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• After the docking maneuver, the vehicles will be mechanically connected to allow power

and data transfer.

• The two vehicles may move together, under the control of the ASV, after the docking phase.

The following sections will present the system requirements for docking,the docking sequence,

modes of operation to be considered in the approach and problems formulated to be solved in

chapter 5.

4.2 Requirements

4.2.1 LAUV

The Light Autonomous Underwater Vehicle (LAUV)[33] designed and built at LSTS is a small

underwater vehicle (see figure 4.2) optimized to be easily carried and have a huge amount of

payload in a small mechanical structure. The main goal of developing a vehicle like this is to have

the opportunity to test new software methodology without the concern of a high monetary impact

in case of a catastrophic failure.

Figure 4.2: Autonomous Underwater Vehicle Noptilus 2 - Source: LSTS

The LAUV is a torpedo shaped vehicle, with a length station at 110cm, a diameter of 15cm

and a weight starting 18kg. The vehicle has an actuation system consisting of on propeller, and 4

direction control fins, all electrically driven. It uses a single board computer (SBC) running Linux

that runs the control system software. For the navigation it uses an inertial measurement unit

(IMU) and an attitude and heading reference system (AHRS). It is able to navigate with payload

such has a Multibeam or Sidescan Sonar.

A more detailed specifications table is presented at 4.1.
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LAUV Specifications
Length Starting at 110 cm (depending on configuration)
Diameter 15 cm
Weight Starting at 18 kg
Endurance Up to 8 hours @ 1.5 m/s
Wi-Fi 2.4 GHz and/or 5 GHz
GSM/HSDPA Quad-band 3G module
Maximum Depth 100 meters
Inertial Navigation System Maximum Gyro Bias: 1 degree per hour
Conductivity Temperature Depth (CTD) Up to 6Hz sampling rate
Echo Sounder Frequency: 675 kHz (Mounting pointing forward)
Camera Resolution: 720p in H.264 and near 1080p in JPEG
Multibeam Sonar Frequency: 260 kHz. Range: 100 meters
SideScan Sonar Edgetech, Klein, or Imagenex
Satellite Iridium SBD
Environmental Sensors Crude and Refined Oils, Rhodamine, Chlorophyll

Table 4.1: LAUV specifications

4.2.2 ASV

Caravela is an Autonomous Surface Vehicle developed in LSTS with the purpose of perform high-

resolution bathymetry up river with a velocity of two meters per second using deltaT multibeam

sonar(260 kHz) and high precision Global System Position (GPS). Caravela is a small catamaran-

like vehicle with a length of 230cm, 145cm of width from one floater to another and a weight of

54kg (see figure 4.3).

Figure 4.3: Autonomous Surface Vehicle Caravela - Source: LSTS

The actuation system is based on 4 brushless motors electrically driven by 4 electronic speed

controllers (ESC). It has an autonomy of 4 hours with the motors in full throttle or 10 hours
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with a mixed use. It has a payload of a Multibeam, Echosounder, USBL modem, 2 cameras for

stereoscopic vision, differential GPS and a Wifi bullet for extended communication. To control

all the payload and actuation, there is a SBC in use, that runs Linux, and controls all the system

software.

ASV Specifications
Length 230cm
Width 145 cm
Weight 54kg
Endurance Up to 4 hours @ 2 m/s or up to 10h with mixed velocity
Wi-Fi 2.4 GHz and/or 5 GHz
GSM/HSDPA Quad-band 3G module
Inertial Navigation System Maximum Gyro Bias: 1 degree per hour
Echo Sounder Frequency: 675 kHz (Mounting pointing forward)
Camera Resolution: Foscam FI9853EP Outdoor Waterproof H.264 720P PoE IP Camera
Multibeam Sonar Frequency: 260 kHz. Range: 100 meters. deltaT
Satellite Iridium SBD

Table 4.2: ASV specifications

4.3 Models of the vehicles

This sections is intended to present the dynamic behavior models of the LAUV and ASV Caravela.

4.3.1 Linear model of LAUV

The linear equations of movement of the LAUV where obtained through the linearization of the

expression in 2.13, being it around a break-even point or a time-variant reference according to a

given reference

v0(t) = [u0(t)v0(t)w0(t)p0(t)q0(t)r0(t)]T (4.1)

η(t) = [x0(t)y0(t)z0(t)σ0(t)θ0(t)ψ0(t)] (4.2)

The linearization is

M∆v̇+
C(v)v

δv

∣∣∣
v0

∆v+
D(v)v

δv

∣∣∣
v0

∆v+
δg(η)

δη

∣∣∣
η0

∆η = ∆τ0 (4.3)

where ∆v(t) = v(t)− v0(t),∆η(t) = η(t)−η0(t) and ∆τ(t) = τ(t)− τ0(t).

The six DOF equations system can be decoupled into three independent subsystems, in order

to facilitate the control of the vehicle movement [24] [34]. Therefore, the three subsystems and its

state variables are
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• Speed System - u(t)

• Steering System - v(t),r(t) and σ(t)

• Diving System - w(t), q(t), θ(t) and z(t)

The LAUV configuration suggests that the speed system can be controlled by the DC motor

rotation, the steering system be controller by the vertical fins and the diving system controlled by

the horizontal fins. The SISO (single-input single-output) simplification makes easier to apply the

control architecture of the vehicle. The three subsystems equations are

Speed System - neglecting the interactions of sway, heave, roll, pitch and yaw, the speed

equation is

(m−Xu̇)u̇ = X|u|u|u|u+Xprop (4.4)

It is assumed that the quadratic damping is the dominant dissipative effect.

Steering System - assuming that the velocity component is steady state are v0 = w0 = p0 =

q0 = r0 = 0 and u0 6= 0 and the break-even point is defined by σ0 = θ0 = 0, the equation system is

 m−Yv̇ mxG−Y ṙ 0

mxG−Nv̇ IZZ−Nṙ 0

0 0 1


 v̇

ṙ

ψ̇

 +

−Yv mu0−Yr 0

−Nv mxGu0−Nr 0

0 −1 0


 v

r

ψ

 =

Yδ

Nδ

0

 δr (4.5)

where Yδ = Yuuδ ru0u0 and Nδ = Nuuδ ru0u0.

Diving System - assuming that the vehicle moves at a constant surge (u0 6= 0) speed and

θ0 = 0, the speeds assume a value of v0 = p0 = r0 = 0 and the vehicle works on the break-even

point defined by σ0 = ψ0 = 0. A simplification can be made being xG = 0 and the speed in z

(heave) is small when the vehicle is descending (w = 0). The linear model is

q̇

θ̇

ż

 =


Mq

Iyy−Mq̇
− (zg−zb)W

Iyy−Mq̇
0

1 0 0

0 −u0 0


q

θ

z

 +


Mδ

Iyy−Mq̇

0

0

 δs (4.6)

where Mδ = Muuδ su0u0.

The steering and diving linear models represent an approximation of the model of the vehicle

when it is actuated in a decoupled way in the vertical and horizontal planes where the vehicle

keeps it break-even state.

4.3.2 Model of ASV

Typically the models for the surface vehicles are simpler compared to the underwater vehicles. In

this case, is common to assume that heave, pitch and roll are negligible being the case that the



50 Problem Statement

vehicle only moves in the horizontal plane, at the surface of the water. Hence, the vectors that

represent the state variables are reduced to R3

η = [xyψ]T (4.7)

η = [uvr]T (4.8)

The origin of the vehicle reference is chosen in the central part of it, yG = 0. The mass of the

vehicle must be evenly distributed a should present a symmetry in the xz plane.

