
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Statistical Language Models applied to
News Generation

João Ricardo Pintas Soares

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Prof. Sérgio Sobral Nunes

July 24, 2017

Statistical Language Models applied to News Generation

João Ricardo Pintas Soares

Mestrado Integrado em Engenharia Informática e Computação

July 24, 2017

Abstract

Natural Language Generation (NLG) is a subfield of Artificial Intelligence. Its main goal is to
produce understandable text in natural language, from a non-linguistic data input. Automated
News Generation is a promising subject in the area of computational journalism which can use
NLG to create tools that helps journalists in the news production, automating some steps. Most
of these tools need a large amount of structured data as input and, for this reason, sports is a
very natural subject to use because is a data-rich area. The automatization of steps, in the news
production, brings benefits to journalists, namely the tools can summarize data and convert it into
text. Then they just have to adjust it, making the process of production a lot faster. The need for
this agile process was the main motivation of this dissertation.

The goal of this dissertation is to implement an Automated News Generation algorithm with
the collaboration of ZOS, Lda. who owns the zerozero.pt project, an online media publisher with
one of the largest football databases in the world. They will provide a dataset for exploration and
research. Our approach is based on the use of Statistical Language Models to generate summaries
from scratch, applying them to a system where the user can generate sentences about a specific
match.

Our dataset is composed by summaries written about the season 2015/2016 of the Serie A
of the Italian championship. After a manual analysis we decided that these summaries would be
divided in four categories: introduction, goals, sent-offs and conclusion. Then we had to divide
the summaries in sentences and assign each one to a category. The composition of the corpus is
the following: 118 sentences for introduction, 93 for goals, 23 for sent-offs and 66 for conclusion.
These categories were then divided in subtypes which correspond to the corpus used to train the
N-gram-based models in order to produce sentences. We evaluate the final sentences regarding
intelligibility and completeness, using one questionnaire. We concluded that, although these mod-
els generate sentences that have high scores in intelligibility and completeness, they also generate
ones that scored poorly. We believe this is due to data sparsity. To try to overcome this problem,
zerozero.pt provided an additional collection of summaries, so we can build a classifier to auto-
matically classify each sentence in one of the four summaries categories. This way we were able
to have more data to improve the models. The classifier returned all the sentences divided in the
four categories and we decided to only use one of the categories dataset due to the lack of time.
Introduction was the more appropriate since it is possible to delexicalize using the API data of
each match. After delexicalization and merging the new corpus with the old introduction corpus
we got 365 sentences for introduction, divided in subtypes that worked as the new training cor-
pus. With the sentences generated from the new models we created a new questionnaire. Certain
characteristics of each questionnaires sentence were analyzed and a comparison was made when
it was pertinent.

Keywords: Automated Journalism; Computational Journalism; Natural Language Processing;
Natural Language Generation; Statistical Language Models

i

ii

Resumo

Geração de Linguagem Natural (GLN) é um subcampo da Inteligência Artificial. O seu princi-
pal objetivo é produzir texto percetível em linguagem natural, a partir de dados de entrada não
linguísticos. Geração Automática de Notícias é um campo promissor na área de jornalismo com-
putacional, que usa GLN para criar ferramentas que ajudam os jornalistas na produção de notícias,
automatizando alguns passos. A maior parte destas ferramentas precisa de uma grande quanti-
dade de dados estruturados como entrada e, por esta razão, desporto é um tema natural a abordar
pois é uma área rica em dados. A automatização de passos, na produção de notícias, traz bene-
fícios aos jornalistas, nomeadamente as ferramentas podem sumarizar dados e convertê-los em
texto. Seguidamente apenas tem de ser ajustado, acelerando bastante o processo de produção. A
necessidade de um processo mais rápido foi a principal motivação desta dissertação.

O objetivo desta dissertação é implementar um algoritmo de Geração Automática de Notícias
com a colaboração da ZOS, Lda. que é proprietária do projeto zerozero.pt, um jornal online com
uma das maiores bases de dados do mundo. O zerozero.pt vai fornecer um conjunto de dados
para exploração e investigação. A nossa abordagem é baseada no uso de Modelos de Linguagem
Estatísticos para gerar sumários de raiz, aplicando-os a um sistema onde o utilizador pode gerar
frases relativas a um determinado jogo.

O nosso conjunto de dados é composto por sumários escritos acerca da temporada 2015/2016
da Serie A do campeonato Italiano. Após uma análise manual decidimos que os sumários seriam
divididos em quatro categorias: introdução, golos, expulsões e conclusão. Seguidamente tivemos
que dividir os sumários em frases e atribuir cada uma a uma categoria. A composição do corpus
é a seguinte: 118 frases para introdução, 93 para golos, 23 para expulsões e 66 para conclusão.
Depois estas categorias são divididas em subtipos que correspondem ao corpus usado para treinar
os modelos baseados em N-gramas, de modo a produzir frases. Nós avaliamos as frases geradas
de acordo com a inteligibilidade e a completitude, usando um questionário. Concluimos que,
apesar dos modelos gerarem frases que tem boas classificações relativamente à inteligibilidade e
completitude, também geram frases com classificações fracas. Acreditamos que isto se deve à
escassez de dados. Para tentar superar este problema, zerozero.pt forneceu uma coleção adicional
de sumários, de modo a que possamos implementar um classificador para automaticamente atribuir
cada frase a uma das quatro categorias dos sumários. Desta forma conseguimos ter mais dados para
melhorar os modelos. O classificador retornou todas as frases divididas nas quatro categorias e
decidimos usar apenas uma delas devido à falta de tempo para terminar a dissertação. Escolhemos
a introdução visto que é possível deslexicalizá-la usando os dados de cada jogo da API. Depois da
deslexicalização e da junção do novo corpus ao antigo da introdução obtivemos 365 frases para
introdução, dividas em subtipos que funcionaram como o novo corpus de treino. Com as frases
geradas a partir dos novos modelos criamos um novo questionário. Determinadas características
de cada frase dos questionários foram analisadas e comparadas quando pertinente.

Palavras-Chave: Geração de Linguagem Natural; Jornalismo Automatizado; Jornalismo Com-
putacional; Processamento de Linguagem Natural; Modelos de Linguagem Estatísticos

iii

iv

Acknowledgements

I would like to thank my supervisor, Prof. Sérgio Sobral Nunes, for suggesting this dissertation
and for always being ready to help and guide me on the right path. I also want to thank José
Devezas for his availability and knowledge that he passed to me.

I want to thank my parents and my brother for all the love and support through these five years
and my whole life, and also for making this possible.

A special thanks to my girlfriend, Inês, for being my anchor, always believing in me and giving
me the strength I needed to carry on.

Last but not least, I would like to thank my friends for the support, encouragement and for
always being there for me.

João Ricardo Pintas Soares

v

vi

“Before anything else, preparation is the key to success.”

Alexander Graham Bell

vii

viii

Contents

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Objectives . 2
1.3 Dissertation Structure . 2

2 Natural Language Generation 5
2.1 Historical Review . 5
2.2 Classification of NLG Systems . 6

2.2.1 Input into the System . 6
2.2.2 Communicative Goal of the System . 6

2.3 The Structure of an NLG System . 7
2.3.1 The Corpus . 7
2.3.2 NLG Architectures . 9
2.3.3 Intermediate Representations . 12

2.4 NLG Generic Approaches . 14
2.4.1 Knowledge-Based Approaches . 15
2.4.2 Statistical Approaches . 16
2.4.3 Hybrids Approaches . 17

2.5 Evaluation Methodologies . 17
2.6 NLG Tools . 18

2.6.1 Natural Language Toolkit (NLTK) . 18
2.6.2 NaturalOWL . 19
2.6.3 PyNLPl . 20
2.6.4 SimpleNLG . 20
2.6.5 OpenCCG . 20
2.6.6 SRILM . 20

3 Statistical Language Modeling 23
3.1 Problem Approach . 23
3.2 Overview . 24

3.2.1 The Chain Rule . 24
3.2.2 Markov Assumption . 25
3.2.3 N-Grams . 25

3.3 Input processing . 26
3.3.1 Data extraction . 26
3.3.2 Delexicalization . 27
3.3.3 Summaries typification . 31
3.3.4 Data preparation . 33

ix

CONTENTS

3.4 Language Modeling . 35
3.4.1 Training Language Models . 35
3.4.2 Sentences Generation . 37

3.5 Implemented System . 38
3.5.1 Description of the system . 38
3.5.2 Implementation of the system . 38

4 Automatic Classification of Summaries 41
4.1 Classifier . 41

4.1.1 Implementation and Classification . 41
4.2 Data preparation and Modelation . 42

5 Evaluation 45
5.1 Methodology . 45
5.2 Results and Discussion . 49

5.2.1 Evaluation of the implemented system’s output 49

6 Conclusions and Future Work 57
6.1 Summary . 57
6.2 Future Work . 58

A Questionnaire one 59

B Questionnaire two 69

References 79

x

List of Figures

2.1 Example of created messages (Source [RD97]). 10
2.2 Example of tree structure of Discourse Planning (Source [RD97]). 11
2.3 Architecture of a NLG System (Source [RD97]). 13
2.4 SPL representation (Source [RD97]). 14

3.1 Diagram explaining the process. 23
3.2 Information about Napoli x Sassuolo match1. 28
3.3 System’s interface. 38
3.4 Part of the match information, provided by zerozero.pt API, in JSON. 39

5.1 Image of the questionnaire’s structure. 48
5.2 Average classification per sentence on the first questionnaire. 49
5.3 Distribution of the sentences classification on the first questionnaire, for intelligi-

bility. 50
5.4 Distribution of the sentences classification on the first questionnaire, for complete-

ness. 51
5.5 Average classification per sentence on the second questionnaire. 51
5.6 Distribution of the sentences classification on the second questionnaire, for intel-

ligibility. 52
5.7 Distribution of the sentences classification on the second questionnaire, for com-

pleteness. 53
5.8 Intelligibility and completeness average classification regarding the number of

words per sentence on the first questionnaire. 54
5.9 Intelligibility and completeness average classification regarding the number of

words per sentence on the second questionnaire. 54
5.10 Intelligibility and completeness average classification regarding the sentence’s cat-

egory on the first questionnaire. 55
5.11 Intelligibility and completeness average classification regarding the sentence’s cat-

egory on the second questionnaire. 56
5.12 Intelligibility and completeness average classification regarding the sentence’s sub-

type on the second questionnaire. 56

A.1 Part 1 of questionnaire one. 59
A.2 Part 2 of questionnaire one. 60
A.3 Part 3 of questionnaire one. 61
A.4 Part 4 of questionnaire one. 62
A.5 Part 5 of questionnaire one. 63
A.6 Part 6 of questionnaire one. 64
A.7 Part 7 of questionnaire one. 65

xi

LIST OF FIGURES

A.8 Part 8 of questionnaire one. 66
A.9 Part 9 of questionnaire one. 67
A.10 Part 10 of questionnaire one. 68

B.1 Part 1 of questionnaire two. 69
B.2 Part 2 of questionnaire two. 70
B.3 Part 3 of questionnaire two. 71
B.4 Part 4 of questionnaire two. 72
B.5 Part 5 of questionnaire two. 73
B.6 Part 6 of questionnaire two. 74
B.7 Part 7 of questionnaire two. 75
B.8 Part 8 of questionnaire two. 76
B.9 Part 9 of questionnaire two. 77
B.10 Part 10 of questionnaire two. 78

xii

List of Tables

2.1 Overview of the NLG Tools. 22

3.1 Tokens used in delexicalization for category “introduction”. 29
3.2 Tokens used in delexicalization for category “goals”. 30
3.3 Tokens used in delexicalization for category “sent-offs”.. 30
3.4 Tokens used in delexicalization for category “conclusion”. 31
3.5 Number of sentences per each subtype of introduction. 33
3.6 Number of sentences per each subtype of goals. 34
3.7 Number of sentences per each subtype of sent-offs. 34
3.8 Number of sentences per each subtype of conclusion. 35

4.1 Document-term matrix example. 42
4.2 Number of sentences per category. 43
4.3 Number of sentences per introduction’s subtype. 43

5.1 Corpus characterization. 46
5.2 Subtype of each set of sentences on questionnaire 1. 47
5.3 Subtype of each set of sentences on questionnaire 2. 47

xiii

LIST OF TABLES

xiv

Abbreviations

API Application Programming Interface
CCG Combinatory Categorial Grammar
D2T Data-to-Text
FEUP Faculty of Engineering of the University of Porto
FLM Factored Language Model
LM Language Model
MLE Maximum Likelihood Estimation
MTT Meaning-Text Theory
NLG Natural Language Generation
NLP Natural Language Processing
RST Rhetorical Structure Theory
SFG Systemic Functional Grammar
T2T Text-to-Text
TAG Tree Adjoining Grammars

xv

Chapter 1

Introduction

In this chapter we present the context of this dissertation, the motivation and the objectives pro-

posed.

1.1 Context and Motivation

Natural Language Generation is a Natural Language Processing task that converts computer based

representations of data to text, in natural language. NLG techniques are commonly used to create

systems that produce information easily understandable by a human. An example of how NLG

systems can be used are to create Authoring Aids, systems used to generate routine documents,

helping workers in their tasks. This is useful to them so they don’t have to occupy their working

time producing these documents when they could be working in their main task. As Reiter and

Dale wrote [RD97]: “a computer programmer may spend as much time writing text (code docu-

mentation, program logic descriptions, code walkthrough reviews, progress reports,and so on) as

writing code. Tools which help such people quickly produce good documents may considerably

enhance both productivity and morale.”.

Automated News Generation is a promising subject in the area of computational journalism

which can use NLG to create tools that helps journalists in the news production, automating some

steps. Most of these tools need a large amount of structured data as input and, for this reason,

sports is a very natural subject to use because is a data-rich area [Lev12]. The automatization of

steps, in the news production, brings benefits to journalists, namely the tools can summarize data,

converting it into text [Roo14]. Then they just have to adjust it, making the process of production

a lot faster. The need for this agile process was the main motivation of this dissertation. It is also

possible to use a NLG system to complement journalistic pieces with historical facts existing in

the database.

The goal of this dissertation is to implement an Automated News Generation algorithm with

the collaboration of ZOS, Lda. who owns the zerozero.pt project, an online media publisher with

one of the largest football databases in the world. They have provided a dataset for exploration

and research in this field.

1

Introduction

In 2016, João Aires, student of FEUP, wrote a dissertation about this topic [Air16]. That was

the first research work in this area with the collaboration of zerozero.pt, and had the same goal.

His approach was to build a template-based system where he manually created templates for the

different events and characteristics of a football match, based on the analysis of previous news.

The results were good, having managed to have a fluid and perceptible text, in most of the cases.

