
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Injeção de Defeitos em Aplicações
Android

Liliana Filipa Lobo Ribeiro

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Ana Cristina Ramada Paiva

July 24, 2017

Injeção de Defeitos em Aplicações Android

Liliana Filipa Lobo Ribeiro

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: João Carlos Pascoal Faria
External Examiner: José Creissac Campos

Supervisor: Ana Cristina Ramada Paiva

July 24, 2017

Abstract

The number of Android applications is rising at a rate of more than a thousand applications a day
in the Android App Store. The problem is that the quality is sometimes neglected in this kind
of application, which results in defective software being frequently used. In order to improve
the quality of the software it is necessary to create test cases that are adequate to cover all the
implementation requirements. However this task is not as trivial as it seems, and for this reason
mutation testing techniques are important as they can be useful to assess the quality of the test
cases.

This research aims to extend the research work performed in the SE lab in which a tool was
developed to test Android applications (iMPAcT Tool).This tool executes test strategies that aim
to check whether the guidelines for Android programming are being employed or not. The goal of
this work is to analyse the faults that originate the failures detected by the iMPAcT tool and define
a set of mutators that can be applied over Android applications and finally assess if the test suites
used are effective in finding those failures.

The ten mutation operators that were defined were applied to the source code of several An-
droid applications and then the applications were tested using the iMPAcT tool. After, the results
were analysed to verify if the iMPAcT tool was or not able to detect the errors inserted. Even
though the iMPAcT tool was not able to detect all the errors inserted, the problem was not re-
lated with the set of mutation operators but with the algorithms of exploration of applications and
detection of differences in two screens implemented by the iMPAcT tool.

i

ii

Resumo

O número de aplicações Android está a aumentar a uma taxa de mais de mil aplicações por dia
na loja de aplicações Android. O problema é que a qualidade é, por vezes, negligenciada neste
tipo de aplicações, o que resulta no uso de software com defeitos. Para se conseguir melhorar a
qualidade do software é necessário que se crie testes que sejam adequados para cobrir todos os
requisitos da implementação. Porém esta tarefa não é tão trivial como parece, por isso é que as
técnicas de teste de mutação são importantes uma vez que estas são uteis para avaliar a qualidade
de um conjunto de testes.

Esta pesquisa tem como objetivo complementar o trabalho de pesquisa realizado no laboratório
de SE, no qual foi desenvolvida uma ferramenta para testar aplicações Android (iMPAcT Tool).
Esta ferramenta executa estratégias de testes com o objetivo de verificar se as boas práticas da
programação em Android estão a ser utilizadas ou não. Assim, o objetivo deste trabalho é analisar
as falhas que originam os erros detetados pela iMPAcT Tool e definir um conjunto de operadores
de mutação que possam ser aplicados a aplicações Android. E, por fim, verificar se os testes que
estão a ser usados são ou não eficazes na deteção desses erros.

Os dez operadores de mutação definidos foram aplicados ao código de diferentes aplicações
Android e depois as aplicações foram testadas usando a iMPAcT tool. Os resultados desses testes
foram analisados para se perceber se a iMPAcT tool foi ou não capaz de detetar os erros inseridos.
Embora a iMPAcT tool não tenha sido capaz de detetar os erros inseridos, o problam não está
relacionado com os testes que são executados pela ferramenta mas pelos algoritmos de exploração
de aplicações e de deteção de diferenças entre dois ecras que são implementados pela iMPAcT
tool.

iii

iv

Acknowledgements

I would like to thank my family and friends for all the love and support that they constantly give
me. My friends who were always there to listen to me even though most of the time they had
no idea of what I was talking. And my family, especially my mom, for being a role model and a
constant source of strength.

I would also like to thank my supervisor, Ana Paiva, for her guidance and support during this
work, that helped me to overcome the difficulties encountered during the work.

Liliana Filipa Lobo Ribeiro

v

vi

“Creativity is intelligence having fun”

Albert Einstein

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation and Goals . 2
1.3 Structure of the document . 3

2 State of the Art 5
2.1 Testing Mobile Applications . 5

2.1.1 Problems . 7
2.2 Android Programming . 7
2.3 iMPAcT tool . 10
2.4 Mutation Testing . 12

2.4.1 Problems . 14
2.5 Mutation Testing on Android . 15

2.5.1 Mutation Operators . 15
2.5.2 Problems of mutation testing on Android 17
2.5.3 Existing Tools . 17

2.6 Conclusions . 18

3 iMPAcT Tool – Mutation Testing 19
3.1 Selection of Android Applications . 19

3.1.1 Compiling the Applications . 20
3.2 Tests . 22

3.2.1 Orientation . 22
3.2.2 Tab . 25
3.2.3 Side Drawer . 28
3.2.4 Resource Dependency . 30

3.3 Mutant definition . 32
3.3.1 Orientation . 32
3.3.2 Tab . 41
3.3.3 Side Drawer . 44
3.3.4 Resource Dependency . 48

3.4 Automation . 50
3.4.1 Tab . 50
3.4.2 Side Drawer . 53
3.4.3 Limitations . 55

3.5 Conclusion . 55

ix

CONTENTS

4 Case study 57
4.1 Orientation . 57

4.1.1 iMPAcT tool results . 58
4.2 Tab . 59

4.2.1 iMPAcT tool results . 60
4.3 Side Drawer . 61

4.3.1 iMPAcT tool results . 62
4.4 Conclusion . 63

5 Conclusion and Future Work 67
5.1 Goal Satisfaction . 68
5.2 Future work . 68

References 71

A Results Initial Tests 75
A.1 Results all applications . 75
A.2 Results rotation allowed . 91

B Results Mutants 93
B.1 Orientation . 93
B.2 Tab . 96
B.3 Side Drawer . 97

x

List of Figures

2.1 Activity lifecycle, [Dev13] . 9
2.2 Traditional process of mutation testing, adpated from [JH11] 13
2.3 muDroid System Architecture, [Wei] . 18

3.1 Comparison of the applications with the Orientation pattern correctly and not cor-
rectly implemented . 23

3.2 Orientation Pattern: Comparison between the categories of the applications and
the iMPAcT tool results . 25

3.3 Comparison of the applications with the Tab pattern correctly and not correctly
implemented . 26

3.4 Tab Pattern: Comparison between the categories of the applications and the iM-
PAcT tool results . 27

3.5 Comparison of the applications with the Side Drawer pattern correctly and not
correctly implemented . 28

3.6 Side Drawer Pattern: Comparison between the categories of the applications and
the iMPAcT tool results . 30

3.7 Default application pre selected . 31
3.8 No default application pre selected . 31
3.9 Comparison of the applications with the Resource Dependency pattern correctly

and not correctly implemented . 31
3.10 Resource Dependency Pattern: Comparison between the categories of the appli-

cations and the iMPAcT tool results . 32
3.11 AnkiDroid: Mutant 1, before rotation . 39
3.12 AnkiDroid: Mutant 1, after rotation . 39
3.13 AnkiDroid: Mutant 2, before rotation . 39
3.14 AnkiDroid: Mutant 2, after rotation . 39
3.15 CIDR Calculator: Mutant 3, before rotation . 40
3.16 CIDR Calculator: Mutant 3, after rotation . 40
3.17 Recurrence: Mutant 4, before rotation . 41
3.18 Recurrence: Mutant 4, after rotation . 41
3.19 Example of mutant 1, side Drawer . 48
3.20 Example of mutant 2b, side Drawer . 48
3.21 Example of mutant 2a, side drawer . 49
3.22 Example side drawer with no errors . 49
3.23 Example of mutant 3a, side drawer . 49
3.24 Example of mutant 3b, side drawer . 49

4.1 Side Drawer example of the File Manager application 61

xi

LIST OF FIGURES

4.2 Forkhub with mutant 4 before rotation . 65
4.3 Forkhub with mutant 4 after rotation . 65

B.1 Example of a game interface, Blokish application 93
B.2 Example of a simple interface, Simple Flashlight application 93

xii

List of Tables

3.1 Criteria for the selection of applications . 20
3.2 Category distribution . 21
3.3 Orientation: Applications with pattern correctly implemented that allow rotation . 24
3.4 Tab Pattern: classification of applications . 27
3.5 Side Drawer Pattern: classification of applications 29

4.1 Orientation Pattern: Mutants inserted . 58
4.2 Orientation Pattern: Mutants results . 59
4.3 Tab Pattern: Mutants inserted . 60
4.4 Tab Pattern: Mutants results . 60
4.5 Side Drawer Pattern: Mutants inserted . 62
4.6 Side Drawer Pattern: Mutants results . 63

A.1 Intial test results . 76
A.2 Applications with orientation pattern correctly implemented: rotation allowed or not 91

B.1 Orientation Pattern: Excluded applications . 94
B.2 Orientation Mutant 1: extended results . 95
B.3 Orientation Mutant 2: extended results . 95
B.4 Orientation Mutant 3: extended results . 96
B.5 Orientation Mutant 4: extended results . 96
B.6 Tab Pattern: Mutants results . 97
B.7 Conversation application: Mutants extended results 97
B.8 Side Drawer Mutant 1: extended results . 98
B.9 Side Drawer Mutant 2b: extended results . 99
B.10 Side Drawer Mutant 2a: extended results . 100
B.11 Side Drawer Mutant 3b: extended results . 100
B.12 Side Drawer Mutant 3a: extended results . 101

xiii

LIST OF TABLES

xiv

Abbreviations

A2A2 Android Automatic Testing Tool
ABS Absolute Value Insertion
APD Activity Permission Deletion
APK Android Application Package
BWD Button Widget Deletion
ECR OnClick Event Replacement
EDS Event Driven Software
ETR OnTouch Event Replacement
GUI Graphical User Interface
IPR Intent Payload Replacement
ITR Intent Target Replacement
MS Mutation Score
MT Mutation Testing
TWD EditText Deletion
UI User Interface
XML Extensible Markup Language

xv

Chapter 1

Introduction

The smartphone has been taking control of our lifes for the past years, it is estimated that the

number of smartphone users is about 2.32 billion and that number is expected to grow to 2.38

billion by 2020 [Sta17]. This growth has to be followed by an increase in the quality of the mobile

applications but, unfortunately that is not been the case so far.

Nowadays there are almost three million applications available at the Google Store and about

12% of those application are classifed has having poor quality [App16]. In average, approximately

eleven thousand low-quality applications are added each month to the Android store.

Google is aware of these quality problems and is trying to combat them with its new initiative,

Android Vitals. Android Vitals displays to the developers several metrics about their application to

help them improve the stability and performance of the application [Devc]. These metrics are more

related with the bad behaviour of an application, like freezing the screen or when the application

stops responding. With this initiative Google understands the current problem of the quality of

the Android applications and it is trying to help the developers to create applications that are more

responsive. However, Android Vitals does not cover every aspect of the quality of applications,

only some performance related issues.

1.1 Context

With the increase popularity and usage of Android applications it is crucial that the quality of these

applications is guaranteed. Mobile applications, namely Android applications, are becoming more

complex and critical to every day life.

To ensure the quality of an application, the application has to go through a testing process,

so that errors can be found and corrected. Testing the application will not prove that there are no

errors, but will increase the confidence on the quality of said application.

