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Resumo

Desde a sua implementação massiva nos centros de controlo dos sistemas elétricos de energia,
o estimador de estado apresenta-se como uma ferramenta de capital importância uma vez que
permite a obtenção de um ponto de funcionamento do sistema com elevada precisão. Com efeito,
uma das etapas essenciais à definição desse ponto de funcionamento é a determinação da topologia,
isto é, o estado aberto ou fechado dos dispositivos de corte e seccionamento da rede em questão.

Assim, uma miríade de metodologias foi proposta com o firme intuito de endereçar o prob-
lema da identificação de topologia. Os primeiros passos foram dados em meados dos anos 80
sendo apresentadas abordagens baseadas em métodos puramente matemáticos e na análise dos
seus resultados para a deteção de eventuais erros de topologia. Todavia, através da crescente pop-
ularidade e dos avanços nas áreas da inteligência artificial e da ciência da computação, foram
desenvolvidos modelos baseados em redes neuronais, evidenciando resultados convincentes com
pesos computacionais mais reduzidos e não apresentando os problemas de convergência dos méto-
dos estritamente analíticos.

Tendo isto em consideração, nesta tese é ilustrada uma nova perspetiva da aplicação de redes
neuronais, deep learning e de aprendizagem baseada em teoria da informação (ITL) ao problema
da determinação de topologia e, em última instância, à estimação de estados. Através da con-
junção destes conceitos, pretende-se identificar a topologia de um dado sistema elétrico de energia
recorrendo ao reconhecimento dos padrões das medidas analógicas providenciadas, apontando, ao
mesmo tempo, metodologias alternativas ao nível do treino e arquitetura de redes neuronais bem
como de ferramentas computacionais que conduzam a uma maior eficiência desse processo.

Particularizando, serão exploradas duas filosofias diferentes com elementos de treino supervi-
sionado e não supervisionado e com arquiteturas típicas de autoencoders e redes neuronais feed-
forward aplicadas à descoberta da topologia de um sistema IEEE RTS 24. Para além do propósito
de contrastar a eficácia de cada um dos métodos, serão igualmente demonstradas comparações no
que concerne o peso e rapidez computacional através da utilização de CPU e GPU, atestando as
potencialidades desta última técnica em aplicações concretas nos sistemas elétricos de energia.

Palavras-chave: Estimação de estados, topologia de um sistema eléctrico de energia, teoria
da informação, redes neuronais, autoencoder, deep learning
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Abstract

Since its massive deploy in control centres, the state estimator is regarded as a tool of critical
importance due to its capability of determining a system’s operating point with remarkable pre-
cision. Indeed, one of the essential stages to obtain that operating point is identifying the system
topology, i.e., the open or closed status of the grid’s switches and breakers.

As a result, a considerable amount of methodologies was proposed with the purpose of detect-
ing the correct topology. First efforts related to this subject date back to the 80’s and preconized
the use of strict mathematical equations and, subsequently, the analysis of their results to evaluate
possible topology errors. However, other techniques showed the advantages of the application of
artificial neural networks to this particular problem; among them, figure the reduced computational
burden and immunity to convergence problems of mathematical, analytic methods.

Hence, this thesis presents a novel perspective of the application of neural networks, deep
learning and Information Theoretic Learning (ITL) to the problem of topology determination and,
ultimately, to state estimation. Blending these concepts, the main objective is to predict the topol-
ogy of a given power system based on pattern recognition of analog measurements, pointing, at
the same time, alternative approaches on neural networks’ training and architecture as well as
computation tools capable of introducing enhanced efficiency to that process.

With more detail, two different applications with elements of supervised and unsupervised
training as well as with autoencoder architectures and typical feedforward neural networks will
be explored to discover the status of a breaker device of an IEEE RTS 24 test case. Apart from
comparisons between their efficacy, other major point will be the contrasts between running times
achieved by CPU and GPU computation, showing that the large spectrum of application of this
last technique comprises also power systems.

Index Terms: State estimation, power system topology, Information Theoretic Learning, neu-
ral networks, autoencoder, deep learning
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“Pois não é evidente, Galileo?
Quem acredita que um penedo caia

com a mesma rapidez que um botão de camisa ou que um seixo da praia? ”

António Gedeão
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Chapter 1

Introduction

In this chapter, a brief overview will be performed regarding the main topics related to this

work, specifically the importance and usefulness of machine learning to state estimation and the

exploration of information-theoretic principles in power systems. Subsequently, the purpose of

this thesis is given, stating the main goals of the developed work. At last, the organization of this

thesis is presented.

1.1 Motivation

State estimation in power systems corresponds to the process of estimate the values of elec-

trical variables of a power system. The traditional archetype of state estimation is characterized

by mathematical models which try to estimate a plausible operating point given the set of analog

measurements.

One of the assumptions for this classical state estimation is that the topology of the system -

defined by open or closed state of the breaker and switching devices - is already known. However,

topology errors may occur and greatly jeopardize the process of state estimation due to its binary

nature.

In order to face this problem, several strategies were proposed, since branch power flow check-

ing to linear programming formulations. Nonetheless, along with the exponential popularity

growth of computer science, machine learning and, ultimately, artificial neural networks, there

was a rising adoption of techniques belonging to those paradigms in power systems, particularly

in topology estimation. Therefore, a deviation from the classic, rigid models was done in order to

grant a more automatized, fast way of dealing with proper idiosyncrasies of this field.

Through the exhaustive analysis of underlying training procedures to such artificial neural

networks solutions, it can be observed that those procedures are merely based on criteria that do

not consider the input data characteristics; i.e., the objective is only to maximize the success rate

of the model. Despite the existence of interesting results in some approaches, this modus operandi

is not totally satisfactory.
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2 Introduction

In other words, input data characteristics in topology estimation can be perceived as infor-

mation about the manifold that contains such input vector. In a first glance, the definition of

information can be rather vague and not very helpful. Notwithstanding, Shannon’s mathemati-

cally derived concepts - entropy and mutual information - may be adopted, giving a much more

treatable character to information quantification and leading to an information theoretic learning

standard. This way, the importance and the benefit of combining the best of both worlds becomes

clear. That is, there is the necessity of the development of an artificial neural network solution

that takes into account the distinct nature of the information enclosed by mathematical power flow

equations that support state and topology estimation. In this thesis, this challenge is addressed and

solutions will be presented regarding a world-wide reference test case.

1.2 Objectives

This work has the clear intention of being a vehicle of achieving a better and different way of

performing topology estimation, taking advantage of advanced paradigms such as artificial neural

networks, machine learning and information theory. More properly, it is desired to develop a

tool which can predict the topology of a given system based on pattern recognition of analog

measurements.

From another perspective, it is also desired to show the potential and usefulness of using in-

formation theory descriptors in ANN training and in state estimation. As opposed to conventional,

variance-centered methods, information theory methods rely on notions of entropy and mutual in-

formation. Those same descriptors allow us to focus on the most important data trait which is its

actual information content, giving the possibility of building more adequate and accurate models,

taking into account not a rather simple and rudimentary assumption of prediction error but the real

data distribution.

1.3 Original Contributions

The main contributions of this thesis for the state of the art of state and topology estimation

are:

• Training of deep autoencoders and deep multilayer perceptrons for local topology estimation

with ITL criteria. Use of maximum entropy cost functions.

• Assessment of the usefulness of GPU computing in the reduction of training times of neural

network applications in state and topology estimation applications. Overview of GPU and

CPU computational gains.

• Analysis of the impact of models’ hyperparameters, processes and techniques in breaker

status prediction accuracy.
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• Comparative evaluation of the performance of two methodologies - Deep AE and Deep

MLP - in breaker status identification.

1.4 Thesis organization

This thesis is composed by five chapters. The first one serves as an exposure of the purpose

and fundamental aims of this thesis as well as an introduction to some important notions related

to new perspectives on state and topology estimation.

The second chapter corresponds to State of the Art. In this chapter, a review about artificial

neural networks, autoencoders and their training procedures is performed. Then, an overview

to classic state estimation using the Weighted Least Squares is presented, being followed by a

comprehensive state of the art about topology estimation. Finally, the connection between au-

toencoders and its application in state estimation is highlighted, giving a portrait of the existent

scientific production.

In Chapter 3, a bridge between the state of the art and the explanation of both training method-

ologies is firstly performed through the formulation of topology estimation and the explanation of

basic concepts of information theory, machine learning and information theoretic learning. Then,

a thorough presentation of the inner mechanisms of both methods - Deep AE and Deep MLP - is

done, specifying aspects like ANN architecture, weight initialization, optimization algorithms or

training procedures.

In Chapter 4, the prediction results of both methodologies are presented for a single breaker

example case. Subsequently, two important features are going to be subject of comparison: the

prediction accuracy and running times of train and test of Deep AE and Deep MLP. At last, the

dominant rationales behind the exposed results are going to be analyzed.

Finally, in chapter 5, the main conclusions will be explicitly depicted and some suggestions

for future developments will be given.
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Chapter 2

State of the Art

This chapter provides a necessary introduction to fundamental concepts in which this disser-

tation is related to: autoencoders and its application to the state estimation problem. Each one

of the topics enumerated above is depicted in a different section. With this chapter, the author

aims to give the reader a clear explanation of the proposed concepts as well to provide a relatively

exhaustive literature review, highlighting significant developments in those areas.

2.1 Autoencoders - Concepts and Applications

This section has the objective of reviewing some cornerstone principles of autoencoders. In a

first moment, there is a short exposure of the concept of artificial neural network, being followed

by a clarification of the idea behind autoencoders and their training procedures.

2.1.1 Artificial Neural Networks - a brief overview

Artificial Neural Networks (ANN) can be defined as a computation tool inspired by the

biological model of the brain. An ANN can learn to solve a problem based on a given set of

examples, gaining, with proper training, a sense of generalization; i.e. use of previously acquired

knowledge to new scenarios. This approach may be particularly useful in certain types of problems

when there are no rigid algorithms to solve them.

Like their biological counterparts, artificial neural networks possess their fundamental unit, the

artificial neuron, which can be seen as the basic processing element of these structures. A neuron

has normally several inputs, each one of them affected by a specific weight, and an output, result

of the processing of this unit. This input-output mechanism can be represented mathematically by

the subsequent expressions:

netkx =
m

∑
z=1

wkx,pz Opz Okx = fkx(netkx−bkx) (2.1)

Where:

5



6 State of the Art

• netkx is the input signal of neuron x at layer k;

• wkx,pz is the weight associated with the connection between the neuron z in layer p and

neuron x at layer k - layer p precedes the layer k;

• Opz is the output signal of neuron z at layer p;

• Okx is the output signal of neuron x at layer k;

• fkx is the activation function of neuron x at layer k - linear, ramp or sigmoid are standard

examples of ANN activation functions;

• bkx is the activation threshold of neuron x at layer k;

One of the most popular methods for training ANN’s is the backpropagation algorithm com-

bined with gradient descent. The main idea behind this method is minimizing the difference - or

cost function - between the output provided by the neural network, y′, and the desired output, y,

by calculating the gradient of the error in order to the various weights, changing them accordingly.

In a synthetic manner, this iterative method can be described by the following steps:

1. Perform a feedforward computation to activate all the layers, to get an output y’;

2. Measure the deviation between y and y’ - a wide range of metrics may be applied;

3. Backpropagate the error, updating the weights;

4. End the algorithm when the error is smaller than a defined threshold;

Given the need of a target output, backpropagation algorithms are normally associated with su-

pervised learning, even though they make part of training processes of fundamentally unsupervised

networks such as autoencoders. Examples of alternative training techniques will be discussed later

in more detail from an autoencoder-oriented angle.

ANN’s may appear with two types of architectures: feedforward or recurrent. In the first

category there is the propagation of information along the direction input-output, not having any

kind of feedback process which could introduce the influence of downstream results in upstream

processing of the network. On the other hand, in recurrent ANN’s there is that possibility, exist-

ing more arbitrary topologies; still, stability in outputs and proper training of this type of neural

networks are more difficult to obtain.
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Figure 2.1: Feedforward and recurrent ANN’s, respectively.

2.1.2 Autoencoders

Autoencoders (AE) are feedforward artificial neural networks trained with the objective of

getting an output which mirrors its input with the minimum distortion possible. However, capacity

of generalization is mandatory: if the proposed autoencoder only reproduces the given input in its

output, then the training procedure has failed the task of learning useful information from the

training dataset, or, more simply, there is an overfitting of the AE [1].

This kind of ANN may be viewed as the junction of two components: the first half - encoder -

attempts to represent the input X in a space with less dimensions X’ through the use of an encoding

or compression function f . On the other hand, the second half - decoder - aims to do exactly the

opposite, aiming to approximate f−1.