However, in some cases, the fluidity decreased because of the large amount of similar sentences,

due to the use of templates. That made the summaries more propitious to repetitions of information

and consequently seemed less natural. We tried a different method where the system learns with

examples summaries, in order to generate sentences.

1.2 Objectives

The primary objective is to use Statistical Language Models to generate match summaries from

scratch, applying them to a system where the user can generate a summary about a specific match.

Zerozero.pt generates data of more than 6000 matches per week and produces news for an average

of 100 games per week. It is expected that this system will facilitate the use this large amount of

structured data and consequently increase the journalists productivity. The idea is to integrate this

system in a tool where the journalist can select a game from a list and then generate the summary.

With that summary the journalist just has to make some small adjustments and the journalistic

piece is ready. This tool can work as an assistant and make the production process faster.

Comparing with the work done by João Aires, instead of building the templates manually

and use a template-based approach it was decided that a method based in learning will be used. A

corpora will be built based in a large amount of summaries about previous matches, and the system

will use them to learn and produce models. Then when a specific match is selected to generate a

summary, those models will be used to generate the final output.

In order to achieve these objectives the state of the art of NLG will be reviewed to determine

which approaches and tools can be helpful to meet the requirements previously defined. Also,

the evaluation methodologies will be analyzed to understand how to evaluate the quality of the

summaries generated and so the results can be presented in this dissertation.

1.3 Dissertation Structure

Beyond this chapter this dissertation has five more chapters, giving a total of six chapters. In

Chapter 2 we present a review of the state of the art regarding NLG. In the first section, we do a

historical review about the subject. Section two describes how a NLG system can be classified.

At Section three we explain the way a NLG system can be structured. The following section

describes the most relevant approaches applied to NLG. Section five explains how the quality of

a NLG system can be evaluated. Finally, at Section six, we present some tools found useful to

apply in NLG. Chapter 3 focus on Statistical Language Models and how they are applied to the

implemented system. In Section one we approach the problem and the process is explained. In

2

Introduction

Section two we make an overview about the subject where it is briefly explained. Section three

explains the whole procedure of input processing done to prepare the corpus. Language modeling

explanation is presented in Section four. We describe the implemented system in Section five.

Chapter 4 presents an approach to get more data. Section one describes how the classifier was

implemented and then used. The preparation and modelation of the classified data is represented

in Section two. Chapter 5 explains how the implemented system is evaluated. Section one explains

the methodology adopted and in Section two the results are analyzed and discussed. In Chapter 6

we present the conclusions about the work done in this dissertation and the expectation for future

work. Section one provides a summary and Section two describes the perspectives for future work.

3

Introduction

4

Chapter 2

Natural Language Generation

2.1 Historical Review

NLG field has been in constant development. In the first approaches were produced systems that

translated data in simple text, almost without variation or none at all, like advice giving systems

[Swa77] or simple weather forecasts [KPG86]. Through the years the systems became more com-

plex, with more linguistic insights and several methodologies were developed for the generated

text be more variable [Air16].

In 1994 K.S. Jones suggested the division of phases of work in NLP in four phases: first

between late 1940s and late 1960s, second from late 1960s to 1970s, third until the late 1980s

and fourth from late 1980s onward [Jon01]. In the beginning NLP had a slow and painstaking

progress, having difficulties with dictionary and grammar-based approaches, until the 70’s. In the

third phase, new ideas appeared about logic and formal semantics, what reanimated NLP, however

this still proved to be too challenging to perform practical tasks at scale. Abram Hindle et al points

the reason “Both these approaches essentially dealt with NLP from first principles - addressing

language, in all its rich theoretical glory, rather than examining corpora of actual utterances, i.e.,

what people actually write or say.". So in the 80’s, a big step was given, switching to a corpus-

based approach using statistically rigorous methods. This transition was possible with the large

quantity of Natural Language text available online, with translations in multiple languages, and

the growing of computational technology [HBS+12].

In the present, NLG can be considered as a consolidated field, based on how many systems

were developed and in the amount of areas they were used. However, NLG is still a field open in

many aspects and there is no unique and strictly defined method to face NLG problems [RSBB16].

The seek for systems that translate data into text has been increasing and NLG field tries to sat-

isfy those real life demands, presenting practical applications of the systems [Air16]. Generating

reports about weather from meteorological data in multiple languages [GDK94] and generating

custom letters to answer user‘s questions [Coc96] are examples of practical applications.

5

Natural Language Generation

Several companies tried to enter in this field but two stood out, Narrative Science1 and Auto-

mated Insights2, both based in the United States of America. These companies created systems

capable of turning structured data into text very quickly like generating news about sports leagues,

creating financial reports and about other subjects that can have organized data [Roo14].

2.2 Classification of NLG Systems

A NLG system can be classified considering different criteria. M. Vicente et al. acknowledge two

main elements that are essential to distinguish NLG systems[VBP+15]:

• The input into the system

• The communicative goal of the system

2.2.1 Input into the System

The NLG systems can be distinguished in two types, depending on their input, Data-to-Text (D2T)

and Text-to-Text (T2T). While the input of D2T is a set of data that don’t form a text, like numerical

data representing meteorological information, in T2T the output is obtained by extracting the most

relevant information from the input text.

Data-to-Text: The type of input data can vary a lot. The most common systems use numer-

ical data as input (e.g. information from sensors, medical equipment), however other struc-

tured data like labeled corpus, databases, knowledge bases or log archives are also used.

Some authors refers to non-linguistic data as concept, so these systems are also known as

Concept-to-Text. An example of a D2T system is GoalGetter [TKdP+01], that generates

spoken reports of football matches in Dutch. Another example is Proteus [Dav74], which

generates a summary of a 3 in a row game from a list of movements.

Text-to-Text: This systems has as input texts or isolated sentences. There is a large num-

ber of systems that use T2T systems to generate summaries or simplified texts. Sauper

and Barzilay designed a system which generates Wikipedia articles from a set of Internet

documents. The structure of the article is determined by its subject [SB09].

2.2.2 Communicative Goal of the System

As previously noted NLG systems can be distinguished regarding the communicative goal of the

system. The most significants are:

Informative Texts: The main goal of this system is to extract information from fac-

tual data. FoG [GDK94] and SumTime[RSH+05] are two examples of this kind of sys-

tems, which take numerical data as input to create weather forecasts. Another example is

1https://www.narrativescience.com/
2https://automatedinsights.com/

6

Natural Language Generation

SkillSum[WR08], a tool that generates reports about academic evaluations, to help people

with poor arithmetic and literacy knowledge.

Summaries: Textual summaries are used to generate a succinct version of one or more data

sources. They can be related with various fields of work: medical[PRG+09], engineering

[YRHM07], financial [Kuk83], sports [RM96], patents[MW08] among others.

Simplified Texts: The purpose of simplified texts is to help people with cognitive diffi-

culties or some disability in reading. These texts are used in systems that produce texts for

aphasic people [RTA+09] or systems that allows people with visual disabilities to examine

graphics[FPRL06].

Persuasive Texts: Systems that try to influence or take advantage of the emotional state of

the user. An example is STOP [RRO03], a system that generates smoking cessation letters

to persuade users to quit smoking.

Dialogue Systems: These systems are used to improve the communication between hu-

mans and machines. User interacts with the system, which generates sentences, in natural

language, conditioned by the immediately previous context. Many systems of this kind

were developed like Beetle II[DIB+11] a tutorial system to increase knowledge on certain

subjects, through dialogue, and GIVE software [KBC+09], a system used in virtual envi-

ronments of games.

Explanations: The output of this kind of systems is an explanation of a sequence of

steps that the system followed to execute an algorithm, process a transaction or solve a

mathematical problem. P.Rex [Fie05], an example of this type of systems, is a tool of

explanation of theorems.

Recommendations: The objective of this systems is to create recommendations processing

and translating the data with the user’s preferences and opinions. A system who use this type

of systems is Shed [LCFQY14], that based on the user’s profile and information in the Web,

recommends custom diets.

2.3 The Structure of an NLG System

2.3.1 The Corpus

2.3.1.1 Corpus-Based Approach

In this subsection will be explained the Corpus-Based Approach [RD97]. A Corpus is the col-

lection of example inputs and their outpus which is a very good resource for the NLG system to

learn.

Initially it is created the Initial Corpus and, where appropriate, their associated inputs, the data

about the subject, using examples of news and articles written by humans, the output text. The

corpus should contain all the details that are expected to be produced by the NLG system including

7

Natural Language Generation

uncommon cases as well as the regular ones. If there is no text, about the subject, written by

humans, it should be asked to experts about the subject to write examples of appropriate output

text.

Then it is possible that the developer will need to change the initial corpus for a various number

of reasons:

• The input data may not be available in the detailed and organized way that is needed when

using NLG systems;

• The text may appear to be non-optimal for someone who is an expert about the subject;

• Different opinions between experts who may propose different outputs, for the same input

data, enter in conflict. This can be solved asking them as a group so they can decide which

is the best output option for a given input.

This changes will alter the Corpus, which will be referred as Target Text Corpus. To create it

the developer needs to identify the parts of the initial Corpus that were written by a human with

information that the NLG system can’t access because it is not in the input data.

Reiter and Dale presents a simple example based on a railway station information system as

Initial Corpus of the output text: “There are 20 trains each day from Aberdeen to Glasgow. The

next train is the Caledonian Express; it leaves Aberdeen at 10am. It is due to arrive in Glasgow at

1pm, but arrival may be slightly delayed because of snow on the track near Stirling. Thank you for

considering rail travel." answering the question: “When is the next train to Glasgow?". Assuming

that the input data has all the information needed to answer the question, like train scheduling with

a list of departure and arrival times of each train in the network and individual info about it, each

sentence of the content of the Initial Corpus can be classified as follows:

Unchanging Text: “Thank you for considering rail travel.", text that is always present in

the output.

Directly-Available Data: “The next train is the Caledonian Express, it leaves Aberdeen at

10am, it is due to arrive in Glasgow at 1pm and arrival may be slightly delayed.", text with

the information provided by the input data.

Computable Data: “There are 20 trains each day from Aberdeen to Glasgow.", text with

information provided by the input data, like the directly-available data, but it is computed

by the system, for example counting records about train travels.

Unavailable Data: “because of snow on the track near Stirling.", text about something that

is not available in the input data.

Unchanging text parts are easy to generate by the NLG system because they can be manually

inserted as strings. The Directly-Available Data can present some difficulties for the NLG system

in making it readable for a human but it’s easily accessible. For the Computable Data it is needed

to decide if the results are worth the cost involved. Unavailable Data is the one that causes more

problems for the NLG system. This texts are not possible to generate because the system can’t

8

Natural Language Generation

include data in its output if it is not in its input. This is something that is usually based on humans

opinion or facts that himself can relate, can be something more personal added to the text or some

fact not directly linked with the data. There are some ways to work around the problem like

inserting more information in the system, eliminate the parts of Unavailable Data from the Corpus

or expect the humans add that data to the final output text, if the system will work like an assistant

to them.

2.3.1.2 Data-driven approaches to extend the Corpus Automatically

Building a corpus manually is a task that brings many difficulties, such as the highly need of

human resources and time. This type of corpus have commonly a small size and little variation.

When the data-driven approaches started to appear in NLG sphere, the automation in the creation

and extension of the corpus became possible, bringing a solution that was needed with urgency.

This way is possible to have a more varied output.

Manishina et al. propose the next extension solutions [MJHL16] so it can be possible to build

a larger corpus, with more variety:

Extending the system vocabulary with automatically obtained synonyms: Aims to gen-

erate new variations of the existing sentences with the replacement of open class words (e.g

nouns, verbs, adjectives) to their synonyms obtained automatically;

Diversifying the set of syntactic structures by introducing multi-word paraphrases:
Replaces sub-phrases in a sentence with paraphrases that are acquired automatically;

Making the system responses more ’human’ and user-friendly by means of introducing
a modal component: In charge of giving an pragmatic/emotional side to the sentences

created.

These solutions are completely automatic and just need initial methodology validation and

assessment, executed by humans.

2.3.2 NLG Architectures

The main goal of NLG systems is to generate output text from input data, and this can be build in

different ways. The most used architecture in NLG Systems is divided in three stages, according

to Reiter and Dale [RD97]. These stages will be explained next.

2.3.2.1 Text Planning

Text Planning is composed by two tasks, Content Determination and Discourse Planning, and is

the initial stage of the NLG System.

1. Content Determination: In this task is determined which information will be outputted in

text. A set of messages will be created from the data input, or other data sources. These

are filtered and summarized by the system, in natural language, that labels and differentiate

9

Natural Language Generation

them in Entities, Concepts and Relations within the subject of the text. Giving the example

used in the explanation of the Corpus-Based Approach, specific trains, places and times can

be considered Entities, the property of being the next train is a Concept, and departure and

arrival can be relations between trains and times. In the Figure 1 is shown an example of

messages that can be created in this phase.

Figure 2.1: Example of created messages (Source [RD97]).

2. Discourse Planning: In this step the messages created in the previous step are structured

and ordered to be presented as easily readable text. This has to be composed in a particular

order, having a beginning, a middle and an end, in the simplest case. The structure will de-

pend on how the developer wants the text to be composed. A good structure is fundamental

for the text to be easy to read. The result of Discourse Planning is commonly represented

as a tree structure like the one shown in Figure 2. The decisions made in the tree will

have impact in the sentence aggregation and paragraph boundaries of the output text. The

leaf nodes represent individual messages and the internal nodes display how messages are

10

Natural Language Generation

grouped and related to each other and like explained by Reiter and Dale “In some cases, the

internal nodes also specify discourse relations between their children: in this example, the

NUMBER-OF-TRAINS-IN-PERIOD and IDENTITY messages are placed in a sequence re-

lationship, and the DEPARTURE message is an taken to be an elaboration of the IDENTITY

message."

Figure 2.2: Example of tree structure of Discourse Planning (Source [RD97]).

2.3.2.2 Sentence Planning

In this stage the tasks executed are Aggregation, Lexicalization and Refering Expression Genera-

tion.

1. Sentence Aggregation: This is the process of grouping the messages, early created and

planned, into sentences. In the example that is being used, Sentence Aggregation combine

the IDENTITY and DEPARTURE messages into a sentence, “The next train, which leaves

at 10am, is the Caledonian Express". This step is not always required since there’s messages

that can be conveyed in separate sentences. However aggregation is very useful to enhance

fluency and readability of a text, it can be used to form paragraphs and other structures as

well as sentences.

2. Lexicalization: In this phase it is decided which words and phrases shall be chosen to refer

to the content shaped in the previous steps, based on the concepts about the text’s subject.

