
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Programa Doutoral em Engenharia Informática (ProDEI)

MISTRUSTFUL P2P
PEER-TO-PEER FILE SHARING MODEL TO HIDE USER CONTENT INTERESTS

Pedro Miguel Moreira da Silva

Supervisor: Prof. Manuel Alberto Pereira Ricardo

Ph.D. Thesis

July 6, 2017

Pedro Miguel Moreira da Silva
Mistrustful P2P: Peer-to-Peer File Sharing Model to Hide User Content Interests
Ph.D. Thesis. July 6, 2017

Faculdade de Engenharia da Universidade do Porto
Rua Dr. Roberto Frias
4200-465 Porto

INESC TEC

Campus da FEUP

Rua Dr. Roberto Frias

4200-465 Porto

ABSTRACT

In the last two decades, the advances in computer technology have drastically
changed the media landscape, enabling consumers to become also producers and
distributors of creative work, something that in the past was mostly limited to
professional parties. However, these advances have also enabled organizations and
individuals to collect information about users, combine facts from different sources,
and merge them to create databases of personal information that were previously
impossible to set up.

Peer-to-peer networks endowed individuals with the means to easily and efficiently
distribute digital media over the Internet, and have become an important source of
personal information because they are extensively used for large-scale file sharing,
user content interests may be trivially identified, and the download of contents
can be trivially proved. Thus, users seek for privacy-preserving systems to, among
others, avoid user profiling, and to privately download legal contents that may be
embarrassing or objectionable.

Several privacy-preserving peer-to-peer systems have been proposed to address the
user profiling and content interest identification issues, but they still require peers to
advertise what they download. Moreover, legitimate and well-intended users may
be held legally liable, given that these systems do not address any legal issues that
may arise from their use. Lacking alternatives, users have adopted general-purpose
anonymity systems for peer-to-peer file sharing, misunderstanding the privacy guar-
antees provided by such systems, in particular when relaying traffic of insecure
applications. Anonymity systems provide a channel to anonymously transmit mes-
sages, but the information disclosed by their content cannot be anonymized. Thus,
this thesis proposes a novel peer-to-peer file sharing model, the Mistrustful P2P
model, to address the user profiling and content interest identification issues.

The Mistrustful P2P model hides user content interests through plausible deniability,
has no trust requirements, and prevents user legal liability for legitimate usage while
enabling timely downloads. It deterministically hides user content interests against
passive attacks of any size, since peers do no not advertise what they download, and
against active attacks of a size up to a configured level. Its performance evaluation
shows that peers are able to timely download contents, and that, when considering
minimum protection, its performance is close to the one of traditional peer-to-peer
file sharing systems.

iii

RESUMO

Os avanços tecnológicos ocorridos nas duas últimas décadas mudaram drasticamente
o panorama dos conteúdos multimédia e permitiram que os consumidores se tor-
nassem também produtores e distribuidores de trabalho criativo, algo que no passado
estava limitado quase exclusivamente a profissionais. Contudo, tanto organizações
como indivíduos passaram também a ser capazes de recolher informação sobre os
utilizadores, de combinar factos de diferentes fontes e de os associar para criar bases
de dados de informação pessoal que antes seriam impossíveis de obter.

As redes peer-to-peer dotaram os indivíduos com os meios necessários para fácil e
eficientemente distribuir conteúdos digitais através da Internet, tornando-se numa
importante fonte de informação pessoal porque são amplamente usadas para par-
tilhar conteúdos em larga escala, a identificação dos interesses dos utilizadores é
trivial e a transferência de conteúdos pode ser provada trivialmente. Por isso, os
utilizadores procuram por soluções de privacidade para, entre outros, evitar a criação
de perfis e para transferir de modo privado conteúdos legais mas que possam ser
embaraçosos ou questionáveis.

Foram propostas diversas soluções de privacidade, mas os peers continuam a ter que
anunciar o que descarregam. Mais, utilizadores idóneos e cumpridores da lei podem
ser alvo de processos legais dado que não são tratadas quaisquer questões legais
decorrentes da sua utilização. Sem alternativas, os utilizadores adoptaram soluções
genéricas de anonimato para redes peer-to-peer, não compreendendo as garantias de
segurança disponibilizadas, em particular quando encaminham tráfego de aplicações
inseguras. As soluções de anonimato fornecem um canal para a troca anónima de
mensagens, mas a informação revelada pelo conteúdo das mesmas não pode ser
tornada anónima. Assim, esta tese propõe um novo modelo para partilha de ficheiros
em redes peer-to-peer, o modelo Mistrustful P2P, para tratar este problema.

O modelo Mistrustful P2P oculta os interesses dos utilizadores através de negação
plausível, não tem requisitos de confiança, evita problemas legais e permite a
transferência de conteúdos em tempo útil. Os interesses dos utilizadores são deter-
ministicamente protegidos contra atacantes passivos de qualquer dimensão, dado
que os peers não anunciam o que descarregam, e contra ataques activos com dimen-
são até a um nível configurado. A avaliação de desempenho mostra que os peers
conseguem transferir conteúdos em tempo útil e que, para um nível de protecção
mínimo, o seu desempenho é próximo do de uma solução convencional para partilha
de ficheiros em redes peer-to-peer.

v

ACKNOWLEDGEMENT

This work would have not been possible without the invaluable contribute and
support of numerous people, both at professional and personal levels. Being this a
thesis about privacy preservation, it should come as no surprise that I opt to name
only my supervisors, although I would like to express my gratitude to all of them.
They managed to fix countless typos, ambiguous or less clear sentences, and many
other technical and non-technical issues that I kept stubbornly adding throughout
the years. I am quite confident that, despite their best efforts, I managed to slip
through some of them into the final version.

I would like to express my deepest gratitude to Jaime Dias, who followed my work
more closely, and highlight his contribute and his selflessness. He ended up being an
informal supervisor, in a certain extent, because he always managed to find time to
help me pursuing my Ph.D. even when he could not find time to pursue his.

I would like to thank my supervisors, Prof. Manuel Ricardo and Jaime Dias, for their
unconditional belief and support, mainly when I was exploring areas that they were
not as knowledgeable about and much less myself, for the countless discussions
over these years, for their remarkable guidance, for their spot-on reviews, for their
continuous and timely availability, and for many other things that I am unable to
recall right now.

At a personal level, I would like to stand out the support and understanding without
which the outcome of this work would have not been the same, mainly when I could
not be present or forgot something important that I should have not. Lastly, I would
like to thank specially for the one person that was always by my side throughout
this journey.

SUPPORT FUNDING ACKNOWLEDGMENTS

Project "TEC4Growth - Pervasive Intelligence, Enhancers and Proofs of Concept
with Industrial Impact/NORTE-01-0145-FEDER-000020" is financed by the North
Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL
2020 Partnership Agreement, and through the European Regional Development
Fund (ERDF).

vii

This work is financed by FEDER through Operational Programme for Competitiveness
and Internationalisation - COMPETE 2020 Programme through the Agência Nacional
de Inovação (ANI) within the scope of the project no. 3468 (MareCom).

This work is financed by the ERDF – European Regional Development Fund through
the Operational Programme for Competitiveness and Internationalisation - COMPETE
2020 Programme within project «POCI-01-0145-FEDER-006961», and by National
Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a
Tecnologia as part of project «UID/EEA/50014/2013».

The author also thanks FCT for the grant under the fellowship SFRH/BD/69388/2010.

viii

„Perfection is not attainable. But if we chase perfection, we can catch excellence.

— Vince Lombardi

ix

CONTENTS

1 INTRODUCTION 1

1.1 Legal and Ethical Framework . 3

1.2 Traditional Peer-to-Peer Systems . 5

1.3 Problem Definition . 7

1.4 Goals and Contributions . 8

1.5 Thesis Structure . 9

2 RELATED WORK 11

2.1 Privacy-preserving Peer-to-Peer Systems 11

2.1.1 Background . 11

2.1.2 BitBlender . 13

2.1.3 SwarmScreen . 13

2.1.4 The BitTorrent Anonymity Marketplace 13

2.1.5 Petrocco et al.’s . 14

2.1.6 Summary . 14

2.2 Erasure Codes . 15

2.2.1 Background . 15

2.2.2 ROME . 16

2.2.3 Didier’s . 17

2.2.4 Soro et al.’s . 17

2.2.5 Lin et al.’s . 17

2.2.6 Summary . 17

2.3 ns-3 IPv4 Routing Protocols . 18

2.3.1 Background . 19

2.3.2 Ipv4ListRouting . 19

2.3.3 Ipv4StaticRouting . 19

2.3.4 Ipv4GlobalRouting . 20

2.3.5 Ipv4NixVectorRouting . 20

2.3.6 Summary . 20

2.4 Conclusions . 21

3 MISTRUSTFUL P2P MODEL 23

3.1 Overview . 23

3.2 Peer Roles and Content Sharing . 26

3.3 Attack Model . 28

xi

3.4 Erasure Coding Mechanism . 29

3.5 Disclosure Constraint Mechanism . 30

3.6 Block Selection Mechanism . 32

3.7 Request Backoff Mechanism . 33

3.8 Peer Selection Mechanism . 35

3.9 Conclusions . 35

4 STORM ERASURE CODES 37

4.1 Overview . 38

4.2 Finite Field . 39

4.3 Complex Mersenne Number Transform 41

4.4 Multi-point Polynomial Algorithms 43

4.5 Mapping . 45

4.6 Encoding . 45

4.7 Decoding . 46

4.8 Performance Evaluation . 47

4.9 Conclusions . 48

5 CIDRARCHY NS-3 ROUTING PROTOCOL 49

5.1 Overview . 50

5.2 ns-3 Helper for Topology Creation . 52

5.3 ns-3 IPv4 Routing Protocol . 55

5.4 Results . 58

5.5 Conclusions . 60

6 VALIDATION 63

6.1 Security Analysis . 63

6.1.1 Common Attacks and Countermeasures 63

6.1.2 Determine User Content Interests 65

6.1.3 Prove Content Download . 66

6.1.4 Legal Liability . 66

6.2 Performance Evaluation . 67

6.2.1 Peer Arrivals . 68

6.2.2 Simulation Setup . 68

6.2.3 Experiments . 69

6.2.4 Results and Discussion . 70

6.3 Conclusions . 77

7 CONCLUSION 79

7.1 Ethical and Legal Considerations . 80

7.2 Hiding User Content Interests . 81

7.3 Erasure Codes . 82

7.4 Large-scale Simulation of Internet Systems 83

7.5 Known Limitations . 84

xii

7.6 Future Work . 84
7.7 Concluding Remarks . 85

BIBLIOGRAPHY 87

xiii

LIST OF FIGURES

1.1 Overview of the content download process on traditional P2P systems. 6

3.1 Messages exchanged during block download process. 26
3.2 Overview of the content download process on the Mistrustful P2P model. 27
3.3 Mistrustful P2P model mechanisms and their role in the content sharing. 28
3.4 Possible outcomes of a block request. 34

4.1 Encoding and decoding throughput comparison. 48

5.1 Intra-domain network topology model. 50
5.2 Example of an asymmetric network topology supported by CIDRarchy

and the hierarchy used to set subnetwork management. 51
5.3 IP packet forwarding decisions made by routers running CIDRarchy. . . 56
5.4 Topologies used for performance comparison. 58
5.5 IP forwading comparison between CIDRarchy, Ipv4GlobalRouting and

Ipv4NixVectorRouting. 59
5.6 Simulation time per flow required by CIDRarchy, Ipv4GlobalRouting

and Ipv4NixVectorRouting ns-3 routing protocols. 60

6.1 Average download bitrate over one hour periods for 100 MiB (left) and
800 MiB (right) contents using a more popular (MP), a popular (P),
and a less popular (LP) peer arrival traces as input (one per row). . . . 73

6.2 Average download bitrate over one hour periods for all baseline experi-
ments. 74

6.3 Average ratio of requests sent to seeders over one hour periods for 100
MiB (left) and 800 MiB (right) contents using a more popular (MP), a
popular (P), and a less popular (LP) peer arrival traces as input (one
per row). 75

6.4 Average download bitrate over one hour periods for 100 MiB (left) and
800 MiB (right) contents using a more popular (MP), a popular (P),
and a less popular (LP) peer arrival traces as input (one per row). . . . 76

6.5 Average ratio of backoff time over one hour periods for 100 MiB (left)
and 800 MiB (right) contents using a more popular (MP), a popular (P),
and a less popular (LP) peer arrival traces as input (one per row). . . . 77

xv

LIST OF TABLES

1.1 Peer roles and sharing behavior on traditional P2P systems. 6

2.1 Privacy-preserving P2P file sharing systems comparison. 14
2.2 Comparison of MDS erasure codes more suitable for P2P file sharing. . 18
2.3 Comparison of existing ns-3 IPv4 routing protocols. 21

3.1 Peer roles and sharing behavior on the Mistrustful P2P model. 26

6.1 Summary of countermeasures employed to prevent common P2P attacks. 64
6.2 Simulation setup for the Mistrustful P2P and traditional models. 69
6.3 Experiments considered for the evaluation of the Mistrustful P2P model

and their categories. 70
6.4 Number and ratio of downloads completed for all 84 experiments. . . . 72

xvii

GLOSSARY

block An erasure coded chunk. 24–39, 45, 64–66, 68, 70, 74–76, 78,
81, 82, 84, 85

chunk A partition or piece of a content. 5–7, 14, 15, 21, 24–26, 30,
35, 37–39, 47, 69, 82, 84

colluding peer A peer working coordinately (in collusion) with one or
more peers to launch an attack. 2, 7, 8, 28, 29, 63, 82

collusion attack An attack in which peers controlled by one or more enti-
ties coordinate their efforts. 28, 29, 63, 64

commoner A peer only willing to download a content if the user’s
privacy requirements can be met. 26–28, 32, 36, 64, 81, 82

content Set of one or more files, identified by the hash of its data,
and partitioned into one or more chunks. 1, 2, 4–9, 12–15,
21, 23–26, 28–30, 33–36, 38, 39, 45, 47, 63–68, 70, 71, 73–82, 84,
85

content availability A content is considered to be available if it can be fully
downloaded. 6, 13, 84

content interest disguise Privacy-preserving technique that consists in downloading
both genuine and cover contents to disguise user content
interests. 8, 12, 13, 23, 25, 26, 32, 35, 36, 63, 78, 79, 81, 82, 84

cover content A content of no interest to the user that is downloaded,
either in part or fully, just to disguise his content interests.
8, 23–25, 27, 30, 33, 35, 36, 65–71, 76, 78, 81, 82, 84

direct liability Lawful accountability and obligations resulting from one’s
own acts or omissions. 3, 4, 81

eligible peer A peer to which block requests can still be sent. 27, 33–35

genuine content A content that the user is interested in downloading. 8,
23–25, 27, 30, 33, 35, 36, 65, 67, 70, 81, 82, 84

hash An alphanumeric string used to identify and to verify the
integrity of the data being transferred. 5, 7, 79

indirect liability Lawful accountability and obligations resulting from in-
ducing, contributing to or failing to prevent someone
else’s acts or omissions. 3, 4, 81

leecher A peer still downloading a content, and that shares the
chunks it has already downloaded. 5, 6

legal liability Lawful accountability and obligations for one’s acts or
omissions, either their own (direct liability) or someone
else’s (indirect liability). 1, 2, 4, 5, 7, 8, 11–15, 21, 23, 24, 35,
36, 63, 66, 67, 77, 79–81, 85

xix

minimum network dis-
guise overhead

The minimum amount of blocks that need to be down-
loaded per cover content. 8, 24, 29, 63, 69–71, 76, 82, 84

misleading content A content published with misleading description aiming at
driving peers to unknowingly and unwillingly download
unethical or illegal contents. 7, 13, 14, 25, 36, 66, 82

ns-3 routing protocol In the context of ns-3 network simulator, a routing pro-
tocol is simply a class or module that provides a route
for outgoing packets and is able to forward, if needed,
incoming packets. Unlike the canonical definition of rout-
ing protocols, which implies periodically and explicitly
sending protocol messages, an ns-3 routing protocol may
populate the routing tables using only global knowledge
of the available network links without sending any proto-
col messages at all. 8, 9, 11, 18–20, 50–52, 55, 57–61, 67, 80,
83, 85

peer A network node. 2, 5–9, 12–15, 19, 21–36, 49, 64–71, 73–85

plausible deniability In the context of this work, it is the ability for a user
to deny having any interest in downloading a content,
having access to its data, or any responsibility for its full
download. 8, 23, 35, 63, 66, 79, 81, 82

privacy In the context of this work, it is the concealment of user
content interests. 7, 8, 23, 24, 26, 27, 29–32, 35, 36, 63, 65, 67,
71, 77, 81, 82, 84, 85

proof of access Proof of access to content data. 24, 25, 35, 81, 82

proof of download Proof of full content download. 24, 25, 35, 84

publisher The entity publishing a content. 28, 29, 64, 65, 81, 82, 84

seeder For traditional P2P systems, it is a peer that has all data
chunks and is just sharing them. For the Mistrustful P2P
model, it is a peer interested in distributing a content (e.g.,
on behalf of an author) that has no privacy requirements.
5, 6, 14, 25, 26, 28, 36, 64, 67, 69–71, 73–76, 78, 81, 82, 84

simulated time The duration of a given simulation. 69

simulation time Time required to run a simulation. 19, 58–60, 83

swarm The set of peers sharing a content. 5–7, 13, 14, 23, 27, 34, 65,
68, 81

Sybil attack The creation of multiple pseudonymous identities. 28, 29,
63, 64

torrent file File providing the metadata of a content. 5, 45

tracker A network node providing lists of peers in swarms by
keeping track of which peers are sharing which contents.
5–7, 13, 23, 27, 28, 34, 64, 65, 68, 69, 79, 81

untrusted P2P network Public and open access P2P network composed of large
groups of untrusted peers. 2, 7, 8, 23, 29, 80, 81

user A person. 1, 2, 4, 5, 7, 8, 11–15, 21, 23–25, 27, 29, 30, 35, 36,
63–67, 70, 77, 79–82

xx

LIST OF ABBREVIATIONS

AS Autonomous System. 49

BEC Binary Erasure Channel. 37

CIDR Classless Internet-Domain Routing. 9, 50, 52, 55, 58

CMNT Complex Mersenne Number Transform. 39, 42, 43, 45–48

CPU Central Processing Unit. 8, 11, 16–18, 30, 40, 48, 49, 58, 78, 82

DDoS Distributed Denial-of-Service. 63

DFT Discrete Fourier Transform. 16

DIF Decimation-In-Frequency. 42

DIT Decimation-In-Time. 42

DoS Denial-of-Service. 63, 64

FEC Forward Error Correction. 37

FFT Fast Fourier Transform. 17, 42

FNT Fermat Number Transform. 17, 42, 48

GHz Gigahertz. 58, 78

GiB Gibibyte. 45

ICMNT Inverse Complex Mersenne Number Transform. 43, 46, 47

INTT Inverse Number Theoretic Transform. 41

IP Internet Protocol. 9, 19–21, 29, 30, 50, 55, 57–60, 64, 65, 67, 83

IPv4 Internet Protocol version 4. 9, 11, 18, 19, 21, 50–52, 55–58, 60, 83

IPv6 Internet Protocol version 6. 19, 51

ISP Internet Service Provider. 7, 28, 49, 52, 53, 55, 64, 68, 69, 84

MDS Maximum Distance Separable. 8, 15–17, 21, 29, 30, 37, 48, 82

MiB Mebibyte. 70–72, 74

MSS Maximum Segment Size. 68, 69

MTU Maximum Transmission Unit. 51–53, 68, 69

NAT Network Address Translation. 29, 64

NSA United States National Security Agency. 3

NTT Number Theoretic Transform. 16, 17, 37, 39, 41, 42, 48

P2P Peer-to-Peer. 1–9, 11, 13–16, 19, 21–27, 29, 30, 33, 35–38, 49, 50, 63–71, 74, 76–85

RS Reed-Solomon. 16, 17, 30, 37, 38, 48, 82

TCP Transmission Control Protocol. 68, 69, 83

XOR eXclusive OR. 16, 40

xxi

LIST OF MISTRUSTFUL P2P MODEL SYMBOLS

α Minimum backoff time between consecutive requests. 33, 34

τ̄ Estimated average block transfer time. 33, 34, 69

β
Backoff time scale factor for requests not disclosing block ownership infor-
mation. 33, 34

δ
The difference between the actual and the configured sizes of the largest
colluding attacker. 66

ε(k) Erasure coding overhead. 24, 30

η
Backoff time increase factor for requests implicitly disclosing block ownership
information (exponential factor). 33, 34

λ
Backoff time increase factor for requests not disclosing block ownership
information (linear factor). 33, 34

µ Maximum backoff time between consecutive requests. 33, 34, 69

ρ No. of peers currently participating in the content sharing (active). 34

σ Minimum no. of blocks disclosed to any of the top c peers
[
1 ≤ σ ≤ m/c

]
. 66

p
For backoff time related symbols, the p index refers to the peer component
of the backoff time (between requests to the same peer). 34, 69

s
For backoff time related symbols, the s index refers to the swarm component
of the backoff time (between requests to the same swarm). 34, 69

b
Calculated backoff time. It is used to determine the actual randomly gener-
ated backoff time

[
between 0 and b

]
. 33, 34, 69

c
Size of the largest attacker to be protected against (no. of unique peers)[
1 ≤ c ≤ m

]
. 24, 25, 29–31, 34–36, 63–67, 69, 70, 74, 75, 78, 81, 82, 84

k′ No. of blocks required to fully download a content
[
k (1 + ε(k))

]
. 24, 30

k
No. of chunks into which a content has been partitioned. 24, 25, 29, 30, 34, 36,
65, 66, 69, 70, 75, 78, 82, 84, 85

m
Minimum network disguise overhead (in blocks), and maximum no. of
blocks that can be disclosed to any set of c peers. 24, 25, 27, 29–31, 34–36, 63,
65–67, 69, 70, 74, 75, 78, 81, 82, 84

n No. of blocks generated. 24, 30

u
No. of consecutive requests not disclosing block ownership information
(requests that have been refused). 33, 69

v
No. of consecutive requests implicitly disclosing block ownership information
(requests that have been either canceled or interrupted). 33

wη Multiplicative weight factor to apply when a block offer is canceled. 32, 33

wλ Additive weight factor to apply when a block offer is accepted. 32, 33

wµ Weight block decrease to apply when a block offer is accepted. 32

xxiii

wi
Block i’s weight considered for the random weighted selection of a block to
offer. 32

ws Weight of a block that was recently downloaded (starting weight). 32, 33

xxiv

LIST OF ERASURE CODE SYMBOLS

L′(x) Derivative of Lagrange basis polynomial, L(x). 44, 46

L(x) Lagrange basis polynomial
[∏k−1

α=0 (x− xα)
]
. 39, 44, 46, 47

M(k) Time complexity of multiplying two polynomials of degree less than k
over a finite field. 41, 43, 44, 47, 48

N(k) Time complexity of performing an NTT over a finite field. 41, 43, 47

Sα,j
The result of evaluating polynomial sj(x) at point Wα

k

[
sj (Wα

k)
]
. 41, 42,

46

W zl
η Power representation of point xl, when it is an η-th unity root. 47

W i
k Unity root i within the set of the k-th roots of unity. 41, 42, 46, 47

Wk A k-th root of unity. 41

Yj(x)
Polynomial of degree η − 1 composed of no more than k non-zero
coefficients, yl,j , each at the position corresponding to the power repre-
sentation W zl

η of the interpolation point xl
[∑k−1

α=0 yα,j · xzα
]
. 47

ε(k) Erasure coding overhead. 15, 16, 37

η
Cardinality of the smallest set of unity roots that contains all k interpo-
lation points. 46–48

Fp
A prime field comprising the finite set {0, . . . , p− 1} of p elements. 15,
17, 39

Fq
A finite field with q elements. It is either a prime field, Fp, or an
extension field, Fpm . 38, 40, 41

F2m−1
Mersenne finite field. A prime field whose cardinality is a Mersenne
prime. 40, 41, 45

F2m
Binary finite field. It is either the prime field F2 or an extension field.
16–18, 39

F22m+1
Fermat finite field. A prime field whose cardinality is a Fermat prime.
18, 47, 48

F(2m−1)2
Complex Mersenne finite field. It is an extension field akin to complex
numbers

[
{a+ bı̂ | a, b ∈ F2m−1}

]
. 8, 30, 37, 39–41, 45, 47, 48, 83

Fpm
An extension over the prime field Fp whose elements are polynomials
of degree m− 1 with coefficients from Fp. 15, 39

B Matrix representation of an encoded content (n× d). Rows represent
blocks, bl, and columns represent encoded vectors, ej . 38, 39, 45

C Matrix representation of a content (k × d). Rows represent chunks, ci,
and columns represent source vectors, sj . 38, 39, 45

F
Transformation Fkq → Fnq that generates an encoded vector ej from a

source vector sj as (s0,j , . . . , sk−1,j)
F−→ (e0,j , . . . , en−1,j). 38, 45, 46

xxv

T

Transformation that defines the encoding process
(
C T−→ B

)
. Matrix

B is generated by applying the transformation F to each one of the d
columns of matrix C. 38, 39, 45

ωi
Barycentric weight of Lagrange interpolation method for point xi[
L′(xi) =

(∏k−1
j=0,j 6=i (xi − xj)

)−1
]
. 39, 44, 46, 47

ρ Radix of the NTT. 42

σ
No. of recursive stages used by multi-point polynomial evaluation and
polynomial interpolation algorithms

[
log2 k

]
. 43, 44

bl
The set of erasure coded symbols composing block l[
(s0(xl), . . . , sd−1(xl)) = (el,0, . . . , el,d−1)

]
. 38

ci The set of source symbols composing chunk i
[
(si,0, . . . , si,d−1)

]
. 38

d No. of symbols composing a chunk or a block. 38, 39, 45

ej
Encoded vector of size n composed of the erasure coded symbols at
position j of each block

[
(sj(x0), . . . , sj(xn−1)) = (e0,j , . . . , en−1,j)

]
. 38

el,j
Erasure encoded symbol from block l at position j

[
sj(xl)

]
. 38, 39, 43,

45–47

k′
No. of polynomial coefficients at stage u of multi-point polynomial
evaluation and polynomial interpolation algorithms

[
k/2u

]
. 44

k No. of data symbols. 8, 15–18, 30, 37–39, 41–48, 82, 83, 85

n No. of erasure coded symbols. 8, 15–18, 30, 37–41, 45–48, 82, 83

pu,v

v-th polynomial used by multi-point polynomial evaluation and poly-
nomial interpolation algorithms at stage u

[∏k′−1
α=0 (x− xv·k′+α)

]
. 43,

44

p A prime number. 8, 15, 17, 30, 37, 39, 40, 45

q
Cardinality of a finite field (either a prime field or an extension field).
15, 16, 39, 40

r0
Left-side stage result of multi-point polynomial evaluation or polynomial
interpolation algorithms. 43, 44

r1
Right-side stage result of multi-point polynomial evaluation or polyno-
mial interpolation algorithms. 43, 44

r Primitive root of a finite field Fq
[
Fq =

{
0, r0, r1, . . . , rq−2}]. 40, 41

sj(x) Polynomial representation of the source vector sj
[∑k−1

α=0 sα,j · xα
]
. 38,

39, 41, 43, 44, 47

sj
Source vector of size k composed of the source symbols at position j of
each chunk

[
(s0,j , . . . , sk−1,j)

]
. 38, 45

si,j Source symbol from chunk i at position j. 38, 39, 41–43, 45, 46

u
Multi-point polynomial evaluation or polynomial interpolation stage.
43, 44

v
Index of a polynomial used by multi-point polynomial evaluation and
polynomial interpolation algorithms at a stage u. 44

xi Point or code locator i. 39, 43, 44, 46, 47

yl,j The product of el,j by ωl
[
el,j · ωl

]
. 39, 44, 46, 47

xxvi

LIST OF NS-3 SIMULATION SYMBOLS

n̄
Average no. of routing table entries at nodes within the path between source
and destination. 20, 21

h No. of hops between source and destination nodes. 19–21

ni No. of routing table entries at node i. 20, 21

n No. of routing table entries. 19–22

xxvii

1INTRODUCTION

„Historically, privacy was almost implicit, because it was hard to find and
gather information. But in the digital world, whether it’s digital cameras
or satellites or just what you click on, we need to have more explicit rules
- not just for governments but for private companies.

— Bill Gates

In the last two decades, the advances in computer technology have drastically
changed the media landscape. The widespread availability of digital media and
broadband Internet connections enabled consumers to become also producers and
distributors of creative work, something that in the past was mostly limited to
professional parties. Peer-to-Peer (P2P) networks endowed individuals with the
means to easily and efficiently distribute digital media over the Internet, and are
extensively used for large-scale file sharing due to their decentralized and scal-
able nature. The P2P architecture enables solutions that enhance privacy, such as
Freenet [@6], Nymble [63], and Tor [18], but user legal liability issues may be
raised as it also facilitates unauthorized distribution and reproduction of copyrighted
material [58].

The reasons behind seeking privacy may be various, such as to avoid user
profiling, tracking and data mining, to privately download legal contents that may
be embarrassing or objectionable from a political, religious or social point-of-view,
or to download ethical contents that are considered illegal or incriminating without
being subject to any liability. The current state of computer technology enables
organizations and individuals to create databases of personal information that
were previously impossible to set up, and swap this information, sell it or use it
in any other way as a commodity [66]: organizations and individuals are able to
collect information about users, combine facts from separate sources, and merge
them to create such databases of personal information. Users may feel exposed or
embarrassed if it becomes public that they had access to contents such as to help
dealing with alcohol and drug abuse, to help dealing with anger management, or
considered heretical or profane. Even accessing illegal or incriminating contents
may have an ethical motivation because laws are, ideally, drawn from ethics, but
that is not always the case: e.g., autocratic regimes consider illegal to share or even
access contents that they consider inappropriate or potentially harmful.

Traditional P2P file sharing systems focus on performance and scalability, dis-
regarding any privacy issues that may arise from their use. They take advantage

1

of the large number of interconnected peers1, and their idle resources, to more
efficiently distribute contents at the cost of requiring peers to publicly advertise what
they download, making it trivial to identify user content interests. This problem is
further aggravated by the fact that peers form interest-based communities, and every
single connection presents an opportunity for a malicious peer to passively obtain
additional information that may enable the identification of user content interests,
with high certainty, by monitoring just a small fraction of the network [11].

Several privacy-preserving P2P systems have been proposed to address the user
profiling and content interest identification issues, such as BitBlender [2] and
SwarmScreen [11], but they still require peers to advertise, either fully or partially,
what they download. Moreover, they do not address any legal issues that may
arise from their legit and well-intended use. P2P networks facilitate unauthorized
distribution and reproduction of copyrighted material [58], and are usually connoted
with copyright infringement because it is estimated that, over the course of a
month, 96.3% of users of BitTorrent portals have downloaded at least one infringing
content [47]. Therefore, P2P file sharing users aiming at protecting their privacy may
also be held legally liable for, unknowingly and unwillingly, downloading an illegal
content due to a misleading description or as a result of using an insidious resource
to locate it. Lacking alternatives, users have adopted general-purpose anonymity
systems for P2P file sharing [8], misunderstanding the privacy guarantees provided
by such systems [9], in particular when relaying traffic of insecure applications [35].
Anonymity systems provide a channel to anonymously transmit messages, but the
user’s identity may be disclosed by the content of that messages, which are the sole
responsibility of the application being used.