4.3.2.1 Non-linear model for the ASV

The linear model proposed by Blanke [35] is a simplification of the model presented in 2.12 which

is

(m−Xu̇u̇) = X|u|u|u|u+(m+Xvr)vr+(mxG +Xrr)rr+ τu (4.9)

(m−Yv̇v̇)+(mxG−Yṙ)ṙ =−(m−Yur)ur+Yuvrv+Y|v|v|v|v+Y|v|r|v|r+ τv (4.10)

(mxG−Nv̇)v̇+(Izz−Nṙ)ṙ) =−(mxG−Nur)ur+Nuvuv+N|v|v|v|v+N|v|r|v|r+ τr (4.11)

where τ is the ASV propulsion.

Assuming that the vehicle only moves in the horizontal plane, a simplification on the Kine-

matics equation, presented in 2.14, which is ẋ

ẏ

ψ̇


cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1


u

v

r

 (4.12)

Control and Propulsion System of ASV Caravela - Usually, a surface vehicle has a propul-

sion system and a rudder, responsible for controlling the vehicle direction. In the case of Caravela,

the propulsion is made by four thrusters fixed to back of the floaters. Despite this, the propulsion

is made as if it only had one thruster on each side.

The force applied by each thruster, left and right, is Tl(nl,u) and Tr(nr,u), respectively and is

defined by

T (n,Va) = T|n|n|n|n+T|n|Va |n|Va (4.13)

where T|n|n > 0 and T|n|Va < 0 are the coefficients of the model based on the SNAME notation

[10], n is the coupling rotation speed and Va is the forward speed of the thruster.
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Then, the force and torque vectors (τ) of the thrusters are

τ =

τu

τv

τr

 =

 (Tr +Tl)

0

(Tl−Tr)r f

 (4.14)

The rotation of the propeller on each coupling will apply a force to the vehicle on the x plane.

Since this force is applied outside of the longitudinal line of the vehicle (i.e. y 6= 0), it will also

cause torque proportional to the force and distance in the yy axis. Considering that the propulsion

force is the sum of all the forces of each thruster, this will be designated common thrust (Tcom).

On the other hand, being the applied torque defined by the difference between the applied forces

of the thrusters, this will be the differential thrust (Tdi f f ).

4.3.2.2 Linear model for the ASV

Applying the same procedure has in 4.3.1, it is possible to obtain the linear movement equations

of the vehicle.

Speed System - Considering that caravela has long floaters, it is normal to get some sort of

inertia when it is performing a rotation. Being this, the rotation speed r will have always small

values where (mxG +Xrr)rr ≈ 0. Also, the cross-speed v will also be considered small where

(m+Xvr)vr ≈ 0.

The speed equation will be

(m−Xu̇)u̇ = X|u|u|u|u+ τu (4.15)

Steering System - applying a lineatization around u0 with v0 = r0 = 0, the system takes a

similar form has the model in Davidson and Schiff [36] where[
m−Yv mxG−Yṙ

mxG−Nv̇ IZZ−Nṙ

] [
v̇

ṙ

]
+

[
−Yv mu0−Yr

−Nv mxGu0−Nr

] [
v

r

]
=

[
0

1

]
τr (4.16)

and

[
v̇

ṙ

]
= M−1N(u0)

[
v

r

]
+ M−1bτr (4.17)

An alternative to the previous model is the Nomoto’s models [37]. Eliminating the cross-speed

v in 4.17, the second order transfer function of Nomoto’s, between r and τr is

r
τs

=
K(1+T3s)

(1+T1s)(1+T2s)
(4.18)
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Since the time constant is given by T = T1 +T2−T3, a first order equation approximation of the

Nomoto’s model can be

r
τr
(s) =

K
(1+Ts)

(4.19)

4.4 Modes of Operation

To have a successful docking performance between the ASV and the AUV, one must define a

proper set of modes of operation:

• Unassembled mode - the ASV and the AUV are two independent modules, with different

position and orientation, and different mission assignments, defined prior to the docking

maneuver.

• Homing mode - this mode is different to both of the vehicle where:

1. The AUV will go to a point defined by the operator to receive the docking from the

ASV, staying in that point within a defined radius,

2. The ASV will perform the homing sequence after the AUV is in the docking zone,

will do collision avoidance in order to perform the docking with the risk of frontal or

lateral collision between the two vehicles.

• Docking mode - the ASV is performing a motion plan to dock above the AUV

• Docked mode - the AUV is docked in the ASV

• Abort mode - set of maneuvers that allow the ASV to retrieve or retry the docking maneu-

ver.

An existing problem when the vehicles are performing the unassembled or homing mode is

the possibility of collision between both, leading to serious malfunctions. Therefore, the docking

system must be capable to avoid collisions between both vehicles.

During docking mode, there is the necessity to have a controller that track the motion plan the

drives the ASV to the AUV, to perform docking. Thus, external disturbances, i.e. ocean currents,

need to be taken into to account in order to build a robust and safe controllers. During the final

stage of docking, there is the possibility that the external disturbance can drive the LAUV or the

ASV way from the motion plan and add a risk of collision to the performing maneuver. In this

case, the control must be able to stop the docking maneuver and drive the ASV away from the

LAUV - abort mode.
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4.5 Assumptions

This section introduces some assumptions that will be a remainder of the problems formulated in

the following sections.

• The following problems will be formulated in the horizontal plane only (XY) given that

the docking maneuver will be performed at the surface of the water and the following state

variables will be considered for the ASV and AUV:

1. Geodetic position frame - Latitude and Longitude,

2. Earth-fixed frame - x and y,

3. Heading - ψ

• The ASV knows its exact position and orientation, related to the geodetic frame and the

earth-fixed reference frame.

• The ASV knows the exact position and orientation of the AUV at a given time.

• The ASV must approach the AUV from behind, i.e., if one considers that the ASV position

is expressed in the AUV body-fixed reference frame, then the docking point of the two

vehicles is in the origin of the reference frame, aligned with the x-axes. Therefore the ASV

must perform the motion plan in order to reach the docking point, along the negative x-axes.

This assumption can be seen in figure 4.4.

Figure 4.4: Docking problem expressed in the AUV body-fixed reference frame

4.6 Problem 1 - Docking Maneuver Controller

This problem intends to develop a operator command strategy, based on the LSTS Toolchain

(2.4). The idea is to the operator launch the docking maneuver for both of the vehicles, through

an interface, and monitor in real-time the actions being done by them.
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4.6.1 Problem description

So that could be possible to have a proper execution of the docking maneuver it is necessary to

have an interface between the operators and the vehicles.

Figure 4.5: Docking Maneuver Controller Diagram

Figure 4.5 presents a diagram of the interaction between the interface and the operator/vehicles.

The operator would insert inputs to the interface, such has point to dock and what vehicle should

perform the maneuver. It would receive the vehicles position, to have a real-time information

about the whereabout of the vehicles.

4.7 Problem 2 - Docking Supervisor (ASV)

The purpose of this problem is to have a supervisor that would change the phases of the docking

maneuver seen in 5.1 based on the trigger events proposed.

4.7.1 Problem description

This controller will verify the events triggered from the docking maneuver. With this, it will adjust

the maneuvers phases. It will exchange information between the 2 vehicles, using a communica-

tion protocol, which will send messages pointing, for example, the availability for docking on
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both vehicles, the need for position correction or the maneuver abortion. The figure 4.6 shows the

diagram of the operation of the supervisor.

Figure 4.6: Docking Phase Supervisor Diagram

4.8 Problem 3 - Vehicle Position Correction Maneuver with External
Disturbances (ASV and AUV)

Considering that the vehicles when immobilized at the surface of the water, they can be subjected

to external disturbances, it is necessary to add a sub-maneuver that will correct the position of the

vehicle. This waypoint should be defined by the operator or by the supervisor controller on the

actual position of the vehicle.