Continuing with the railway station example, in this step is decided how DEPARTURE mes-

sage should be represented: worlds like leave and depart are possibilities. Lexicalization

can be done in different ways, like hard-coding a specific word or phrase for each concept

11

Natural Language Generation

or relation, a DEPARTURE message can be always represented by the word leave. Other

way is, when using a NLG system based in learning, vary words used to express a concept

or relation, to have more variety or to accommodate subtle pragmatic distinctions. In this

example depart can be more formal than leave.

3. Referring Expression Generation: This task is intimately related with Lexicalization

since it is also concerned with the production of words and phrases to express the subject

concepts, identifying its entities. In the text example of the Figure 1 is used the referring ex-

pressions “the Caledonian Express" and “it" referring to the subject entity CALEDONIAN-

EXPRESS. However this task is used to avoid ambiguity, distinguishing one entity from

other entities by finding distinct aspects of each one. This usually requires taking a look

at the contextual factors, precisely the content of previous communications with the user,

known as DISCOURSE HISTORY. Continuing to use the railway station example, decid-

ing if it will be used to refer to CALEDONIAN-EXPRESS depends on what have been

mentioned in the previous sentences.

2.3.2.3 Linguistic Realization

This stage executes the Linguistic Realization task.

1. Linguistic Realization: This final task is defined by Reiter and Dale as “process of apply-

ing the rules of grammar to produce a text which is syntactically, morphologically, and

orthographically correct.” A Linguistic Realization process may choose to express the

NUMBER-OF-TRAINS-IN-PERIOD message above as the sentence “There are 20 trains

each day from Aberdeen to Glasgow". The words from and to are added by the syntactic

component of the realizer to indicate the train source and destination, in the sentence. The

morphological component is responsible to transform the word train, in singular form, in its

plural form trains. The orthographic component capitalized the first letter of the sentence

and added a final dot in the end.

2.3.3 Intermediate Representations

Having decided the architecture of the NLG system, Reiter and Dale refer other important aspect,

how the inputs and outputs should be represented, in the different stages. The internal represen-

tation between the three phases described above has to be specified, both from Text Planning to

Sentence Planning and from Sentence Planning to Linguistic Realization. As for the initial input

to the system, it will depend on if it’s a D2T or a T2T system, on the other hand the final output

will be text.

2.3.3.1 Text Planning to Sentence Planning

The output of the Text Planning will be referred as Text Plan.

12

Natural Language Generation

Figure 2.3: Architecture of a NLG System (Source [RD97]).

A text plan are usually represented as a tree. Each of its leaf nodes represent individual mes-

sages and each internal node show how messages are theoretically grouped together. The fact that

they are grouped imposes constraints on the scope of subsequent sentence planning operations

and also on possible locations for paragraph boundaries, in some cases. As noted above, on the

description of Discourse Planing, the text plan may specify discourse relations between nodes.

The most common approach of representing the messages, that compose the leaf nodes of the text

plan, is to represent them in the same way they are represented in Sentence Planning. For this to

be more clear Reiter and Dale give the following example: “For example, if the NLG system uses

templates for sentence plans, it might also use templates in the text plan leaf nodes. The templates

in the text plan may then contain parameters represented by pointers into the domain knowledge

base, whereas, when the sentence plans are constructed, these pointers will be replaced by words

or phrases.”.

2.3.3.2 Sentence Planning to Linguistic Realization

The output of the Sentence Planning will be referred as Sentence Plan.

13

Natural Language Generation

One of the most common techniques used to represent sentence plans are called Abstract

Sentential Representations. With an abstract representation language it’s possible to specify the

content words like nouns, verbs, adjectives and adverbs of a sentence and their relations. Sentence

Planning Language (SPL) is one of the most used languages for sentence plans. Reiter and Dale

explain this representation as: “The SPL representation characterizes the sentence by means of a

number of named attributes and their values, and allows values themselves to consist of named

attributes and their values. In Figure 4 is shown how the sentence “There are 20 trains each

day from Aberdeen to Glasgow” is represented in SPL. With this language is possible to specify

variations in the text in a very easy way. For example, the future-tense version of the example

given before can be displayed by adding a single (:tense future) attribute-value pair to the SPL

represented in Figure 4.

Figure 2.4: SPL representation (Source [RD97]).

2.4 NLG Generic Approaches

In this section will be made an analysis to knowledge-based and statistical approaches, the most

relevant methods applied to NLG. According to Vicente et al. [VBP+15] knowledge-based ap-

proaches use strong linguistic character resources like dictionaries, thesaurus, rules or templates.

From these resources can be obtained syntactic, lexical and morphological information, among

other types. On the other hand, on statistical approaches the information needed to generate natu-

ral language text from the input comes mostly from a corpus and the probabilities obtained from

that corpus, that can be labeled or not. Comparatively with the knowledge-based approaches, sta-

tistical approaches are less domain or language restricted since, if the corpus is appropriate both in

size and in content, it does not have to follow a set of rules or restrictions that may emerge because

of a certain language or context characteristics. Generally, in NLG, the methods applied are based

in the system’s goal and these approaches are not exclusive, so hybrid approaches were created,

combining the two introduced above. In the following subsections will be presented some relevant

examples about these approaches, explained by Vicente et al. [VBP+15].

14

Natural Language Generation

2.4.1 Knowledge-Based Approaches

Every knowledge-based system is capable to represent knowledge explicitly using resources such

as ontologies, sets of rules or thesaurus. This is an aspect that all have in common. These systems

are constituted by two subsystems: a knowledge base and an inference engine. The knowledge

base is a database type for knowledge management, providing the necessary means for its collec-

tion, organization and recovery. The inference engine represents the reasoning part of the system,

using the content of the knowledge base in a given sequence. This engine examines the knowledge

base’s rules one by one, and if one of them is met, a specific action is performed.

Knowledge-based approaches can still be related with template-based approaches. Template-

based methods are used in NLG systems to map their non-linguistic input directly to the linguistic

structures of the output sentences, defined as templates. These templates have variable values

that are filled with the input data so it can produce the final output. Aires highlights a differ-

ence between this two approaches: “The difference between knowledge-based and template-based

approach resides in the fact that knowledge-based approaches require detailed grammatical and

linguistic information to be embedded within the system.” [Air16].

Some relevant examples about knowledge-based or hybrid approaches are:

RST - Rhetorical Structure Theory: RST [MT88] is one of the main theories applied

to NLG and is related both with the cohesion of discourse and the structure of messages

and paragraphs. The goal of this method is to recursively decompose any text into a set of

elements that establish rhetorical or discursive relationships, known as schemas. In this set,

the most relevant elements are called nucleus while the elements depending on them are

referred to as satellites.

SFG - Systemic Functional Grammar: For systemic-functional linguistics, language is

a resource that allows the production of meaning and is layered in three levels of abstrac-

tion: semantic, lexicographic and phonological/graphological. The way the communicative

functions are expressed and how it affects the social dimension of language is described by

SFG [HM85]. This theory takes to account three meaning dimensions: the propositional,

the interpersonal, related with the type of speech, and the textual, the way information is

structured and wrapped in a text.

TAG - Tree Adjoining Grammars: A TAG [JS97] is a lexicalized grammar composed

by a set of elementary trees which incorporate semantic content. With this trees, using

operations of substitution or union (adjoining), it is viable to produce a new labeled tree

derived from the elementary ones. One of the advantages of using TAG is that it can solve,

in the same task, the sentence planing and its realization, although that implies some loss of

flexibility.

MTT - Meaning-Text Theory: MTT [ZM65] adopts a representation model that separates

the semantic, syntactic, morphological and phonetic levels. In this model the NLG process

consist in a continuous transformation of the representations through the referred levels. To

perform intermediate conversions between levels are used equivalence rules.

15

Natural Language Generation

2.4.2 Statistical Approaches

As stated in the introduction of this section, the statistical approaches are based in the extracted

probabilities from a corpus. One of the most used tools for statistical approaches are the Lan-

guage Models (LM) [CG96]. A statistical LM defines the language structure, it is a mechanism

with a probability distribution which expresses the number of times that a sequence of n words

P(w1,w2, ...,wn) appears in a set of texts. Therefore, a good LM can detect if a sentence is cor-

rectly built, from the probability associated to it. In the case of the probabilty associated is high

it is said that the LM accepts the sentence. On the other hand, LM rejects it when the probability

is low, this demonstrates that the sequence of words in the sentence does not belong to the set of

texts on which the probability distribution was calculated.

A very interesting aspect for NLG is that a good LM can predict the way an input, or part of

it, will be converted inside the system. The corpus is an important factor to take into account to

determine the quality of the LM, more specifically the size of the corpus and the data source from

which it is trained, since the number of contexts that a word can be used or the domain’s amplitude

to which the LM can be applied will be proportional to the dimension of the learning corpus.

The most used LM in NLG are the following:

N-Grams: A n-gram [BDM+92] is a subsequence of n elements of a given sequence.

This LM is a probabilistic model that predicts the next element of a sequence in the form

of a n− 1 order, using the Markov1 chain of order. N-grams can be easily implemented

and they are extensively used in recognition and learning algorithms. An aspect to be taken

into account is that an n-gram model is very general, being necessary to adapt it to each

application.

Models based on Stochastics Grammars: In Stochastics Grammars [Bod93] each gram-

matical rule has an associated probability, so the final result of the rules application pro-

duces a probability derived from that application. This type of LM presents the language

constraints naturally. They also allow model dependencies while they are desired, although

the definition of the models and their parameters may present difficulties in complex tasks.

FLM - Factored Language Model: Factored Language Model [BK03] is an extension of

LM. In FLM each word is considered as a vector of k factors wt = { f 1
t , f 2

t , ..., f K
t }. These

factors can represent morphological classes, roots, or any lexical, syntactic or semantic

characteristics. This model provides a probabilistic model P(f | f1, ..., fN) where the predic-

tion of a factor f is based on N parents { f1, ..., fN}. Given an example, if w represents a

word token and t represents a grammatical category (POS: Part-Of-Speech), the expression

P(w|wi−2,wi−1, ti−1) presents a model to predict the current word token based on a con-

ventional n-gram model as well as on the POS of the previous word. FLM allows users to

specify relations between word tokens and POS, which is a great advantage.

16

Natural Language Generation

2.4.3 Hybrids Approaches

Hybrid approaches combine the two approaches presented in the previous subsections, knowledge-

based and statistical approaches. There are some systems who use this type of approaches: Ni-

trogen [LK98], FERGUS [ABD00], FLIGHTS [WCM10]. FLIGHTS for example, uses multiple

knowledge bases such as user models, domain models and discourse history to perform content

selection that should appear in the output. Next, the output is organized according to a template

and the final text is produced by a tool known as OpenCCG [Whi12], used to apply n-grams and

FLM, internally.

2.5 Evaluation Methodologies

Evaluation is very important in NLG systems because there is a need to know if the system is

reliable, if the objectives are met and its potential utility. The evaluation of a system performance is

done using different criteria, intrinsic and extrinsic [GJ93]. Intrinsic evaluation is related with the

quality of the generated text, which is evaluated based on a set of criteria, commonly predefined.

In turn, extrinsic evaluation is related with the system’s role based on it’s setup purpose and the

effect on human performance. Galliers and Jones give an understandable example about intrinsic

and extrinsic evaluation: “for a translation system, intrinsic criteria could be ones applying to

the quality of the translation, and extrinsic criteria those applying to the ease with which post-

editors could tweak these”. Also evaluation can be distinguished in manual and automatic. In

NLP field intrinsic and automatic evaluations are intimately connected so as extrinsic and manual

evaluations. This is directly linked with their characteristics. Extrinsic evaluations has to be

formulated in the context of a user task so it’s hard to avoid human interference. In intrinsic

evaluations only the system output must be considered so it’s generally easier to develop automatic

techniques [GJ93].

Generally manual evaluation produces good results, mainly if adequacy and fluency are the

criteria used [Air16]. However it has limitations like being very expensive, slow and it can generate

inconsistent results [GJ93]. An example of this type of evaluation was performed in the STOP

system, when the developers performed inquiries to the users, to evaluate if the system met the

objectives proposed. Regarding this evaluation cost and time length, it costed 75 thousand pounds

and 20 months to be completed [RRO03].

Intrinsic evaluation, that values the characteristics of the system without consider external fac-

tors, generally requires the comparison of system’s output with a reference text or corpus, using

metrics or ratings. An NLG system can be evaluated as a whole or by modules and the commu-

nicative goal, discourse structure, coherence, ambiguity and vocabulary quality should be taken in

to account when evaluating the system’s output [Air16]. NLG communities have developed eval-

uation metrics, which are based on comparing output texts with a corpus of human-authoring texts

and some of them are highly correlated with human opinions. Belz and Reiter enhance BLEU

(BiLingual Evaluation Understudy) as one of the most successful metrics. It compares the gen-

erated text from the system with a set of texts authored by humans and evaluates how close the

17

Natural Language Generation

generated text is from the set. BLEU scores from 0 to 1, only scoring the highest if the generated

text is found in at least one of texts of the set [BR06].

Most of the NLG systems are evaluated using the following 3 intrinsic techniques [Bel09]:

1. Evaluation by trained assessors of the quality of the generated text according to different

criteria, commonly using rating scales;

2. Automatic analysis of the similarity between system output and reference text, for example

using BLEU, described above;

3. In this final step instead of automatic analysis is used human assessment about the similarity

degree between system output and reference text.

2.6 NLG Tools

There is a large number of tools that can be applied in the different stages of a NLG system. In

this section will be presented some of those tools found useful. In the case of NLTK and SRILM,

there will be a in-depth explanation because they seem to be the most suitable tools to achieve the

objectives.

2.6.1 Natural Language Toolkit (NLTK)

2.6.1.1 Overview

Natural Language Toolkit is a collection of open-source program modules, tutorials and data sets,

written in Python, very useful to work with human language data [LB02]. It was created by Steven

Bird and Edward Loper in 2001.

This toolkit provides easy-to-use interfaces to over 50 corpora and lexical resources as Word-

Net, and aims to help the user with different tasks of NLP, like accessing corpora, processing

strings, part-of-speech tagging, parsing and semantic reasoning [BKL09].

NLTK is a community-driven platform, very successful, having a great and understandable

documentation. The creator wrote the book “Natural Language Processing with Python” cited

above, which provides a practical introduction to all the tasks that can be used.

The source code of this software is distributed under the terms of the Apache Licence Version

2.0. NLTK is in continuous development so the existing modules are improved and news are

created. The current version is 3.0.

In conclusion, this toolkit provides a simple and extensible framework, well documented and

easy to learn, helping the user with several tasks of NLP.

18

Natural Language Generation

2.6.1.2 Work done in Portuguese

NLTK provides a documentation of examples for portuguese processing1. In this examples are

included texts written by Machado de Assis and includes the “Floresta Sinta(c)tica Corpus2”. This

documentation shows that exists the possibility of:

• Search specific words or sequences in a text;

• Generate random text based on a given one;

• Sort the vocabulary of a sentence;

• Examinate the relative ánd absolute frequency of words in a text;

• Find the most common ngrams which contain a target word;

• Get the tagged sentence data and train them;

• Segmentate sentences;

• Generate concordance for specific words;

However NLTK is more targeted to the english language, therefore, the works in portuguese

are still very primitive.

