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Abstract

Detecting breast cancer in mammograms can be a hard task even to most experienced specialists.
Several works in the literature have tried to build models to describe malignant or benign findings
using BI-RADS annotated features or features automatically extracted from images. Some of the
best models are based on Support Vector Machines (SVMs). Features from mammograms have
heterogeneous types and most methods handle them equally. Multiple Kernel Learning (MKL)
can create models where each feature can be treated in a different way, which may improve the
quality of the learned models. In this work, we use MKL to help building models to distinguish
between malignant and benign findings. One of the problems with this domain is that the
classes are unbalanced: fortunately the number of malignant cases is much smaller than the
number of benign cases. However, this imbalance may lead an MKL classifier to label most of
the cases as benign. We improve on these models by adopting a strategy of weighing the benign
and malignant cases in order to produce models that are more reliable and robust to the class
distribution. Our results show that our weighted approach produces better quality models for
both balanced and unbalanced mammogram datasets.
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Resumo

Detetar casos de cancro da mama em mamografias pode ser uma tarefa difícil mesmo para os
especialistas mais experientes. Vários trabalhos na literatura têm vindo a construir modelos para
classificar regiões de interesse, usando atributos provenientes de anotações BI-RADS ou extraídos
automaticamente de imagens. Alguns dos melhores modelos são baseados em Support Vector
Machines (SVMs). Os atributos utilizados neste tipo de problema têm sempre tipos heterogéneos,
e a maioria dos métodos trata todos estes da mesma maneira. O Multiple Kernel Learning (MKL)
pode criar modelos onde cada tipo de atributo pode ser tratado de forma diferente, o que pode
melhorar a qualidade dos modelos aprendidos. Neste trabalho, usamos o MKL para construir
modelos que classificam regiões de interesse como benignas e malignas. Um dos problemas com
este domínio é que as classes são desequilibradas: felizmente, o número de casos malignos é
muito menor que o número de casos benignos. No entanto, esse desequilíbrio pode levar um
classificador MKL a classificar a maioria dos casos como benignos. Melhoramos estes modelos,
adotando uma estratégia que aplica peso aos casos benignos e malignos, para assim produzir
modelos mais confiáveis e robustos na distribuição das classes. Os resultados mostram que nossa
abordagem produz modelos de melhor qualidade para datasets balanceados ou não balanceados.
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Chapter 1

Introduction

1.1 Motivation

Breast cancer is one of the most common forms of cancer. A mammogram, or X-ray of the
breast, is a popular technique used to detect cancer at an early stage. If some suspicious finding
is found in a mammogram, a biopsy is usually recommended in order to decide on surgery.
Biopsy is a necessary, but also aggressive, high-stakes procedure. Although statistics vary among
publications and countries, depending on age and other conditions, overall, according to the
National Institutes of Health (NIH) a specialist misses 20% of breast cancers that are present at
the time of screening. Usually, the main reason for that is high breast density. Some of these
missing cancers can be detected through clinical physical exam of the breast. According to
Hofvind et al. (2012) the false positive rate ranges from 8% to 21%, depending on the patient’s
age. Patients with a false negative result will have a false sense of security and potential delay in
cancer diagnosis, while patients with a false positive result will go through additional testing
(very often, intrusive and aggressive procedures) and anxiety.
According to James (2013), in the USA, up to 440 000 patients die per year due to human error
of medical specialists. One direct solution to this is to resort to a second specialist to review all
the decisions made. But the associated cost is too high, that’s why the CAD systems can be an
alternative solution, since they can directly help the medical specialist when making diagnostics
at a decreased cost. In the area of breast imaging, Moura and Guevara López (2013) and Zhang
et al. (2011) have shown that CAD systems can help decreasing the number of false negatives
while not decreasing the number of true positives.

1.2 Objectives

The purpose of our work is to improve the classification of tumors shown in mammograms, based
on the results reported by Augusto (2014) with Multiple Kernel Learning (MKL) and the Breast
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2 Chapter 1. Introduction

Cancer Digital Repository (BCDR) data. We observed that MKL as applied by Augusto (2014)
did not take into account that the class distribution can be imbalanced, therefore, we found an
opportunity for improvements. Our methodology, besides using a modified form of MKL, adjusts
the learning using weights associated with the classes. In this work we also present and study all
the steps necessary to theoretically detect regions of interest (ROI), extract features and classify
ROI automatically.

1.3 Similar Works

Over the years, there have been several works in the study of mammograms. The analysis of a
mammogram takes several phases. The first thing a radiologist does when analysing an image is
to ROI. Various computer-aided systems have been built to automatically detect ROI in images,
works done by Rahmati and Ayatollahi (2009), Melouah and Merouani (2008) and Oliver et al.
(2008) achieved up to 82% correct classification of regions. After detecting the ROI, the next
step is to automatically extract features from it, this was done by Kitanovski et al. (2011).
Finally, algorithms are applied to those features in order to classify the region as malignant or
benign, this final step is the focus of this work. Arguably, Support Vector Machines are the
most common method used to classify mammograms. Mammogram classification works like
El-Naqa et al. (2002) and El-Naqa et al. (2004) show good results in the ROC and precision-recall
curves. A study by Wei et al. (2005) shows that kernel methods achieve better results than others
models, also Wei et al. (2009) achieved 82% accuracy on the classification of micro-calcifications.
Several works tried to apply MKL to this domain, but did not present their methodology in
detail, and report accuracies above 98% like in Zare et al. (2014) and Yang et al. (2013). Some
other works, also using MKL, present more realistic results (Ma et al. (2015)), reporting AUC of
85%, although not providing much detail on the methodology. Some works like Liu et al. (2012)
focused only in classifying if a region is a mass or simply normal tissue, using SVM with Radial
Basis Function (RBF) kernel for classification obtaining 86.6% accuracy value. Finally the work
of Augusto (2014), on which our work is based, does classification of all the types ROI using
MKL, and is able to achieve a ROC curve AUC value of 87%.

1.4 Scientific Challenges

To achieve the results shown in Chapter 4 we had to solve several problems related with the
specific type of data we wanted to use and implementation of the model itself.
One of the most important challenges we face is the class distribution. Fortunately, in this
domain, the number of malignant cases is much smaller than the number of benign cases, but
this imbalance causes difficulties to automatic classifiers, mainly because almost every model
will give more weight to the more prevalent class. A simple example: if our dataset has one
hundred benign objects and just 5 malignant objects, during the training most of the classifiers
will have to ignore some of these objects to get better results, but ignoring 10 benign objects has
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a different impact than ignoring 4 malignant. To address this problem we followed a strategy
that allows the use of weights for each class.
In mammograms, expert radiologists usually perform manual annotation of findings that they
detect in the images. These annotation are described in Section 2.1.2. We use these annotations
as features. These annotations represent just a small part of all the features used, and we call
them clinical information. The other big group of features in our datasets is extracted from the
mammogram image. These features are described in Section 2.3 and most of them can not be
directly related with the Breast imaging-reporting and data system (BI-RADS) medical system.
We need datasets with already extracted features from the mammogram image that also contain
clinical data, this type of data is not very common due to its specificity. Because of that we had
to extract the features from the Digital Database for Screening Mammography (DDSM) that
contains mammograms and also the clinical data annotated by a specialist.
Since our data is unbalanced, an MKL with weights is necessary. The MKL uses internally the
same solver as an SVM, and so it is easy to just change the original solver for one with weights
like we did.
In order to perform a fair comparison between the datasets, the set of features of all datasets
should coincide. To achieve that, we implemented a feature extractor for DDSM.
For the creation of the final model several parameters from the MKL must be tuned while
achieving an algorithm that should not allow overfitting.

1.5 Contributions

We can summarize our contributions below:

• Review of the state-of-the-art on breast image classification using SVM-based methods.

• Implementation of a methodology based on Cost-Sensitive SVM and Non-Linear MKL.

• Application of our methodology to breast image classification.

• Improvement of results over other methods based on SVM and MKL.

1.6 Structure

This work is divided in five main chapters. In Chapter 2 we suggest and explain all the
technologies, areas and terminologies used in our work, it is written with the intuit of teaching
the reader, and allow the recreation of the work done. During the explanations we cite all the
papers that we used for reaching our final results. In Chapter 3 we show all the works that
recently have been published in the area of data mining applied to mammogram images, we
describe and divide in groups so that the reader can easily find the papers that represent the
state of the art in a specific topic. In Chapter 4 all the methods, algorithms and materials are
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described. It is also here that we show and discuss results. Finally in Chapter 6 we express our
conclusions by looking at the results and comparing them with other work, we also describe what
we expect to be the future after this work, and what should be achieved with it.



Chapter 2

Fundamental Concepts

In this chapter we explain all the technologies and techniques that were necessary to achieve
this work. It is divided by degree of the mathematical and algorithm complexity. Starts by
the discussion of health-related topics and finishes with the explanation of the SVM and MKL
algorithm. We also explain many terms used in this paper that may not be understood by readers
outside the area of machine learning.

2.1 Breast Cancer

2.1.1 Diagnosis

Figure 2.1: Generic Mammogram.

The most common way to diagnose breast
cancer is by using mammograms like the one
in the Figure 2.1, they are the cheapest least
invasive technique and easy to obtain. The
problem is that the process of detecting masses
and classifying them is done by a health
professional, and the process of analysing
these images can be very tiring and difficult.
Sometimes two different professionals take on
the same mammogram with the purpose of
reducing error, but even so it’s very difficult to
obtain completely certain diagnosis. Because
of that and for the safety of the patient over-
diagnosis and over-treatment is performed, usually leading patients to more invasive interventions
like biopsies or excision.

5



6 Chapter 2. Fundamental Concepts

Figure 2.2: Three mammograms containing an Architectural Distortion, Mass and Calcifications.

2.1.2 BI-RADS

BI-RADS (D’Orsi (2013)) is the standard for Breast Image Reports. It is used not only for
Mammograms but also for Ultrasounds, Magnetic Resonances and used to describe category of the
tumour. BI-RADS attributes are mainly all types of findings that can appear in a mammogram,
we followed the original reference card for BI-RADS that can be found in the American College
of Radiology (ACR), and made an interpretation of each type of findings and features according
to Kopans (2007). Examples of mammograms showing distinct findings circled in red, are shown
in Figure 2.2

· Masses can be detected by external touch and are made of breast tissue or cysts due to the
accumulation of fluids. A mass is described by its shape, margin, density and size.

· Calcifications are accumulations of calcium within the breast, usually they are product of
lesions, inflammations and age. They are divided in two distinct groups, the typically
benign and the ones of suspicious morphology that may be malignant. They can be found
in clusters or alone, because of that the type of distribution must be described.