P2P file sharing encompasses both public (open access) and private (restricted
access) file sharing. The access control mechanisms may be used to prevent mis-
behaving peers from joining the network or to ban them (network level), and to
constrain the distribution of a given content (content level). Lacking any access
control mechanisms, public P2P file sharing presents additional privacy and legal
challenges because no trust between peers can be assumed, malicious and colluding
peers cannot be easily banned from the network, all contents are public, easing
the identification of user content interests, and users are free to publish contents
without being subject to any legal or ethical assessment or any content description
(metadata) truthfulness validation. Thereby, this work considers public P2P file
sharing in large groups of untrusted peers (untrusted P2P networks) to support the
most privacy demanding file sharing scenario.

1 The term peer is used to refer to the network node, and the term user is used to refer to the person.

2 CHAPTER 1 INTRODUCTION

1.1 LEGAL AND ETHICAL FRAMEWORK

Computer ethics is a field of study that addresses the ethical challenges of computer
technology but several lines of thought exist. Therefore, the aim of this section is
to describe the ethical challenges considered to be more relevant to this work. The
reader is referred to [29] and [32] for a wide and thorough explanation of these
challenges. For the legal and privacy dimensions of P2P file sharing, based on the
intellectual property law, in particular on the copyright law, the key legal aspects
to take into consideration on Western countries regarding direct and indirect user
liability are highlighted.

Laws are formally adopted rules that mandate or prohibit a certain behavior, cre-
ated by the members of a society to balance the individual rights to self-determination
against the needs of the society as a whole, and, ideally, are drawn from ethics, which
define what is considered right or wrong, i.e., the socially acceptable behaviors. The
key difference between laws and ethics is that the former carry the authority of a
governing body, usually a nation [66]. In turn, ethics are based on cultural mores,
beliefs, values and principles, which reflect the unique existential experiences that
are accumulated as individuals as well as societies and, supported on institutions,
provide long-term stable rules that are made obvious. Thus, these rules can be seen
as refractions of the common world awareness that give rise to different experiences
and interpretations: multicultural ethics [6].

The cultural differences, despite some ethical standards being universal (e.g.,
murder and theft), make it difficult to define what is ethical or not. Studies have
shown that the perspective on ethical practices of individuals regarding the use of
computer technology differs with their nationality. Asian traditions of collective
ownership conflict with Western protection of intellectual property, and many of the
ways the former use software is considered software piracy by the latter [66]. These
differing perspectives are also evident on the control over the Internet content and on
the surveillance made by governments: they radically differ between countries [65].
According to a report [4] from the Reporters Without Borders, the Great Firewall of
China is getting “taller”, the United Kingdom is the “world champion of surveillance”,
and “NSA2 symbolizes intelligence services’ abuses”; on the other hand, Norway,
Sweden, and Finland are at the top of the World Press Freedom Index 2017 [@2].

The utmost objective of intellectual property law is to promote progress by en-
couraging and stimulating human intellectual creativity and broad dissemination of
its result [26]. Creators are granted exclusive rights as an incentive to continue their
works, and, at the same time, the society can benefit from their broad dissemination.
Copyright is a legal device that protects the expression of an idea by conferring
the creator, for a period of time, exclusive rights to publish, sell and control the
reproduction of his work, whom may grant or sell these rights to others. Copyright
infringement and piracy are then violations of one of these exclusive rights [13]. Still,
2 United States National Security Agency (NSA).

1.1 LEGAL AND ETHICAL FRAMEWORK 3

these rights are granted nationwide, not worldwide: the Berne Convention [@1] is
not ratified by all countries and only sets the minimum standards for copyright. Thus,
given that P2P users are spread all over the world and a single content sharing may
cross many jurisdictions, it is hard to determine the applicable legal framework and
the extent of user liability. Even when the legal framework can be clearly defined,
it may still be difficult to determine the extent of user liability since the copyright
rights may conflict with other interests and rights, e.g. privacy rights, being subject
to proportionality assessment to balance all the rights and interests at stake [30].

The enforcement of copyright rights on the private sphere of users may clash
with their privacy rights, thereby, when present, the private copying law introduces
an exception to these exclusive rights under some conditions. For private use and
for ends that are neither directly nor indirectly commercial, a natural person3 is
allowed to copy copyrighted works on the condition that the rightholders receive
fair compensation. Therefore, any media that may be used for the reproduction of
copyrighted works by consumers are designated for payment of the private copying
levy, which will compensate rightholders for any harm that may be caused [45, 48].
The private copying law, when present, differs considerably between countries [31],
reflecting the lack of consensus and the complexity of this subject. Moreover, it is
not clear that private copying always causes harm – e.g., it may increase the group
of fans and enables users to try before buying –, and not all media are used for the
reproduction of copyrighted works. The reader is referred to [64], [26], and [48]
for further discussion on the subject.

P2P networks connect users all over the world without considering either inter-
national borders or culture. It is not feasible to enforce the exclusive rights provided
by copyright law, if present, in every single jurisdiction while ensuring that they do
not conflict with the rights and interests of users. As so, in an attempt to mitigate
the impact of copyright infringement, rightholders are now trying to block websites
such as The Pirate Bay instead of trying to bring end users to court [53] because,
in general, it is more efficient and less onerous to prove that the owners of such
websites profit from the copyright infringement. Therefore, such websites are subject
to indirect liability as they induce, contribute to or fail to prevent direct copyright
infringement. Nevertheless, this does not mean that sharing copyright infringing
contents is legal. On the contrary, users may be subject to civil and potentially
criminal liability [48]. The extent of such liability depends on the applicable legal
framework and on the intent of such acts: a user may also be subject to indirect
liability.

The multitude and complexity of copyright laws across the globe make it impossi-
ble to define clear boundaries regarding user liability. Still, the users of P2P systems
are not expected to be held legally liable for, unknowingly and unwillingly, down-
loading an illegal content (direct liability) or contribute to its download (indirect

3 In jurisprudence, a natural person is a human being, as opposed to a legally generated juridical
person.

4 CHAPTER 1 INTRODUCTION

liability) if the main motivation to use the P2P system is to share legit contents, and
it cannot be proven that the user had access, either in part or fully, to the content
data. The user does not benefit directly from the download of an illegal content
that he has no access to, and he is also unable to determine that the content is
unexpectedly illegal before having access to its data. Therefore, it is plausible that
he either has been mislead into downloading it or had no intention in assisting a
misbehaving peer infringing copyright law.

In sum, the basic ethical imperatives are that a person should not, knowingly
and willingly, cooperate in or contribute to the wrongdoing of another, and that the
human intellectual creativity needs to be encouraged and stimulated in order to
promote progress. The extent of these incentives depends on the cultural background
as the well-being of the society may be incentive enough (collective ownership)
or further incentives may be required (intellectual property rights). P2P networks
introduce new challenges to the private copying levy system, and the legislation on
this subject is expected to change in the near future to address them. Users of P2P
systems should not be subject to any civil or criminal liability as a result of legitimate
usage of the system if the main motivation to use it is to share legit contents, and
they have no access to the content data. The intent is important to determine the
extent of user liability, especially if his actions directly or indirectly caused provable
harm.

1.2 TRADITIONAL PEER-TO-PEER SYSTEMS

Traditional P2P file sharing systems disregard user’s privacy as their focus is on
performance and scalability. BitTorrent is the most prominent of such systems,
therefore it is used as a representative example. First, it is provided a brief definition
of common BitTorrent terminology – hash, content, chunk, torrent file, peer, seeder,
leecher, swarm, and tracker. Then, its content sharing process is described. Lastly,
the main privacy and legal issues are presented.

A hash is an alphanumeric string used to identify and to verify the integrity of
the data being transferred, usually an SHA-1 digest (hexadecimal string). A content
is composed of one or more files, identified by the hash of its data, and partitioned
into several pieces. A chunk is one of those data pieces, and a torrent file provides
the content’s metadata. A peer is a node sharing chunks, which, for a given content,
can be either a seeder – a peer that has all data chunks and is just sharing them – or
a leecher – a peer still downloading the content and sharing the chunks it has already
downloaded. Table 1.1 depicts the peer roles and their sharing behavior. A swarm is
the set of peers sharing the same content (peers form interest-based groups to share
contents), and is usually identified through the hash of the content. A tracker is a
central node that provides lists of peers in swarms by keeping track of which peers
are sharing which contents and their role (seeder or leecher) on each content.

1.2 TRADITIONAL PEER-TO-PEER SYSTEMS 5

Table 1.1: Peer roles and sharing behavior on traditional P2P systems. A seeder has all data
chunks and just shares them; a leecher is a peer still downloading missing data chunks and
sharing the data chunks it has already downloaded.

Peer Role
Chunks

Owned To Share To Download

Seeder All chunks All chunks None
Leecher Downloaded chunks Downloaded chunks Missing chunks

SA

LA

Tracker

1. Register S

L

A
Join the Swarm

3. Select Peer

S

L

L

L

L

L

4. Synchronize Owned Chunks
5. Transfer Chunk SWARM X

Seeder CommonerSwarmTracker Unregistered Peer

Figure 1.1: Overview of the content download process on traditional P2P systems. First,
peer A registers at the tracker to join the swarm of content X (swarm X). After registering,
the peer starts as a leecher (still downloading) and requests from the tracker a list of peers
(a subset) sharing that content. Until download completion, peer A selects peers from that
list, synchronizes the chunks it owns with theirs, and transfers the missing chunks; the list
of peers may be updated during content download. Upon download completion, peer A
notifies the tracker to be known as a seeder.

The main performance metric considered by traditional P2P file sharing systems
is the average download time or the average download bitrate, which are two sides
of the same coin. BitTorrent protocol employs several mechanisms for chunk and
peer selection, such as rarest first mechanism – locally rarest chunks are downloaded
first –, and optimistic unchoking – periodically select a random peer – aiming at
constantly improving the download bitrate [14]. The distinction between seeders
and leechers is used to estimate relative download times (through their ratio), and
also to quickly assess the content availability4, which is assured if at least a single
seeder is present. The steps required to download a given content, depicted in
Figure 1.1, can be summarized as follows: 1) a peer willing to download a given
content registers at the tracker and joins the swarm; 2) it requests a list of peers
(a subset) in the swarm from the tracker; 3) it selects peers from that list to obtain
missing chunks in order to complete its download; 4) peers synchronize the chunks
they own and miss to determine if any missing chunks can be transferred; 5) if
selected peers own missing chunks, those chunks get transferred; 6) upon download
completion, the peer notifies the tracker to be known as a seeder for that content.
The list of peers may be updated during content download.

4 A content is considered to be available if it can be fully downloaded.

6 CHAPTER 1 INTRODUCTION

The main privacy issues of traditional P2P systems are that they publicly disclose
user content interests, and provide a proof that the user is able to access a content
in part or entirely; the former discloses an intention while the latter provides a proof
of its realization. A peer only downloads the contents that a user is interested in,
therefore, by registering at a tracker and joining swarms, the user content interests
are being publicly disclosed. Peers provide a proof that the user is able to access a
content in part or entirely by advertising which chunks they own, and entirely by
notifying the tracker upon download completion.

The main legal issue of traditional P2P systems is that, unknowingly and unwill-
ingly, a user may be held liable for copyright infringement due to illegal content
download. If a content is published with a misleading description or if the resource
used to obtain the hash of the content is insidious, the user will only become aware
of that fact after accessing the content data in part or fully. For contents that can
be accessed in part before fully downloading them, which is usually the case of
multimedia contents, the user may be infringing copyright law after downloading
a single or a few chunks. The copyright infringement can be trivially proved be-
cause peers advertise which chunks they own and notify the tracker upon download
completion.

1.3 PROBLEM DEFINITION

In the context of this work, privacy preservation is defined as the concealment of
user content interests. Therefore, the aim is at developing a privacy-preserving P2P
file sharing model that:

Hides user content interests. The user must be able to hide his content interests
from any participant in the system: trackers, regular peers, or groups of colluding
peers. Protection against external entities monitoring all the user’s traffic, such as
Internet Service Providers (ISPs) or governments, is out of the scope of this work.

Has no trust requirements. The user must be able to download a content without
having to trust anyone. Therefore, the privacy-preserving P2P model must enable
content sharing in large groups of untrusted peers (untrusted P2P networks).

Prevents user liability. The user shall not be subject to any liability as a result
of legitimate usage of the privacy-preserving P2P model. The user shall be pro-
tected against actions of misbehaving peers, or from the download of contents
published with misleading description (misleading contents), which may drive users
to unknowingly and unwillingly download unethical or illegal contents.

Enables timely downloads. The user should be able to download a content in due
time. The average download bitrate must be within the same order of magnitude of
traditional P2P systems that do not preserve the privacy of users.

1.3 PROBLEM DEFINITION 7

1.4 GOALS AND CONTRIBUTIONS

The main goal of this thesis is to prove the following statement, also assumed as the
working hypothesis: It is possible to deterministically hide the content interests of users
sharing publicly accessible files over untrusted P2P networks without disclosing what
peers download or miss.

This work has three main contributions. The first and core contribution is the
proposal of a novel P2P file sharing model, named Mistrustful P2P as it is built on
the concept of mistrusting all the entities participating in the P2P network. This
model resorts on erasure codes to avoid disclosing what peers download or miss,
and its validation was conducted in ns-3 network simulator [@4]. The second
main contribution is the proposal of Storm erasures codes. Storm erasure codes are
more suited for P2P file sharing because they do not introduce network overhead
and have efficient encoding and decoding algorithms: the network is typically
the most constrained P2P file sharing resource, not the Central Processing Unit
(CPU) [36]. The third main contribution is the proposal of CIDRarchy ns-3 routing
protocol5. The Mistrustful P2P model cannot be validated analytically or using real
large-scale implementations, and small scale simulations, although feasible, may
not be enough as some issues may only arise at the scale of thousands of peers or
more [10]. CIDRarchy improves the time complexity of packet forwarding in ns-3
for hierarchical networks, such as the Internet, because existing routing algorithms
preclude the simulation of content sharing with thousands of peers in due time. The
following paragraphs describe each main contribution in more detail.

Mistrustful P2P Model. It is a novel P2P file sharing model that provides plausible
deniability through content interest disguise: hides user content interests by down-
loading both contents that the user is interested in (genuine) and additional contents
of no interest to the user (cover), as long as they cannot be distinguished. This
model has no trust requirements, prevents user legal liability in case of legitimate
usage, and ensures deterministic protection of user content interests against attacks
of a size up to a configured level. Therefore, users are not required to establish
trust links in order to participate in the content sharing. It also enables each user
to set the required trade-off between privacy and performance by configuring, per
content, the size of the largest group of colluding peers to be protected against, and
the minimum network overhead of content interest disguise.

Storm Erasure Codes. These erasure codes are a rateless Maximum Distance Sep-
arable (MDS) construction of Reed-Solomon codes [50] over the finite field Fp2 ,
where p is a Mersenne prime. To the best of the author’s knowledge, this is the first
rateless construction (n can be increased in steps of k) with Θ (n log k) encoding
time complexity and min

{
Θ (n logn) ,Θ

(
k log2 k

)}
upper bound for decoding time

complexity. Storm aims at demonstrating that erasure codes can be used to enable

5 The meaning of routing protocol in the context of the ns-3 network simulator differs from the
canonical one. The differences are described in Section 2.3.

8 CHAPTER 1 INTRODUCTION

Mistrustful P2P in a large set of devices and without depending on any patented
erasure code.

CIDRarchy ns-3 Routing Protocol. CIDRarchy is an ns-3 IPv46 routing protocol
developed for ns-3 that uses Classless Internet-Domain Routing (CIDR) as the base to
create a hierarchical Internet-like network topology that enables IP packet forwarding
with constant time complexity and automatic IPv4 address assignment, and the
implementation of an ns-3 helper to ease network topology creation. CIDRarchy
enables the validation of the Mistrustful P2P model for contents with thousands of
peers because the time gains over built-in ns-3 routing protocol implementations
can reach over one order of magnitude.

Three conference papers and one journal paper were published as a direct result
of this thesis.

[1] Silva, P. M. da, Dias, J., and Ricardo, M. “CIDRarchy: CIDR-based ns-3
Routing Protocol for Large Scale Network Simulation”. In: Proceedings of the
8th International Conference on Simulation Tools and Techniques. SIMUTools
’15. Athens, Greece, 2015, pp. 267–272.

[2] Silva, P. M. da, Dias, J., and Ricardo, M. “Storm: Rateless MDS Erasure
Codes”. In: Wireless Internet: 8th International Conference, WICON 2014,
Lisbon, Portugal, November 13-14, 2014, Revised Selected Papers. Ed. by
Mumtaz, S., Rodriguez, J., Katz, M., Wang, C., and Nascimento, A. Springer
International Publishing, 2015, pp. 153–158.

[3] Silva, P. M. da, Dias, J., and Ricardo, M. “Mistrustful P2P: Privacy-preserving
File Sharing Over Untrustworthy Peer-to-Peer Networks”. In: Proceedings of
IFIP Networking 2016. IFIP Networking ’16. Vienna, Austria, 2016, pp. 395–
403.

[4] Silva, P. M. da, Dias, J., and Ricardo, M. “Mistrustful P2P: Deterministic
Privacy-preserving P2P File Sharing Model to Hide User Content Interests
in Untrusted Peer-to-Peer Networks”. In: Computer Networks 120 (2017),
pp. 87–104.

1.5 THESIS STRUCTURE

The remainder of this thesis is structured as follows. Chapter 2 describes the related
work for each one of the three main contributions. Sections 2.1, 2.2, and 2.3,
respectively, the related work for privacy-preserving P2P file sharing systems, erasure
codes, and existing ns-3 routing protocols. Chapter 3 presents the Mistrustful P2P
model. Storm erasure codes and CIDRarchy ns-3 routing protocol are presented and
evaluated, respectively, in Chapters 4 and 5. The Mistrustful P2P model is validated
in Chapter 6, and the thesis conclusions are drawn in Chapter 7.
6 Internet Protocol version 4.

9

2RELATED WORK

„If privacy is outlawed, only outlaws will have privacy.

— Philip Zimmermann

This chapter presents the related work for privacy-preserving P2P systems, erasure
codes, and ns-3 routing protocols. Section 2.1 depicts privacy-preserving P2P systems
designed specifically for P2P file sharing and providing privacy through plausible
deniability, given that they typically introduce less overhead and may take advantage
of it to improve the overall performance. Section 2.2 presents erasure codes more
suitable for P2P file sharing that introduce no network overhead because the network
is typically the most constrained P2P file sharing resource, not the CPU [36]. Sec-
tion 2.3 describes existing ns-3 IPv4 routing protocols for infra-structured networks,
such as the Internet, that were readily available as of version 3.22 of ns-3 network
simulator. For each section, it is provided the required background before presenting
the related work, and a summary after its presentation.

2.1 PRIVACY-PRESERVING PEER-TO-PEER SYSTEMS

Section 2.1.1 describes the two main classes of privacy-preserving P2P systems, and
the main techniques they employ. Sections 2.1.2 through 2.1.5 present each one of
the related work systems. These systems are compared in Section 2.1.6.

The description provided for each system focus on the trust requirements, on
the protection against both passive and active attacks aiming at identifying user
content interests, and on the potential legal liability of users while using the system
for legitimate purposes.

2.1.1 BACKGROUND

Several privacy-preserving P2P systems have been proposed, but, given that there is
a trade-off between privacy and performance, they consider different attack models
and employ different techniques for privacy preservation. The majority of such
systems provides privacy through anonymity, which is usually stronger but has lower
performance, or through plausible deniability, which is usually weaker but has better
performance.

11

PRIVACY THROUGH ANONYMITY

Anonymity systems provide privacy preservation by concealing the identity of the
peer, but not necessarily its actions: an attacker may be able to create a user profile,
but it should not be able to link a peer to that profile. Peers communicate through
indirect paths so that each intermediary peer knows only the location of the immedi-
ately preceding and following peers, thus hiding the identity of the communication
endpoints. These systems employ techniques such as onion routing [23] and in-
formation slicing [33] to provide anonymous communication. Onion routing is a
technique that encapsulates messages in layers of encryption, which are removed
one by one at each hop to determine the next hop towards destination, so that only
the intended recipient is able to decode the message while hiding the identity of
the sender. Information slicing is presented by its authors as an alternative to onion
routing that resorts on sending slices of information through disjoint paths so that
only the intended recipient is able to receive all slices and, by doing so, decode the
message. It enables to exchange a symmetric key without resorting on public key
cryptography, and does not require multiple encryption layers, as long as there are
at least two disjoint paths.

Anonymity systems introduce computational and network traffic overhead to
hide the identity of the communication endpoints, but do so without improving the
overall performance of the network. General-purpose anonymity systems, such as
Tor [18], provide a channel to anonymously transmit messages but cannot prevent
the disclosure of user’s identity when relaying traffic of insecure applications, such
as BitTorrent, because the content of that messages is the sole responsibility of
the application. The relay peers are also more prone to be held legally liable, in
particular the last peer on the path because it appears as the source and has access
to the message content. E.g., Tor defaults to a path length of four (300% network
overhead), which lowers the throughput and increases the average latency [2], and
a Tor relay node (core router) may relay traffic of misbehaving peers, which makes
the last one on the path (exit node) to appear to be the originator of such traffic.

PRIVACY THROUGH PLAUSIBLE DENIABILITY

Privacy through plausible deniability consists in introducing uncertainty so that an
attacker fails to ascertain any sensitive information, and therefore a user can plausibly
deny any claim of such attacker. It is achieved by employing techniques such as
request relaying and content interest disguise. Request relaying creates uncertainty
about the communication endpoints by introducing relay peers in order to thwart
any attacks aiming at identifying the role of a peer on a chunk transfer: requester,
relay or provider. Content interest disguise hides user content interests by enabling
peers to communicate directly but requiring them to download additional contents.
Thus, content download no longer means interest in a given content, and user
content interests can longer be identified by monitoring just a small fraction of the
network [11]. Request relaying and content interest disguise may be used together.

12 CHAPTER 2 RELATED WORK

Privacy-preserving systems providing privacy through plausible deniability in-
troduce network traffic overhead to create uncertainty, but that overhead may be
used to improve the overall performance of the network: e.g., relay peers may cache
contents and therefore increase their availability. The privacy protection provided
by these systems may not be enough for some users, given that an attacker may be
able to determine the set of all contents potentially downloaded.

2.1.2 BITBLENDER

BitBlender [2] provides plausible deniability by introducing relay peers that simply
proxy requests on behalf of other peers. Peers willing to act as relay peers can
register at a central node called blender, and, once requested, will join a P2P swarm
in a probabilistic way so that they cannot be distinguished from regular peers. The
joining probability of relay peers is defined by the blender, when asking registered
peers to join a P2P swarm, so that the set of relay peers remains unknown while
having the cardinality requested by the tracker. It enables the identification of
regular and relay peers through download progress tracking, and provides a trivial
proof of content download because peers advertise what they download. Thereby,
BitBlender provides protection against passive attacks, but it is vulnerable to active
attacks using download progress tracking. It requires users to trust both the tracker
and the blender. Its users may be subject to legal liability for downloading misleading
contents, and for relaying traffic of misbehaving peers.

2.1.3 SWARMSCREEN

SwarmScreen [11] provides plausible deniability by obscuring user content interests
through content interest disguise. The devised scheme, which consists in “adding a
small percentage (between 25% and 50%) of additional random connections that are
statistically indistinguishable from natural ones”, thwarts guilt-by-association attacks,
that is, attacks in which the user content interests can be inferred with high certainty
just by classifying peers based on the behavior of the communities they participate in.
SwarmScreen has no trust requirements, but its attack model only considers passive
attacks. It is vulnerable to active attacks because contents can be distinguished
through download progress tracking. Peers communicate through direct links, but
users may be subject to legal liability due to the download of misleading contents.

2.1.4 THE BITTORRENT ANONYMITY MARKETPLACE

The BitTorrent Anonymity Marketplace [42] follows SwarmScreen’s approach to pro-
vide plausible deniability. It does not present any trust requirements, and peers also
communicate through direct links. However, in order to protect against both passive
and active attacks, all contents are fully downloaded to make them indistinguishable,
given that an attacker is able to fully track download progress: peers advertise what
they own and miss. The authors define k-anonymity as the privacy protection level

2.1 PRIVACY-PRESERVING PEER-TO-PEER SYSTEMS 13

Table 2.1: Privacy-preserving P2P file sharing systems comparison. The comparison consid-
ers trust requirements, protection against passive and active attacks aiming at identifying
user content interests, and potential user legal liability.

Work Has No Trust
Requirements

Protects Against
Attacks Prevents Legal

Liability
Passive Active

BitBlender 7 X 7 7

SwarmScreen X X 7 7

The BitTorrent Anon. Mark. X X X 7

Petrocco et al. 7 X X 7

obtained from fully downloading k contents. Thus, since it introduces high network
overhead, it either prevents downloads from timely completing or constrains the
achievable level of privacy protection. Users may be subject to legal liability due to
the download of misleading contents.

2.1.5 PETROCCO ET AL.’S

Petrocco et al. [44], also following SwarmScreen’s approach, proposed a system
that aims at hiding user content interests without compromising timely download
completion. Their system relies on private swarms, request relaying, caching, and
partial advertisement of downloaded chunks. As stated by the authors, private
swarms are required to ensure a good level of privacy, i.e., to avoid the identification
of user content interests through download progress tracking. Yet, to obtain the
credentials needed to join a private swarm, peers must trust one or more participants.
Also, as only a fraction of the chunks are advertised, it is not clear how a content
sharing is bootstrapped with few seeders or how request relay should operate during
periods of content unavailability. This system provides protection against passive
and active attacks, but its users may be held legally liable due to relay traffic.

2.1.6 SUMMARY

Table 2.1 summarizes and compares the privacy-preserving P2P file sharing systems
previously described taking into consideration the trust requirements, the privacy
protection against passive and active attacks, and the potential legal liability of users.
BitBlender and SwarmScreen are unable to hide user content interests from active
attacks using download progress tracking. The BitTorrent Anonymity Marketplace
and Petrocco et al.’s systems are able to thwart both passive and active attacks.
BitTorrent Anonymity Marketplace requires peers to fully download all contents
in order to make them indistinguishable, and therefore introduces a considerable
network overhead that will either prevent downloads from timely completing or
constrain the achievable level of privacy protection. Petrocco et al.’s system requires
peers to trust one or more participants in order to reduce network overhead by using
partial advertisement of downloaded chunks.

14 CHAPTER 2 RELATED WORK

All solutions require peers to advertise, either fully or partially, what they have
downloaded. An attacker may exploit download progress tracking to obtain a proof
that the user is able to access a content either entirely or in part, and to narrow or
even void plausible deniability. For unethical or illegal contents that can be accessed
in part before fully downloading them, which is usually the case of multimedia
contents, an attacker may obtain a proof of such access. As so, the user may be held
legally liable for, unknowingly and unwillingly, downloading a single or a few chunks,
be it due to traffic relaying or due to misleading content description. Thereby, a
legitimate and well-intended usage of these systems may held the user liable for
copyright infringement.

2.2 ERASURE CODES

Section 2.2.1 provides a brief background of erasure codes, and the concepts in-
troduced in it are described in more detail in Chapter 4 (Storm Erasure Codes).
Sections 2.2.2 through 2.2.5 present the related work. The erasure codes are com-
pared in Section 2.2.6.

The description provided for each erasure code focus on two main categories:
performance metrics; ability to cope with P2P file sharing dynamics.

2.2.1 BACKGROUND

An erasure code generates a set of n symbols from a set of k symbols, k < n, so that
any subset of k (1 + ε(k)) is enough to reconstruct the original information, where
ε(k) is the erasure coding overhead. Erasure codes are usually classified according
to three orthogonal properties: systematicity, rate fixedness, and coding overhead.
An erasure code is systematic if the input symbols are embedded into the output
symbols, and non-systematic otherwise. If n is static and needs to be known before
encoding, the erasure code is fixed-rate. If n can be dynamically increased and the
amount of symbols that can be generated does not impose any practical limitation,
the erasure code is rateless. Finally, an erasure code is MDS if any k symbols out
of n are enough to reconstruct the original information [ε(k) = 0], or non-MDS
if additional symbols are required [ε(k) > 0]. Non-MDS erasure codes reduce the
encoding and decoding time complexity orders by introducing coding overhead. The
practical encoding and decoding time complexities of any erasure code depend on
the efficiency of the integer arithmetic operations they rely on, which are defined
over finite fields so that neither rounding nor precision errors are introduced.

A prime field Fq=p is a finite field comprising the finite set {0, . . . , q − 1} of q
elements, and exists for any prime p. An extension field with q = pm elements, Fpm ,
is an extension over the prime field Fp whose elements are polynomials of degree
m− 1 with coefficients from Fp. Finite fields where p = 2 are named binary finite
fields. Unlike real arithmetic, finite field arithmetic involves only integer arithmetic,

2.2 ERASURE CODES 15

and the result of an operation over a finite field is also an element of that field.
Thereby, it introduces neither rounding nor precision errors. Binary finite fields, since
their cardinality is a power of two (q = 2m), are more attractive as they are efficiently
representable on computer memory, and the addition over F2m is the eXclusive OR
(XOR). Multiplication is the logical AND for F2, but form > 1 it is not as efficient, and
it is typically performed via lookup tables for 2 ≤ m ≤ 16. These fields support only
additive Number Theoretic Transform (NTT), Discrete Fourier Transforms (DFTs)
over finite fields, with Θ(n logn log logn) time complexity [22]. Non-binary finite
fields, since their cardinality is not a power of two, are not as efficiently represented
on computer memory as binary finite fields, but they support multiplicative NTT,
which has Θ(n logn) time complexity [5]. Fermat finite fields and Mersenne finite
fields – finites fields with cardinality that is, respectively, a Fermat prime (q = 22m+1),
and a Mersenne prime (q = 2m − 1) –, are just one element away from a power of
two. Using up to 128 bits to represent each element

(
q ≤ 2128), a Fermat number

is prime for m ∈ {0, 1, 2, 3, 4}, being 65537 the largest known Fermat prime, and a
Mersenne number is prime for m ∈ {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127}, being
274207281 − 1 the largest known Mersenne prime.

MDS erasure codes are more suitable for P2P file sharing because they introduce
no network overhead, given that the network is typically the most constrained P2P
file sharing resource, not the CPU [36]. For other scenarios, non-MDS erasure codes
may be more suitable, but they are out of the scope of this work. LT codes [39]
and Raptor codes [56] are the most prominent examples of non-MDS erasure codes
because they are rateless and asymptotically optimal [ε(k)→ 0 as k →∞], and the
latter is able to achieve linear encoding and decoding time complexities. The reader
is referred to [49] for more details about such codes, also known as fountain codes,
and to [55] for a practical evaluation.

2.2.2 ROME

ROME [27] stands for Rateless Online MDS Erasure codes. These erasure codes were
developed for wireless data broadcasting, and can dynamically adapt the amount
n of generated coded symbols to the broadcasting conditions. They are built upon
dedicated hardware to improve the overall encoding and decoding performance of
classic Reed-Solomon (RS) codes [50], the most well-known class of MDS codes.
ROME erasure codes are constructed over binary finite fields, the encoding and
decoding algorithms are based on a Vandermonde matrix, and, without dedicated
hardware, they have the same encoding and decoding time complexities as classic
RS codes: Θ (nk) and Θ

(
k2), respectively. Albeit n being dynamic and taking any

value up to the field size, their practical application without dedicated hardware is
limited to small values of k and n: typically up to 255 over F28 .