4.8.1 Problem Description

This problem intents to find a way to maneuver the vehicle when it is outside the circle defined

around a defined point and correct its position.
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Figure 4.7: Docking Phase Supervisor Diagram

The figure 4.7 shows a representation of this maneuver, where the vehicle would go to the

waypoint defined. Then a virtual circle would be created around the point. When the vehicle is

inside this circle it is considered to be in a stationary mode. When the vehicle leaves the circle,

it should return to the waypoint previously defined. It will be necessary to have into account that

after the vehicle makes the position correction, the actual heading could be different from the

previous one and must be reported in order to make the necessary corrections.

4.9 Problem 4 - Move to waypoint Maneuver (ASV and AUV)

4.9.1 Problem Description

This problem intents to add a functional way to make the vehicle move from one point to another.

This point should be calculated by the controllers in order to make the vehicle correct it’s heading

and position. Figure 4.8 shows a simple diagram how this maneuver would work.
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Figure 4.8: Move to Waypoint Maneuver Diagram

4.10 Problem 5 - Homing of the vehicle (ASV)

As described before, in the literature there two approaches to the docking maneuver where the first

can be only the docking to the dock station and the second uses first the homing maneuver and

then the docking maneuver.

4.10.1 Problem Description

The problem intents to apply the second approach.

The idea would be that the vehicle that functions has the docking station would move to the

periphery of the vehicle that is to be docked. Figure 4.9 shows an example of the approach of

homing where vehicle 1 would the docking station and vehicle 2, the one to be docked.
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l

Figure 4.9: Homing Diagram

Vehicle 1 would leave the station keeping maneuver, when vehicle 2 indicates that is ready

to perform the docking in the desired waypoint. This would move until a waypoint defined by a

circle with a radius, around the actual position of vehicle 2. The waypoint would be defined in a

way that it would be at the distance of the radius of vehicle 2 position and at 180o of the heading

of the former one. This would guarantee that both of the vehicle would be with the same heading

when entering the docking phase.

4.11 Problem 6 - Docking of the vehicles (ASV)

4.11.1 Problem Description

This problem intents to give continuity to the docking maneuver between the two vehicles. As

seen in figure 4.10 after finished the homing maneuver with success it is necessary to change the

approach so that it is possible to conclude the docking maneuver between the two vehicles with

success.
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Figure 4.10: Docking Diagram

After vehicle 1 being in the homing point and with the correct heading, it will move towards

vehicle 2 reducing it’s velocity as the the distance between the two is reduced. When the vehicle 1

is with a distance from vehicle inferior to 5 meters and the docked trigger is active, the supervisor

should change to the phase of docked.

4.12 Problem 7 - Abort sequence (ASV and AUV)

The abort sequence should be performed in at least two situations which are, when the vehicle

detects an imminent collision between the 2 vehicles given their position and when the docking

attempt was failed.

4.12.1 Problem Description

This problem intents to make an approach to the abort sequence given the two previous situations.

When the vehicle is performing the homing or the docking, the supervisor must detect the actual

position of both vehicles and make them diverge from each other when a potential collision is

detected. If the case is when the docking is attempted but failed, the supervisor, based on the

information given by the operator, must retry the all docking sequence again, if it is the case, or

abort the maneuver.
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4.13 Conclusions

In this chapter we presented the requirements of the vehicles to be used in the docking approach

which is a LAUV (4.2.1) and the ASV Caravela (4.2.2).

It was presented the model of each vehicle where it was presented the linear model of the

LAUV (4.3.1) and for the ASV it was shown the non linear model of the vehicle (4.3.2.1) and

next, the linear model (4.3.1).

The modes of operation where shown in (4.4) where it is displayed the docking sequence to

be implemented.

Following it was presented the assumptions (4.5) to be considered finally the problems to

be taken into account where the first one is the Docking Maneuver Controller (4.6) which gives

the operator a way to communicate with the vehicles, Docking Phases Supervisor (4.7) which

controls the phase state of the docking sequence presented in 4.4 and is trigger by events defined

in the section.

It is defined a Vehicle Position Correction Maneuver of External Disturbances (4.8) and the

maneuver to move the vehicles from one point to another in Move to waypoint Maneuver (4.9).

The Homing of the vehicle (4.10) is shown to place the vehicle in a proper position to make the

docking approach and the Docking of the vehicles (4.11) where is made the final approximation

of both vehicles.

It is described why it is needed an Abort Sequence (4.12).



Chapter 5

Approach

This section presents the approach to the problems presented in the previous chapter. It is based

on the application of a docking solution using the toolchain existing in the LSTS and to be used

on real physical vehicles such has the ASV Caravela and a proper AUV.

5.1 Docking Sequence

In order to have a successful docking maneuver and taking into account that for that it is necessary

to managed the cooperation between two independent systems, a docking sequence diagram was

made. The figure 5.1 shows a example to be applied in the approach.

Figure 5.1: Docking sequence

The different phases presented, represent states of the docking maneuver in all of the vehicles.

This states will be managed by a supervisor, described previously in Problem 2 - Docking Super-

visor (ASV) (4.7). The supervisor will receive information from low-level tasks and manage the

61
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states based on trigger events.

5.1.1 Docking phases

This phases will assign functions to each vehicle based on each function in the docking maneuver.

They comprise as follows:

• Phase 0 "Initial State" - this phase represents the state of the vehicles before they initiate

the docking maneuver. They may be executing other maneuvers or in a "hold state". Both

systems are decoupled from each other.

• Phase I - in this phase, the docking maneuver is initiated after a trigger event, that could

be from the operator or from a previous maneuver plan. This phase will place the ASV in

Station Keeping (SK), meaning, it will stay in the actual position correcting it when it gets

driven by external disturbances such has ocean currents. This is the solution to Problem 3

- Vehicle Position Correction Maneuver with External Disturbances (ASV and AUV) (4.8)

in the previous chapter and will be detailed later in this chapter. The AUV will move to

the position defined has the docking point, using the Goto maneuver, which is described in

Problem 4 - Move to waypoint Maneuver (ASV and AUV) (4.9) which will also be described

in more detail later.

• Phase II "Homing" - in this phase, after the ASV got the confirmation from the AUV

that the latter is available to receive the docking, which means it is on the defined point of

docking, it will move to a position in the vicinity of the AUV. This position will be calcu-

lated based on the information gathered from the USBL modem. The AUV will execute

the maneuver of station keeping (SK) in the defined point in order to perform the docking

maneuver. This maneuver will verify the relative position between the two vehicles and will

take measures so that both vehicles have the same heading at the end of the maneuver.

• Phase III "Docking" - this is posterior to Phase II "Homing" and will take the ASV near

the AUV in order to make the final approximation a dock with the latter. The ASV will slow

down as the distance between the two vehicle will be reduced. It will stop this approximation

when both vehicle signal that the docking has been accomplished.

• Phase IV "Docked" - this phase indicates that the docking was completed and that the ASV

is docked with the AUV. After this, the ASV takes control of both systems, where the AUV

will stay on "hold" until further notice, and will execute a SK or take the AUV to another

position.

• Phase X - this is a phase that is initiated when the ASV is executing Phase II "Homing"

or Phase III "Docking" and the AUV needs to correct its position . Here, the AUV will

move to the SK point and the ASV will abort its actual maneuver. After the AUV is again in

position, if the ASV was doing the homing phase, it will start it again but if it was executing
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the docking phase, it will start with the homing phase in order to correct its heading based

on the new pose of the AUV.

5.1.2 Event trigger

The phases will change based on the a series of triggers of events. This event triggers in the

docking sequence are presented in table 5.1:

Event Condition
E1 Start docking maneuver?
E2,E5,E7 SK radius >5m?
E3 AUV ready for docking?
E4 Range between vehicles <50m? AND difference of heading = 0?
E6 AUV on SK point?
E8 Docked trigger?