· Architectural Distortion is a region that shows abnormal arrangement of breast tissue,
often a radial or perhaps a somewhat random pattern, but without any associated mass or
calcification acting as apparent cause of this distortion.

· Skin lesions are not important for breast cancer detection but can be seen in the mammogram.
They must be noted to avoid wrong conclusions, like misclassify them as masses or
calcifications.

· Breast Asymmetries happen when an area of breast tissue in one breast side is different
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from the same area in the other breast. This helps in the process of detecting other
abnormalities and malignancy.

· Intra mammary lymph nodes are by themselves not malignant but they are the primary
sites of metastases1, because of that they have clinical significance and should be noted.

· Solitary dilated duct are very important for malignancy detection because even though that
when alone they are benign, it is known that when in combination with other symptoms
like masses or distortions, they can be the deciding factor to confirm the existence of
malignancy.

· Associated Features are more general and usually less relevant clinical features, like skin
retraction, nipple retraction or skin thickening.

2.2 Image Processing

Figure 2.3: Image Analysis Flow

Image processing usually follows three main phases: segmentation, feature extraction and,
possibly, classification. The flow of image analysis is shown in Figure 2.3. The first task is the
detection of the ROI in the mammogram, we can also call them findings or anomalies, this
process is called Segmentation and is explained in Section 2.2.1. Features are extracted from
these findings, the type of features and how they are extracted is explained in Section 2.3. All
the features must be ranked by level of interest to the model, a feature is interesting when it
increases the performance of the model. The ranking of the features is done by a feature selector
that is described in Section 2.3.2. Finally by using the clinical and extracted features the object
that describes the finding should be classified as malignant or benign, this is done by the MKL
model that is described in Section 2.6.1.4. Each of these tasks have their own problems and
difficulties associated, and our work will focus in the feature extraction, feature selection and
object classification tasks.

1Metastases is the name given when malignant cells are released from the tumor and spread to the rest of the
body.
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2.2.1 Image Segmentation

Image segmentation is the process of partitioning an image (in our work, a mammogram) into
multiple segments. This allows the detection of ROI. In our work, this process was done manually
by specialists, but it can be done automatically, and usually this process is divided into three
distinct phases.

• Image Treatment According to Khan et al. (2015) before doing any type of partitioning
the image should be reduced to only the breast. To achieve that the image must go through
some transformations. The black or white borders should be removed. This can be done
by looking at the intensity of the pixels and remove all those that are near 0 or 1. A
mammogram of the left and right breast is usually mirrored. Because of that we must
orient the breasts all to the same side, this is necessary because we need all the images
with the breast on the same side to make the implementation and process of segmentation
simpler. The removal of artifacts can be easily done by finding the breast boundary with
the Otsu threshold method described by Wenqin (1993), and setting everything outside to
black. Then an average filter or other can be applied to the image but that is dependent of
the type of image we are working with. (A thresholding method replaces each pixel in an
image with a black pixel if the intensity is less than some value F, or white pixel if the
intensity is greater than F. The challenge in this process is to find the value of F.)

• Removal of Chest Muscle To obtain just the breast region the chest muscle must be
removed because this muscle tissue looks similar to the one of malignant ROI. There
are some different techniques that can be applied to do that. Khan et al. (2015) uses a
threshold to find the border between breast and muscle. Qayyum and Basit (2016) uses a
canny edge detection to create a line between breast and muscle. Kowsalya and Priyaa
(2016a) remove the borders of the image removing this way most of the muscle area.

• Detecting regions of interest The automatic detection of ROI can be done by applying
thresholds that allow the finding of the boundaries of each ROI, also it can be done by
using the snakes algorithm like the one described by Yuen et al. (1996) that adjusts a line
or circle to the nearest ROI, this is done by Chakraborty et al. (2016).

2.2.2 Extracted Features

There are at least 3 big groups of features that can be extracted from a black and white image,
each one is able to obtain different knowledge about the image. According to Moura and
Guevara López (2013) these features are able to describe the light or intensity, texture, Shape
and Location.
Intensity descriptors are calculated using the gray levels of the pixels. This group of features
describes the level of luminosity of a region of interest. It uses the Standard deviation, Minimum,
Average, Median and Mode of the intensity values.
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Figure 2.4: The matrix on the left repres-
ents the image with the gray levels of the
pixels, on the right is the gray-level co-
occurrence matrix.

Texture descriptors are extracted using
a gray-level co-occurrences matrix. In Figure
2.4, left matrix, we have the representation of
gray levels of an image with 4x5 pixels, whose
minimum gray level is 1 and maximum is 8.
This will produce a co-occurence matrix of size
8x8. Starting from left-to-right, row-wise in
the matrix on the left, we start filling up the
values of the co-ocurrence matrix, in the right.
For example, the first pair of gray levels 1,1
appears only once in the left matrix, therefore,
entry 1,1 of the co-occurrence matrix will be
filled up with 1. The pair 1,5 also appears only once, which fills up entry 1,5 with the value 1.
Pair 1,2 appears twice, so entry 1,2 will be filled up with the value 2, and so on, and so forth.
The gray-level co-occurrence matrix (GLCM) is used then to find adjacent areas of the picture
that are more relevant or less relevant regarding the gray levels. We will use P (x, y) as the
probability of pixels with gray-level x occurring together to pixels with gray-level y. P+(i) or
P−(i) are the sum or subtracted probability of two co-occurrence matrix coordinates i = x+ y.
L=8 will be maximum of the gray levels, M is the mean of all the P(x,y), i−=|x-y| and i+=x+y.

• Energy
∑L
x=1

∑L
y=1 P (x, y)2

• Homogeneity
∑L
x=1

∑L
y=1

P (x, y)
1 + (x− y)2

• Contrast
∑L
x=1

∑L
y=1(x− y)2P (x, y)

• Variance
∑L
x=1

∑L
y=1(x−M)2P (x, y)

• Entropy −1 ∗
∑L
x=1

∑L
y=1 P (x, y) ∗ (log(P (x, y)))

• Sum Average
∑2∗L
i=2 i ∗ P+(i)

• Sum Entropy −1 ∗
∑2∗L
i=2 P+(i) ∗ (log(P+(i)))

• Sum Variance
∑2∗L
i=2(i− SumEntropy)2p+(i)

• Difference Entropy −1 ∗
∑2∗L
i=2 P−(i) ∗ (log(P−(i)))

Shape and Location descriptors is the last group and the one that provides information
about the geometrical characteristics of the region of interest. It contains the following features:

• Perimeter Number of pixels in the edge of the segment.

• Area Number of pixels inside the segment.

• Circularity 4π ∗ area

perimeter2
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• Elongation X

Y
Where X is the minor axis and Y the major axis of the ellipse that encloses

our region of interest.

• Y centroid min(Y axis) +max(Y axis)
2 .

• X centroid min(Xaxis) +max(Xaxis)
2 .

• X & Y Centroid Normalized coordinates of the centre of the set of pixels that belong to
the segmented lesion.

• Solidity area

|H|
Where |H| is the total pixels of the convex hull of the segmented region.

2.3 Features

2.3.1 Feature Types

According to Berthold et al. (2010) features can be categorized in 4 different types.

• Continuous Numeric Features are numbers and have a value. If we define a range
between two possible values of feature, there is an infinite number of different values that
belong to that interval, and since there is no interval between any two values we call it
continuous. This is more common in features that are results from formulas since there is
no theoretical limit to how much precise a number can be.

• Discrete Numeric Features are numbers and have a value, If we define a range between
two possible values of feature, there are zero or a finite number of possible different values
in it. Examples of Discrete features can be the number of days in a year or the time using
only hours, minutes and seconds.

• Ordinal Features are features that do not have a value but have an order and usually
there is a predefined number of different words that belong to the feature. An example of
this can be a feature that uses Very low, Low, Normal, High and Very high as values.

• Categorical Features do not have order and do not represent any numerical value, they
are simply lists of objects. Examples of these can be the name of different fruits in a basket
or simply a True False (Binary) feature. In our context it could be the presence or absence
of a mass or calcification.

2.3.2 Feature selection and UFilter

Feature selection is the process of selecting or ranking features by level of interest to the model,
it allows the filtering of features that may decrease the performance or are irrelevant. One of the
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main feature selectors we use is the Ufilter created by Pérez et al. (2015). It is a feature selector
oriented for breast cancer diagnosis on mammography, inspired by the U test of Mann-Whitney
(described in Nachar et al. (2008)) that calculates the difference between data samples of a
feature. For this problem, sample is the group of objects that belong to a class. In a binary class
problem each feature will have two samples one for the negative and one for the positive class.
For better understanding we will be explaining the algorithm just for a binary class.
Let F = f1, f2, ..., ft be a set of features where t is the total number of features, and let
fi = v1, v2..., vN be a set of values for feature fi, where N is the total number of values of feature
i. Ufilter orders the values from a feature and solves ties by averaging the positions of the tied
objects when other features are ordered. Then the sum of the positions of the objects of each
class are stored in SM and in SB (B is benign and M is malignant):

SB =
∑
j∈B

Posfj

SM =
∑
j∈M

Posfj

(2.1)

In the equations of 2.1 B and M are the groups of features which class is benign or malignant,
the variable Posfj

is the position value of the feature j. Using the number of malignant and
benign (NM and NB) and the sum of the respective positions (SM and SB) we can obtain the
υ-values (2.2) and the Z-values (2.3).

υB = NB ∗NM + NB(NB + 1)
2 − SB

υM = NB ∗NM + NM (NM + 1)
2 − SM

(2.2)

These equations are the same as the ones from Nachar et al. (2008). The following equation 2.3
is where both models differ. In the original we would select the minimum from both of υ-values
to calculate equation 2.3 and accept or reject the null hypothesis at a given level of significance
α = 0.05. In the uFilter method it is computed both of the Z-indicators (one for each class).

ZB = υB − ν
σν

ZM = υM − ν
σν

(2.3)

Where ν is the mean and σν is the standard deviation. The score of each feature is given by 2.4.
This score is the total difference between the results obtained by the samples made of each class.