2.6.2 NaturalOWL

NaturalOWL is an open-source natural language generator for OWL ontologies that supports En-

glish. It’s a D2T tool, written in Java, that evidences the benefits of using NLG techniques in the

Semantic Web [GA07]. Bechhofer et al. defines OWL as follows: “The Web Ontology Language

OWL is a semantic markup language for publishing and sharing ontologies on the World Wide

Web. OWL is developed as a vocabulary extension of RDF (the Resource Description Framework)

and is derived from the DAML+OIL Web Ontology Language. ” [Bec09].

NaturalOWL uses the three stages of the NLG architecture explained in this dissertation, Text

Planning, Sentence Planning and Linguistic Realization. Aires explain how the tool works in each

of this stages as follows: “NaturalOWL selects from the ontology all the logical facts that are

directly relevant to that instance. The tool may be instructed to include facts that are further away

in a graph representation of the ontology, up to a maximum (configurable) distance. The selected

facts of distance one are then ordered by consulting ordering annotations which specify a partial

order of properties. Second distance facts are always placed right after the corresponding directly

relevant facts. In the application domains, this ordering scheme was adequate, although in other

domains more elaborate text planning approaches may be needed. In the sentence planning stage,

NaturalOWL lets the user to configure the maximum number of sentences that can be aggregated.

Generally, NLG systems aggregate the maximum possible sentences in order to achieve better legi-

bility. Finally, in realization stage, NaturalOWL takes the sentence planning output and represents

it by adding punctuation symbols and capital letters where necessary.” [Air16].
1http://www.nltk.org/howto/portuguese_en.html
2http://www.linguateca.pt/Floresta/

19

http://www.nltk.org/howto/portuguese_en.html
http://www.linguateca.pt/Floresta/

Natural Language Generation

2.6.3 PyNLPl

PyNLPl is a Python library which contains numerous modules useful to work with NLP tasks. It

can be used to extract n-grams and frequency lists, and to build simple models. Furthermore it

includes parsers for file formats common in NLP (e.g. FoLiA/Giza/Moses/ARPA/Timbl/CQL).

Its most remarkably feature is a very extensive library to work with FoLiA XML (Format for

Linguistic Annotation) [Gom10].

2.6.4 SimpleNLG

SimpleNLG is a Java library that helps the user in the Linguistic Realization stage [GR09]. This

tool can be used to generate grammatically correct sentences, in English, and is well documented.

It provides an interface to interact with the way sentences are built and combined, lexical and

syntactic operations and linearization, so it can be able to construct a syntactic structure and lin-

earizing it as text.

SimpleNLG was designed based in three criteria, flexibility, robustness and clear distinction

between morphological and syntactic operations. It has an option of combining canned and non-

canned strings to provides a more comprehensive syntactic coverage, increasing the flexibility of

the system. Robustness is another concern of this tool so when an input are incorrect or incomplete

it will not crash and still be able to produce a result, even that it is likely that the output is not the

appropriate. Morphological and syntactic operations are well distinguished because the lexical

component of the library is distinct from the syntactical component.

2.6.5 OpenCCG

OpenCCG is an open source NLP library, written in Java, which provides parsing and realization

assistance with Combinatory Categorial Grammar (CCG) [SB11]. CCG is a lexicalized grammar

formalism in which the grammatical elements are differentiated by a syntactic type or category of

their inputs. The categories are related with the semantic type of the linguistic expression. Aires

explains the procedure of OpenCCG as “The OpenCCG realizer takes as input a logical form

specifying the propositional meaning of a sentence, and returns one or more surface strings that

express this meaning according to the lexicon and grammar.” [Air16]. OpenCCG can applies

n-grams and FLM, internally.

2.6.6 SRILM

SRLIM is a collection of C++ libraries, executable programs and helper scripts, for building and

applying statistical language models, which can be used for speech recognition and machine trans-

lation. It is also possible to create and evaluate language models based on N-gram statistics and

supports related tasks like statistical tagging and manipulation of N-best lists and word lattices

[S+02]. This toolkit is under development in the SRI Speech Technology and Research Labora-

tory since 1995 and it is for noncommercial use.

20

Natural Language Generation

SRILM provides an extensible set of LM classes , non-standard LM types, including tagging

and N-best rescoring. This toolkit grew out of the desire to build a more efficient implementation

of the LM algorithms; to achieve flexibility and extendibility so it can ease the research into

new types of LMs and, at the same time, the existing components can be reused; to provide a

clean design with both an API and a toolbox of commands for LM handling. Its main goal is to

support LM estimation and evaluation. Estimation is the creation of models from the training data.

Evaluation is the computation of the probability of a text corpus.

2.6.6.1 Work done in Portuguese

Miranda de Novais and Paraboni implemented a shallow surface realization system which uses

FLMs of Portuguese and applied it to the generation of Brazilian newspaper headlines [dNP13].

This system will be briefly explained. The authors approach surface realization which is a task

of mapping abstract sentence representations to output text, a sequence of words in the target lan-

guage. In this task the input is, commonly, language-independent representation of the sentence’s

content.

Miranda de Novais and Paraboni focused their work on generate-and-select NLG architecture,

introduced in [Lan00]. This type of systems outputs text from an abstract representation as input

by generate a large amount of alternative surface realizations and thereafter choose the most likely

sequence of words with the help of a statistical LM. It has many advantages related with the fact

that is a statistical approach, namely low cost development, as it does not require corpus anotation,

and language independecy. Nevertheless, it also has a disavantage, which is the need of a large data

set to train the system, so it can compensate the data sparseness. Data sparseness is specifically

critical using morphologically rich languages like Portuguese. A Portuguese LM require a much

larger training dataset than an English one, to achieve results that can be comparable [dNPF11]. To

beat these difficulties, the authors used FLMs in the development of the shallow surface realization

system, which was applied to the generation of newspapers headlines in Portuguese.

21

Natural Language Generation

Tools Language Licence Last Update

NLTK Python Apache License Version 2.0 March 2017

NaturalOWL Java GNU Library Public License April 2013

PyNLPl Python GNU Library Public License February 2017

SimpleNLG Java Mozilla Public License August 2016

OpenCCG Java GNU Library Public License May 2016

SRILM C++ SRILM Research Community License November 2016

Table 2.1: Overview of the NLG Tools.

22

Chapter 3

Statistical Language Modeling

3.1 Problem Approach

As established in Chapter 1 the main objective of this dissertation is to generate match summaries

from scratch, in Portuguese, making it easier to use the large amount of structured data associated

with a football match. Integrating this into a system where the user can select a specific match

will enable the generation of a set of sentences that cover all or most of the data. This system

may work as a journalists assistant, speeding up the news production process. To achieve these

goals, Statistical Language Models will be used to generate phrases about the events of a football

match. The tool that will be used to work with Statistical LMs is the SRILM toolkit (Subsection

2.6.6). It has the ability to generate models from a training corpus and then generate sentences

from those models. In Figure 3.1 is presented a diagram describing the whole process. First we

select from where the summaries will be extracted. Knowing that, we have to process the data that

will serve as input to the creation of models. In this task we extract the summaries and delexicalize

them. After that the summaries are divided in categories and then those categories are divided in

subtypes, building the corpus. Having the corpus, the LMs are created and will work as input for

the implemented system, which is responsible to generate the final sentences.

Figure 3.1: Diagram explaining the process.

23

Statistical Language Modeling

3.2 Overview

All the general equations presented in this section are accordingly to Jurafsky and Martin [JJ00].

Statistical LMs are included in the statistical approaches, which are based in the extracted

probabilities from a corpus, introduced in the Subsection 2.4.2. They are very useful in NLP

applications with text as output, making possible to evaluate the likelihood of different sentences

being generated based on a training corpus. Machine translation, speech recognition, information

retrieval and POS tagging are some of many examples of these applications [S+02].

The main goal of a Statistical LMs is to compute the probability of word strings and can also be

called as a stochastic process model for word sequences. It defines the language structure, express-

ing the number of times that a n words sequence “w1,w2, ...,wn” appears in a set of texts. It can also

be used to calculate the probability of the next word in a sequence: P(w4|w1,w2,w3), this repre-

sents the probability of the word four appears after a 3-sequence word. Relative frequency counts

is a way to evaluate these probabilities. As an example, the sentence “Today I went to school” will

be used. Counting the number of times that “Today I went to” appears in a corpus and when it is

followed by “school”, allows to estimate the conditional probability P(school|Today, I,went, to).

P(school|Today, I,went, to) =
C(Today I went to school)

C(Today I went to)
(3.1)

To perform counts like this it is needed a large corpus. Jurafsky and Martin [JJ00] states that “With

a large enough corpus, such as the web, we can compute these counts and estimate the probability

(...) While this method of estimating probabilities directly from counts works fine in many cases,

it turns out that even the web isn’t big enough to give us good estimates in most cases. This is

because language is creative; new sentences are created all the time, and we won’t always be able

to count entire sentences.”. At the same time, trying to calculate the joint probability of a sentence

or sequence of words as “Today I went to school” would implicate to know how many sequences

of five words, out of all possibles, would be “Today I went to school”. That would be a lot of

data to evaluate. Knowing this, another methods need to be introduced, in order to facilitate the

estimation of probabilities.

3.2.1 The Chain Rule

The Chain Rule, also known as the General Product Rule, decomposes the joint probability of

a sentence or sequence of words, in conditional probabilities of the next word given his past,

computing their product [Roa01]. Generally it can be represented as:

P(w1,w2,w3, ...,wn) = P(w1)∗P(w2|w1)∗P(w3|w1,w2)∗P(wn|w1, ...,wn−1) (3.2)

24

Statistical Language Modeling

Using the previously sentence example, it is represented as follows:

P(“Today I went to school”) = P(Today)∗P(I|Today)∗P(went|Today, I)∗

P(to|Today, I,went)∗P(school|Today, I,went, to)
(3.3)

Even with this decomposition it is not possible to estimate the probability of the next word,

when its set of past words is a large sequence. This happens for the same reasons previously stated.

3.2.2 Markov Assumption

To estimate the probabilities of the members of the Chain Rule, the Markov Assumption is com-

monly used. In text, the Markov Assumption can be translated as: The future does not depend on

the past, given the present [LS99]. Instead of calculating P(school|Today, I,went, to) it is possible

to simplify to P(school|to), making the estimation of word’s probability feasible.

P(school|Today, I,went, to)≈ P(school|to) (3.4)

This is called a bigram model. However it is possible to derive the bigram to the trigram and

therefore to the N-gram.

3.2.3 N-Grams

The general equation for a N-gram approximation to the next word’s conditional probability is:

P(wn|wn−1
1)≈ P(wn|wn−1

n−N+1) (3.5)

A N-gram is a model that designates probabilities to sequences of words [GR03]. The N in N-

gram represents the number of words in that sequence. For example, a 2-gram, known as bigram,

is a sequence of two words, such as “Today I”, “I went”, “went to” and a 3-gram, known as

trigram, is a three-word sequence like “Today I went”, “I went to”, “went to school”. To calculate

the N-gram probabilities is used a method called Maximum Likelihood Estimation, also known as

MLE. Exemplifying with the probability of a bigram model: P(wn|wn−1), the MLE is calculated

by counting the number of times the word wn appears after the previous word wn−1 and counting

the number of bigrams that has wn−1 as first word. The counting of bigrams with wn−1 as first

word can be simplified to a counting of unigrams, since C(wn−1w) = C(wn−1) [JJ00].

P(wn|wn−1) =
C(wn−1wn)

C(wn−1)
(3.6)

For this to be clear, an example will be presented, using a small corpus. This example was

adapted from the one used in [JJ00]. First it is necessary to add the symbol <s>, that represents

the beginning of a sentence, and the </s>, representing the end. The symbol <s> is relevant so it

can be possible to estimate the probability of the first word bigram model. The </s> is responsible

25

Statistical Language Modeling

to make the bigram grammar a true probability distribution.

<s> I eat fruit to be healthy </s>

<s> I ate vegetables on Monday </s>

<s> Monday I went to school </s>

<s> He trains to be faster </s>

Some bigram probabilities can be calculated as follows:

P(I|< s >) = 2
4 P(Monday|< s >) = 1

4 P(< /s > |Monday) = 1
2

P(went|I) = 1
3 P(school|to) = 1

3 P(be|to) = 2
3

The general equation to calculate MLE in a N-gram is:

P(wn|wn−1
n−N+1) =

C(wn−1
n−N+1wn)

C(wn−1
n−N+1)

(3.7)

3.3 Input processing

In order to be possible to generate Statistical LMs it is necessary to build a training corpus. This

corpus will work as an input for the LMs. As stated previously, the primary objective is to generate

sentences about the events of a football match. With the collaboration of zerozero.pt we have

access to all the necessary data, both summaries and information on its website as also data from

an API.

3.3.1 Data extraction

To build a corpus we need news that summarizes a football match. Therefore a championship has

to be chosen to enable the manual analysis of all the news that were written, about the matches

of a specific season. The championship that we will analyze is the Italian one, known as Serie A,

from 2015/2016 season1. It is composed by 20 teams, in which they play each other 2 times, in a

total of 38 rounds. In each round there are 10 matches but only the matches with the top teams are

reported. To extract the data from zerozero.pt website we manually check each of the 380 games

of the Serie A to see if it was reported. Then we copy the content of the summary to a text file so

it can be analyzed in the next step. An example of a summary is presented below, in Portuguese

and in the respective English translation. The corresponding match is Napoli vs Sassuolo from the

20th round2.
1https://www.zerozero.pt/edition.php?id_edicao=87949
2https://www.zerozero.pt/news.php?id=168273

26

https://www.zerozero.pt/edition.php?id_edicao=87949
https://www.zerozero.pt/news.php?id=168273

Statistical Language Modeling

Portuguese
O Napoli recebeu e venceu o Sassuolo por 3x1, este sábado, em encontro da 20.a jornada

da Serie A. No San Paolo, os napolitanos estiveram a perder, valendo um golo de Diego

Falcinelli, aos 3’, de penálti, mas conseguiram a reviravolta. Jose Maria Callejon (19’) e

Gonzalo Higuaín (42’ e 90’) marcaram os tentos da formação de Maurizio Sarri. Com este

resultado, o Napoli passa a somar 44 pontos e está na liderança, aumentando a vantagem,

uma vez que o Inter empatou nesta ronda. O Sassuolo continua com 31 próximo dos lugares

de acesso às provas europeias.