It is in this context that the iMPAcT tool works, see section 2.3. By using reverse engineering

and pattern identification techniques it automates the recognition and testing of UI patterns. The

1

Introduction

set of tests is created automatically according to the patterns identified. Since the patterns were

defined taking into consideration several Android programming guidelines, executing the tests will

give an idea if those guidelines were followed or not. By having an automated and black-box tool

to test Android applications the process of testing becomes simpler. There is no need to provide

the source code of an application to test it, or to spend as much manual labour as it would be

needed without the iMPAcT tool. However, sometimes black-box techniques cannot find all the

errors and it can be necessary to use other techniques.

Using the iMPAcT tool as an example, if, after executing the tool against an Android applica-

tion, no errors are detected does it mean that there are really no errors left in the code? Or just

that the test set is not enough to uncover them? That’s one of the most important questions when

it comes to validating the testing process. A test passes if the application works as expected, but

there is no guaranty that every possible scenario is being tested or that the test is relevant/crucial

to find the errors.

This work will validate the results of the iMPAcT tool by determining if the test cases that are

applied are enough to detect errors related to the defined patterns in Android applications or not.

1.2 Motivation and Goals

Considering that Android applications are present in our daily activities it is important that they

work as expected, and that they have the maximum of quality that they can achieve. This is the

biggest issue associated with Android applications nowadays, and quality is still low in most cases.

It is important to understand that this low quality does not necessarily mean that there were

no testing process when developing the applications. Sometimes there are tests, but they are not

enough to find the errors in the code.

One way to solve these problems is to assess the efficiency and quality of test sets. This will

not only increase the confidence in the tests and the testing process but also increase the quality of

the applications under test.

In this work, by using mutation testing to evaluate the set of tests provided by the iMPAcT tool,

it will be possible to check if those tests are really enough to find the errors that they are expected

to find. So, by assessing the quality of the tests and verifying their effectiveness, this work will

lead to an increase in quality of Android applications.

The solution proposed is to define mutation operators that are specific to Android applications

and which are tested by the iMPAcT tool. Then, from those mutation operators, mutants will be

created and tested using the iMPAcT tool to determine whether or not the faults injected can be

detected by the tool. As a result, it will be possible to determine if the iMPAcT tool is able to find

the errors it was designed to find or not.

The project is divided into four phases:

2

Introduction

1. Analyse typical Android programming errors;

2. Define mutation operators;

3. Evaluate the effectiveness of the test set generated by the iMPAcT tool;

4. Automation of the insertion of the mutants.

The first phase consists in analysing source code of Android applications, and identifying the

errors associated with a bad implementation of the guidelines for the Android programming. In the

second phase, using the errors that were identified earlier, the mutation operators will be defined.

These mutation operators have to be specific to Android applications and take into consideration

the scope that is covered by the test set from the iMPAcT tool. In the third phase, the mutation

operators will be used to evaluate the test set and validate the results. The last phase, consists in

the automation of the insertion of the mutants, however not all the mutants will be automated.

1.3 Structure of the document

The remaining of the document is structured as follow. Chapter 2 presents the current state of

mobile testing, android programming and mutation testing. Chapter 3 talks about the selection of

the applications, their errors and the definition of the mutants of each pattern and the theory behind

their definition. In this chapter it is also presented a tool to automate the insertion of some of the

mutation operators. Chapter 4 presents the results of the insertion of the mutants to each selected

application. Chapter 5 presents the conclusions of this research and the future work.

3

Introduction

4

Chapter 2

State of the Art

This chapter is divided into four main sections: in section 2.1 is presented the state of the art of the

process of testing mobile applications, in section 2.2 some unique aspects related with Android

programming are presented, in section 2.3 the iMPAcT tool is presented since it will be used in

this project, and section 2.4 summarizes the current state of mutation testing in general and also

summarizes the current state of mutation testing on Android applications and existing tools. The

final section serves as a conclusion of this literature review.

2.1 Testing Mobile Applications

A mobile application is an application that runs on a mobile device (e.g. smartphone, tablet).

Nowadays, a mobile application can run on Android, IOS, Windows Phone, among others.

These applications have some limitations when compared to traditional desktop applications,

mainly because of the hardware that is used [ZSG16]. They have limited resources, less than

available in current computers, they are context aware (the application is aware of the environment

it is running, to adapt to it), most of these applications work based on user input, or on information

from hardware sensors. The small screens, the use of touch screen instead of mouse and keyboard,

connectivity (GPS, Wi-Fi, Bluetooth), possibility to rotate the screen, among others, all of this

makes the process of testing mobile applications unique, and different from testing traditional

software.

There are two ways of testing these applications, using emulators or using real devices. The

use of emulators makes testing in different devices (simulated devices) easier and cheaper, as there

is no need to invest in buying several devices, but can compromise the results of testing, especially

in terms of performance [BV08]. Also, testing using emulators can be slower than using real

5

State of the Art

devices, depending on the computer that is emulating the mobile device.

When testing a mobile application one must test every aspect that is specific to this type of

applications. According to [MDE12], when testing a mobile application one must consider:

GUI testing It is crucial to test the GUI in a mobile application because it is the only way the

user has to interact with the application. If it has some error it will stop the user from

working with the application as expected. There has been some research in trying to adapt

pattern based GUI testing from web applications to mobile applications, as described in

[CPN14]. The iMPAcT tool, described in 2.3. is an example of a GUI testing tool. Another

example is the A2A2 (Android Automatic Testing Tool) [AFT11]. The A2A2 is a tool that

uses a GUI crawling based technique for running crash testing and regression testing on

Android applications. Crash testing has as objective detecting faults in applications caused

by runtime exceptions. The objective of the tool is to find runtime crashes and visible faults

on different versions of the same application.

Performance and reliability testing These two aspects are related to the resources and other in-

ternal characteristics of the devices. In [BV08] the author brings attention to the fact that the

results of performance testing can be different when testing an application using an emulator

or a real device.

Security Testing The assurance of security and privacy is critical for these applications, because

the leak of private and sensitive information (private networks, passwords, location) can

be devastating not only for the user but also for the developers of the applications, which

will lose credibility. In [MEK+12] the authors define a framework to detect automatically

security vulnerabilities in an application.

Device multitude testing Today there is a wide range of mobile devices, especially when talking

about Android devices, so the applications have to adapt and work correctly on each of these

devices. One approach to this type of tests in described in [ZGCU15], where the algorithm

of k-means is used to cluster different types of devices and prioritize the ones in which the

application should be tested on first.

Memory and energy testing Because of the limited resources, and low autonomy of some de-

vices, it is crucial to perform these tests to prevent memory leaks. Some work was done to

estimate the power consumption of an application by Thompson et al. in “Optimizing mo-

bile application performance with model— driven engineering” as cited in [MDE12]. Palin

et al. “Selection and execution of user-level test cases for energy cost evaluation of smart-

phones” as cited in [MDE12] present a methodology to select user test cases to perform the

evaluation of the energy cost of an application.

6

State of the Art

2.1.1 Problems

The problems associated with mobile testing can derive from the unique features and functionali-

ties of mobile devices and mobile applications, or from the testing tool that are used.

One of the biggest problems related with mobile testing is the fact that it is not possible to

test every existent combination of software and hardware, which means that is not possible to test

every scenario in which an application may be used. Each mobile device has different technical

specifications such as the amount of available, network connectivity settings, and different hard-

ware specifications such as CPU or cameras and sensors [Ram13]. Mobile applications rely on

inputs from various sensors (e.g. brightness, touch, orientation, motion) and connectivity (e.g.

bluetooth, Wi-Fi, 3G,). To test whether an application will behave as expected having in consider-

ation all of these inputs and all the values they can take is not feasible. Since these mobile devices

and consequently the mobile applications deal with personal and critical data that has to the stored

and shared, security testing is not only important but also necessary [Cig]. The poor autonomy of

the devices is also and important aspect to have in consideration when testing. So performance,

memory and energy testing should also be performed during the testing process. The process of

testing involves the test of each of the unique features of mobile applications, this will increase the

effort and time spent in the process.

Another problem is that, since mobile applications are different from a traditional desktop

application [ZSG16], it is not possible to apply testing techniques and methodologies that were

developed for desktop applications in mobile applications without modifying them. These mobile

applications need a new and effective approach that is capable of ensuring that the application is

of high quality and reliable [ZSG16]. This can be achieved with the development of new tools

and techniques or with the modification of tools and techniques from traditional software test-

ing [MDE12].Since mobile applications are considered event-driven most tool available for event

driven software (EDS) are still applicable to test mobile applicatinos. However, the tools will have

to be adapted so they can perform cost effective tests in the Android environment [AFT11].

2.2 Android Programming

Android is an operating system based on the linux kernel that targets touch screen mobile devices

[Dev13]. Android applications are mainly written using the Java programming language, although

Java is not the only language that can be used. Recently, the language Kotlin is being used more

in the developement of Android applications. This is manly because kotlin can work side by side

with the Java code, so applications can migrate to Kotlin feauture by feature [Devf]. In this work,

Kotlin code will not be used only Java code.

When developing and Android application there are several components that can compose that

application [Dev13]:

7

State of the Art

Activities
An activity represents an application’s screen and its user interface. It is the entry point

for the interaction of the application with the user [Dev13]. An activity can be in different

states: created, started, resumed, paused, stopped, or destroyed. The state of an application

is controlled by callback methods, as seen in Figure 2.1:

• onCreate() – is fired when the system first creates the activity. This callback must

always be implemented, and it is here that the basic logic of the application should be

initialized [Dev13]. The callback is associated with the state created, but the activity

does not continue in this state for long, since as soon as the initialization is done the

state is changed to the started state and the onStart() callback is fired.

• onStart() – is fired once the activity changes state to the started state. Once this call-

back is fired the activity will be visible to the user. This callback ends, normally, very

quickly and once is finished the activity changes to the resumed state [Dev13].

• onResume() – is fired as soon as the activity changes to the resumed state. Here, the

activity starts to interact with the user. The activity remains in this state until some

event takes the focus out of the activity. For example, receiving a phone call, the user

navigating to another activity or application.

• onPause() – this callback is fired at the first indication that the user is leaving the ap-

plication and it should be used to pause certain operations that do not have to continue

when the activity is in the background (in the paused state) [Dev13].

• onStop() – when the activity stops being visible to the user, its state changes to the

stopped state and this callback is called. Here the resources that are not needed when

the activity does not have focus should be released [Dev13].

• onDestroy() – fired right before the activity is destroyed, last callback to be fired. All

the resources that have not been release yet have to be release here [Dev13].

When developing an Android application it is important to have a good understanding on

how the life cycle of an activity works, because the bad implementation of these callbacks

can lead to the loss of information when an user leaves an application and then returns to it,

can cause the application to crash.

Services
A service is executed in the background and it can perform long running operations or

operations for remote processes. Unlike the activities, the services do not provide an UI

[Dev13]. An example of a service can be the authentication of an user in an applications, it

is done in the background and the user does not see the process, only the result afterwards.

Broadcast Receivers
A broadcast receiver enables the communication between the system and the application, by

allowing the application to respond to system-wide broadcast announcements. [Dev13] the

8

State of the Art

Figure 2.1: Activity lifecycle, [Dev13]

broadcasts can be initiated by the system, for example when the battery is running low or the

screen is turned off, or initiated by an applications, for example to warn other applications

that their data has been downloaded and is ready to be used.