Wi = |ZB − ZM | (2.4)
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2.4 Performance Metrics

2.4.1 Confusion Matrix

Table 2.1: Confusion Matrix

Predicted Positive Predicted Negative Totals
Positive
Condition

True Positive False Negative ConditionP
Rec all
TP

ConditionP

Negative
Condition

False Positive True Negative ConditionN
Specificity

TN
ConditionN

Totals PredictedP PredictedN

Accuracy
TP+TN

TP+FN+FP+TN

Precision
TP

PredictedP

False Omission Rate
FN

PredictedN

F1Score
(1 + β2) ∗ PR∗REC

(β2∗PR)+REC

To describe results and compare models several metrics are used, all of them depend on the data
that is stored in a confusion matrix like the one in Table 2.1. This is used for binary classification
problems and the matrix is built by counting the number of times the model correctly or not
classifies the objects. Predicted positive or negative refers to the prediction of the algorithm,
and Condition positive or negative is the actual value of the class. True positive or negative is
one object that has been correctly classified, False positive or negative is one object that has
been wrongly classified. We use almost all of the metrics in Table 2.1. Accuracy is the easiest to
understand because it simply shows the percentage of objects that are correctly predicted. Recall
or Specificity use only objects from one class and shows the percentage of correctly classified
objects for that class, precision or FOR is similar but uses only objects that have been classified
with the same class and for those, show the percentage that have been correctly classified. All
these different metrics should be used in combination to better explain the results obtained by a
model.

2.4.2 Curves

Figure 2.5: Example of Two Different Curves
There are several types of curves that can be built using the metrics from the confusion matrix.
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In our work we use three. The receiver operating characteristic ROC curve, the precision-recall
and the FOR-specificity curve.
Imagine a binary classification problem, whose model can output a probability for the binary
class, for example the object xi got 0.6. There is a 60% chance that the object xi is positive.
When we have this kind of results it is possible to create thresholds that make all objects above
50% positive and the ones below negative, the same can be done for 40%, 30% and so on. We
create a confusion matrix for each threshold and then use them to create curves that describe
the performance of the model. To create an ROC curve we map all the TruePositive in y axis
and FalsePositives in the x axis, the precision-recall curve plots precision in y axis and recall
in the x axis. From these curves we can calculate the Area Under The Curve. AUC is one of the
most common used metrics in data mining because it ranges between one and zero, and combines
two different metrics that compose the curve.

2.4.3 Unbalanced Data Metrics

Table 2.2: Sample Confusion Matrix

Predited
Positive Negative

Condition

Positive 1 3
Recall
25%

Negative 4 16
Specificity

80%
Accuracy

71%
Precision

20%
FOR
84%

F1Score
22%

When dealing with unbalanced datasets the use
of some metrics can result in very wrong con-
clusions this is a known problem in literature,
Provost et al. (1997) and Gu et al. (2009) did
a study on this, and concluded that accuracy
and other metrics may not provide accurate
measures of the classification performance of
imbalanced data sets.
We will be using an example assuming that we
have a dataset of 20 Negative and 4 Positive

objects, and that our confusion matrix is Table 2.2. The best way to explain why some metrics
will not work is by looking at the recall and specificity. We can compare how well each of the
classes is being classified, and in the example, that the difference in results for both classes is
65%. Precision and FOR shows the difference in the weight of a misclassification for both classes,
the difference between both class results is 64%. By looking at these four metrics it is possible
to conclude that this model is doing a bad job in the classification of the Positive class. The
problem arises when we know that our model only classifies correctly one quarter of the positive
class (recall), but we present only the accuracy of the model. This way it’s is possible to hide
from the reader how bad it is, since 71% can be an acceptable value in many types of problems.
The same happens with any of the metrics that only represent the negative class or do an average
of both classes.
The ROC AUC curve can also suffer from this problem and because of that not only we also show
the ROC AUC curve for the negative class but we also use precision-recall and FOR-specificity
curves.
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2.4.4 P-Value

According to Westfall and Young (1993) the P-Value allows us to compare the results from
two different models and understand if these are statistically different, we can assume that the
results are different when P-Value is inferior to 0.05. Let us assume we have experimented two
classification models in a dataset of 200 objects of ROI, the Model A will be considered to
contain the Observed values and Model B the expected Values. First step for the calculation
of the P-Value is the definition of the degrees of freedom. The number of degrees of freedom is
equivalent to the number of categories minus one, we have malignant and benign classes so our
Degree of freedom is 1. We have to calculate the Chi-Square χ2 =

∑N
i=1((oi − ei)2/ei) where N

is the number of categories, o and e are the observed and expected values for category i. Finally
just to use a χ2 table and find in the row corresponding to our degree of freedom the value that
is nearest to ours and the corresponding P-Value.

2.5 Model Validation

To evaluate the performance of a model we can simply cut 20% of the dataset as a test set and
leave the remaining 80% as a training set. This strategy can lead to overfitting of the model.
Overfitting occurs when the model follows the training and test datasets very rigorously, which
leads to a high loss of performance on more generalized data. This can be avoided by applying
Bootstrap or Cross-Validation methods. According to Berthold et al. (2010) bootstrap consists
in sampling n objects from the dataset with reposition several times, creating this way x datasets
that can be used for experiments. Other algorithm is cross validation, it divides the dataset in n
folds that can be used for experiments. If the dataset is very small Leave one Out method can
be used, it consists in doing the training several times while leaving one object out. Bellow is the
pseudo code for each of these methods.

1 begin
2 train = sample(dataset);
3 test = dataset - train ;
4 Results = Experiment(train,test);
5 end
Algorithm 1: Simple Train Test Method

1 begin
2 for 1 to Number_of_Samples do
3 bootdata = bootsample(dataset);
4 train = sample(data);
5 test = dataset - train ;
6 Results.add(Experiment(train,test));

7 end
8 Final_Results= Average(Results);
9 end

Algorithm 2: Bootstrap
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1 begin
2 F_Array=create_K_folds(Data,K);
3 forall fold of F_Array do
4 train=F_Array - fold;
5 test=fold;
6 CMatrix = Experiment(train,test);
7 Results.add(CMatrix);
8 end
9 Final_Results= Measures(Results);

10 end
Algorithm 3: K-Fold Cross Validation

1 begin
2 forall object of Dataset do
3 train=F_Array - object;
4 test=object;
5 CMatrix = Experiment(train,test);
6 Results.add(CMatrix);
7 end
8 Final_Results= Measures(Results);
9 end

Algorithm 4: Leave One Out

2.6 Machine Learning

In this Section we will be describing the state of the art algorithms. Because our work is based
in the use of MKL and SVM, those are the two algorithms we will be giving more focus.

2.6.1 Methods for Classification

The following Sections should give some insight on what and how data mining algorithms can be
used for classification problems. SVM and MKL will be described with more detail in another
Section.
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2.6.1.1 Decision Trees

Figure 2.6: Decision Tree Structure

Decision trees are the simplest method that
can be used for classification problems, like
the name suggests the algorithm creates a
tree similar to the Figure 2.6. The internal
nodes represent the conditions for splitting
the data and the leaves the final classification.
The classification of one object is done by
following the corresponding path from the
root to the leaves. The construction of the
tree can be done by Algorithm 5 suggested
by Breiman et al. (1984), this algorithm is
able to create a big tree that is not good,
because by having too many nodes we end
up with a complex and difficult to understand
tree, also this can lead to overfitting of the model. The process of reducing the size of the
tree is called pruning, and one way to do this is by iterating through the nodes (bottom
up) starting at the leaves and measure if a parent of a node contains the same information
as the son. When that happens we remove the sons and leave the parent node with the
class that was more dominant on the sons. One of the biggest benefits of using decision
trees is that results are easy to explain by looking at the structure of the tree, because
each of the splits can be taken as a logic and explainable reason for the final classification.
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1 Algorithm(BuildDecisionTree(D,A));
input : Training Data D with A Attributes

2 begin
3 if all elements in D belong to one class then
4 return node with class label;
5 end
6 else if A = ∅ then
7 return node with majority class label in D;
8 end
9 else

10 select attribute A ∈ A which best classifies D;
11 create new node holding decision attribute A;
12 for each split of A do
13 add new branch create a new DνA ∈ D for which split condition holds;
14 if DνA = ∅ then
15 return node with majority class label in D;
16 else
17 add subtree returned by calling BuildDecisionTree(DνA , (A\A));
18 end
19 end
20 end
21 return node;
22 end
23 end

Algorithm 5: BuildDecisionTree(D,A)
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2.6.1.2 Artificial Neural Networks

Figure 2.7: Artificial Neural Networks Structure

Artificial Neural Networks (ANN) try to
recreate the way that the neural network
of brain works, the idea is to make in-
formation travel a network like the one
in Figure 2.7. The inside of this struc-
ture is built of functions that create a
flow of data, these functions are connec-
ted by weights that change each time the
ANN is used, this is one of the best char-
acteristics of ANN. ANN and SVM un-
like the other algorithms described in this
work, produce results that cannot be ex-
plained using features values and or con-
ditions. For more information on the al-
gorithm we propose the reading of the Sec-
tion about ANN of Berthold et al. (2010).

2.6.1.3 Bayes Classifiers

Bayesian-Network (BN) present a network of connected nodes that can be seen in Figure 2.8
where each node contains the probability of attribute X. According to Berthold et al. (2010), BN
are built around the probabilities of several attributes. In BN we predict the probability of an
object x belong to a class y. In Equation 2.5 and the following we use P as the probability, pred
as the prediction.

pred(x) = argy∈dom(Y ) max P (y|x) (2.5)

This leads us to the Bayes Theorem (eq.2.6):

pred(x) = argy∈dom(Y ) max
P (x|y)P (y)

P (x) (2.6)

This type of classifier, like the decision tree, achieves results that are easy to explain, because we
can use the probabilities of the network and make conclusions of what can be the most important
factors in the classification and create an explainable logic of factors. There are more than one
type of BN and there are several ways to build BN, for more details on this we recommend
reading Cowell et al. (2006) Sections 2 to 4 for a more introductory approach.
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Figure 2.8: Bayesian-Network Structure

2.6.1.4 Support Vector Machines

An SVM takes a sample of N objects
{
xi, yi

}N
i=1, where xi is a feature vector that describes the

class yi ∈ {+1,−1} of object i, and finds a way to separate the objects in two classes. This is
done by using what we call a hyperplane (equation 2.7).

f(xi) = w ∗ xi + b (2.7)

In the hyperplane 2.7, w and x are vectors. Vector w is orthogonal to the hyperplane and xi
is the vector corresponding to the object i we want to classify. Applying f to xi results on
the classification of xi, which, most of the time, should agree with yi, in order to reduce the
classification error. According to Bishop (2006); Chang and Lin (2011); Gonen and Alpayd
(2011), the SVM training can be reduced to the optimization problem (Equation 2.8).

minimize
w,ζ,b

1
2w
>w + C

N∑
i=1

ζi

subject to yi ∗ (〈w, φ(xi)〉+ b) ≥ 1− ζi 1 ≤ i ≤ N
(2.8)