The typical structure of an autoencoder is to have an input layer, an hidden layer and an

output layer as depicted in Figure 2.2. A configuration containing more hidden layers is showed

throughout specialized literature [2]. Even though a correlation between the number of hidden

layers and higher accuracies is reported, that is achieved through a more refined and demanding

training procedure.

Figure 2.2: Common architecture of an autoencoder.

Still related to its structure, there is no canon or widely-accepted rule in which it is portrayed

hints about the optimal arrangement of layers or the number of neurons of an autoencoder. For

each situation, there is a trial-and-error analysis to determine those parameters.

Prior to the use of autoencoders in reduced-space representation problems, there was Principal
Component Analysis (PCA). This technique can be described as a statistical procedure which
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aims to represent a given dataset - in which there is possibly mutually correlated variables - by

linearly uncorrelated variables (principal components), performing a dimensionality reduction.

In [3], it is concluded that an autoencoder with linear activation functions makes an information

compression very much in the way of PCA. In theory, using linear autoencoders would be an

advantage because one could split the autoencoder, calculate the first half weights based on a PCA

process and using the transposed weights’ matrix for the second half, eliminating the need of

training. However, PCA is restricted to a linear mapping while autoencoders can extract relevant

features using non-linear models, having a greater range of applications.

Taking in consideration their main capabilities, autoencoders were firstly used in the 90’s in

common tasks for ANN such as image compression, feature extraction and missing data restora-

tion [4–6]. As the diversity of applications grown, some variations of the AE concept were con-

ceived to better tackle supplementary issues such as enhancing the robustness of feature extraction

or noisy data. So, in specialized literature, one can easily find terms as denoising autoencoder

or stacked denoising autoencoder [7, 8]. As the name suggests, both are trained to provide an

output consisting of a corruption-free version of the input; nevertheless, fundamental differences

are observed in terms of architecture: a stacked denoising autoencoder is, basically, a chain of

denoising autoencoders, forming deeper models. Further references to additional configurations

of autoencoders - for example, variational or contractive AE’s - can be found in [9, 10].

2.1.3 Training processes of autoencoders

As illustrated above, one can, fundamentally, define training of an ANN as the process of

determining the weight values that suit best to the required model, optimizing the cost function

with a satisfactory computational burden. Therefore, in this chapter notions such as cost function,

training strategy or weight initialization of autoencoders are going to be introduced.

In broad terms, cost function, also called loss or error function, corresponds to the measure

of how well the ANN is performing during the training process; i.e. it is the metric used to

evaluate the difference between the actual, ya, and aimed output, yo. There is a multitude of cost

functions and, as a result, one of the fundamental steps to design a machine learning algorithm is to

carefully choose the cost function that is the most adequate to the type of problem. Minimization

of quadratic cost functions, such as the sum squared error and the mean squared error (MSE), are

the most widely applied criteria in neural network algorithms; cross-entropy (CE) and exponential

(EXP) cost functions are also often employed. In [11], a comparative study between sum squared

error, cross-entropy and exponential cost function is made regarding the stacked autoencoders’

training.

CMSE =
1
n ∑

j
(ya

j − yo
j)

2 (2.2)

CCE =−∑
j
[yo

j ln ya
j +(1− yo

j) ln (1− ya
j)] (2.3)
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CEXP = τ exp
(

1
τ

∑
j
(ya

j − yo
j)

2
)

(2.4)

Despite their usefulness in supervised learning, conventional cost functions are not applicable

in unsupervised learning tasks. One example is dimensionality reduction, in which one does not

know the data representation in the compressed space [12]. With that in mind, information the-

oretic learning (ITL) cost functions can be adopted with the purpose of retaining the maximum

information possible in the ANN [13, 14]. A considerable amount of criteria can be derived from

ITL principles, being notable examples the maximum entropy or maximum quadratic mutual in-

formation. A more detailed review of ITL cost functions and their main concepts is going to be

carried out in Chapter 3.

On what concerns strategies for training autoencoders, typical backpropagation methods are

adequate just as in any other feedforward ANN. Nevertheless, the efficiency of the algorithm is

strongly dependent on the number of hidden layers of the autoencoder and activation functions:

problems such as vanishing or exploding gradient may constantly occur, resulting in slow con-

vergence or undesired solutions. Consequently, diverse variations of classical backpropagation

with distinct optimization approaches, such as Levenberg-Marquardt [15] or conjugate gradient

descent [16], as well as other alternatives, for example the resilient backpropagation [17], were

initially proposed to address this issue.

Besides the optimization algorithm, one can also point that the importance of the initial weights

in the training procedure: if their values are close to the final solution, adequate convergence is

achieved faster. This perspective is perceived in [18] in which Hinton et al. report the design of a

a new learning algorithm for Deep Belief Networks consisting in unsupervised pretraining based

on Restricted Boltzmann Machines followed by a regular backpropagation for fine-tuning, also

applied to autoencoders in [2]. This algorithm can be shortly described by the following steps:

1. Split the autoencoder in two halves: the encoder and decoder;

2. Submit the encoder to a greedy layer-wise unsupervised pretraining through a stacked Re-

stricted Boltzmann Machine architecture, initializing the encoder weight values;

3. Unfold the model, considering the decoder a "mirrored" encoder;

4. Perform a backpropagation supervised training to all the ANN;

Although this latter strategy has interesting characteristics of rapid convergence and enhanced

generalization, it is a rather intricate technique. As a matter of fact, works portraying improve-

ments in optimization methods [19], alternative initialization procedures [20] or architectures with-

out pretraining led to a progressive abandonment of this type of approach. Furthermore, the use

of rectified linear units (ReLU) equally contributed to this relative decay of Hinton’s view due to

their capability of being less affected by gradient problems and for being easier to compute; the

application of rectified linear units in deep ANN’s is depicted in [21].
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Another strategy for training autoencoders was proposed more recently in 2014 by Miranda et

al. in [12] using a shallow autoencoder configuration - one input layer, one hidden layer and one

output layer. More particularly, this technique advances a novel and more computationally efficient

way of training autoencoders by training half of the autoencoder in each step, adopting ITL and

quadratic cost functions. This way, this algorithm can be depicted as the sequence represented

below:

1. Split the autoencoder in two halves: the encoder and decoder;

2. Initialize the encoder weights as if it was PCA, calculating the eigenvectors of the input

data;

3. Submit the encoder to a unsupervised training, maximizing the information flow between

the input and hidden layer.

4. Fixing the encoder weights, submit the decoder to supervised training, minimizing the error

between the input and output through a MSE criterion;

Considering weight initialization, one is faced with a significant number of tendencies. Apart

from the pretraining procedure proposed by Hinton et al., straightforward random techniques were

developed in [22] and [20] which are, still, regularly adopted. In the first work, Le Cun et al.

proposes the determination of weights, wi j, following a uniform probability distribution affected

by the nin, the size of previous layer. So, for the sigmoid:

wi j ∼U
[ −1√

nin
,

1√
nin

]
(2.5)

In its turn, in the second paper, it is depicted the famous Xavier initialization, named after its

main proponent Xavier Glorot. The advance proposed is to maintain the activation and backprop-

agation gradient variance, making the uniform distribution also dependent of nout , the size of the

subsequent layer. For a hyperbolic tangent function, the random initialization is given by:

wi j ∼U
[ √

6√
nin +nout

,

√
6√

nin +nout

]
(2.6)

Notwithstanding, assembling both the advantages of Xavier initialization and unsupervised

pretraining proposed by Hinton, Saxe et al. proposed a random orthogonal initialization for each

layer in [23]. In fact, this process is very much related to PCA, as both concepts aim to perform

an orthogonal representation of a given dataset; as a note, in [24] a study was done comparing

PCA and Xavier initialization in document image analysis: summarily, it has been shown that the

former outperforms the latter in convergence speed. Later on, taking advantage of the potential of

rectified linear units, He et al. presented in [25] a Xavier-inspired initialization method, including

the non-linearities of rectifier activation functions.
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2.2 Autoencoders applied to the state estimation problem

This section provides a description of the main topics regarding the application of autoen-

coders in state estimation problems. In order to contextualize the problem, it is firstly presented

the general formulation of the state estimation problem and the weighted least squares state esti-

mation method. Then, a brief description of some published works is presented with the purpose

of showing the state of the art of the use of autoencoders in state estimation and power system

problems.

2.2.1 State Estimation - an overview

In order to successfully overwatch and to increase the controllability of modern-day electrical

grids, systems as Supervisory Control and Data Acquisition (SCADA) and Energy Management

System (EMS) were designed. This latter system possess a collection of functionalities, including

state estimation.

First proposed by Schweppe et al. in [26–28], state estimation can be defined as the process of

determining a valid and highly probable operating point - described by the value of state variables

- of the power system based on measurements from the SCADA systems. In other words, state

estimation is responsible for filter and eliminate inadequate data and to produce, to a certain point,

reliable state estimates for both observable and unobservable parts of the network [29]. Hence,

the state estimation problem can be formulated using the subsequent constrained optimization

problem:

min J(x) (2.7)

Subject to:

c(x) = 0 (2.8)

g(x)≤ 0 (2.9)

Where:

• x is the vector of state variables;

• J(x) is the objective function;

• c(x) and g(x) are the equality-constraint and inequality-constraint vectors, correspondingly;

The objective function, J(x), represents the total error between the the measured and estimated

values, parameter which is intended to be minimized. Moreover, having in consideration that a
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given measurement is equal to its real value plus an error, J(x) can be rewritten using the non-linear

measurement model and according to [29]:

zi = hi(x)+ ei, i =
{

1, ...,m
}

(2.10)

J(x) = f (z−h(x)) (2.11)

Where:

• x is the vector of state variables of dimension n formed by buses’ phase angles and voltage

magnitudes;

• zi is the ith measurement composed by metered line power flows, bus voltages and power

injections;

• hi is the non-linear function that relates the ith measurement to the of state variables, x;

• ei is the error of ith measurement;

• m is the number of available measurements, with n < m;

In the end, the result of this problem will provide an estimation of the real state variables’

vector, x̂. So, the difference between the measured values z and the estimated measurements

ẑ = h(x̂) will supply an estimate of the errors, frequently called residuals, r:

r = z− ẑ = z−h(x̂) (2.12)

The true value of the measurement error, e, can be defined as the difference between the mea-

sured value and the real value corresponding to that measurement. Even so, the real value of the

measurement value is unknown, forcing the adoption of the residual in the practical implementa-

tion of this algorithm.

Regarding the seminal works by Schweppe et al., it can be declared that the most widely used

criterion to solve this problem is the minimization of the weighted sum of the squared residuals,

establishing the well known procedures of Weighted Least Squares (WLS) power system state

estimation, that is more thoroughly analyzed in the next section.

2.2.2 WLS state estimator

Nomen est omen, the WLS state estimator aims to minimize the square residuals, each one of

them associated with a specific weight. Thus, the objective function, J(x), can be expressed as:

J(x) = [z−h(x)]T R−1[z−h(x)] (2.13)

Matrix R is the covariance matrix of measurement errors and assuming that measurement

errors are independent, R can be portrayed as R = diagσ2
1 , ...σ

2
m [30]. On the other hand, R is the
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equivalent of W−1, being W the diagonal matrix whose elements are the measurement weights.

This weights may be seen as a set of parameters which specify the degree of trustworthiness in

each one of those measurements.

To solve this optimization problem, it is generally used the Newton-Raphson method. At the

minimum, the first-order optimality conditions have to be observed [30]:

g(x) =
d J(x)

dx
=−HT (x)R−1[z−h(x)] = 0 (2.14)

Where H is the Jacobian matrix:

H =




d h1(x)
dx1

. . . d h1(x)
dxn

...
. . .

...
d hm(x)

dx1
. . . d hm(x)

dxn




Rewriting g(x) into its Taylor series around the state vector xk, it is obtained the following

result:

g(x) = g(xk)+G(xk)(x− xk)+ ...= 0 (2.15)

Neglecting higher order terms for the sake of simplification, it is possible to determine:

G(xk)∆xk+1 = g(xk) = HT (xk)R−1[z−h(xk)] (2.16)

∆xk+1 = xk− xk+1 (2.17)

Where:

• k is the number of the iteration;

• xk is the state vector at the kth iteration

• G(xk) =HT .R−1.H(xk)

• g(xk)=−HT .R−1.[z-h(xk)]

The matrix G is called the gain matrix and it is characterized by being a sparse, positive and

symmetric matrix based on the assumption that the system is fully observable [30].