Content Providers
A content provider is responsible for the management of application data that can be stored

in a database, in the file system or on the web or any persistent storage location [Dev13].

By using a content provider the applications can read and modify data if they have the right

permissions to do so.

One unique feature of the Android applications is that they can start components from another

applications [Dev13]. For example, if an application needs to take a picture it does not have to

implement that feature, because it can start the activity in the camera application (that is already

present in the smartphone) and capture the photo that will then be returned to the first application

[Dev13]. This is done with the help of intents. An intent allows the connection and communication

between different Android applications. Intents can be explicit, where the application that should

9

State of the Art

perform the action is explicitly defined, or implicit, where only the action is specified and any

application that can do that application can respond to that call.

2.3 iMPAcT tool

The iMPAcT tool uses reverse engineering and pattern identification techniques to automate the

testing of UI patterns on Android applications, [MP15].

The Android application under test is automatically explored with the objective of finding the

UI patterns, and to test them using the test strategies that are associated with each of the patterns.

Some patterns that are currently implemented in the tool, according to [MP15], are:

• Side or Navigation drawer pattern – The side drawer is a menu that displays the appli-

cation’s main menu on the left side of the screen. It is hidden most of the time, and can be

uncovered by swiping the screen from the left edge of the screen to the middle, or by click-

ing the the icon of the menu. This pattern tests the height of the side drawer, that should

occupy the full height of the screen [Coi17].

• Orientation pattern – The mobile devices can be in one of two possible orientations: land-

scape or portrait. When the mobile device rotates the layout of the application typically

changes too, and it is important that no information is lost during that change. That is what

this pattern tests [Coi17]:

– No user input is lost during the rotation

– No widget disappears during the rotation

To do this the iMPAcT tool compares the screen before and after the rotation of the mobile

device, in order to verify if the screens are identical. An error is detected when [Coi17]:

– one screen is pop-up and the other is not

– one screen has a side drawer and the does not

– a widget is present in one screen but not in the other

– the user inserted data is present in the first screen but not in the other

• Resources dependency pattern – since several applications are dependant of resources like

GPS or Wifi, it is important to guarantee that an application continues responding and does

not crash when those resources are not available [Coi17]. To do this the iMPAcT tool first

determines if the resource is being used by the application or not, and if it is, that resource

is turned off and the application is tested to check whether that causes and error or not.

• Tab – the presence of tabs makes it easier to navigate and application by switching between

different views. The iMPAcT tool tests the tabs based on some guidelines for their correct

10

State of the Art

implementation. So, for the tab pattern to be correctly implemented the following most be

true [Coi17] :

– there is only one set of tabs per screen

– the tabs should be on the upper part of the screen, for android applications

– by swiping the screen horizontally the selected tab should change and nothing else

The execution of the iMPAcT tool is divided into four phases, [MPF]:

1. Exploration — Exploration of the application under test and the visible screen to detect the

possible events that can be fired. One of those events is chosen at random to be executed.

This phase consists of four steps [Coi17]:

• Explore of the current state of the application

• Identify of the events that can be fired

• Decide which event should be fired

• Fire the selected event

2. Pattern Matching (or reverse engineering) — The iMPAcT tool analyses the current

screen, after the event is fired, to determine whether a pattern is present or not.

3. Tester — After the pattern has been identified, the associated test strategy is applied. If the

test fails then the pattern is not correctly implemented, if the test passes it means that the

pattern is correctly implemented [Coi17]. If no pattern is detected in the previous phase,

then this one is skipped.

4. Artefacts – At the end of the execution two artefacts are created, the report of the explo-

ration and the model of the behaviour of the application [Coi17].

The tool has four modes of exploring the events [MP16]:

• the execute once – each event is only fired once, after an event is fired the first time it stops

being considered as a valid event.

• the priority to not executed – the events that were not fired yet have priority over the ones that

had already been fired. If all the possible event have already been fired, then the algorithm

chooses the one that has the highest possibility of leading to a new screen that was never

tested [Coi17].

• the priority to not executed and list items – this is similar to the priority to not executed, but

also gives higher priority to the events that are associated with lists. Because this can help

to explore all the contents of a screen before changing to another one [Coi17].

11

State of the Art

• the all events – every event will be tested.

The execution time changes depending on the exploration mode that is being used [MP16].

The UI patterns were defined having in consideration several Android programming guide-

lines, so the execution of the tests is able to check whether or not the guidelines were followed

when developing the application under test or not.

The iMPAcT tool will be the object of study of this work, the test set will be evaluated using

mutation testing techniques.

2.4 Mutation Testing

Mutation testing is a fault based testing technique that is used to assess the effectiveness of a test

set by injecting faults into the original code and checking if the provided test can detect them or

not [JH11].

Its basic principle is that the faults that are inserted are able to represent the mistakes that a

programmer would make [JH11]. These faults are simple syntactic changes, like changing the

operator < for the operator >, or the deletion of a statement. These are called mutation operators.

Mutation testing works on the basis of two theoretical principles, [Off89], [JH11]:

The Competent Programmer: assumes that the programmer will create code that is very close

to the correct version. The incorrect version will only differ from the correct one as a

consequence of small syntatic errors, [JH11], [Off92].

The Coupling Effect: says that test data that is able to detect small, simple faults will also be

able to detect more complex ones, [JH11], [Off92].

The process of mutation testing starts with the original program and the set of tests, and it is

divided into several steps:

• The tests are executed against the original code. If the tests fail then the original code needs

to be corrected before continuing;

• The mutants are created according to the selected mutation operators;

• The set of tests is executed against the mutated code and the results are analysed;

• If the results are different from the original code, the mutants are killed and the tests are

considered adequate;

• If the results cannot be distinguished between the original and the mutated code, then the

mutants are still alive and the tests need to be rewritten and the process of mutation testing

needs to begin again;

12

State of the Art

• In some cases there is no test case that is able to kill the mutant, these are called equivalent

mutants and should be discarded.

Figure 2.2 shows the flow of a traditional process of mutation testing. The steps that are

represented with solid boxes are automated and steps, and the steps represented with the dashed

boxes are manual steps.

Figure 2.2: Traditional process of mutation testing, adpated from [JH11]

After this process, it is possible to calculate the Mutation Score, also known as the Mutation

Adequacy Score:

MS = MutantsKilled/(TotalMutants−EquivalentMutants)

By analysing the mutation score it is possible to assess the effectiveness of a test set when it

comes to detecting the faults that were introduced. The value will be a number between 0 and 1, 1

meaning that all mutants were killed, and 0 that all mutants are still alive. The closer the mutation

score is to 1 the better the quality of the test set. If a test set gets a low mutation score it means it is

not enough to detect the majority of errors of the code, and the set should be improved. In practice,

it is nearly impossible to achieve a mutation score of 1, because that would be very expensive and

time consuming.

13

State of the Art

2.4.1 Problems

One of the problems of mutation testing is the large number of mutants that will be created. This

happens because a mutation operator can appear several times in the code and in different loca-

tions, for each one of those locations a mutant will be created [ND14]. With a big number of

mutants, and because the test cases will be executed against all of them, mutation testing has a

high execution cost, making the process sometimes very slow and computationally heavy. For

this reason, it is not feasible to use mutation operators that cover all the code, as it would be very

expensive.

In order to reduce the number of mutation operators without compromising its effectiviness

in [JH09] the authors propose the use of higher order mutation operators. These higher order

operators are created by combining simple faults that mask each other, making the higher order

mutant harder to detect. This will reduce the set of mutation, and therefore the effort and time

needed to perform mutation testing [JH09]. However, it raises a new challenge: how to select the

higher order mutation operators. In [JH09] are search-based optimization is used to find which

combinations are worth using, meaning which combinations will result is hard to kill mutants.

Other problem is that some of those mutants are in fact equivalent mutants and cannot be

killed. If these cases are not detected early in the process, time and effort will be spent trying to

modify the test set when there is no need for it. Over the years there has been some research in

trying to find what makes a mutant equivalent. In [YHJ14] the authors found that certain mutation

operators will always create more equivalent mutants than others. For example, it was detected that

the ABS class of operators were responsible of the majority of equivalent mutants created during

their experiment. In [OP94] the author presents a technique that uses mathematical constraints

to detect equivalent mutants. In their work a tool name Equivalencer was developed in order to

automate the task of identifying equivalent mutants in software, its detection rate is above 45%

[OP94].

Nowadays, the detection of equivalent mutants is still a manual task ([JH11]), and is very slow,

tiresome and error prone, despite all the research that is being performed in this topic. The tool

developed in [OP94] is only a proof of concept and it is not used by practitioners.

Another problem is the fact that mutation testing is based on the injection of generated faults

and not real faults. If the faults that are introduced are not very representative of the real ones

then the findings of mutation testing will not be the correct ones. This problem is very important

because it can render useless the process of mutation testing, this is why there have been some

research in the topic of whether mutation testing can be used as a substitute for real faults. In

[JJI+14] and [ABL05] the authors came to similar conclusions, that if the mutation operators are

well selected, and if the equivalent mutants are identified and removed, then the faults injected by

mutation testing can be used instead of real faults.

14

State of the Art

2.5 Mutation Testing on Android

The use of techniques of mutation testing in an Android environment is not very common, however

there are some research already made in this field. In [DMAO15] and [DOAM17] the authors

present some mutation operators that can be used in Android applications. In [Wei] the author

presents a mutation testing tool for Android applications.

2.5.1 Mutation Operators

The mutation operators defined in [DMAO15] and in [DOAM17] are the same, and represent

specific aspects of android programming. They are divided into four categories: Intent Mutation

Operators, Event Handler Mutation Operators, Activity Life cycle Mutation Operators and XML

Mutation Operators.

2.5.1.1 Intent Mutation Operators

In these categories there are two types of mutation operators defined in [DOAM17]: Intent

Payload Replacement (IPR) and Intent Target Replacement (ITR).

Intent Payload Replacement consists in changing the value of the payload (data that is sent in

the intent) to a default value. This mutation operator will test whether the tester is verifying that

the value passed by the payload is the correct one or not.

Intent Target Replacement consists in changing the target that will be executed (component

that should be started). The target is replaced with all existing classes in the directory. This

mutation operator forces the tester to test if the desired component is really started after the intent

is executed.

2.5.1.2 Event Handler Mutation Operators

Since Android is event based this type of mutation operators are very important. The authors

defined two mutation operators in [DOAM17], the OnClick Event Replacement (ECR) and the

OnTouch Event Replacement (ETR).

The OnClick Event Replacement mutation operator replaces each handler of the OnClick

events with each other. The resulting mutant can only be killed if the tester test each component

that has a OnClick event and checks if the execution is the one expected.

15

State of the Art

The OnTouch Event Replacement mutation operator works in a similar way to the ECR muta-

tion operator, but replaces the OnTouch handlers instead. This mutation operator, like the ECR,

forces the tester to test each component that has a OnTouch event and to check if the code executed

is the expected one.

2.5.1.3 Activity Life cycle Mutation Operators

There is only one mutation operator defined in [DOAM17] for this category, it is called the

Activity Lifecycle Mutation operator.