16 CHAPTER 2 RELATED WORK

2.2.3 DIDIER’S

Didier [17] proposed encoding and decoding algorithms for RS codes over the binary
finite field F2m with, respectively, Θ (n logn) and Θ

(
n log2 n

)
time complexities,

where n = 2m and is fixed to the size of the binary finite field. Thereby, the finite
field being used must be chosen taking into consideration not only the performance of
the arithmetic operations but also the required values of k and n; otherwise, 2m − n′

symbols will be encoded but never used, where n′ is the number of effectively
required coded symbols. These erasure codes resort on Walsh transforms to perform
fast polynomial evaluation (encoding) and interpolation (decoding). In practice,
the field size is limited up to 216 so that the elements are easily representable (two
bytes) and the products can be performed via in-cache lookup tables.

2.2.4 SORO ET AL.’S

Soro et al. [57] presented encoding and decoding algorithms with Θ (n logn) time
complexity over a finite field Fp, where p is a Fermat prime (p = 22m + 1). These
codes are fixed-rate since all coded symbols are generated at once. The NTTs over
these finite fields are usually referred to as Fermat Number Transforms (FNTs), and
have Θ (n logn) time complexity. Multiplicative NTTs can be computed efficiently
using the same principle as complex Fast Fourier Transforms (FFTs), but there is
an n-th root of unity only if n | p− 1. Thus, n can take any power of two value up
to 22m , which is, at most, 65536 given that Fermat finite fields are only known for
m ∈ {0, 1, 2, 3, 4}. Arithmetic operations are efficient on current CPUs because they
are regular integer modular arithmetic operations (mod p), but one element, 22m , is
not representable using 2m bits.

2.2.5 LIN ET AL.’S

Lin et al. [38] proposed a non-standard polynomial basis to develop an Θ (n log k)
encoding and an Θ (n logn) decoding algorithms over F2m , where n = 2m and is
fixed to the finite field size; k must be a power of two value and the rate k/n ≤ 0.5.
For a rate k/n ≥ 0.5, and k taking also a power of two value, Lin et al. [37] recently
proposed a new decoding algorithm with Θ

(
n log (n− k) + (n− k) log2 (n− k)

)
time complexity. As for Didier’s work, the finite field must be chosen taking into
consideration both the performance of the arithmetic operations and the required
values of k and n, in order to minimize the amount of symbols encoded but never
used. Their practical application is also limited up to 216 for the same reasons.

2.2.6 SUMMARY

Table 2.2 summarizes and compares the MDS erasure codes previously described
taking into consideration the underlying finite field, the encoding and decoding
time complexities without considering dedicated hardware implementations, the

2.2 ERASURE CODES 17

Table 2.2: Comparison of MDS erasure codes more suitable for P2P file sharing. The
comparison considers the underlying finite field, encoding and decoding time complexities
(without considering any dedicated hardware), rate fixedness, and the domain of the number
n of generated coded symbols.

Work Finite
Field

Time Complexity
Rateless

Number of
Coded SymbolsEncoding Decoding

ROME F2m Θ (nk) Θ
(
k2) X 1 < n ≤ 2m

Didier F2m Θ (n logn) Θ
(
n log2 n

)
7 n = 2m

Soro et al. F2m+1 Θ (n logn) Θ (n logn) 7 {n : n | 22m}
Lin et al. F2m Θ (n log k) Θ

(
n log2 n

)
7 n = 2m

rate fixedness, and the domain of the number n of erasure coded symbols that can
be generated. ROME is the only rateless construction, but has quadratic decoding
time complexity. Didier and Lin et al. proposed decoding algorithms to achieve
Θ
(
n log2 n

)
time complexity, but n must be set to the size of the finite field. Soro

et al. proposed encoding and decoding algorithms with Θ (n logn) time complexity,
the arithmetic operations over Fermat finite fields are efficient on modern CPUs, and
k and n can take a larger and more flexible set of values. Nevertheless, their erasure
codes are fixed-rate since all erasure coded symbols have to be generated at once.

Despite their merits, these works either proposed fixed-rate constructions or
have high encoding and decoding time complexities. The practical use of those
constructed over binary finite fields is limited up to 216 because multiplications are
likely to be performed using lookup tables, given that carry-less multiplication is not
as efficient on current CPUs and large lookup tables severely degrade performance.
Soro et al. proposed a construction with the lowest overall time complexity, but its
practical use is also limited to the same level because the largest known Fermat finite
field has 216 + 1 elements and n must take a power of two value.

2.3 NS-3 IPV4 ROUTING PROTOCOLS

In the context of ns-3, a routing protocol is simply a class or module that provides
a route for outgoing packets and is able to forward, if needed, incoming packets.
Unlike the canonical definition of routing protocols, which implies periodically and
explicitly sending protocol messages, an ns-3 routing protocol may populate the
routing tables using only global knowledge of the available network links without
sending any protocol messages at all.

Section 2.3.1 provides a brief background on how custom ns-3 routing protocol
can be implemented, and on how packets flow through the network and traverse
the network stack. Sections 2.3.2 through 2.3.5 present existing ns-3 IPv4 routing
protocols for infra-structured networks, such as the Internet, readily available as of
version 3.22. The ns-3 routing protocols are compared in Section 2.3.6.

18 CHAPTER 2 RELATED WORK

The description provided for each ns-3 routing protocol only considers unicast
routing (multicast is not available over the Internet), and focus on the time com-
plexity of sending an IP packet from source to destination as a function of both the
number h of hops and the number n of routing table entries.

2.3.1 BACKGROUND

ns-3 simulated nodes are interconnected by one or more NetDevices communicating
over their respective channels. Packets flow through these channels and, as they
traverse the network stack, the actual packet formats are provided to each layer,
mimicking real networks. The network stack is configurable per node and, at node
creation, it only includes the layers below the IP layer.

InternetStackHelper helper provides a simple interface to install the IP stack,
and to set the ns-3 routing protocol that is to be used. Custom ns-3 routing protocols
are implemented by deriving from Ipv4RoutingProtocol or Ipv6RoutingProtocol
classes, respectively for IPv4 and IPv61, and must implement, at least, RouteInput
and RouteOutput methods. RouteInput method returns a boolean indicating
whether it takes responsibility for forwarding or delivering the packet; if so, one of
four callbacks, with self-descriptive names, can be invoked to forward or deliver the
packet: ErrorCallback, UnicastForwardCallback, MulticastForwardCallback,
and LocalDeliverCallback. RouteOutput method is used by transport protocols to
retrieve the route (Ipv4Route object) for outgoing packets, if any. These functions
are executed for each incoming or outgoing packet, therefore, in particular for large-
scale P2P file sharing simulations where a large amount of packets is exchanged
between a large number of peers, they may represent a considerable share of time
required to run a simulation (simulation time).

2.3.2 IPV4LISTROUTING

Ipv4ListRouting is an ns-3 meta routing protocol that serves the sole purpose of
combining different ns-3 routing protocols in a prioritized list. The ns-3 routing
protocols are invoked in order until an incoming packet is handled (RouteInput in-
vocation returns true) or a route is returned for an outgoing packet (through the invo-
cation of RouteOutput). I.e., the next ns-3 routing protocol on the list is invoked only
if the previous one either does not handle the incoming packet or does not provide a
route for the outgoing packet. The InternetStackHelper helper installs by default
an Ipv4ListRouting enclosing both Ipv4StaticRouting and Ipv4GlobalRouting,
having Ipv4GlobalRouting higher priority than Ipv4StaticRouting.

2.3.3 IPV4STATICROUTING

Ipv4StaticRouting provides a basic set of methods for setting static unicast and
multicast routes. Though it can be used as a standalone ns-3 routing protocol, it was

1 Internet Protocol version 6.

2.3 NS-3 IPV4 ROUTING PROTOCOLS 19

designed to be inserted into an Ipv4ListRouting to complement other ns-3 routing
protocols. Ipv4StaticRouting is usually used as a lower priority ns-3 routing
protocol for setting default routes. The RouteOutput and RouteInput functions
sequentially check each routing table entry until a matching entry with 32 bits mask
is found or all entries have been checked. Thus, using Ipv4StaticRouting, sending
an IP packet from source to destination has Θ (n0 + n1 + ...+ nh) ≈ Θ (n̄ (h+ 1))
time complexity, where ni is the number of routing table entries at node i, and n̄ is
their average, being the source node 0 and the destination node h.

2.3.4 IPV4GLOBALROUTING

Ipv4GlobalRouting is the actual default ns-3 routing protocol, as it is the one
with highest priority installed within Ipv4ListRouting. It walks the simulation
topology, and populates node’s routing tables with the routes returned by a short-
est path algorithm. Ipv4GlobalRoutingHelper helper provides two class meth-
ods, PopulateRoutingTables and RecomputeRoutingTables, to populate the rout-
ing tables from scratch, and to update the routing tables, respectively. Thus,
Ipv4GlobalRouting is easy to use and, given that both methods can be executed
anytime during simulation, also supports runtime topology changes. Its RouteOutput
and RouteInput functions sequentially check each routing table entry and collect all
matching entries, if any. Thus, Ipv4GlobalRouting is able to send an IP packet from
source to destination with Θ (n0 + n1 + ...+ nh) ≈ Θ (n̄ (h+ 1)) time complexity.

2.3.5 IPV4NIXVECTORROUTING

Ipv4NixVectorRouting [52] is a more efficient version of global routing that stores
source routes in packet headers. The source node adds a set of bits to packet
headers that indicate the interface that is to be used at each node to reach des-
tination. The number of bits read by each node is the amount of bits required
to represent all of its interfaces, being its value the interface index within the
node. Ipv4NixVectorRouting enables runtime topology changes by recomputing
the source routes and flushing caches either implicitly, when interface changes
occur, or explicitly, by invoking FlushGlobalNixRoutingCache class method. Its
RouteOutput function retrieves the path to a given destination in Θ (logn), and its
RouteInput function forwards packets in Θ (1). Therefore, an IP packet flows from
source to destination with Θ (logn0 + h) time complexity.

2.3.6 SUMMARY

Table 2.3 compares the packet forwarding performance of ns-3 routing protocols
considering the time complexities of RouteOutput and RouteInput functions, and
its overall time complexity. Ipv4StaticRouting and Ipv4GlobalRouting have
equivalent time complexities: Θ (n) for RouteOutput and RouteInput functions, and
≈ Θ (n̄ (h+ 1)) for sending IP packets through the path. Ipv4NixVectorRouting

20 CHAPTER 2 RELATED WORK

Table 2.3: Comparison of existing ns-3 IPv4 routing protocols. The comparison considers
the time complexities of RouteOutput and RouteInput functions, and of sending an IP
packet from source to destination as a function of both the number h of hops and the number
n of routing table entries; ni is the number of routing table entries at node i (source is 0 and
destination is h), and n̄ their average.

ns-3 Routing Protocol
Time Complexity

RouteOutput RouteInput Source→ Destination

Ipv4StaticRouting Θ (n0) Θ (ni) ≈ Θ (n̄ (h+ 1))
Ipv4GlobalRouting Θ (n0) Θ (ni) ≈ Θ (n̄ (h+ 1))
Ipv4NixVectorRouting Θ (logn0) Θ (1) Θ (logn0 + h)

is able to decrease the time complexity of sending IP packets to Θ (logn+ h) by
improving the time complexities of both RouteOutput and RouteInput functions:
respectively, Θ (logn) and Θ (1).

Ipv4StaticRouting and Ipv4GlobalRouting are akin performance-wise, but
the former requires explicit population of routing tables while the latter provides a
helper to populate the routing tables automatically. Ipv4NixVectorRouting is able
to significantly decrease the time complexity of sending IP packets, although in a
non-standard way (adding bits to packet headers). Still, the cost of updating the
routing tables may be significant for frequent topology changes, and each packet
requires Θ (logn) operations before reaching the destination.

2.4 CONCLUSIONS

This chapter presented the related work for P2P file sharing systems providing
privacy through plausible deniability, for MDS erasure codes more suitable for P2P
file sharing, and for existing ns-3 IPv4 routing protocols as of version 3.22 of ns-3
network simulator.

Privacy-preserving systems require peers to advertise, either fully or partially,
what they have downloaded, and an attacker may take advantage of this information
to: narrow or even void plausible deniability; identify user content interests; obtain
a proof that the user is able to access a content either entirely or in part. Such proof
may be used, e.g., to held a law-abiding user legally liable for copyright infringement
as a result of, unknowingly and unwillingly, downloading a single or a few chunks of
an illegal content.

The available MDS erasure codes are either fixed-rate or present high encoding
and decoding time complexities, and are therefore not able to cope with the P2P
file sharing dynamics. Their practical application is also limited to about 216: those
constructed over binary finite fields are limited by the multiplication operations,
which are typically performed using lookup tables; those constructed over Fermat
finite fields are limited by the finite field size.

2.4 CONCLUSIONS 21

Simulating large-scale P2P file sharing networks with thousands of peers requires
considerable computational resources as just forwarding packets from source to
destination requires at least logn operations, where n is the number of routing tables
entries; for Ipv4NixVectorRouting, n is basically the number of peers (number of
possible distinct destinations).

22 CHAPTER 2 RELATED WORK

3MISTRUSTFUL P2P MODEL

„Law-abiding citizens value privacy. Terrorists require invisibility. The
two are not the same, and they should not be confused.

— Richard Perle

This chapter describes the Mistrustful P2P model, and it is structured as follows.
Section 3.1 provides an overview of the model and its main building blocks – content
interest disguise and mistrustful sharing – to best describe how the problem this
work aims to solve is addressed. Section 3.2 discusses the peer roles and their
sharing behavior, the content sharing process, and the role of mistrustful sharing on
it. The attack model considered is defined in Section 3.3. Sections 3.4 through 3.8
characterize the instantiations of each one of the mechanisms used on the evaluation
of the Mistrustful P2P model.

3.1 OVERVIEW

The Mistrustful P2P model is built on the concept of mistrusting all the entities
participating in the P2P network, hence its name, and therefore users are not
required to establish any trust links in order to participate in the content sharing.
It relies on two main building blocks – content interest disguise and mistrustful
sharing – and aims at hiding user content interests through plausible deniability,
in untrusted P2P networks, while overcoming the main limitations of akin P2P file
sharing systems. These limitations can be summarized as follows: 1) peers are
required to advertise what they download enabling passive attacks; 2) protection
against active attacks is only achieved by introducing either trust requirements or
considerable network overhead; 3) the privacy protection against both passive and
active attacks is probabilistic; 4) legitimate users may be held legally liable for,
unknowingly and unwillingly, downloading or relaying traffic of illegal contents.

Content interest disguise, as in other privacy-preserving P2P systems, hides user
content interests through plausible deniability. The user content interests are hidden
by downloading both contents that the user is interested in (genuine) and additional
contents of no interest to the user (cover), as long as they cannot be distinguished.
Registering at a tracker and joining a swarm no longer represents interest in that
content, and user content interests can no longer be identified by monitoring just a
small fraction of the network [11]. A content interest disguise scheme selects the set
of cover contents, how much of each one to download, and may impose constraints

23

to the content sharing in order to hide user content interests. The evaluation of the
Mistrustful P2P model is centered on the feasibility of its novelty, the mistrustful
sharing building block, and thereby the proposal of a content interest disguise
scheme is out of the scope of this work.

The mistrustful sharing building block enables the user to configure the required
trade-off between privacy and performance by defining the size c of the largest
colluding group to be protected against and the minimum amount m of chunks that
are to be downloaded per cover content (minimum network disguise overhead),
where c ≤ m < k for any content partitioned into k chunks so that there is no proof
of full content download (proof of download). Proof of access to content data (proof
of access) is avoided by encoding contents in a way that only enables decoding
after full download. The mistrustful sharing building block is composed of two
core mechanisms – erasure coding and disclosure constraint –, and three supporting
mechanisms – block selection, request backoff, and peer selection. It enables the
Mistrustful P2P model to overcome limitations 1) to 4) as follows.

Peers avoid advertising what they download by requesting from other peers
random chunks, thus defeating passive attacks of any size; the chunk request process
and the messages exchanged are described in Section 3.2. Attackers have then
to engage in the content sharing because the chunks owned or missing are only
implicitly disclosed to other peers while sharing. Active attacks, of a size up to
c, are defeated by constraining the amount of chunks disclosed to any set of c
peers to be, at most, m: an attacker is not able to distinguish cover contents from
genuine ones because at least m chunks are downloaded of each content. As so, user
content interests are deterministically hidden. For legitimate users, legal liability is
prevented by not requiring peers to relay traffic on behalf of other peers, by never
fully downloading cover contents (their data is never accessible), and by avoiding
both proof of access and proof of download for any attack of a size up to c. The
protection of user content interests and the user liability are discussed in more
detail in Section 6.1 (Security Analysis), which also describes the countermeasures
employed against common attacks.

The erasure coding mechanism is the core mechanism used to enable the proba-
bility of randomly retrieving a chunk to become significant, and to enable decoding
only after full download. Considering a content divided into k chunks, uniformly
distributed across the network, the probability of retrieving the last chunk is just 1/k.
The erasure coding mechanism generates a set of n erasure coded chunks (blocks),
from a set of k chunks, so that any subset of k′ blocks enables to retrieve the content,
where k′ = k (1 + ε(k)) and ε(k) is the erasure coding overhead. If the n blocks are
also uniformly distributed across the network, the probability of retrieving the last
required block increases to 1− (k′ − 1)/n. As an example, for k = 20, n = 5 · k = 100,
and ε(k) = 0 (optimal erasure code), the probability increases from 5% to 81%.

24 CHAPTER 3 MISTRUSTFUL P2P MODEL

The disclosure constraint mechanism is the core mechanism used to ensure that
no more than m blocks are disclosed (requested or shared) to any set of c peers
(largest colluding group considered), and thus prevents proof of download (m < k).
It also contributes to the reduction of the overhead due to cover downloads because
only m blocks need to be downloaded per cover content in order to avoid the identi-
fication of genuine downloads among cover downloads. This mechanism enables
the disclosure of at least one block to each peer (m ≥ c), and, on average, m/c blocks
can be requested from each peer. Reducing the amount of available block requests
by either increasing c or decreasing m may impact the overall performance.

The remaining three mechanisms – block selection, request backoff, and peer
selection – are defined to enable the evaluation of the Mistrustful P2P model, and
to ensure that contents are timely downloaded. The block selection mechanism
determines which block is to be offered to a given requesting peer, affecting the
distribution of blocks among peers and therefore the probability of retrieving a
useful block (innovative block). The request backoff mechanism determines the
delay between block requests aiming at maximizing the amount of useful blocks that
can be obtained from the available block requests in the shortest time frame. With
the same aim, the peer selection mechanism selects a peer to which a block request
will be sent.

The instantiation provided for each mechanism, described in Sections 3.4 through
3.8, is the one used to evaluate the Mistrustful P2P model in Section 6.2 (Performance
Evaluation). Due to the large number of variables and factors at play, it is considered
the impact of those that are expected to change more often – c and m, content
size, peer arrival rate, and number of seeders –, and of cover downloads on the
average download bitrate and on the download completion ratio. For the sake of
clarity and tractability, other factors and variables such as inter-content relations,
incentives to share, parallel chunk requests, and Internet connection heterogeneity
are not considered. The evaluation aims at demonstrating the feasibility of the
Mistrustful P2P model rather than at optimizing its overall performance, i.e., it
aims at demonstrating that peers are able to timely download contents without
advertising what they download.

In sum, the mistrustful sharing building block reinforces the content interest
disguise because the distinction between genuine and cover contents is hardened by
not disclosing what peers download or miss, and a larger set of cover contents can be
used as they do not need to be fully downloaded. It prevents legitimate users from
being held liable due to cover content and misleading content downloads. Cover
contents are never fully downloaded to guarantee that the user has never access to
their content data. Misleading contents may be fully downloaded, but there is no
proof of access or proof of download for any attack of a size up to c.

3.1 OVERVIEW 25

Table 3.1: Peer roles and sharing behavior on the Mistrustful P2P model. A seeder has all
data chunks and generates a new block (erasure coded chunk) for each incoming request; a
commoner is a peer that may be still downloading enough blocks to reconstruct the content
data and shares the blocks it has already downloaded. As so, a commoner never shares data
chunks and only has access to the content data after fully downloading the content.

Peer Role Data Chunks Blocks

Owned To Share To Download

Seeder All Generated blocks None
Commoner None Downloaded blocks Enough useful blocks

3.2 PEER ROLES AND CONTENT SHARING

Peers, per content, can take one of two roles depending on their privacy requirements
and the way they contribute to the file sharing: seeder – peer having a content that
wants to share, and willing to forgo its privacy –, or commoner – peer willing to
participate in the content sharing if its privacy requirements can be met. A seeder
may be the author or a party interested in publishing a content, and therefore does
not require the concealment of user content interests. It generates a unique block
(erasure coded chunk) for each request it receives, and only refuses to serve block
requests if it has no resources available. On the other hand, a commoner does not
generate new blocks, only shares them if the user content interests remain hidden,
and only has access to the content data after fully downloading the content. A
commoner keeps track of the blocks it shares with other peers both for privacy
protection and to avoid offering an uploaded block twice to the same peer. It may
refuse to serve block requests if it has no useful blocks to offer, due to resource or
privacy constraints, or due to content interest disguise strategies. The commoner
never discloses the reason behind refusal. Table 3.1 summarizes the peer roles and
their sharing behavior.

The block download process on the Mistrustful P2P model differs considerably
from the one on other P2P file sharing systems, given that peers do not advertise
what they download. This process is summarized in Figure 3.1, where peer A is the

REQUESTER PROVIDER
(Peer A) (Peer B)

Request(any)
−−−−−−−−−−→

Offer(x)
←−−−−−−−−

(if not refused)

Accept(x) or Cancel(x)
−−−−−−−−−−−−−−−−−−→

T ransfer(x)
←−−−−−−−−−−

(on acceptance)

Figure 3.1: Messages exchanged during block download process. Peer A requests a random
block from peer B, which either refuses the request or offers a block with id x. If the block is
accepted by peer A, it will get transferred; otherwise, no transfer occurs to avoid unnecessary
network overhead.

26 CHAPTER 3 MISTRUSTFUL P2P MODEL

CA

Tracker

1. Register S

C

A
Join the Swarm

3. Select Peer

S

C

C

C

C

C

SWARM X

SWARM C1

SWARM CZ

SWARM C0

4. Request Random Block
5. Transfer Useful Block

Seeder CommonerSwarmTracker Unregistered Peer

Figure 3.2: Overview of the content download process on the Mistrustful P2P model. First,
peer A registers at the tracker to join the swarm of content X (swarm X) without disclosing
what blocks it owns or misses; it also joins swarms C0 through Cz to disguise user content
interests. Then, it requests a list of peers (a subset) in the swarm from the tracker. Until
download completion, and as long as the privacy requirements are met, peer A selects
eligible peers in the swarm and requests random blocks from them. To prevent unnecessary
network overhead, only offered blocks that are useful get transferred; otherwise, the block
requests are canceled. The list of peers may be updated during content download, and there
is no notification upon download completion.

requester and peer B is the provider, and works as follows. Peer A requests a random
block from peer B, i.e., without providing the id of an intended block. Peer B then
either refuses the request by simply ignoring it, and thus not disclosing the reason
for refusal, or replies with the id of the block it is willing to share, which must be
different from any other that may have been previously disclosed between them
(both as requester and as provider). If peer B has offered a block, peer A sends a
reply message either accepting the offered block, in order to start its download, or
canceling the block request, in order to avoid unnecessary network overhead. Unless
the block request has been canceled, peer B sends the block it has offered to peer A.
The possible outcomes of a block request are further discussed in Section 3.7.

The content download process of the Mistrustful P2P model, depicted in Fig-
ure 3.2, consists in the following steps: 1) the peer registers at the tracker to join the
swarms of both genuine and cover contents in order to disguise the content interests
of the user, without disclosing its role; 2) it requests a list of peers (a subset) in the
swarm from the tracker, which is not aware of each peer’s role; 3) it selects peers
from that list that cope with the user privacy requirements (eligible peers); 4) it
requests random blocks from those peers in order to complete its download; 5) if
the selected peers offer useful blocks, those blocks get transferred; otherwise, the
requests are canceled and no transfer occurs. The list of peers may be updated during
content download, and steps 3), 4) and 5) are repeated until download completion
(genuine contents) or until at least m blocks have been transferred (cover contents).
There is no notification from the commoner upon download completion.

The scope of action of the mistrustful sharing mechanisms entails mostly steps
3), 4) and 5). Their role on the content sharing is illustrated in Figure 3.3. The

3.2 PEER ROLES AND CONTENT SHARING 27

CA S

3. Select Peer

C

DCRB

PS
EC

BS

DC

EC

Seeder SwarmCommoner

EC Erasure Coding RB Request Backoff BS Block Selection PS Peer Selection DC Disclosure Constraint

Data chunk Missing blockBlock

4. Request Random Block
5. Transfer Useful Block

Figure 3.3: Mistrustful P2P model mechanisms and their role in the content sharing. The
erasure coding mechanism is used by a seeder to generate new blocks, and by a commoner
to retrieve the original data after fully downloading a content. The disclosure constraint
mechanism determines if a block request can be sent to a peer or accepted by a given
commoner. The block selection mechanism determines which block is to be shared, if any;
the same block is never offered twice to the same peer. The peer selection mechanism selects
an eligible peer to which a block request can be sent. The request backoff mechanism defines
the delay between block requests.

erasure coding mechanism enables a commoner to retrieve the content data after
fully downloading the content, and enables a seeder to generate a new block for
each incoming request. The disclosure constraint mechanism determines if a block
request can be sent to a peer or accepted by a given commoner. The block selection
mechanism is used by the contacted commoner to determine which block is to be
offered to the requesting peer, if any. The request backoff mechanism determines
the delay between block requests of a commoner. The peer selection mechanism
selects the peer to which the block request is sent.

3.3 ATTACK MODEL

It is assumed that an attacker might be any entity that participates in the system: a
publisher, a tracker, a regular peer or a group of colluding peers. Being a participant
of the system, it is considered that an attacker is able to engage in the content
sharing as a commoner or as a seeder, to be a tracker, and to publish contents with
misleading description. Also, it is considered that an attacker may coordinate a large
number of peers that collude with each other (collusion attack) or assume multiple
pseudonymous identities (Sybil attack), which is equivalent to a larger colluding
group. External entities monitoring all traffic of a peer, such as ISPs, or controlling
the whole network, such as governments, are not considered. Protection against link
monitoring could be achieved by encrypting communications between peers, but
requires key exchange and distribution mechanisms, which are out of the scope of
this work.

28 CHAPTER 3 MISTRUSTFUL P2P MODEL

The creation of large number of pseudonymous identities (Sybil attack) was
first considered by Douceur [19], and is one of the most dangerous attacks that
plague P2P networks [62]. Douceur [19] showed that, without trusted identity
certification, Sybil attacks are always possible when considering realistic scenarios.
In untrusted P2P networks, unlike collusion attacks, Sybil attacks can be mitigated
without explicit information either by performing resource testing or by applying
recurring costs and fees [62]. The reader is referred to [40] for a survey on existing
approaches.

In the context of this work, collusion and Sybil attacks aim at increasing the
amount of blocks disclosed by other peers to a single entity or to colluding entities,
so that either content download can be proven or user content interests can be
determined. The Mistrustful P2P model provides privacy protection against such
attacks of a size up to c peers (colluding group), be it colluding peers, Sybil peers,
or a combination of both. It requires c ≤ m < k, and therefore m and k are upper
bounds for c. On the one hand, despite increasing the minimum network disguise
overhead, m can be increased as needed (up to k) given that it is user configurable.
On the other hand, k is defined by the publisher of the content and cannot be
changed. Thereby, in order to extend the privacy protection without increasing the
size of the largest colluding group considered, c, the user is able to configure as
single entities all the sets of peers that he considers, or suspects, to be colluding or
to be Sybil peers.

Peers are identified by their public IP addresses because it is considered that IP
addresses provide a more flexible resource testing that can be made harder to acquire
than other resources such as human time, network bandwidth, computational power
or storage capacity, which cannot be related. For privacy protection purposes, a set
of peers whose IP addresses are considered to be related can be treated as a single
peer (IP address aggregation), or multiple peers sharing a single IP address can be
treated individually by considering the (IP, port) pair as the identifier (IP address
multiplexing). The user is then able to configure how IP addresses are treated for
privacy protection purposes, providing the flexibility to go as low as treating all
(IP, port) pairs as unique identities, e.g. all peers behind NAT1, up to treating all
IP addresses of a given entity, colluding entities, city, country or any other set of IP
addresses as a single peer. This also enables the user to configure the set of rules that
are applied to peers using anonymous systems such as Tor, which can be IP address
aggregation rules, IP address multiplexing rules or any combination of both.

3.4 ERASURE CODING MECHANISM

The erasure coding mechanism supports both MDS and non-MDS rateless erasure
codes. It is designed to enable the probability of randomly retrieving a block

1 Network Address Translation.

3.4 ERASURE CODING MECHANISM 29

to become significant, and to enable decoding only after full download (avoid
partial access). It enables the probability of randomly retrieving a block to become
significant by generating a set of n blocks, from a set of k chunks, so that any subset
of k′ blocks enables to retrieve the content, where k′ = k (1 + ε(k)), n > k, and ε(k)
is the erasure coding overhead. Decoding is enabled only after full download by
either using a non-systematic erasure code that starts the decoding process only after
receiving at least k′ blocks or by encrypting the content such that decryption is only
possible under the same conditions.

As discussed in Chapter 2, there is a trade-off between the encoding and decoding
time complexities and the erasure coding overhead: decreasing the former is only
possible by increasing the latter. The network is typically the most constrained P2P
file sharing resource, not the CPU [36], and therefore MDS erasure codes [ε(k) = 0]
are more suitable, especially those that are non-systematic and only enable decoding
after receiving k blocks as additional computational overhead due to encryption is
also avoided. Rateless erasure codes are also able to cope with the peer dynamics and
to adjust to different content sharing conditions given that they do not impose any
practical constraints to the amount n of generated blocks. Therefore, a rateless, MDS,
and non-systematic erasure code with as low as possible encoding and decoding
time complexities is desirable.

For evaluation purposes, the erasure coding mechanism uses the Storm era-
sure codes, a rateless MDS construction of RS codes developed for Mistrustful
P2P, and presented in Chapter 4, with Θ (n log k) encoding time complexity and
min

{
Θ (n logn) ,Θ

(
k log2 k

)}
upper bound for decoding time complexity. These

erasure codes are defined over the finite field Fp2 , where p is a Mersenne prime
(p = 2m − 1), and n ≤ 2m+1. Their performance does not impose any constraints
to the content sharing, and they only enable decoding after full content download,
thus avoiding partial access.

3.5 DISCLOSURE CONSTRAINT MECHANISM

The disclosure constraint mechanism enables the user to configure, per content,
the required trade-off between privacy and performance by setting the size c of
the largest colluding group to be protected against, and the minimum amount m
of blocks that need to be downloaded per cover content. The size c of the largest
potential attacker is defined by the number of unique peers (unrelated public IP
addresses) that are controlled by a single group, either a single attacker or a group
of colluding attackers. This mechanism ensures that cover and genuine content
downloads cannot be distinguished by tracking their download progress because at
most m blocks are disclosed to any set of c peers, and that no malicious peer can
prove that a user downloaded a content or had access to its data (m < k).