That being so, an iterative solution scheme is achieved. The algorithm of WLS state estimator

stops when ∆xk < ε , being ε a defined limit for the maximum state variable deviation, usually

called convergence criterion. Thus, the steps necessary to perform an iteration of WLS state

estimation procedure are presented below [31]:

1. Set k=0;

2. Initialize the state vector xk, typically a flat start is used;
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3. Calculate the measurement function, h(xk);

4. Build the measurement Jacobian, H(xk);

5. Calculate the gain matrix, G(xk);

6. Calculate the right hand side of the normal equation: HT (xk)R−1[z-h(xk)];

7. Solve the normal equation in order to ∆xk;

8. Check for convergence using max |∆xk| ≤ ε;

9. If it has not converged, update xk+1 = xk + ∆xk and go back to step 3. Otherwise, the

algorithm stops.

The proposed method gives reliable results for small measurement deviations and if the neces-

sary information is known beforehand. In fact, there are several actions performed besides the state

estimation in itself - such as topology processing, observability analysis and bad data processing -

forcing a much wider understanding of the concept of state estimator.

2.2.3 Topology Estimation

On the whole, the previous section states that state estimation provides a "snapshot" of the

system’s state accordingly with its input data. Besides line power flows, power injections or bus

voltages, circuit breaker’s statuses - which define the system’s topology - are key to the accurate

execution of the algorithm. Despite its digital nature, topology information is also susceptible

to errors in the same way as the analog measurements of current or voltage, possibly leading to

actions that can endanger the system’s stability. Therefore, topology errors are observed when

there is an inconsistency between the actual state of one or more network components and their

modelized state in the topology processor as a consequence of erroneous input data [32].

As a result, a considerable amount of methodologies were proposed with the purpose of de-

tecting, identifying and correcting topology errors since the massive deploy of state estimation

tools in power systems. In a direct manner, theses methodologies can be dichotomized in two

major categories according with their moment of execution with respect of the state estimation

calculation: a priori and a posteriori methods.

First works related to this subject [32–35] date back to 80’s and preconized a posteriori ap-

proaches to this problem based on the analysis of the indirect influence of topology errors on the

value of the residuals’ vector. Then, a repetitive analysis through successive computations of the

state estimation algorithm was made for all the combination of states for the suspected branches.

Although simple, topology error detection techniques with such guiding principles collide with

poor convergence - or even non-convergence - of the WLS method in the event of occurrence of

topological errors, eventually jeopardizing the topology tests. Apart from that, it is clear that the

above-mentioned methodologies require significant computing times.
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Against the dominant point of view of the time, Irving and Sterling in [36] presented in 1982

an a priori strategy of topology error detection by local validation of data in substations through

constrained-linear programming. Later, and in response of the downsides of a posteriori meth-

ods, Singh and Glavitsch in [37] also published a rule-based a priori algorithm for topology error

identification. These two works constitute the first efforts to establish an a priori methodology.

Despite the advancements in this area, Monticelli with [38] truly established a new paradigm

regarding the state estimation by integrating topology identification in the state estimation and bad

data processing procedures. This approach is depicted in full detail [38] as Generalized State
Estimation (GSE). Previously, articles [39,40] presented a new methodology to represent a given

circuit breaker as a short-circuit branch - if closed - or as a branch with no power flow - if open. In

doing so, an estimation of the status of the circuit breaker or switch is possible through a classical

SE method. Accordingly, the GSE algorithm is described in [38] as two-stage process:

• Stage 1: A classical estimation procedure is performed with the purpose of analyzing the

system and identify suspected zones .

• Stage 2: This stage examines the suspected zones determined before and that remained

unscrutinized in the preceding stage

Despite being prone to the downsides of a posteriori methods, this GSE procedure has be-

come standard and later publications were inspired by this trend. One of them [41], by Clements

et al., reported a way of detecting topological errors through normalized Lagrange multipliers,

reformulating the second stage earlier proposed by Monticelli. Afterwards, works along this line

of thought such as [42,43] were published showing computational burden improvements. Another

approach regarding the GSE principle can be seen in [44] where it is employed a WLS-based fuzzy

state estimator.

On the other hand, specific topology determination procedures were developed. One example

is [45] in which is utilized a mix of the basic framework provided in [38] and combinatorial bad

data analysis via decision trees. Conversely, a methodology was proposed by Caro et al. in [46]

which used mixed-integer quadratic programming to perform topology identification prior to the

state estimation itself.

All the works depicted above can be classified as conventional approaches; i.e. directly linked

to the use of mathematical equations like the ones presented in 2.2.1 and 2.2.2. Over the years,

other techniques were elaborated taking advantage of the potential of artificial neural networks,

being labeled as unconventional approaches.

The key principle behind the use of ANN in this context is rather simple to be explained:

given a dataset comprising measurements and their respective topology, the ANN is trained with

the objective of associating topology scenarios with their proper measurements. Later on, in real

situations, the ANN is "feeded" by measurements performed by SCADA systems and has to de-

termine the topology of the system based on his early training. In doing so, this approach gained

popularity due to their fast and reliable results an by being immune to convergence problems of

conventional methods.
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Pioneering works by Alves da Silva in [47–49] paved the way to a more frequent use of this

approach by presenting a combined method for topology identification, observability and bad data

analysis. Since then, this kind of solution had other developments, depicted in [50]. Alternatively,

Kumar et al. in [51] performed a comparison between types of architecture of neural networks

and conventional methods within the scope of static state estimation and topology determination.

Additionally, in [52] it is presented a fuzzy clustering and pattern matching way of performing an

integrated procedure of state estimation.

2.2.4 Application of autoencoders to state estimation

Considering the relevance of state estimation for the proper monitoring and control of power

systems, a considerable amount of methodologies were proposed throughout the years aiming new

perspectives and improvements to state estimation tools.

Although the adoption of ANN’s in the scope of power system state estimation dates back

to more than two decades, autoencoders until very recently did not penetrate this particular field.

More precisely, it was in 2012 that one paper by Miranda et al., [53] presented, as proof of concept,

that AE’s specificities could be exploited for state estimation, paving the way to other works that

adopted the framework originally provided. Primarily, it is reported the development of an AE-

based way of reconstructing missing signals from breaker and metering devices in the context of

state estimation using genetic algorithms for optimization procedures. Also, a global vs local AE

implementation is addressed, in which similar results in terms of accuracy were obtained but with

a great difference in computational effort.

In the following year, Krstulovic in [54] published a decentralized, competitive and mosaic-

type solution based on competitive autoencoders in order to successfully identify the topology of a

given system. One of the most important guidelines of this work is the full acknowledgment of the

local impacts of breaker status. This assumption led to the conclusion that a set of AE’s, each one

assigned for a specific grid location, yielded much better results in terms of accuracy as opposed

to what was reported in [53]. Following a author’s recommendation for future work, a distinct

training procedure using unsupervised learning techniques and ITL criteria was applied in [12].

Aside from the intent of providing solutions related to topology identification, one can point

a less compartmentalized application of autoencoders in power system state estimation. As it

is widely known, performing a traditional state estimation procedure in a distribution grid is, in

some circumstances, a very hard task due to the frequent grid’s bad characterization. In face

of this raised issue, a paper [55] proposed the use of AE’s for determining the system’s state in

distribution grids without prior knowledge of grid topology and parameters; a relationship between

accuracy and multiple, dispersed AE configurations is also established.

2.2.5 Other applications of autoencoders in power systems

Unlike in the special case of power system state estimation applications, AE-based solutions

were applied considerably earlier in other fields of power systems.
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With roots in a previous work, [56], which stated the ability of AE’s to learn the underlying

behaviour of systems and to act as a novelty detector, Martinelli et al. proposed in 2004 an

anomaly detection tool for power substations [57]. This method was intended to read substations’

measurements and identify strange pattern in them, generating an alarm in that case.

On the other hand, reflexes of the typical missing sensor data restoration problem for AE’s

was portrayed in [58] and [59] with distinct fields of operation. While in the first work is de-

picted the application of autoencoders as a reconstruction block between measurements acquired

by SCADA systems and a wide area state predictor, the second paper displays an adoption of AE’s

to reconstruct missing measurement signals in non-linear power plants.

Exploring AE’s for anomaly detection and classification, in 2010, Miranda et al. [60] proposed

a methodology to diagnose incipient faults in power transformers merging AE’s and ITL cost

functions. Specifically, a set of autoencoders were trained so that each one of them was associated

with a predetermined fault mode. In real situations, given the input vector, autoencoders compete

between them in order to determine the cause of the fault. Furthermore, similar utilizations of

AE’s are reported et al. in [61, 62] for detection of transmission line faults and imminent wind

turbine blade breakage.

Other practical appliance of this type of ANN’s in power systems is depicted in [63] to wind-

hydro coordination: taking into account the difficulties of metaheuristics to solve large scale opti-

mization problems, the key principle is to apply a metaheuristic in a reduced space S’ controlling

the solution in the original, large scale search dominion, S, through AE’s. Even if an improvement

in the metaheuristic performance is achieved, this kind of method implies, inexorably, a rather

significant computational burden which can be, often, unaffordable.

Presenting other possible application, Kelly and Knottenbelt in [64] proposed the use of au-

toencoders to perform energy disaggregation - estimation of the electricity consumption of each

device of an household through frequency analysis. Resembling some traits of missing data

restoration, this work presents an adoption of denoising autoencoders as an attempt of obtaining a

"clean" power signal of the target appliance, filtering the "noise" produced by other equipments.

At last, one may also highlight the role of AE’s as part of forecasting models. Whereas in [65]

stacked denoising autoencoders were applied for feature extraction of wind speed data , in [62]

this same category of autoencoders were used for short-term electricity prices forecasting.

2.3 Final Remarks

This thesis proposes to add more knowledge to the application of unconventional techniques

to state estimation, reinforcing the value of adopting autoencoders to this particular problem.

Reviewing past works in this field, depicted in 2.2.4, it is clear that almost all of them lie in

shallow neural network architectures architectures and quadratic cost functions, namely the MSE

criterion. Further methodological developments along this line of thought were rather stalled and

attached to the proof of concept described in [53] with few exceptions being in [12] in which are

presented developments in training procedures and cost functions and in [55] depicting the use
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of a resilient backpropagation algorithm. In the author’s view, the insertion of crucial changes in

these latter aspects as well as in the architecture is decisive to achieve better performances in terms

of computational times and accuracy of state and topology estimation.

In a brief manner, the advancement proposed in this work is the employment of AE’s with

more hidden layers in order to successfully extract more valuable relationships and characteris-

tics, taking advantage of deep learning algorithms. Additionally, cost functions inspired in ITL

concepts are going to be used with the purpose of preserving the maximum amount of information

through the neural network or autoencoder, complementing at the same time the mission of deep

architectures and algorithms of discovering new, useful data. A training process very much in the

way of the portrayed in [12] is going to be put into practice, assessing its ability out of the tradi-

tional, shallow autoencoder configuration. Furthermore, along with increasingly deeper models,

greater computational burdens are expected. As a result, the application of GPU computing to this

state estimation approach will be reported in this thesis, with the aim of performing benchmark

comparisons between GPU and CPU processing.



Chapter 3

State estimation with Deep Learning
and ITL Techniques

This chapter will serve as a deeper introduction of entropy and machine learning concepts,

highlighting their relations and practical convenience of their combination.

Moreover, it will be provided a short contextualization about classification problems in deep

learning. Given the kind of exercise to which this work is related to (identification and proper

distinction of the status of a breaker or switching device), a brief analysis on this family of machine

learning problems is required. More properly, notions about the definition of a classification task

and the depiction of logistic regression as a suitable algorithm to solve this family of problems

will be addressed in the following part of the chapter.

Relying on the previously presented notions, detailed formulations of the two methodologies

are going to be put forward in order to clarify not only the training procedures but also mechanisms

of the employed ANN structures.

3.1 Formulation of the problem

Estimating is directly correlated with the act of performing an approximate judgment about

the size, worth, amount of something. Accordingly, power system state estimation corresponds,

as the name implies, to the estimation of the system’s state, given by its node voltage phasors and

transformer’s turn ratios.

However, state estimation is highly intertwined with other power system procedures in order

to get a reliable model of the given system. Those other procedures comprise, among other tasks,

obtaining measurements, observability analysis, bad data processing and, in the end, topology

estimation.

The topology of a system is determined by statuses of all breakers of that same system (i.e.,

any type of switching devices that influence the network connection), described by binary vari-

ables since a breaker can only be in an open or closed state (OFF or ON). Thus, after topology

determination for all substations throughout the system, a bus/branch model may be built and a

19
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power flow or a state estimation can be run. Topology can be seen as a time-dependent or time-

independent problem; i.e., it is possible to consider the current topology of a system as an evolution

from other topological scenarios due to technical reasons or to consider the actual topology as a

separated frame of a film, unattached to the temporal dimension. In this work, the latter paradigm

is adopted.