The Activity Lifecycle Mutation Operator deletes the methods that override the transition be-

tween the states of the application lifecycle. By deleting those methods, the default methods will

be executed instead of the ones created by the developers. This mutation operator forces the tester

to test that the application is in the expected state after each execution.

2.5.1.4 XML Mutation Operators

The operators defined in this category modify one of the various XML files that are used for

configuring the Android application. The author defined in [DOAM17] three mutation operators,

the Button Widget Deletion (BWD) , the EditText Widget Deletion (TWD), and the Activity Per-

mission Deletion (APD).

The Button Widget Deletion mutation operator deletes the buttons in the XML file that defines

the layout of the UI, one button is deleted at a time. This mutation operator forces the tester to

write tests that will ensure that all the buttons are successfully displayed.

The EditText Widget Deletion mutation operator deletes the EditText widgets, that are widgets

that allow the user enter values. Like the BWD, these widgets are removed from the XML file one

at a time. The mutant that results from this mutation operator is only killed if the tester creates

tests that use each one of these widgets.

The Activity Permission Deletion mutation operator is a little different from the other two. This

operator deletes the permissions from the manifest file, one at a time. The only way to kill this

mutant is if one of the tests uses a functionality that needs that kind of permission.

The authors present eight mutation operators that are specific for Android applications, these

operators should be viewed as a small subset of all the mutation operators that can be used in

16

State of the Art

Android. The mutation operators presented only cover a small part of what can and should be

tested in Android applications.

2.5.2 Problems of mutation testing on Android

One of the biggest problems is the fact that running tests on Android is very slow [DOAM17],

this problem is common to all testing in Android not only on mutation testing. However, this

problem is aggravated when talking about mutation testing, because mutation testing involves the

creation of several modified copies of the original code. So each test will be run against not only

the original code, but also against all the mutants.

2.5.3 Existing Tools

In [Wei] the author presents muDroid, a mutation testing tool for Android applications. This tool

uses six mutation operators, that are not specific to Android applications but are rather general

mutation operators.

muDroid has three main phases, [Wei], the phases are also visible in Figure 2.3 :

• Mutant Generator — Main goal is to generate the APK mutants from the APK file under

test. Each one of the APK mutants will contain a unique fault. The steps of this phase are:

1. APK is decompressed using the apktool, giving origin to Smali files

2. Each Smali file is scanned in order to identify the patterns of each mutant. After a

pattern is detected the mutant is generated using the pre defined rules

3. Number of mutants is reduced using mutant selection strategies

These APK mutants will be sent to the Interaction Simulator.

• Interaction Simulator — This phase has as input the APK mutants and as outputs screen-

shots of the application. The user behaviour is simulated and the screenshots are taken at

pre-defined intervals.

• Result Analyser — Is in this phase that the results of the tests show if the mutants were

killed by the tests or not. This phase is divided into two steps:

– Screenshots are analysed to check if the mutants are killed or not

– An HTML formatted report is generated with details of each mutant, in order to facil-

itate the visualization of the results

The fact that this tool does not need to have the source code of an application to insert the

mutants is an advantage, but can also bring some disadvantages. For example, the manipulation

17

State of the Art

Figure 2.3: muDroid System Architecture, [Wei]

of Smali code is not as efficient as the manipulation of the Android bytecode directly. It also can

increase the testing time, because the APK needs to be decompiled before the alterations are made,

and after it has to be compiled again.

The source code of this tool is available in a GitHub repository 1, but there is almost no

information about how to use the tool (apart from simple commands) or about what parameters

have to be passed to the tool or how those will influence the results.

2.6 Conclusions

Nowadays, the topic of mutation testing on Android applications is still not as well developed and

researched as mutation testing on traditional software.

Even though muDroid is a tool that uses mutation testing techniques on Android applications,

the mutation operators that are used are not specific to Android programming so it does not test

the applications having in consideration their nature and unique aspects. As far as we know, until

this moment there is no tool that performs mutation testing on Android applications and that uses

mutation operators that are specific to Android programming. As far as we know, the only mutation

operators defined, at the moment, for Android applications are the ones presented in [DOAM17],

and these only cover four of the specific aspects of Android programming (intent payload, event

handlers, life-cycle of an application and XML files). These operators will not be used in this

project because the operators are outside of the scope of the iMPAcT tool.

So, at this moment, there are no specific mutants that are able to verify if the testing tools are

capable of detecting whether the good practices of Android programming were followed during

the development or not. This is were this research work will make its contribution, by providing a

set of mutants that will be able to assess the effectiveness of the iMPAcT tool.

1https://github.com/Yuan-W/muDroid

18

Chapter 3

iMPAcT Tool – Mutation Testing

The objective of this chapter is to define the mutation operators that will be used in the case study.

To do this, first the set of applications that will be studied and used was selected and tested using

the iMPAcT tool. Then, and having as basis the errors that were detected in each application

and the guidelines of Android programming, the mutation operators are defined. Later, a tool in

Java is developed to automate the insertion of some of the mutation operators into the Android

applications.

3.1 Selection of Android Applications

The selection of the applications was done by browsing the Android projects available at github1

and f-droid2.

On github the query "topic:android" was used and the results were sorted by most stars. From

this query, 9566 applications were found but only 136 applications were selected. The other

applications did not met the criteria presented in Table 3.1. It was evident that this query did not

return all the Android projects on github, but it would have been impossible to explore all the

projects that are available on github in order to find all the applications present.

The f-droid repository is smaller than the github repository, so all the applications available on the

website were considered, all 2130 applications. From this search only 193 applications followed

the criteria defined in Table 3.1.

1http://github.com/
2http://f-droid.org/

19

iMPAcT Tool – Mutation Testing

Table 3.1: Criteria for the selection of applications

Criteria

Be available on the Google Store application has to be available in the Google store

Be available in Portugal the application has to be available in Portugal to

access its information

Have the source code available access to the source code is needed to analyse the

code and to insert the mutants

Have a Google store rating >= 3.5 to analyse only the applications that are have

some degree of quality according to its users

Have a number of ratings >= 100 to insure that the rating of the application is a

representation of the experience of several users

and not only a small group

Use gradle to simplify the build of the application

Be Android Native because the aim of this work is to define mutation

operators that are specific to Android

Have a GUI the iMPAcT tool tests the GUI so it is important

that the applications have one and are more than

just a launcher or a keyboard

Be in an Western European Language to facilitate the understanding of the UI of the

application

3.1.1 Compiling the Applications

In this phase several applications were removed from the list because it was not possible to build

the APK, since the application was only a widget or an extension to another application or because

to fully use the applications credentials to specific entities were needed (Mensa Card, credentials

to the JUET3 or JIIT-1284)

From the 329 applications that resulted from the selection phase, only 167 applications were

successfully built and worked on the smartphone used for the tests. Among the building/compiling

errors the more common were:

3Jaypee University of Engineering and Technology
4Jaypee Institute of Information Technology

20

iMPAcT Tool – Mutation Testing

• Generic build failed error message, missing configurations or build files.

• Missing google-services.json file.

• Gradle sync failed (missing files).

During this phase the source code of some applications had to be altered in order to compile

it (update the version of some dependencies that were used, remove some building options that

needed to connect the application with external sources associated with building the release version

of the application). The IDE used was Android Studio 2.3.

All of the top categories of applications on the Google store, according to [App] are rep-

resented in the set of 167 applications, except the business category where no application was

found.

Table 3.2: Category distribution

Category Number of applications
Board 1

Books and Reference 7
Comics 2

Comunication 12
Education 5

Entertainment 2
Finance 2

Game Strategy 1
Health and Fitness 1

Libraries and Demo 8
Lifestyle 2

Maps and Navigation 4
Medical 1

Music and Audio 6
News and Magazines 7

Personalization 3
Photography 2
Productivity 21

Puzzle 5
Social 6
Tools 58

Travel and Local 7
Video Players 4

Total 167

21

iMPAcT Tool – Mutation Testing

3.2 Tests

All of the 167 applications were tested using the iMPAcT tool, each one was tested two times. If

the results of the tests differed or an error that was visible in the application was not detected by

the iMPAcT tool, then a third test was performed. Because of time constraints, all the patterns

were tested at the same time (orientation, tabs, side drawer and resource dependency). Testing

each pattern separately would increase the number of tests without decreasing significantly the

time spent in each test.

3.2.1 Orientation

This pattern envolves two test strategies [Coi17]:

• Detect of missing widget after rotation:

Goal: "UI main components are still present"

P: {"UIP is present and TP not applied to current activity"}

V: {}

A: [observation, rotate screen, observation, scroll screen, observation]

C: {"widgets still present"}

• Detect of missing user inserted data after rotation:

Goal: "Data unchanged when screen rotates"

P: {"UIP is present and user data was entered and TP not applied to this

element"}

V: {}

A: [observation, rotate screen, observation, scroll screen, observation]

C: {"user entered data was not lost"}

If an application fails one of the two test strategies it will be considered to have the orientation

pattern incorrectly implemented.

According to the results of the iMPAcT tool, from the 167 applications tested: 61 had the

orientation pattern correctly implemented; 103 had the pattern not correctly implemented; and in

3 applications the pattern was not detected. This is represented in Figure 3.1.

22

iMPAcT Tool – Mutation Testing

Figure 3.1: Comparison of the applications with the Orientation pattern correctly and not correctly
implemented

Since one of the applications (Timber) had a visible error in the UI that the iMPAcT tool was

not able to identify, the source code of the iMPAcT tool has slightly changed, instead of rotating

the screen once and verifying if any components disappeared now it rotates the screen two times

so that the screen is in the beginning position when the verification of the components occurs.

At that moment 11 applications had already been tested, so they were retested this time only

for the orientation pattern using the modified iMPAcT tool. This resulted in 3 more applications

being recognized has having the orientation pattern incorrectly implemented.

From the 61 applications that have the orientation pattern correctly implemented, 21 appli-

cations do not allow rotation. This means that the application only works in portrait mode or

landscape mode. These applications are not good examples of the correct implementation of the

orientation so they will not be used in the study. So, there are only 40 applications left that have

the orientation pattern correctly implemented. The Table 3.3 shows some of the applications that

have the pattern correctly implemented in two sets: the ones that allow the rotation of the screen

and the ones that do not allow the rotation of the screen. The complete set of applications that

have the pattern correctly implemented and that allow rotation can be found in Table A.2.

23

iMPAcT Tool – Mutation Testing

Table 3.3: Orientation: Applications with pattern correctly implemented that allow rotation

Allows rotation Does not allow rotation

ObservableScrollView demo Lottie

wallsplash | wallpaper app williamchart

MaterialViewPager MusicDNA

Advanced RecyclerView My Diary(unofficial)

ForkHub for GitHub Habitica: Gamify Your Tasks

Simple Gallery 2048 (Ads Free)

Bewegungsmelder Gobandroid Go Material

Hubble Gallery Critical Maps

Chroma Doze MHGen Database

Calendar Notifications Simple Flashlight

Hacker News ARChon Packager

Anuto TD 2048

Blokish Simple Camera

Simple File Manager Hex

iBeacon Detetor Mongo Explorer

Lucid Browser Movian Remote

BatteryFu Note Crypt

Kaleidoscope Olam

Multitouch Test RGB Tool

Notes TV Kill

Open Link With Wifi Walkie Talkie

... ...