30 CHAPTER 3 MISTRUSTFUL P2P MODEL

Finding the maximum intersection between the set of blocks disclosed to any
set of c peers is an NP-hard problem [54], thus it was devised a conservative yet
efficient algorithm to evaluate dynamically the number of blocks that can still
be shared with a peer. The algorithm is divided into two main functions: one
to update the counter of blocks disclosed to a peer (Function 1 – Update Blocks
Disclosed), and the other to determine the number of blocks that can still be disclosed
to a peer (Function 2 – Blocks to Disclose Left). The variables commoners and
blocksDisclosed are respectively an array sorted by the number of blocks disclosed,
and the maximum number of blocks disclosed to any set of c peers.

Function 1 Update Blocks Disclosed
function INCREMENTBLOCKSDISCLOSED(id)

i← commoners.getIndex(id)
if invalidIndex(i) then . New.

commoners.push(id)
commoners.last.blocks← 1
i← commoners.getIndex(id)

else . Known.
commoners[i].blocks← commoners[i].blocks+ 1
j ← i− 1
while validIndex(j) do

blocksI ← commoners[i].blocks
blocksJ ← commoners[j].blocks
if blocksI > blocksJ then . Still unsorted.

swap(commoners[i], commoners[j])
i← j
j ← j − 1

else . Sorted.
break

end if
end while

end if

if i < c then . Changes on top c peers.
blocksDisclosed← blocksDisclosed+ 1

end if
end function

Function 1 receives as input the id of the peer to which one additional block was
disclosed. If none has yet been disclosed, a new entry is created; otherwise, the entry
is updated and, if needed, some elements are swapped to keep the array sorted.
In each case, if the updated entry is on one of the top c positions, the maximum
number of blocks disclosed is updated. Function 1 has linear time complexity.

Function 2 also receives as input the id of the peer. If the configured privacy
requirements are not met (invalid), no blocks can be disclosed to any peer. If they
are met, left contains the number of blocks that can still be disclosed, ensuring that
at least one block can be disclosed to each one of the top c peers; at most, m− (c− 1)
blocks can be disclosed to a single peer. left needs to be updated if there are already
at least c peers and the peer referred by id is outside of that set. Function 2 runs in
logarithmic time.

3.5 DISCLOSURE CONSTRAINT MECHANISM 31

Function 2 Blocks to Disclose Left
function BLOCKSDISCLOSELEFT(id)

if c > m or m ≥ k then . Invalid.
return 0

end if

top← min(c, commoners.length) . Top peers.
left← m− blocksDisclosed− (c− top)
i← commoners.getIndex(id)
if invalidIndex(i) then . New.

if commoners.length ≥ c then
left← left+ commoners[c− 1].blocks

else
left← left+ 1

end if
else . Known.

if i ≥ c then
left← left+ commoners[c− 1].blocks
left← left− commoners[i].blocks

end if
end if

return left
end function

3.6 BLOCK SELECTION MECHANISM

The block selection mechanism is used by commoners to determine which block is
to be offered to a requesting peer. It plays an important role on how the blocks end
up distributed across the network, affecting the probability of peers obtaining useful
blocks. This mechanism ensures that no uploaded block is offered twice to the same
peer, and determines when requests should be refused. The request refusal may be
due to the lack of useful blocks to offer, due to resource or privacy constraints, or
due to content interest disguise strategies.

Aiming at balancing the distribution of blocks across the network, each peer
attributes a weight wi to each block it owns. The weights are updated according to
the perception of the peer about their availability, which is based on the acceptance
or cancellation of the offered blocks. The blocks to offer are picked through a random
weighted selection, and recently downloaded blocks start with a weight ws. When
a block is offered, if it is accepted, the weight is updated using an additive (aging)
factor, wλ; otherwise, the weight is updated using a multiplicative (replica control)
factor, wη. Thus, to ensure that the weight decrease on acceptance is never greater
than the one on cancellation, the weight update is given by Equation 3.1.

wi =

max (1, wi − wµ) , if it is accepted

max
(
1,
⌊
wi
wη

⌋)
, otherwise

where wµ = min

(
wi −

⌊
wi
wη

⌋
, wλ

) (3.1)

32 CHAPTER 3 MISTRUSTFUL P2P MODEL

With the Mistrustful P2P model there is no need to suddenly terminate or remove
downloads nor to stop sharing because the provided protection does not depend on
the time a peer keeps sharing a content, as long as cover and genuine downloads
are treated the same way. To evaluate the Mistrustful P2P model, it was considered
ws = 100, wλ = 5, and wη = 2 with the goal of favoring more recent blocks.

3.7 REQUEST BACKOFF MECHANISM

The request backoff mechanism determines the delay between block requests to help
maximizing the amount of useful blocks that can be obtained from the available
block requests in the shortest time frame. The mechanism identifies the set of peers
to which block requests can be sent (eligible peers), and determines for how long no
block requests should be sent. Therefore, as the former is a direct result of individual
peer behavior and the latter depends on the swarm behavior, the backoff time is
defined as a two-dimensional variable that has per peer and per swarm components.
The peer backoff component provides the delay to return a peer to the set of eligible
peers; the swarm backoff component provides the delay until the next block request.
The actual backoff time is randomly generated within the interval [0, b], where b is
the calculated backoff time.

A block request has five possible outcomes: 1) refusal – the request is refused
by the contacted peer (no offer); 2) cancellation – the request is canceled by
the requester (duplicate block); 3) acceptance – the request is accepted and a
block is downloaded; 4) interruption – the request is accepted but the download
is interrupted; 5) disposal – no request is sent due to the lack of eligible peers.
Refusal and disposal disclose no information about block ownership, but all the
others do. Cancellation and acceptance reveal that both peers already own that
block; interruption reveals that the contacted peer owns that block. Figure 3.4
illustrates each possible outcome.

Consider u and v to be respectively the number of consecutive refused requests
and the number of consecutive requests that were either canceled or interrupted,
and ui and vi the same variables but for a peer i; by consecutive it is meant until a
request is accepted. Let µ, α, λ, β, η, and τ̄ be respectively the maximum backoff
time, the base linear backoff time, the linear backoff time factor, the base exponential
backoff time, the exponential backoff time factor, and the estimated average block
transfer time. The backoff time b is then given by Equation 3.2.

b = min (µ, α+ λu+ β (ηv − 1)) (3.2)

For block requests that do not disclose block information, u, it is applied a linear
increase, λ; for block requests that disclose block information, v, it is applied an
exponential increase, η. The backoff time never exceeds µ. The peer and the swarm

3.7 REQUEST BACKOFF MECHANISM 33

OUTCOME
Peer A
(Requester)

Peer B
(Provider)

Refusal

Cancellation

Acceptance

Interruption

Disposal

X

X
X

Request Offer

Cancel Transfer

Accept

X

Figure 3.4: Possible outcomes of a block request. Refusal – the request is refused by peer B
(no offer); cancellation – the request is canceled by peer A (no transfer); acceptance – the
request is accepted and the block is transferred from peer B to peer A ; interruption – the
request is accepted but the block transfer is interrupted; disposal – no request is sent.

components are expressed using Equation 3.2, but the values of their variables may
be different. Thus, the variables of each component are distinguished by a p subscript
(peer) and an s subscript (swarm). For the swarm component only, when there are
no eligible peers (∀i, bpi > 0), bs = min (λp,min (bpi)).

For the sake of clarity and tractability, the evaluation assumes no simultaneous
block requests, homogeneous Internet connections, and a single content download.
Therefore, it was considered αp = 100 ms, βp = τ̄/4, λp = τ̄/10, ηp = 2, and µp = kτ̄c

m

for the peer component. The per peer backoff time is a function of the block transfer
time, and is instantiated such that the block requests to the same peer are, on
average, 50 ms apart and such that, on average, m/c block requests can be sent
to each peer during content download. m/c represents the configured protection
and kτ̄ the minimum time required to download a given content. For the swarm
component, it was considered αs = 0 ms, βs = τ̄/4ρ, λs = τ̄/16ρ, ηs = 2, and µs = τ̄ ,
where ρ is the number of active peers. The swarm backoff time is a function of both
block transfer time and the number of active peers, which can be obtained from the
tracker(s). Given that the evaluation assumes no simultaneous block requests, there
is no minimum delay required between consecutive requests, which can be, at most,
the time required to download a single block.

34 CHAPTER 3 MISTRUSTFUL P2P MODEL

3.8 PEER SELECTION MECHANISM

The peer selection mechanism aims at selecting the eligible peer that has the highest
probability of providing a useful block in less time. The set of eligible peers is
constrained both by the disclosure constraint and request backoff mechanisms. The
former provides, for a given content, the set of peers to which no further block
requests can be sent to; the latter provides, for the same content, the set of peers
that are ineligible for the moment, and when can the next block request be sent to
each one of them.

For the sake of clarity and tractability, peers were selected randomly in order
to avoid adding an additional factor into the evaluation. Non-uniform selection of
peers is expected to impact on how the blocks end up distributed across the network,
especially when considering heterogeneous Internet connections: peers with more
available bandwidth are able to replicate more rapidly the blocks they own.

3.9 CONCLUSIONS

The Mistrustful P2P model aims at hiding user content interests, without having any
trust requirements, and at preventing user legal liability in case of legitimate usage
while enabling timely content downloads. It provides plausible deniability, ensures
deterministic protection against attacks of a size up to a configured level, and enables
the user to configure the required trade-off between privacy and performance. Its
attack model considers that an attacker might be any entity that participates in
the system, but not external entities monitoring all traffic of a peer (out of scope).
Its two main building blocks are content interest disguise, and mistrustful sharing,
being the former reinforced by the latter.

Content interest disguise, as in other privacy-preserving P2P systems, hides user
content interests by downloading both genuine and cover contents. Yet, user content
interests are deterministically hidden against any attack of a size up to c (size of
the largest colluding group considered). The mistrustful sharing building block
prevents user legal liability, and reduces network overhead while reinforcing content
interest disguise. Legal liability is prevented by avoiding proof of access to content
data, and by enabling peers to communicate through direct links. In turn, proof
of access is avoided by avoiding partial access – chunks are encoded in a way that
enables decoding only after full download –, and by avoiding proof of download –
the downloaded chunks are not advertised, and the set of those implicitly disclosed
while sharing is constrained. The network overhead due to cover contents can be
reduced, up to a minimum amount m of chunks per cover content, and still ensure
that they cannot be distinguished from genuine contents. Variables c and m impact
the overall performance and thus can be configured by the user.

3.8 PEER SELECTION MECHANISM 35

Five mechanisms are defined to be able to evaluate the Mistrustful P2P model,
and to ensure that contents are timely downloaded: erasure coding, disclosure
constraint, block selection, request backoff, and peer selection mechanisms. Peers
avoid advertising what they own or miss by requesting random blocks, and the
erasure coding mechanism enables the probability of randomly retrieving a useful one
to become significant. The disclosure constraint mechanism thwarts active attacks by
ensuring that no more than m blocks are disclosed (requested or shared) to any set
of c peers, and thus cover and genuine content downloads cannot be distinguished by
tracking their download progress because at most m blocks are disclosed to any set
of c peers, and no malicious peer can prove that a user downloaded a content or had
access to its data (m < k). The block selection mechanism determines which block
is to be offered to a given requesting peer, affecting the distribution of blocks among
peers and therefore the probability of retrieving a useful block. The request backoff
mechanism determines the delay between block requests aiming at maximizing the
amount of useful blocks that can be obtained from the available block requests in
the shortest time frame. The peer selection mechanism selects a peer to which a
block request will be sent to.

Peers, per content, can either be seeders or commoners. Seeders have a content
to be shared, are willing to forgo their privacy, and provide a new block for each
block request they receive; block requests are only refused if there are no resources
available. Commoners are only willing to participate in the content sharing if user’s
privacy requirements can be met, do not generate new blocks, and only share them
if user content interests remain hidden. They only have access to the content data
after fully downloading the content, and keep track of what they share with other
peers both for privacy protection and to avoid offering a block twice to the same
peer. Block requests may be refused if there are no useful blocks to offer, due to
resource or privacy constraints, or due to content interest disguise strategies, but the
reason behind refusal is never disclosed.

The mistrustful sharing building block reinforces the content interest disguise
because the distinction between genuine and cover contents is hardened by not
disclosing what peers download or miss, and a larger set of cover contents can
be used as they do not need to be fully downloaded. Cover contents are never
fully downloaded to guarantee that the user has never access to their content data.
Misleading contents may be fully downloaded, but user legal liability is prevented,
against any colluding group of a size up to c, given that such attacker cannot prove
neither the access nor the download of a content.

36 CHAPTER 3 MISTRUSTFUL P2P MODEL

4STORM ERASURE CODES

„When it comes to privacy and accountability, people always demand the
former for themselves and the latter for everyone else.

— David Brin

Erasure codes are a class of Forward Error Correction (FEC) codes for the Binary
Erasure Channel (BEC), a channel in which the transmitted symbols are either
correctly received or not received at all (erasure). Networking layers above the
data link layer behave as an erasure channel since packets are either correct, and
are delivered, or present errors, and are discarded. Therefore, the P2P file sharing
overlay network behaves also as a binary erasure channel.

In the context of P2P file sharing, an erasure code enables the generation of a
set of n blocks (erasure coded chunks) from a set of k chunks, k < n, so that any
subset of k (1 + ε(k)) blocks is enough to reconstruct the original chunks, where ε(k)
is the erasure coding overhead. Erasure codes are usually classified according to
three orthogonal properties: systematicity, rate fixedness, and coding overhead. If
the input data chunks are also present in the set of output blocks, the erasure code
is systematic; otherwise, it is non-systematic. If the amount n of blocks is fixed and
needs to be known before encoding, the erasure code is fixed-rate. If new blocks
can be dynamically generated as needed, the erasure code is rateless. Lastly, an
erasure code is MDS (or optimal) if no additional blocks are required to reconstruct
the original information [ε(k) = 0], or non-MDS otherwise [ε(k) > 0].

Storm erasures codes are a rateless MDS construction of Reed-Solomon codes
developed for the Mistrustful P2P model that enable both systematic and non-
systematic encoding. These erasure codes are MDS because the network is typically
the most constrained P2P file sharing resource, rateless to be able to cope with and
better adapt to the P2P file sharing dynamics, and enable non-systematic encoding
in order to avoid partial access to the content data. Storm erasure codes are defined
over the finite field Fq=p2 , where p is a Mersenne prime (p = 2m − 1), and, although
the construction of RS codes over such field has already been proposed [51], to
the best of the author’s knowledge, it was the first rateless construction (n can be
increased in steps of k) to be proposed with Θ (n log k) encoding time complexity
and min

{
Θ (n logn) ,Θ

(
k log2 k

)}
decoding time complexity.

The remainder of this chapter is structured as follows. Section 4.1 provides an
overview of Storm erasure codes. Sections 4.2 through 4.7, if required, provide a
brief background before describing, respectively, the finite field over which Storm
erasure codes are defined, the multiplicative NTT available over this field, the

37

multi-point polynomial algorithms, the mapping used to avoid ambiguity between 0
and 2m − 1, the encoding algorithm for both systematic and non-systematic codes,
and the decoding algorithm. Section 4.8 presents the performance evaluation of
Storm erasure codes along Soro et al.’s [57], the only related work with Θ (n logn)
encoding and decoding time complexities that admit any power of two value for n,
up to the finite field size. Section 4.9 draws the main conclusions and future work.

4.1 OVERVIEW

Storm erasure codes are constructed akin to the original view of RS codes: construct
a polynomial of degree k − 1 over the finite field Fq and whose coefficients are the
k data symbols to be transmitted, evaluate it at n points (code locators) to obtain
the encoded symbols, and interpolate it to decode the k data symbols. For P2P file
sharing, the aim is not at detecting and correcting errors but at enabling successful
decoding of a content by downloading any k out of n blocks, and thus blocks are
constructed as follows. For a content partitioned into k chunks, each of which is
treated as a set of source (or data) symbols, construct a set of polynomials of degree
k − 1 whose coefficients are the source symbols at the same position of each chunk.
Each block is then the set of symbols that result from evaluating each one of those
polynomials at a given point (code locator).

Let ci = (si,0, . . . , si,d−1) be the set of the d source symbols composing chunk i,
sj = (s0,j , . . . , sk−1,j) the source vector of size k composed of the source symbols
at position j of each chunk, sj(x) =

∑k−1
α=0 sα,j · xα its polynomial representation,

bl = (el,0, . . . , el,d−1) the set of d erasure coded symbols composing block l, and
ej = (e0,j , . . . , en−1,j) the encoded vector of size n composed of the erasure coded
symbols at position j of each block, where 0 ≤ i < k, 0 ≤ l < n, and 0 ≤ j < d.
Equation 4.1 then provides the matrix representation of a content (matrix C) and
the blocks generated from it (matrix B). The rows of matrix C are the k chunks into
which the content is partitioned, and its columns are the polynomials of degree k− 1
being evaluated (source vectors). The rows of matrix B are the set of generated
blocks, and its columns are the result of evaluating a given polynomial at n unique
points (encoded vectors).

C =

s0 ... sd−1

s0,0 . . . s0,d−1 c0

...
. . .

...
...

sk−1,0 . . . sk−1,d−1 ck−1

, B =

e0 ... ed−1

e0,0 . . . e0,d−1 b0

...
. . .

...
...

en−1,0 . . . en−1,d−1 bn−1

(4.1)

The encoding process is defined by the transformation C T−→ B, which is obtained
by applying the transformation (s0,j , . . . , sk−1,j)

F−→ (e0,j , . . . , en−1,j) over Fnq , with

38 CHAPTER 4 STORM ERASURE CODES

el,j =
∑k−1
α=0 sα,j · xlα = sj(xl), to each one of the d columns. I.e., it is obtained by

evaluating each one of the d polynomials of degree k − 1, sj(x), at n unique points,
xl. Storm codes enable the transformation T to be performed in steps of k blocks.

The decoding process is defined by the inverse transformation B T−1
−−→ C, ob-

tained by applying the inverse transformation (e0,j , . . . , en−1,j)
F−1
−−→ (s0,j , . . . , sk−1,j)

over Fnq , with sj(x) as defined by Equation 4.2, to each one of the d columns. I.e., it
is obtained by interpolating each one of the polynomials of degree k−1, sj(x), using
at least k unique blocks, given that a polynomial of degree less than k is uniquely de-
termined by any set of k unique pairs (xl, sj(xl)). Let the Lagrange basis polynomial

be L(x) =
∏k−1
α=0 (x− xα), the barycentric weights be ωα =

(∏k−1
β=0,β 6=α (xα − xβ)

)−1
,

and yα,j = eα,j · ωα, then sj(x) is defined by Equation 4.2.

sj(x) =
k−1∑
α=0

eα,j ·
k−1∏

β=0, β 6=α

x− xβ
xα − xβ

= L(x) ·
k−1∑
α=0

yα,j
x− xα

(4.2)

Storm erasure codes are defined over the finite field Fq=p2 , where p is a Mersenne
prime (p = 2m − 1), also known as complex Mersenne finite fields. The encoding
algorithm runs in Θ (n log k) time, taking advantage of the multiplicative NTT that
is known as Complex Mersenne Number Transform (CMNT) over these fields, and
n can take any value multiple of k up to 2m+1. The decoding algorithm runs
in min

{
Θ (n logn) ,Θ

(
k log2 k

)}
time, and uses internally either an interpolation

method at n roots of unity that runs in Θ (n logn) time or an interpolation method at
k arbitrary points that runs in Θ

(
k log2 k

)
depending on the values k and n. Larger

contents can be partitioned either into the same number of, but larger, chunks or
into more chunks of the same size, but, unlike the latter, the former has only a linear
increase on the encoding and decoding time complexities since it is just a matter of
adding new columns (larger d) to matrices C and B.

4.2 FINITE FIELD

Finite fields, also known as Galois fields in honor of Évariste Galois, are fields with a
finite set of elements. A prime field of p elements, Fp, exists for any prime p, and its
set of elements is {0, . . . , p− 1}. Arithmetic operations over prime fields are modular
arithmetic operations (modulo p). Subtraction and division are defined in terms
of addition and multiplication, respectively. For a, b ∈ Fp, a − b = a + (−b), and
a/b = a · b−1, where −b and b−1 are the unique elements that satisfy, respectively,
b + (−b) ≡ 0 mod p (additive inverse), and b · b−1 ≡ 1 mod p (multiplicative
inverse). An extension field with q = pm elements, Fpm , is an extension over the
prime field Fp whose elements are polynomials of degree m − 1 with coefficients
from Fp. E.g., if 8610 = 010101102 is an element of F28 , its polynomial representation
is 0x7 + 1x6 + 0x5 + 1x4 + 0x3 + 1x2 + 1x+ 0 = x6 +x4 +x2 +x. Finite fields where
q = 2m are named binary finite fields. Over extension fields the modulus is no longer

4.2 FINITE FIELD 39

a prime p, but an irreducible polynomial of degree m. An irreducible polynomial is
the equivalent of a prime number as it can only be divided by 1 and itself.

A primitive root of a finite field, r, is an element whose powers generate all
non-zero elements and form a cyclic multiplicative group of q − 1 elements, i.e.,
Fq = {0, r0, r1, . . . , rq−3, rq−2}. Unlike in C, where there is always an n-th root of
unity for any arbitrarily positive integer value of n, in Fq the equation xn = 1 has
not always n unique solutions. Instead, there is only an n-th root of unity if n | q− 1.
Unlike real arithmetic, finite field arithmetic involves only integer arithmetic, thereby,
it introduces neither rounding nor precision errors. Moreover, the size of the result
of an operation over a finite field is always the same because the result is itself an
element of that field. These are the two main reasons for erasure codes arithmetic
operations being performed over finite fields.

Storm erasure codes are constructed over the complex Mersenne finite field
Fq=p2 . The elements of this field can be defined as Fp2 = {a+ bı̂ | a, b ∈ Fp}, where
ı̂ =
√
−1, given that the polynomial x2 + 1 is always irreducible over Fp, and that

every irreducible quadratic polynomial over Fp must split over Fp2 . Therefore, the
existence of a root ı̂ for the polynomial x2 + 1 is guaranteed in Fp2 [51], and the
arithmetic operations can be performed over Fp, being ı̂ · ı̂ ≡ −1 mod p. These
operations can be efficiently computed on modern CPUs by optimizing the modular
reduction, the evaluation of the additive inverse, and the evaluation of the multi-
plicative inverse. Addition and multiplication are regular integer operations to which
modular reduction is applied. Subtraction and division are the same operations after
evaluating, respectively, the additive and multiplicative inverses. For performance
reasons, element 0 may be bitwise represented also as 2m − 1, given that 2m − 1 ≡ 0
mod p.

The modular reduction over Fp is performed differently for sums and products,
as the latter requires more computations. The result of a regular integer addition
may require one additional bit to be represented – ∀a, b ∈ Fp, a+ b ≤ 2 · (p− 1) –,
and the result of a regular product may require m additional bits to be represented –
∀a, b ∈ Fp, a · b < 2m · (p− 1). Given that 2m ≡ 1 mod p, the modular reduction for
addition is implemented by adding the value of the (m+ 1)-th bit to the value of the
other m bits; the modular reduction for multiplication is implemented by adding the
two m-bit values, and then performing a modular reduction as for addition. Thus,
modular reduction only requires regular integer operations, and bitwise shifts.

The additive and multiplicative inverses over Fp can be computed as follows. The
additive inverse in just an XOR with p, given that −a ≡ p− a mod p and p = 2m− 1
(all m bits at one). The multiplicative inverse is the most costly operation and is
computed using the extended Euclidean algorithm to determine the coefficients
of Bézout’s identity ax+ by = gcd(a, b), where gcd is the greatest common divisor.
Equation 4.3 shows how the multiplicative inverse can be formulated as a Bézout’s

40 CHAPTER 4 STORM ERASURE CODES

identity. The multiplicative inverse a−1 is then coefficient x, which can be determined
by the extended Euclidean algorithm.

a · a−1 mod p ≡ 1

a · a−1 + p · k mod p ≡ 1

a · x+ p · y mod p ≡ gcd(a, p)

(4.3)

Let a, b, c, d ∈ Fp, and z = a+ bı̂, w = c+dı̂ ∈ Fp2 , the arithmetic operations over
Fp2 are performed as in C and are defined over Fp as follows: z+w = (a+c)+(b+d)̂ı,
z−w = (a−c)+(b−d)̂ı, z ·w = (a ·c−b ·d)+(a ·d+b ·c)̂ı, and z/w = (z · w̄) · |w|−2,
where w̄ = c− dı̂ is the complex conjugate of w, and |w|2 = w · w̄ is the square of its
absolute value. The additive and multiplicative inverses over Fp2 are, respectively,
−z = (−a) + (−b)̂ı, and z−1 = z̄ ·

(
|z|2

)−1.

Complex Mersenne finite fields always have a multiplicative group of size 2m+1,
as 2m+1 | p2 − 1, whose root r = 22m−2 + (−3)2m−2

ı̂ [16], and the components of
the 8th unity roots are fixed powers of two, only involving additions and circular
shifts, enabling efficient radix-8 NTTs. Let λ = 2(m− 1)/2, the set of 8th roots of unity
is {1,−1, ı̂,−ı̂, λ(1 + ı̂), λ(1− ı̂), λ(−1 + ı̂), λ(−1− ı̂)} [51]. The inverse of a unity
root z is its complex conjugate

(
z · z−1 = z · z = 1

)
, and therefore it does not need

to be computed through the extended Euclidean algorithm. Unlike Fermat fields,
there is no known size limit for complex Mersenne fields, being 274207281 − 1 the
largest known Mersenne prime.

4.3 COMPLEX MERSENNE NUMBER TRANSFORM

Polynomial evaluation and polynomial interpolation at k points can be more effi-
ciently computed by using the NTT and its inverse (INTT). Let sj(x) be a polynomial
of degree k − 1, then these transforms are defined over a finite field Fq, respec-
tively, as Sα,j =

∑k−1
β=0 sβ,j ·W

α·β
k and as sβ,j = 1

k

∑k−1
α=0 Sα,j ·W

−α·β
k , where Wk is

a k-th root of unity. At k unity roots, the NTT evaluates a polynomial of degree
less than k in N(k) time, and the INTT interpolates it also in N(k) time, where
N(k) is Θ(n logn log logn) for binary finite fields (additive NTT) [22] and Θ(n logn)
for non-binary finite fields (multiplicative NTT) [5]. At k arbitrary roots, the fast
multi-point polynomial evaluation and interpolation algorithms achieve M(k) log k
time complexity by performing log k steps of polynomial products, each step with
time complexity equivalent to a single product of two polynomials of degree less than
k, and where M(k) is the time complexity of computing such polynomial product.
The multi-point polynomial algorithms are described in Section 4.4.

The fast computation of a multiplicative NTT is achieved by decomposing the
original sequence of computations into smaller subsequences while taking advantage
of the symmetry and periodicity properties of the unity roots to reduce their overall
count. The radix of the NTT refers to the number and size of the subsequences

4.3 COMPLEX MERSENNE NUMBER TRANSFORM 41

that the original sequence is divided into at each stage, and the decimation is
the way input data is combined, which can be either Decimation-In-Time (DIT)
or Decimation-In-Frequency (DIF). The typical radixes are radix-2, radix-4, and
radix-8 for decomposing a size k sequence into, respectively, 2, 4 and 8 equally sized
subsequences at each stage, split-radix for decomposing a sequence of size k into
one subsequence of size k/2 and two subsequences of size k/4, and mixed-radix when
multiple radixes are used at different stages. The following paragraphs, although
applicable to other NTTs, describe the CMNT through DIF because it is how the
encoding algorithm is expressed in steps of k, and highlight the advantages of using
a higher radix ρ over finite fields such as complex Mersenne finite fields, and for
which there are efficient ρ-th roots of unity. The reader is referred to [12] for a
through explanation of FFT algorithms, which are akin to NTT’s.

The radix-2 DIF algorithm rearranges the CMNT into even- and odd-numbered
computations, therefore a CMNT of a power of two size k, Sα,j =

∑k−1
β=0 sβ,j ·W

α·β
k ,

is recursively expressed as given by Equation 4.4.

S2α,j =
k−1∑
β=0

sβ,j ·W 2·α·β
k =

k
2−1∑
β=0

(
sβ,j + sβ+ k

2 ,j

)
·Wα·β

k
2

S2α+1,j =
k−1∑
β=0

sβ,j ·W
(2·α+1)·β
k =

k
2−1∑
β=0

((
sβ,j − sβ+ k

2 ,j

)
W β
k

)
·Wα·β

k
2

(4.4)

More generally, the radix-ρ DIF algorithm rearranges the CMNT of a power of
two size k into groups of ρ subsequences of size k/ρ. Let 0 ≤ δ < ρ be the index of
the subsequence being computed, then its expression is given by Equation 4.5.

Sρ·α+δ,j =

k
ρ
−1∑

β=0

ρ−1∑
λ=0

s(
β+λ· k

ρ

)
,j
·W δ·λ

ρ

 ·W δ·β
k

 ·Wα·β
k
ρ

(4.5)

The rearrangements made at each stage reverse the order of the output in
groups of size ρ, and therefore, for any power of two ρ, the output indexes are
reversed in groups of log2 (ρ) bits. The factors W δ·β

k and W δ·λ
ρ in Equation 4.5 are

named twiddle factors, and the former are applied as regular multiplications, after
combining the input data at each decomposition stage, because they depend on
the current size of the CMNT (0 ≤ β < k/ρ); the latter are ρ-th roots of unity that
are applied as constants, when combining the input data, and therefore provide
room for optimization as long as they can be computed more efficiently than regular
multiplications. Unlike the FNT which supports only efficient radix-2 decimation,
the CMNT supports efficient radix-8 decimation as there are 8 roots of unity over
complex Mersenne finite fields that can be computed more efficiently than regular
multiplications.

42 CHAPTER 4 STORM ERASURE CODES

The CMNT implementation used to evaluate Storm erasure codes modifies the
output order of radix-4 and radix-8 stages to match the one of radix-2 (single bit-
reversed output indexes), and thus enable the mixed-radix algorithm to combine
directly different radix algorithms. This way, the mixed-radix algorithm is able to
easily select the most efficient combination to compute the CMNT, which should
enable to take advantage of the radix-4 and radix-8 algorithms to compute the CMNT
for any power of two size.

4.4 MULTI-POINT POLYNOMIAL ALGORITHMS

The CMNT and its inverse (ICMNT) enable to, respectively, evaluate and interpolate
a polynomial at k roots of unity in N(k) time. The multi-point polynomial algorithms
extend polynomial evaluation and interpolation to k arbitrary points, but require
M(k) log k time: log k stages of polynomial products, each stage with time complexity
equivalent to a single product of two polynomials of degree less than k.

A polynomial sj(x) of degree k − 1 can be represented in the more usual coef-
ficient representation, sj(x) =

∑k−1
α=0 sα,j · xα, or in the point-value representation,

{(x0, e0,j) , . . . , (xk−1, ek−1,j)}, where eα,j = sj(xα). The coefficient representation
enables polynomial evaluation at k roots of unity in N(k) time, but requires Θ

(
k2)

time to compute the product of two k − 1 degree polynomials; the point-value
representation enables the same polynomial product to be computed in Θ(k) time,
but requires at least 2k − 1 unique point-value pairs for each polynomial so that the
resulting polynomial can be accurately interpolated. The CMNT and the ICMNT
enable to convert from one representation into the other, at k roots of unity, in N(k)
time. The product of two polynomials of degree k−1 is then computed in three steps:
1) convert both polynomials into the point-value representation using two CMNTs of
size 2k; 2) multiply the 2k values; 3) convert back to the coefficient representation
using one ICMNT of size 2k. Thus, although with a larger hidden constant, M(k)
has the same complexity as N(k): assuming N(2k) ≈ 2 · N(k), M(k) ≈ 6 · N(k)
given that the linear cost of the multiplications has negligible impact on the overall
time complexity.