Table 5.1: Event trigger conditions

They will trigger the phases in the docking sequence. Each events represents a sort of "ques-

tions" that are made by the supervisor controller (4.7). Each event is explained as follows:

• E1 - this asks if the operator gave the order to start the docking maneuver or it was triggered

by the ending of another maneuver int the vehicle plan.

• E2, E5, E7 - SK means Station Keeping which is the way to maintain the vehicle in a given

area when there are external disturbances actuating on it. This event makes the question

if the actual position of the vehicle is 5 meters far from the point defined for the SK. If

affirmative, the vehicle should return to the former position.

• E3 - this event is triggered when the AUV reach the position defined and is ready to perform

the docking. It give this information to the supervisor controller (4.7).

• E4 - when the vehicle reaches the homing position the event will indicate to the supervisor

that is ready to perform the docking approach. This will mean that the range between the

two vehicles is < 50 meters and they have the same heading.

• E6 - this event is triggered after the vehicle reaches again the SK position.

• E8 - when the vehicle reaches the other vehicle, it will trigger that has been docked and

finish the docking maneuver.

5.2 Docking toolchain approach

As stated before in section 2.4, LSTS designs and builds autonomous vehicles and it too develops

software ranging from operator interface (Neptus - 2.4.1) to the interaction with sensor’s firmware

(DUNE - 2.4.3) and all the communications in between (IMC - 2.4.2).
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Considering the toolchain architecture, the approach to the problem will be done as follows:

• DUNE - Tasks that receive information like, for example, vehicle location, docking avail-

ability, fail and abort flags.

• IMC - define messages to establish communication between the interface Neptus and Dune

or between Dune running on different vehicles.

• Neptus - maneuver with relevant parameters to the docking maneuver.

Since the approach involves the synchronization between two vehicles and the operator, it is

necessary to build diagrams based on the Hybrid Systems Theory (2.3) so that can exist a good

interaction between the vehicles without incurring in faults or dead-locks.

5.2.1 Inter-Module Communication approach

So that could be possible to perform communication between low level tasks, has seen in DUNE,

to high-level operator interactions, has seen in Neptus, it was necessary to create communication

messages based on the IMC protocol, in order to fulfill this need:

1. Docking.

2. DockingState.

3. DockingUSBL.

5.2.1.1 Docking message

This messages serves has a connection between Neptus and the vehicles that will perform the

docking maneuver. It has the following parameters:

• Vehicle function.

• Vehicle target.

• Number of retries.

• Maximum speed.

• Speed Units.

• Latitude (WGS-84).

• Longitude (WGS-84).
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Vehicle function - defines which vehicle will perform or receive the docking maneuver. The

parameters can be target or station where the vehicle that has the first parameter will be the one to

receive the docking maneuver and the vehicle with the station parameter will be the one to perform

the docking. This serves has a way to the same task run in different ways in different vehicles. For

example, assuming that it is intended that an AUV (i.e xplore-1) will receive docking and the ASV

(Caravela) will perform docking, when the operator is planning the Neptus plan, he will assign

the xplore-1 with the vehicle function of target and the Caravela with station function.

Vehicle target - this parameter define the target of the vehicle in order to perform docking. It

exists so that the low level task can identify the target vehicle based on its system id such has for

example xplore-1 or caravela. Taking the example in Vehicle Function, in the case of the AUV,

the target would be caravela and vice-versa. This creates a way to the lower tasks discriminate the

receiving messages in order to use only the one that matters to the functioning of the maneuver.

Number of retries - this ensures that the operator can choose between not retry the docking

maneuver in case of failure or retry in the case it is intended.

Latitude and Longitude (WGS-84) - this will give the lower level task the position where to

perform the docking. This will only be used by the vehicle that has it’s function has target.

5.2.1.2 DockingState message

This message emerged in the need to have an exchange of information between two vehicles. It

shows the availability of both vehicles to perform docking and how is the state of the docking

maneuver. It consists of the following parameters:

• System name.

• State.

• Availability.

• Vehicle Function.

System name - this parameter shows the system name from where the message was generated.

Since this message will be sent both ways through the vehicles, it was necessary to add an identifier

in order to the tasks know where the message is coming from.

State - since we are performing a docking maneuver, it was necessary to add this parameter

to the message, where there is the indication when the docking was successful or not. When it is

successful, the flag Docked – Success is chosen to be added to the State parameter. On the other

hand, when there was a failure in the docking attempt, the flag will be Docked – Failure. This
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serves has an indication from one vehicle to another that the docking was successfully done or

not.

Availability - this is an important parameter when performing docking. It serves has an indi-

cator that there is a possibility to perform docking or not. When a vehicle is ready to perform or

receive the docking, the parameter will have the flag Ready giving the indication that it is possible

to perform the docking. When the attempt of docking is being done, the parameter will have the

flag Performing having it changed to Abort only when something fails in the attempt. With this

parameter it is possible to stop a docking maneuver attempt when, for example, one of the vehicles

need to correct its position.

Vehicle Function - this parameter serves has a way to test if there is no more than one vehicle

announcing a function on the bus. It will be verified and if two vehicles have the same function,

they will stop the docking attempt and return an error, announcing that there is multiple vehicles

with the same function.

5.2.1.3 DockingUSBL message

This message will be used in the simulator DockingUSBL which simulated the ranging and bearing

of two vehicle through an USBL modem. It will be used to encapsulate a EstimatedState message,

so that could be possible to calculate the range and bearing between the two vehicles. It will be

sent in the AUV and receive in Caravela, in the same task DockingUSBL. This essencially serves

has a way to send a specific EstimatedState message inside the IMC bus of the AUV so that it

would not be confused with other EstimatedState messages and give wrong information to vital

task operating the vehicle. The task Docking USBL after receiving this specific EstimatedState

message will fill the USBLAnglesExtended message with the angle between the two vehicles.

5.2.1.4 Message exchange between two vehicles

The LSTS toolchain in general, has as structure some how similar to a master/slave relationship.

This means that the information exchanged is only between the vehicles (DUNE) and Neptus.

Communication between independent vehicles is not used. However, since the docking process is

complex it was decided that to implement a way to having the two vehicles exchanging messages.

This makes the docking process easier to be implemented, since the supervisor of the maneuver

do not need to be on the higher level (Neptus) but can be implemented on one of the vehicles,

i.e. Caravela. Thus, since Caravela is normally the docking station and consequently will be

the one to move to the AUV, it is faster to make corrections of it’s position without have a third

party causing a delay on the communications. This communication is made through the use of the

Transmission Control Protocol (TCP).
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5.2.2 Neptus approach

Given that it is necessary to have a platform that possibility the launch of docking maneuvers in

the LSTS vehicles, it is necessary to add this maneuvers in Neptus software. This would be, in the

planning phase, to launch the maneuver in a single way or with other maneuvers. So, this section

will show the approach done when creating a maneuver in Neptus software.

5.2.2.1 Problem 1 - Docking Maneuver Controller

In order to have some sort of control over the vehicle before and after the beginning of the docking

maneuver it was needed to have an interface between the operator and the vehicles. This was made

using Neptus software (2.4.1) which is an Command and Control software built in LSTS. It uses

a simple interface where it is possible to see the vehicles location in real time, launch plans with

multiple maneuvers and review previous missions.

Figure 5.2 shows a simplified diagram of the sequence to be performed when adding the dock-

ing maneuver in Neptus.

Figure 5.2: Neptus Sequence Diagram
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Here, the operator when adding the docking maneuver to the interface must go through the

following phases:

• Phase 0 - this phase is the initial state, when appears the menu to the operator to inserted

the needed information to be sent to the low-level tasks.

• Phase 1 - in here, the function of the vehicle is asked. In this case, the operator has two

functions that he can assign to the vehicle:

1. Target - where this vehicle will be the one to receive the docking from the station

2. Station - where this is the vehicle that will perform the docking maneuver.

This will enable that the same maneuver will work on both vehicle but with different out-

comes given the assigned function.