Translation in English
Napoli hosted and beat Sassuolo by 3x1, this Saturday, on the round 20 of Serie A. At

San Paolo, the Napolitans were losing, with a penalty goal from Diego Falcinelli, at 3’, but

they completed the comeback. Jose Maria Callejon (19’) and Gonzalo Higuaín (42’ and

90’) scored the goals for Maurizio Sarri’s team. With this result, Napoli has 44 points and

leads, increasing the advantage, since Inter tied in this round. Sassuolo continues with 31

near the places of access to the European competitions.

Figure 5 shows the match information regarding the previously summary’s match.

In total, 153 summary news were analyzed, out of 380 games. As explained before, only the

top teams matches are reported, what gives an average of 4 summaries per round, i.e. 4 reported

matches per round, out of 10 possible.

3.3.2 Delexicalization

Delexicalization is the process of replacing words in a text, that refer to data that can be modified

without removing the meaning of that text, by tokens or symbols representing the value of that

word [WGK+15]. These word usually represent entities or values that can be replaced by other

entities or values, in order to make sentences more variable.

Wen et al. [WGK+15] use delexicalization in the implementation of a spoken dialogue system

to overcome the need of a well-labeled dataset to train the system. It is presented a statistical

language generator that uses a recurrent neural network that is trained by a delexicalized corpus

where each value is replaced by a token representing its corresponding slot.

As stated before, the primary objective is to generate sentences that translate data of any match

into text. To accomplish this we need the training corpus to be general, i.e. with variable words that

can assume a different value in different matches. All the entities that refers teams, players, com-

petition, day of the week and the numerical values such as a minute of an event, the result, points

and position of a team in the league table can be replaced with tokens representing the meaning of

the value their replacing. If all the sentences in a corpus are delexicalized, the generated sentence

will also be delexicalized. Exemplifying with the following sentence:
3http://www.zerozero.pt/match.php?id=5016626

27

http://www.zerozero.pt/match.php?id=5016626

Statistical Language Modeling

Figure 3.2: Information about Napoli x Sassuolo match3.

Before delexicalization: Napoli hosted and beat Sassuolo by 3x1, this Saturday, on the

round 20 of Serie A.

Delexicalized sentence: <home:team> hosted and beat <away:team> by <home:team:result>

x <away:team:result>, this <weekDay>, on the round <round> of <competition>.

This delexicalized sentence is now suitable to any match where the home team beat the away

team. Now, to exemplify a case where we can’t delexicalize all the entities or numerical values,

we will use this sentence:

Before delexicalization: Mario Mandzukic, at 27 ’, would make the tie for Juventus in a

play that began in Buffon and had in Morata the assistant.

28

Statistical Language Modeling

Delexicalized sentence: <goalScorer:player>, at <goal:minute> ’, would make the tie for

<goalScorer:team> in a play that began in Buffon and had in <goalAssistant:player> the

assistant.

In this case we could not delexicalize the entity “Buffon” because we have no way to know

who is the player that started the play, trough the provided data about the match. We can only

tokenize the entities or numerical values that we will later have access over the API. The way

we found to address this problem was to delete these entities and the words that link them to the

sentences, so they remain well constructed, and the entities are not added to the LM’s vocabulary.

In this process is used a total of 44 different tokens, that are presented in the next tables. The

decision of using these tokens was based in the analysis of all the summaries extracted. The words

used to represent variable values, used in most of the sentences, like the home team or the away

team, were replaced by tokens. We divide the tokens per category, so it is easier to understand

their meaning. The tokens used for “introduction” are presented in Table 3.1.

<home:team> Team that hosts the match.

<away:team> Team playing as visitant.

<coach:home:team> Coach of the home team.

<coach:away:team> Coach of the away team.

<round> Round of the match.

<competition> Competition of the match.

<weekDay> Day of the week.

<momentDay> Moment of the day when the match starts (morning, afternoon,

night).

<result:home:team> Number of goals scored by home team in the end of the match.

<result:away:team> Number of goals scored by away team in the end of the match.

Table 3.1: Tokens used in delexicalization for category “introduction”.

For “goals” the tokens used are presented in Table 3.2. It is important to refer that each goal

sentence is just referred to one goal.

<team1> We use this token when it is not specified any characteristic of

the team (home, away, winning, losing). This token refers to the

team that scored the goal described in the sentence.

<coach:team1> Coach of the team referred as team 1 (see explanation of

<team1> in this table).

<team2> We use this token when it is not specified any characteristic of

the team (home, away, winning, losing). This token refers to the

team that conceded the goal described in the sentence.

29

Statistical Language Modeling

<coach:team2> Coach of the team referred as team 2 (see explanation of

<team2> in this table).

<nGoals> Number of goals scored for both teams at the moment that the

token appears.

<currentResult:home:team> Number of goals scored by the home team at the moment that

the token appears.

<currentResult:away:team> Number of goals scored by the away team at the moment that

the token appears.

<goalScorer:player> Player that scored the goal.

<goalScorer:minute> Minute of the goal.

<goalAssistant:player> Player that made the assistance for the goal.

<goalScorer:team> Team of the player that scored the goal.

<goalConceded:team> Team that conceded the goal.

<coach:goalScorer:team> Coach of the team that scored the goal.

<coach:goalConceded:team> Coach of the team that conceded the goal.

<goalkeeper:goalConceded:team> Goalkeeper that conceded the goal.

<homeOrAway:goalScorer:team> Saves if the scoring team played home or a away.

<currentNGoal> Goals scored by both teams until the moment that the token ap-

pears.

<currentNGoal:goalScorer:team> Goals scored by the team that scored the goal until the moment

that the token appears.

<goalHalf> Half where the goal happened.

Table 3.2: Tokens used in delexicalization for category “goals”.

The tokens used for “sent-offs” are presented in Table 3.3. It is necessary to refer that each

sent-off sentence just refers to one sent-off.

<redCard:player> Player that got expelled of the match.

<redCard:team> Team of the player that got expelled.

<redCard:minute> Minute of the player’s sent-off.

<coach:redCard:team> Coach of the team that got the player expelled.

<noRedCard:team> The opposing team from which the player was expelled.

<nPlayers:redCard:team> Number of players of the team that got the player expelled, on

the field until now.

Table 3.3: Tokens used in delexicalization for category “sent-offs”..

30

Statistical Language Modeling

For “conclusion” the tokens used are presented in Table 3.4.

<win:team> Team that won the match.

<lose:team> Team who lost the match.

<points:between:teams> Points difference between the home team and the away team

and vice-versa.

<coach:win:team> Coach of the winning team.

<coach:lose:team> Coach of the losing team.

<team1> The first team in a sentence, when it is not specified any charac-

teristic of the team (home, away, winning, losing). This is only

used when the final result is a draw and the order of appearing of

the teams is not important, since they will win the same amount

of points in the league table.

<points:team1> Points of the team 1 (see explanation of <team1> in this table)

in the league table.

<position:team1> Position of the team 1 (see explanation of <team1> in this table)

in the league table.

<coach:team1> Coach of the team 1 (see explanation of <team1> in this table).

<team2> The second team in a sentence, when it is not specified any char-

acteristic of the team (home, away, winning, losing). This is

only used when the final result is a draw and the order of ap-

pearing of the teams is not important, since they will win the

same amount of points in the league table.

<points:team2> Points of the team 2 (see explanation of <team2> in this table)

in the league table.

<position:team2> Position of the team 2 (see explanation of <team2> in this table)

in the league table.

<coach:team2> Coach of the team 2 (see explanation of <team2> in this table).

Table 3.4: Tokens used in delexicalization for category “conclusion”.

3.3.3 Summaries typification

In the process of extracting each summary, we have to read it to understand what it is about. In

all the summaries we found a pattern: first the journalist introduces the game, then he talks about

the goals and sent-offs, if there was any, and finalize it with a conclusion. Due to this reason we

divided each summary in four categories: introduction, goals, sent-offs and conclusion.

The introduction opens the summary and presents the teams that played the match, the result

and the competition and may also state the round of the game, the day of the week and the moment

of the day.

31

Statistical Language Modeling

In goals are included all the goals scored in the match, including the player who scored, its

team, the minute of the goal and can also refer the player who made the assist, if he exists and the

type of goal, i.e. if it was a penalty or an own-goal.

Sent-offs describes each event of the match where a player is expelled, including the player,

its team, the minute and may also refer the number of players that stayed on the field of that team.

Conclusion closes the summary by stating how both teams stood in the league table, after the

match, regarding their points and position.

The following summary corresponds to the match Bologna vs Internazionale from the 10th

round4:

Portuguese
O Inter foi ao terreno do Bologna vencer por uma bola a zero, esta terça-feira, em

encontro da 10.a jornada da Serie A. No Estádio Renato Dell’Ara, em menos de 10 minutos

(54’ e 61’), Felipe Melo foi expulso por duplo amarelo. Mesmo a jogar com 10, o Inter

chegou ao triunfo, valendo um golo de Mauro Icardi, aos 67 minutos. Com este resultado,

os nerazzurri passam a somar 21 pontos e comandam, ainda que à condição, o campeonato.

Já o Bologna tem seis e continua em zona de despromoção.

Translation in English
Inter went to the Bologna field to win 1-0, this Tuesday, on a match of round 10 of Serie

A. At the Renato Dell’Ara Stadium, in less than 10 minutes (54 ’and 61’), Felipe Melo was

sent off with a double yellow. Even playing with 10, Inter reached the victory, with a goal

from Mauro Icardi, in the 67th minute. With this result, the Nerazzurri sums 21 points and

command, provisionally, the championship. Bologna has six and is still in the relegation

zone.

We classify this summary as follows:

Introduction: Inter went to the Bologna field to win 1-0, this Tuesday, on a match of round

10 of Serie A.

Goals: Even playing with 10, Inter reached the victory, with a goal from Mauro Icardi, in

the 67th minute.

Sent-offs: At the Renato Dell’Ara Stadium, in less than 10 minutes (54 ’and 61’), Felipe

Melo was sent off with a double yellow.

Conclusion: With this result, the Nerazzurri sums 21 points and command, provisionally,

the championship. Bologna has six and is still in the relegation zone.

The content of each text file is divided the same way this summary was classified. It has now

four categories, each one with the sentences written about it. In the case of there was any sentence

written about a category, the category stays empty.

4https://www.zerozero.pt/news.php?id=163774

32

https://www.zerozero.pt/news.php?id=163774

Statistical Language Modeling

3.3.4 Data preparation

After we have all the data extracted and typified we have to prepare the data to build the training

corpus for each LM. We have now four sets of sentences about each part of the summaries. Based

on the content, introduction, goals, sent-offs and conclusion have to be divided into subtypes

because the sentences can be specific. Each subtype will correspond to a text file, that will contain

a set of sentences. In the Tables 3.5, 3.6, 3.7, 3.8 are presented the number of sentences each

subtype has. These subtypes will be our training corpus for the language models. It is important

to refer that each sentence just can be assigned to one subtype. It cannot have two subtypes.

Starting with introduction, we divide it in the following four subtypes, three regarding the

final result and one that fits all the cases:

• Home team wins: Appropriate to the matches where the home team wins.

• Away team wins: Suitable to the matches where the away team wins.

• Draw: Applicable to the matches that end with a draw.

• Others: Fits all the cases, not specifying the team that plays home or away but the team that

wins or lose.

Subtypes No of sentences

Home team wins 46

Away team wins 26

Draw 24

Others 22

Total 118

Table 3.5: Number of sentences per each subtype of introduction.

Afterwards, goals are partitioned in ten subtypes:

• Increase the advantage: Appropriate to goals scored by the winning team at the minute of

the goal.

• Decrease the advantage: Suitable to goals scored by the team that is losing for two or more

goals.

• Win goal: Applicable to the winning goal of a match.

• Goal to new advantage: Fits the cases when the team that scores was earlier in advantage

but lost it and, at the minute of the goal, achieves a new advantage in the match.

• Initial goal: Appropriate to goals scored in the first fifteen minutes of the match.

• Match with unique goal: Suitable to the matches where it was only one goal.

• First goal: Applicable to the first goal of a match.

33

Statistical Language Modeling

• Last goal: Appropriate to the last goal of a match.

• Draw goal: Suitable to goals that tie the game.

• Others: Fits all the cases, not specifying any of the above characteristics.

Subtypes No of sentences

Increase the advantage 10

Decrease the advantage 6

Win goal 9

Goal to new advantage 6

Initial goal 7

Match with unique goal 12

First goal 16

Last goal 6

Draw goal 14

Others 7

Total 93

Table 3.6: Number of sentences per each subtype of goals.

Sent-offs are subdivided in the next three subtypes, two regarding the way the player is ex-

pelled and one that do not specify it:

• Double yellow card: Applicable when the same player receives two yellow cards followed

by a red.

• Direct red card: Appropriate when a players gets a straight red card.

• Others: Suitable to all the cases since it does not specify how the player is expelled.

Subtypes No of sentences

Double yellow card 13

Direct red card 5

Others 5

Total 23

Table 3.7: Number of sentences per each subtype of sent-offs.

Finally, conclusion is divided concerning the final result:

• Draw: Applicable when the final result of the match is a draw and each team sums one

point to its classification.

34

Statistical Language Modeling

• No draw: Appropriate when one of the teams win, getting the three points while the losing

team stays with the same number of points that had in the beginning of the match. In this

case there is no need to refer the home or away team, like in introduction, since the sentences

of this category do not mention it.

Subtypes No of sentences

Draw 14

No draw 52

Total 66

Table 3.8: Number of sentences per each subtype of conclusion.

In this process we noticed that some sentences are too specific, which took us to discard this

kind of sentences. We qualify a sentence as too specific when the number of possible sentences

constituting its subtype is too low. For example, if we have a subtype for when the same player

scores three goals in the same game, but we have less than 5 possible sentences to assign to that

subtype, we choose to discard those phrases. This is because the larger the training corpus, the

better the LM. Even so, some of the training corpus we built are small. This is due to the sparse

data. Like explained before, we did a manual analysis of one championship to extract all the data

above, which resulted in a small quantity of data and took a large amount of time. Even so we will

build Statistical LMs from these corpus and analyze the results.

3.4 Language Modeling

In order to build language models and generate sentences from the training corpus, we will use

SRILM toolkit.

3.4.1 Training Language Models

Having a corpus for each subtype we can now build the Statistical Language Models. SRILM

allows to estimate N-gram models, counting all the n-grams in a text file and writing them to a

.count file, using ngram-count.

1 ngram-count -text path/to/corpus.txt -order 2 -write path/to/corpus.count

This command is used to count all the bigrams in a file named corpus.txt and write them to a

file denominated corpus.count. Below is presented a small part of the .count file generated with

the previous command. The original file is in Portuguese but we translated it to English.