Since the early beginnings of the adoption of state estimation tools that the main method-

ologies for topology estimation are intimately related with traditional mathematical programming

considering the power flow equations defined by Kirchoff’s circuit laws. On the other hand, it is

clear that topology greatly affects electrical values in a system. Conversely, it is also possible to

understand topology estimation as an information extraction process that identifies the status of a

given breaker based on the pattern of the measurements, as it is described in Figure 3.1. To perform

this, an ANN approach can be used, persistently sweeping a considerable number of topology and

operating scenarios, and, ultimately, make the distinction between open and closed breaker based

on previous experience.

Figure 3.1: ANN-based breaker status processor

All things considered, the main issue is the determination of a system’s topology. With this

in mind, one must ask: Can an ANN capture the information hidden in analog measurements
and identify a breaker status? If yes, what is the accuracy of that process?

Therefore, the work developed in this thesis consists in presenting valid, accurate and ANN-

based models that take advantage of the relationship between analog measurement manifolds and

breaker status from a local, distributed perspective to successfully address those issues.

3.2 Theoretical background

This section will provide a review of the genesis of information theory and its role on the

development of ITL. Furthermore, the essential principles of entropy and mutual information along

with their relationship between machine learning criteria are exposed.

3.2.1 Brief historical review of information theory

Since the developments of telegraph and telephony in the nineteenth century that communica-

tion over lossy and noisy channels is a crucial application which instigated the interest of the most
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diverse fields of science, specially in mathematics and physics. Despite the notorious advance-

ments in the physical infrastructure of communication systems, there was the need of formulating

and applying techniques to the message itself, dealing with the possibility of errors.

Despite earlier works by Nyquist and Hartley in which they, innovatively, shed some light

on information-theoretic principles, it is correct to affirm that the article " A Mathematical The-

ory of Communication" by Claude Shannon, [66], serves as the birth certificate of the discipline

of information theory. Rather surprisingly, the work was quickly accepted by the scientific and

engineering communities and its fundamentals were promptly put into practice in real problems.

In a simpler way, one can declare that information theory is the field of science which com-

prises all the processes related to information, since its transmission to its extraction, character-

izing, for example, the structure of a message or proposing new compression methods to achieve

less distortion over a given communication channel.

However, at this point one might wonder: how can information theory be useful in machine
learning ? It is widely accepted that the most common criterion in machine learning algorithms

relies in the minimization of the mean squared error or, viewing from another perspective, the

minimization of the variance of the error distribution. Despite its simplicity, this metric assumes,

firstly, that the error distribution is Gaussian and, on the other hand, despises the importance of

higher order moments. Given these limitations, new criteria were developed with the essential

premise of focusing on the maximization of the information content rather than the steady reduc-

tion of the variance of the error distribution, taking advantage of information theory principles.

Concluding and returning to his seminal work [66], Shannon proposed the use of only two

descriptors to statistically portray the information character: entropy and mutual information.

These two concepts will be subsequently explored in the next sub-sections.

3.2.2 Shannon’s entropy

In an information-theoretic context, entropy is a measure of uncertainty and, at the same time,

of quantity of information. Assuming a random variable X, with N pairs {xi, p(xi)}, with a prob-

ability density function (pdf) described by p(X) = {xk, p(xk), k = 1,2, ...,N }, the Shannon’s en-

tropy of this random variable is given by:

H(X) =−
N

∑
k=1

p(xk) log2 p(xk) =−E [log2 p(X)] (3.1)

For a continuous random variable, the equivalent expression is followingly stated:

H(x) =−
∫ +∞

−∞

p(x) log2 p(x)dx (3.2)

As it can be seen above, entropy is made from a certain balance in its calculation between the

probability and the amount of information: taking a message as example, one can acknowledge

that if pk = 1 then its entropy, or information content, is zero and the same rule is applicable if

pk = 0. In this latter case, the resulting entropy will be maximum.
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This way, Shannon defined the entropy of X as the sum across the set of uncertainty in each

component, log2 p(xk), weighted by its probability; if logb has b = 2, the entropy is measured in

bits of information.

3.2.3 Parzen window

The Parzen window technique - also called kernel density estimation - was developed by

Emanuel Parzen. Its main goal is concerned with the determination of the pdf of a given ran-

dom variable from a discrete sample of an M-dimensional space: yi ∈ RM i = 1,2, ...,N.

This method consists in applying a kernel function centered on every sample point. Therefore,

the estimated pdf, f̂ , using an arbitrary kernel function is given by the following expression:

f̂Y (z) =
1

Nσ

N

∑
i=1

κ
z− yi

σ
(3.3)

where σ is the kernel size or bandwidth parameter. Moreover, a common option for the kernel

function type is to choose Gaussian functions. Thus, one can also write the generalized expression

for a Gaussian-based kernel estimation of f̂ :

f̂Y (z) =
1
N

N

∑
i=1

G(z− yi,σ
2I) (3.4)

Returning to equation 3.3, the kernel size, σ , is a free parameter which affects heavily the final

pdf estimation. Observing the next figure, it is clear that a higher kernel size generates a much

smoother form, while lower values of σ provide a much more "spiky" pdf estimate.

Figure 3.2: Pdf estimation through two kernel sizes represented by b=0.4 and b=0.2.
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Due to its importance in kernel density estimation, the generalized determination of the most

adequate value of σ was subject of several studies and proposals. To the most part of machine

learning applications based on Parzen window, a simple rule of thumb to determine a constant σ

value - either Silverman’s or Scott’s - is enough, although it is possible to use certain heuristics

which allow an adaptive kernel size according to the evolution of the cost function [67].

3.2.4 Rényi’s entropy

The critical place occupied by Shannon’s entropy in information theory as well as its break-

through character are undisputed. Nevertheless, a more deeper analysis is going to be performed

on a distinct approach to the concept of entropy - Rényi’s quadratic entropy - due to its applications

in machine learning as presented in [13].

Willing to find a more generalized information measure that preserved the additivity of sta-

tistically independent systems, the hungarian mathematician Alfréd Rényi proposed a parametric

family of entropy functions which generalized Shannon’s entropy. Each entropy function is dis-

tinguishable by its parameter α and the basic formulation for this family of functions is presented

below.

Hα =
1

1−α
log

N

∑
k=1

pα
k with α > 0, α 6= 1 (3.5)

Comparing Shannon’s and Rényi’s entropies, equations 3.1 and 3.5, one can observe that the

main difference is the placement of the logarithm in the expression: while in Shannon’s entropy

the probability mass function weights the log2(pk) term, in Rényi’s entropy the logarithm affects

the α power of the probability mass function. Also, these contrasts in the mathematical formu-

lation allow to infer that, for optimization algorithms, Rényi’s entropy is a much more efficient

metric than Shannon’s expression. The ultimate reasoning behind this conclusion lies in the fact

of Shannon’s entropy being composed as a weighted sum of probability logarithms which is com-

putationally harder to solve than Rényi’s logarithm of the sum of probabilities.

Given its properties and practical applications, Rényi’s quadratic entropy (α = 2) possesses a

significant and special interest. Applying α = 2 to equation 3.5, the quadratic variation of Rényi’s

entropy is represented by:

H2 =− log
N

∑
k=1

p2
k (3.6)

Therefore, giving a geometric interpretation to the formula above, assuming a discrete random

variable with a pdf given by xi, p(xi) for k=1,2..., n, that same pdf can be seen as a point of a

probability space of n dimensions being at the same time over a hyperplane in which the sum

of all dimensions - or probabilities - is equal to one. In the particular case of Rényi’s quadratic

entropy, it corresponds to the negative logarithm of the Euclidean distance of that point to the

center.
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In machine learning, entropy can be specially useful and appropriate in situations in which data

representations are not precisely defined - such as unsupervised learning tasks - because entropy

guides the optimization through an infomax principle. Therefore, assuming a continuous random

variable, y, and its pdf given by fY (z), and combining both Renyi’s quadratic entropy and Gaussian

kernel pdf estimation, it is possible to construct an entropy estimator as expressed below:

H2(y) =− log
∫ +∞

−∞

f 2
y (z)dz =− log V (y) (3.7)

V (y) =
1

N2

N

∑
i=1

N

∑
j=1

G(z− yi,σ
2I)G(z− y j,σ

2I)dz (3.8)

V(y) is called the information potential and, according with the convolution property of the

Gaussian functions, can be written as:

V (y) =
1

N2

N

∑
i=1

N

∑
j=1

G(yi− y j,2σ
2I) (3.9)

Attending to these last equations, one can state that if the information potential, V(y), is min-

imized, then the entropy, H2(y), will be maximized, assuring a maximum flow of information

through the model. As a result, it is called the Maximum Entropy Criterion (MEC).

3.2.5 Mutual information

Through the use of entropy one can describe the amount of information content of a single

information source; in other words, entropy measures uncertainty of only one random variable.

However, communication systems have inputs and outputs, each uncertain in their own way, so

there is a need for a descriptor which has the ability of characterizing two information sources.

That same descriptor has been developed by Shannon and it was named mutual information.

Mutual information can be seen as a correlation index between two random variables and mea-

sures the amount of information obtained about one random variable, through the other random

variable. Formally, considering X = {xk}N
k=1 and Y = {yk}N

k=1 two discrete random variables,

mutual information between X and Y is given by

I(X ,Y ) = ∑
i

∑
k

p(xk,yi) log2
p(xk|yi)

p(xk)
(3.10)

Although mutual information is a distinct descriptor from entropy, the two concepts are intrin-

sically connected due to their relationship with information content. Accordingly, one can obtain

the mutual information between two random variables using the entropy of each one of them. This

can be perceived by Venn’s diagram below:
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Figure 3.3: Diagram to describe the relationship between entropy and mutual information of two
random variables.

The mathematical equation that shows the relationship between mutual information and marginal

entropy of X and Y is given by:

I(X ,Y ) = H(X)+H(Y )−H(X ,Y ) (3.11)

In accordance with the equation 3.11, if X and Y are independent from each other the the mu-

tual information between these two two random variables will be zero, i.e. each random variable

contains no information about the other. Maintaining the same assumption, the joint distribution

of both X and Y is given by the product of their marginal distributions. Therefore, this descrip-

tor can be formulated as a divergence between the joint distribution and the product of marginal

distributions - if both terms are equal, variables are independent resulting in mutual information

equal to zero [12].

As a result, one can use such conclusion to create an information-theoretic estimator - apart

from maximum entropy - to act as regulator of an unsupervised learning process in a machine

learning algorithm, calculating and maximizing the mutual information between the input and the

output pdf of a determined model.

In the field of statistics, divergence is a function that indicates the distance between two pdf

and many metrics have been proposed to express such relationship. In this work, it is going to be

employed the Cauchy-Schwarz distance to create the desired estimator. Subsequently, it is applied

this same definition to a situation where there is two distinct pdf with only one random variable:

ICS( f ,g) = log
∫

f 2(x)dx
∫

g2(x)dx
(
∫

f (x)g(x)dx)2 (3.12)

Suiting this same formula to the case when there is two random variables, one gets:

ICS(X ,Y ) = log

∫ ∫
f 2
X ,Y (x,y)dx dy

∫ ∫
f 2
X(x)g2

Y (y)dx dy
(
∫ ∫

fX ,Y (x,y) fX(x) fY (y)dx dy )2 (3.13)

The above expression can be seen as the Quadratic Mutual Information (QMI) and may be

decomposed in three terms: VJ , VM and VC. VJ , VM represent the information potentials of the
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joint pdf and of the factorized marginal pdf, respectively; on the other hand, VC corresponds to the

generalized cross information potential. That same partition is observed subsequently:

VJ =
∫ ∫

fX ,Y (x,y)dx dy

VM =
∫ ∫

( fX(x) fY (y))2dx dy

VC =
∫ ∫

fX ,Y (x,y) fX(x) fY (y)dx dy

(3.14)

The estimator for the first parcel, VJ , is given below:

V̂J =
1

N2

N

∑
i=1

N

∑
j=1

V̂1(i, j)V̂2(i, j)

V̂k(i, j) = G√2σ
(xk(i)− xk( j))

(3.15)

Regarding VM, its estimator is showed in the following equation:

V̂M = V̂1V̂2

V̂k(i, j) =
1

N2

N

∑
i=1

N

∑
j=1

V̂k(i, j) , k = 1,2
(3.16)

At last, the estimator for the generalized cross information potential, VC, is represented as:

V̂C =
1
N

N

∑
i=1

V̂1(i)V̂2(i)

V̂k(i) =
1
N

N

∑
j=1

V̂k(i, j) , k = 1,2
(3.17)

Concluding, the ICS estimator considering two random variables, X and Y, is expressed as the

combination of the previously presented estimators. Maximizing this estimator constitutes the

Maximum Quadratic Mutual Information Criterion (MQMIC):

ÎCS(X ,Y ) = logV̂J−2logV̂C + logV̂M (3.18)

Intuitively, under some circumstances maximizing the quadratic mutual information between

the input and output of the model is equivalent to maximize the entropy at the output of the same

model [12]. The cornerstone assumption behind this conclusion is that in both approaches the

objective is to retain the most important characteristics about the input data in the model, being

possible to apply two different, although intertwined, criteria. Thus, the choice of the implemented

criterion relies only on the straightfowardness of programming and on the computational burden

required. In chapters 3.3 and 3.4, where both methodologies are going to be scrutinized, it is

reported the adoption of Maximum Entropy Criterion (MEC) in both cases.
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3.2.6 Machine Learning Classifiers

Due to its moldability, machine learning is a powerful and appalling solution to a broad range

of problems, involving the fields of computer vision, pattern recognition and automated learning.