Where w is the vector we want to find, φ(xi) is the vector xi projected to another dimension
(this is done by a so-called Kernel that we will be describing later), ζ is a set of slack values used
to find an optimal hyperplane (when a slack value is big enough, the SVM can leave a vector on
the wrong side of the hyperplane misclassification is allowed in order not to overfit the model),
C is according to Ben-Hur and Weston (2010), the smoothing factor, a value that maintains the
balance between the minimization of w and ζ, this means that the bigger the C the smaller the
margins will be because it increases the number of support vectors, and finally N is the number
of support vectors (this will be discuss later). In the domain of breast cancer, where the learning
task is to discriminate between malignant and benign cases, fortunately, the number of malignant
cases is much smaller than the number of benign, but this leads to a well-known classification
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problem: learning from unbalanced number of elements per class. Masnadi-Shirazi et al. (2012)
studied the problem and proposed a Cost-Sensitive Support Vector Machine (CSSVM) to handle
imbalanced classes, the cost-sensitive optimization problem is the following:

minimize
w,ζ,b

1
2w
>w + C

[
C1

n∑
i∈yi=+1

ζi + 1
k

n∑
i∈yi=−1

ζi
]

subject to 〈w, φ(xi)〉+ b ≥ 1− ζi yi = +1

〈w, φ(xi)〉+ b ≤ −k + ζi yi = −1

with k = 1
2C−1 − 1 0 ≤ k ≤ 1 ≤ 1

k
≤ C1

(2.9)

In this equation yi is removed from yi ∗ (〈w, φ(xi)〉+ b) and because of that we have to split the
equation, and create one for each class margin. This allows the use of 3 new variables. k imposes
a smaller margin on negative objects when the data is separable, C1 and C−1 are weights for each
class because they directly increase or decrease the slack values ζ of each class. C−1 controls the
difference in the size of the margins, which means that the bigger the C−1 the smaller the margin
to the negative class, this happens because k decreases and the margin of the negative class is
dependent of the size of k 〈w, φ(xi)〉+ b ≤ −k. If we fix this value and increase C1 knowing that
C1 > 2 ∗ C−1 − 1 we increase cost on the error of the positive class by increasing the cost of the
slack values. This allows us to create a model where we can guarantee that the error rate of
both classes can be minimized without big losses of accuracy. To solve any of the inequations
in 2.9, we first need to apply the Lagrangian dual function to obtain the dual problem for the
function 2.8 (cf. 2.10).

maximize
N∑
i=1

ai −
1
2

N∑
i=1

N∑
j=1

aiajyiyjK(xi, xj)

subject to
N∑
i=1

aiyi = 0 0 ≤ ai ≤ C 1 ≤ i ≤ N

(2.10)

And for the function 2.9 (cf. 2.11).

maximize
N∑
i=1

ai
(yi + 1

2 − k(yi − 1)
2

)
−1

2

N∑
i=1

N∑
j=1

aiajyiyjK(xi, xj)

subject to
N∑
i=1

aiyi = 0 1 ≤ i ≤ N

0 ≤ ai ≤ CC1 yi = 1

0 ≤ ai ≤
C

k
yi = −1

(2.11)

In both equations, 2.10 and 2.11, the kernel formula K(xi, xj), is equivalent to φ(xi)φ(x). By
solving these equations we can obtain 2.12.

w =
N∑
i=1

yiaiφ(xi) (2.12)
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If we look again at the initial function of the hyperplane 2.7, it is easy to see that 2.13 is true.

w ∗ x+ b =
N∑
i=1

yiaiφ(xi)φ(x) + b (2.13)

In 2.13, x is the new object we want to classify and xi our support vectors. Support vectors
are the objects that make the margins of our hyperplane, and correspond to data points that
are on the edge of each class. When training an SVM, we only need the support vectors, which
reduces the complexity of the SVM training by confining the search region to a small area. One
problem that an SVM does not solve is when data is not linearly separable. If data is not linearly
separable, it may be necessary to project the data to another dimension, and this is done using
Kernels. A kernel is simply an equation that multiplies 2 vectors, but instead of doing a normal
multiplication it does it while increments the dimensions of the vectors, without increasing the
complexity of the problem. For example, if we apply the polynomial kernel φ(x)φ(y) = (x>y+c)d,
this will increase the distance between the objects and allow the SVM to better fit the hyperplane.
Several kernels can be used by an SVM. We selected the Heavy tailed radial basis function kernel
(HTRBF) that appears originally in Hou et al. (2011); Chapelle et al. (1999) and is shown in
2.14. This kernel has better performance than more commonly used kernels, and it allows the
creation of different kernel versions by changing the parameters a, b and γ. We also applied the
Gaussian (2.15) and Anova (2.16) Kernels due to their common use in SVMs.

Heavy tailed radial basis function

φ(x)φ(y) = e−γ||x
a
i−y

a
i ||

b (2.14)

Gaussian Kernel

φ(x)φ(y) = e
−
||xi − yi||2

2α2 (2.15)

Anova Kernel

φ(x)φ(y) =
L∑
k=1

e−α(xk
i−y

k
i )2)d (2.16)

We handle all features equally, applying the same method and, if needed, the same kernel to
all of them. However not all features are of the same type. They can be continuous, discrete,
nominal or binary, and even when they fall under the same category, the values distribution can
be different. Therefore, each one would need a specific kernel to help maximizing the separation
of the classes.

2.6.1.5 Multiple Kernel Learning

MKL allows the use of multiple kernels, several applied to each variable. It then creates a Linear
or Non-Linear combination of kernels and tries to find the weights η for this equation (2.17). We
chose to improve this particular strategy because of the previous work done by Augusto (2014)
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that shows good results by using this kernel combination technique.

K(x, y) =
P∑
i=1

ηiki(x, y) (2.17)

In Equation (2.17), P is the number of different kernels. We chose Non-Linear MKL (NLMKL)
to find the weights of η and according to Gonen and Alpayd (2011), this implementation has
shown the best results when compared with other MKL implementations and with SVM with
simple kernels. This implementation also allowed us to use a non linear kernel combination:

K(x, y) =
P∑

i,j=1
ηjkj(x, y)ηiki(x, y) (2.18)

The NLMKL is inspired by the standard kernel ridge regression (KRR) dual optimization
algorithm for a fixed kernel matrix, done by Saunders et al. (1998). The KRR is very similar to
SVM in the way that also uses kernels and combines them with ridge regression, but it is slower
to test since it does not use support vectors to reduce complexity. When applied to our problem
in terms of the Lagrange multipliers it can be formulated as the min-max optimization problem
shown in equation 2.19.

minimize
η

maximize
α

− α>(Kη + λI)α+ 2y>α

where η ∈ {0 � η ∧ ||η − η0||2 ≤ Λ}
(2.19)

In equation 2.19, Kη is the kernel originated from a combination η of weights, η0 and Λ are two
model parameters. According to Cortes et al. (2009) for any fixed η the optimum is given by:

α = (Kη + λI)−1y) (2.20)

By plugging this equation to 2.19 we obtain:

minimize
η

F (η) = y>(Kη + λI)−1y

where η ∈ {0 � η ∧ ||η − η0||2 ≤ Λ}
(2.21)

This equation will allow us to find the weights by doing Algorithm 6.

1 Algorithm(Projection-based Gradient Descent Algorithm);

input : η = 1
P
, Kn,n ∈ [1, P ], υ ∈ [0, 1];

2 begin
3 while |ηold − η| > ε do
4 ηold = η;
5 η = −υ ∗ ∇F (η) + η;
6 η = η ∗ (λ/|η|) ;
7 end
8 end

Algorithm 6: Projection-based Gradient Descent Algorithm
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ε is our threshold to stop the gradient descent and υ is the the step size. For solving this
algorithm we must find the values for α, this is done by using a solver for the SVM or CSSVM.
We need the α because for any k ∈ [1, p], the partial derivative of F : η → y>(Kη + λI)−1y with
respect to ηk is given by equation 2.22:

∂F

∂ηi
= −2α>(

P∑
r=1

(ηrKr) ∗Ki)α (2.22)

This model consists in the creation of several kernels using the HTRBF, Gaussian and Anova,
and apply them to each feature. Then we find the weight for each kernel created by solving 2.19
using 6. We then sum all kernels multiplied by the corresponding weight (2.17) to create our
final kernel that can be used by the SVM equations (2.10) or (2.11).

2.7 Summary

In this Section we explained all the fundamental concepts that the reader needs to understand
before reading the following Sections. We also talked about solutions to problems like class
unbalancing. For the Sections that do not contain the full information on a subject, we always
give a reference to the best paper or book we found on that area. In the next chapter we discuss
about related work highlighting their focus and methods applied to breast image classification.
We categorize them by area of interest.





Chapter 3

Related Work

In this chapter we will be discussing and listing works that are related to this work. We start
by explaining why we did choose MKL and cite works in the area of classification. We will
also discuss the human error and how relevant it is and list works that we can relate to ours.
This chapter should be mainly used for finding the papers with the state of the art solutions for
problems discussed in this work.

3.1 Initial Inspiration

Advances in technology have helped reduce tumors classification errors along the years. A number
of research works have been able to discriminate between malignant and benign cases. Dhawan
et al. (1996) uses automatically extracted features from mammograms and achieves an area
under the ROC curve around 60%. Aarthi et al. (2011) uses a mixture of automatically extracted
features and clinical features, achieving an accuracy of 86%. In the literature, some of the best
results are achieved with SVM as is shown in Wei et al. (2005) and Ferreira et al. (2015) with
ROC AUC of 83% and 85% respectively. Most work on SVMs use a single kernel, which may not
be suitable for some data, because variable types can vary. In mammography data, features can
be numeric, boolean, integer or categorical, depending on the way they are annotated. Recent
work done by Augusto (2014) has shown that the use of MKL can help on the classification of
mammography images, by employing a modified SVM, where, instead of using a single kernel,
various kernels are used depending on the feature type (numerical, nominal or others). Augusto
(2014) achieved 87% ROC AUC. The work done by Daemen et al. (2012) has also shown that
MKL strategies can be useful to generate better models for clinical data.
In this work, like in the ones previously cited, we use SVM and MKL to do classification of
ROI, and the data is also made of automatically extracted image features and heterogeneous
clinical data manually annotated from the mammograms. But instead of focusing our work only
in classification, we explore and study all the steps that are required to do classification of ROI
in a mammogram. Because of that, this work combines several areas of research that are usually
found separated. We take on the problem of unbalanced data with CSSVM and use a more
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recent MKL algorithm, that according to Gonen and Alpayd (2011), is able to achieve better
results than the one used by Augusto (2014).