35

Statistical Language Modeling

1 <away:team> lost, 2

2 <away:team> at 1

3 <away:team> by 24

4 <away:team> lost 5

5 <away:team> was 1

6 <away:team> on 1

In order to create a LM we need to add -lm option to the command, followed by a path where

the LM will be saved. With this option, ngram-count will estimate the LM and its probabilities

and write them to a .lm file. SRILM estimates a smoothed model by default, so if we want an

unsmoothed one we have to add the option -addsmooth 0. Smooth is used to avoid probabilities

of certain n-grams being equals to zero or one. It is like pretending that a word was seen one more

time from what was actually seen. This way the probabilities are more balanced. However, in

our case, we want some probabilities to be zero, for example, we want that the sentence always

ends with a dot (.) and that is what the LM learns from the training corpus, because it always

happen. This way the probability of any other word or symbol ends the sentence is zero. Thus,

if we smooth the model every word or symbol can end the sentence, because the model would

pretend to have seen another word or symbol ending the sentence one time each, assigning to that

n-gram a probability higher than 0.

1 ngram-count -text path/to/corpus.txt -order 2 -addsmooth 0 -lm path/to/language/

model.lm

This command is used to build the LM, based on a corpus.txt, and write it to a file named

model.lm. In the next listings are presented parts of the model, again translated to English since

the original is in Portuguese.

1 \data\

2 ngram 1=103

3 ngram 2=213

1 \2-grams:

2 0 This <weekDay>,

3 0 No terreno

4 -0.1165056 The <home:team>

5 -0.8325089 The <away:team>

6 -1.531479 The <away:team>,

7 -1.531479 The <win:team>

8 -1.531479 The team

9 -1.20412 the <round>

10 -1.20412 by <result:lose:team>

36

Statistical Language Modeling

11 -0.7269987 by <result:lose:team>,

12 -0.90309 by <result:lose:team>.

13 -0.7781513 to <away:team>

14 -0.4771213 to <away:team>.

15 -0.7781513 to beat

16 -0.60206 beat this

17 -0.1249387 beat the

18 -0.30103 beat, at

The file will contain a header with the number of n-grams detected, up to a maximum order

indicated in the -order option, represented in the first list. In the rest of the it is presented a list for

each of the indicated n-grams, preceded by the log(base-10) of the conditional probability of each

list’s element. In the second list is presented part of the bigrams list.

Regarding our training corpus we choose to build unsmoothed language models with the max-

imum order being between 2 and 5. For the small corpus with few sentences we use maximum

order 2. Maximum order 5 is more suitable to the larger corpus.

3.4.2 Sentences Generation

Having the language models built we just need to generate the sentences. SRILM provides the

ngram command which allows to generate sentences from a given LM.

1 ngram -lm path/to/language/model.lm -gen 1

This command generates one sentence, as the given value in the option -gen is 1. Below we

present an example of a sentence generated from the subtype “home team wins” of introduction.

Portuguese: O <equipa:casa> recebeu e venceu o <equipa:fora> por <resultado:equipa:casa>

x <resultado:equipa:fora>.

Translation in English: <home:team> hosted and beat <away:team> by <result:home:team>

x <result:away:team>.

Although the models can generate good sentences, they also generate bad ones, as it will be

possible to check in the results. This problem is mainly due to sparsity data. To try to overcome this

problem, zerozero.pt provided an additional collection of summaries so we can build a classifier to

automatically classify each sentence in one of the four categories that we defined for summaries.

This way we will be able to have more data to build models. This process will be explained in

Chapter 4.

37

Statistical Language Modeling

3.5 Implemented System

3.5.1 Description of the system

In order to make an usable interface so any user can generate phrases, we developed a system

where it is possible to select a match and generate a sentence of a specific category. The process

of generating text, from the previously created LMs, with the SRLIM toolkit was integrated in this

system. Regarding the system’s interface organization, first the user selects the match, then the

part of the summary he wants to generate: introduction, goals, sent-offs and conclusion. In goals

it is necessary to choose about which goal is intended to produce a sentence. Same for sent-offs

where it is necessary to select which one is expected to generate the phrase. When the user clicks

the OK button, a new sentence is produced from the model. In Figure 3.3 is shown the system’s

interface, traduced to English.

Figure 3.3: System’s interface.

3.5.2 Implementation of the system

In the implementation of the system, beyond the LMs and the SRILM toolkit we have access to

an API of zerozero.pt that contains information about each match. With this data we can replace

the tokens inserted in delexicalization process for real values from a specific match. In the Figure

3.4 is presented a part of the API, about a match from Portuguese League, where Boavista hosted

Braga, in the round 215.

When the category of the summary and the event (in the case of being a goal or a sent-off)

are chosen, a sentence is generated from the LM suitable for that part and event. The model is

chosen based on facts of the selected match. Exemplifying with introduction, the appropriate one

is chosen based on the final result. Exists LMs built for each of its subtypes: “home team wins”,

“away team wins”, “draw” and “others”. Using the match represented in Figure 3.4, we can see

that the final result was 1-1, so the implemented system choose the “draw” model to generate the

sentence.

5https://www.zerozero.pt/jogo.php?id=5003853

38

https://www.zerozero.pt/jogo.php?id=5003853

Statistical Language Modeling

Figure 3.4: Part of the match information, provided by zerozero.pt API, in JSON.

Generated sentence: The team of <coach:away:team> did not go beyond a tie by <re-

sult:home:team> x <result:away:team> against <home:team>.

The sentence is delexicalized, so by accessing the API we are able to get the respective values.

The final sentence, after the tokens replace, is presented next.

Final sentence: The team of Jorge Simão did not go beyond a tie by 1 x 1 against Boavista.

The results of this process will be analyzed and discussed in Chapter 5.

39

Statistical Language Modeling

40

Chapter 4

Automatic Classification of Summaries

4.1 Classifier

To try to overcome the data sparsity in the first created LMs, we asked zerozero.pt to provide

an additional collection of summaries. These summaries can be automatically classified using a

classifier. This classifier will be built using the scikit-learn toolkit and will assign each sentence to

one of the four categories that we defined for summaries.

4.1.1 Implementation and Classification

Scikit-learn is described as a Python module for machine learning [PVG+11]. It can be used in

classification, regression, clustering, dimensionality reduction, model selection and preprocessing.

We use it in classification, since we want to identify which category each sentence belongs to. In

the implementation of the classifier we use as train data all the sentences which constitute the sum-

maries that we manually extracted from the Italian championship, before they were delexicalized,

what gives a total of 486. Each sentence was assigned to a category and is in the following format:

1 category | sentence

The test data will be the new summaries provided, not assigned to any category yet. In our

dataset we have the attributes, also known as features that correspond to the sentences and the

categories are the responses, also known as labels or output. First we represent each category in

numerical data:

1 introduction: 0

2 goals: 1

3 sent-offs: 2

4 conclusion: 3

41

Automatic Classification of Summaries

Then we use CountVectorizer1 in features, so the text is converted into a matrix of word counts,

since most of the algorithms expect numerical features vectors with invariable size. The vector

learns the vocabulary of the training data and transform it into a document-term matrix. This is a

sparse matrix with the shape of rows x columns where rows represent the number of sentences and

columns represent all the different words that composes the vocabulary. It saves the words counts

of each sentence. This strategy is called bag of words, where each sentence is described by word

occurrences, disregarding the words position in the document. It also lowercases every word and

ignores symbols and stop words.

about here is live this you

Doc 0 0 1 0 1 0 1

Doc 1 1 0 1 0 1 1

Table 4.1: Document-term matrix example.

The test data is also transformed in a document-term matrix, using the vocabulary of the train-

ing data and ignoring words that were not there. To build the model we use the multinomial Naive

Bayes classifier2 since it is appropriate for classification with discrete features as word counts for

classification of text and it requires integer feature counts. The training data is used to train the

model and then it make class predictions for the test data, assigning each sentence to its corre-

sponding category.

To calculate the accuracy score of the classifier we divide the training data in two parts: 75%

remains in the training data and 25% is assigned to a test dataset, randomly. This way both

train and test sentences are labeled with summaries categories. The process is the same that we

explained above but we use this dataset. After predicting the model built for the test data we

compare the initial test data (25% of training data) and the prediction of the model. We have a

result of 95% of accuracy, so we consider the classifier as good and reliable.

4.2 Data preparation and Modelation

The classifier divided the test data like is shown in the Table 4.2. We decided to just use one of the

categories dataset due to the lack of time. The one that we think is more appropriate is introduction

because it is possible to delexicalize using the API data of each match.

1http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.
text.CountVectorizer.html

2http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.
MultinomialNB.html

42

http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html

Automatic Classification of Summaries

Categories No of sentences

Introduction 1428

Goals 4315

Sent-offs 25

Conclusion 979

Total 6747

Table 4.2: Number of sentences per category.

All the sentences have a match ID associated, so we can access the correct one in the API. For each

sentence, we automatically replace all the words that were equal in both places, or very similar,

for the respective token. Then we create a criteria to select the more suitable sentences. We mark

every capital word, except the initial word of a sentence, and count them to see how many entities

are still in the sentence, since the entities are usually data that should be delexicalized. Having

this count we only select the delexicalized phrases that have two or less remaining entities and

three or more tokens, to assure that the selected ones have good quality. These are next divided

in the subtypes previously presented in Table 3.5 except “others”. Through the API we know the

final result of the game in order to designate each sentence to the correct subtype. After this, it

is necessary to manually check each one to delete the entities that are not present in the API, and

the words that link them to the sentences, so they remain well constructed, and the entities are not

added to the LM’s vocabulary. The final step is to merge the sentences of this training data with

the one used in Chapter 3. The sentences are divided in subtypes as shown in Table 4.3.

Subtypes No of sentences

Home team wins 181

Away team wins 97

Draw 87

Total 365

Table 4.3: Number of sentences per introduction’s subtype.

Having this new and larger training corpus we repeat the modelation process presented in

Chapter 3 and generate new sentences. The results of this process will also be analyzed and

43

Automatic Classification of Summaries

discussed in Chapter 5.

44

Chapter 5

Evaluation

In this chapter is presented the methodology used to evaluate the implemented system and the used

LMs to generate sentences, and the results analysis and discussion.

5.1 Methodology

Evaluate the created system and the models built is a very important task so it can be possible

to analyze the produced text and discuss the obtained results. As stated in Section 2.5, there are

multiple ways to evaluate an NLG system. We intend to evaluate the quality of the produced text

using manual evaluation. We chose not to use any automatic evaluation, like BLEU metric, which

compares the generated text from the system with a set of texts authored by humans, word by word,

to check the similarity. We found this not very useful since comparing the produced sentences with

human-authored ones might be inaccurate since a writer uses background knowledge and his own

opinions, that is not possible to access in the API’s data, to complement the text. Our goal is to

generate sentences with all the important information, well-written and easy to understand.

We will evaluate sentences generated by two different corpus:

1. Constituted by sentences built after analyzing all the news written about the matches from

the season 2015/2016 of the Italian championship, Serie A, using the process demonstrated

in Chapter 3.

2. Composed by sentences built after the analysis of all the news written about the matches

from the season 2015/2016 of the Italian championship, Serie A, plus a large set of news

from where we were able to extract the ones that fits the corpus, with the process explained

in Chapter 4.

We generated sentences using both of the corpus and we will evaluate them. The necessity

to create a larger corpus emerged when we noticed that some corpus of the first set, after being

divided in categories and then in subtypes, became very small, a few composed by less than 10

sentences. The second corpus just includes the category introduction.

45

Evaluation

Corpus 1 Corpus 2

Includes the fol-
lowing categories:
Introduction,
Goals, Sent-offs
and Conclusion.

Only includes the
category Introduc-
tion.

Composed by all
the subtypes of the
referred categories.

Composed by all
the subtypes of In-
troduction, except
“Others”, due to
reasons already
clarified.

Each corpus file
corresponds to a
subtype.

Each corpus file
corresponds to a
subtype.

Table 5.1: Corpus characterization.

Two questionnaires were written to assess the quality of the sentences generated, one per each

corpus, and we will make a comparison when it is pertinent, since one is about all of the cate-

gories and the other only regards one of them. The first includes sentences of the four categories

of summaries and the system that generated its sentences use the first corpus. The second only

has introduction related phrases and the corpus used is the second one. In both questionnaires is

presented the gamesheet of the match in question. The intelligibility and the completeness of each

sentence is evaluated by making two questions:

In your opinion, and superficially analyzing the gamesheet, the generated sentences
are intelligible?

• Min (1/5): The sentence is imperceptible.

• Max (5/5): The sentence is lexically and grammatically correct.

Are the sentences complete, taking into account the summary’s category where they
are included?

• Min(1/5): It is missing key information, what makes the sentence very incomplete.

• Max(5/5): All key information is presented, so the sentence is appropriate.

At the beginning of each inquiry is explained its structure. In the first inquiry, three sentences

from each category are evaluated, giving a total of 15. A match is presented, followed by sentences

of the category “introduction”, then two “goals” of different subtypes and finally the “conclusion”.

46

Evaluation

After that, is presented another match so we can also include the category “sent-offs”, since the

first match did not have this one. In Table 5.2 is presented the subtype/s of each set of sentences.

Match Category Subtype

Feirense vs Rio
Ave

Introduction Home team wins

Goals First goal / Initial
goal

Goals Decrease the
advantage

Conclusion No draw

Belenenses vs
Braga

Sent-offs Double yellow
card / Others

Table 5.2: Subtype of each set of sentences on questionnaire 1.

The second questionnaire just includes the category introduction, so we used three different

games and generated four sentences for each one, having a total of 12. The subtype of each set of

sentences is presented in Table 5.3. As previously explained, all of these sentences are evaluated

by the users answers to the two questions presented in the list above. A part of the inquiry structure

can be seen in Figure 5.1.

Match Category Subtype

Chaves vs Arouca Introduction Home team wins

Tondela vs
Feirense

Introduction Away team wins

Boavista vs Braga Introduction Draw

Table 5.3: Subtype of each set of sentences on questionnaire 2.

47

Evaluation

Figure 5.1: Image of the questionnaire’s structure.

48

Evaluation

5.2 Results and Discussion

5.2.1 Evaluation of the implemented system’s output

In the evaluation of the final sentences generated by the implemented system we did two inquiries,

as previously stated. The first one was answered by fifty-one evaluators, previously not involved

in the project. The second survey was responded by fifty-two evaluators, all different from the first

one. The average classification per sentence is represented in Figures 5.2 and 5.5, for each one of

the questionnaires.

Figure 5.2: Average classification per sentence on the first questionnaire.