Figure 3.2 displays a comparison between the number of applications with the orientation pat-

tern correctly implemented and the applications with the orientation pattern not correctly imple-

mented grouped by their Google Store categories. In most categories the number of applications

that have the pattern incorrectly implemented is superior to the number of applications that have

the pattern correctly implemented. With the exception of some categories in which the inverse is

visible or the number is the same.

24

iMPAcT Tool – Mutation Testing

Figure 3.2: Orientation Pattern: Comparison between the categories of the applications and the
iMPAcT tool results

3.2.2 Tab

The tab pattern consists of three test strategies [Coi17]:

• Verify if there is only one set of tabs present in the current screen:

Goal: "Only one set of patterns"

P: {"UIP && TP not applied to current activity"}

V: {}

A: [observation]

C: {"there is only one set of tabs at the same time"}

• Verify if the tab is in upper part of the screen:

Goal: "Tabs position"

P: {"UIP && TP not applied to current activity"}

V: {}

A: [observation]

C: {"Tabs are on the upper part of the screen"}

• Verify if swiping the screen will change the selected tab:

25

iMPAcT Tool – Mutation Testing

Goal: "Horizontally scrolling the screen should change the selected tab"

P: {"UIP && TP not applied to current activity"}

V: {}

A: [observation, swipe screen horizontally, observation]

C: {"the selected tab changed"}

If an application fails one of the three test strategies it will be considered to have the tab pattern

incorrectly implemented.

According to the results of the iMPAcT tool, from the 167 applications that were tested: 11 ap-

plications had the tab pattern correctly implemented; 15 had the pattern not correctly implemented;

and in 141 the pattern was not detected. These results are visible in Figure 3.3.

Figure 3.3: Comparison of the applications with the Tab pattern correctly and not correctly imple-
mented

One of the applications was classified as having the pattern correctly implemented but, in

reality, it does not have the pattern implemented. The errors detected by the iMPAcT tool in this

set of applications were all related with the test strategy of verifying if the selected tab changes

when swiping the screen.

26

iMPAcT Tool – Mutation Testing

Table 3.4: Tab Pattern: classification of applications

Correctly Implemented Not Correctly Implemented
Timber MaterialViewPager

Conversations (Jabber / XMPP) Materialistic - Hacker News
WordPress Slide for Reddit

Antox Habitica: Gamify Your Tasks
FOSDEM Companion GDG - News and Events

MHGen Database Bodyweight Fitness Pro
OctoDroid AntennaPod

OI File Manager One Bus Away
Open Tasks AntennaPode

Poet Assistant Numix Calculator
Forkhub pMetro

Privacy Week Schedule
Quick Dice Roller

Timer Droid
TV Kill

Vlille Checker

Figure 3.4: Tab Pattern: Comparison between the categories of the applications and the iMPAcT
tool results

Figure 3.4 displays a comparison between the number of applications with the tab pattern

correctly implemented and the applications with the tab pattern not correctly implemented grouped

27

iMPAcT Tool – Mutation Testing

by their Google Store categories. In this pattern it is visible that most applications that have the

pattern correctly implemented are concentrated in only five categories, and the applications that

have the pattern incorrectly implemented are more scattered.

3.2.3 Side Drawer

The side drawer pattern consist of only one test strategy [Coi17]:

• Verify if the side drawer occupies the full height of the screen:

Goal: "Side Drawer occupies full height"

P: {"UIP present and side drawer available and TP not applied to current

activity"}

V: {}

A: [open side drawer, observation]

C: {"covers the screen in full height"}

According to the iMPAcT tool results, from the 167 applications that were tested: 22 ap-

plications had the side drawer pattern correclty implemented; 19 had the pattern not correctly

implemented; and in 126 applications the pattern was not detected. These results are represented

in Figure 3.9.

Figure 3.5: Comparison of the applications with the Side Drawer pattern correctly and not cor-
rectly implemented

The Table 3.5 shows all the applications in which the pattern was detected as correctly imple-

mented and as not correctly implemented.

28

iMPAcT Tool – Mutation Testing

Table 3.5: Side Drawer Pattern: classification of applications

Correctly Implemented Not Correctly Implemented

Timber ForkHub for GitHub

MusicDNA Materialistic - Hacker News

Yaaic - IRC Client Slide for Reddit

GDG - News and Events RedReader

Polar Dashboard Sample Antox

Etar - OpenSource Calendar Orgzly: Notes and To-Do Lists

wallabag Gobandroid Go Material

Twittnuker for Twitter Critical Maps

Equate Hubble Gallery

FOSDEM Companion Bubble

AnkiDroid iFixit

Lightning Mongo Explorer

File Manager My Expenses

OctoDroid PassAndroid

QR Scanner pOT-Droid

Quick Lyrics RF Analyzer

Riot S Tools +

SMSsync SealNote

Toffed Shader Editor

Unit Converter Ultimate

Web Opac

WiFiAnalyzer

Figure 3.6 displays a comparison between the number of applications with the side drawer

pattern correctly implemented and the applications with the side drawer pattern not correctly im-

plemented grouped by their Google Store categories. In this pattern there is not a big difference

between the number of applications that have the pattern correctly implemented and applications

that have the pattern incorrectly implemented. Most categories only have applications that have

the pattern incorrectly implemented, or have almost the same number of applications with the

pattern correctly and incorrectly implemented.

29

iMPAcT Tool – Mutation Testing

Figure 3.6: Side Drawer Pattern: Comparison between the categories of the applications and the
iMPAcT tool results

3.2.4 Resource Dependency

The resource dependency pattern consists of only one test strategy [Coi17]:

• Verify if the application crashes when the resource is not available:

Goal: "Application does not crash when resource is made unavailable"

P: {"UIP && TP not applied to current activity"}

V: {"resource", resource_name}

A: [observation, turn resource off, observation]

C: {"application did not crash"}

At the moment, the only resource that is tested by the iMPAcT tool is the WiFi, and if an

application fails the test strategy it means that it does not have this pattern correctly implemented.

There was no application that had this pattern implemented incorrectly. This is, mostly likely,

related to the fact that when programming an Android application using Android Studio, or

Eclipse, it is mandatory by the IDE to surround most calls to function that throw exceptions with

a try and catch. So even if the developer is not conscientiously creating an application that can

deal with the lack of the WiFi resource this is ensured by the IDE. The only exception to this are

the runtime exceptions, that can be thrown by functions and not enforce that the calling of those

functions has to be surrounded by try and catch clauses.

30

iMPAcT Tool – Mutation Testing

Figure 3.7: Default application pre selected Figure 3.8: No default application pre selected

At first the iMPAcT tool detected 18 applications that did not have the pattern correctly imple-

mented, but after analysing the source code of each application no error was detected. More tests

had to be executed in order to understand why the detected errors in the pattern when there were

no errors present. The problem was associated with the popup to select an application to perform a

certain action. If an application was pre selected as default them the "OK" button will be clickable

as is visible in 3.7, otherwise only the "Cancel" button will be clickable as shown in 3.8, what

induced the iMPAcT tool in error. After selecting default applications to perform specific actions

that were used by the 18 applications, the tests were executed again and this time no error was

detected.

Figure 3.9: Comparison of the applications with the Resource Dependency pattern correctly and
not correctly implemented

31

iMPAcT Tool – Mutation Testing

According to the iMPAcT tool results, from the 167 applications that were tested: 99 had the

pattern correctly implemented and in 68 applications the pattern was not detected. These results

are visible in Figure 3.9.

Figure 3.10 displays the distribution of applications that have the pattern correctly imple-

mented by the Google Store categories, since there was no application with the pattern incorrectly

implemented.

Figure 3.10: Resource Dependency Pattern: Comparison between the categories of the applica-
tions and the iMPAcT tool results

3.3 Mutant definition

In this section the mutation operators are defined, and the reasoning behind their definition is

explained. The mutation operators are defined for each pattern, except for the resource dependency

pattern because no application that had this pattern not correctly implemented was found. For

the orientation pattern, 4 mutation operators were defined, for the tab pattern only one mutation

operator was defined and for the side drawer pattern 5 mutation operators were defined.

3.3.1 Orientation

Since this pattern is not connected with one specific widget, like the tab and the side drawer

patterns, it was difficult to find a common ground for all the errors detected. The only common

aspect between all the errors was the fact that the presence of the error implies that the developers

did not take into consideration the lifecycle of an Android application when they were developing

their application.

32

iMPAcT Tool – Mutation Testing

When the rotation of the screen is detected the activity is restarted and the following methods

are called, in order:

• onDestroy() – last method called before the activity is destroyed

• onCreate() – called when the activity is starting (or restarting)

By restarting, the application is trying to adapt to the new configurations automatically. It

reloads the alternative resources so that the ones that are more compatible with those configura-

tions start being used instead. There can be different layouts for the activities depending on the

mode of the screen (landscape or portrait mode). Those layouts are saved inside folders that define

their target configuration, for example every layout that is inside the "layout" folder will be used

when the phone is in portrait mode, and every layout that is inside the folder "layout-land" will be

used when the phone changes to landscape mode. Unless the programmer specifies otherwise, the

change of the layout used will be done automatically as soon as a change in orientation in noticed.

When the activity restarts, it loses all the information that is not saved in a persistent memory.

To prevent the loss of information, that information has to be saved before the activity restarts

(before the onDestroy()) and restored once the activity restarts (after or during the onCreate()).

Two methods exist to help with the task of saving and restoring the information:

• onSaveInstanceState() – called by the system before destroying the activity [Devb]. In this

example, adapted from [Devb], the state of two variables is being saved using this method.

static final String STATE_POINTS = "2";

static final String STATE_PLAYER_NAME = "smith";

...

@Override

public void onSaveInstanceState(Bundle savedInstanceState) {

// To save the user’s current game state so it can be restored later

savedInstanceState.putInt(STATE_POINTS, mCurrentPoints);

savedInstanceState.putInt(STATE_PLAYER_NAME, mCurrentPlayerName);

// Superclass should always be called so it can save the view hierarchy

state

super.onSaveInstanceState(savedInstanceState);

}

• onRestoreInstanceState() – called when the activity is being re-initialized from a previously

saved state [Deva]. In this snippet, the state of the same two variables is being restored.

public void onRestoreInstanceState(Bundle savedInstanceState) {

33

iMPAcT Tool – Mutation Testing

// Superclass should be always called to restore the view hierarchy

super.onRestoreInstanceState(savedInstanceState);

// Restore sthe variables from saved instance

mCurrentPoints = savedInstanceState.getInt(STATE_POINTS);

mCurrentPlayerName = savedInstanceState.getInt(STATE_PLAYER_NAME);

}

• onCreate() – instead of restoring the state using the onRestoreInstanceState() method, this

method can be used. Since this method is also called when the activity is created for the first

time, it is necessary to verify if there is a previously saved state before trying to restore it.