3.2 Human Classification

Nowadays there is no scientific area that does not benefit from the utilization of computer
systems, and obviously health is no exception, but due to the risk involved we do not expect that
the CAD systems will be able to substitute and or do the work by the health specialists on the
short term. We just want to build CAD systems that help these specialists do their work even if
it just simplifies or creates better conditions to work. Another advantage of CAD systems is the
inherent condition of being able to store everything that is being done. This data can be later
worked on and internally each health institution may be able to detect misdiagnoses and more
easily improve the performance of the mammography specialists, by telling them where and when
were they wrong. One example of this is a system that automatically highlights the more relevant
ROI, it does not have to be 100% accurate at detecting ROI with malignancy, because even if
normal zones are highlighted the specialist can just ignore them and focus on the important ones.
According to Barlow et al. (2004) a health specialist working with mammograms have a mean of
True Negative rate of 90.1% and True Positive rate of 81.6%. Studies have shown that there is a
40% disparity among radiologist recall results and an even greater value of 45% for the False
Positive (over treatment). Globally it is known that the ability of radiologists to detect cancer
varies by as much as 11%. These values tell us that there is a large room for improvements and
that CAD systems can be helpful decreasing these disparities, also the human average recall
value of 81% is inferior to the one obtained by SVM 85% (Ferreira et al. (2015)).
To illustrate the human error and assuming each radiologist will see only 5 cancers in 1000
mammograms. With a recall of 81.6%, the radiologist will have a false negative rate of 1 per 1000
mammograms. If we assume that a health professional looks at least to 500 mammograms per
year then every two years one person will go home without knowing that has cancer, and may die
because of that mistake. Even worse is that there can be no feedback to the health professional
about this mistake and because of that there is also no improving, repeating statistically the
same error every two years.

3.3 The state of the art

We will be listing now the most recent works in the area of X-ray images and MKL. Most of
the works we describe here use one or several of the following datasets; Mammographic Image
Analysis Society (MIAS (2017)), Digital Database for Screening Mammography (Heath et al.
(1998, 2000)), InBreast (Moreira et al. (2012)) and Breast Cancer Digital Repository (Moura
et al. (2013); Ramos-Pollán et al. (2012); Moura and Guevara López (2013)). For each work,
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we refer to the model or strategy used, dataset and objective. The metrics we will be using for
comparison will be accuracy, AUC ROC or recall, different metrics are necessary because not all
works use the same metric.

3.3.1 Detection and Labeling of Abnormalities

The following works are specialized in the detection or classification of a single type of finding
like masses, calcification or structural distortion.

• Liu et al. (2016a) Presents an SVM model for recognition of architectural distortion in
mammograms. The data contains 231 malignant masses from DDSM of those only 69 are
architectural distortion. 60% were used for training and 40% for testing and obtaining up
to 91,67% accuracy with SVM.

• Guo et al. (2016b) Created a model using 87 images from the MIAS Dataset. They were
able to detect ROI in 81 of them by the enhance of abnormal mammograms using dual
morphological top-hat operations with a non-flat structuring element, which is a method
for image threshold, and a Neural Network for classification.

• Muthuvel et al. (2017) Created a micro calcification cluster detector using a multi scale
products based Hessian matrix. The database consisted of 234 mammograms from both
MIAS and DDSM combined, containing a total of 171 clusters of micro calcifications in
which they show a total of 166 True Positives and 106 False Positives. Although they
detected almost all of the clusters, they also report a percentage of 45% False Positive per
image.

• Nithya and Santhi (2017) Built a model based in a Decision Tree classifier for mammogram
density measure and classification. 180 mammograms were randomly chosen from the
MIAS database, being 60 images of fatty, 60 images of glandular and 60 images of dense
breasts. Three-fold cross-validation was used to evaluate the classifier. They correctly
classified 98% of the mammograms into three density classes.

3.3.2 Classification of Regions of Interest

All these works propose classifiers for ROI. The methods change from paper to paper and almost
all the state of the art data mining algorithms are used. The type of problem also changes
between the papers, because some of them consider images with no benign ROI and try to classify
them as normal.

• Liu et al. (2010) Created a model using Linear Discriminant Analysis and SVM for mass
classification, where 309 images are used from DDSM, 142 benign and 167 malignant. They
report 65% accuracy with SVM in what they consider a difficult dataset.
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• Hiba et al. (2016) Presents a model using C4.5 Decision Tree and the k-Nearest-Neighbour
algorithm, achieving 90% accuracy on the classification of different types of masses. The
dataset contained 196 mammograms depicting a true mass and the rest 392 being normal
mammograms without any mass.

• Audithan et al. (2017) Use different types of entropy measures and ensemble classification
with three types of classifiers; k-Nearest-Neighbour, Bayes Network, and SVM for detection
of malignancy in mammograms. Using the MIAS dataset they achieved results ranging
from 62% to 89% accuracy.

• Isikli Esener et al. (2017) Created an ensemble method using Fisher’s Linear Discriminant
Analysis, Linear Discriminant Classifier, SVM, Logistic Linear Classifier, Decision tree,
Random Forest, Naïve Bayes, and k-Nearest-Neighbour for Breast Cancer Diagnosis. The
dataset IRMA from Deserno et al. (2011) with 233 ROI, was used with cross-validation,
where 90% were used for training and 10% as the test, the results of classifiers that show
the top three performances were combined achieving up to 93,52% accuracy.

• Milosevic et al. (2017) Took on the problem of three class mammograms classification
(normal, benign, malignant). They presented a CAD system based on gray-level co-
occurrence matrices using a SVM classifier, Naive Bayes and K-Nearest-Neighbour. These
three methods were compared by doing cross-validation and obtained 65%, 51.6%, 38.1%
accuracy, respectively.

• Qiu et al. (2017) Created a deep learning method for classifying between malignant
and benign masses, using an image dataset involving 560 ROI extracted from digital
mammograms. With a 4-fold cross-validation method they achieved a ROC AUC of 79%.

• Suhail et al. (2017) Show a tree based model for the classification of mammographic benign
and malignant micro calcification clusters. The experiment was in a subset of 129 ROI
from the DDSM database, 71 images were malignant, whereas 58 were benign. They report
66 True Positive results and 51 True Negative resulting in 91% accuracy.

• Venkatalakshmi and Janet (2017) Proposed a model with Pseudo Zernike Moments and
SVM for the classification of ROI using MIAS dataset. They report accuracy values of up
to 99%.

3.3.3 Multiple Kernel Learning

The following works are the most recent in the area of MKL applied to X-ray images.

• Espinoza (2016) Shows a model for detection of architectural distortion and characterization
of masses by the use of MKL. For the mass description they obtained an average of 92%
accuracy in the DDSM dataset and 94% accuracy for INBreast using 2 fold cross-validation.
For the architectural distortion detection they got up to 89% accuracy in the DDSM (10
fold cross-validation) and 89% accuracy for MIAS using Leave one out.
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• Cao et al. (2017) Present a MKL method for detection of Lung nodules in clinical thoracic
CT scans. The database used in this work is the LIDC-IDRI made by Armato et al.
(2011), containing 1012 cases. The experiments were done using 10-fold cross-validation
and achieved a mean of 87% ROC AUC.

• Narváez et al. (2017) Presented an automatic BI-RADS characterization of breast masses
contained in a ROI using MKL. The datasets used were the DDSM (980 ROI) and INBreast
(216 ROI). They achieved sensitivity of 96.2% and a specificity of 93.1% on the mass
detection. Also showed averaged sensitivity rates between 87.4% and 96.7% and specificity
between 85.6% and 96.7%, on the shape, margin and density descriptions.

• Wani and Raza (2017) Used MKL method for classification of mammograms using 300
mammograms from the MIAS dataset. With 5 fold cross-validation they achieved 86% of
what we assume to be accuracy since they do not refer that in the article.

3.3.4 Feature Selection

Feature Selection can be one of the best ways to maximize the performance of a model. We will
now be discussing some of the different works that presented new feature selectors. All the works
cited here are related with data mining of mammogram images and divided by learning task.

3.3.4.1 ROI Classification

• Beura (2016) Present a correlation based filter, tested in MIAS and DDSM dataset using
several data mining methods, achieving up to 98% accuracy for both datasets.

• Devisuganya and Suganthe (2016) Presents a Hybrid Shuffled frog-PSO algorithm for
feature selection, the dataset from MIAS was used. With Decision Trees they show a recall
of 92%.

• Kumar and Balakrishnan (2016) Did experiments using Symmetric Stochastic Neighbor
Embedding for feature selection, the MIAS dataset is used. Experiments with SVM achieve
results up to 90% accuracy.

• Liu et al. (2016b) Used a multitask learning method for feature selection in the DDSM
dataset, and achieves 91.79% accuracy using a sparse representation based classification
method.

• Galván-Tejada et al. (2017) Used the BCDR dataset for testing the generic algorithm
from Galgo, a R software package for feature selection. Three algorithms were used
for testing: Random Forest (93% ROC AUC), Nearest Centroid (93% ROC AUC) and
K-Nearest-Neighbors (96% ROC AUC).
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• Tamrakar and Ahuja (2017) Use Discrimination Potentiality to do feature selection. The
data used is from DDSM and MIAS datasets, and they report 100% accuracy for the MIAS
dataset and 97% for DDSM using an SVM.

3.3.4.2 Others

• Guo et al. (2016a) Developed a new fuzzy-rough feature selection algorithm for Breast
Density Classification, their experiments in MIAS dataset with Bayes network achieved up
to 68% accuracy.

• Kowsalya and Priyaa (2016b) Created a model for detection of Bilateral Asymmetry in
mammograms, using MIAS dataset, the feature selection is done using a Particle Swarm
Optimization (79% recall), Ant Colony Optimization (82% recall) and Artificial Bee Colony
Optimization (89% recall), the performance of each selector was tested using an Artificial
Neural Network classifier.

• Tan et al. (2016) Developed a modified sequential floating forward selection for feature selec-
tion and experimented using their developed CAD system for detection of mammographic
lesions, achieving up to 92% recall.

3.3.5 Feature Extraction

The list of extracted features and method for feature extraction used by us is described in Chapter
2.2.2. Many works use several more features or just different ones than us. This distinction is
very important because the difference in the results can be because of the different dataset or the
final set of features and not the model. The dataset with the mammograms is the same in some
works, but the dataset with the objects that are going to be classified can be completely different.
Databases like MIAS and DDSM only contain clinical features and mammogram images and
because of that extra features must be extracted from ROI. We divided the works by groups of
extracted features. This work does not focus in the selection of best group of features so we will
not discuss which combination would be the optimal, but in future works we expect to explore
that area.