The average intelligibility score, on the first questionnaire, is 3.61 out of 5. The completeness

average classification is 3.52 out of 5. The difference between these values is 0.09 so we conclude

that the level of intelligibility and completitude is very similar, as the system can generate the

same amount of complete sentences and lexically and grammatically correct ones. We consider

classifications below 3 as negative since the scale goes from 1 to 5, being 3 the intermediate

value. Out of the fifteen sentences, the number of sentences which scored below 3 are four, in

intelligibility, and three in completeness. On the other hand, the number of sentences that scored

above or equal to 4.5 are five in intelligibility and three in completeness. It is possible to conclude

that the system can both generate sentences of very good quality and very poor ones.

In Figure 5.3 is represented a stacked bar chart that shows the distribution of the sentences

classification, regarding intelligibility, by sentence. Stacked bar charts used with a 100% scale, in

this case and in the following with the same type of chart, are useful to understand the percentage

of each possible classification for each sentence. This will help us to simultaneously compare the

49

Evaluation

percentages and notice sharp changes between sentences. It is possible to verify that sentences 2,

6, 9, 12 and 13 have an high percentage (more than 50%) of negative values (below 3, the inter-

mediate value). All the other sentences have a big percentage of positive values, which indicate

that those sentence scores a high value in intelligibility. We also assess that the most common

classification in the sentences overall is 5, with a percentage of 44.6%. To conclude there was a

total of 61.7% of positive values, 9,5% of intermediate ones and 28.8% of negative values.

Figure 5.3: Distribution of the sentences classification on the first questionnaire, for intelligibility.

Figure 5.4 shows a stacked bar chart that presents the distribution of the sentences classifica-

tion, regarding completeness, per sentence. It is visible that sentences 2, 6, 12, 14 have an high

percentage of negative values. Sentences 9 and 15 scored an intermediate value, not having neither

a high percentage of positive values nor negative values. All the other sentences have a big per-

centage of positive values which indicate that those sentence scores a high value in completeness.

In this one, comparing with the intelligibility one, there is a fewer percentage of 5’s in the overall,

corresponding to 35.1%. On the other hand it is possible to understand that the quantity of 4’s and

3’s, in overall, is higher than in intelligibility. In completeness, evaluators opted for not classifying

the sentences with the higher value, using 4’s and 3’s instead. The percentage of negative values

is 27.6%, a very similar value when comparing with intelligibility distribution. Positive values

scored a total of 56.8% and the intermediate one 15.6%.

50

Evaluation

Figure 5.4: Distribution of the sentences classification on the first questionnaire, for completeness.

Figure 5.5: Average classification per sentence on the second questionnaire.

On the second inquiry, the intelligibility average score is 3.6 out of 5. The completeness average

classification is 3.32 out of 5. In this case, the difference was larger than in the first questionnaire,

with a value of 0.28. We believe this is due to the fact that in this survey we are just evaluating

sentences from one category, introduction, which requires a large amount of data from the API. In

51

Evaluation

category goals or sent-offs it is easier to have more complete phrases because it requires less input

data. The number of sentences which scored below 3 in intelligibility are four and in completeness

are three, out of twelve sentences. On the other hand, the number of sentences that scored above

or equal to 4.5 are four in intelligibility and two in completeness.

In order to analyze the distribution of the sentences classification, regarding intelligibility per

sentence, in this second questionnaire we also present a stacked bar chart, in Figure 5.6. The

sentences with a percentage of negative values higher than 50% are 3, 6, 10 and 12. All the

other eight sentences scored an high percentage of positive classifications, indicating that those

sentences are considered intelligible. In overall, the percentage of positive classifications was

61%, the intermediate value scored 11.4% and the negative ones have a score of 27.6%.

Figure 5.6: Distribution of the sentences classification on the second questionnaire, for intelligi-
bility.

Figure 5.7 presents another stacked bar chart which shows the distribution of the sentences

classification, regarding completeness, per sentence. Sentences 3, 10 and 12 scored a high per-

centage of negative values, so they are not considered complete. Regarding high percentages of

positive values, sentences 1, 2, 7, 8, 9 and 11 stood out. The ones that scored an intermediate value

were sentences 4, 5 and 6. We notice that in this distribution the amount of 5’s reduced drasti-

cally and the quantity of 4’s and 3’s increased, comparing with intelligibility. Evaluators opted for

not classifying the sentences with the higher value, using 4’s and 3’s instead, just like happened

in the first questionnaire, in completeness. The overall percentage of positive values was 50.2%,

intermediate value percentage was 22.4% and negative values scored a percentage of 27.4%.

Next we are going to evaluate the system with both corpus, regarding the number of words of

each sentence and the impact of categories and subtypes in both intelligibility and completeness.

52

Evaluation

Figure 5.7: Distribution of the sentences classification on the second questionnaire, for complete-
ness.

We divided each set of sentences in three groups in order to evaluate if the increase of the number

of words per sentence is connected with the variation of intelligibility or completeness. Each part

has similar length. In Figure 5.8 we can see how words per sentence influence both intelligibility

and completeness on the sentences that compose questionnaire one. With the increase of the

number of words we notice a big decrease of the intelligibility score. From the first group ([0-9])

to the second (]9-18]) the average classification passed from 4.49 to 3.78, which is a significant

loss. From the second to the third group(]18,25]) the decrease was bigger, going from 3.78 to

2.27. We believe this happens because we are working with Statistical LMs. Since the next word

in a sentence is chosen based on probabilities, the more words it generates the higher the chance

of choosing a word that does not fit the context of the previous ones, decreasing the intelligibility.

As for the completeness there is also a decrease, but this is smaller. From group one to group two

the loss is from 4.07 to 3.67 and from the second to the third group the decrease is from 3.67 to

2.59, a larger decrease than the previous one. We found the decrease of completeness odd because

usually the larger the sentence more information it can have. However, as we are using Statistical

LMs we have the same problem stated before. The next word can be a token and if the same tokens

keep being chosen by the LM the sentence will be repeating information.

In Figure 5.9 we can check the influence that words per sentence has in intelligibility and

completeness, in sentences generated using the second corpus has less variation than the ones using

the first corpus. As for the completeness the average classification did not change enough to say

that words per sentence influenced it. We conclude that all the generated sentences have the same

level of completeness. Regarding intelligibility, from the first group([0,11]) to the second (]11,18])

53

Evaluation

Figure 5.8: Intelligibility and completeness average classification regarding the number of words
per sentence on the first questionnaire.

the variation is very small, passing from 3.93 to 3.80. In the transition from the second to the third

group (]18,25]) the variation is higher, going from 3.80 to 2.81. Since the category of the corpus

used to generate the sentences we are analyzing, on the questionnaire two, is introduction and the

length of them is larger that the ones used to generate the sentences on the first questionnaire,

we conclude these corpus are more suitable to sentences that have a length until eighteen words.

Higher than data will probably have worst results.

Figure 5.9: Intelligibility and completeness average classification regarding the number of words
per sentence on the second questionnaire.

Now we are going to analyze them based on the categories and subtypes. Using the Figure

5.10, regarding questionnaire one, it is possible to compare the intelligibility and completeness

54

Evaluation

between each one of the categories. Concerning completeness, “goals” scored the higher value,

followed by “sent-offs”, “introduction” and “conclusion” in last. As stated before its easier for the

categories “goals” and “sent-offs” to achieve higher results in completeness since they need less

information when comparing to “introduction” and “conclusion”. As for intelligibility the order

is the same. We conclude that this can be due to the fact of sentences about “goals” and “sent-

offs” are more objective and, having less information the sentence can be smaller what helps the

sentence to be easier to read, comparing to “introduction” and “conclusion”.

Figure 5.10: Intelligibility and completeness average classification regarding the sentence’s cate-
gory on the first questionnaire.

Questionnaire two is only composed by one category (Figure 5.11), as stated before and the

average scores were also previously discussed. It is unfair to compare the scores obtained in

“introduction” from questionnaire one and two since the first is only composed by three sentences

and the second is composed by twelve.

On the second survey we use the three subtypes of “introduction”: “home team wins”, “away

team wins” and “draw”. In Figure 5.12 is presented how intelligibility and completeness score

in each one. Normally the order of these scores would follow the size of the corpus, being the

“home team wins” the bigger one, followed by “away team wins” and “draw” in last, but that did

not happen. The “draw” subtype scores, without surprise, the worst average classification, but the

“away team wins” subtype has a better average classification than “home team wins”, even having

a smaller corpus. We believe this happens because the sentences that compose “away team wins”

corpus has less variation when comparing with “home team wins” corpus. This can make them

score higher, because with less variation the options of the next words, in the LM, would be fewer,

decreasing the chance of choosing a word that does not fit the context of the previous ones.

55

Evaluation

Figure 5.11: Intelligibility and completeness average classification regarding the sentence’s cate-
gory on the second questionnaire.

Figure 5.12: Intelligibility and completeness average classification regarding the sentence’s sub-
type on the second questionnaire.

56

Chapter 6

Conclusions and Future Work

6.1 Summary

The main goal of this dissertation was to use Statistical LMs to generate sentences that can be

part of a summary. Nowadays there is a need to speed up the news production process because

there are a large amount of matches that people wants to know about. Zerozero.pt, saves data from

more than 6000 matches per week but only has the means to produce news for an average of 100

of those matches. With this large amount of structured data it is possible to generate news using

NLG techniques. This would help the journalist writing their pieces in less time, since that would

summarize the data in text instantly.

In order to achieve the objectives we started by reviewing the state of the art regarding Natural

Language Generation. We decided to use a statistical approach, Statistical LMs, which are based

in probabilities extraction from a corpus, using N-grams. Zerozero.pt provided all the data that we

needed to build the corpus. The extraction of sentences was done manually, with us analyzing each

summary from the season 2015/2016 of the Italian championship, Serie A. After this, we manually

delexicalized all the extracted summaries, using tokens, in order to generalize all the text so it is

prepared to fit any possible match. In all the summaries we found a pattern: first the journalist

introduces the game, then he talks about the goals and sent-offs if there were any and finalize it

with a conclusion. Due to this reason we divided each summary in four categories: introduction,

goals, sent-offs and conclusion. In each category the text was divided by sentences. After having

all the sentences categorized we needed to divide each one of the categories in subtypes because

the sentences can be specific to a certain part of the game or a certain result. For example we have

a subtype “home team wins” for introduction, only suitable to the sentences that indicates that fact.

With the help of the SRILM toolkit we trained language models using the corpus built before

and generated delexicalized sentences. In order to any user be able to generate sentences about a

specific match we implemented a system that automatically identifies the subtype of the selected

category and replaces the tokens with match information from the API, generating the final sen-

tence, without tokens. These first models created allows to both generate good sentences and poor

quality ones as we can assess in Chapter 5. We believed this was due to sparsity data. Some of the

57

Conclusions and Future Work

corpus was composed by less than ten sentences, so the need of creating larger corpus emerged.

We decided to create a classifier, using the scikit-learn toolkit. As training data we used the sum-

maries used to build the first corpus. We also had access to a larger amount of news provided by

zerozero.pt so we could classify each sentence in one of the categories defined. These news were

used as test data. Due to the lack of time to finish this work we only used the sentences classi-

fied as “introduction”. This way we increased the “introduction” collection three times. In order

to generate sentences using this corpus, we trained language models and used the implemented

system to automatically generate the final sentences.

We used manual evaluation to assess the quality of the system and the generated sentences.

Two questionnaires were made: the first regarding the sentences generated using the first corpus

and the second one including phrases generated from the second corpus. In the first one, intelli-

gibility scored an average of 3.61, out of 5 and completiness scored 3.52, out of 5. In the second

one, intelligibility had an average score of 3.6, out of 5 and the completiness scored 3.32, out

of 5. We noticed that there was not a big change between the results of the two questionnaires

but we have to remember that the first one is composed by 15 sentences that include all the four

categories and the second one has 12 sentences but all from the same category. Each category has

different characteristics so the comparison between questionnaires is not fair. We assessed this

by comparing the intelligibility and completiness by category, concluding that with “goals” and

“sent-offs” is easy to generate phrases of higher quality. However we expected to notice a higher

score in the second questionnaire’s results. This may have happened for some reasons: despite the

increase of the corpus size perhaps this increase was not enough and a bigger corpus is necessary

to have better results; maybe it was necessary to evaluate a larger number of sentences in order to

understand the quality of each subtype’s collection of sentences. Even so we consider the results

positive and we think we made a good contribution to this promising area.

6.2 Future Work

In the final of this dissertation we state that a part of the generated sentences have good quality but

the system can also generated very poor ones, so we conclude that it is possible to generate even

better sentences. There are multiple options to improve the system’s output quality. The first one

is getting a very large number of sentences for each corpus. However this one requires even more

manual work and many temporal resources in order to just have sentences of good quality on the

corpus, all delexicalized and well divided by category and subtype. Another possibility is to use

another approach, using learning algorithms like deep-learning or neural networks.

58

Appendix A

Questionnaire one

In this appendix are presented images from the questionnaire one.

Figure A.1: Part 1 of questionnaire one.

59

Questionnaire one

Figure A.2: Part 2 of questionnaire one.

60

Questionnaire one

Figure A.3: Part 3 of questionnaire one.

61

Questionnaire one

Figure A.4: Part 4 of questionnaire one.

62

Questionnaire one

Figure A.5: Part 5 of questionnaire one.

63

Questionnaire one

Figure A.6: Part 6 of questionnaire one.

64

Questionnaire one

Figure A.7: Part 7 of questionnaire one.

65

Questionnaire one

Figure A.8: Part 8 of questionnaire one.

66

Questionnaire one

Figure A.9: Part 9 of questionnaire one.

67

Questionnaire one

Figure A.10: Part 10 of questionnaire one.

68

Appendix B

Questionnaire two

In this appendix are presented images from the questionnaire two.

Figure B.1: Part 1 of questionnaire two.

69

Questionnaire two

Figure B.2: Part 2 of questionnaire two.

70

Questionnaire two

Figure B.3: Part 3 of questionnaire two.

71

Questionnaire two

Figure B.4: Part 4 of questionnaire two.

72

Questionnaire two

Figure B.5: Part 5 of questionnaire two.

73

Questionnaire two

Figure B.6: Part 6 of questionnaire two.

74

Questionnaire two

Figure B.7: Part 7 of questionnaire two.

75

Questionnaire two

Figure B.8: Part 8 of questionnaire two.

76

Questionnaire two

Figure B.9: Part 9 of questionnaire two.

77

Questionnaire two

Figure B.10: Part 10 of questionnaire two.

78

References

[ABD00] Hiyan Alshawi, Srinivas Bangalore, and Shona Douglas. Learning dependency
translation models as collections of finite-state head transducers. Computational
Linguistics, 26(1):45–60, 2000.

[Air16] João Pinto Barbosa Machado Aires. Automatic generation of sports news. 2016.

[BDM+92] Peter F Brown, Peter V Desouza, Robert L Mercer, Vincent J Della Pietra, and
Jenifer C Lai. Class-based n-gram models of natural language. Computational lin-
guistics, 18(4):467–479, 1992.