Even though the enumeration of such problems could be a slow and time-consuming quest, one

can divide such problems by categories based on the type of task that one desires to perform.

Hence, possible applications of machine learning can fit in one or more of the following com-

mon designations: classification, regression, transcription, machine translation, structured output,

anomaly detection, imputation of missing values, denoising, etc.

However, the particular interest regarding the methodologies which will be later presented -

the distinction of open or closed state of a breaker device - is classification. To delineate precisely

this type of problem, one can quote an adequate definition from [1]:

"Classification: In this type of task, the computer program is asked to specify which

of k categories some input belongs to. To solve this task, the learning algorithm is

usually asked to produce a function f : RM {1, . . . , k}. When y = f (x), the model

assigns an input described by vector x to a category identified by numeric code y."

Putting it more simply, classification consists in assigning a specific label to a case based on

the inputs fed to the computer program; possible, everyday examples of such problems are object

recognition, handwriting recognition or medical image analysis.

If in some cases there were disadvantages which had to be surpassed, in others there had to be

a clear response to some unique and idiosyncratic aspects of the given problem. In order to accom-

plish those goals, a multitude of classification algorithms were developed. Among them, there are

unanimous and long-established groups of procedures such as decision tree-based models, sup-

porting vector machines, kernel estimation classification methods or linear classifiers. Given the

adoption of a linear classification algorithm in the second methodology, a more in-depth analysis

is going to be performed, in a first place, on this family of methods and then to logistic regression.

3.2.7 Logistic Regression

Linear classifiers perform classification through the evaluation of the algebraic, linear combi-

nations of the input. Regarding the perspective from machine learning, this is a definition which

suits to logistic regression: this same model is composed by W , a weight matrix, x, an input vector

and b, a bias vector. Classification is done by projecting the input vector to a set of hyperplanes,

each one of them corresponding to a class. The distance from the input to a hyperplane reflects

the probability of the case denoted by the input vector being a member of that specific class.
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Thus, the adopted model of logistic regression can be defined by the following equation. The

probability of an input vector, x, belonging to a class i can be expressed by:

P(Y = i |W,b) = so f tmaxi(Wx+b)

=
eWix+bi

∑ j eWjx+b j

(3.19)

Being:

• So f tmax - terminology used to represent the softmax function

• Y - output stochastic variable which indicates the membership of an input vector to a certain

class

However, the previous formulation shows the probabilities of a given case of belonging to

every class. The prediction of the most likely class to which the input vector belongs is given by

the class with maximum probability, max P(Y = i|W,b).

In machine learning and more accurately in the neural networks universe, finding the opti-

mal parameters for a model corresponds to a loss function minimization. In case of multi-class

logistic regression it is very common to employ the negative log-likelihood as the loss, maximiz-

ing, in practical terms, the likelihood of the data set under the characteristics of the given model.

Formally, one can express the criterion as:

L(θ = {W,b},D) =
|D|
∑
i=0

log(P(Y = i(i)|x(i),W,b))

`(θ = {W,b},D) =−L(θ = {W,b},D)

(3.20)

Where:

• D - corresponds to the dataset

• θ - symbol which represents the model being optimized

• L - log-likelihood estimator

• ` - loss function to be applied, negative log-likelihood

The main reasons for using this type of classification algorithm lie predominantly in the easy

and robust update of the parameters via a stochastic gradient descent method, providing, at the

same time, an understandable probabilistic approach.

3.3 Methodology 1 - Deep AE

This section is intended to show explicitly the structures and methods used to construct the

first variant of ANN training through the utilization of deep autoencoders.
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In order to show the underlying applied techniques, weight initialization, optimizer methods

and architectures are issues which will be addressed in this subsequent part of the chapter.

3.3.1 Overview

Prior to the details related to training autoencoders, it is a priority to define the bottom line of

this first methodology, mainly in the aspects of range of the topology estimation and the assumed

principles to perform such task.

Regarding the character of topology estimation using autoencoders, it is possible to discrim-

inate two possible alternatives: global and local. These two variants are presented and specially

focused on chapters 2.2.4 and 2.2.3 of this thesis. Summarily, global topology estimation pro-

ceeds to the determination of topology in one stroke, willing to distinguish the status of all breaker

devices at the same time. On the other hand, local topology estimation assumes a more decen-

tralized, mosaic-type solution: in this case, adopting the use of two autoencoders for each breaker

device - one for open state and the other for closed state -, one can get the topology of the system

through the contribution of every pair of AE’s.

Each one of this approaches has its own advantages and downsides. For example, the fact of

putting into practice a variant of global estimation assures a much more automated and centralized

procedure because it is only necessary to design one ANN structure. Nevertheless, acknowledging

that information about the breaker status possesses remarkable local properties and that the amount

of data and training times can be significantly lower, it was chosen to stick with a local strategy

rather than a global one.

Therefore, one can summarize such local strategy as follows:

• An AE is trained to learn a pattern of electric measurements when the breaker is closed; on

the other hand, another AE is trained taking into account the electric measurements when

the breaker is open.

• To test the generalization capacity of both autoencoders, it is given to them an input with a

case that doesn’t figure in training or validation sets.

• Whereas one of the autoencoders should recognize such inputs as belonging to the learned

manifold, the other will show a larger reconstruction error due to the fact of not being

prepared for such example.

• Selecting the AE with the lower error corresponds to the prediction of the open or closed

state of breaker

This kind of perspective for local topology estimation has been described as competitive au-
toencoders and is represented on Figure 3.4. The rationale behind this denomination is the con-

stant and adversarial error comparison between the two autoencoders in order to determine the

breaker or switching device status.
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Figure 3.4: Illustration of competitive local autoencoders - from [54]

As perceived in earlier published works, the two dominant aspects regarding the precision

of breaker status estimation are the constitution of the training, validation and test sets and the

training. Hence, these two fields will be depicted in the following sections.

3.3.2 Dataset and Pre-processing

Despite the previous description of the process to be implemented, it is absolutely necessary

the existence of electric measurement data to serve as input to the ANN architectures.

As a test system, it was chosen the IEEE RTS-24 to serve as the example for the further

studies with ANN structures presented in this thesis. Additionally, the case study to which both

methodologies were applied is the identification of the open or closed status of breaker 2. A more

thorough assessment of this two aspects is going to performed ahead in Chapter 4.

In order to obtain the database comprising all the studied cases, the following steps were

executed:

1. Design of an annual cumulative load curve based on data from [68]; then, load levels are

randomly sampled.

2. Simulation of load variation through the addition of a Gaussian perturbation with σ = 5%.

3. Generation of a large set of realistic operating scenarios with an OPF, with breaker status

randomly defined.

4. Simulation of noisy measurements by adding a Gaussian perturbation to power flow solu-

tions, with 3σ = 1%.

The successive OPF experiments allowed to constitute a database of 11736 examples, as it

can be seen in table 3.1, which were splitted under a 60%-20%-20% partition scheme for training,
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validation and test, respectively. Moreover, due to the need of training two different autoencoders

to compose the competitive scheme, it was created a training and a validation set for each autoen-

coder; i.e., for each possible state of the breaker.

Table 3.1: Dataset division regarding the first methodology.

Number of examples

Open State
Training Set 3496

Validation Set 1165

Closed State
Training Set 3496

Validation Set 1165
Test Set 2414

Total Number of Examples 11736

Before inputting these sets of raw data into the AE’s, it was performed a pre-processing step

which consisted in applying a normalization function that transformed every example - row - in an

unit norm vector. Despite the wide utilization of this approach in text classification and clustering

problems, the use of this normalization procedure in this case is backed by successive experiments

with other pre-processing functions such as Gaussian standardization - transform every column by

removing the mean and scaling to unit variance - and min-max scaler method for intervals [-1,1]

and [0,1]. In the end, unit norm row normalization presented better results than the other functions

in terms of estimation accuracy.

3.3.3 Training and model characteristics

As mentioned earlier, the case study is the estimation of the open or closed status of breaker 2.

So, taking into account the local character of this methodology, the input data of the autoencoder

is only related to the area of influence of that same breaker. In a first approach, it was used an input

vector of 22 inputs composed by voltage magnitude and phase of buses 3 and 9, active and reactive

power injection in those buses and active and reactive power flows in every line connected to bus

3 and 9 - lines 1-3, 3-9, 3-24, 4-9, 8-9, 9-11 and 9-12. However, the final input vector comprises

only the active and reactive power injection in buses 3 and 9 as well as active and reactive power

flows of the branches connected to the same buses; this way, the input vector was shortened in

4 measurements, passing from a length of 22 to 18 elements. Although this removal of analog

measurements can be seen, in a first glimpse, as an harmful information disposal, this measure has

actually positive impact on prediction accuracy as showed in annex A.

As a development platform to construct deep learning and neural network models, the choice

has been to adopt Python programming language, taking advantage of libraries such as Theano

and Lasagne. These libraries are well-known and widely used in the field, having plenty of docu-

mentation for applications similar to the ones presented in this thesis.

The final model is composed by two autoencoders, each one with an input layer of 18 neurons

and having 5 hidden layers with sizes of 16, 14, 12, 14 and 16 neurons, respectively. Due to the
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fact of being a symmetric autoencoder, the output layer has also 18 neurons. Each neuron has a

sigmoid activation function.

The success of any ANN structure is dependant of the weights’ starting point. Hence, the

strategy adopted consists in a random orthogonal weight initialization using a Gaussian distribu-

tion between 0 and 1, described in [23]. This option has provided better accuracy results when

compared to the other approach, Xavier initialization. Also, other major motive behind this choice

is that this approach helps more substantially model regularization; i.e. prevention of overfitting

by assigning low values to weights and biases.

The chosen optimization algorithm was ADADELTA - described in full detail in [69] - whose

parameters are configured according the existent technical literature. The major reasons for opting

for this specific algorithm are the faster convergence and higher capacity of escaping local minima

when compared to traditional minibatch SGD along with its ability of adapting the learning rate

through the optimization process. Additionally, another important aspect regarding ADADELTA

is the absence of the obligation of defining a default learning rate which is a rather common

problem in the field of iterative optimization processes.

The employed training procedure and cost functions can be summarily depicted in the follow-

ing points:

1. Encoder training in a layerwise fashion using a MEC cost function

2. Decoder generalized training using the MSE criterion

Considering the training under the MEC criterion, one has to define the procedure related to

the kernel size σ , necessary to the application of the Parzen window to perform the estimation of

entropy. Firstly, it was attempted an adaptive strategy in which the kernel size progressed from

a larger value to a shorter one in order to further optimize the process, avoiding local minima.

However, technical problems related to the programming language and libraries have blocked

the adoption of such technique. Therefore, after several experiments it was found that applying

constant σ = 0.4 provided the best results on what concerns prediction accuracy.

The training method used minibatches constituted by 50 examples. The stopping criterion

consists in the use of early stopping to prevent overfitting phenomena by monitoring the model’s

performance on a validation set. Concretely, if the model’s performance stops improving or starts

to deteriorate the algorithms ceases its optimization process if the additional requirement of the

minimum number of examples - patience - is met. In the final version of the model, the patience

parameter is defined as 20000.

The evolution which allowed the determination of the ideal model parameters along with the

specification of the resulting confusion matrices is explained in full detail in annex A.

3.4 Methodology 2 - Deep MLP

This section has the specific purpose of providing deeper information about the more technical

aspects of the second methodology - Deep MLP.
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In the same way of the previous section, topics related to weight initialization, architectures or

training procedures will be thoroughly examined.