• Phase 2 - here, the target of the vehicle will be the one that has the opposing function of

the actual vehicle. What this means is that, for example, if the ASV is assigned with the

function of "Station", its target will be the AUV that has the function "Target" and vice-

versa. This enables the low-level task to filter the messages that exist on the IMC(2.4.2) bus

and only use the ones that refer to the target of the maneuver.

• Phase 3 - this phase asks for the number or retries of the docking maneuver. This retries are

done when the vehicles fails to perform the docking maneuver.

• Phase 4 - this phase happens when the maneuver is sent to be performed by the vehicles.

• Phase 5 - this phase is active when the vehicles have successfully completed the docking

maneuver.

5.2.2.2 Docking maneuver specifications

As explained in 5.2.1 and presented in 5.2.2.1, the maneuver made in Neptus software will send

relevant information to the vehicles through the IMC protocol. This information is necessary for

the good functioning of the maneuver and consists in:

1. Location

• Location

• Z

• Z units

2. Docking specifications

• Docking Target

• Number of Retries
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• Vehicle Function

In Location, it is indicated the place to perform the docking maneuver, based on ECEF co-

ordinates and a what depth is must be done, where in this case is zero meters. This Location
parameter is only important for the vehicle for the vehicle that will receive the docking.

The Docking Specification, has the following parameters:

Docking Target - where it is placed the vehicle id that will perform the docking maneuver

with the vehicle currently selected. For example, if this maneuver was added to the AUV(i.e

xplore-1) then the docking target would be the ASV (i.e. Caravela) and vice-versa.

Number of Retries - this is the way to the operator can retry the docking maneuver, if it’s

necessary. This means that the operator can choose up to a maximum of ten retries of docking

attempt or if it is not pretended to retry the docking maneuver, he can choose zero retries.

Number of Retries - this parameter indicates to the low level tasks, what will be the function

of the vehicle when performing the docking maneuver. With this, it is possible to have an unique

docking maneuver task running in DUNE running simultaneously on both vehicles performing

docking, doing independent tasks. For example, if its intended that the ASV(i.e. Caravela) per-

forms the docking maneuver then the parameter in the vehicle function for it would be station

while for the AUV, it would be the target.

5.3 DUNE Unified Navigation Environment approach

5.3.1 Introduction

This section intents solve the problems presented in Chapter 4 - Problem Statement. Has stated in

previous chapter, DUNE is the onboard software that manages the interaction between the many

parts of each vehicle. Some of the problems described on the previous chapter will be implemented

using DUNE software.

5.3.2 Problem 2 - Docking Supervisor (ASV)

Given that the relationship between the two vehicles can be considered has master-slave one,

one must consider which one is the master and other, the slave. In this case and given that the

vehicle with the function "Station", i.e ASV Caravela, is the one choose to dock to the AUV then

it will be considered the master. Then, the docking supervisor will be applied to the Caravela.

This supervisor, which is essentially an function in DUNE (2.4.3) will be the one to control the

phases of the docking maneuver, as stated in the docking sequence (5.2.1.2). It will also define

the approach for the homing sequence taking into account the relative position between the two

vehicles.
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Figure 5.3: Docking Supervisor Diagram.

5.3.3 Problem 3 - Vehicle Position Correction Maneuver with External Disturbances
(ASV and AUV)

Has stated in the previous chapter, when the vehicle needs to stay in a given position, be it for

receive docking or wait for the other vehicle to get in position, it is needed to have an approach

that solve that problem. This can be classified as a maneuver within a maneuver, given that it will

be performed when the vehicle is performing the docking maneuver.

This maneuver will have two states described has follows:

1. Inside SK radius - when the vehicle is inside the acceptable radius based on the distance

between the vehicle and the SK point, it will perform no action. Figure 5.4 shows the vehicle

inside the radius performing no action despite being drawn be ocean currents.
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Figure 5.4: Caravela inside SK radius.

2. Outside SK radius - when the vehicle gets out of the defined radius, it will try to perform

the position correction, moving to the center point of the SK circle. After being inside, the

vehicle will stop any actions. Figure 5.5 shows the position correction of Caravela.

Figure 5.5: Caravela outside SK radius and correcting position.
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To perform this maneuver, the vehicle must follow this sequence:

• A command to execute the SK maneuver is given to the vehicle which proceeds to the

position designated.

• To know if it arrived to the position, it will calculate the distance between its actual position

and the point which should perform the SK maneuver.

• After arrived to the point, it will keep calculation the distance between its position and the

point and, when it is greater then the value of the radius of the SK maneuver, defined by the

operator, it will move again to the initial position of the maneuver, returning to the SK area.

5.3.4 Problem 4 - Move to waypoint Maneuver (ASV and AUV)

Given a waypoint, it is needed to go from one point to another. This will be widely used in the

docking maneuver because it is needed to the vehicles to move from one place to another. It will

be used too to correct the heading of the vehicles without interfering with the low level controller.

A simple example how the Goto maneuver works is given in figure

Figure 5.6: Goto maneuver from one point to another.

To perform this, a point is given by the supervisor, being it to perform the SK maneuver or to

move the vehicle to a needed position or even to correct the heading of both vehicles.

5.3.5 Problem 5 - Homing of the vehicle (ASV and AUV)

This is an important problem to be solve since it will be the one that will place Caravela and

a proper position relative to the AUV. When the AUV is in position and ready to perform the

docking, Caravela will move to a point that makes it easier to perform the docking. This point
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will be determined by the relative position between both vehicles. For that it is necessary to verify

the following conditions:

• Caravela is in front or in the back of the AUV.

• Caravela is on the left or the right of the AUV.

In figure 5.7 it is possible to see the different poses that Caravela can be and what would be

the next move in order to perform the docking maneuver.

Figure 5.7: Multiple poses of Caravela relative to the AUV and the maneuver outcome.
l
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Having the AUV as a reference point, there is two situations that needed to be considered.

When Caravela is in front of the AUV with a given pose, it is necessary to perform a Roundabout

maneuver. This maneuver will perform a circle around the AUV to avoid collisions between the

vehicles and reach a position behind him.

5.3.5.1 Roundabout Maneuver

In order to perform the docking maneuver without have any collisions between the two vehicles

it is necessary to have some techniques that can prevent that. Collision Avoidance techniques are

studied mainly in Automated Highway Systems (AHS) (Carbaugh et. al. [38]), in Air Traffic

Management systems (ATM) (Tom et. al. [39]) and robotic manipulators (Schiavi et. al. [40]).

5.3.5.2 Collision Avoidance System (CAS)

This system is required when the vehicle has to roundabout the AUV in order to be able to dock.

An example can be seen in figure 5.8. Given that one of the assumptions described previously, that

the ASV knows the state of the AUV and also taking into account the external disturbances, the

following approach will not be about sensing techniques to detect the presence of obstacles but to

define a maneuver that will enable Caravela to avoid the AUV.

Figure 5.8: Roundabout maneuver to avoid collision.

To perform the docking and preventing the vehicles from collisions, two approaches where

developed based on the previous situations:

• Three Point Homing.

• Two Point Homing.

In order to know which approach should be used at a given situation of the two vehicles, it is

need to know the relative position between them. For that, there are three condition that needed to
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be defined in order to properly choose the right on. Have AUV as a reference vehicle, the condition

are as follows:

• Caravela is in front of the AUV, on the right or on the left.

• Caravela in of the back of the AUV.