• Gray-level or Intensity descriptor

– Aarthi et al. (2011)

– Nithya and Santhi (2017)

• Shape, Size and Texture using Gray Level Co-occurance Matrix

– Wei et al. (2005)

– Kowsalya and Priyaa (2016b)
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– Liu et al. (2016b)

– Milosevic et al. (2017)

– Suhail et al. (2017)

• Intensity Descriptors And Texture Descriptors

– Guo et al. (2016b)

– Cao et al. (2017)

• Clinical Data

– Ferreira et al. (2015)

• Intensity Descriptors , Texture Descriptors , Shape and Location, Clinical data

– Moura et al. (2013)

– Moura and Guevara López (2013)

– Augusto (2014)

– This work

• Gabor features and Texture Descriptors

– Liu et al. (2016a)

– Tan et al. (2016)

– Tamrakar and Ahuja (2017)

• Wavelet Features and Texture Descriptors

– Beura (2016)

– Kumar and Balakrishnan (2016)

– Audithan et al. (2017)

• Zernike-Wavelets and Gaussian Markov Random Field

– Devisuganya and Suganthe (2016)

• Zernike-Wavelets

– Espinoza (2016)

– Venkatalakshmi and Janet (2017)

– Narváez et al. (2017)

• Others1

– Trabelsi Ben Ameur et al. (2016)

– Wani and Raza (2017)
1A special mention should be done to these works, because they use a combination of all the types of features

that we refer in this paper.
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3.4 Analysis

Our work is based on the previous results from Augusto (2014), we wanted to remake the
experiment using a bigger dataset and a more recent MKL algorithm. We also do research and
experiments in segmentation and feature extraction, this allows us to have a better perspective
of the problem since we study and apply all the steps necessary to obtain classification of a
ROI. Many works that we found do not use MKL and even less do a ROI classification, the
most common type of work is specialized in the classification of one unique type of ROI, for
example the work of Qiu et al. (2017) only uses masses. This type of strategy leads to very small
datasets and may even lead to overfitted models. Our work is important because not only has
experiments with different image databases but also does not specialize in any type of finding,
because of that it is a much more generic and realistic model that can classify any type of finding
in a mammogram.
Almost none of the cited works try to deal with the unbalanced characteristics of the data, we
not only do that but also show results with a very unbalanced dataset. We also give more weight
to the malignant class since a misclassification of a malignant object may lead to death. Kuusisto
et al. (2015) studies this problem, using clinical data from mammograms to create a Naive Bayes
network and estimate the probability of malignancy following a non-definitive breast core needle
biopsy. They use a False Negative and False Positive weight of 150:1 and are able to increase
Specificity while achieving 100% recall. Many papers say that the feature extraction is one of
the most important parts of the experiment. The features we extracted are different from many
other works, we think this happened because they are the ones present in the BCDR dataset,
which is a dataset used in a very small number of works. Feature selection is another important
part of our work and we noticed that almost no works use the same feature selector, almost all
papers present a new solution for mammograms features selection.
According to the research done, the state of the art of mammogram classification is defined by
an agglomeration of different works from different areas of research. This happens because of
the several procedures that must be done to extract data from a mammogram, and ultimately
use it for obtaining knowledge. Our work is one of the few that combines all that information
into one single work, and suggests the creation of a system that alone is able to do all those
procedures. Because of this, our work should be considered state of the art, since it combines
state of the art algorithms to achieve one of the best solutions to the optimal classification of
ROI in mammograms.

3.5 Summary

In this chapter we presented our position on the use of CAD systems in health care, and how
they should be, we also presented the state of the art in X-ray image, we described the utility of
our work on the present state of the art, and did recommendations on what can still be done
and what paths should the research in this area follow. We expect that the reader is now able to
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understand and criticize all our results and methods. In the next chapter we will describe the
data we use and how the data-treatment was done to obtain the final objects. Results of our
methods and algorithms are presented, and we finish the chapter with a comment on those while
comparing them with other works but mainly to the work of Augusto (2014) since it is the work
that better relates to this one.





Chapter 4

Weighted MKL applied to breast im-
ages

In this chapter, we will describe the methodology and data used in this work and how we apply
the MKL method to our data. From now on to avoid any misinterpretations we will refer to
positive +1 class as being malignant and negative -1 class as being the benign.

4.1 Data

As in other works we used two different datasets, Breast Cancer Digital Repository (BCDR) and
Digital Database for Screening Mammography (DDSM).

4.1.1 BCDR

One of the datasets used for this experience was obtained by joining 4 different datasets from
the Breast Cancer Digital Repository (BCDR (2017)).

BCDR is a compilation of Breast Cancer anonymized patients’ cases annotated
by expert radiologists containing clinical data (detected anomalies, breast density,
BIRADS classification, etc.), lesions outlines, and image-based features computed
from Craniocaudal and Mediolateral oblique mammography image views.

The 4 datasets used from the BCDR repository were created in the works of: Moura et al.
(2013); Ramos-Pollán et al. (2012); Moura and Guevara López (2013): bcdr_f02_features,
bcdr_f01_features, bcdr_d01_features and bcdr_d02_features.
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I.V Node Calci Micro Archi Stroma Den
1:177 0:452 0:432 0:606 0:779 0:726 1:165
2:221 1:356 1:376 1:202 1: 29 1: 82 2:222
3:187 3:342
4:223 4:79

Table 4.1: I.V: Image View, Node: is nodule, Calci: is
calcification, Micro: is micro-calcification, Archi: is architectural
distortion, Stroma: is stroma, Den: Density

Feature Malignant Benign
is nodule 164 192
is calcification 32 344
is mic.calcification 115 87
is architectural distortion 23 6
is stroma 67 15

Table 4.2: BCDR Lesion type malignant Count

The data from the combination of
those datasets consists of a total of
904 unique objects with 36 features.
The objects are several findings, from
different patients. The 7 features
described in table 4.1 and the Age are
considered by BCDR to be clinical
and general data. The remaining
29 are described in Figure 4.3 and
were obtained from feature extraction
from the regions of interest selected by
radiologists. Details on the amount of
malignant and benign cases for each
lesion type can be seen in table 4.2.
Before doing any data treatment ob-
jects with missing values were re-
moved, maintaining 808 of our ori-
ginal 904 objects. This was done
so that we did not have to train or
test our model with missing values or

predict them. In any case, the number of objects with missing values is very low. Our final
dataset has 238 malignant cases and 570 benign.

4.1.2 DDSM

With the huge collection of mammogram images contained in the DDSM: Digital Database
for Screening Mammography Heath et al. (1998, 2000) we created 2 datasets. The DDSM is
organised by volumes of cases that contain images.

Each volume is a collection of cases of the corresponding type. A case consists
of between 6 and 10 files. These are an "ics" file, an overview "16-bit PGM" file,
four image files that are compressed with lossless JPEG encoding and zero to four
overlay files. Cancer cases are formed from screening exams in which at least one
pathology proven cancer was found. benign cases are formed from screening exams
in which something suspicious was found, but was determined to not be malignant
(by pathology, ultrasound or some other means).
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Table 4.3: BCDR Continuous Features

Age Mean Std_Dev Max Min
Min 23 0.11 0.020 0.17 0

Mean 1.73 0.66 0.108 0.90 0.34
Max 2.94 0.99 0.294 1.00 0.81

Area Perim x_Centroid y_Centroid Circularity
Min 129 40 0.019 0.080 0.03

Mean 25465 511 0.48 0.497 0.66
Max 829617 4039 0.99 0.911 1.05

Form Solidity Extent Energy Contrast
Min 0.0003 0.1779 0.039 0.0033 0.4

Mean 0.0083 0.8772 0.621 0.0916 14
Max 0.0386 1.0000 0.859 0.8946 138

Variance Homogeneity Sum Average Sum Variance Sum Entropy
Min 22 0.20 9 60 0.36

Mean 523 0.50 43 1858 2.68
Max 1014 0.95 63 3995 4.01

Skewness Info.Correlation 2 Info.Correlation Diff Variance Entropy
Min -5.69 0.060 -0.6417 0.4 0.39

Mean -0.33 0.61 -0.1438 14 3.96
Max 6.11 0.96 -0.0087 138 6.22

Correlation Elongation Kurtosis Difference Entropy
Min -0.52 0.05 -1.6 0.36

Mean 0.38 0.68 1.6 56
Max 0.96 0.98 52.3 89

* For more information on the equations used for extracting the variables please refer to 2.2.2.
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We Selected the benign and malignant volumes that use the scanner Lumisys and Howtek,
we chose these because they were the ones that contained more cases and since the images were
scanned by different machines, we decided that 2 datasets could be made.

4.1.2.1 Terminology

One of the main reasons for using DDSM is that each image contains clinical features that we
wanted to use in our experiments. we will now describe these features according to DDSM (2017).

Subtlety The subtlety value for a lesion may indicate how difficult it is to find the lesion, the
bigger the easier (1 is "subtle" and 5 is "obvious").

Mass Shape :

Round A mass that is circular in shape.

Oval A mass that is elliptical.

Lobulated A mass that has contours with undulations.

Irregular The lesion’s shape cannot be characterized.

Distortion Equivalent ot an architectural distortion in BI-RADS.

Mass Margin :

Circumscribed The margins are sharply demarcated with an abrupt transition between
the lesion and the surrounding tissue.

Ill Defined Poor definition of the margins.

Obuscured One which is hidden by adjacent normal tissue.

Spiculated The mass is characterized by lines radiating from the margins.

Microbulated The margins contain small undulations.

Calcification Type :

Punctate These are circular, less than 0.5mm with well defined margins.

Amorphous Calcifications so small that cannot be characterized.

Pleomorphic Bigger than amorphous.

Lucent Center These are calcifications that range from under 1 mm to over a centimetre
or more.

Fine Linear Branching These are thin, irregular calcifications, they also are discontinu-
ous.

Calcification Distribution :

Clustered Used when multiple calcifications occupy a small volume of tissue.
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Linear Calcifications arrayed in a line.

Regional These are calcifications scattered in a large volume of breast tissue.

Diffuse These are calcifications that are distributed randomly throughout the breast.

In tables 4.4 and 4.5 NA represents values that were not annotated.

4.1.2.2 Howtek

The data from the combination of the Howtek volumes consists of a total of 1380 objects with
27 features where 717 objects are benign and 663 are malignant. Basic information about the
clinical features can be seen in Table 4.4 and the automatically extracted features are in Table
4.6.