3.4.1 Overview

Subsequently to the idealization and application of the first methodology, two legitimate ques-

tions were asked about the possibilities of reducing the execution time of training the proposed

autoencoders and maintaining some traits of the reported information-theoretic approach.

Attending to the nature of the task, the perspective of adopting a single MLP combined with

a logistic regression layer is very attractive: in a first place, it serves the main purpose of breaker

status identification as a classification problem; the other major point is related to the reduction

of ANN structures, passing from two AE’s to one single MLP, enabling a relevant reduction in

computational time.

To conclude, it was also applied a local approach to topology estimation in order to enable fair

contrasts between both methodologies. Again, the breaker 2 serves as the visible example of the

method.

3.4.2 Dataset and Pre-processing

In order to perform ceteris paribus comparisons between both processes, it was opted to use

the same data in both Deep AE and Deep MLP methodologies. Even so, given their fundamental

differences related to the number of ANN structures used in methodology 1 and 2, some minor

adjustments in dataset division had to be executed. While in methodology 1 one had to divide the

example database in open and closed state for AE training and validation, in methodology 2 that

step is not necessary due to the attributes of the logistic regression classifier.

As a result, it is possible to immediately split the database under the same 60%-20%-20%

criterion, as applied before, as long as the data is labeled to allow the algorithm to learn the

patterns from open and closed state of the breaker.

Table 3.2: Dataset division regarding the second methodology.

Number of Examples
Training Set 6992

Validation Set 2330
Test Set 2414

Total Number of Examples 11736

As a pre-processing step, it was performed the application of a normalization of every row to

unit norm, in the same way of methodology 1.

3.4.3 Training and model characteristics

Given the fact of both methodologies being local approaches, in methodology 2 it is adopted

the use of analog measurements from the surrounding zone of buses 3 and 9. Therefore, in the
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final version of this methodology it is used the active and reactive power injection in those buses

along with the active and reactive power flows in the branches connected to buses 3 and 9. Hence,

the resulting input vector is composed by 18 elements.

Besides the input vector, this methodology has other common points with Deep AE, namely

on what concerns programming language, the optimization algorithm, kernel size and training

mode. Therefore, in a quick description, the used backpropagation algorithm was ADADELTA,

the adopted kernel size was a constant σ of 0.4 and the model was trained using a SGD approach

with minibatches composed with 50 examples and a minimum umber of analyzed examples -

patience parameter - of 10000.

The ultimate version of Deep MLP model has an input layer constituted by 18 neurons, being

followed by 4 hidden layers with 14, 10, 6 and 4 neurons, respectively. In the end, the logistic

regression layer has a total of 2 neurons to perform the classification task of distinguishing the

open and closed states of the breaker.

The training procedure used for Deep MLP resembles a very well-known approach which

consists in combination of layerwise pretraining followed by a generalized finetune of all model

parameters. Notwithstanding, a minor tweak was introduced making use of ITL notions. Hence,

the training strategy can be summarized in the subsequent points:

1. Layerwise pretraining using MEC.

2. Finetune applying the minimization of the negative log-likelihood.

In this second methodology it was a used a combination of random orthogonal and Xavier

weight initialization techniques. Initially, it was tried random orthogonal initialization in all layers.

However, putting a Xavier initialization in the logistic regression layer has proved itself useful in

terms of accuracy.

Below lies a table which offers a resumed perspective about the two methodologies, putting

emphasis on the main aspects which identify each approach.
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Table 3.3: Comparative table of methodologies 1 and 2.

Methodology 1 Methodology 2
Architecture Deep Autoencoder Deep MLP

Number of ANN Structures 2 1

Training Procedure

Step 1: Layerwise encoder training
using a MEC criterion

Step 2: Decoder training using a
MSE criterion

Step 1: Layerwise pretraining using
a MEC criterion

Step 2:Finetune using the minimization
of negative log-likelihood

Input Layer Size 18 18
Number of Hidden Layers 5 4

Hidden Layer Sizes 16, 14, 12, 14, 16 14, 10, 6, 4
Output Layer Size 18 2

Weight Initialization for Sigmoid Layers Random Orthogonal Initialization Random Orthogonal Initialization
Weight Initialization for Logistic Regression Layer Xavier Initialization

Optimization Algorithm ADADELTA ADADELTA
Learning Rate 1 1

Kernel Size 0.4 0.4
Batch Size 50 50

Stopping Criterion Early Stopping Early Stopping
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Chapter 4

Case Study Results

This chapter will present the results of both methodologies, Deep AE and Deep MLP, to es-

timate the status of breaker 2 of the modified version of IEEE RTS-24 test system. With this in

mind, a short review on the defined conditions of the case study will be, firstly, accomplished.

Besides the analysis of prediction accuracy, an assessment of the running times to train and test

both models is going to be performed in order to find contrasts between both approaches. Also,

comparisons between the proposed approaches and similar previously presented methodologies of

local topology estimation will be done.

Both models were developed in Python programming language, taking advantage of specific

deep learning libraries such as Theano and Lasagne. The presented results for estimation of the

breaker status of breaker 2 were obtained in a computer with an Intel Xeon E5-1260 v3 at 3.50

GHz CPU, with a 16.00 GB RAM and a Nvidia GeForce TITAN X GPU.

4.1 Description of the case study

As mentioned earlier, in order to evaluate the adequacy of the prediction of both methodologies

it was chosen the IEEE RTS-24 [68] power system. The original cause that led to the development

of such power system examples was the need of having a standardized platform to test, develop and

compare solutions for reliability studies. The IEEE RTS-24 has the advantage of having a wide

variety of aspects defined a priori. In the addressed problem, OPF simulations were performed in

order to build the database which supported the topology studies. Therefore, the following points

resume the types of data from [68] which were used in this case study:

• Generation data

• Load model

• Transmission network data

The load model associated to IEEE RTS-24 represents the hourly, daily and weekly load peaks

in percentage of the annual peak load value, 2850 MW. A hourly basis will be adopted in both

methodologies.

37
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However, some minor adjustments had to be done in order to include the topology estimation,

one of them being the addition of symbolic breaker devices - implemented in a low-level as the line

status - to incorporate multiple topology and operating scenarios. Furthermore, it was envisioned

a set of measurement devices, providing useful information about the magnitude and phase of bus

voltages, active and reactive line flows and bus power injections.

Figure 4.1: IEEE RTS-24 Test Case.

In both training variants, a common principle of local topology estimation is followed. This is

done by associating a single ANN or a set of ANN structures to every single breaker or switching

device. This way, it is possible to integrate every single contribution to build larger, flexible

models.

The total topology of the system is given by the determination of the breaker status of all the

10 breakers depicted in Figure 4.1. In order to execute such task, a total of 20 autoencoders and 10

MLP would have to be trained and tested for methodology 1 and 2, respectively. Such task would

be very time-consuming and, in a certain way, dull: to assess the main issues regarding topol-

ogy estimation based on a ANN approach it is only needed to show the example of one breaker

because the process is, substantially, equivalent for each breaker. Therefore, in the following
sections, running times and prediction accuracies will be exposed taking into account the
identification of the status of breaker 2, placed on line 3-9.

4.2 Performance Evaluation of Deep AE

In this experiment, two autoencoders were trained separately, one for open and the other for

the closed data cluster, and put in a competitive scheme. The training of this methodology involves

a layerwise, unsupervised encoder training based on a maximum entropy criterion being followed

by a generalized decoder training minimizing MSE; more specific details about architecture and
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initialization are fully portrayed in 3.3. The following table summarizes the obtained test results

of methodology 1.

Table 4.1: Precision in breaker 2 status diagnosis for methodology 1 - Deep AE.

Deep AE
True Closed States 1170
False Closed States 5
True Open States 1161

False Closed States 78
Total Precision (%) 96.56

The total elapsed time needed to train both autoencoders and to run the test script for breaker

2 status identification is 85.638502 seconds using only CPU computing and 82.677140 seconds

when using the GPU, reflecting a slight acceleration through the use of the latter computational

tool. Still related to the computational burden, it would be possible to further reduce the total CPU

for the execution of the referred tasks using a special Python library called multiprocessing. This

mechanism allows spawning multiple processes, fully leveraging multiple processors on a given

machine according to user’s needs. Concretely, this package would allow the parallel training of

the two autoencoders, drastically reducing the total time. However, this tool does not support the

possibility of using the GPU; as a result, by not enabling fair comparisons between CPU and GPU

computation, this library was not adopted as an official part of methodology 1.

As it can be seen, the application of this approach led to a total of 83 misdiagnosed cases,

5 false closed states and 78 false open states, leading to a total successful identification rate of

96.56%. In a first impression, it is possible to affirm that the technique showed a reasonable

accuracy degree, even exceeding a 95% rate of well diagnosed cases.

Before advancing to direct comparisons, it is necessary to highlight fundamental differences

between methodology 1 and those works, which are enumerated below:

• Distinct preprocessing procedures: while in this work is preconized an unit-norm row nor-

malization, in the previously mentioned works a minmax scaling between [-1,1] is per-

formed.

• Distinct training strategies and cost functions

• Distinct test set length: while in this work the test set is composed by 2414 cases, in the

previously mentioned works the test set is made up from 10000 scenarios.

So, giving the main point for breaker 2 status identification, the table below condensates the

percentage of successful diagnosis of other previously approaches:

Despite this evidence, when comparing the results provided in similar studies (depicted in [54]

and [12]), it is clear that the determined results of this methodology are not good enough, falling

short of those previous approaches. As a result, it can not be stated that this implementation

portrays any kind of progress in local topology estimation.
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Table 4.2: Highlight of accuracies of past published local topology estimation procedures.

Numerical
Reference

Title of Article
Year of

Publishing
Total

Precision (%)
[52] Towards an Auto-Associative Topology Estimator 2013 100.00

[12]
Breaker status uncovered by autoencoders
under unsupervised maximum mutual
information training

2014 99.86

Notwithstanding, to better analyze the results, a data collection was made in order to determine

which cases of the test set presented erroneous breaker status identification. That same information

is presented below in Table 4.3.

Table 4.3: Specification of failed status diagnosis for methodology 1.

False Closed States 15, 166, 1902, 1998, 2093

False Open States

08, 50, 62, 77, 109, 116, 125, 168, 173, 208, 239, 284, 294, 303, 351, 353, 387, 392, 493,
519, 535, 565, 567, 606, 616, 646, 671, 690, 765, 780, 787, 818, 877, 900, 954, 1000,
1039, 1044, 1092, 1115, 1304, 1355, 1384, 1473, 1488, 1505, 1531, 1532, 1576, 1586,
1627, 1659, 1686, 1691, 1745, 1753, 1755, 1814, 1852, 1873, 1897, 1919, 1982, 2045,
2100, 2119, 2123, 2129, 2161, 2181, 2191, 2197, 2208, 2270, 2291, 2306, 2330, 2397

Whereas the error cause in false closed states was not determined, a possible cause in false

open cases could be low branch currents in line 3-9. This way, the algorithm can be confused

by such value and give an erroneous prediction - indicating an open breaker when it is, actually,

closed. To explicitly show such situations, diagrams with active and reactive power flows in line

3-9 were constructed. The distribution of the 78 false open states in the test set is presented in

Figures 4.2 and 4.3.

Figure 4.2: Active power flows in line 3-9. In each graph: distribution with closed (left) and open
breaker (right). The red dots correspond to the false open states.
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Figure 4.3: Reactive power flows in line 3-9. In each graph: distribution with closed (left) and
open breaker (right). The red dots correspond to the false open states.

Observing both box diagrams and specially in the points represented by the red dots, one can

notice that all the 78 false open status lie very much below the normal power flows in closed states.

4.3 Performance Evaluation of Deep MLP

Performing a quick review, in methodology 2, a single deep MLP was under a training opti-

mization procedure. This deep MLP was composed by four hidden layers and a final output layer

composed by two neurons, performing a logistic regression classification algorithm. The training

process is constituted in a first place by a layerwise, unsupervised pretraining guided by a maxi-

mum entropy criterion; then, a finetune was performed minimizing the negative log-likelihood at

the output. Further specifications about this methodology are included in Chapter 3.4. As in the

previous section, the subsequent table outlines the results of methodology 2.

Table 4.4: Precision in breaker 2 status diagnosis for methodology 2 - Deep MLP.

Deep MLP
True Closed States 1247
False Closed States 0
True Open States 1166

False Closed States 1
Total Precision (%) 99.96

The total elapsed times to train and test this deep MLP are 36.483892 seconds and 21.21959

seconds for CPU and GPU computing, respectively. These temporal measurements reflect a great

acceleration: the running time was almost cut in half through the use of the GPU.
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Furthermore, it can be observed that there is just one misdiagnosed case in 2414, resulting in a

total precision of 99.96%. The example that had a wrong breaker status identification corresponds

to the 2045th scenario of the test set. This case was equally mistakenly classified in methodology

1 as being open when, in reality, this scenario is characterized by a closed breaker. Carrying out

a manual verification of the active and reactive power flows in line 3-9 in this particular example,

one verifies that those values are -0.063302 and -0.048085 p.u., correspondingly. In face of such

reduced branch power flows, the erroneous classification is naturally plausible.