@Override

protected void onCreate(Bundle savedInstanceState) {

// Always call the superclass first

super.onCreate(savedInstanceState);

// Restore a previous saved state

if (savedInstanceState != null) {

// Restore value of members from saved state

mCurrentPoints = savedInstanceState.getInt(STATE_POINTS);

mCurrentPlayerName = savedInstanceState.getInt(STATE_PLAYER_NAME);

} else {

// activity is starting for the first time

}

...

}

In the examples, the state is saved using a Bundle, but it is also possible to save the state using

the SharedPreferences class, or a file saved in the internal or external memory. The process is the

same regardless of the method chosen to save the state.

If an application deals with a lot of information saving the state of that huge amount of data

will be costly and can jeopardize the performance of the application. In this cases there are three

solutions:

Retain an object during a configuration change
To do this it is necessary to extend the Fragment class, and call the setRetainInstance(Boolean)

public class RetainedFragment extends Fragment {

// object with the data the has to be saved

private HugeDataClass data;

// this method is only called once for this fragment

34

iMPAcT Tool – Mutation Testing

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

// retain the fragment

setRetainInstance(true);

}

public void setData(HugeDataClass data) {

this.data = data;

}

public HugeDataClass getData() {

return data;

}

}

This way the data will not be lost when the activity restarts, regardless of the reason.

Handle the configuration yourself
Specify in the AndroidManifest.xml that when the orientation changes it will be handled by

a function and not with the normal behaviour

android:configurationChanged="orientation|screenSize"

and then specify what to do when the orientation changes in the onConfigurationChanged(

Configuration newConfig). In this case it is the programmers responsability to change the

resources that will be used having in cosideration the new configurations. Code adapted

from [And]:

@Override

public void onConfigurationChanged(Configuration newConfig) {

super.onConfigurationChanged(newConfig);

// deal with the orientation change

// for example, changing the layout that is being used

}

Stop the application from rotating the screen

• To stop an activity from rotating, the programmer has to specify in the AndroidMani-

fest.xml, for each activity that should not rotate:

35

iMPAcT Tool – Mutation Testing

android:screenOrientation="portrait"

or

android:screenOrientation="landscape"

• Or add the following to the onCreate() function of the corresponding activity:

setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_PORTRAIT);

• Or specify in the AndroidManifest.xml file, and inside the target activity:

android:configurationChanged="orientation|screenSize"

And add the following method to the file that defined the activity:

@Override

public void onConfigurationChanged(Configuration newConfig) {

super.onConfigurationChanged(newConfig);

// Checks the orientation of the screen

if (newConfig.orientation == Configuration.ORIENTATION_LANDSCAPE) {

//define what to do when the phone is rotated to landscape

//to

} else

if (newConfig.orientation == Configuration.ORIENTATION_PORTRAIT){

}

}

There are some widgets that save their own state by default, like the EditText, or the Spinner.

When this widgets are used, the developers do not have to explicitly save their state. However it

is possible to remove this behaviour by calling the method "setSaveEnabled(boolean)" with the

parameter "false".

Most applications use a combination of all of these solutions, so it is difficult to define a

general rule that is easily applied to all. The mutants were defined to simulate the most common

errors in the applications.

1. If the activity saves the state of the variables using a Bundle:

36

iMPAcT Tool – Mutation Testing

• In the file that defines the activity, before restoring the state of the variables set the

Bundle to null

savedInstanceState = null;

if (savedInstanceState != null) {

...

}

• If the activity that uses the EditText has removed the default behaviour of the applica-

tion when a configuration changes

android:configurationChanged="orientation"

then remove from the AndroidManifest.xml file, the "orientation" from the attribute, or

remove the whole line

2. If the application uses a EditText or a subclass:

• find the initialization EditText and add:

private EditText descriptionText;

...

descriptionText = finder.find(R.id.et_gist_description);

descriptionText.setSaveEnabled(false);

• If the activity that uses the EditText has removed the default behaviour of the applica-

tion when a configuration changes :

android:configurationChanged="orientation"

then remove from the AndroidManifest.xml file, the "orientation" from the attribute, or

remove the whole line

3. If the application uses a Spinner or subclass:

• find the initialization Spinner and add to that file:

Spinner s1 = (Spinner) findViewById(bitlength);

s1.setSaveEnabled(false);

• If the activity that uses the Spinner has removed the default behaviour of the applica-

tion when a configuration changes:

37

iMPAcT Tool – Mutation Testing

android:configurationChanged="orientation"

then remove from the AndroidManifest.xml file, the "orientation" from the attribute, or

remove the whole line

4. If the application does not save the state of the variables, or uses a EditText or subclass, but

has a popup menu or handles user input, then the "orientation" has to be removed from this

attribute (AndroidManifest.xml file), or the whole line has to be removed:

android:configurationChanged="orientation"

The process behind the definition of the mutant 1 can be easily adapted to work with Shared-

Preferences or a file instead of the Bundle. Unfortunately, none of the applications that had the

pattern correctly implemented used any of those methods, so the mutant would not be tested even

if defined.

The mutant 2 is used in order to simulate the usage of other widgets that do not have the default

behaviour of saving their own state. In every application analysed that used the EditText, it was

used correctly. Since each programmer develops their application in their own way, and because

the pattern of orientation is related with more than just one or two widgets, it is simpler to simulate

the bad implementation of a widget, than to define errors that are too specific to one application

and that can be reused in another one.

The error associated with the mutant 4 was the most common amongst the applications tested.

However, the code:

android:configurationChanged="orientation"

as the only way to prevent orientation errors is not the perfect solution, and should only be used

as temporary solution.

3.3.1.1 Visible Effects

The insertion of the mutant 1 will force the data that is inserted by the user to disappear when the

orientation of the phone changes. In Figure 3.11 shows the application after the user inserts the

word "Question" into one of the TextView widget. Figure 3.12 shows at happens to the application

after the orientation is changed, the data inserted disappears.

38

iMPAcT Tool – Mutation Testing

Figure 3.11: AnkiDroid: Mutant 1,
before rotation

Figure 3.12: AnkiDroid: Mutant 1,
after rotation

The insertion of the mutant 2 will force the data that is inserted by the user to disappear when

the orientation of the phone changes. In Figure 3.13 shows the application after the user inserts

the email "email@gmail.com" into the EditText widget. Figure 3.14 shows at happens to the

application after the orientation is changed, the data inserted disappears.

Figure 3.13: AnkiDroid: Mutant 2,
before rotation

Figure 3.14: AnkiDroid: Mutant 2,
after rotation

The insertion of the mutant 3 will force the visible Spinner widget to go back to its hidden

39

iMPAcT Tool – Mutation Testing

state when the orientation changes. In Figure 3.15 shows the application after the user clicks on

the hidden Spinner widget making it visible in the activity. Figure 3.16 shows at happens when

the orientation changes, the Spinner is no longer visible.

Figure 3.15: CIDR Calculator: Mutant 3,
before rotation

Figure 3.16: CIDR Calculator: Mutant 3,
after rotation

The insertion of the mutant 4 will force any data that is not being save to be lost, this can be

data that was inserted by the user, or a popup dialog. In Figure 3.17 shows the application after

the user clicks a button that shows a dialog to select a date. Figure 3.18 shows at happens when

the orientation changes, the dialog disappears.

40

iMPAcT Tool – Mutation Testing

Figure 3.17: Recurrence: Mutant 4,
before rotation

Figure 3.18: Recurrence: Mutant 4,
after rotation

3.3.2 Tab

The most common way to create tabs in Android is to use the ViewPager widget [Devd]. The

ViewPager widget has built-in swipe gestures

By using this widget the default behaviour of swiping the screen is to change the tab that is

visible according with the direction of the swipe. So, when an application does not allow the

swiping of tabs it is because the developers have explicitly deactivated the functionality in the

code.

The ViewPager has two methods that are responsible for handling touch events [Devh]:

onTouchEvent(MotionEvent) – handles touch screen motion events

onInterceptEvent(MotionEvent – intercepts all touch screen motion events

If the developer wants to modified the way the tab in their application responds to the touch

gestures, the they have to define a custom ViewPager subclass, that overrides those methods and

performs the necessary actions. If the goal of the developer is to disable the ability to change the

tabs with the swipe gesture, then they have to change the return value of those methods to "false"

and remove any other actions performed in those methods if they exist.

It is possible to implement tabs in Android without using the ViewPager and using a TabLay-

out. However, by choosing this solution the tabs will not change with the swipe gesture only with

by touching the tab name. So, an application that does not use the ViewPager will always be

considered as having the tab pattern incorrectly implemented by the iMPAcT tool.

41

iMPAcT Tool – Mutation Testing

Only one mutant was defined for this pattern, but there are different ways of injecting it de-

pending on how the target application was developed.

1. If the application does not extend the ViewPager class:

• Create a new class that extends the ViewPager class, for example CustomViewPager

public CustomViewPager(Context context, AttributeSet attrs) {

super(context, attrs);

}

• Override the onTouchEvent (MotionEvent) and the onInterceptTouchEvent (Motion-

Event) functions with a return value of "false"

@Override

public boolean onTouchEvent(MotionEvent ev) {

return false;

}

@Override

public boolean onInterceptTouchEvent(MotionEvent ev) {

return false;

}

• Class constructor also has to be created

public CustomViewPager(Context context, AttributeSet attrs) {

super(context, attrs);

}

• Import packages needed (if this process is done with the help of an IDE the imports

will be inserted automatically by the IDE)

import android.support.v4.view.ViewPager

import android.util.AttributeSet

import android.view.MotionEvent

import android.content.Context

• Change all references of the default ViewPager to new class created in the XML layout

files, for example:

<android.support.v4.view.ViewPager

android:id="@+id/pager"

42

iMPAcT Tool – Mutation Testing

android:layout_width="match_parent"

android:layout_height="0px"

android:layout_weight="1"

android:background="@android:color/white"/>

becomes

<com.exampleApp.CustomViewPager

android:id="@+id/pager"

android:layout_width="match_parent"

android:layout_height="0px"

android:layout_weight="1"

android:background="@android:color/white"/>

2. If the applications already extends the ViewPager class:

(a) If it overrides the onTouchEvent (MotionEvent) and the OnInterceptTouchEvent (Mo-

tionEvent):

• Change the value that is returned from the function to "false"

@Override

public boolean onTouchEvent(MotionEvent ev) {

return false;

}

@Override

public boolean onInterceptTouchEvent(MotionEvent ev) {

return false;

}

(b) If it does not override the functions:

• Override the functions with the return value of "false"

@Override

public boolean onTouchEvent(MotionEvent ev) {

return false;

}

@Override

public boolean onInterceptTouchEvent(MotionEvent ev) {

return false;

}

• It can be necessary to add the import of the MotionEvent package

43

iMPAcT Tool – Mutation Testing

1 import android.view.MotionEvent;

3.3.2.1 Visible effects

All of the different approaches defined here have the same visible effect when injected in an

application. It will stop the tabs from changing when the screen is swiped.

3.3.3 Side Drawer

The mutants defined for this pattern are related with the height of the side drawer, because that

is the only thing that is tested by the iMPAcT tool. The dimensions of the widgets is commonly

defined in XML files, it is also possible to set the dimensions in the Java code but this is not as

common and none of the applications selected did this.