4.1.2.3 Lumisys

The data from the combination of the Lumisys volumes consists of a total of 1372 objects with
27 features where 703 objects are benign and 669 are malignant. Information about the clinical
features can be seen in Table 4.5, the automatically extracted features are in Table 4.6.
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Class Class Class
Shape -1 +1 Margins -1 +1 Subtlety -1 +1

Distortion 13 46 Circumscribed 92 16 1 74 71
Irregular 77 289 Ill Defined 144 175 2 167 152
Lobulated 141 45 Obscured 145 25 3 210 153

Oval 145 43 Spiculated 24 205 4 177 159
Round 42 11 Others 21 10 5 89 128
Other 3 8 NA 291 232
NA 226 291

Distribution +1 -1 Type +1 -1 Lesion +1 -1
Clustered 240 168 Amorphous 17 50 Calcification 294 249
Linear 15 43 Branching 33 2 Mass 423 414

Segmental 33 38 Pleomorphic 175 189
Other 6 1 Punctate 17 35
NA 423 413 Other 8 11

NA 413 423

Table 4.4: Howtek Clinical Features

Class Class Class
Distribution +1 -1 Type +1 -1 Lesion +1 -1
Clustered 235 116 Amorphous 53 20 Calcification 339 171
Linear 11 2 Branching 14 16 Mass 364 498

Segmental 31 27 Pleomorphic 150 91
Cluster-Linear 8 10 Lucent-Centered 24 0

Regional 5 10 Branching-Pleomorph 3 19
Other 0 7 Punctate 21 5
NA 413 496 Other 33 11

NA 365 498
shape +1 -1 Margins +1 -1 Subtlety +1 -1

Irregular 28 201 Circumscribed 209 31 1 11 22
Oval 140 75 Circum.-Obscured 23 2 2 77 67

Lobulated 100 86 Ill-Defined 41 117 3 208 151
Round 59 31 Microbulated 19 66 4 172 130

Distortion 16 43 Obscured 24 8 5 235 299
IrregularDistortion 3 46 Ill-Spiculated 5 22

Other 16 14 Spiculated 10 186
NA 341 173 Ill-Obscured 2 24

Other 8 19
NA 350 179

Table 4.5: Lumisys Clinical Features
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Table 4.6: Howtek and Luminsys Continuous Features

Howtek Features | Lumisys Features

Statistic Mean St. Dev. Min Max | Mean St. Dev. Min Max

mean 111.859 26.283 49.248 175.164 | 110.108 27.417 42.758 176.921
std_dev 14.792 6.819 3.478 38.278 | 17.622 9.145 3.576 56.971
mode 113.783 29.313 43.626 186.794 | 114.104 33.125 32.416 193.416
median 112.132 26.803 48.179 177.214 | 110.573 28.636 41.237 179.479
maximum 161.357 30.817 69.685 239.724 | 167.824 31.389 81.809 247.603
minimum 72.941 27.145 3.790 137.253 | 64.100 28.785 0.000 136.420
kurtosis −0.204 0.713 −1.446 2.490 | 0.325 2.632 −1.541 33.557
skewness 0.058 0.526 −1.612 1.600 | 0.138 0.773 −2.138 5.167
area 186,457 176,621 3,309 923,070 | 198,443 217,232 944 1,409
perimeter 1,6102 820.749 225.602 3,951 | 1,587 875 138.400 4,468
x_centroid 0.514 0.222 0.027 0.970 | 0.498 0.269 0.021 0.982
y_centroid 0.524 0.146 0.135 0.916 | 0.488 0.148 0.089 0.919
circularity 0.717 0.093 0.204 0.911 | 0.802 0.179 0.076 0.982
elongation 0.740 0.152 0.195 0.993 | 0.764 0.147 0.110 0.992
form 0.001 0.001 0.0003 0.008 | 0.001 0.001 0.0002 0.015
solidity 0.958 0.040 0.628 0.994 | 0.947 0.078 0.332 0.995
entropy 5.779 0.657 3.720 7.400 | 5.931 0.702 3.580 7.501
contrast 0.033 0.011 0.0005 0.108 | 0.059 0.020 0.007 0.180
correlation 0.930 0.062 0.386 0.995 | 0.894 0.094 0.390 0.994
energy 0.496 0.176 0.175 0.998 | 0.443 0.179 0.155 0.975
homogeneity 0.983 0.006 0.946 1.000 | 0.970 0.010 0.910 0.997

* For more information on the equations used for extracting the variables please refer to 2.2.2.
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4.1.3 Data Treatment

Standardization was applied to the data followed by winsorization, a technique to reduce the
impact of outliers and turn them into usable values (Ghosh and Vogt (2012)). This is possible
because after standardization, data is centered in zero and reflect how far the data is from the
average (the Z-Score). In our case the maximum allowed Z-Score is +−3, which only affects 2% of
data according to a normal distribution. In this case, after winsorization, the value 3.6 would be
transformed into 3.

4.1.4 Methodology

To test the performance of our models the methodology shown in algorithm 7 was applied.
With this methodology we make sure that no data from a test set is used in any part of the
tuning and training processes, per fold. During the training we used the solvers from the
SVM implementation of Chang and Lin (2011) and Cost-Sensitive SVM implementation of
Masnadi-Shirazi et al. (2012). These solver were used on Non-Linear MKL created by 2.19 and
implemented based on the work of Gonen and Alpayd (2011). Our implementation allowed us to
change the SVM solver according to the type of problem. The weighted version was only applied
to BCDR because the classes for these datasets are unbalanced.

1 Algorithm(MKL Methodology);

2 begin
3 Choose number of Folds N;
4 Create N Folds with a train and test set;
5 for each Fold do
6 Apply Feature Selection on the Training set;
7 Create x subfolds from training set;
8 for each combination of Parameters do
9 for each Subfold do

10 Train on the training Subfolds;
11 Test on the test Subfold;
12 end
13 end
14 Select the combinaton of Parameters that produced best results across all subfolds;
15 Train Model with the Parameters;
16 Test on Test Set;
17 Store True Positives, True Negatives, False Negatives, False Positives;
18 end
19 end

Algorithm 7: MKL Methodology
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The parameters we refer to in algorithm 7 are the following.

• C From the SVM Equation 2.8.

• ε From MKL Equation 6.

• The number of features to be removed from the dataset.

• Weights for margin and error rate values, when training with the CSSVM solver equation
2.9.

C, ε and Weights tuning was controlled by arrays of possible values, and the tuning of features
was controlled by the condition: if the results do not improve after removing a feature stop
removing features.
For the experiment we used five folds for the BCDR datasets, each fold size can be seen in Table
4.7. For the DDSM datasets we opted for the ten folds, the sizes of each fold can be found in
Tables 4.8 and 4.9. The difference in the number of folds between the BCDR and DDSM is due
to the reduced number of malignant objects in BCDR, if we had done 10 fold we would end
up with a very small amount of malignant objects per fold. This way all the folds across the 3
datasets have approximately 30 objects on the test set and 100 on the training set. Also the
number of malignant objects per test set in both datasets ranges from 16 to 10 objects.

Fold Set Type Benign Objects Malignant Objects
1 Train 96 23
1 Test 22 10
2 Train 102 26
2 Test 20 12
3 Train 80 48
3 Test 18 14
4 Train 89 39
4 Test 22 10
5 Train 96 32
5 Test 21 11

Table 4.7: BCDR Fold Details



44 Chapter 4. Weighted MKL applied to breast images

Fold Set Type Benign Malignant
1 Train 53 55
1 Test 13 14
2 Train 61 47
2 Test 11 16
3 Train 54 54
3 Test 14 13
4 Train 55 53
4 Test 16 11
5 Train 52 56
5 Test 12 15
6 Train 59 49
6 Test 14 13
7 Train 55 55
7 Test 16 11
8 Train 55 53
8 Test 14 13
9 Train 64 44
9 Test 12 15
10 Train 54 54
10 Test 12 15

Table 4.8: DDSM Howtek objects per fold

Fold Set Type Benign Malignant
1 Train 60 48
1 Test 13 14
2 Train 54 54
2 Test 11 16
3 Train 59 49
3 Test 14 13
4 Train 62 46
4 Test 13 14
5 Train 55 53
5 Test 11 16
6 Train 60 48
6 Test 12 15
7 Train 53 55
7 Test 14 13
8 Train 52 56
8 Test 13 14
9 Train 53 55
9 Test 15 12
10 Train 57 51
10 Test 14 13

Table 4.9: DDSM Lumisys objects per fold

4.2 Feature Selection

For the feature selection (line 4 of algorithm 7), we ranked features combining different strategies.
Since all give a different output, we have less chances of overfiting our model since we take into
consideration all the outputs. Overfiting the feature selection decreases our performance since the
test set is never used while doing the feature ranking. We use the UFilter, the Recursive Feature
Elimination from the R caret package (Caret) and feature-feature and feature-class correlations.
The final rank of each feature is the sum of the positions achieved in each applied strategy (the
lower the better). This process is describe in Algorithm 8.
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1 Algorithm(Feature Selection Algorithm);
input :FeaturesList, FeatureSelectionMethods;

2 begin
3 for each Method in FeatureSelectionMethods do
4 FeaturesRank.add(Rank(Method,FeaturesList));
5 end
6 for each Feature in FeaturesList do
7 tempFeatureRank = SumRank(Feature in all FeaturesRank));
8 RankResults.AddFeature(Feature, tempFeatureRank);
9 end

10 return Sort(RankResults);
11 end

Algorithm 8: Feature Selection Algorithm
.

During the tuning we remove up to 20 of the least interesting features and calculate which
number showed best results. The mean values of features remaining per fold around all folds and
datasets was of 19, being 17 the lowest value of remaining features.

Rank BCDR DDSM-Lumisys DDSM-Howtek
20 Minimum Shape Solidity
19 Is Microcalcification Form Subtlety
18 Entropy Subtlety Lesion
17 Sum Variance Type Type
16 Mean Energy Shape
15 Breast density Circularity Energy
14 Is architectural distortion Mean Standard deviation
13 Sum Average Kurtosis Form
12 Kurtosis Solidity Y Centroid
11 Difference Entropy Elongation Perimeter
10 Variance Standard deviation Contrast
9 Homogeneity Perimeter Mean
8 Image View Skewness Homogeneity
7 Energy Median X Centroid
6 Skewness Minimum Kurtosis
5 Age Homogeneity Elongation
4 Standard deviation Contrast Skewness
3 Y Centroid Mode Median
2 X Centroid X Centroid Minimum
1 Elongation Y Centroid Mode

Table 4.10: Features Rank
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Table 4.10 contains the 20 most important features of each dataset, it was built by sorting all
the features by the average rank position in each fold. To better understand the results we use
colors to differentiate some features. White features are the ones that got similar ranks across
all the datasets, blue ones got similar results across 2 datasets and yellow are the features that
appear in only one dataset.
The differences in the ranking of the features may be due to several causes:

• The unbalance of the classes in BCDR.

• Different nature of the images between DDSM and BCDR.

• Different Scanner used in both datasets of DDSM.

• There may be differences in the method used for feature extraction since we do not have
access to the source used for the extraction of the BCDR features.

• BCDR contains features like age that are not in DDSM.