To know the relative position between Caravela and the AUV, in this case, if it is in the front

or the back of the AUV, it is necessary to know the latitude of each vehicle which is the angle that

is measured from the North Pole with a value of +90◦, 0◦ in the equator and −90◦ on the South

Pole. Having the latitude of Caravela as a reference, and knowing that the values of latitude will

only vary between −90◦ and 0◦ on the northern hemisphere, it is necessary to verify that, when

the latitude value of Caravela is higher than the AUV, it means that it will be further north than the

AUV. However, this is not enough to know if the AUV is in front or in the back of Caravela. To

know further, the heading of the AUV must be taken into account in order to know, if it is from 0

to π and Caravela is at the front of the AUV, then it must contour it, which means it must perform

the Three Point Homing described later. Otherwise, Caravela is on the back of the AUV and only

has to perform the Two Point Homing. When the AUV has a higher value of latitude, the approach

reverses, which means, when the heading of the AUV is from 0 to −π , Caravela must contour it.

When Caravela is in front to the AUV, it is necessary to know if it is on the right or the left

of the AUV, to perform the roundabout (Three Point Homing) with the least path. To do this it is

necessary to calculate the heading difference of both vehicles and defining that when the difference

is greater than zero, Caravela will be on the right of the AUV and when it is lesser than zero, it

will be on the left of the AUV.

5.3.5.3 Three Point and Two Point Homing

It is used when Caravela need to go around the AUV, to prevent collision between the two vehicles.

It has the following sequence:

Three Point Homing - If Caravela is in front of the AUV, it will go to a point defined sideways

from the AUV as seen in figure 5.9.
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Figure 5.9: Third Point Homing Sequence

It will find if it is on the left or the right of the vehicle and will choose the point that gives

Caravela the least distance path. This third point is defined within 50 meters from the AUV and

it is pointed on the opposing direction of the heading of the AUV. This means that Caravela can

reach this point safely without risking a collision. Figure 5.10 shows the point being defined by

the supervisor, for Caravela

Figure 5.10: Third point in the Homing Sequence
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Two Point Homing - If Caravela is in the back, whether is coming from the third point se-

quence or is starting the homing sequence now, a point 50 meters far from the AUV will be defined.

This second point in the homing will place Caravela in a proper position but not with the right

heading to perform the docking sequence. Figure 5.11 will show Caravela heading to the second

point after passive the third point.

Figure 5.11: Second point in the Homing Sequence

After reaching the second point, Caravela should proceed to the first point, which will be

used to correct is heading, placing it with the same value has the AUV. This point will be defined

with half the value of distance from the previous on, for example if the second point is placed

at 50 meters from the AUV, the first point will be 25 meters from the vehicle. This ensures that

Caravela have enough room to perform the maneuver and get the same heading of AUV when

reaching the point. Figure 5.12 shows Caravela reaching the defined point.
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Figure 5.12: First point in the Homing Sequence

5.3.6 Problem 6 - Docking of the vehicles (ASV)

After execution the homing sequence and the vehicle have the right heading, the final approach of

the maneuver, docking, must be done. This will define a point right at the position of the AUV,

with a given error, which Caravela will try to reach. It will still calculate the distance between the

ASV and the AUV, lowering the speed in proportion of the decreasing distance. This means when

Caravela is reaching the AUV, its speed will be close to zero and it will have actuating in it the

dragging forces. Figure 5.13 shows Caravela point to the position of the AUV after finished the

homing sequence.
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Figure 5.13: Docking Sequence

5.3.7 Problem 7 - Abort sequence (ASV and AUV)

This sequence will be present in both vehicles and will be considered in the following situations:

1. Caravela is performing the homing or docking sequence and AUV need to correct its posi-

tion (SK maneuver).

2. Both vehicles have the same function (Target or Station)

3. Caravela detects that it is not possible to perform docking when reaching the AUV in the

final stages of the docking sequence.

4. The AUV or Caravela timeouts when one of the vehicles is performing a task and the other

is waiting.

On the first Caravela will stop its maneuvering and will wait for the AUV to reach the SK

point and start all over again.
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On the second situation, when both vehicle start the docking maneuver, they will detect if any

of the vehicles on the bus have the same function has theirs and will abort the maneuver and ask

for the operator to give unique function to each vehicle.

On the third situation, Caravela can detect if there is the possibility to perform successfully

the docking maneuver based on its path and the error associated with the position to be reached.

If it detects and the operator place an order to retry the docking maneuver, it will start again the

homing sequence and then the docking sequence. If not, the vehicle will stay on its actual position

waiting for new orders.

The forth situation was made thinking that, when there is an interaction between two indepen-

dent systems, a deadlock can happen. This means that we can have vehicles in an infinite loop

and cannot perform the docking maneuver. For that it was implemented a timer based system on

the vehicle. This means that it will be used when a vehicle is waiting for other while the former is

performing some task. For example, when Caravela is waiting for the AUV to reach the docking

waypoint, it will activate the timer with a given value and wait for the AUV to finish the task. If

it does not finish the task until before the end of the timer, Caravela will abort the maneuver, pre-

venting a perpetual deadlock. This can be used in other situations like when the AUV is waiting

for the Caravela to finish the Homing and the Docking of the docking maneuver.

5.3.8 Implementation

As stated before, the implementation of the approach was made using DUNE software, running

on the vehicle. To test all the implementation, one would run Neptus in its normal form and would

run simulation or both vehicles that would be recognized by Neptus as actual vehicles. To test in

a situation closer to the reality, it was added currents by placing speed values that would force the

vehicle to North or East.

The Docking maneuver have the supervisor that oversee the all the inputs and outputs and act

accordingly. This supervisor manages the state machine used to know the approach for the homing

point, which point to choose given the relative position of the vehicles, the docking approach, will

send and receive messages to synchronize the docking maneuver between the two vehicles, it give

different function for the vehicles given it different function, assigned in Neptus. It have a docking

timeout that will help the vehicles to overcome a deadlock that could appear on the state machine

of the docking maneuver, like one vehicle waiting for the other to finish something that it is not

doing.

The maneuver have some sub-maneuvers that exist in DUNE but had to be implemented inside

the maneuver, given the nature how the maneuver section of DUNE was built.

The synchrony between the two vehicles would be made with the message DockingState given

that this message would be sent from one vehicle to the other using an UDP socket.
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5.3.8.1 DockingUSBL task

There is a task implement that would mimic an USBL modem given that it would take the en-

capsulated IMC message DockingUSBL with an EstimatedState within and would send out to the

docking supervisor a range through the IMC message UamRxRange and angle with the message

USBLAnglesExtended as a normal USBL modem would do and calculate the relative position

between the two vehicles.

5.4 Conclusions

In this chapter we presented the approach to the docking maneuver given the systems available.

It was presented the docking sequence of the maneuver with each individual phases (5.1).

The toolchain approach was described (5.2), where it was shown the three IMC messages for

the docking maneuver, named Docking, DockingState and DockingUSBL (5.2.1).

Neptus approach for the interface between the vehicles and the operator and how it will work

with the IMC messages generated (5.2.2)

The description of each problem that should be solved with DUNE (5.3) is made in this section,

where there is a brief explanation of the station keeping maneuver (5.3.3) and go to waypoint

maneuver (5.3.4). It was presented the homing approach for the docking maneuver (5.3.5), the

docking approach (5.3.6) and the abort approach (5.3.7).





Chapter 6

Results

This chapter presents the results obtained from the application of the approach from the Chapter 5

- Approach.

6.1 Test Plan

This section presents the test plan built to test the approach of the docking algorithm explained

in the previous chapter. Obviously, the plan does not test every possibility, however it shows the

basic approaches to the docking problem.

The test for Problem 1 intents to show the maneuver interface added to Neptus software.

The test for Problem 3 and 4 shows the development of the Goto Waypoint and Station Keeping

maneuver.

The test for Problem 2, embedded in Problem 5 and Problem 6 shows the docking supervisor

in action, to choose the best approach for the docking based on the relative position between the

two vehicles.