There are several ways to create a side drawer, but a DrawerLayout is always needed because

it is the widget that allows the existence of an interactive drawer [Deve]. The widgets inside the

DrawerLayout can be:

• FrameLayout for the main content and a ListView for the drawer content

<android.support.v4.widget.DrawerLayout

android:id="@+id/drawer_layout"

...>

<FrameLayout

android:id="@+id/main_content"

... />

<ListView

android:id="@+id/left_drawer"

.../>

</android.support.v4.widget.DrawerLayout>

• FrameLayout for the main content and another FrameLayout for the drawer content

<android.support.v4.widget.DrawerLayout

android:id="@+id/drawer_layout"

...>

<FrameLayout

android:id="@+id/main_content"

... />

<FrameLayout

android:id="@+id/left_drawer"

44

iMPAcT Tool – Mutation Testing

... />

</android.support.v4.widget.DrawerLayout>

• FrameLayout for the main content and a NavigationView for the drawer content

<android.support.v4.widget.DrawerLayout

android:id="@+id/drawer_layout"

...>

<FrameLayout

android:id="@+id/main_content"

... />

<android.support.design.widget.NavigationView

android:id="@+id/navigation_view"

... />

</android.support.v4.widget.DrawerLayout>

Instead of using the classes DrawerLayout or FrameLayout, a subclass of these classes can be

used.

Each of these widgets has a set of attributes with values that can be altered in order to config-

ure them to the desired layout. These attributes can be layout_height, layout_width, backgroud,

fitsSystemWindows, among others

The ones that are tested in the side drawer pattern of the iMPAcT tool are the ones related

with the height of the drawer. This involves the layout_height and the fitsSystemWindows at-

tributes. The layout_height attribute is the one that defines the height of the widget associated,

most common values are: match_parent, widget occupies the same space as the parent widget;

wrap_content, the height of the widget depends on the content that is placed there; and an exact

value for the height, value can be in pixels (px), density-independent pixels (dp), scaled pixels (sp),

inches (in) or milllimeters (mm) [Devg]. The attribute fitsSystemWindows adjusts the layout of

the view/widget based on system windows like the notification bar, and has as values either "true"

or "false". If the value is "true" then the view will span the full height of the screen, including

behind the notification bar, content that is behind the notification bar will be visible but will be

a little bit darker than it should be. If the value is "false" then the view will start only after the

notification bar.

The mutants were defined having this in mind. They affect either the DrawerLayout, the

NavigationView or the FrameLayout (if it belongs to the side drawer).

1. If a DrawerLayout is present:

• Change the value of the attribute layout_ height to some value that is smaller than the

screen size but bigger than the middle of the screen

45

iMPAcT Tool – Mutation Testing

<android.support.v4.widget.DrawerLayout

android:id="@+id/drawer_layout"

android:layout_height="1400px"

...>

...

</android.support.v4.widget.DrawerLayout>

2. If NavigationView is present:

(a) Attribute android:fitsSystemWindows

• If android:fitsSystemWindows="true", change the value to "false"

<android.support.design.widget.NavigationView

android:id="@+id/navigation_view"

android:fitsSystemWindows="false"

... />

• If the attribute android:fitsSystemWindows is not set, add the attribute with value

"false"

<android.support.design.widget.NavigationView

android:id="@+id/navigation_view"

android:fitsSystemWindows="false"

... />

(b) Change the value of the attribute layout_ height to some value that is smaller than the

screen size but bigger than the middle of the screen

<android.support.design.widget.NavigationView

android:id="@+id/navigation_view"

android:layout_height="1400px"

... />

3. If a FrameLayout that has as a parent a DrawerLayout is present (is not necessary that the

DrawerLayout and the FrameLayout have to be in the same file, the DrawerLayout can

import a FrameLayout that is defined in another file):

(a) Attribute android:fitsSystemWindows

• If android:fitsSystemWindows="true", change the value to "false"

<android.support.v4.widget.DrawerLayout

46

iMPAcT Tool – Mutation Testing

...>

<FrameLayout

android:id="@+id/left_drawer"

android:fitsSystemWindows="false"

... />

</android.support.v4.widget.DrawerLayout>

• If the attribute android:fitsSystemWindows is not set, add the attribute with value

"false"

<android.support.v4.widget.DrawerLayout

...>

<FrameLayout

android:id="@+id/left_drawer"

android:fitsSystemWindows="false"

... />

</android.support.v4.widget.DrawerLayout>

(b) Change the value of the attribute layout_ height to some value that is smaller than the

screen size but bigger than the middle of the screen

<android.support.v4.widget.DrawerLayout

...>

<FrameLayout

android:id="@+id/left_drawer"

android:layout_height="1400px"

... />

</android.support.v4.widget.DrawerLayout>

3.3.3.1 Visible effects

The mutant 1 reduces the height of the parent of the NavigationView or the FrameLayout, forcing

the height of the drawer layout to be smaller then the screen even if the child’s height is set to

"match_parent". Figure 3.19 shows the effect of the mutant in the application OctoDroid. The

DrawerLayout ends before the end of the screen, so anything that will be placed inside that will

also end before the screen.

The mutants 2b and 3b works similarly to the mutant 1, but reduces the height of the Naviga-

tionView or the FrameLayout, respectively, instead of the height of parent view. Figure 3.20 shows

the visible effect of the injection of the mutant 2b to the OctoDroid application. Here, only the

side drawer is smaller, the rest of the application continues with the same height as before. And

Figure 3.24 shows the visible effect of the injection of the mutant 3b on the FOSDEM application.

47

iMPAcT Tool – Mutation Testing

Figure 3.19: Example of mutant 1, side Drawer Figure 3.20: Example of mutant 2b, side Drawer

By comparing these figures, 3.20 and 3.24, it is possible to verify that although the mutants target

different widgets the visible effect is the same.

The mutants 2a and 3a have the same visible effect, the side drawer is drawn underneath the

notification bar, as is possible to verify by comparing Figures 3.21 and 3.23. Figure 3.21 shows

the visible effect of the mutant 2a when injected in the OctoDroid application, and Figure 3.23

shows the visible effect of the mutant 3a when injected in the FOSDEM application.

Figure 3.22 shows how the side drawer of the application OctoDroid should appear when no

mutant is injected. The side drawer is still visible even behind the notification bar.

3.3.4 Resource Dependency

Since no application that had this pattern implemented incorrectly was found, it was impossible to

define mutants for the resource dependency pattern.

48

iMPAcT Tool – Mutation Testing

Figure 3.21: Example of mutant 2a, side drawer Figure 3.22: Example side drawer with no errors

Figure 3.23: Example of mutant 3a, side drawer Figure 3.24: Example of mutant 3b, side drawer

49

iMPAcT Tool – Mutation Testing

3.4 Automation

Only the insertion of the mutants related with the Tab pattern and the Side Drawer pattern were

automate. The mutants of the Orientation pattern were not automated because there was no time

to do it. The orientation mutants are more difficult to automate because they involve several files

of the same activity. A Java application was created to do this, and it assumes that the code of the

target Android application has no compiling errors and uses gradle. Since the mutation operators

related to each of the pattern involve different type of files, the approach for each of the patterns

is explained separately.

3.4.1 Tab

There is only one mutant to be automated, but there are different approaches depending on how

the code was developed. In two approaches only the Java files are used, and in the other one only

XML files are used and a Java class has to be created. The code is based on some assumptions:

• The directory with the source code of the target application has to be in the same directory

as the tool

• The name of the directory has to be defined in the code, variable "DIRECTORY"

• The root directory of the java code has to defined in the variable "DIRECTORY_BASE_SRC".

Example using the application Conversations:

private static final String DIRECTORY_BASE_SRC = "\\src\\main\\java\\eu\\

siacs\\conversations\\";

• The name of the package of the application has to be defined in the variable "PACK-

AGE_NAME"

private static final String PACKAGE_NAME = "eu.siacs.conversations"

The tool is divided into 3 steps:

1. The directory of the target application is copied to a new folder
All the files and folders are copied except the ones that start with ".", or are inside folders

that are generated automatically when the application builds

2. The files are analysed to check if there is a subclass of the ViewPager class in the application

If there is a subclass of the ViewPager class:

50

iMPAcT Tool – Mutation Testing

• If the class overrides the methods onTouchEvent(MotionEvent) and the onInterceptEvent(

MotionEvent) – the only thing to do is to change the return value, approach 2a

// each line of the file

while ((currentLine = br.readLine()) != null){

Matcher imp = onTouch.matcher(currentLine);

Matcher m = onIntercept.matcher(currentLine);

if (imp.find()){ // if found the declaration of the onTouchEvent(

Motion) method

bw.write(currentLine);

bw.write("\\n");

bw.write("return false;");

bw.write("\\n");

foundOnTouch = true;

}else if (m.find()){ // if found the declaration of the

onInterceptEvent(Motion) method

bw.write(currentLine);

bw.write("\\n");

bw.write("return false;");

bw.write("\\n");

foundOnIntercept = true;

}else {

bw.write(currentLine);

bw.write("\\n");

}

}

• If the class does not override the methods, the only thing to do is to insert the methods

with a return value of "false". These are inserted in the next line after the definition of

the class, approach 2b:

if (!foundOnTouch && !touchDone){

bw.write(" @Override");

bw.write("\\n");

bw.write(" public boolean onTouchEvent(MotionEvent ev) {");

bw.write("\\n");

bw.write(" return false;");

bw.write("\\n");

bw.write(" }");

bw.write("\\n");

touchDone = true;

}

if (!foundOnIntercept && !interceptDone){

bw.write(" @Override");

bw.write("\\n");

bw.write(" public boolean onInterceptTouchEvent(MotionEvent ev) {");

bw.write("\\n");

51

iMPAcT Tool – Mutation Testing

bw.write(" return false;");

bw.write("\\n");

bw.write(" }");

bw.write("\\n");

interceptDone = true;

}

If the application does not extend the ViewPager class, approach 1:

• Creates the new file with the subclass of the ViewPager, name of the class is defined

in the variable "VIEWPAGER_NAME_DEFAULT". This file is created in the root

directory of the source (defined in a variable).