Aside from the differences between the processes and tools used in this thesis and past works

earlier disclosed in 4.2, there is a fundamental change in neural network architecture. Whereas

in methodology 1 and past articles it was implemented a competitive autoencoder scheme, in

methodology 2 it was adopted a single deep MLP for each breaker.

Recalling the data exposed in Table 4.2, one can promptly notice that Deep MLP has higher

successful identification ratio than in [12], although not presenting a 100% accuracy as exposed in

[54]. However, in this latter article it is only adopted a competitive local autoencoder scheme along

with a MSE-based training process, not implementing any kind of ITL principle in autoencoder

parameter optimization. As a result, one can infer that methodology 2, Deep MLP, has shown

some progress towards an ITL-supported, neural network approach for topology estimation.

4.4 Models comparison

In the past sections, direct comparisons between the results of each methodology and past pub-

lished approaches were accomplished and conclusions were drawn regarding the progress in terms

of correct breaker status diagnosis. Therefore, it is time to emphasize the relative performance of

Deep AE and Deep MLP. The subsequent tables show the obtained results in terms of time and

accuracy.

Table 4.5: Confusion matrices for Deep AE and Deep MLP.

Deep AE Deep MLP
True Closed States 1170 1230
False Closed States 5 0
True Open States 1161 1115
False Open States 78 1

Total Precision (%) 96.56 99.96

Table 4.6: Running times for train and test of both models.

CPU (s) CPU+GPU (s) Acceleration GPU
Deep AE 85.638502 82.67714 1.04

Deep MLP 36.483892 21.214959 1.72
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Although through past sections it was already clear that the second methodology has a higher

successful breaker status identification rate and a better computational times than the first, the

tables above give a much more direct perspective of the superiority of Deep MLP over Deep AE.

Besides the error rate of approximately 0.04% of the second methodology, it is necessary to

pay close attention to its temporal measurement. While in Deep AE the times for CPU and GPU

are practically equal, the time needed to train and test the second methodology decreases to nearly

a half when using GPU computing.

Such differences in GPU acceleration are related to training procedures of both methodolo-

gies. In Deep AE, one autoencoder is trained after the other and the most prolonged task is the

layerwise encoder training following a maximum entropy criterion. Given these two aspects, it is

obvious that this solution offers almost no possibility of process parallelization due to its, funda-

mentally, sequential character. On top of that, the part of the second methodology training which

was more time-consuming was the generalized finetuning based on the minimization of the neg-

ative log-likelihood; this happens to be the part which benefits the most of GPU because of its

capability of parallelizing calculations from different layers, resulting in emphatic computational

time reductions.
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Chapter 5

Conclusions and future work

5.1 Conclusions

Topology estimation is subject of study since the early days of modern power systems. Fur-

thermore, given the possible and particularly harmful consequences of topology errors for power

system stability, topology error detection was depicted in several articles, very much analyzed by

the technical and scientific communities.

Succintly, one can affirm that the two main objectives have been achieved. On one hand,

it has been proved that the combination of ITL cost functions along with the optimization of

hyperparameters of both neural network models lead to breaker status predictions with great level

of accuracy. On the other hand, noticeable time reductions in neural network training have been

achieved through GPU computing, assessing the potential of this computational tool in the scope

of a concrete power system application.

In spite of exposing, undoubtedly, remarkable results, it is imperative to examine the con-

ditions and the nature of the success of both methodologies, specially Deep MLP. Furthermore,

only the true, factual application of this type of solutions in real power systems could provide the

necessary conditions to proper assess their usefulness.

In order to clearly outline the essential contributions of this work, it is presented below a list

of the most important achievements and conclusions:

• Two methodologies - Deep AE and Deep MLP - with new and enhanced characteristics

based on a local, decentralized and flexible approach to topology estimation were proposed

and tested in very realistic conditions.

• Both methodologies have exposed very good results with success rates in breaker status

identification above 95%. However, the more traditional methodology - Deep MLP - per-

forms better than the presumably more innovative one, Deep AE. This better performance

is markedly distinguishable in two aspects: total status prediction precision and the overall

time for training and testing the ANN structures. At last, it must be noted that the model

optimization was coherent in both CPU and GPU.
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• A more pronounced time reduction was observed in Deep MLP than in Deep AE method-

ology when using GPU computation. This has to do, mostly, with training processes and

adopted criteria of both methodologies. As a result, it is correct to affirm that the helpful,

inherent infomax principle comprised in ITL cost functions comes at a cost: the lack of true

capability of parallelization when applying GPU computing due to their layerwise nature.

• The use of classification algorithms serves better the purpose of local topology estimation

as breaker status diagnosis when compared to the first methodology; in other words, the

distinction between two classes of events is a more appropriate way of dealing with the

problem than a error comparison between two autoencoders.

• Unlike what has been affirmed in past works [12], it has been concluded that a more classic

approach, such as Deep MLP, does not need any additional external parameter definition

regarding a splitting threshold between both open and closed cases.

• In this work, it was felt only one major and remarkable difficulty on breaker status predic-

tion: diagnosing closed states with low branch current. Therefore, significant developments

in pattern recognition in these situations must be pushed forward in order to progressively

achieve 100% accuracy rates.

5.2 Future work

Due to an inexorable time limitation, it is not always possible to address every single capti-

vating aspect when developing a master thesis. Thus, it is presented subsequently a short list of

further developments that can be added to this work:

• Even achieving lower training times with the GPU, the results presented in Chapter 4 still

reflect a very reduced acceleration. Hence, in order to further assess the usefulness of GPU

in topology estimation, it would be interesting to build larger models, using more hidden

layers with a higher number of neurons and more extended input vectors, to highlight the

conditions of enhanced performance with GPU computing.

• In the explored case study, the estimation of status of Breaker 2 in line 3-9, the values of

active and reactive power flows of line 3-9 are included in input vector. These values consti-

tute a very powerful information which in some cases may undermine the consistency of the

learning algorithm. As a result, it would be very interesting to evaluate the methodologies’

performance without those electric variables. Furthermore, one can extent this criterion and

observe the accuracy of the proposed methods in conditions of low redundancy; i.e., with

missing measurements.

• In Chapter ?? it was declared that the dataset was composed of successive OPF experiments,

generating a large database of operating scenarios. However, OPF algorithms obey to spe-

cific rules and will always privilege higher power productions in generators with cheaper
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costs. This situation does not correspond to modern, free energy market operating scenarios

and introduces a bias in the dataset construction. So, by the construction of a database with

randomly defined loads and generation, one could perform an experiment of testing the pre-

sented topology estimation methods in market environment, studying, at the same time, the

reliability level of such solutions.

• An interesting, useful line of investigation could be the exploration of a local approach with

new ITL cost functions to achieve a total unsupervised learning paradigm for a topology

estimation application. This way, the problem would resemble a clustering problem in which

one would try to aggregate all the open cases and closed cases in different regions of space.

• In this work, the power system behaviour is assumed as being in steady state. This way,

we are performing an analysis about the system’s topology based on a "snapshot" of the

system. But what if this analysis was supported by the "film" of system’s behaviour? There-

fore, the development of a topology estimator which takes into account past topological

sequences and, in general, considers the temporal aspects of topology would lead to a sig-

nificant progress in this area.

• Alternative programming languages, libraries and classification algorithms could provide

new possibilities of building deep learning models with enhanced performance and process

parallelization.
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Appendix A

Tables of Methodology 1

This annex presents a sequential evolution of the hyperparameters of the first methodology,

Deep AE. The last configuration, configuration 10, corresponds to the final, applied version of

autoencoders to perform topology estimation on breaker 2.

Table A.1: Hyperparameters for the first five configurations of Deep AE.

Configuration 1 Configuration 2 Configuration 3 Configuration 4 Configuration 5
Input Layer Size 22 20 18 18 18

Number of Hidden Layers 3 3 3 3 5
Hidden Layer Sizes 18, 16, 18 18, 16, 18 16, 14, 16 16, 14, 16 16, 14, 12, 14, 16
Decoder Training Joint Joint Joint Joint Joint

Batch size 100 100 100 100 100
Patience 10000 10000 10000 10000 15000

Kernel size () 0.4 0.4 0.4 0.6 0.4
Total Precision (%) 78.87 90.60 92.83 87.95 96.02

Table A.2: Hyperparameters for configurations 6-10 of Deep AE.

Configuration 6 Configuration 7 Configuration 8 Configuration 9 Configuration 10
Input Layer Size 18 18 18 18 18

Number of Hidden Layers 5 5 5 5 5
Hidden Layer Sizes 16, 14, 12, 14, 16 16, 14, 12, 14, 16 16, 14, 12, 14, 16 16, 14, 12, 14, 16 16, 14, 12, 14, 16
Decoder Training Joint Joint Joint Only Decoder Only Decoder

Batch size 100 50 25 50 50
Patience 20000 15000 15000 15000 20000

Kernel size () 0.4 0.4 0.4 0.4 0.4
Total Precision (%) 95.22 96.35 96.15 95.98 96.56

Additionally, there are the tables that support the total precision values above. The number of

true and false identifications of both open and closed breaker states are stated below.
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Table A.3: Representation of the confusion matrices of the first five configurations of Deep AE.

Configuration 1 Configuration 2 Configuration 3 Configuration 4 Configuration 5
True Closed States 1003 1120 1075 957 1188
False Closed States 265 99 0 0 36
True Open States 901 1067 1166 1166 1130
False Open States 245 128 173 291 60

Total Precision (%) 78.87323944 90.5965203 92.83347142 87.94531897 96.02319801
Closed State Precision (%) 80.36858974 89.74358974 86.13782051 76.68269231 95.19230769
Open State Precision (%) 77.27272727 91.50943396 100 100 96.91252144

Table A.4: Representation of the confusion matrices of configurations 6-10 of Deep AE.

Configuration 6 Configuration 7 Configuration 8 Configuration 9 Configuration 10
True Closed States 1206 1187 1190 1166 1170
False Closed States 72 27 35 15 6
True Open States 1064 1139 1131 1151 1159
False Open States 42 61 58 82 79

Total Precision (%) 95.21812081 96.35459818 96.14747307 95.98177299 96.56172328
Closed State Precision (%) 96.63461538 95.11217949 95.3525641 93.42948718 93.75
Open State Precision (%) 93.66197183 97.68439108 96.99828473 98.7135506 99.57118353
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IEEE RTS-24

The hourly model which supported the generation of the training, validation and test database

is calculated according the following tables. The annual peak load is 2850 MW.

Table B.1: Weekly Peak Load in percent of annual peak.

Week Peak Load Week Peak Load
1 86.2 27 75.5
2 90 28 81.6
3 87.8 29 80.1
4 83.4 30 88
5 88 31 72.2
6 84.1 32 77.6
7 83.2 33 80
8 80.6 34 72.9
9 74 35 72.6
10 73.7 36 70.5
11 71.5 37 78
12 72.7 38 69.5
13 70.4 39 72.4
14 75 40 72.4
15 72.1 41 74.3
16 80 42 74.4
17 75.4 43 80
18 83.7 44 88.1
19 87 45 88.5
20 88 46 90.9
21 85.6 47 94
22 81.1 48 89
23 90 49 94.2
24 88.7 50 97
25 89.6 51 100
26 86.1 52 95.2
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Table B.2: Daily peak load in percent of weekly peak.

Day Peak Load
Monday 93
Tuesday 100

Wednesday 98
Thursday 96

Friday 94
Saturday 77
Sunday 75

Table B.3: Hourly peak load in percent of daily peak.

Hour

Winter
Weeks

1-8 & 44-52

Summer
Weeks
18-30

Spring/Fall
Weeks

9-17 & 31-43
Weekday Weekend Weekday Weekend Weekday Weekend

12-1 am 67 78 64 74 63 75
1-2 am 63 72 60 70 62 73
2-3 am 60 68 58 66 60 69
3-4 am 59 66 56 65 58 66
4-5 am 59 64 56 64 59 65
5-6 am 60 65 58 62 65 65
6-7 am 74 66 64 62 72 68
7-8 am 86 70 76 66 85 74
8-9 am 95 80 87 81 95 83
9-10 am 96 88 95 86 99 89
10-11 am 96 90 99 91 100 92
11-Noon 95 91 100 93 99 94

Noon-1 pm 95 90 99 93 93 91
1-2 pm 95 88 100 92 92 90
2-3 pm 93 87 100 91 90 90
3-4 pm 94 87 97 91 88 86
4-5 pm 99 91 96 92 90 85
5-6 pm 100 100 96 94 92 88
6-7 pm 100 99 93 95 96 92
7-8 pm 96 97 92 95 98 100
8-9 pm 91 94 92 100 96 97

9-10 pm 83 92 93 93 90 95
10-11 pm 73 87 87 88 80 90
11-12 pm 63 81 72 80 70 85



Appendix C

Article for submission

Regarding the innovations in training procedures of autoencoders and their concrete results in

precision of estimating the case study’s topology, it was decided to write an article.