The multi-point evaluation algorithm is built upon the fact that polynomial
evaluation can be expressed as a modular reduction: sj(xα) = sj(x) mod (x− xα).
Polynomial modular reduction of two polynomials sj(x) and p(x) of degree k − 1
can be computed in M(k) time, as it is a regular polynomial product once the
inverse of polynomial p(x) is determined, which takes also M(k) time [15]. Let

p1,0 =
∏ k

2−1
α=0 (x− xα), and p1,1 =

∏k−1
α= k

2
(x− xα). Then, define r0 = sj(x) mod p1,0,

and r1 = sj(x) mod p1,1. Since r0(xα) = sj(xα), 0 ≤ α < k/2, and r1(xα) = sj(xα),
k/2 ≤ α < k, the evaluation of sj(x) at k arbitrary points takes σ = log2(k) recursive
stages. At each stage u, 1 ≤ u ≤ σ, 2u polynomial modular reductions are performed
using degree (k/2u) − 1 reducing polynomials in M(k) time: 2u ·M(k/2u) ≈ M(k).

4.4 MULTI-POINT POLYNOMIAL ALGORITHMS 43

The set of polynomials pu,v =
∏k′−1
α=0 (x− xv·k′+α) can be precomputed, as well as

their inverses, given that it only depends on the points at which the evaluation
took place, where k′ = k/2u and v is the index of a reducing polynomial at stage
u, 0 ≤ v < 2u. If multiple polynomials are evaluated at the same points, this set
only needs to be calculated once, which takes M(k) log(k) time using the relations
pσ,v = (x − xv) and pu,v = pu+1,2v · pu+1,2v+1. Therefore, multi-point evaluation
algorithm runs in M(k) log(k), and is described in pseudo-code by Algorithm 3.

Algorithm 3 Multipoint Evaluation

(Pre)compute all pu,v
function EVALUATOR(s, k, v) . Evaluate sj(x) at k arbitrary points.

if k = 1 then return s
end if

u = σ − log2(k) + 1
r0 = s mod pu,v, r1 = s mod pu,v+1

return EVALUATOR(r0, k/2, 2v), EVALUATOR(r1, k/2, 2(v + 1))
end function

s(x0), . . . , s(xk−1) = EVALUATOR(s, k, 0)

The polynomial interpolation at k arbitrary points is akin to the converse of the
multipoint evaluation. Let the Lagrange basis polynomial be L(x) =

∏k−1
α=0 (x− xα),

L′(x) its derivative, and the barycentric weights be ωα =
(∏k−1

β=0,β 6=α xα − xβ
)−1

.
Computing the barycentric weights at k arbitrary points is a multi-point evaluation
of L′(x), given that ωα = (L′(xα))−1, and takes M(k) log(k) time. L(x) can be
computed through the product of p1,0 and p1,1 polynomials in M(k) time. As for
multi-point evaluation, if multiple polynomials are interpolated at the same k points,
L(x), L′(x) and ωα, 0 ≤ α < k, only need to be calculated once. Let yα,j = sj(xα)·ωα,
Lagrange’s interpolation formula can be rewritten as given by Equation 4.6, where
sj(x) is the polynomial being interpolated.

sj(x) =
k−1∑
α=0

sj(xα) ·
k−1∏
β=0
β 6=α

x− xβ
xα − xβ

=
k−1∑
α=0

yα,j ·
k−1∏
β=0
β 6=α

(x− xβ) (4.6)

Let r0 =
∑ k

2−1
α=0 yα,j ·

∏ k
2−1
β=0, β 6=α (x− xβ), and r1 =

∑k−1
α= k

2
yα,j ·

∏k−1
β= k

2 , β 6=α
(x− xβ).

Observing that sj(x) = r0 · p1,1 + r1 · p1,0, a recursive algorithm can be devised
that requires σ = log2(k) stages, and thus runs in M(k) log(k) time. At each
stage u, 1 ≤ u ≤ σ, 2u polynomial products of degree (k/2u) − 1 polynomials are
performed in approximately M(k) time: 2u · M(k/2u) ≈ M(k). The multi-point
polynomial interpolation algorithm is described in pseudo-code by Algorithm 4. The
reader is referred to [15] for a thorough explanation of multi-point evaluation and
interpolation algorithms.

44 CHAPTER 4 STORM ERASURE CODES

Algorithm 4 Polynomial Interpolation at Arbitrary Points

(Pre)compute all pu,v
Compute all yα . yα,j = sj(xα) · wα
function INTERPOLATOR(y, k, v) . Interpolate sj(x) at k arbitrary points.

if k = 1 then return y0
end if

u = σ − log2(k) + 1
r0 = INTERPOLATOR(

{
y0, . . . , yk/2−1

}
, k/2, 2v)

r1 = INTERPOLATOR(
{
yk/2, . . . , yk−1

}
k/2, 2(v + 1))

return r0 · pu,v+1 + r1 · pu,v
end function

sj(x) = INTERPOLATOR(y, k, 0)

4.5 MAPPING

An element from Fp2 is composed of a pair of elements from Fp. Thus, each m bits of
source data can be mapped into an Fp element as long as 0 and 2m − 1 are not both
part of the source data, given that they cannot be distinguished (2m − 1 ≡ 0 mod p).
The following paragraph describes one possible approach for such case.

For a content s represented by n elements from Fp2 (of size 2 ·m · n bits), where
n < p/2, there are, at most, p − 2 unique elements from Fp [2 · (p/2− 1)]. Thus,
there is at least one element a from Fp that is not in the set of 2 · n elements:
∀s ∈ F2·n

p , ∃a ∈ Fp : a 6∈ s. This element can be used to replace 2m − 1 in the
content data whenever it occurs, before encoding, and do the reverse after decoding.
For contents too large to be represented this way (n ≥ p/2), the content data can
be treated the same way by dividing it into several partitions of, at most, p/2 − 1
elements from Fp2 . This information can be included, e.g., in a torrent file, and only
adds, at most, m bits per partition. Over the finite field F(231−1)2 , this represents only
31 additional bits for contents of a size up to approximately 7.75 Gibibytes (GiB).

4.6 ENCODING

Section 4.1 defines the encoding process as the transformation C T−→ B, which is
obtained by applying the transformation (s0,j , . . . , sk−1,j)

F−→ (e0,j , . . . , en−1,j) over
Fnq to each one of the d columns of matrix C, 0 ≤ j < d. Extending the source
vector sj with n − k zeros to make it of size n, sj = (s0,j , s1,j , . . . , sk−1,j , 0, . . . , 0),
enables to generate n symbols, at once, using a size n CMNT. However, this approach
does not enable n to increase efficiently as needed because all symbols have to be
generated each time n is increased, including the ones generated previously.

In order to become rateless, Storm erasure codes decompose the transformation
F into n/k steps to enable the generation of new blocks as needed, in groups of k. The

4.5 MAPPING 45

transformation F is decomposed taking into consideration that the output symbols of
a CMNT are in bit-reversed order to ensure that the output of performing n/k CMNTs
of size k is exactly the same as performing a single CMNT of size n with the source
vector extended with n− k zeros. Let ψ be an index, and Ψ the corresponding index
with the bits in reverse order, then eψ,j = SΨ,j , i.e., the evaluation point xψ is the
unity root WΨ

n . Expressing index Ψ as α · n/k + γ enables to separate the relative
index α of a size k CMNT from the index γ of the step or group of k symbols, where
α represents the log2 (k) most significant bits of Ψ, 0 ≤ α < k, and γ represents the
log2 (n/k) less significant bits of Ψ, 0 ≤ γ < n/k. The expression to compute SΨ,j after
rewriting it as Sα·n

k
+γ,j is given by Equation 4.7.

SΨ,j = Sα·n
k

+γ,j =
k−1∑
β=0

sβ,j ·W
(α·nk+γ)·β
n =

k−1∑
β=0

(
sβ,j ·W γ·β

n

)
·Wα·β

k (4.7)

Let the source vector of each individual CMNT of size k be s′β,j = sβ,j ·W γ·β
n ,

which corresponds to a frequency shift, the output of a size n CMNT can be obtained
through n/k CMNTs of size k. If n increases to 2n, the evaluation point xψ becomes
W 2·Ψ

2·n , which is still the unity root WΨ
n but expressed as a 2n-th root of unity, and

thus previously generated symbols do not need to be recomputed. The encoding time
complexity is then Θ (n/k · k log k = n log k), given that applying the W γ·β

n factors
has a linear cost and therefore the impact on the overall time complexity is negligible.
The described encoding algorithm creates a non-systematic erasure code.

A systematic construction can be obtained by applying an ICMNT to the source
vector. This way, the first group of k symbols becomes the original source vector
(the CMNT reverts the ICMNT), and all other groups of k symbols provide regular
encoded symbols.

4.7 DECODING

The decoding algorithm works almost the same way for systematic and non-systematic
constructions of Storm erasure codes, and only two minor differences set them apart:
the decoding algorithm is only run for the systematic construction if the input does
not contain all k data symbols; the systematic construction requires an additional
CMNT to retrieve the data symbols. It consists in five main steps: 1) calculate the
Lagrange basis polynomial, L(x); 2) compute its derivative, L′(x); 3) evaluate the
barycentric weights as ωα = (L′(xα))−1; 4) compute all yα,j = eα,j · ωα; 5) perform
the interpolation. Given that any set of k evaluation points is a subset of η-th roots
of unity, the interpolation can be performed either at k arbitrary points or at η unity
roots depending on the values of k and η, where η is the cardinality of the smallest
set of unity roots that contains all k points. The interpolation at k arbitrary points
was defined in Section 4.4, the interpolation at η unity roots is defined as follows.

46 CHAPTER 4 STORM ERASURE CODES

Let W zα
η be the power representation of xα, 0 ≤ α < k, 0 ≤ zα < η, and

Yj(x) =
∑k−1
α=0 yα,j · xzα , where yα,j = eα,j · ωα as for the multi-point interpolation

algorithm. Using the Taylor series of 1/(x−W zα
η) mod xη = −

∑η−1
β=0W

zα·(−β−1)
η · xβ,

Lagrange’s interpolation formula from Equation 4.2 can be rewritten as given by
Equation 4.8 [57].

sj(x) = −L(x) ·
k−1∑
α=0

yα,j · η−1∑
β=0

(
W−β−1
η

)zα
· xβ

 = −L(x) ·
η−1∑
β=0

Yj
(
W−β−1
η

)
· xβ

(4.8)

Let N(k) be the time complexity of computing a CMNT/ICMNT of size k, M(k)
the time complexity of computing the product of two polynomials of degree k − 1:
assuming N(2k) ≈ 2 · N(k), M(k) ≈ 6 · N(k) . Then, step 1) takes M(k) log k
time from performing log k stages of polynomial products with time complexity
equivalent to the product of two degree k − 1 polynomials. Step 2) takes Θ(k)
time to compute the derivative. Step 3) takes either N(η) time at η roots of unity
– 1 · N(η) – or M(k) log k time at k arbitrary points – the multi-point evaluation
algorithm performs log k stages, each in approximately M(k) time. Step 4) also takes
Θ(k) time. Step 5), using Equation 4.8, takes M(η) time at η unity roots because
evaluating

∑η−1
β=0 Yj

(
W−β−1
η

)
· xβ takes N(η) time, and multiplying the result by

L(x) is performed in M(η) time: N(η) + M(η) ≈ 7 · N(η). At k arbitrary points,
step 5) takes M(k) log k time. Therefore, step 5) has min {M(η),M(k) log k} time
complexity. The overall time complexity is M(k) log k + min {M(η),M(k) log k}.
However, in practice, the overall time complexity is just min {M(η),M(k) log k}
because steps 1) to 3) are only performed once as they only depend on xα, while
steps 4) and 5) are performed thousands of times to retrieve a content as chunks are
composed of thousands of symbols. L(x) also depends only on xα and just needs
to be computed once per content, thus step 5) can be performed in 5 ·N(η) time
at η roots of unity. As so, the decoding has min {M(η),M(k) log k} practical time
complexity: min {5 ·N(η), 6 ·N(k) · log k}.

4.8 PERFORMANCE EVALUATION

Complexity analysis provides an understanding of how an algorithm behaves as the
input grows, but it hides constant factors that may alter significantly the algorithm’s
practical performance. To assess the performance of Storm erasure codes, and to
compare them with Soro et al.’s [57] – the only ones with Θ (n logn) time complexity
that admit any power of two for n and k, k ≤ n – both were implemented in C++

and ran on an Intel Core i5-560M under Ubuntu 13.10 64 bits. For evaluation, the
Fermat field F216+1 and the complex Mersenne field F(231−1)2 were used. The results
depicted in Figure 4.1 are for a single thread.

4.8 PERFORMANCE EVALUATION 47

Storm R2 Storm R4 Storm R8

Storm MR Fermat R2
Th

ro
ug

hp
ut

(M
bi

t/s
)

64 128 256 512 1024 2048 4096 8192
0

1000

2000

3000

4000

5000

k

Encoding

Storm A Storm 2K Storm 4K

Fermat 2K Fermat 4K

64 128 256 512 1024 2048 4096 8192
0

50

100

150

200

250

300

350

k

Decoding

Figure 4.1: Encoding and decoding throughput comparison. Encoding throughput for
radix-2, radix-4, radix-8, and mixed-radix over complex Mersenne finite field, and for radix-2
over Fermat field [left]. Decoding throughput using interpolation at k arbitrary points (Storm
A), and at n roots of unity, with n = 2k and n = 4k, over the same finite fields [right].

As expected, the performance improvement provided by radix-8 CMNT in com-
parison to radix-2 CMNT is significant – more than 25% for k ≥ 512. The mixed-radix
CMNT over Fp2 , which uses higher radixes whenever possible, nearly doubles the
throughput provided by radix-2 FNT over Fermat fields. When comparing only
radix-2 NTTs, the larger symbols of Fp2 (62 vs 16 bits) improve performance despite
multiplications being slightly more expensive (four integer multiplications and two
additions). Identical results were obtained for decoding: the throughput for n = 2k
over complex Mersenne field, which is about twice the throughput for n = 4k over
that field, is slightly greater than twice the throughput for n = 2k over F216+1. The
decoding algorithm at k arbitrary points is more advantageous for small values of k
and, for k up to 8192 when n/k > 2.

4.9 CONCLUSIONS

Storm erasure codes are rateless MDS erasure codes based on RS codes with
Θ (n log k) encoding time complexity and min {M(η),M(k) log k} upper bound for
decoding time complexity, and their practical performance was assessed and com-
pared against Soro et al.’s [57]. Storm erasure codes are able to saturate a Gigabit
interface on a CPU released in Q3 2010, and are able to provide nearly twice the
throughput of equivalent codes defined over Fermat fields. Unlike Fermat fields,
there is no known field size limit for Fp2 .

Current implementation is single-threaded, and thus the intent is to create a par-
allel multi-core implementation. The development of a new interpolation algorithm
that enables to combine both described polynomial interpolation algorithms – CMNT
at unity roots and multi-point polynomial interpolation at arbitrary points – is under
consideration. E.g., if the set of k evaluation points is composed of a set of k/2 unity
roots and k/2 arbitrary points, one half could be interpolated at k/2 unity roots.

48 CHAPTER 4 STORM ERASURE CODES

5CIDRARCHY NS-3 ROUTING

PROTOCOL

„At the bottom, the elimination of spyware and the preservation of
privacy for the consumer are critical goals if the Internet is to remain
safe and reliable and credible.

— Cliff Stearns

Simulation plays a vital role on designing, building, understanding, and thoroughly
evaluating large-scale Internet systems, which, in particular those based on P2P
architecture such as BitTorrent, usually involve thousands or even millions of peers.
For systems on such a scale, with heterogeneous peers (e.g. heterogeneous Inter-
net access, CPU, memory, and storage resources), it becomes impracticable to test
accurately the designed protocols either analytically or using real large-scale imple-
mentations. Small scale tests, although feasible, may not be enough as some issues
may only arise, or some features may only be evaluated, at the scale of thousands of
peers or more [10]. Simulations are only as good as their models, and the simulation
of large-scale networks using accurate and complex models is a complex task. When
simulating large-scale Internet systems, two important models are required: the
Internet topology, and the network stack and its protocols. Simulators are usually
forced to trade off simulation accuracy for scale [20] because it is hard to evaluate
Internet systems over a large and complex Internet topology while using a complex
and realistic network stack, and its protocols.

An Internet topology model is a conceptual two-level hierarchical network that
connects hosts, routers, and Autonomous Systems (ASes) to each other in a way that
mimics the Internet topology. Given that the simulation of Internet systems typically
does not consider inter-domain (AS-level) topology and its routing, the target is the
intra-domain topology and its routing. The reader is referred to [28] for further
reading regarding AS-level topology. The work presented in this chapter follows
the model provided in [3] that depicts a conceptual intra-domain network topology
closely related to a real communications network of an ISP. Figure 5.1 illustrates
such model, and depicts the hierarchical structure of such communication networks,
which typically consist in access, aggregation, and core sections. The network
termination represents hosts, which may connect using different technologies.

ns-3 [@4] is a free and open-source discrete-event network simulator that is
mainly targeted for research and educational use. It is the successor of ns-2, the
most popular network simulator for research [34], but ns-3 is a replacement rather
than an extension of ns-2 as its core was rewritten to improve upon ns-2 limitations.

49

Figure 5.1: Intra-domain network topology model. Hierarchical structure of an intra-domain
network, which is typically divided into access, aggregation, and core sections. The network
termination represents hosts (figure obtained from [3]).

ns-3 simulates realistically the network stack but the scale and complexity of the
Internet topology is limited by the IP forwarding of existing ns-3 routing protocol
implementations. Several solutions were proposed to improve ns-3 performance, e.g.,
resorting on parallel [61] and distributed [43] computing, and avoiding redundant
computations [25], but the IP forwarding remains an open issue for large-scale
networks. ns-3 provides several routing protocols both for infra-structured and
ad-hoc networks, the latter being the main subject of research in this area. The
two main ns-3 routing protocols for infra-structured networks, Ipv4GlobalRouting
and Ipv4NixVectorRouting, perform IP forwarding table lookup in linear and
logarithmic time, respectively. Additionally, ns-3 does not provide a straightforward
way to construct a topology with asymmetric links, as Internet access usually is.

The remainder of this chapter is structured as follows. Section 5.1 provides
an overview of CIDRarchy, an ns-3 IPv4 routing protocol that performs IP packet
forwarding in constant time to enable large-scale P2P network simulation. Sec-
tion 5.2 depicts the implementation of an ns-3 helper to ease Internet-like network
topology creation. Section 5.3 describes the implementation of the ns-3 IPv4 routing
protocol itself and of its helper, along with automatic IPv4 address assignment. On
Section 5.4 a performance comparison between CIDRarchy, Ipv4GlobalRouting
and Ipv4NixVectorRouting is provided. Section 5.5 draws the main conclusions.

5.1 OVERVIEW

CIDRarchy is an ns-3 IPv4 routing protocol that uses CIDR[21] as the base to
create a hierarchical Internet-like network topology, hence its name (CIDR + hier-
archy), in order to enable automatic IPv4 address assignment and IP forwarding
with constant time complexity, i.e., that does not depend on the IP forwarding
table size. Albeit being out of the scope of this work, the same rationale can be

50 CHAPTER 5 CIDRARCHY NS-3 ROUTING PROTOCOL

(a)Network topology with all links. (b)Subnetwork management hierarchy.

Figure 5.2: Example of an asymmetric network topology supported by CIDRarchy and
the hierarchy used to set subnetwork management. An example topology created using
AsymmetricHierarchicalTopologyHelper, where routers are represented as empty circles,
and hosts are represented as filled circles [left]. Hierarchy used to set the subnetwork
managed by each router (represented as empty circles) [right].

used to extend CIDRarchy in order to support IPv61. CIDRarchy provides an ns-3
helper (AsymmetricHierarchicalTopologyHelper) to ease network topology cre-
ation with asymmetric links, and an ns-3 helper (Ipv4CidrarchyHelper) to install
the ns-3 routing protocol (Ipv4CidrarchyRouting), and to automatically assign
IPv4 addresses. For the sake of clarity, given that classes have self-descriptive names
and their suffixes indicate their purpose – e.g., a helper, a channel or a net device –,
only the class name is used. Its plural may also be used, although always referring
to the same class.

All links between nodes are created using a PointToPointChannel, so that up-
link and downlink bitrates, delay, and Maximum Transmission Unit (MTU) can be
configured per link, following the referred intra-domain network topology model.
The AsymmetricHierarchicalTopologyHelper enforces a node hierarchy per lev-
els, allowing as many levels as required, but in which links can only be created
between nodes at the same level or at adjacent levels. It is assumed that core
routers form a fully connected mesh network so that packets are always forwarded
through the minimum hop count route, and that hosts access the network through
a single direct link to an access router and do not establish any other direct link
with any other network node. Routers connect either hosts (access routers) or
other routers (aggregation and core routers), but there is only one direct link be-
tween any pair of routers. Also, they have a single link to a router on the level
above (parent router), except for core routers (first level) which have none. Fig-
ure 5.2a depicts an example of a network topology that can be constructed using
AsymmetricHierarchicalTopologyHelper.

CIDRarchy ns-3 routing protocol requires a strict hierarchical assignment of
the subnetworks managed by each router to achieve constant time complexity: the
subnetworks managed by sibling routers have equal length prefix, and are aggregated

1 Internet Protocol version 6.

5.1 OVERVIEW 51

in a single CIDR prefix at parent router. Thus, e.g., a router having three child
routers, managing the subnetwork 27.2.13.0/24, would assign the subnetworks
27.2.13.0/26, 27.2.13.64/26, and 27.2.13.128/26 to its child routers. This
procedure is applied recursively from top to bottom, first by assigning equal CIDR
prefixes to each core router, and then by treating each subnetwork as a tree topology:
ignoring the links between routers at the same level, each subnetwork becomes
a tree. Figure 5.2b illustrates this approach, showing the hierarchy used to set
the subnetwork managed by each router. Access routers sequentially assign IPv4
addresses to hosts within the subnetwork they manage.

The Ipv4CidrarchyHelper provides an Install method that receives, besides
the network prefix, three node lists as input to perform all network setup operations:
core routers, routers, and hosts lists. The list of core routers is required to bootstrap
the assignment of the subnetwork managed by each router. The list of routers is
required to complete network access setup. The list of hosts is used to automatically
assign IPv4 addresses to them. CIDRarchy supports the addition of hosts in runtime
as long as there are IPv4 addresses available at the intended access router.

5.2 NS-3 HELPER FOR TOPOLOGY CREATION

This section describes the AsymmetricHierarchicalTopologyHelper, which en-
ables the creation of topologies akin to the model of ISP networks provided in [3],
and provides code samples in C++ to depict its usage. It is shown how the access
network is created, explained how the hosts connect to it, and depicted how star,
tree (balanced and unbalanced), and mesh network topologies can be created using
AsymmetricHierarchicalTopologyHelper. These typical network topologies are
then used to compare CIDRarchy against existing ns-3 routing protocols.

The AsymmetricHierarchicalTopologyHelper constructs the network topology
following a top-down approach, i.e., the network links are created by providing
either the router on the level above (parent router) or a router at the same level (for
access or aggregation routers). The network nodes are connected using asymmet-
ric PointToPointChannels (AsymmetricPointToPointLinks), configurable full-
duplex links between a pair of PointToPointNetDevices. The PointToPointHelper
provides the means to easily create and configure several properties of a symmetric
PointToPointChannel, such as delay, MTU, and bitrate, but does not enable asym-
metric uplink and downlink bitrates. Therefore, the AsymmetricPointToPointLink
class provides an interface to enable, among other functionalities, straightforward
and independent configuration of downlink and uplink bitrates. In order to avoid
unnecessary verbosity and error-prone repetition, default link properties can be
configured both for host links (between a host and an access router), and for
router links (between a pair of routers, including core routers) when using the
AsymmetricHierarchicalTopologyHelper. This helper also enables to create mul-
tiple links at once, both host and router links, and in which case the same configu-

52 CHAPTER 5 CIDRARCHY NS-3 ROUTING PROTOCOL

ration is applied to all links: either the default configuration or the one provided
through parameters.

Depending on the required level of accuracy, the ISP network can be instantiated
as a star network, a tree network or a mesh network. Star network topology can be
created using the AsymmetricHierarchicalTopologyHelper by defining a single
router to which all hosts connect to, i.e., there is a single level of routers with only
one router. A tree topology can be obtained by creating one router at the first level,
and adding additional levels with routers as required. Finally, a mesh topology can
be obtained either implicitly, by creating several routers at the first level, or explicitly,
by creating links between routers at the same level. The following paragraphs
describe each one of these network topologies.

Listing 5.1 provides a code sample for the creation of a star topology. The helper
is declared on line 1, and the default configurations for router and host links are
provided on lines 4 and 5, respectively. On line 7, a new router with no parent is
created (nullptr is a C++11 keyword for the null pointer), i.e., a root router. Then,
1000 host links are added to this router using their default configuration on line 8.

Listing 5.1: Star Topology Creation.

1 AsymmetricHierarchicalTopologyHelper helper ;
2

3 / / d o w n l i n k , u p l i n k , l i n k d e l a y , and MTU

4 helper . SetRouterLinkDefaults ("100 Gbps", "100 Gbps", "5us", 1500);
5 helper . SetHostLinkDefaults ("30 Mbps", "3Mbps", "5ms", 1500);
6

7 Ptr <Node > root = helper . CreateRouter (nullptr);
8 helper . CreateNHosts (1000 , root);

The creation of a balanced tree is depicted by Listing 5.2, where the helper
creation and the default configuration for host and router links is omitted. Line 1
creates a root router to which the routers declared on lines 2 to 4 connect to. The
left router uses the default configuration, and the right router is configured with
100 Gbit/s downlink, 100 Gbit/s uplink, 5 microseconds delay, and 1500 bytes MTU.
On lines 6 to 9, 500 hosts are linked to each access router (left and right), using 30
Mbit/s downlink, 3 Mbit/s uplink, 5 miliseconds delay, and 1500 bytes MTU links.

Listing 5.2: Balanced Tree Topology Creation.

1 Ptr <Node > root = helper . CreateRouter (nullptr);
2 Ptr <Node > left = helper . CreateRouter (root);
3 Ptr <Node > right =
4 helper . CreateRouter (root , "100 Gbps", "100 Gbps", "5us", 1500);
5

6 NodeContainer leftHosts =
7 helper . CreateNHosts (500 , left , "30 Mbps", "3Mbps", "5ms", 1500);
8 NodeContainer rightHosts =
9 helper . CreateNHosts (500 , right , "30 Mbps", "3Mbps", "5ms", 1500);

5.2 NS-3 HELPER FOR TOPOLOGY CREATION 53

The creation of an unbalanced tree topology is akin to the creation of a balanced
counterpart. Therefore, Listing 5.3 depicts the creation of the unbalanced tree topol-
ogy defining the left and right routers in an alternative way: using CreateNRouters
function (lines 2 to 4); the signature of CreateN functions has, additionally, the
number of nodes to be created as first parameter. Line 1 creates the root router, and
line 6 creates 998 hosts connected to the left router (index 0 on the NodeContainer).
Line 7 declares a NodeContainer for right hosts, and lines 9 to 11 add one host to it
using the configuration provided. On line 12, another host is added but using the
default host link configuration. In this example, the unbalanced tree topology is thus
composed of 998 hosts on the left branch, and 2 hosts on the right branch.

Listing 5.3: Unbalanced Tree Topology Creation.

1 Ptr <Node > root = helper . CreateRouter (nullptr);
2 NodeContainer access = helper . CreateNRouters (
3 2, root , "100 Gbps", "100 Gbps", "5us", 1500
4);
5

6 NodeContainer leftHosts = helper . CreateNHosts (998 , access .Get (0));
7 NodeContainer rightHosts ;
8

9 rightHosts .Add(
10 helper . CreateHost (access .Get (1) , "30 Mbps", "3Mbps", "5ms", 1500)
11);
12 rightHosts .Add(helper . CreateHost (access .Get (1)));

Lastly, Listing 5.4 provides a code sample for the creation of a mesh topology with
two levels of routers: core and access sections. The CreateNRouters function is used
to create 5 core routers (with no parent), and line 2 declares a NodeContainer for all
access routers. The for loop on lines 4 and 5 creates 10 access routers, 2 routers per
core router (arborescence of two). Lines 7 and 8 add 100 hosts to the network, 10
hosts to each access router (arborescence of ten). The CreateSameLevelRouterLink
function could have been used to create links between routers at the same level
(the first two parameters are the pointers to the nodes), and to which it is applied
either the default configuration, if no additional parameters are provided, or the
configuration provided when invoking the function.

Listing 5.4: Mesh Topology Creation.

1 NodeContainer core = helper . CreateNRouters (5, nullptr);
2 NodeContainer access ;
3

4 for(uint32_t i = 0; i < core.GetN (); ++i)
5 access .Add(helper . CreateNRouters (2, core.Get(i)));
6

7 for(uint32_t i = 0; i < access .GetN (); ++i)
8 helper . CreateNHosts (10, access .Get(i));
9

10 / / h e l p e r . C r e a t e S a m e L e v e l R o u t e r L i n k (a c c e s s . G e t (1) , a c c e s s . G e t (5)) ;

54 CHAPTER 5 CIDRARCHY NS-3 ROUTING PROTOCOL

5.3 NS-3 IPV4 ROUTING PROTOCOL

This section presents the CIDRarchy ns-3 routing protocol, a CIDR-based ns-3 IPv4
routing protocol with constant time complexity, and the ns-3 helper used to install
it and to add new hosts during simulation runtime (Ipv4CidrarchyHelper). It de-
scribes how routers manage CIDR prefixes and assign IPv4 addresses to hosts, details
how the forwarding decisions are performed, and discusses the implementation of
the ns-3 routing protocol and its helper in ns-3 network simulator. Nodes that have
the same parent router are referred as its children, and as siblings of each other.

ISP networks are hierarchically structured, static, and its routers are neither
expected to generate nor to receive packets. Existing ns-3 routing protocols are
general purpose and aim at supporting a wide range of network topologies, thus they
cannot take advantage of the hierarchical and static structure of such intra-domain
networks, and also assume that every node may generate or receive packets. On
the contrary, CIDRarchy targets Internet systems, and is able to forward IP packets
in constant time by taking advantage of the strict hierarchical assignment of the
subnetworks managed by each router and by considering that only hosts can be the
source or recipients of IP packets. The subnetwork managed by the parent router
aggregates in a single CIDR prefix all the subnetworks managed by each child router,
which are a result of dividing the parent subnetwork into child subnetworks with
equal length prefix. Thereby, the number of child subnetworks is always a power of
two. If multiple router levels are required, the subnetwork assignment is performed
recursively in a top-down approach.

The IP packet forwarding decisions taken by the CIDRarchy ns-3 routing protocol
can be seen as CIDR prefix adjustments to select an adjacent router that is one hop
closer to destination host: the prefix widens (parent link) until the destination host
is part of the subnetwork managed by the router, and it narrows once it does (child
link). Except for core routers, which have no parent link, links to routers at the
same level (peer links) are a shortcut to avoid going up and down the hierarchy.
This enables CIDRarchy ns-3 routing protocol to decide how to handle an incoming
packet at a router using, at most, four sequential constant-time checks. The packet
is dropped once the recipient is found unreachable (inexistent forwarding link),
forwarded downwards (child link) if a router that manages a subnetwork including
the recipient’s address has been found, forwarded sideways (peer link) if there is
a link to a router at the same level that manages it, or forwarded upwards (parent
link) if the subnetwork managed by the router is yet too small. The forwarding
decision process is depicted by Figure 5.3 using a flowchart.