Problem 5 and 6 will be displayed in four scenarios, to test the collision avoidance technique

implemented. Hence,

• Case 1 - ASV is on front of the AUV

• Case 2 - ASV is on front and right of the AUV

• Case 3 - ASV is on front and left of the AUV

• Case 4 - ASV is on back of the AUV

To test Problem 7, a series of conditions will be applied in order to the vehicles abort their

operations.
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6.2 Problem 1 - Docking Maneuver Controller

This section shows the approach to the interaction between the operator and the vehicles to perform

the docking maneuver, using the Neptus interface. Figure 6.1 shows the initial screen where it is

possible to make or send plans to the vehicles, see them in real-time and with real positions.

Figure 6.1: Neptus AUV console

To produce a plan it is necessary to open a menu on the left side. This will enable the vehicle

which the plan will be made and choose what type of maneuver is pretended. This can be seen in

figure 6.2
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Figure 6.2: Neptus plan editing

After selecting the vehicle, it is need to choose the docking maneuver as seen in figure 6.3.

Figure 6.3: Neptus docking maneuver selection

When adding the maneuver, as stated in the previous chapter, it is need to add some parameters

in order to the vehicle perform the docking. In this case, given the vehicle chosen for the example

is xplore-1 the parameters to perform with the ASV caravela should be:

• Docking Target - caravela
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• Number of Docking Retries - 5

• Vehicle Function - Target

This can be seen in figure 6.4.

Figure 6.4: Neptus docking parameters completion

After this, the operator only need to save the plan or add other maneuver, if intended and send

it to the vehicle. This plan needs to be generated to each vehicle in the docking maneuver.

6.3 Problem 3 - StationKeeping Maneuver and Problem 4 - Goto
waypoint Maneuver

This section intents to show the implementation of two side maneuvers that are need to perform

the docking maneuver. This maneuvers are implemented solo in Neptus, although one added a

similar approach for both of them inside the docking maneuver.

6.3.1 Problem 3 - StationKeeping Maneuver Implementation

Considering that it is need to keep the vehicles in a given position, it was implemented a maneuver

that would do that.

The vehicle would fix its position and when outside the maximum distance defined, it would

correct its position and return to the initial pose. For that, it is needed to know the distance

between the actual pose of the vehicle and the given point of station. Thus, it is calculated the

distance between the two points.

A displace of coordinates is done for the actual position of the vehicle using the latitude and

longitude coordinates of the previous fix and added the values of x and y. This will output the
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actual latitude and longitude of the vehicle. After that, it is calculated the distance between the

two poses, converting each latitude and longitude to ECEF and adding each x and y that result

from that. The square root of all the values will be the distance.

The result of this implementation can be seen in figure 6.5 where it is shown the ASV Caravela

inside the defined area.

Figure 6.5: Inside Station Keeping

When external disturbances put the ASV outside the defined area, it will correct its position,

as seen in figure 6.6.

Figure 6.6: Outside Station Keeping
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6.3.2 Problem 4 - Goto waypoint Maneuver Implementation

To move the vehicles to a given waypoint, it is necessary to add a submaneuver that moves the

vehicle to a pretended destination. For this, it is only necessary to fill a IMC message named

DesiredPath with the latitude and longitude desired. This message will be sent to the IMC bus a

read by low level controller that will send the vehicle to the point. This submaneuver can be seen

in figure

Figure 6.7: Goto submaneuver

With the implementation of this two submaneuver it is possible to solve the following prob-

lems.

6.4 Problem 2, Problem 5 and Problem 6

This section intents to solve the problems 5 - Homing and problem 6 - Docking having the problem

2 embedded with them.

6.4.1 Problem 2 - Docking Supervisor

This supervisor will be the core of the maneuver, since it will managed all the inputs and outputs.

It will run on the ASV. This means that it will choose when to start the Homing or Docking

Sequence, it will send and receive messages to the AUV and it will manage when the maneuver

ended or should be aborted.

When the start trigger is sent from Neptus, with all the parameters referred previously, the

supervisor will see the function of the actual vehicle and perform action accordingly. Given that

the vehicle with the function Station is the one that will perform most of the docking maneuver, the
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supervisor will see the availability of both vehicles to perform the maneuver. If both are available,

it then proceeds to know the relative position between them. This means that it will see if it is on

the front or the back, right or left of the other vehicle. After knowing the relative position, it will

choose the Homing sequence to start, Three Point or Two Point. After the sequence is finished it

will start the Docking Sequence. The supervisor will too see if it is need to retry the maneuver,

based on the information provided by Neptus. In any moment an abort event can be detected and

the supervisor will stop the maneuver and react accordingly. It will too send messages and receive

through an UDP socket, between the vehicles in order to have a synchronized maneuver.

6.4.2 Problem 5 - Homing and Problem 6 - Docking

As stated before, a plan of tests was made with five cases, in order to test most of the situations

that can occur when performing the docking maneuver.

6.4.2.1 Case 1 - ASV is on front of the AUV

Given that it is need to avoid collisions between the vehicle and for that, perform a roundabout

around the AUV, it was tested when the ASV is in front of the AUV in a relative manner. In this

case, the ASV performed a Goto to a given point, to place it in front of the AUV, and then perform

the docking. Taking into account that it is virtually impossible to be precisely at the front of the

AUV, the ASV will always choose to go to the right or the left of the AUV. In this case, it is needed

to perform the Three Point Homing.

In figure 6.8 it is possible to see both vehicle performing the test case.

Figure 6.8: Case 1 - ASV and AUV performing the docking

Figure 6.9 shows the sequence of the vehicles.
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Figure 6.9: Case 1 - ASV is on front of the AUV vehicle paths

Both vehicles start at the same point, performing first, Goto waypoints in order to place them

with the conditions necessary to test this case. The AUV will go to a point behind the initial point,

and then will move back to have it’s heading point North. When the AUV is going to the docking

point, the ASV waits in StationKeeping for the AUV to finish its maneuver. While the ASV waits,

it is dragged by the ocean currents, added in the simulation. After the AUV reaches the docking

point, it send a message to the ASV, indicating the availability to perform the docking. Since the

ASV in at the front and, in this case at the left of the AUV when the docking maneuver is starting,

it will perform the Three Point Homing Sequence on the left of the AUV. This point will be defined

with a distance from it of 50m to ensure space to the ASV to maneuver. After reaching the Third

Homing Point, it will move to the Second Homing Point and after that the First Homing Point,

before reaching the Docking area. After reaching it, it will start the Docking Sequence, which

will only send the vehicle to the exact position of the AUV. In this case, it is possible to see that

a docking retry was done, since the first attempt was failed because of the ASV not reaching the

AUV. When it retries, it will start again the evaluation of the situation, meaning that it will again

find the relative position between the two vehicles. In this case, since in the it considered that the

ASV was on the right and front of the AUV, it placed the Third Homing Point on the right and

repeated the sequence described before. In this case, it was possible to make the docking of the

two vehicles but only on the second try.

6.4.2.2 Case 2 - ASV is on front and right of the AUV

Similar to the previous case, here too the ASV must avoid collisions. Figure 6.10 shows an exam-

ple of the test in Neptus.
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Figure 6.10: Case 2 - ASV and AUV performing the docking

As stated before, both vehicles will move to a determined point in order to perform the test

case. Since in this case the ASV is still in front of the AUV it will start with the Three Point

Sequence placing the Third Homing Point on the right of the AUV. After reaching the Third

Homing Point it will proceed to the Second Homing Point and finally the First Homing Point. The

difference from this case from the previous on is that it will start the Three Point Homing on the

right of the AUV and it can perform the docking with only one attempt. This sequence can be seen

in figure 6.11.