In short, this article constitutes a summarized version of this thesis: in a first place, a con-

textualization about the cornerstone principles about state estimation and ITL criteria is made

being followed by an explanation about the methodologies used and their outcomes concerning

the topology estimation of the modified IEEE RTS-24 test system.
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Training Autoencoders for State Estimation in Smart
Grids

Rui Oliveira, Vladimiro Miranda, Fellow, IEEE, and Ricardo Bessa

Abstract—This article aims to present a novel perspective of the
application of neural networks, deep learning and Information
Theoretic Learning (ITL) to the problem of topology determina-
tion and, ultimately, to state estimation. Blending these concepts,
the main objective is to predict the topology of a given power
system based on pattern recognition of analog measurements.
More specifically, two alternative architectures and training
procedures - Deep AE and Deep MLP - will be compared in terms
of prediction accuracy. Additionally, benchmark comparisons
between CPU and GPU execution times will be scrutinized.

Keywords—State estimation, power system topology, Information
Theoretic Learning (ITL), artificial neural networks (ANN), au-
toencoder (AE), multilayer perceptron (MLP), deep learning

I. INTRODUCTION

State estimation corresponds to the prediction of the val-
ues of electrical variables of a power system. Traditionally
supported by mathematical equations, this process is intended
to give a plausible operating point according to a set of
measurements.

One of the assumptions for classical state estimation is that
the topology of the system - defined by open or closed state of
the breaker and switching devices - is already known. However,
topology errors may occur and greatly jeopardize this process.

In order to face this problem, several approaches have
been proposed. In this paper, two new topology estimation
methodologies are introduced using a combination of neural
networks and ITL optimization criteria. One of the objectives
is to train such ANN structures to learn specific measurement
manifolds in order to promptly and correctly predict the status
of a given breaker or switching device. Moreover, it is desired
to include infomax principles in the networks’ training, seizing
the maximum amount of information possible about the input
data.

II. AUTOENCODERS

Autoencoders are feedforward artificial neural networks
trained with the objective of getting an output which mirrors
its input with the minimum distortion possible. This kind of
ANN may be viewed as the junction of two components: the
first half - encoder - attempts to represent the input X in a
space with less dimensions X’ through the use of an encoding
or compression function f . On the other hand, the second
half - decoder - aims to do exactly the opposite, aiming to

Rui Oliveira (ruimmoliveira7@gmail.com) is with Faculty of Engineer-
ing of Universitu of Porto (FEUP), Portugal. Vladimiro Miranda (vmi-
randa@inesctec.pt) and Ricardo Bessa (rbessa@inesctec.pt) are with INESC
TEC, Porto, Portugal.

approximate f−1. The typical structure of an autoencoder is
to have an input layer, an hidden layer and an output layer.

Fig. 1. Common architecture of an autoencoder.

III. ITL AND UNSUPERVISED TRAINING

A. Renyi’s Entropy
Alfred Renyi, willing to determine a more generalized

definition of information content, proposed a parametric family
of entropy functions, each one defined by a real parameter, α.
So, for a probability distribution of a given random variable
X, it is possible to express Hα as:

Hα =
1

1− α log

N∑

k=1

pαk with α > 0, α 6= 1 (1)

Given its interesting characteristics, Renyi’s quadratic en-
tropy is frequently used in ITL. This particular variation of
Renyi’s entropy can be represented by:

H2 = − log
N∑

k=1

p2k (2)

Comparing Shannon’s and Renyi’s entropies, one can ob-
serve that the main difference is the placement of the logarithm
in the expression: while Shannon’s entropy is composed as a
weighted sum of probability logarithms, Renyi’s entropy is the
logarithm of the sum of probabilities. These contrasts allow to
infer that, for optimization algorithms, Renyi’s entropy is a
much more efficient metric than Shannon’s expression.

B. The Maximum Entropy Criterion (MEC)
In machine learning, entropy can be specially appropriate

in situations in which data representations are not precisely
defined - such as unsupervised learning tasks - because this
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descriptor guides the algorithm through an infomax principle.
Therefore, assuming a continuous random variable, y, being
its pdf given by fY (z), as well as combining both Renyi’s
quadratic entropy and Gaussian kernel pdf estimation, it is
possible to construct an entropy estimator as expressed below:

H2(y) = − log

∫ +∞

−∞
f2y (z) dz = − log V (y) (3)

V (y) =
1

N2

N∑

i=1

N∑

j=1

G(z − yi, σ2I)G(z − yj , σ2I) dz (4)

V(y) is called the information potential and, through the
convolution property of the Gaussian functions, can be written
as:

V (y) =
1

N2

N∑

i=1

N∑

j=1

G(yi − yj , 2σ2I) (5)

Attending to these last equations, one can state that if the
information potential, V(y), is minimized, then the entropy,
H2(y), will be maximized, assuring a maximum flow of
information through the model. As a result, it is called the
Maximum Entropy Criterion (MEC).

IV. TRAINING METHODOLOGIES

Regarding the character of topology estimation using neural
networks, it is possible to discriminate two possible alterna-
tives: global and local topology estimation. Local topology
estimation is a process that takes advantage of the remarkable
local properties that analog measurements possess to determine
open or closed state of a breaker. This is done by associating
a single ANN or a set of ANN structures to every single
breaker or switching device. This way, it is possible to integrate
every single contribution to build larger, flexible models. In
both training variants, a common principle of local topology
estimation is followed.

A. Data and Preprocessing

As a test system, it was developed an IEEE RTS-24 variant
to serve as the platform for the further studies with ANN
structures. Some minor adjustments were made in order to
further adapt the original case to the purposes of topology
estimation, namely the introduction of breakers and analog
measurement devices in buses and branches.

In order to obtain the database comprising all the studied
cases, it was used a process very much similar to what is
described in [1]. As a result, it was built a database with 11736
cases which were splitted under a 60%-20%-20% partition
scheme for training, validation and test, respectively.

Before inputting these sets of raw data into the ANN struc-
ture, it was performed a pre-processing step which consisted
in applying a normalization function that transformed every
example - row - in an unit norm vector.

Fig. 2. IEEE RTS-24 Test Case.

B. Deep AE

This first training methodology is anchored on a competitive
autoencoder principle to determine the breaker status similar
to what has been described in [2] and [1]. Generally, this
scheme assumes the existence of two autoencoders for every
single breaker: one of the autoencoders is trained to learn open
breaker scenarios while the other is responsible for learning the
measurements pattern when the breaker is closed; the breaker
status is given by the autoencoder with a lower error.

Regarding more technical aspects, the final model is consti-
tuted by two autoencoders, each one of them composed by an
input layer with 18 neurons and having 5 hidden layers with
sizes of 16, 14, 12, 14 and 16 neurons; the output layer has
18 inputs.

The weight starting point was defined through a random
orthogonal initialization strategy described by Saxe et al. in
[3]. The chosen optimization algorithm was ADADELTA; the
existent optimization parameters were defined as recommended
in [4].

The training procedure consists in an encoder layerwise
training based on a MEC criterion being followed by a decoder
training using a MSE cost function. The kernel size for entropy
estimation through Parzen window was assigned as σ = 0.4.
Finally, the training method used minibatches composed by
50 examples. The stopping criterion consists in early stopping
through the evaluation of the model’s performance on a vali-
dation set.

C. Deep MLP

The idea of adopting a multiple hidden layer MLP with a
logistic regression layer is very tempting: in a first place, it
serves the main purpose of local breaker status identification
as a classification problem; the other major point is related to
the reduction of ANN structures.
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This training methodology has some common traits when
contrasted to Deep AE, mainly regarding the optimization
algorithm, the adopted kernel size and training mode. Thus,
the used backpropagation algorithm was ADADELTA, the
adopted kernel size was a constant σ of 0.4 and the model
was trained using early stopping and minibatches composed
by 50 examples.

The fundamental differences between Deep MLP and Deep
AE lie in weight initialization and training procedure. Con-
cretely, it was used a combination of random orthogonal for
sigmoid layers and Xavier initialization for the last, logistic
regression layer. At last, the training procedure consists in
a layerwise pretraining through MEC and then a finetune
was performed under the minimization of the negative log-
likelihood.

V. RESULTS

The models were developed in Python programming lan-
guage, taking advantage of Theano and Lasagne deep learning
libraries. The presented results for estimation of the breaker
status of breaker 2 were obtained in a computer with an Intel
Xeon E5-1260 v3 at 3.50 GHz CPU, with a 16.00 GB RAM
and a Nvidia GeForce TITAN X GPU.

The subsequent tables summarize the relative performance
of Deep AE and Deep MLP in terms of time and accuracy.

TABLE I. CONFUSION MATRICES FOR DEEP AE AND DEEP MLP

Deep AE Deep MLP
True Closed States 1170 1247
False Closed States 5 0
True Open States 1161 1166
False Open States 78 1

Total Precision (%) 96.56 99.96

TABLE II. RUNNING TIMES FOR TRAIN AND TEST OF BOTH MODELS

CPU (s) CPU+GPU (s) Acceleration GPU
Deep AE 85.638502 82.67714 1.04

Deep MLP 36.483892 21.214959 1.72

Observing both tables, it is easily noticeable the superior
performance of Deep MLP over Deep AE, presenting only
one misdiagnosed case against the 83 errors of Deep AE.
The incorrect breaker status identification of Deep MLP was
detected on the 2045th case of the test set and corresponds to a
false open identification. Carrying out a manual verification of
the active and reactive power flows in line 3-9, one verifies
that those values are -0.063302 and -0.048085 p.u., corre-
spondingly. In face of such reduced branch power flows, the
wrong classification of Deep MLP in this particular scenario
is understandable.

Apart from the error rates, it is necessary to pay close
attention to temporal measurements. While in Deep AE the
times for CPU and GPU are practically equal, the time
needed to train and test the second methodology decreases
to nearly a half when using GPU computing. Such differences
in GPU acceleration are related to training procedures of both
methodologies. In Deep AE, one autoencoder is trained after
the other and the most prolonged task is the layerwise encoder

training following a maximum entropy criterion. Given these
two aspects, it is obvious that this solution offers almost
no possibility of process parallelization due to its sequential
character. On top of that, the part of the second methodology
training which was more time-consuming was the generalized
finetuning based on the minimization of the negative log-
likelihood; this happens to be the part which benefits the most
of GPU because of its capability of parallelizing calculations
from different layers, resulting in reduced computational times.

Taking into account other similar works, it is also necessary
to perform comparisons concerning those same approaches.

TABLE III. HIGHLIGHT OF ACCURACIES OF PAST PUBLISHED LOCAL
TOPOLOGY ESTIMATION PROCEDURES.

Numerical
Reference Title of Article Year of

Publishing
Total

Precision (%)

[2] Towars an Auto-Associative
Topology Estimator 2013 100.00

[1]

Breaker status uncovered by
autoencoders under unsupervised
maximum mutual information
training

2014 99.86

In summary, it is easily perceived that, when contrasted to
other previously published works, Deep AE has, unquestion-
ably, a worse performance. On the other hand, Deep MLP has
a higher successful identification ratio than in [1], although
not presenting a 100% accuracy as exposed in [2]. However,
in this latter article it is only adopted a competitive local
autoencoder scheme along with a MSE-based training process,
not implementing any ITL concept in autoencoder parameter
optimization. As a result, one can infer that methodology
2, Deep MLP, has shown some progress towards an ITL-
supported, neural network approach for topology estimation.

VI. CONCLUSION

The two main objectives have been achieved. On one hand,
it has been proved that the combination of ITL cost functions
along with the optimization of hyperparameters of both neural
network models lead to breaker status predictions with great
level of accuracy. On the other hand, noticeable time reductions
in neural network training have been achieved through GPU
computing, assessing the potential of this computational tool
in the scope of a concrete power system application.

Unlike what has been affirmed in past works, it has been
adopted a classic approach - Deep MLP - which does not
need any additional external parameter definition regarding a
splitting threshold between both status diagnosis.
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