The forwarding decision process starts when an incoming packet arrives at a
router, and the decision is made according to the IPv4 address of the intended
recipient (addr). The first check is used to drop packets whose recipient is not within
the network. The following two checks are used to determine the forwarding link,
if any. If the router manages the subnetwork, then it forwards the packet through

5.3 NS-3 IPV4 ROUTING PROTOCOL 55

Start

is within
the

network?

is a child
link?

is a peer
link?

index = GetIndex(addr);
link = ChildLink[index];

index = GetIndex(addr);
link = PeerLink[index];

link = ParentLink;

Drop
Packet

Forward
Packet

is a valid
link?

End

No Yes No

Yes

No

Yes

No Yes

Figure 5.3: IP packet forwarding decisions made by routers running CIDRarchy. When a
router receives an incoming packet with address addr, it performs, at most, four constant-
time checks before deciding either to drop the packet or to forward it. If the forwarding link
is either a child link or a peer link, the theoretical function GetIndex provides its index, also
in constant time as the subnetworks have equal prefix length.

one of its child links; otherwise, it checks if there is a peer router that manages that
subnetwork, and, if so, it forwards the packet through that link. If neither the router
nor an eventual peer router manage the subnetwork, the packet is forwarded through
the parent link to increase the size of the subnetwork currently managed. The final
check is used to verify if the recipient is still potentially reachable, i.e., if there is a
valid link to explore. There may be no such link in the following cases. Core routers,
as well as sibling routers, have equal length prefix, and thereby all IPv4 address
ranges are managed if, and only if, the number of core routers or sibling routers at
each level is a power of two. As so, when a core router attempts to forward a packet
whose recipient is within an unmanaged subnetwork, the selected forwarding link is
necessarily invalid; if a router manages the subnetwork but there is no child router
managing the subnetwork within, the link is also necessarily invalid. An access router
may also select an invalid child link if the IPv4 address of the recipient has not yet
been assigned. The function represented as GetIndex runs also in constant-time: the
index of the link is given by the bits that are part of child’s subnetwork prefix but not
of parent router’s subnetwork prefix. For instance, a router managing the subnetwork
27.2.13.0/24 that needs to forward a packet to host 27.2.13.66, will select the
child link with index 1 (the router managing subnetwork 27.2.13.64/26). The same
rationale is applied to routers at the same level, selecting the longest subnetwork
prefix as the base (smallest subnetwork), and handling subnetworks with shorter

56 CHAPTER 5 CIDRARCHY NS-3 ROUTING PROTOCOL

prefix (larger subnetwork) as multiple subnetworks of equal size. ChildLink and
PeerLink are the arrays storing, respectively, the pointers to child and peer links;
ParentLink is a pointer to the parent link.

CIDRarchy ns-3 routing protocol is implemented in the Ipv4CidrarchyRouting
class without deriving it from Ipv4RoutingProtocol class, the base class for imple-
menting ns-3 IPv4 routing protocols, given that routers are neither expected to gen-
erate nor to receive packets, and that the access network is static. Ipv4L3Protocol,
the class that implements the IP layer, introduces considerable overhead in the
way it processes the routes (Ipv4Route) passed by RouteInput and RouteOutput
methods, and in the way it checks if an IP packet is to be locally delivered (invoking
IsDestinationAddress method). Ipv4Route object contains the egress NetDevice
but not the Ipv4Interface. For this reason, Ipv4L3Protocol iterates over the
node’s list of Ipv4Interfaces to perform a reverse lookup, which introduces over-
head that varies with the interface list size. Given that every node is assumed to be
a potential host, when destination address differs from the one of ingress interface,
by default, IsDestinationAddress iterates over the same list to check if there is a
match with the destination address. In order to avoid such overhead, CIDRarchy
is implemented through a callback registration at PointToPointNetDevice, using
SetReceiveCallback method, and by snooping the IPv4 header to perform the IP
packet forwarding.

The Ipv4CidrarchyHelper helper provides an Install method that expects,
besides the network prefix, three node lists as input to perform all network setup
operations: core routers, routers, and hosts lists. Hosts, non-core routers, and core
routers are treated differently as they require different configurations. The list of core
routers is required to bootstrap the assignment of the subnetwork managed by each
router, which, if peer links are ignored, is a set of trees (one per core router). Core
routers have no parent link, and the assignment of child subnetworks is performed
recursively in a breadth-first fashion. The list of routers is required to complete
network access setup, and it is used to process peer links once the assignment of the
subnetworks managed by each router has been completed. The list of hosts enables
to automatically assign IPv4 addresses to them, and also to add a static route to their
routing tables. Considering that the network topology has been previously setup by
the AsymmetricHierarchicalTopologyHelper, Listing 5.5 provides a code sample
that depicts CIDRarchy ns-3 routing protocol install.

Listing 5.5: CIDRarchy ns-3 routing protocol install.

1 NodeContainer core = helper . GetCoreRouterNodes ();
2 NodeContainer routers = helper . GetRouterNodes ();
3 NodeContainer hosts = helper . GetHostNodes ();
4 Ipv4CidrarchyHelper cidr;
5 Ipv4Address netwAddr = " 10.0.0.0 ";
6

7 cidr. Install (core , routers , hosts , netwAddr , 16);

5.3 NS-3 IPV4 ROUTING PROTOCOL 57

Lines 1 to 3 of Listing 5.5 show how the lists of core routers, routers, and hosts
can be obtained from the AsymmetricHierarchicalTopologyHelper upon creating
the desired network topology. Line 4 declares the Ipv4CidrarchyHelper, and line 5
declares the network address to be used. Then, on line 7, the Install method is
invoked by providing, respectively, the list of core routers, the list of routers, the
list of hosts, the network address (10.0.0.0), and the CIDR prefix length (/16).
The Install method fails if the subnetwork managed by any router is empty, i.e.,
contains less than two assignable IPv4 addresses (/31 prefix).

CIDRarchy supports the addition of hosts during simulation runtime, as long as
there are IPv4 addresses available. Hosts can be added during simulation runtime
using the class methods CreateHost and CreateNHosts, which take the same pa-
rameters as their counterparts of class AsymmetricHierarchicalTopologyHelper;
there are no CreateRouter or CreateNRouters functions since the access network
is considered to be static.

5.4 RESULTS

This section compares CIDRarchy, Ipv4GlobalRouting, and Ipv4NixVectorRouting
ns-3 routing protocols with respect to their performance and scalability, with the
main objective of evaluating the impact of the IP packet forwarding on simulation
time. For that purpose, first, it is measured the time required to simulate the transmis-
sion of single traffic flows on the four topologies previously described in Section 5.2:
star, balanced tree, unbalanced tree, and mesh. Then, in a second study and in order
estimate the overhead of ns-3 routing protocols bootstrap operations, it is used a
balanced tree topology and measured the time required to simulate the transmission
of multiple flows. The topologies used to conduct both studies are illustrated by
Figure 5.4, and the traffic flows from host S (running OnOffApplication, an ns-3
built-in traffic generator that alternates between transmitting and idle states) to
host D (running PacketSink application, an ns-3 built-in application to receive and
consume that traffic). The results presented in this section are the average of five
simulation runs on an Intel Xeon E5-2650@2GHz CPU, running on Ubuntu 14.04,
using ns-3.22 version.

SS
DD

...

(a)star.

…

SS

...

DD

(b)balanced tree.

…

SS

DD

(c)unbalanced tree.

D
S

(d)mesh.

Figure 5.4: Topologies used for performance comparison. The nodes S and D are the hosts
running OnOffApplication and PacketSink applications, respectively.

58 CHAPTER 5 CIDRARCHY NS-3 ROUTING PROTOCOL

IPv4GlobalRouting NixVector CIDRarchy

Si
m

ul
at

io
n

Ti
m

e
(s

ec
on

ds
)

0 500 1000 1500 2000 2500 3000
0

50

100

150

200
Star

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

Number of Hosts

Unbalanced Tree

0 500 1000 1500 2000 2500 3000
0

50

100

150

200
Balanced Tree

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

Number of Hosts

Mesh

Figure 5.5: IP forwading comparison between CIDRarchy, Ipv4GlobalRouting and
Ipv4NixVectorRouting. Simulation time required by CIDRarchy, Ipv4GlobalRouting and
Ipv4NixVectorRouting ns-3 routing protocols to transmit 150000 packets, each packet
having a size of 1000 bytes, using OnOffApplication and PacketSink applications, in star,
balanced tree, unbalanced tree, and mesh scenarios with an increasing number of hosts.

Figure 5.5 shows the results of simulating the transmission of a single traffic
flow consisting of 150000 packets, each packet having a size of 1000 bytes, for an
increasing number of hosts. The hosts are connected as follows: star – all hosts
connect the root router; balanced tree – half of the hosts connect to the left router
and the other half connects to the right router; unbalanced tree – all but two hosts
connect to the left router and two hosts connect to the right router; mesh – each
access router connects the same amount of hosts (one-tenth). CIDRarchy presents
similar simulation times as the number of hosts increases from 100 to 3000, and
the slight increase can be explained by the additional computations required for
network creation. On the other hand, despite the fact that the amount of pack-
ets exchanged remains the same, Ipv4GlobalRouting and Ipv4NixVectorRouting
show a significant increase on simulation times as the number of hosts increases.
CIDRarchy simulation time increases slightly as the hop count increases showing
best results for the star scenario, which has a hop count of 2. Ipv4GlobalRouting
and Ipv4NixVectorRouting simulation times decrease in the mesh scenario, which
has hop count of 5. This behavior shows that the performance of both ns-3 routing
protocols varies across different topologies, and also that IP forwarding has a sig-
nificant impact on simulation time: simulation times of mesh scenario are three or
four times lower than for other scenarios albeit having higher hop count. On all four
scenarios, the simulation times of CIDRarchy ns-3 routing protocol are much lower
than those of other ns-3 routing protocols, and the gains can reach over one order of
magnitude.

5.4 RESULTS 59

IPv4GlobalRouting NixVector CIDRarchy

Si
m

ul
at

io
n

Ti
m

e
pe

rF
lo

w
(m

s)

0 100 200 300 400 500 600 700
0.0

0.5

1.0

1.5

Number of Flows

Balanced Tree

Figure 5.6: Simulation time per flow required by CIDRarchy, Ipv4GlobalRouting and
Ipv4NixVectorRouting ns-3 routing protocols. Required simulation time per flow to trans-
mit flows of 1500 packets, each having a size of 1000 bytes, using OnOffApplication (left
branch) and PacketSink (right branch) applications, in a balanced tree topology with 1500
hosts in each branch (3000 hosts total), for an increasing number of flows.

Figure 5.6 shows the average simulation time, per flow, required by CIDRarchy,
Ipv4GlobalRouting and Ipv4NixVectorRouting ns-3 routing protocols to transmit
an increasing number of flows, each consisting of 1500 packets with a size of
1000 bytes, from the left branch hosts (running OnOffApplication) to the right
branch hosts (running PacketSink application). The study was conducted using
a balanced tree topology with 1500 hosts in each branch (3000 hosts total), and
the average simulation time per flow is obtained by dividing the total simulation
time by the number of transmitted flows. The average simulation time per flow
remains nearly constant for both CIDRarchy and Ipv4NixVectorRouting, while it
decreases for Ipv4GlobalRouting from 1.80 ms per flow (50 flows) until it stabilizes
at around 1.43 ms per flow (250 flows). This shows that the initial cost of populating
the Ipv4GlobalRouting routing tables is not negligible when considering short
simulations. Despite considering only scenarios where each host communicates
with a single host, which enables Ipv4NixVectorRouting to perform IP forwarding
having only a single entry on its routing table and not to incur on any penalty that
may arise from on-demand route calculation, CIDRarchy still outperforms it by at
least one order of magnitude no matter the number of flows simulated.

5.5 CONCLUSIONS

CIDRarchy was implemented and evaluated in ns-3 simulator, and the simulation
time gains over existing ns-3 routing protocols can reach over one order of magnitude.
Thus, it enables to simulate large Internet networks in ns-3 by reducing greatly the
time spent in IPv4 forwarding: e.g., a simulation taking one month to complete may
require less than four days to complete if using CIDRarchy. It is provided also a

60 CHAPTER 5 CIDRARCHY NS-3 ROUTING PROTOCOL

helper (AsymmetricHierarchicalTopologyHelper) that enables complex topology
creation with a few lines of code, and new hosts can be added at runtime.

As future work, the following improvements are planned: enable variable length
prefixes so that unmanaged networks can be avoided using any number of core or
sibling routers; enable multiple host connections to support multi-homing scenarios;
provide a packet drop callback that can be used, for example, to easily and efficiently
integrate CIDRarchy with other lower priority ns-3 routing protocols.

5.5 CONCLUSIONS 61

6VALIDATION

„Civilization is the progress toward a society of privacy. The savage’s
whole existence is public, ruled by the laws of his tribe. Civilization is the
process of setting man free from men.

— Ayn Rand

The Mistrustful P2P model provides plausible deniability through content interest
disguise. It has no trust requirements, prevents user legal liability in case of legitimate
usage, and ensures deterministic protection of user content interests against attacks
of a size up to a configured level. Users can configure the required trade-off between
privacy and performance by setting the size c of the largest group of colluding peers
to be protected against, and the minimum network overhead m of content interest
disguise (minimum network disguise overhead).

The remainder of this chapter is structured as follows. Section 6.1 provides a
security analysis of the Mistrustful P2P model to validate its privacy claims, assuming
that, as described in Section 1.1 (Legal and Ethical Framework), a legitimate user
should not be held legally liable as long as the main motivation to use a P2P system
is to share legit contents, and it cannot be proven that the user had access to the
content data. Section 6.2 presents the performance evaluation of the Mistrustful
P2P model for a large number of experiments, and compares it against the one of a
traditional P2P model, which provides no privacy protection.

6.1 SECURITY ANALYSIS

This section provides the security analysis of the Mistrustful P2P model. First, the
common attacks in P2P systems are described, in the context of this work, along with
the countermeasures employed. Then, the identification of user content interests,
the proof of full content download, and user legal liability are discussed.

6.1.1 COMMON ATTACKS AND COUNTERMEASURES

The most common attacks in P2P file sharing that are potentially applicable to the
Mistrustful P2P model are those aiming mostly at compromising either privacy –
Sybil, peer selection, and collusion attacks –, or the content sharing – forgery and
repetition attacks, pollution attacks, and Denial-of-Service (DoS) or distributed
DoS (DDoS). Table 6.1 summarizes these attacks along with the countermeasures

63

Table 6.1: Summary of countermeasures employed to prevent common P2P attacks.

Attack Countermeasures

DoS Blacklist misbehaving peers (at application level).

Sybil and Collusion
Avoid block advertisement; employ the disclosure con-
straint mechanism; treat multiple peers using related IP
addresses as pseudonymous identities of a single entity.

Peer Selection Use multiple unrelated trackers for the same content.
Forgery and Repetition Peers communicate through direct links.
Pollution Each block has a checksum signed by the publisher.

employed, focusing on the context of this work. The attack model considered, as
described in Section 3.3 (Attack Model), assumes that an attacker can be any entity
participating in the system – a publisher, a tracker, a seeder or a commoner – or
a group of any of those entities in collusion. External entities, such as ISPs and
governments, are out of the scope of this work.

DoS A denial-of-service attack aims either at shutting down the entire system or at
making one or more contents unavailable. It may target trackers to prevent peers
from knowing each other and therefore disable content sharing, or target seeders
to prevent new blocks from being introduced to harden or even preclude content
download.

At the application level, DoS attacks are prevented by blacklisting attackers; at the
network level, the Mistrustful P2P model presents the same vulnerabilities as any
other P2P file sharing system.

Sybil and Collusion The attacker creates a large number of pseudonymous iden-
tities (Sybil) or multiple malicious peers may coordinate their efforts (collusion)
to increase the amount of blocks disclosed by other peers to either prove content
download or determine user content interests. The size of the attack is defined by
the number of unique peers (not known to be related).

As discussed in Section 3.3, both Sybil and collusion attacks of a size up to c

are thwarted by not advertising what peers download or miss (avoiding block
advertisement), and by employing the disclosure constraint mechanism. Avoiding
block advertisement forces attackers to engage in the content sharing in order
to gather information about the blocks owned by peers, increasing the resources
required to launch such attacks. The disclosure constraint mechanism limits the
amount of information that a single colluding group can gather. This protection may
be extended by enabling the user to treat multiple peers using the same public IP
address, such as those behind NAT, or related public IP addresses, such as those of a
single organization, as pseudonymous identities of a single entity.

Peer Selection Trackers may narrow the advertised lists of peers to increase the
amount of block requests sent to malicious peers and thereby increase the amount
of blocks disclosed to them.

64 CHAPTER 6 VALIDATION

Peer selection attacks are avoided by registering at multiple unrelated trackers
and requesting from them lists of peers in a swarm. As so, through comparison,
misbehaving trackers can be identified and blacklisted. Nevertheless, this attack
does not increase the amount of information that a single colluding group of a size
up to c can gather.

Forgery and Repetition These attacks try to either tamper with the data being
transmitted or to retransmit authentic data previously captured in order to achieve
their goals.

We assume that attackers, being participants of the system, cannot forge the source
IP address of packets (IP address spoofing). As so, they are not able to forge nor
to repeat packets because peers communicate directly. Even considering IP address
spoofing, as long as key exchange and distribution mechanisms are employed, which
are out of the scope of this work, the integrity of packets can be ensured and the
addition of a sequence number prevents repetition attacks.

Pollution Malicious peers may share polluted blocks to waste resources and decrease
the overall performance by making compliant peers to further share them.

Pollution attacks are thwarted by employing asymmetric cryptography to sign check-
sums of each block in order to verify its integrity. The publisher may, e.g., distribute
the public key and the checksums along with content description or metadata.

6.1.2 DETERMINE USER CONTENT INTERESTS

The Mistrustful P2P model provides deterministic protection of user content interests
against passive attacks of any size, and against active attacks of a size up to c. Passive
attacks are defeated by avoiding block advertisement. Active attacks are thwarted
by constraining the amount of blocks implicitly disclosed to an attacker of a size up
to c to be at most m, and by downloading at least m blocks per cover content. The
provided protection is deterministic because contents are only downloaded if the
privacy requirements are met. If the size of an attacker exceeds c, then the provided
protection may become probabilistic: the attacker may be able to know if the peer
fully downloaded a content (genuine), and thus know that the user has interest
in that content. However, deterministic protection of user content interests is still
provided against all other attackers of a size up to c.

The identification of genuine and cover contents may only be possible if the size
of the actual attacker exceeds the size c of the largest colluding group considered
(underestimated attacker). Still, the identification of a content as cover, per se, only
enables an attacker to reduce the set of contents that the user may be interested in,
given that the user may have no interest in any of them. Thereby, an underestimated
attacker still has to prove content download in order to determine user content
interests, as long as the actual amount of blocks downloaded per cover content can
take any value between m (inclusive) and k (exclusive).

6.1 SECURITY ANALYSIS 65

6.1.3 PROVE CONTENT DOWNLOAD

The protection provided by the Mistrustful P2P model is deterministic as long as the
size of the actual attacker does not exceed c. Therefore, herein are discussed the
necessary conditions for an underestimated attacker of size c+ δ to be able to prove
content download, where δ is the difference between the actual and the configured
sizes of the largest attacker.

The disclosure constraint mechanism ensures that, at most, m blocks can be
disclosed to any set of c peers. Let σ be the minimum amount of blocks disclosed
to any of the top c peers, which can be, at most, m/c (the case in which the same
amount of blocks is disclosed to all c peers). Then, given that the amount of blocks
that can be disclosed to each one of the δ peers is at most σ, an underestimated
attacker may be able to prove content download if, and only if, m+ δ · σ ≥ k. I.e.,
the provided protection is still deterministic for 0 < δ < (k −m)/σ.

For δ ≥ (k −m)/σ, the provided protection becomes probabilistic, as provided by
other P2P privacy-preserving systems, and an underestimated attacker may be able
to prove content download.

6.1.4 LEGAL LIABILITY

The multitude and complexity of copyright laws across the globe make it impossible
to define clear boundaries regarding user legal liability. Still, the user should not be
held legally liable for, unknowingly and unwillingly, downloading an illegal content
if the main motivation to use a P2P system is to share legit contents, and it cannot
be proven that the user had access to the content data.

The extent of user liability and the strength of plausible deniability depend on the
main motivation to use the system, and on the type of contents that are distributed
by the P2P file sharing system: if the system is mostly used to distribute illegal
content, it is less plausible that the user intended to share legit contents when using
it. Therefore, it is important to endow the content interest disguise scheme with
the means to distinguish legit from illegal contents in order to ensure that the main
motivation to use the system comes mostly, if not completely, from legit content
sharing.

A legitimate usage of a P2P system based on the Mistrustful P2P model may only
result in the download of an illegal content either due to inadvertently considering
an illegal cover content as legal or due to misleading description. For the first case,
given that the user is never granted access to the content data of cover contents as
they are never fully downloaded, the user is not subject to any legal liability. For
the second case, as long as actual attacker is not underestimated, the user is also
not subject to legal liability because it cannot be proven that the user had access
to the content data. Even if a misleading content download can be proven by an
underestimated attacker, as long as the percentage of such misleading contents

66 CHAPTER 6 VALIDATION

remains low, it is still plausible that the user may have been driven to unknowingly
and unwillingly download that content. Thereby, even in such case, the user may be
able to avoid being subject to any legal liability.

6.2 PERFORMANCE EVALUATION

The performance evaluation of the Mistrustful P2P model was conducted through
simulation, and, given that simulations are only as good as their models, they were
carried out using the ns-3 discrete-event network simulator, which provides realistic
models of the network stack and its protocols. Still, the simulation of large-scale P2P
networks using accurate models generates a very large number of events so the time
required to run simulations is large.

In order to be able to simulate P2P content sharing with several thousands of
peers using accurate network layer models, the CIDRarchy ns-3 routing protocol
was used. CIDRarchy takes advantage of the hierarchical structure of Internet-
like network topology to minimize the computational cost of performing IP packet
forwarding without changing the accuracy of the models. Simulating the application
layer also requires modeling, among other functions, peer arrivals and departures,
and peer join-participate-depart cycles (sessions), as the content download may span
across multiple sessions [60].

The two main goals of the performance evaluation are to show that peers are
able to timely download contents without advertising what they download, and
to estimate the impact of privacy preservation on the average download bitrate;
optimizing the overall performance of the Mistrustful P2P model is out of the scope
of this work. To do so, the content sharing was simulated in order to evaluate the
ratio of peers that are able to complete their downloads and the average download
bitrate. The results obtained were compared against those of a traditional P2P file
sharing model. As referred in Section 1.3, a content is considered to have been
timely downloaded if the average download bitrate is within the same order of
magnitude of traditional P2P file sharing models.

The performance evaluation aims at assessing the impact of content size, peer
arrival rate, number of seeders, c and m, and cover downloads on the average
download bitrate and on the download completion ratio. For the sake of clarity
and tractability, the aim is at reducing the impact of other variables on the overall
performance, including those referred in the literature [24, 60] such as session
length, peer lifetime (time between first arrival and last departure), downtime,
uptime, lingering time (additional time a peer lingers in the system after download
completion), and inter-content relations. It is considered that peers have homoge-
neous Internet connections, do not perform simultaneous chunk requests, always
attempt to complete the download in a single session, and leave immediately after
completing the download (worst case). Also, it is considered a single genuine con-

6.2 PERFORMANCE EVALUATION 67

tent download in order to enable fair performance comparison with traditional P2P
systems, and thus cover downloads are emulated by increasing the peer arrivals and
by having those peers to download only a fraction of the content.

The remainder of this section is organized as follows. First, it is described how
peer arrivals are generated from real peer arrival traces. Then, the simulation
setup for both P2P models is characterized. Lastly, the experiments considered are
defined.

6.2.1 PEER ARRIVALS

A content download is usually broken into three stages: flash crowd, steady-state,
and end phase [7, 46]. The flash crowd is the most demanding stage because there
is a sudden burst of peer arrivals, which largely surpass the peer departures. The
steady-state stage is characterized by an equilibrium between arrivals and departures.
The end phase stage comprehends the end of life of a content where there are fewer
arrivals than departures. As so, an ordinary Poisson arrival process is not able to
capture the peer arrival dynamics because the mean peer arrival rate changes over
time.

In order to ensure that the peer arrival rates are realistic, they are obtained as
follows. The peer arrival traces of several contents were gathered, and then an
exponential function is used to generate the peer inter-arrival times with a mean
peer arrival rate that changes every 10 minutes (non-homogeneous Poisson process).
The traces were gathered by monitoring a widely used tracker (open.demonii.com),
and provide the number of first time peer arrivals over 10 minute intervals since
content publication up to 21 days. The gathered peer arrival traces were not used
directly because trackers, per request, provide a list of, at most, 200 peers currently
in a swarm but not the time instant of their arrival. Thereby, a request was sent to
the tracker every 400 milliseconds and it is considered that a peer has arrived for
the first time at the time interval it got firstly listed.

6.2.2 SIMULATION SETUP

According to Akamai’s State of the Internet Q3 2016 report [59], the global average
peak connection speed, which is considered to be more representative of the Internet
connection capacity [1], is 37.2 Mb/s. Therefore, it was considered a star network
topology with a central node mimicking an ISP, and with homogeneous leaf nodes
connecting to it through asymmetric links: 30 Mbit/s downlink, 3 Mbit/s uplink,
and 1 ms latency (2 ms delay between peers) to avoid any latency issues.

Peers communicate using TCP New Reno with an MTU of 1500 bytes, Maximum
Segment Size (MSS) of 1460 bytes, and with Nagle’s algorithm [41] disabled. Peers
are provided with a list of all other peers currently in the swarm, request one block at
a time, accept one request at a time, always attempt to complete the download in a
single session, and leave immediately after completing the download. Version 3.23 of

68 CHAPTER 6 VALIDATION

Table 6.2: Simulation setup for the Mistrustful P2P and traditional models.

Configuration Variable Mistrustful P2P Traditional

Simulated Time 48 hours

Network Topology Star (central node mimicking an ISP)

Peer Connections 30 Mbit/s downlink, 3 Mbit/s uplink

End-to-end Latency 2 ms

Transport Protocol TCP New Reno

MTU 1500 bytes

MSS 1460 bytes

Erasure Code Storm n.a.
Max. Swarm Backoff Time (µ

s
) τ̄ 30 seconds

Max. Peer Backoff Time
(
µ
p

)
(kτ̄c)/m n.a.

ns-3 was used. Simulations were run for the first 48 hours of content sharing because
the most demanding stage, flash crowd, usually ends within the first 36 hours. Thus,
the simulation fully encompasses flash crowd stage and ends in steady-state stage.

Given that simultaneous chunk requests are not considered for the sake of
clarity and tractability, it was defined a simplified model based on the BitTorrent
protocol [@3] that achieves an average download bitrate that is, at least, in line with
BitTorrent’s. The peer roles and their sharing behavior were described in Section 1.2
(Traditional Peer-to-Peer Systems). The rarest first mechanism is simulated by letting
the tracker keep a global list of the number of replicas of each chunk. Using this
list, a peer picks randomly one of the ten rarest chunks (local rarity variation) and
selects an available peer owning that chunk to send a request to. The set of peers
cannot be periodically improved using the optimistic unchoking mechanism because
there are no simultaneous downloads. As so, if the request fails because there are
no peers available to provide that chunk, a backoff mechanism is enabled to prevent
excessive protocol overhead. The backoff time increases linearly as a function of
average chunk download time τ̄ , never exceeding 30 seconds (typical optimistic
unchoking period), and is given, in milliseconds, by b = min

(
30000, τ̄4 · u

)
, where

u is the number of consecutive failed requests. As for the Mistrustful P2P model,
the actual backoff time is randomly generated within the interval [0, b]. Table 6.2
summarizes the simulation setup used for both models.

6.2.3 EXPERIMENTS

84 experiments are considered to evaluate how content size, popularity (overall
peer arrival rate), number of seeders, collusion size c, minimum network disguise
overhead m, and cover downloads affect average download bitrate and download
completion ratio; by experiment it is meant an evaluation using a distinct set of
values for the variables in study.

6.2 PERFORMANCE EVALUATION 69

Table 6.3: Experiments considered for the evaluation of the Mistrustful P2P model and
their categories. The set of experiments for each category results from using different values
for c, m, number of seeders, peer arrival traces – more popular (MP), popular (P), and less
popular (LP) –, and content sizes. Over the first 48 hours, the total number of peer arrivals
for MP, P, and LP traces are respectively 75800, 22700, and 3400 (approximately).

Category
Block

Disclosure
(m)

Collusion
Size
(c)

No. of
Seeders

Peer Arrival
Traces

Content
Size

(MiB)

No. of
Experiments

Baseline k − 1 1, 31 1, 64 MP, P or LP 100, 800 24
Overhead k/2 1, 31 1, 64 MP, P or LP 100, 800 24
Disguise k − 1 a 1, 31 1, 64 MP, P or LP b 100, 800 24
Traditional n.a. n.a. 1, 64 MP, P or LP 100, 800 12

a One third of the peers only downloads and shares half of the content to simulate a cover download.
b The mean peer arrival rates have a 50% increase to simulate arrivals due to cover downloads.

The experiments are divided into four categories: baseline, overhead, disguise,
and traditional. The baseline category represents the less restrictive protection
against any colluding group of a size up to c – all but one blocks can be disclosed to c
peers (m = k − 1) –, and is used to estimate by comparison the impact of minimum
network disguise overhead and cover content downloads on the sharing of genuine
contents. The overhead category represents a reduced minimum network disguise
overhead in which all peers fully download a genuine content but only disclose half
of the blocks to any group of c peers (m = k/2). The disguise category represents the
employment of a content interest disguise scheme where 50% more peers download
50% of the content; therefore, it is considered a 50% increase on the mean peer
arrival rates (truncated to the nearest integer), and that one third of all peers only
downloads 50% of content blocks before leaving. I.e., the number of active peers
increases but also the resource usage. The traditional category represents traditional
P2P systems, in which no privacy-enhancing mechanisms are employed, and is used
as the performance reference.

For the first three categories 24 experiments are defined. For the last category
the same experiments are defined except those for collusion size variants, totaling
12 experiments. It is considered the content size to be either 100 Mebibytes (MiB)
or 800 MiB, the number of seeders to be either 1 or 64, and three video traces to
compare different degrees of popularity: a more popular (MP), a popular (P), and a
less popular (LP) contents. Over the first 48 hours, the total number of peer arrivals
for MP, P, and LP traces are respectively 75800, 22700, and 3400 (approximately).
Except for the last category, collusion size is either 1 or 31. Table 6.3 summarizes
the experiments and their categories.