[Bec09] Sean Bechhofer. Owl: Web ontology language. In Encyclopedia of Database Sys-
tems, pages 2008–2009. Springer, 2009.

[Bel09] Anja Belz. That’s nice. . . what can you do with it? Computational Linguistics,
35(1):111–118, 2009.

[BK03] Jeff A Bilmes and Katrin Kirchhoff. Factored language models and generalized par-
allel backoff. In Proceedings of the 2003 Conference of the North American Chapter
of the Association for Computational Linguistics on Human Language Technology:
companion volume of the Proceedings of HLT-NAACL 2003–short papers-Volume 2,
pages 4–6. Association for Computational Linguistics, 2003.

[BKL09] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with
Python: analyzing text with the natural language toolkit. " O’Reilly Media, Inc.",
2009.

[Bod93] Rens Bod. Using an annotated corpus as a stochastic grammar. In Proceedings
of the sixth conference on European chapter of the Association for Computational
Linguistics, pages 37–44. Association for Computational Linguistics, 1993.

[BR06] Anja Belz and Ehud Reiter. Comparing automatic and human evaluation of nlg
systems. In EACL, 2006.

[CG96] Stanley F Chen and Joshua Goodman. An empirical study of smoothing techniques
for language modeling. In Proceedings of the 34th annual meeting on Association
for Computational Linguistics, pages 310–318. Association for Computational Lin-
guistics, 1996.

[Coc96] José Coch. Evaluating and comparing three text-production techniques. In Proceed-
ings of the 16th conference on Computational linguistics-Volume 1, pages 249–254.
Association for Computational Linguistics, 1996.

[Dav74] Anthony Davey. The formalisation of discourse production. 1974.

79

REFERENCES

[DIB+11] Myroslava O Dzikovska, Amy Isard, Peter Bell, Johanna D Moore, Natalie Stein-
hauser, and Gwendolyn Campbell. Beetle ii: an adaptable tutorial dialogue system.
In Proceedings of the SIGDIAL 2011 Conference, pages 338–340. Association for
Computational Linguistics, 2011.

[dNP13] Eder Miranda de Novais and Ivandré Paraboni. Portuguese text generation using
factored language models. Journal of the Brazilian Computer Society, 19(2):135–
146, 2013.

[dNPF11] Eder de Novais, Ivandré Paraboni, and Diogo Ferreira. Highly-inflected language
generation using factored language models. Computational Linguistics and Intelli-
gent Text Processing, pages 429–438, 2011.

[Fie05] Armin Fiedler. Natural language proof explanation. In Mechanizing Mathematical
Reasoning, pages 342–363. Springer, 2005.

[FPRL06] Leo Ferres, Avi Parush, Shelley Roberts, and Gitte Lindgaard. Helping people with
visual impairments gain access to graphical information through natural language:
The igraph system. In International Conference on Computers for Handicapped
Persons, pages 1122–1130. Springer, 2006.

[GA07] Dimitrios Galanis and Ion Androutsopoulos. Generating multilingual descriptions
from linguistically annotated owl ontologies: the naturalowl system. In Proceedings
of the Eleventh European Workshop on Natural Language Generation, pages 143–
146. Association for Computational Linguistics, 2007.

[GDK94] Eli Goldberg, Norbert Driedger, and Richard I Kittredge. Using natural-language
processing to produce weather forecasts. IEEE Expert, 9(2):45–53, 1994.

[GJ93] Julia Rose Galliers and K Sparck Jones. Evaluating natural language processing
systems. 1993.

[Gom10] Maarten Van Gompel. Pynlpl - python natural language processing library. https:
//github.com/proycon/pynlpl, 2010.

[GR03] Yoshihiko Gotoh and Steve Renals. Statistical language modelling. In Text-and
Speech-Triggered Information Access, pages 78–105. Springer, 2003.

[GR09] Albert Gatt and Ehud Reiter. Simplenlg: A realisation engine for practical applica-
tions. In Proceedings of the 12th European Workshop on Natural Language Gener-
ation, pages 90–93. Association for Computational Linguistics, 2009.

[HBS+12] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
On the naturalness of software. In Proceedings of the 34th International Conference
on Software Engineering, ICSE ’12, pages 837–847, Piscataway, NJ, USA, 2012.
IEEE Press.

[HM85] MAK Halliday and CM Matthiessen. An introduction to functional grammar. edward
arnold, london. Australian Rev. Appl. Linguist, 10(2):163–181, 1985.

[JJ00] Daniel Jurafsky and H James. Speech and language processing an introduction to
natural language processing, computational linguistics, and speech. 2000.

80

https://github.com/proycon/pynlpl
https://github.com/proycon/pynlpl

REFERENCES

[Jon01] K Sparck Jones. Natural language processing: a historical review. University of
Cambridge, pages 2–10, 2001.

[JS97] Aravind K Joshi and Yves Schabes. Tree-adjoining grammars. In Handbook of
formal languages, pages 69–123. Springer, 1997.

[KBC+09] Alexander Koller, Donna Byron, Justine Cassell, Robert Dale, Johanna Moore, Jon
Oberlander, and Kristina Striegnitz. The software architecture for the first challenge
on generating instructions in virtual environments. In Proceedings of the 12th Con-
ference of the European Chapter of the Association for Computational Linguistics:
Demonstrations Session, pages 33–36. Association for Computational Linguistics,
2009.

[KPG86] Richard Kittredge, Alain Polguere, and Eli Goldberg. Synthesizing weather fore-
casts from formated data. In Proceedings of the 11th coference on Computational
linguistics, pages 563–565. Association for Computational Linguistics, 1986.

[Kuk83] Karen Kukich. Design of a knowledge-based report generator. In Proceedings of the
21st annual meeting on Association for Computational Linguistics, pages 145–150.
Association for Computational Linguistics, 1983.

[Lan00] Irene Langkilde. Forest-based statistical sentence generation. In Proceedings of
the 1st North American chapter of the Association for Computational Linguistics
conference, pages 170–177. Association for Computational Linguistics, 2000.

[LB02] Edward Loper and Steven Bird. Nltk: The natural language toolkit. In Proceedings
of the ACL-02 Workshop on Effective tools and methodologies for teaching natural
language processing and computational linguistics-Volume 1, pages 63–70. Associ-
ation for Computational Linguistics, 2002.

[LCFQY14] Nathalie Rose Lim-Cheng, Gabriel Isidro G Fabia, MEG Quebral, and MT Yu. Shed:
An online diet counselling system. In DLSU Research Congress, 2014.

[Lev12] Steven Levy. Can an algorithm write a better news story than a human re-
porter? Wired, 24:2012, 2012. https://www.wired.com/2012/04/
can-an-algorithm-write-a-better-news-story-than-a-human-reporter/
(visited: 2016-11-12).

[LK98] Irene Langkilde and Kevin Knight. Generation that exploits corpus-based statis-
tical knowledge. In Proceedings of the 36th Annual Meeting of the Association
for Computational Linguistics and 17th International Conference on Computational
Linguistics-Volume 1, pages 704–710. Association for Computational Linguistics,
1998.

[LS99] Bret Larget and Donald L Simon. Markov chain monte carlo algorithms for
the bayesian analysis of phylogenetic trees. Molecular biology and evolution,
16(6):750–759, 1999.

[MJHL16] Elena Manishina, Bassam Jabaian, Stéphane Huet, and Fabrice Lefevre. Automatic
corpus extension for data-driven natural language generation. In Proceedings of
the Tenth International Conference on Language Resources and Evaluation (LREC
2016), Paris, France. European Language Resources Association (ELRA), 2016.

81

https://www.wired.com/2012/04/can-an-algorithm-write-a-better-news-story-than-a-human-reporter/
https://www.wired.com/2012/04/can-an-algorithm-write-a-better-news-story-than-a-human-reporter/

REFERENCES

[MT88] William C Mann and Sandra A Thompson. Rhetorical structure theory: Toward a
functional theory of text organization. Text-Interdisciplinary Journal for the Study
of Discourse, 8(3):243–281, 1988.

[MW08] Simon Mille and Leo Wanner. Multilingual summarization in practice: the case of
patent claims. In Proceedings of the 12th European association of machine transla-
tion conference, pages 120–129, 2008.

[PRG+09] François Portet, Ehud Reiter, Albert Gatt, Jim Hunter, Somayajulu Sripada, Yvonne
Freer, and Cindy Sykes. Automatic generation of textual summaries from neonatal
intensive care data. Artificial Intelligence, 173(7-8):789–816, 2009.

[PVG+11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learning in python. Journal of Machine Learn-
ing Research, 12(Oct):2825–2830, 2011.

[RD97] Ehud Reiter and Robert Dale. Building applied natural language generation systems.
Natural Language Engineering, 3(01):57–87, 1997.

[RM96] Jacques Robin and Kathleen McKeown. Empirically designing and evaluating a new
revision-based model for summary generation. Artificial Intelligence, 85(1):135–
179, 1996.

[Roa01] Brian Roark. Probabilistic top-down parsing and language modeling. Computational
linguistics, 27(2):249–276, 2001.

[Roo14] Kevin Roose. Robots are invading the news business, and it’s great for journal-
ists. New York, 11, 2014. http://nymag.com/daily/intelligencer/
2014/07/why-robot-journalism-is-great-for-journalists.html
(visited: 2016-11-12).

[RRO03] Ehud Reiter, Roma Robertson, and Liesl M Osman. Lessons from a failure: Gen-
erating tailored smoking cessation letters. Artificial Intelligence, 144(1-2):41–58,
2003.

[RSBB16] Alejandro Ramos-Soto, Alberto Bugarín, and Senén Barro. On the role of linguistic
descriptions of data in the building of natural language generation systems. Fuzzy
Sets and Systems, 285:31–51, 2016.

[RSH+05] Ehud Reiter, Somayajulu Sripada, Jim Hunter, Jin Yu, and Ian Davy. Choosing words
in computer-generated weather forecasts. Artificial Intelligence, 167(1-2):137–169,
2005.

[RTA+09] Ehud Reiter, Ross Turner, Norman Alm, Rolf Black, Martin Dempster, and Annalu
Waller. Using nlg to help language-impaired users tell stories and participate in so-
cial dialogues. In Proceedings of the 12th European Workshop on Natural Language
Generation, pages 1–8. Association for Computational Linguistics, 2009.

[S+02] Andreas Stolcke et al. Srilm-an extensible language modeling toolkit. In Interspeech,
volume 2002, page 2002, 2002.

82

http://nymag.com/daily/intelligencer/2014/07/why-robot-journalism-is-great-for-journalists.html
http://nymag.com/daily/intelligencer/2014/07/why-robot-journalism-is-great-for-journalists.html

REFERENCES

[SB09] Christina Sauper and Regina Barzilay. Automatically generating wikipedia articles:
A structure-aware approach. In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP: Volume 1-Volume 1, pages 208–216. Associa-
tion for Computational Linguistics, 2009.

[SB11] Mark Steedman and Jason Baldridge. Combinatory categorial grammar. Non-
Transformational Syntax: Formal and Explicit Models of Grammar. Wiley-
Blackwell, 2011.

[Swa77] William R Swartout. A digitalis therapy advisor with explanations. In Proceedings
of the 5th international joint conference on Artificial intelligence-Volume 2, pages
819–825. Morgan Kaufmann Publishers Inc., 1977.

[TKdP+01] Mariët Theune, Esther Klabbers, Jan-Roelof de Pijper, Emiel Krahmer, and Jan
Odijk. From data to speech: a general approach. Natural Language Engineering,
7(01):47–86, 2001.

[VBP+15] Marta Vicente, Cristina Barros, Fernando S Peregrino, Francisco Agulló, and Elena
Lloret. La generacion de lenguaje natural: análisis del estado actual. Computación
y Sistemas, 19(4):721–756, 2015.

[WCM10] Michael White, Robert AJ Clark, and Johanna D Moore. Generating tailored, com-
parative descriptions with contextually appropriate intonation. Computational Lin-
guistics, 36(2):159–201, 2010.

[WGK+15] Tsung-Hsien Wen, Milica Gasic, Dongho Kim, Nikola Mrksic, Pei-Hao Su, David
Vandyke, and Steve Young. Stochastic language generation in dialogue using re-
current neural networks with convolutional sentence reranking. arXiv preprint
arXiv:1508.01755, 2015.

[Whi12] Michael White. Openccg realizer manual. Documentation of the OpenCCG Realizer,
2012.

[WR08] Sandra Williams and Ehud Reiter. Generating basic skills reports for low-skilled
readers. Natural Language Engineering, 14(04):495–525, 2008.

[YRHM07] Jin Yu, Ehud Reiter, Jim Hunter, and Chris Mellish. Choosing the content of textual
summaries of large time-series data sets. Natural Language Engineering, 13(01):25–
49, 2007.

[ZM65] AK Zholkovskii and IA Mel’chuk. On a possible method and instrument for seman-
tic synthesis. Nauchno-tekhnicheskaya informatsiya, (6), 1965.

83

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context and Motivation
	1.2 Objectives
	1.3 Dissertation Structure

	2 Natural Language Generation
	2.1 Historical Review
	2.2 Classification of NLG Systems
	2.2.1 Input into the System
	2.2.2 Communicative Goal of the System

	2.3 The Structure of an NLG System
	2.3.1 The Corpus
	2.3.2 NLG Architectures
	2.3.3 Intermediate Representations

	2.4 NLG Generic Approaches
	2.4.1 Knowledge-Based Approaches
	2.4.2 Statistical Approaches
	2.4.3 Hybrids Approaches

	2.5 Evaluation Methodologies
	2.6 NLG Tools
	2.6.1 Natural Language Toolkit (NLTK)
	2.6.2 NaturalOWL
	2.6.3 PyNLPl
	2.6.4 SimpleNLG
	2.6.5 OpenCCG
	2.6.6 SRILM

	3 Statistical Language Modeling
	3.1 Problem Approach
	3.2 Overview
	3.2.1 The Chain Rule
	3.2.2 Markov Assumption
	3.2.3 N-Grams

	3.3 Input processing
	3.3.1 Data extraction
	3.3.2 Delexicalization
	3.3.3 Summaries typification
	3.3.4 Data preparation

	3.4 Language Modeling
	3.4.1 Training Language Models
	3.4.2 Sentences Generation

	3.5 Implemented System
	3.5.1 Description of the system
	3.5.2 Implementation of the system

	4 Automatic Classification of Summaries
	4.1 Classifier
	4.1.1 Implementation and Classification

	4.2 Data preparation and Modelation

	5 Evaluation
	5.1 Methodology
	5.2 Results and Discussion
	5.2.1 Evaluation of the implemented system's output

	6 Conclusions and Future Work
	6.1 Summary
	6.2 Future Work

	A Questionnaire one
	B Questionnaire two
	References