Since the number of remaining features for each fold was much smaller than the original (BCDR:
Original 36; DDSM: Original 27) and got improvement during the tuning phase we can conclude
that our feature selector is helping in the process of classification.
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BCDR Lumisys Howtek
SVM
MKL

0.3 3e−2 2.8e−6

SVM
CS-MKL

1.1e−5 NA NA

MKL
CS-MKL

4.6e−3 NA NA

Table 5.1: P-Values

This section will be divided in three parts each
one specific for a dataset. For each dataset we
will discuss the results in Table 5.2, followed
by the ROC AUC curves and PR curves that
can be found in the next pages for better
visualization. We will also comment on the
statistical difference of each result according
to the the P-Value, these results can be found
in Table 5.1.

BCDR Results Accuracy AUC FOR Precision Specificity Recall
SVM 0.83 0.90 0.80 0.94 0.98 0.57
MKL 0.82 0.88 0.82 0.83 0.93 0.63

CSMKL 0.78 0.88 0.87 0.67 0.78 0.78

DDSM Howtek Accuracy AUC FOR Precision Specificity Recall
SVM 0.57 0.59 0.55 0.63 0.76 0.38
MKL 0.62 0.67 0.62 0.62 0.62 0.62

DDSM Lumisys Accuracy AUC FOR Precision Specificity Recall
SVM 0.58 0.62 0.56 0.62 0.69 0.5
MKL 0.78 0.83 0.77 0.80 0.78 0.78

Table 5.2: Experimental Results

47
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Figure 5.1: BCDR Dataset Curves

(a) ROC (Malignant) (b) ROC (Benign)

(c) Precision Recall (d) FOR Specificity
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Figure 5.2: DDSM Howtek Dataset Curves

(a) ROC (Malignant) (b) ROC (Benign)

(c) Precision Recall (d) FOR Specificity
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Figure 5.3: DDSM Lumisys Dataset Curves

(a) ROC (Malignant) (b) ROC (Benign)

(c) Precision Recall (d) FOR Specificity
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5.1 BCDR

Figure 5.4: Hypothetical example of hyperplanes
dividing unbalanced data.

Our objective in this experiment was to obtain
the best possible recall for the malignant class
that is the minority in the BCDR dataset.
According to He and Garcia (2009) increasing
recall of the results is usually followed by a de-
crease in the precision, because the model must
allow more Negative objects to be misclassified.
This becomes problematic when the number of
negatives (like in this dataset) is higher than
the number of positives, because the number
of False Positives will grow faster than the
number of True Positives. That can be seen
in Figure 5.4 where two different hiperplanes
divide the data. The normal (black) hiperplane
divides the data while keeping an equal number
of misclassified objects for both classes, the
hiperplane with weights (green) gives more
weight to the minority but greatly increases
the number of objects that will be misclassified.

5.1.1 Table Results

The values in Table 5.2 were calculated using the results from the folds of each dataset at 0.5
threshold. The results shown for the BCDR experiment in Table 5.2 suffer from the same problem
that is described in Chapter 2.4.3 (Unbalanced Data Metrics), this can be easily seen in the
difference between the specificity and recall for the SVM. Accuracy and AUC show that SVM
has a general better performance, but if we focus in the recall and specificity we see that CSMKL
was the model that was able to achieve a better result in the classification of the malignant class,
achieving 21% more recall than SVM. These results also shows that to increase the recall we
may lose precision but it was almost a symmetrical loss because CSMKL lost 27% of precision
when compared to SVM (only 6% more than the recall gain).

5.1.2 Curves Results

It is shown in the (Positive)ROC curve of Figure 5.1a, that CSMKL is able to achieve higher
rates (0.9) of true positives before the SVM, and in the (negative)ROC curve of Figure 5.1a
MKL is better for lower rates (0.1) of False Negatives. Obviously this means that SVM has
better results when there is a high specificity for the benign class, but CSMKL or MKL yield
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better results at higher recall rates for the malignant class. We zoomed in the precision recall
curve in Figure 5.1c to better show the difference between the 3 models when near 100% recall
for the malignant class is required, and prove that CSMKL is the better of the three models
for this type of problem, the difference in the precision between SVM and other Models near
100% recall is up to 15%. Comparison between CSMKL and SVM has p < 0.01, the same is true
when comparing CSMKL with MKL. SVM and MKL obtain statistically similar results, but the
results for CSMKL show that the model is different from any other and its use will drastically
change the obtained results. This proves that for unbalanced datasets CSMKL can achieve better
results by adjusting the weights according to the metrics we want to minimize or maximize.

5.2 DDSM

For the DDSM datasets we did not use CSMKL because both the datasets were balanced and
the use of weights was achieving 100% benign|malignant recall and 0% recall for the other class.
MKL got better results than SVM in both datasets. We should take into account that the Howtek
and Lumisys are both datasets that are difficult to classify, SVM only got 0.58 ± 1 accuracy
which means that the results can be considered random.

5.2.1 Howtek

When comparing the results from SVM and MKL we can see that SVM has beaten MKL in all
the metrics that focus on the correct classification of the benign Class (precision and specificity),
on the other hand MKL achieves better accuracy and AUC while having more than 0.2 recall
than the SVM. (0.38 SVM to 0.62 MKL). The curves that can be found in Figure 5.2 show that
MKL is always superior to the SVM, also the P-Value of MKL and SVM p < 0.01 tells us that
the results are indeed statistically different and that there is no denial according to these results
that MKL does show better performance than SVM when dealing with balanced data.

5.2.2 Lumisys

The results from this experiment are the best we have, the MKL was able to beat SVM in all the
metrics we show in Table 5.2. The difference in the accuracy between both models is of 20% and
not only MKL is able to increase the recall without losing any specificity. Like in the Howtek
experiment the curves in Figure 5 show that MKL is superior in all the moments of the curve
and that can also be seen in the AUC value of SVM (0.62) and the AUC of MKL (0.83). Also
like in the experiments before it achieved a p < 0.01 which means that the results are without
doubt different from the ones of SVM.
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5.3 Analysis

We started this work with the objective of improving the results achieved by Augusto (2014)
and we were able to do that not only with the MKL but also with the SVM, in a unbalanced
dataset. Our work with feature selection also achieved very good results and the ranking system
was able to improve the results of our MKL and SVM models. Then we took on the challenge of
dealing with unbalanced datasets, the results for that experience were somewhat bellow what we
were expecting, this was mainly because of the difficulties that come from experimenting and
explaining results of an unbalanced dataset. Finally in both experiments with the DDSM dataset
we were able to decisively achieve better results with MKL than with an SVM.
By looking at the results shown in 5, we concluded that MKL and CSMKL must be used in
different types of datasets. CSMKL got better results when working with unbalanced data and
was able to minimize the number of False Negatives to a value near 0 while maintaining an
acceptable number of False Positives 50%. We now have a model that can correctly classify all
the malignant cases while only misclassifying half of the benign cases. We are also able to prove
that our MKL model can achieve significantly better results than a simple SVM in both of the
DDSM datasets.
We achieved better results than other ones on the DDSM dataset and used a higher amount of
objects for our experiments. Suhail et al. (2017) achieve 91% accuracy but uses only 129 ROI
from the DDSM database and Liu et al. (2010) use 309 images from DDSM and achieve 65%
accuracy.

5.4 Summary

In this chapter we presented all the work done by us, from the description of the data to the
methodology and results, did some comments on which objectives were achieved and where we
think that we failed, while comparing our results and methods to other works. The results we
obtained where very satisfactory because they allowed us too confirm both of our initial thoughts
that MKL was an improvement of SVM and that CSMKL was able to better classify unbalanced
data. In the next chapter we will focus on discussing the areas where our work should be applied
and how it can be continued.
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Conclusions

In this final chapter we will be discussing the findings we did with our experiments and propose
ideas for future work that may directly use this work as a starting point.

6.1 Main Findings

In this work we did experiments in three connected but different objects of work in supervised
class imbalanced datasets, features and SVM. The results we obtained on the unbalanced data
proved that normal models do not achieve good results for the minority class and that by using
models that allow the use of weights this problem can be solved or at least mitigated.
Part of our work is focused solely in achieving better results by the correct use of the features,
we concluded that for ROI classification the type of feature we use can greatly change the final
result of a model, also we proved that all features can be ranked by level of interest and that by
removing those of lower rank allows to produce better results. The main objective of this work
is to show that MKL can get better results than SVM. The results we obtained for the DDSM
dataset proved exactly that if the same sets of folds and the same methodology is used, SVM
alone is much worse than MKL in all the metrics we used for comparison.

6.2 Future Work

We would like to use our classifier to create an application that with the supervision of a domain
specialist or autonomously can detect areas of interest, extract features from them and do the
classification as malignant or benign of tumors in mammograms. To achieve this there are
many new problems in several areas that must be solved, because a system like that will require
graphical interface, algorithms for computer vision and algorithms for classification and others.
There is also space to explore new combinations of kernels and features and how can they be
optimally used, this can be an important topic since the number of possible combinations of
kernels and features is always quadratic, for example if 5 different kernels are used and the data

55
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contains only 5 features we have more than 52 different ways to combine each feature with a
kernel. For higher numbers this could be unfeasible.
A very discussed topic in this area is what family of features are used, because of that, we think
that a work focused in experimenting and ranking all the groups of features can be also another
topic for exploration since there are works that show up to 264 different single features.
From all the works we cite and others, we concluded that this area of research is in need of a
standard for comparing all the developed works. We suggest the creation of a single repository
with a selection of images from several datasets and another repository with objects describing
ROI with all the features already extracted, if all the works use that same dataset and list what
objects are using it will be easier to compare the results between all of them. Also there is space
for a work focused in exploring the possibility of ranking all the groups of features according to
the different methods, mainly because features that work better for SVM may not have the same
performance in a Bayes Network, and there is no work that concludes what group of features
presents better results across all methods. We also propose that all the feature selectors that
have been shown in several works, should be tested under the same dataset and results compared.

6.3 Conclusion

We presented two models, based on Multiple Kernel Learning, for classifying malignant findings
in mammography images. The main contribution of this work is to handle the inherently
heterogeneous data that usually come from the medical domain. We apply MKL with an SVM
classifier in order to discriminate between malignant and benign findings. Our MKL learning
uses a cost-sensitive model in order to focus on the malignant cases (smaller class), and reduce
the error in this class. Although we focus on the malignant class, our model performs quite
well on the class of benign cases, when compared with other works in the literature and when
compared with the clinical performance. In the test set, our weighted model reaches a recall for
the malignant class of up to 100% while giving 50% recall for the benign class, which means
that this model can be applied to real life applications missing less True Positives than clinical
practice. We believe that further exploration of other kernels and features combinations could
produce even better results.
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