6.2.4 RESULTS AND DISCUSSION

The main performance metric considered by P2P file sharing users is the average
download time or the average download bitrate, which are two sides of the same

70 CHAPTER 6 VALIDATION

coin. The feasibility demonstration of block advertisement avoidance is conducted
as follows. First, the Mistrustful P2P model is compared against the traditional P2P
model for the case of minimum privacy protection (Figure 6.1), and the download
completion ratio for each single experiment is detailed (Table 6.4). Then, the results
obtained for all baseline experiments (Figure 6.2) are discussed to assess the impact
of collusion size, content size, number of seeders, and content popularity, which
are the variables that are expected to change more often. Lastly, the experiments
of baseline category are compared with the experiments of overhead, disguise and
traditional categories (Figures 6.3, 6.4 and 6.5) to, respectively, evaluate the impact
of minimum network disguise overhead, estimate the impact of cover downloads
(additional peer arrivals and partial downloads), and to assess the impact of the
provided privacy protection as a whole. The results provided for each experiment are
the average of four simulations, and the 95% confidence intervals are represented in
all figures, although they are too small to be noticed in Figures 6.1, and 6.2.

Figure 6.1 provides a comparison of the average download bitrate achieved by the
traditional P2P model and by the Mistrustful P2P model, which is set for minimum
protection – baseline experiments for single peer attacks – given that traditional P2P
systems do not provide any privacy protection. The results obtained by both models
are equivalent, despite considering an optimistic model for representing traditional
P2P systems, and show that peers are able to timely download contents without
advertising what they download. The performance difference is negligible when
considering single seeder experiments, and more noticeable for some experiments
when considering 64 seeders. The benefit provided by the larger number of seeders
seems to be dependent on the ratio between seeders and regular peers because
it fades as the number of simultaneous peers increases, be it due to higher peer
arrival rate or larger content size that requires peers to stay longer to complete their
download. This correlation with the peer arrival rate is more evident for the 800
MiB content using the popular peer arrival trace (center right).

Table 6.4 provides the number and ratio of downloads completed for all 84
experiments, and shows that peers are able to complete their downloads: the
download completion ratio is always above 96%. This ratio is below 100% for all
experiments because there is always a set of peers that is unable to complete the
download: peers arriving when the time left to end the simulation is less than the
time required to complete the download. Thus, the 800 MiB experiments achieve a
lower download completion ratio than their 100 MiB counterparts. The download
completion ratio is identical for all categories, but the number of downloads is
different for the disguise category because the peers used to emulate cover downloads
(one third of all peers) are not considered as they only download partially the content
(50%). The lowest download completion ratio is achieved for the popular (P) peer
arrival trace, in particular for 800 MiB content size, due to an increase on the peer
arrival rate near the end of the simulation (see Figure 6.1).

6.2 PERFORMANCE EVALUATION 71

Table 6.4: Number and ratio of downloads completed for all 84 experiments. The experi-
ments are presented grouped by peer arrival trace – more popular (MP), popular (P), and
less popular (LP) –, content size (100 and 800 MiB), and category – baseline, overhead,
disguise and traditional –, for either 1 or 64 seeders, and a collusion of either 1 or 31.

Peer
Arrival
Trace

Content
Size

(MiB)
Category

1 Seeder,
Col. of 1

1 Seeder,
Col. of 31

64 Seeders,
Col. of 1

64 Seeders,
Col. of 31

MP

100

Baseline
75313

(99.84%)
75314

(99.84%)
75325

(99.86%)
75325

(99.86%)

Overhead
75314

(99.84%)
75313

(99.84%)
75325

(99.86%)
75324

(99.86%)

Disguise
75583

(99.89%)
75581

(99.88%)
75595

(99.90%)
75596

(99.90%)

Traditional
75317

(99.85%)
–

75343
(99.88%)

–

800

Baseline
74600

(98.90%)
74596

(98.89%)
74622

(98.93%)
74622

(98.93%)

Overhead
74595

(98.89%)
74599

(98.90%)
74619

(98.92%)
74623

(98.93%)

Disguise
74888

(98.97%)
74883

(98.96%)
74909

(98.99%)
74910

(99.00%)

Traditional
74618

(98.92%)
–

74636
(98.94%)

–

P

100

Baseline
22462

(99.52%)
22461

(99.52%)
22473

(99.57%)
22472

(99.57%)

Overhead
22462

(99.52%)
22461

(99.52%)
22473

(99.58%)
22473

(99.57%)

Disguise
22516

(99.58%)
22515

(99.58%)
22524

(99.62%)
22524

(99.62%)

Traditional
22467

(99.55%)
–

22491
(99.65%)

–

800

Baseline
21831

(96.73%)
21830

(96.73%)
21858

(96.85%)
21855

(96.83%)

Overhead
21831

(96.73%)
21833

(96.74%)
21858

(96.85%)
21855

(96.83%)

Disguise
21856

(96.67%)
21858

(96.67%)
21877

(96.76%)
21877

(96.76%)

Traditional
21843

(96.78%)
–

21871
(96.91%)

–

LP

100

Baseline
3308

(99.91%)
3263

(98.54%)
3308

(99.91%)
3308

(99.91%)

Overhead
3308

(99.91%)
3237

(97.77%)
3308

(99.91%)
3308

(99.91%)

Disguise
3298

(99.97%)
3259

(98.80%)
3298

(99.97%)
3298

(99.97%)

Traditional
3308

(99.91%)
–

3308
(99.91%)

–

800

Baseline
3259

(98.41%)
3250

(98.14%)
3269

(98.72%)
3269

(98.72%)

Overhead
3260

(98.44%)
3216

(97.14%)
3269

(98.72%)
3269

(98.72%)

Disguise
3244

(98.34%)
3238

(98.15%)
3252

(98.58%)
3252

(98.57%)

Traditional
3260

(98.46%)
–

3276
(98.94%)

–

72 CHAPTER 6 VALIDATION

1 Seeder (Baseline) 1 Seeder (Traditional) 64 Seeders (Baseline)

64 Seeders (Traditional) Arrivals

Av
er

ag
e

Pe
er

D
ow

nl
oa

d
Bi

tra
te

(M
bi

t/s
)

●

●

●

●

●
● ●

●
●

●
● ●

■ ■

■ ■ ■ ■
■

■ ■ ■ ■ ■

◆

◆

◆ ◆ ◆
◆

◆

◆
◆

◆ ◆

◆

▲

▲

▲

▲ ▲

▲

▲

▲

▲

▲

▲

▲

0 500 1000 1500 2000 2500
0.0

0.5

1.0

1.5

2.0

2.5

3.0 MP_100MiB

●

●

●
●

● ● ●
● ● ● ● ●

■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
◆

◆ ◆ ◆ ◆ ◆ ◆
◆ ◆ ◆ ◆ ◆

▲ ▲ ▲ ▲ ▲ ▲ ▲
▲

▲
▲ ▲

▲

0 500 1000 1500 2000 2500
0.0

0.5

1.0

1.5

2.0

2.5

3.0 MP_800MiB

● ● ●

●
●

● ●

● ●

●
●

●

■

■

■

■
■

■

■

■

■

■ ■
■

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆

◆

▲ ▲ ▲ ▲ ▲

▲

▲ ▲ ▲

▲

▲

▲

0 500 1000 1500 2000 2500
0.0

0.5

1.0

1.5

2.0

2.5

3.0 P_100MiB

●

●
●

●
● ●

●

●

●

● ● ●

■

■

■

■ ■ ■ ■

■ ■

■ ■ ■

◆

◆

◆

◆
◆

◆

◆

◆

◆

◆ ◆
◆

▲

▲

▲

▲
▲

▲

▲

▲

▲
▲

▲

▲

0 500 1000 1500 2000 2500
0.0

0.5

1.0

1.5

2.0

2.5

3.0 P_800MiB

●
● ●

●

●

●
● ●

●

●

● ●

■

■

■

■

■

■

■ ■

■

■

■

■

◆
◆

◆
◆

◆

◆

◆

◆

◆
◆

◆

◆

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

0 500 1000 1500 2000 2500
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Time (minutes)

LP_100MiB

●

●
●

●
●

● ●

●
●

●

●

●

■

■

■

■

■
■

■

■
■

■

■
■

◆
◆

◆

◆

◆
◆

◆
◆

◆

◆

◆

◆

▲

▲

▲ ▲

▲

▲

▲ ▲ ▲ ▲ ▲

▲

0 500 1000 1500 2000 2500
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Time (minutes)

LP_800MiB

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

200

400

600

800

0

200

400

600

800

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

Pe
er

Ar
riv

al
s

Pe
rH

ou
r

Figure 6.1: Average download bitrate over one hour periods for 100 MiB (left) and 800
MiB (right) contents using a more popular (MP), a popular (P), and a less popular (LP) peer
arrival traces as input (one per row). Each plot depicts four experiments that are a result
of using either 1 or 64 seeders, and considering either the Mistrustful P2P model (baseline
experiments of single peer attacks) or the traditional P2P model. The peer arrival rate is
represented by a dotted gray line with a y-scale on the right.

All baseline experiments are depicted in Figure 6.2 to assess the impact of
collusion size, content size, number of seeders, and content popularity. A collusion
size of up to 31 peers requires a peer to contact, at least, 32 unique peers to be able
to complete the download. Thereby, when considering 64 seeders, the results are
identical for both a collusion of 1 and of 31 because it is guaranteed that there are
always enough peers available. However, in the experiments considering a single
seeder and a collusion of 31, mainly for smaller and less popular contents as there
are less simultaneous peers, the correlation between the average download bitrate
and the peer arrival rate is evident. As the number of simultaneous peers increases,
be it due to higher peer arrival rate or larger content size, the performance gap
between collusion of 1 and collusion of 31 for single seeder experiments fades until
it becomes negligible. Thus, single seeder and collusion of 31 experiments are
used to compare the performance of baseline category with all others, given that
they provide the worst case and enable a better assessment of the impact of each
variable.

6.2 PERFORMANCE EVALUATION 73

1 Seeder, Collusion of 1 1 Seeder, Collusion of 31 64 Seeders, Collusion of 1

64 Seeders, Collusion of 31 Arrivals
Av

er
ag

e
Pe

er
D

ow
nl

oa
d

Bi
tra

te
(M

bi
t/s

)

●

●

●

●

●
● ●

●
●

●
● ●■

■

■
■ ■ ■

■

■ ■
■

■ ■

◆

◆

◆ ◆ ◆
◆

◆

◆
◆

◆ ◆

◆

▲

▲

▲

▲ ▲

▲

▲

▲

▲

▲ ▲

▲

0 500 1000 1500 2000 2500
0.0

0.5

1.0

1.5

2.0

2.5

3.0 MP_100MiB

●

●

●
●

● ● ●
● ● ● ● ●

■

■
■

■ ■ ■ ■
■ ■

■ ■ ■

◆
◆ ◆ ◆ ◆ ◆ ◆

◆ ◆ ◆ ◆ ◆▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲

0 500 1000 1500 2000 2500
0.0

0.5

1.0

1.5

2.0

2.5

3.0 MP_800MiB

● ● ●

●
●

● ●

● ●

●
●

●

■

■

■

■

■

■

■

■

■

■ ■

■

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆

◆

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲
▲

0 500 1000 1500 2000 2500
0.0

0.5

1.0

1.5

2.0

2.5

3.0 P_100MiB

●

●
●

●
● ●

●

●

●

● ● ●

■

■

■

■
■ ■ ■

■
■

■ ■ ■

◆

◆

◆

◆
◆

◆

◆

◆

◆

◆ ◆
◆

▲

▲

▲

▲
▲

▲

▲

▲

▲
▲ ▲ ▲

0 500 1000 1500 2000 2500
0.0

0.5

1.0

1.5

2.0

2.5

3.0 P_800MiB

●
● ●

●

●

●
● ●

●

●

● ●

■

■

■

■

■

■

■

■

■

■

■ ■

◆
◆

◆
◆

◆

◆

◆

◆

◆
◆

◆

◆

▲ ▲

▲

▲

▲
▲

▲

▲

▲
▲

▲ ▲

0 500 1000 1500 2000 2500
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Time (minutes)

LP_100MiB

●

●
●

●
●

● ●

●
●

●

●

●

■

■

■

■

■

■

■

■

■

■

■

■

◆
◆

◆

◆

◆
◆

◆
◆

◆

◆

◆

◆

▲ ▲

▲

▲

▲
▲

▲

▲

▲

▲

▲

▲

0 500 1000 1500 2000 2500
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Time (minutes)

LP_800MiB

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

200

400

600

800

0

200

400

600

800

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

Pe
er

Ar
riv

al
s

Pe
rH

ou
r

Figure 6.2: Average download bitrate over one hour periods for all baseline experiments.
Contents have either 100 MiB (left) or 800 MiB (right) and use a more popular (MP), a
popular (P), and a less popular (LP) peer arrival traces as input (one per row). Each plot
depicts four experiments that are a result of using either 1 or 64 seeders, and considering
either single peer attacks or collusion attacks of, at most, 31 peers. The peer arrival rate is
represented by a dotted gray line with a y-scale on the right.

Figures 6.3, 6.4, and 6.5 provide the results obtained in each category – baseline,
overhead, disguise, and traditional – for, respectively, the ratio of block requests
sent to seeders out of all block requests, the average download bitrate, and the
average ratio of time spent on backoff (average backoff time ratio). As shown
by Figure 6.3, the main reason for the performance gap between the Mistrustful
P2P model, for all experiments using the less popular peer arrival trace, and the
traditional P2P model is the exploitation of the seeder. Unlike the traditional P2P
model that favors requests to seeders, the Mistrustful P2P model treats all peers alike
and, on average, shares no more than m/c blocks with each individual peer, including
the seeder. For this reason, it presents a low ratio of block requests sent to seeders
that is not subject to significant variations. The increase of the confidence intervals
in Figures 6.4, and 6.5 for the 800 MiB contents, in particular at the beginning of
the most popular content and at the end of the less popular one, is mainly due to
the heterogeneous perception of block availability (request successfulness) between
peers. Contents that take more time to download, be it due to their larger size or

74 CHAPTER 6 VALIDATION

Baseline Overhead Disguise Traditional Arrivals

Ra
tio

of
Bl

oc
k

Re
qu

es
ts

Se
nt

to
Se

ed
er

s

● ●
●

●
● ● ●

●
●

● ● ●■
■

■ ■ ■ ■ ■

■ ■
■ ■ ■

◆
◆ ◆ ◆ ◆ ◆ ◆

◆ ◆ ◆ ◆ ◆

▲

▲ ▲ ▲ ▲ ▲
▲

▲
▲

▲ ▲

▲

0 500 1000 1500 2000 2500
0.0

0.1

0.2

0.3

0.4

0.5
MP_100MiB

● ● ● ● ● ● ● ● ● ● ● ●■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

0 500 1000 1500 2000 2500
0.0

0.1

0.2

0.3

0.4

0.5
MP_800MiB

●

● ●

●
●

● ●

● ●

● ● ●

■ ■ ■

■

■

■

■

■ ■

■ ■ ■

◆ ◆

◆ ◆ ◆
◆

◆

◆

◆

◆ ◆
◆

▲

▲

▲

▲
▲

▲

▲

▲

▲

▲ ▲
▲

0 500 1000 1500 2000 2500
0.0

0.1

0.2

0.3

0.4

0.5
P_100MiB

●

●

●

● ● ● ●

● ●

● ● ●

■

■

■

■ ■ ■ ■

■

■
■ ■ ■

◆

◆

◆
◆ ◆ ◆ ◆

◆

◆ ◆ ◆ ◆

▲

▲

▲
▲ ▲ ▲

▲

▲

▲ ▲ ▲ ▲

0 500 1000 1500 2000 2500
0.0

0.1

0.2

0.3

0.4

0.5
P_800MiB

● ● ●

●

● ● ● ●
●

●

● ●

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

◆ ◆
◆ ◆ ◆ ◆ ◆ ◆

◆

◆ ◆ ◆

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

0 500 1000 1500 2000 2500
0.0

0.1

0.2

0.3

0.4

0.5

Time (minutes)

LP_100MiB

●

●
●

●

● ● ●

●

●

● ●

●

■

■

■

■

■
■

■

■

■ ■

■ ■

◆ ◆

◆

◆ ◆ ◆

◆ ◆
◆

◆

◆

◆
▲ ▲

▲

▲

▲ ▲

▲

▲

▲

▲

▲

▲

0 500 1000 1500 2000 2500
0.0

0.1

0.2

0.3

0.4

0.5

Time (minutes)

LP_800MiB

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

200

400

600

800

0

200

400

600

800

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

Pe
er

Ar
riv

al
s

Pe
rH

ou
r

Figure 6.3: Average ratio of requests sent to seeders over one hour periods for 100 MiB
(left) and 800 MiB (right) contents using a more popular (MP), a popular (P), and a less
popular (LP) peer arrival traces as input (one per row). Each plot depicts each experiment
category – baseline, overhead, disguise, and traditional – for a single seeder and collusion
attacks of, at most, 31 peers (except traditional). The peer arrival rate is represented by a
dotted gray line with a y-scale on the right.

due to the lower availability of useful blocks, are more likely to create heterogeneity
in the number of downloaded blocks between peers. Thus, the perception of content
availability diverges significantly between the peers beginning and those concluding
the download, which is reflected on the observed backoff time.

In the overhead experiments, peers can disclose, at most, 50% of the blocks they
download to any set of c peers (m = k/2) hardening the probability of retrieving
useful blocks, in particular during the flash crowd stage because the few useful blocks
are being uploaded mostly by seeders. Given that all contents are divided into 64
blocks, increasing the content size augments this effect as seeders will take more time
to share the blocks required. This effect is noticeable for the most popular content
in Figure 6.4 but not for the less popular content because the main bottleneck with
the former is the unavailability of blocks and not the peer unavailability as with the
latter. As shown by Figure 6.5, apart from the beginning, the average backoff time
ratio is low throughout the content sharing of the more popular content while it is
high throughout the content sharing of the less popular one. Therefore, it can be

6.2 PERFORMANCE EVALUATION 75

Baseline Overhead Disguise Traditional Arrivals

Av
er

ag
e

Pe
er

D
ow

nl
oa

d
Bi

tra
te

(M
bi

t/s
)

●

●

●

●

●
● ●

●

●

●
● ●■

■

■
■ ■ ■

■

■ ■

■

■ ■

◆

◆
◆ ◆ ◆ ◆

◆

◆ ◆
◆ ◆

◆

▲
▲ ▲ ▲ ▲ ▲ ▲

▲ ▲
▲ ▲

▲

0 500 1000 1500 2000 2500
0.0

0.5

1.0

1.5

2.0

2.5

3.0 MP_100MiB

●

●

●
●

● ● ●
●

● ● ● ●

■

■

■
■ ■ ■ ■

■ ■
■ ■ ■

◆

◆
◆ ◆ ◆ ◆ ◆

◆ ◆ ◆ ◆ ◆

▲ ▲ ▲ ▲ ▲ ▲ ▲
▲ ▲ ▲ ▲

▲

0 500 1000 1500 2000 2500
0.0

0.5

1.0

1.5

2.0

2.5

3.0 MP_800MiB

●
●

●

●

●

● ●

●

●

●

●

●

■

■

■

■

■

■

■

■

■

■
■

■

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆ ◆

◆

▲

▲

▲

▲ ▲

▲

▲

▲

▲
▲

▲
▲

0 500 1000 1500 2000 2500
0.0

0.5

1.0

1.5

2.0

2.5

3.0 P_100MiB

●

● ●

●
● ●

●

●

●

● ● ●

■

■

■

■
■

■ ■

■
■

■ ■ ■

◆ ◆

◆

◆ ◆
◆

◆

◆

◆

◆ ◆ ◆▲

▲

▲
▲ ▲

▲ ▲

▲

▲
▲ ▲

▲

0 500 1000 1500 2000 2500
0.0

0.5

1.0

1.5

2.0

2.5

3.0 P_800MiB

●

●

●

●

●
●

●

●

●

●

●

●

■

■

■

■

■
■

■

■

■

■

■
■

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

▲ ▲

▲ ▲

▲

▲
▲

▲

▲ ▲

▲

▲

0 500 1000 1500 2000 2500
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Time (minutes)

LP_100MiB

●

● ●

●

●

●

●

●

●

●

●

●

■

■

■

■

■

■

■

■

■

■

■

■

◆

◆

◆

◆

◆ ◆

◆

◆

◆

◆

◆

◆

▲
▲

▲

▲

▲
▲

▲
▲

▲
▲

▲

▲

0 500 1000 1500 2000 2500
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Time (minutes)

LP_800MiB

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

200

400

600

800

0

200

400

600

800

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

Pe
er

Ar
riv

al
s

Pe
rH

ou
r

Figure 6.4: Average download bitrate over one hour periods for 100 MiB (left) and 800
MiB (right) contents using a more popular (MP), a popular (P), and a less popular (LP) peer
arrival traces as input (one per row). Each plot depicts each experiment category – baseline,
overhead, disguise, and traditional – for a single seeder and collusion attacks of, at most, 31
peers (except traditional). The peer arrival rate is represented by a dotted gray line with a
y-scale on the right.

concluded that the impact of minimum network disguise overhead, as for collusion
size, depends on the number of seeders and simultaneous peers. Its impact dilutes
as the number of simultaneous peers increases.

In the disguise experiments, it was considered a 50% increase of the peer arrival
rate due to cover downloads and that those additional peers only download and
share 50% of the blocks required to complete the download. As for all other peers,
they leave immediately once they download the content. The results obtained
indicate that cover downloads improve the performance of the Mistrustful P2P
model on all experiments. Still, this is just an estimation that highly depends on the
scheme being used to select cover contents and how much of each to download in
order to disguise user content interests.

In the traditional experiments, despite considering an optimistic model that
has global knowledge of block availability/rarity and that is able to take more
advantage of seeders, around 20% of time is still spent on backoff when used with
less popular contents. This highlights the importance of the number of simultaneous

76 CHAPTER 6 VALIDATION

Baseline Overhead Disguise Traditional Arrivals

Av
er

ag
e

Ra
tio

of
Ba

ck
off

Ti
m

e

●

●

●

●

●
● ●

●

●

●
● ●■

■

■
■ ■ ■

■

■ ■

■

■
■

◆
◆

◆ ◆ ◆ ◆
◆

◆ ◆ ◆ ◆ ◆

▲
▲ ▲ ▲ ▲ ▲

▲

▲
▲

▲ ▲
▲

0 500 1000 1500 2000 2500
0.0

0.2

0.4

0.6

0.8

1.0 MP_100MiB

●

●

●
●

● ● ●
●

●
● ● ●

■

■

■

■ ■ ■ ■

■ ■
■ ■ ■

◆

◆
◆ ◆ ◆ ◆ ◆

◆ ◆ ◆ ◆ ◆

0 500 1000 1500 2000 2500
0.0

0.2

0.4

0.6

0.8

1.0 MP_800MiB

●
●

●

●

●

● ●

●

●

●

●

●

■

■

■

■

■

■

■

■

■

■

■

■

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆ ◆

◆

▲

▲

▲

▲
▲

▲

▲

▲

▲

▲
▲

▲

0 500 1000 1500 2000 2500
0.0

0.2

0.4

0.6

0.8

1.0 P_100MiB

●

●

●

●
●

●
●

●

●

●
● ●

■

■

■

■
■

■ ■

■

■

■ ■
■

◆

◆

◆

◆ ◆
◆

◆

◆

◆

◆ ◆
◆

▲

▲

▲
▲ ▲ ▲

▲

▲

▲
▲ ▲

0 500 1000 1500 2000 2500
0.0

0.2

0.4

0.6

0.8

1.0 P_800MiB

●

●

●

●

●
●

●

●

●

●

●

●

■

■

■

■

■
■

■

■

■

■

■

■

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

▲ ▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

0 500 1000 1500 2000 2500
0.0

0.2

0.4

0.6

0.8

1.0

Time (minutes)

LP_100MiB

●

● ●

●

●

●

●

●

●

●

●

●

■

■

■

■

■

■

■

■

■

■

■

■

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

▲
▲

▲
▲

▲
▲

▲

▲

▲

▲

▲ ▲

0 500 1000 1500 2000 2500
0.0

0.2

0.4

0.6

0.8

1.0

Time (minutes)

LP_800MiB

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

200

400

600

800

0

200

400

600

800

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

Pe
er

Ar
riv

al
s

Pe
rH

ou
r

Figure 6.5: Average ratio of backoff time over one hour periods for 100 MiB (left) and 800
MiB (right) contents using a more popular (MP), a popular (P), and a less popular (LP) peer
arrival traces as input (one per row). Each plot depicts each experiment category – baseline,
overhead, disguise, and traditional – for a single seeder and collusion attacks of, at most, 31
peers (except traditional). The peer arrival rate is represented by a dotted gray line with a
y-scale on the right.

peers on the overall performance, which is amplified by the Mistrustful P2P model
when considering protection against larger attackers, given that peers need to wait
for other peers to join before being able to complete the download (temporary
unavailability of peers).

6.3 CONCLUSIONS

The Mistrustful P2P model provides deterministic protection of user content interests
against attacks of a size up to a configured level, has no trust requirements, and
prevents user legal liability in case of legitimate usage. The privacy claims of the
Mistrustful P2P model were validated through a security analysis, which, due to
the multitude and complexity of copyright laws across the globe, considers that a
legitimate user should not be held legally liable as long as the main motivation to
use a P2P system is to share legit contents, and it cannot be proven that the user
had access to the content data.

6.3 CONCLUSIONS 77

The performance evaluation shows that the Mistrustful P2P model is feasible:
peers are able to timely download contents without advertising what they download.
Its performance, when considering minimum protection (c = 1, and m = k − 1), is
close to the one of the optimistic model that represents traditional P2P file sharing
systems. The impact of stronger protection depends significantly on the number
of simultaneous peers and, after the flash crowd stage, becomes negligible for
popular contents. For contents with similar size and popularity, the number of
simultaneous peers can be increased either by adding more seeders, which also
help to improve the distribution and diversity of blocks across the network, or by
having peers to download cover contents. Although dependent on the scheme used
for content interest disguise, cover downloads are expected to improve the overall
performance.

The feasibility of the Mistrustful P2P model was demonstrated through simulation
considering the most demanding stage of the content download process: the flash
crowd. The peer arrivals are based on real traces, and their number ranges from few
thousands (less popular content trace) up to several tens of thousands (most popular
content trace). Even using CIDRarchy and applying several optimizations, simulating
a single experiment can take up to three days on an Intel Xeon E5-2643v4@3.40GHz
CPU.

78 CHAPTER 6 VALIDATION

7CONCLUSION

„If, after I die, people want to write my biography, there is nothing
simpler. They only need two dates: the date of my birth and the date of
my death. Between one and another, every day is mine.

— Fernando Pessoa

The continuous advances in computer technology over the last decades have
enabled organizations and individuals to collect information about users, combine
facts from different sources, and merge them to create databases of personal infor-
mation that were previously impossible to set up [66]. Users cannot simply rely
on the difficulty of gathering information to preserve their privacy, they need to
preserve it through active means. P2P networks are an important source of personal
information, especially when traditional P2P file sharing systems such as BitTorrent
are used, because P2P networks are extensively used for large-scale file sharing,
user content interests may be trivially identified by simply gathering the list of peers
registered at the tracker(s), and the download of a content, in part or fully, can
be trivially proved given that peers are required to advertise what they download.
Legitimate users may also be subject to legal liability as a result of, unknowingly
and unwillingly, downloading an illegal content that has either been published with
a misleading description or whose hash has been obtained through an insidious
resource. Moreover, it is estimated that, over the course of a month, 96.3% of
users of BitTorrent portals have downloaded at least one infringing content [47],
weakening the plausible deniability of legitimate users in the face of evidences.

Privacy-preserving P2P file sharing systems that address the content interest
identification issues through content interest disguise – by downloading additional
contents of no interest to the user in order to hide his real interests – still require
peers to advertise, either fully or partially, what they download. Furthermore, any
legal issues that may arise from their legit and well-intended use are not addressed.
Users have adopted anonymity systems such as Tor due to the lack of alternatives [8],
misunderstanding the privacy guarantees provided by such systems [9], in particular
when relaying traffic of insecure applications [35] such as BitTorrent. Anonymity
systems provide a channel to anonymously transmit messages, the content of such
messages and any information that they may disclose is the sole responsibility of the
application being used. This thesis proposed and evaluated a novel P2P file sharing
model, the Mistrustful P2P model, that addresses these issues.

79

Chapter 1 provided the legal and ethical framework for P2P file sharing, and
detailed the problem this work aimed to solve, its main contributions and the
working hypothesis: It is possible to deterministically hide the content interests of users
sharing publicly accessible files over untrusted P2P networks without disclosing what
peers download or miss. Chapter 2 described the related work for each one of the
three main contributions, which were presented in the following three chapters,
respectively, the Mistrustful P2P model (Chapter 3), Storm erasure codes (Chapter 4),
and CIDRarchy ns-3 routing protocol (Chapter 5). The validation of the Mistrustful
P2P model, the core contribution, was conducted in Chapter 6; Storm and CIDRachy
were validated in the chapters they were presented.

The remainder of this chapter is structured as follows. Section 7.1 presents the
ethical and legal considerations. Sections 7.2, 7.3, and 7.4 draw the overall conclu-
sions for, respectively, user content interest concealment, the employment of erasure
codes, and large-scale simulation of Internet systems. Section 7.5 acknowledges
some known limitations of the Mistrustful P2P model, and Section 7.6 presents the
future work. The concluding remarks are provided in Section 7.7.

7.1 ETHICAL AND LEGAL CONSIDERATIONS

There are no universal ethical guidelines that can be followed because ethics reflect
the unique existential experiences that are accumulated as individuals as well
as societies, which necessarily differ between individuals, nations, religions, and
cultures as a result of differing experiences and interpretations [6]. P2P networks
connect users without considering international borders, religion, culture or race,
but there is the risk of having contents available that are considered ethical by a
user and unethical by another user. In such case, either the set of available contents
is limited to those that are universally considered ethical, which may render the
set empty, or each content needs to be classified individually to enable filtering
according to one’s ethics.

The multitude and complexity of laws across the globe also reflect these differ-
ences, and thus make it impossible to define clear legal liability boundaries. Asian
traditions of collective ownership conflict with Western protection of intellectual
property, and many of the ways the former use software is considered software
piracy by the latter [66]. Moreover, the copyright rights are not granted worldwide
(see Berne Convention [@1]), the private copying law, when present, introduces an
exception to these exclusive rights under some conditions, it is hard to determine the
applicable legal framework when the content sharing crosses multiple jurisdictions,
and, even when the applicable legal framework can be determined, the copyright
rights are subject to proportionality assessment if they conflict with other interests
and rights in order to balance all the rights and interests at stake [30].

80 CHAPTER 7 CONCLUSION

Although subject to different interpretations, the basic ethical imperatives are
that a person should not, knowingly and willingly, cooperate in or contribute to
the wrongdoing of another, and that the human intellectual creativity needs to be
encouraged and stimulated in order to promote progress. The extent of the incentives
depends on the cultural background as the well-being of the society may be incentive
enough (collective ownership) or further incentives may be required (intellectual
property rights). As so, the Mistrustful P2P model was designed considering that
the users of P2P systems should not be held legally liable for, unknowingly and
unwillingly, downloading an illegal content (direct liability) or for contributing to its
download (indirect liability) as long as: the main motivation to use the P2P system
is to share legit contents; it cannot be proven that the user had access, either in part
or fully, to the content data. Under such conditions, it is plausible and likely that
the user has been mislead into downloading an illegal content because the system is
mostly used to share legit contents, and there is no direct benefit in downloading a
content whose data cannot be accessed other than hiding user content interests.

7.2 HIDING USER CONTENT INTERESTS

The reasons behind seeking privacy can be legit, such as to avoid user profiling or to
privately download contents that are considered embarrassing or objectionable from
a given point-of-view, but may also be illicit, such as to download illegal contents.
In order to better protect legitimate and well-intended users, the Mistrustful P2P
model attempts to find the proper balance between privacy, accountability, and
performance.