Figure 6.11: Case 2 - ASV is on front and right of the AUV vehicle paths
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6.4.2.3 Case 3 - ASV is on front and left of the AUV

This case is very similar to the previous cases since it happens when the ASV is in front of the

AUV. Figure 6.12 shows the vehicle performing the docking maneuver using the Three Homing

Sequence.

Figure 6.12: Case 3 - ASV and AUV performing the docking

The vehicles get in place to perform the maneuver and, in this case, the Third Homing Point is

placed on the left of the AUV, has expected. It follows the same sequence as the cases before, and

finishes the docking with success. The docking sequence can be seen in figure 6.13

Figure 6.13: Case 3 - ASV is on front and left of the AUV vehicle paths
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6.4.2.4 Case 4 - ASV is on back of the AUV

This case shows a difference from the previous cases. Before, the ASV was always in front of the

AUV but in this case, it will be on the back. This means that the Homing Sequence will change

since it only need to perform the Two Point Homing. In this case, doesn’t matter if the vehicle

start the Homing Sequence on the right or the left of the AUV since the Second Homing Point

will only rely on the heading of the AUV. In figure 6.14 and figure 6.15 it is possible to see two

tests made when the ASV is on the right and on the left of the AUV, resulting in a similar Homing

Sequence.

Figure 6.14: Case 4 - ASV and AUV performing the docking

Figure 6.15: Case 4 - ASV and AUV performing the docking
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With this is possible to analyze the sequence given that the ASV can start its maneuver from

the left, right or center, the outcome of with will be always the same.

Figure 6.16: Case 4 - ASV is on back and right of the AUV vehicle paths

Figure 6.17: Case 4 - ASV is on back and left of the AUV vehicle paths

6.4.2.5 Homing Test Conclusion

The homing sequence is one of the most important of the docking maneuver since it will enable

both vehicles to perform the maneuver without the danger of a collision.

Table 6.1 shows a resume of the outcome of all the cases presented previously and what

changes, given the relative position of both vehicles.
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Case ASV position relative to AUV Homing Docking Success Number of Tries
1 Front Three Point Homing Yes 2
2 Front and Right Three Point Homing Yes 1
3 Front and Left Three Point Homing Yes 1
4 Back, Right or Left Two Point Homing Yes 1 (Each)

Table 6.1: Resume of the test cases of the Homing Sequence

Although this tests doesn’t show that the docking maneuver will always work at any given

conditions, it at least represents the worst cases scenarios for the docking maneuver.
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6.5 Problem 7 - Abort

As indicated on the previous chapter, Abort will have at least four conditions that needed to be

considered:

1. AUV (ASV) aborts actual maneuver to wait for the ASV (AUV) to perform a Station Keep-

ing.

2. Both vehicle have the same function.

3. Not possible to finalize docking maneuver, proceeds to abort and retry if needed.

4. Docking maneuver timeout to prevent deadlock.

For the first situation, when one of the vehicles is performing a Station Keeping as described

in 6.3.1 the other should stop the actual task and wait for the first one to finish the correction. In

order to have this kind of synchronization, the state of availability in the vehicle performing the

SK is changed and the a message is sent to the other vehicle. With this, it is possible to prevent

collisions of the vehicles. In figure 6.18 it is possible to see that the ASV stopped its maneuvering

and is waiting for the AUV to correct its position.

Figure 6.18: ASV abort and waiting for the AUV to finish SK

For the second situation, there shouldn’t two vehicles with the same function performing the

docking maneuver on the same time. When the vehicles start the maneuver, they will see on the
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IMC message bus to a vehicle that have the same function has theirs. When this happens, both

vehicles stop the docking maneuver and present the operator with a error message, has seen in

figure 6.19.

Figure 6.19: Output error in Neptus when two vehicles have the same docking function.

On the third situation, when the ASV tries to finalize the docking but fails to do it with success,

there are two options that can be taken into account: one, both vehicles stop the docking maneuver

and output to Neptus that was not possible to finish the maneuver or, two, if there is a number

of retries, the ASV will try again to perform the docking. This can be seen in a figure presented

previously, figure 6.9 where the ASV tries a second time to perform the docking maneuver.

For the fourth situation, a docking timeout was implement. This timer will start count when

one of the vehicles is waiting to finish a task critical for the docking maneuver. When the timer

reaches a value defined previously, the docking maneuver will stop and output an error associated

with this abort. This output can be seen in figure



98 Results

Figure 6.20: Timeout Abort

6.6 Conclusions

In this chapter we presented the results based on the approach defined in the previous chapter.

It was shown the test plan to test the efficiency of the docking maneuver developed. 6.1.

The result of problem 1 was shown in 6.2 showing the docking maneuver implemented in

Neptus software.

The problems 3 and 4 6.3 which represent the Station Keeping and Goto Waypoint where

shown.

To avoid collisions and proceed with the docking, the implementation for the problems 2, 5

and 6 where described in 6.4 where the four particular cases where presented in 6.4.2. A resume

of the Homing and Docking sequence was shown in 6.4.2.5.

Finally, the abort situations are explained in 6.5.
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Conclusions and Future Work

7.1 Autonomous docking systems

This report presents a strategy to perform docking between an Autonomous Underwater Vehicle

(AUV) and an Autonomous Surface Vehicle (ASV) Caravela.

The solution founded is a formulation of multiple controllers based on the LSTS software

toolchain. The first controller, based on Neptus, serves as an interface between the vehicles and

the operator that wants to perform the docking maneuver. Here, when the operator makes the

maneuver plan, he will place all the parameters to perform the docking, such as the position to

perform the maneuver, the function of each vehicle, the target vehicle and the number of retries

when the docking maneuver fails.

It was also implemented threes IMC messages, the serve as a bridge between Neptus-Dune

and DUNE (ASV) - DUNE (AUV). This messages are the Docking message, which is the one that

sent the information from Neptus to DUNE.

the DockingState message, which is the one sent between DUNEs running on the vehicles and

indicates the maneuver state, availability to perform the docking, the function of the vehicle that

is sending the message, and it’s system name.

The DockingUSBL message serves to send the position of the AUV to Caravela so that it

could calculate range and bearing between the two vehicles, like what happens with a real USBL

modem.

It was also implemented in DUNE several sub-maneuvers such as Goto and Station Keeping

maneuver, multiple controllers, with one managing the docking sequence phases has a supervisor,

another two that control the docking and homing sequence.

In the homing sequence, it was defined that it would have a 3 point or 2 point approach, given

the relative position between the ASV and the AUV. With this, collisions between vehicles are

avoided. It was also implemented in DUNE the Abort sequence, which have multiple situations to

be applied, as for example, when the ASV has to stop the homing or docking sequence in order to

let the AUV correct its position.
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Every tests where made in the simulation environment existing in Neptus for vehicles. Al-

though the this was not tested in real life systems the implementation was made so that it could

work after some minor changes on that systems.

7.2 Future Work

Given the work implemented there are a series of considerations to take as future work:

First, all the implementation made with the LSTS toolchain should be tested in real-life vehi-

cles. Prior to that, some optimization could be done to the code, taking into account the results

obtained from such experimentation.

A tracking logarithm associated with to cameras to have stereoscopic vision could be imple-

mented in order to have a smoother docking maneuver. The ASV would track the AUV, calculate

the distance between them and correct its actuation based on that information.

Although this dissertation intents to perform a full docking maneuver sequence, it is not pos-

sible with the mechanical interface, which could latch and lock the vehicles in place, performing

data and power transfer, as stated before.

Given that there is not definition of what happens after the docking is completed successfully,

besides data and power transfer, the ASV could also serve as a search and rescue vehicle that

that would return AUV that would be at the surface of the water and could not be autonomously

retrieved.

Also, a different approach could be implemented that would have only a few modifications

which would be the retrieve and drop of objects that are not self propulsion capable. This could

be done, for example, to drop scientific buoys.
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