The Mistrustful P2P model hides user content interests through content interest
disguise. It provides plausible deniability to the user, has no trust requirements, thus
enables content sharing over untrusted P2P networks, and ensures deterministic
protection of user content interests against passive attacks of any size and against
active attacks of a size up to a configured level c (see Section 6.1.2). Peers do
not advertise what they download, defeating passive attacks, and forcing attackers
to engage in the content sharing thus increasing the resources required to launch
attacks. Genuine and cover contents cannot be distinguished, up to a configured
level c, because at least m blocks are downloaded per cover content, and at most, m
blocks are implicitly disclosed to any set of c peers.

The main motivation to use a system based on the Mistrustful P2P model must
be to share legit contents, otherwise the first condition to prevent user legal liability
is not fulfilled. It is of utmost importance to discourage illegal content download
and make illegitimate users accountable, i.e., publishers, seeders and commoners;
trackers only provide the set of peers in a given swarm, and thus have no active role
in this matter. The second condition is fulfilled if there is no proof of content access.
Such system is able to make users accountable because publishers and seeders forgo
their privacy, peers communicate directly, and the set of downloaded contents (both

7.2 HIDING USER CONTENT INTERESTS 81

genuine and cover contents) is not concealed. Publishers and seeders are interested
in disseminating a content, and thereby they do not require the concealment of their
content interests, which enables to ban those misbehaving. Commoners cannot hide
behind other peers as they communicate directly, and the strength of their plausible
deniability directly depends on the number of illegal but non-misleading contents
downloaded: it weakens as their number increases. The proof of content access
is avoided by only granting access to content data after full content download –
chunks are encoded in a way that enables decoding only after full download –, and
by avoiding proof of full content download – constraining the set of blocks implicitly
disclosed to other peers (see Section 6.1.3).

There is a performance trade-off between privacy and performance, and therefore
the user is able to configure the size c of the largest group of colluding peers to
be protected against, and the minimum network overhead m of content interest
disguise. On average, m/c blocks can be disclosed to each peer, and thus the average
download bitrate increases as this ratio increases (the amount of available requests
increases). The extent of the variation depends on the content popularity because,
despite the amount of available block requests per peer being the same, the total
amount of available block requests also increases as more peers are available. The
performance evaluation (Section 6.2) has shown that the Mistrustful P2P model is
feasible, and, when considering minimum protection (c = 1, and m = k − 1), its
performance is close to the one of traditional P2P file sharing systems.

7.3 ERASURE CODES

The erasure coding mechanism of the Mistrustful P2P model uses erasure codes to
enable the probability of randomly retrieving a block to become significant, and to
enable decoding only after full download. Any rateless erasure code may be used, so
that dynamic generation of new blocks as needed is enabled, and, if it is systematic
or enables decoding before full download, the content needs to be encrypted before
sharing. The network is typically the most constrained P2P file sharing resource,
not the CPU [36], so MDS erasure codes are more suitable for P2P file sharing
because they introduce no network overhead. For less common scenarios, non-MDS
erasure codes may be more suitable because they reduce the encoding and decoding
time complexities by introducing network overhead. In either case, if the erasure
codes are non-systematic and enable decoding only after full download, additional
computational overhead due to encryption is avoided.

To the best of the author’s knowledge, the MDS erasure codes available in the
literature were either fixed-rate or had high encoding and decoding time com-
plexities (see Section 2.2), and their practical use was also limited to about 216.
Therefore, Storm erasure codes were proposed to fill this gap: they are rateless
MDS erasure codes based on RS codes with Θ (n log k) encoding time complexity
and min

{
n logn, k log2 k

}
upper bound for decoding time complexity. Their perfor-

82 CHAPTER 7 CONCLUSION

mance was assessed over F(231−1)2 and compared against Soro et al.’s [57] – the
only ones with Θ (n logn) time complexity that admit any power of two for n and
k, k ≤ n ≤ 216, achieving nearly twice the throughput of equivalent codes. Unlike
Soro et al.’s that are defined over Fermat finite fields and are thereby limited to 216,
Storm erasure codes are defined over complex Mersenne finite fields, which have no
known size limit. Therefore, if F(231−1)2 is considered insufficient (k ≤ n ≤ 232), a
larger one such as F(2127−1)2 can be used (k ≤ n ≤ 2128).

7.4 LARGE-SCALE SIMULATION OF INTERNET SYSTEMS

For large-scale Internet systems such as P2P networks, which usually involve thou-
sands or even millions of peers, it becomes impracticable to test accurately the
designed protocols either analytically or using real large-scale implementations, and
small scale tests may not be enough as some issues may only arise at the scale of
thousands of peers or more [10]. Therefore, simulation plays a vital role on design-
ing, building, understanding and thoroughly evaluating large-scale Internet systems,
but simulators are usually forced to trade off simulation accuracy for scale [20]
because it is hard to evaluate Internet systems over a large and complex Internet
topology while using a complex and realistic network stack, and its protocols.

ns-3 [@4] is the successor of ns-2, the most popular network simulator for
research [34], and simulates realistically the network stack. Still, the scale and
complexity of an Internet-like topology is limited by the IP forwarding of existing ns-3
routing protocol implementations (see Section 2.3), given that they are generic and
thus cannot take advantage of the hierarchical structure of Internet-like networks.
CIDRarchy ns-3 routing protocol was proposed to take advantage of this hierarchical
structure, and thus enable large-scale Internet-like network simulation by performing
IP packet forwarding in constant time. It provides automatic IPv4 address assignment,
and a helper to enable complex topology creation with a few lines of code and also
the addition of new hosts at runtime. CIDRarchy was implemented and evaluated in
ns-3 simulator, and the simulation time gains over existing ns-3 routing protocols
can reach over one order of magnitude (see Section 5.4). CIDRarchy greatly reduces
the time spent in IPv4 forwarding, and a simulation taking one month to complete
may require less than four days to complete if using it.

Despite the merits of ns-3, at the time of writing, the current development
version of the ns-3 simulator (3.27) is still trying to close several open issues of its
TCP models [@5]. Some of these issues were experienced in first hand during the
validation of the Mistrustful P2P model, and, although they do not affect the quality
of the results, patching and additional runtime checks were required to prevent
high memory usage and to ensure proper simulation ending. These issues may not
manifest for small-scale tests, but will probably manifest in simulations in which
there is a high number of TCP connections being created and closed, such as the
ones ran to validate the Mistrustful P2P model.

7.4 LARGE-SCALE SIMULATION OF INTERNET SYSTEMS 83

7.5 KNOWN LIMITATIONS

The Mistrustful P2P is a model, not a full-featured privacy-preserving P2P system,
and thereby some building blocks have been instantiated just to prove the working
hypothesis while other building blocks such as the disguise scheme are yet to be
defined. The main known limitations already identified are the following:

• External entities monitoring all traffic of a peer, such as ISPs or governments,
are able to identify user content interests. Protection against link monitoring
can be achieved by encrypting communications between peers, but it requires
key exchange and distribution mechanisms, which are out of the scope of this
work;

• The size c of the largest colluding group that can be considered is limited by
both the minimum network overhead m of content interest disguise and by
the number k of chunks into which the content is partitioned: c ≤ m < k.
Although c < k is required to prevent proof of download, the condition c ≤ m
may eventually be relaxed, e.g., by constraining also the number of blocks
that are disclosed to any set of c peers among all contents (both genuine and
cover) so that, at most, an attacker is able to identify a small percentage of
cover contents;

• The seeders are required to keep sharing new blocks during the lifetime of a
content, otherwise the distribution of the content may harden or even preclude.
The current instantiation of the block selection mechanism also contributes
to this because the weight attributed to a block decreases monotonically, and
therefore older blocks tend to become unavailable. As it is currently, and de-
pending on whether the publisher intends to control the lifetime of the content
or not, it can be considered either as a feature or as a limitation: publishers
can control for how long the content is distributed but more resources are
required to keep the content available.

7.6 FUTURE WORK

There is still a long path to cross in order to create a privacy-preserving P2P system
on top of the Mistrustful P2P model, but the next steps are the following:

• Define the disguise scheme. The disguise scheme needs to be defined as well
as all underlying mechanisms that it requires (e.g., content classification). It
is responsible for selecting which cover contents should be used according to
user preferences, how much to download of each, and must also thwart attacks
based on multiple session analysis. Less popular contents should be favored to
improve their performance, unless privacy issues are raised.

84 CHAPTER 7 CONCLUSION

• Conduct a performance evaluation for larger values of k. For the validation
of the Mistrustful P2P model, due to the large amount of variables being
evaluated, contents were considered to be partitioned into 64 blocks (k = 64).
It is important to evaluate the impact of using greater values for k so that
larger colluding groups can be considered.

• Parallelize Storm erasure codes. The performance evaluation of Storm era-
sure codes was conducted on an Intel Core i5-560M using a single-threaded
implementation. Thus, a parallel multi-core implementation will be created
as there is room for significant performance improvements. Also, their perfor-
mance will be evaluated on mobile terminals.

• Improve the instantiation of several mechanisms. The block selection
mechanism assesses the rarity/popularity of a block using only the feedback
information provided by incoming block requests, but it will also consider the
feedback information provided by outgoing block requests. For the sake of
clarity and simplicity, the peer selection mechanism was defined to be random.
Selecting peers from different countries or using some heuristic to select peers
that are less likely to be related will be considered, as it may increase the
probability of protecting user’s privacy against underestimated attackers.

7.7 CONCLUDING REMARKS

The working hypothesis has been proven, and the proposed model, Mistrustful
P2P, addresses the four points of the problem definition: 1) hide user content
interests; 2) have no trust requirements; 3) prevent user liability; 4) enable timely
downloads. The Mistrustful P2P model deterministically hides user content interests
against attacks of a size up to a configured level. It has no trust requirements,
prevents legal liability, and its performance evaluation shows that peers are able to
timely download contents without advertising what they download. Moreover, when
considering minimum protection, its performance is close to the one of traditional
P2P file sharing systems.

This thesis has three main contributions – Mistrustful P2P model, Storm erasure
codes, and CIDRarchy ns-3 routing protocol –, and four papers were produced as a
direct result of it:

[1] Silva, P. M. da, Dias, J., and Ricardo, M. “CIDRarchy: CIDR-based ns-3
Routing Protocol for Large Scale Network Simulation”. In: Proceedings of the
8th International Conference on Simulation Tools and Techniques. SIMUTools
’15. Athens, Greece, 2015, pp. 267–272.

[2] Silva, P. M. da, Dias, J., and Ricardo, M. “Storm: Rateless MDS Erasure
Codes”. In: Wireless Internet: 8th International Conference, WICON 2014,
Lisbon, Portugal, November 13-14, 2014, Revised Selected Papers. Ed. by

7.7 CONCLUDING REMARKS 85

Mumtaz, S., Rodriguez, J., Katz, M., Wang, C., and Nascimento, A. Springer
International Publishing, 2015, pp. 153–158.

[3] Silva, P. M. da, Dias, J., and Ricardo, M. “Mistrustful P2P: Privacy-preserving
File Sharing Over Untrustworthy Peer-to-Peer Networks”. In: Proceedings of
IFIP Networking 2016. IFIP Networking ’16. Vienna, Austria, 2016, pp. 395–
403.

[4] Silva, P. M. da, Dias, J., and Ricardo, M. “Mistrustful P2P: Deterministic
Privacy-preserving P2P File Sharing Model to Hide User Content Interests
in Untrusted Peer-to-Peer Networks”. In: Computer Networks 120 (2017),
pp. 87–104.

86 CHAPTER 7 CONCLUSION

BIBLIOGRAPHY

[1] Akamai. State of the Internet Metrics: What Do They Mean? (Cit. on p. 68).

[2] Bauer, K., McCoy, D., Grunwald, D., and Sicker, D. “BitBlender: Light-Weight Anonymity
for BitTorrent”. In: Proceedings of the Workshop on Applications of Private and Anony-
mous Communications (AlPACa 2008). Istanbul, Turkey: ACM, Sept. 2008 (cit. on
pp. 2, 12, 13).

[3] Betker, A., Gamrath, I., Kosiankowski, D., et al. “Comprehensive topology and traffic
model of a nationwide telecommunication network”. In: Optical Communications and
Networking, IEEE/OSA Journal of 6.11 (Nov. 2014), pp. 1038–1047 (cit. on pp. 49,
50, 52).

[4] Borders, R. W. Enemies of The Internet 2014. Tech. rep. (cit. on p. 3).

[5] Borodin, A. and Moenck, R. “Fast modular transforms”. In: J. Comput. Syst. Sci. 8.3
(June 1974), pp. 366–386 (cit. on pp. 16, 41).

[6] Capurro, R. “Intercultural Information Ethics”. In: The Handbook of Information and
Computer Ethics. John Wiley & Sons, Inc., 2009, pp. 639–665 (cit. on pp. 3, 80).

[7] Carbunaru, C., Teo, Y. M., Leong, B., and Ho, T. “Modeling Flash Crowd Performance
in Peer-to-Peer File Distribution”. In: IEEE Transactions on Parallel and Distributed
Systems 25.10 (Oct. 2014), pp. 2617–2626 (cit. on p. 68).

[8] Chaabane, A., Manils, P., and Kaafar, M. “Digging into Anonymous Traffic: A Deep
Analysis of the Tor Anonymizing Network”. In: Network and System Security (NSS),
4th International Conference on. 2010, pp. 167–174 (cit. on pp. 2, 79).

[9] Chakravarty, S., Portokalidis, G., Polychronakis, M., and Keromytis, A. “Detection and
analysis of eavesdropping in anonymous communication networks”. In: International
Journal of Information Security 14.3 (2015), pp. 205–220 (cit. on pp. 2, 79).

[10] Cheng, L., Hutchinson, N., and Ito, M. “P2PNet: A Simulation Architecture for Large-
scale P2P systems”. English. In: New Technologies, Mobility and Security. Ed. by Labiod,
H. and Badra, M. Springer Netherlands, 2007, pp. 567–581 (cit. on pp. 8, 49, 83).

[11] Choffnes, D. R., Duch, J., Malmgren, D., et al. SwarmScreen: Privacy Through Plausible
Deniability in P2P Systems. Tech. rep. Northwestern EECS, Mar. 2009 (cit. on pp. 2,
12, 13, 23).

[12] Chu, E. and George, A. Inside the FFT Black Box: Serial and Parallel Fast Fourier
Transform Algorithms. Computational Mathematics. Taylor & Francis, 1999 (cit. on
p. 42).

[13] Clough, J. Principles of Cybercrime. 1st. New York, NY, USA: Cambridge University
Press, 2010 (cit. on p. 3).

87

[14] Cohen, B. “Incentives build robustness in BitTorrent”. In: Workshop on Economics of
Peer-to-Peer systems. Vol. 6. 2003, pp. 68–72 (cit. on p. 6).

[15] Crandall, R. E. and Pomerance, C. Prime Numbers: A Computational Perspective. Second
Edition. Springer, 2005, pp. 509–518 (cit. on pp. 43, 44).

[16] Creutzburg, R. and Tasche, M. “Parameter Determination for Complex Number-
Theoretic Transforms Using Cyclotomic Polynomials”. In: Mathematics of Computation
52.185 (1989), pp. 189–200 (cit. on p. 41).

[17] Didier, F. “Efficient erasure decoding of Reed-Solomon codes”. In: CoRR abs/0901.1886
(2009) (cit. on p. 17).

[18] Dingledine, R., Mathewson, N., and Syverson, P. “Tor: The Second-generation Onion
Router”. In: Proceedings of the 13th Conference on USENIX Security Symposium - Volume
13. SSYM’04. 2004 (cit. on pp. 1, 12).

[19] Douceur, J. R. “The Sybil Attack”. In: Peer-to-Peer Systems: First International Workshop,
IPTPS 2002. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 251–260 (cit.
on p. 29).

[20] Eger, K., Hoßfeld, T., Binzenhöfer, A., and Kunzmann, G. “Efficient Simulation of
Large-scale P2P Networks: Packet-level vs. Flow-level Simulations”. In: Proceedings of
the Second Workshop on Use of P2P, GRID and Agents for the Development of Content
Networks. UPGRADE ’07. Monterey, California, USA: ACM, 2007, pp. 9–16 (cit. on
pp. 49, 83).

[21] Fuller, V. and Li, T. Classless Inter-domain Routing (CIDR): The Internet Address Assign-
ment and Aggregation Plan. RFC4632. Aug. 2006 (cit. on p. 50).

[22] Gao, S. “A New Algorithm for Decoding Reed-Solomon Codes”. In: Communications,
Information and Network Security, V. Bhargava, H. V. Poor, V. Tarokh, and S. Yoon.
Kluwer, 2002, pp. 55–68 (cit. on pp. 16, 41).

[23] Goldschlag, D., Reed, M., and Syverson, P. “Onion Routing”. In: Commun. ACM 42.2
(Feb. 1999), pp. 39–41 (cit. on p. 12).

[24] Guo, L., Chen, S., Xiao, Z., et al. “A Performance Study of BitTorrent-like Peer-to-peer
Systems”. In: IEEE J.Sel. A. Commun. 25.1 (Jan. 2007), pp. 155–169 (cit. on p. 67).

[25] Harrigan, K. and Riley, G. “Simulation Speedup of ns-3 Using Checkpoint and Restore”.
In: Proceedings of the 2014 Workshop on ns-3. WNS3 ’14. Atlanta, Georgia: ACM, 2014,
7:1–7:7 (cit. on p. 50).

[26] Hazucha, B. Private Copying and Harm to Authors: Compensation versus Remuneration.
http://ssrn.com/abstract=2699070. Dec. 2015 (cit. on pp. 3, 4).

[27] He, N., Xu, Y., Cao, J., et al. “ROME: Rateless Online MDS Code for Wireless Data
Broadcasting”. In: Global Telecommunications Conference (GLOBECOM 2010), 2010
IEEE. Dec. 2010, pp. 1–5 (cit. on p. 16).

[28] He, Y., Siganos, G., and Faloutsos, M. “Internet Topology”. English. In: Encyclopedia
of Complexity and Systems Science. Ed. by Meyers, R. A. Springer New York, 2009,
pp. 4930–4947 (cit. on p. 49).

[29] Himma, K. E. and Tavani, H. T., eds. The Handbook of Information and Computer
Ethics. John Wiley & Sons, Inc., 2009 (cit. on p. 3).

[30] Husberg, M. Blocking injunction requisites - The balancing of rights and other aspects of
blocking injunctions towards intermediaries. Graduate thesis. 2015 (cit. on pp. 4, 80).

88 Bibliography

http://ssrn.com/abstract=2699070

[31] International Survey on Private Copying: Law & Practice 2015. Tech. rep. WIPO and
Stichting de Thuiskopie, 2016 (cit. on p. 4).

[32] Johnson, D. and Miller, K. Computer Ethics: Analyzing Information Technology. Prentice
Hall, 2009 (cit. on p. 3).

[33] Katti, S., Cohen, J., and Katabi, D. “Information Slicing: Anonymity Using Unreliable
Overlays”. In: Proceedings of the 4th USENIX Conference on Networked Systems Design
and Implementation. NSDI’07. 2007 (cit. on p. 12).

[34] Khan, S., Aziz, B., Najeeb, S., et al. “Reliability of network simulators and simulation
based research”. In: Personal Indoor and Mobile Radio Communications (PIMRC), 2013
IEEE 24th International Symposium on. Sept. 2013, pp. 180–185 (cit. on pp. 49, 83).

[35] Le Blond, S., Manils, P., Chaabane, A., et al. “One Bad Apple Spoils the Bunch:
Exploiting P2P Applications to Trace and Profile Tor Users”. In: Proceedings of the
4th USENIX Conference on Large-scale Exploits and Emergent Threats. LEET’11. 2011
(cit. on pp. 2, 79).

[36] Liao, Q., Li, Z., and Striegel, A. “Is more P2P always bad for ISPs? An analysis
of P2P and ISP business models”. In: 23rd International Conference on Computer
Communication and Networks (ICCCN). Aug. 2014, pp. 1–6 (cit. on pp. 8, 11, 16, 30,
82).

[37] Lin, S. J., Al-Naffouri, T. Y., and Han, Y. S. “FFT Algorithm for Binary Extension
Finite Fields and Its Application to Reed-Solomon Codes”. In: IEEE Transactions on
Information Theory 62.10 (Oct. 2016), pp. 5343–5358 (cit. on p. 17).

[38] Lin, S.-J., Chung, W.-H., and Han, Y. S. “Novel Polynomial Basis and Its Application
to Reed-Solomon Erasure Codes”. In: Proceedings of the 2014 IEEE 55th Annual Sym-
posium on Foundations of Computer Science. FOCS ’14. Washington, DC, USA: IEEE
Computer Society, 2014, pp. 316–325 (cit. on p. 17).

[39] Luby, M. “LT codes”. In: Foundations of Computer Science, 2002. Proceedings. The 43rd
Annual IEEE Symposium on. 2002, pp. 271–280 (cit. on p. 16).

[40] Mohaisen, A. and Kim, J. “The Sybil Attacks and Defenses: A Survey”. In: Smart CR
3.6 (2013), pp. 480–489 (cit. on p. 29).

[41] Nagle, J. Congestion Control in IP/TCP Internetwork. RFC 896. Jan. 1984, pp. 1–9
(cit. on p. 68).

[42] Nielson, S. J. and Wallach, D. S. “The BitTorrent Anonymity Marketplace”. In: CoRR
abs/1108.2718 (2011) (cit. on p. 13).

[43] Pelkey, J. and Riley, G. “Distributed Simulation with MPI in ns-3”. In: Proceedings of
the 4th International ICST Conference on Simulation Tools and Techniques. SIMUTools
’11. Barcelona, Spain: ICST, 2011, pp. 410–414 (cit. on p. 50).

[44] Petrocco, R., Capotă, M., Pouwelse, J., and Epema, D. H. “Hiding user content interest
while preserving P2P performance”. In: Proceedings of the 29th Annual ACM Symposium
on Applied Computing. ACM. 2014, pp. 501–508 (cit. on p. 14).

[45] Poort, J. and Quintais, J. P. “The Levy Runs Dry: A Legal and Economic Analysis of
EU Private Copying Levies”. In: JIPITEC - Journal of Intellectual Property, Information
Technology and E-Commerce Law 4.3 (2013), pp. 205–224 (cit. on p. 4).

Bibliography 89

[46] Pouwelse, J., Garbacki, P., Epema, D., and Sips, H. “The BitTorrent P2P File-sharing
System: Measurements and Analysis”. In: Proceedings of the 4th International Confer-
ence on Peer-to-Peer Systems. IPTPS’05. Ithaca, NY: Springer-Verlag, 2005, pp. 205–216
(cit. on p. 68).

[47] Price, D. Sizing the piracy universe. Tech. rep. NetNames, Sept. 2013 (cit. on pp. 2,
79).

[48] Quintais, J. P. “Private Copying and Downloading from Unlawful Sources”. In: IIC -
International Review of Intellectual Property and Competition Law 46.1 (2015), pp. 66–
92 (cit. on p. 4).

[49] Qureshi, J., Heng Foh, C., and Cai, J. “Primer and Recent Developments on Fountain
Codes”. In: Recent Advances in Communications and Networking Technology (Formerly
Recent Patents on Telecommunication) 2.1 (2013), pp. 2–11 (cit. on p. 16).

[50] Reed, I. and Solomon, G. “Polynomial Codes Over Certain Finite Fields”. In: Journal
of the Society for Industrial and Applied Mathematics 8.2 (1960), pp. 300–304 (cit. on
pp. 8, 16).

[51] Reed, I., Truong, T., and Welch, L. “The fast decoding of Reed-Solomon codes using
number theoretic transforms”. In: to The Deep Space Network Progress Report (1976),
pp. 42–35 (cit. on pp. 37, 40, 41).

[52] Riley, G. F., Ammar, M. H., and Fujimoto, R. “Stateless Routing in Network Simula-
tions”. In: in Proceedings of the Eighth International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems. 2000, pp. 524–531 (cit.
on p. 20).

[53] Savola, P. “The Ultimate Copyright Shopping Opportunity – Jurisdiction and Choice
of Law in Website Blocking Injunctions”. In: IIC - International Review of Intellectual
Property and Competition Law 45.3 (2014), pp. 287–315 (cit. on p. 4).

[54] Shieh, M.-Z., Tsai, S.-C., and Yang, M.-C. “On the inapproximability of maximum
intersection problems”. In: Information Processing Letters 112.19 (2012), pp. 723 –727
(cit. on p. 31).

[55] Shojania, H. and Li, B. “Tenor: making coding practical from servers to smartphones”.
In: Proceedings of the international conference on Multimedia. MM ’10. Firenze, Italy:
ACM, 2010, pp. 45–54 (cit. on p. 16).

[56] Shokrollahi, A. “Raptor codes”. In: Information Theory, IEEE Transactions on 52.6
(2006), pp. 2551–2567 (cit. on p. 16).

[57] Soro, A. and Lacan, J. “FNT-based Reed-Solomon erasure codes”. In: Proceedings of the
7th IEEE conference on Consumer communications and networking conference. CCNC’10.
Las Vegas, Nevada, USA: IEEE Press, 2010, pp. 466–470 (cit. on pp. 17, 38, 47, 48,
83).

[58] Spinello, R. A. “Intellectual Property: Legal and Moral Challenges of Online File
Sharing”. In: The Handbook of Information and Computer Ethics. John Wiley & Sons,
Inc., 2009, pp. 553–569 (cit. on pp. 1, 2).

[59] State of the Internet Q3 2016. Tech. rep. Akamai, 2016 (cit. on p. 68).

[60] Stutzbach, D. and Rejaie, R. “Understanding Churn in Peer-to-peer Networks”. In:
Proceedings of the 6th ACM SIGCOMM Conference on Internet Measurement. IMC ’06.
Rio de Janeriro, Brazil: ACM, 2006, pp. 189–202 (cit. on p. 67).

90 Bibliography

[61] Swenson, B. P. and Riley, G. F. “Simulating Large Topologies in Ns-3 Using BRITE and
CUDA Driven Global Routing”. In: Proceedings of the 6th International ICST Conference
on Simulation Tools and Techniques. SimuTools ’13. Cannes, France: ICST, 2013,
pp. 159–166 (cit. on p. 50).

[62] Trifa, Z. and Khemakhem, M. “Mitigation of Sybil Attacks in Structured P2P Overlay
Networks”. In: 2012 Eighth International Conference on Semantics, Knowledge and
Grids. 2012, pp. 245–248 (cit. on p. 29).

[63] Tsang, P., Kapadia, A., Cornelius, C., and Smith, S. “Nymble: Blocking Misbehav-
ing Users in Anonymizing Networks”. In: Dependable and Secure Computing, IEEE
Transactions on 8.2 (Mar. 2011), pp. 256–269 (cit. on p. 1).

[64] Vitorino, A. Recommendations resulting from the mediation on private copying and
reprography levies. Tech. rep. Jan. 2013 (cit. on p. 4).

[65] Weckert, J. and Al-Saggaf, Y. “Regulation and Governance of the Internet”. In: The
Handbook of Information and Computer Ethics. John Wiley & Sons, Inc., 2009, pp. 473–
495 (cit. on p. 3).

[66] Whitman, M. and Mattord, H. Principles of Information Security. Cengage Learning,
2014, pp. 89–116 (cit. on pp. 1, 3, 79, 80).

ONLINE

[@1] Berne Convention. URL: http://www.wipo.int/treaties/en/ip/berne/ (visited on
July 6, 2017) (cit. on pp. 4, 80).

[@2] Borders, R. W. World Press Freedom Index 2017. URL: https://rsf.org/en/ranking/
2017 (visited on July 6, 2017) (cit. on p. 3).

[@3] Harrison, D. BitTorrent Protocol Specification and Enhancement Proposals. 2017. URL:
http://www.bittorrent.org/beps/bep_0000.html (visited on July 6, 2017)
(cit. on p. 69).

[@4] NS-3 Consortium. ns-3 Network Simulator. URL: https://www.nsnam.org/ (visited
on July 6, 2017) (cit. on pp. 8, 49, 83).

[@5] NS-3 Consortium. ns-3 Network Simulator - TCP Models (Open Issues). URL: https:
//www.nsnam.org/wiki/Ns-3.27#TCP_models (visited on July 6, 2017) (cit. on
p. 83).

[@6] The Freenet Project Inc. FreeNet Project. URL: https://freenetproject.org/ (visited
on July 6, 2017) (cit. on p. 1).

Online 91

http://www.wipo.int/treaties/en/ip/berne/
https://rsf.org/en/ranking/2017
https://rsf.org/en/ranking/2017
http://www.bittorrent.org/beps/bep_0000.html
https://www.nsnam.org/
https://www.nsnam.org/wiki/Ns-3.27#TCP_models
https://www.nsnam.org/wiki/Ns-3.27#TCP_models
https://freenetproject.org/

	Cover
	Abstract
	Acknowledgement
	1 Introduction
	1.1 Legal and Ethical Framework
	1.2 Traditional Peer-to-Peer Systems
	1.3 Problem Definition
	1.4 Goals and Contributions
	1.5 Thesis Structure

	2 Related Work
	2.1 Privacy-preserving Peer-to-Peer Systems
	2.1.1 Background
	2.1.2 BitBlender
	2.1.3 SwarmScreen
	2.1.4 The BitTorrent Anonymity Marketplace
	2.1.5 Petrocco et al.'s
	2.1.6 Summary

	2.2 Erasure Codes
	2.2.1 Background
	2.2.2 ROME
	2.2.3 Didier's
	2.2.4 Soro et al.'s
	2.2.5 Lin et al.'s
	2.2.6 Summary

	2.3 ns-3 IPv4 Routing Protocols
	2.3.1 Background
	2.3.2 Ipv4ListRouting
	2.3.3 Ipv4StaticRouting
	2.3.4 Ipv4GlobalRouting
	2.3.5 Ipv4NixVectorRouting
	2.3.6 Summary

	2.4 Conclusions

	3 Mistrustful P2P Model
	3.1 Overview
	3.2 Peer Roles and Content Sharing
	3.3 Attack Model
	3.4 Erasure Coding Mechanism
	3.5 Disclosure Constraint Mechanism
	3.6 Block Selection Mechanism
	3.7 Request Backoff Mechanism
	3.8 Peer Selection Mechanism
	3.9 Conclusions

	4 Storm Erasure Codes
	4.1 Overview
	4.2 Finite Field
	4.3 Complex Mersenne Number Transform
	4.4 Multi-point Polynomial Algorithms
	4.5 Mapping
	4.6 Encoding
	4.7 Decoding
	4.8 Performance Evaluation
	4.9 Conclusions

	5 CIDRarchy ns-3 Routing Protocol
	5.1 Overview
	5.2 ns-3 Helper for Topology Creation
	5.3 ns-3 IPv4 Routing Protocol
	5.4 Results
	5.5 Conclusions

	6 Validation
	6.1 Security Analysis
	6.1.1 Common Attacks and Countermeasures
	6.1.2 Determine User Content Interests
	6.1.3 Prove Content Download
	6.1.4 Legal Liability

	6.2 Performance Evaluation
	6.2.1 Peer Arrivals
	6.2.2 Simulation Setup
	6.2.3 Experiments
	6.2.4 Results and Discussion

	6.3 Conclusions

	7 Conclusion
	7.1 Ethical and Legal Considerations
	7.2 Hiding User Content Interests
	7.3 Erasure Codes
	7.4 Large-scale Simulation of Internet Systems
	7.5 Known Limitations
	7.6 Future Work
	7.7 Concluding Remarks

	Bibliography