• All the XML files are selected

• From those files, the ones that have a ViewPager reference are selected

• Each XML file is parsed to replace the references to the ViewPager for the new class

and saved with the original name

while ((currentLine = br.readLine()) != null){

Matcher begin = viewPagerBeginTag.matcher(currentLine);

Matcher end = viewPagerEndTag.matcher(currentLine);

if (begin.find()){

if (begin.group(1) != null)

bw.write("<"+PACKAGE_NAME+"."+VIEWPAGER_NAME + " " + begin.

group(1));

else

bw.write("<"+PACKAGE_NAME+"."+VIEWPAGER_NAME);

bw.write("\\n");

}else if(end.find()){

if (end.group(1) != null)

bw.write("</"+PACKAGE_NAME+"."+VIEWPAGER_NAME+ end.group(1));

else

bw.write("</"+PACKAGE_NAME+"."+VIEWPAGER_NAME+">");

bw.write("\\n");

}else{

bw.write(currentLine);

bw.write("\\n");

}

}

3. The mutated APK is created
Since all the applications use gradle, only one command is needed to build the APK

52

iMPAcT Tool – Mutation Testing

private static void createAPK(String mutDirectory) {

String cmd = "cmd /c start /wait cmd.exe /K \"cd " + MUT_DIRECTORY + " &&

gradlew assemble";

Utils.executeCmd(cmd);

}

3.4.2 Side Drawer

All the mutants defined for this pattern are related with XML files, so the approach is a little

different than the one use for the automation of the mutant for the tab pattern. The code is based

on some assumptions:

• The directory with the source code of the target application has to be in the same directory

as the tool

• The name of the directory has to be defined in the code, variable "DIRECTORY"

• The mutant to be applied has to be defined in the code, variable "MUT". This variable can

take

– "drawer_1" – Mutant 1

– "navigation_1" – Mutant 2a

– "navigation_2" – Mutant 2b

– "frameLayout_1" – Mutant 3a

– "frameLayout_2" – Mutant 3b

The tool is divided into 4 steps:

1. The directory of the target application is copied to a new folder
All the files and folders are copied except the ones that start with ".", or are inside folders

that are generated automatically when the application builds

2. XML files are selected
Since the mutants are applied only to XML files there is no need to parse the Java files, so

only the XML files will be parsed

3. Each XML file is parsed
If the file has the tag that corresponds with the target mutant, then the mutant is applied

and the file is saved with the same name. To check if the tag exists in the file, each node is

analysed in order to find the one that has the tag:

53

iMPAcT Tool – Mutation Testing

private static Node findNode(NodeList doc, Pattern tag_to_find) {

for (int i = 0; i < doc.getLength(); i++){

Node tmp = doc.item(i);

if (tmp.getNodeType() == Node.ELEMENT_NODE){

Matcher mat = tag_to_find.matcher(tmp.getNodeName());

if (mat.find()){

return tmp;

}

}

...

After having the target file selected, the mutant is applied to the attribute that it pertains.

The next snippet is an example of how the mutants are applied, in this case the mutants are

related with the NavigationView:

...

if (MUT.split("_")[0].equals("navigation")){

tmp = findNode(doc_tmp.getChildNodes(), NAVIGATION_VIEW);

tmp2 = tmp;

if (tmp == null)

return null;

if (MUT.split("_")[1].equals("1")){

if (tmp2.getAttributes().getNamedItem("android:fitsSystemWindows") !=

null){

tmp2.getAttributes().getNamedItem("android:fitsSystemWindows").

setNodeValue("false");

altered = true;

}else {

((Element)tmp2).setAttribute("android:fitsSystemWindows", "false");

altered = true;

}

}if (MUT.split("_")[1].equals("2")){

tmp2.getAttributes().getNamedItem("android:layout_height").setNodeValue

("1400px");

altered = true;

}

doc_tmp.getChildNodes().item(counter).replaceChild(tmp2, tmp);

}

...

4. The mutated APK is created
Since all the applications selected used gradle, only one command is needed to build the

APK

54

iMPAcT Tool – Mutation Testing

private static void createAPK(String mutDirectory) {

String cmd = "cmd /c start /wait cmd.exe /K \"cd " + MUT + " && gradlew

assemble";

Utils.executeCmd(cmd);

}

The APK will be created inside the folder "outputs", that is inside the "build" folder.

3.4.3 Limitations

There are some limitations associated with this automation:

• It was only tested with some applications – there is no guarantee that it will work with every

application.

• No UI – uses a lot of hardcoded variables.

• Can be slow – depending on the size of the application, and the files.

• Only works with the default classes – does not work with subclasses of those classes.

• Does not verify if the code that is being altered is reachable.

• In order to create the APK the application has to use gradle. Otherwise, the mutants will

still be inserted but the APK will have to be created manually.

3.5 Conclusion

In this chapter ten mutation operators are defined, these operators are distributed between 3 of the

patterns tested by the iMPAcT tool and are specific for Android applications. Since the mutation

operators were defined having in consideration what is tested by the iMPAcT tool (the development

of applications following the guidelines of Android programming) and the most common errors

detected in real applications, they can be used to assess the effectiveness of the iMPAcT tool.

From these ten mutation operators, six were automated. This means that the mutation operators

related with the tab and the side drawer pattern can be automatically inserted into an application. If

the mutation operator selected can be inserted in the target application a new APK will be created

with the necessary modifications. The mutation operators related with the orientation pattern were

not automated, because of lack of time. These mutation operators will not be easy to automated

because there is a lot of dependencies that have to be verified before the operator can be applied.

Since it was not possible to find any Android application that had the resource dependency

incorrectly implemented, no mutation operators were defined for this pattern. Consequently, this

pattern will not be referred in Chapter 4.

55

iMPAcT Tool – Mutation Testing

56

Chapter 4

Case study

In this chapter it is presented the result of the insertion of the mutants defined in Section 3.3 and

the results given by the iMPAcT tool for each application and mutant. The set of applications that

were considered by the iMPAcT tool as having each of the patterns correctly implemented will be

used in this phase. However, not everyone of those applications was used, each pattern explains

with detail why some applications were rejected from this phase. The last section of this chapter

describes how the automation of the insertion of the mutants was developed.

This chapter is divided by the different patterns, and in each pattern it is described the criteria

for the selection of the applications, which mutants were inserted in each application and the

results.

4.1 Orientation

Even thought the number of applications that had the orientation pattern correctly implemented

was very big, only a few were used in this phase. This was because most of the applications were

too simple, and did met the requirements for the mutants to be inserted. While other applications

were mostly developed using Kotlin or Scala, which made impossible to insert the mutants. So

from the 40 applications that have the pattern correctly implemented and that allow rotation, only

14 were used in this phase, these applications are shown in Table 4.1.

57

Case study

Table 4.1: Orientation Pattern: Mutants inserted

Application Mutant

ForkHub for GitHub Mutant 2

CIDR Calculator Mutants 2 and 3

AnkiDroid Mutants 1, 2 and 4

Bewegungsmelder Mutant 4

MIFARE Classic Tool Mutants 2 and 4

Cadroid Mutant 2

Lightning Mutants 4 and 2

NetGuard Mutant 4

Network Monitor Mutants 1 and 2

NoNonsense Notes Mutants 1 and 2

RasPi Check Mutants 2 and 3

Recurrence Mutant 4

Reddinator Mutants 4 and 2

Weechat Android Mutant 2

Table B.1 shows the reason why each application was removed from this phase. When an

application has as reason to be excluded the fact that there was nothing to test, it means that the

application was very simple with only one activity, or that the application did not require any input

from the user, or popup dialogs. Some of those applications were games, that had no settings

menu, and only the game screen that consisted in drawings.

4.1.1 iMPAcT tool results

The Table 4.2 shows the results of the insertion of the mutants for the selected applications.

One problem encountered with the testing of the orientation pattern is that the iMPAcT tool is

not able to detect errors related with the search widget. The iMPAcT tool is not able to detect when

the query of a search disappears when the screen rotates. This had already happen in the initial

tests with the application Timber. But at that time it was thought that the problem could be related

with the nature of the application, since it is a music player and the vast majority of the time spent

in testing was spent in the activity that play the track. However after inserting the mutant 4 in

other applications and the error being visible but not recognized by the iMPAcT tool it was clear

58

Case study

that the problem was not related with the applications being tested but related with the tool that

was testing it.

Table 4.2: Orientation Pattern: Mutants results

Application Mutant 1 Mutant 2 Mutant 3 Mutant 4

ForkHub for GitHub Not Tested YES Not Tested NO 1

CIDR Calculator Not Tested YES YES Not Tested

AnkiDroid YES YES Not Tested YES

Bewegungsmelder Not Tested Not Tested Not Tested YES

MIFARE Classic Tool Not Tested YES Not Tested YES

Cadroid Not Tested YES Not Tested Not Tested

Lightning Not Tested YES Not Tested NO1/YES 2

NetGuard Not Tested Not Tested Not Tested NO 1/YES 2

Network Monitor YES NO 3 Not Tested Not Tested

NoNonsense Notes YES YES Not Tested Not Tested

RasPi Check Not Tested YES YES Not Tested

Recurrence Not Tested Not Tested Not Tested YES

Reddinator Not Tested Not Tested Not Tested YES

Weechat Android Not Tested YES Not Tested Not Tested

4.2 Tab

From all the applications that were classified by the iMPAcT tool as having the tab pattern correctly

implemented, two were excluded from this phase. The OI File Manager application was excluded

because it did not contain tabs even though the iMPAcT tool detected one. No tab was detected

when analysing the code or by manually exploring the application. The Antox application was

excluded because it was developed using mainly Scala.

All of the mutated applications present the same visible effect: when swiping the screen the

selected tab does not change. They are divided into 3 approaches because of how they are inserted

into the code of the application.

1Does not detect the disappearance of the search query
2Detected the disappearance of a popup
3iMPAcT tool does not reach the screen

59

Case study

Table 4.3: Tab Pattern: Mutants inserted

Application Approach

Timber Approach 2b

Conversations (Jabber / XMPP) Approach 1

Forkhub Approach 2b

WordPress Approach 2a

FOSDEM Companion Approach 1

MHGen Database Approach 1

OctoDroid Approach 1

Open Tasks Approach 1

Poet Assistant Approach 1

4.2.1 iMPAcT tool results

As Table 4.4 shows, the iMPAcT tool was able to detect the inserted errors in all the applications.

The iMPAcT tool was not able to detect the error in all the tests to the application Conversations,

only one test was able to detect the error (see B.7).

Table 4.4: Tab Pattern: Mutants results

Application Detected
Timber Yes

Conversations (Jabber / XMPP) No1

WordPress Yes

FOSDEM Companion Yess

MHGen Database Yes

OctoDroid Yes

Open Tasks Yes

Poet Assistant Yes

Forkhub Yes

This is related to the fact that in the first and third tests the iMPAcT tool did not reach the

screen in which the mutation was inserted even though the exploration mode used in the iMPAcT

1iMPAcT tool does not reach the screen

60

Case study

tool was to test "all events". This was a recurrent problem during the tests, sometimes the iMPAcT

tool does not test all the possible screens.

4.3 Side Drawer

Only one application was excluded from this phase. The File Manager application was excluded

because of their implementation of the side drawer, it did not occupy the whole height but the

iMPAcT tool was not able to detected. Figure 4.1 shows the side drawer of the application.

Figure 4.1: Side Drawer example of the File Manager application

The mutants were applied to all the other applications, depending on the way that each appli-

cation implemented the side drawer.

61

Case study

Table 4.5: Side Drawer Pattern: Mutants inserted

Application Mutants

Timber Mutants 1, 2a and 2b

MusicDNA Mutants 1, 2a and 2b

Yaaic - IRC Client Mutants 1 , 3a and 3b

GDG - News and Events Mutants 1, 2a and 2b

Polar Dashboard Sample Mutants 1, 2a and 2b

Etar - OpenSource Calendar Mutants 1, 2a and 2b

wallabag Mutants 1, 2a and 2b

Twittnuker for Twitter Mutants 1, 2a and 2b

Equate Mutants 1, 2a and 2b

FOSDEM Companion Mutants 1, 3a and 3b

AnkiDroid Mutants 1, 2a and 2b

Lightning Mutants 1, 3a and 3b

OctoDroid Mutants 1, 2a and 2b

QR Scanner Mutants 1, 2a and 2b

Quick Lyrics Mutants 1, 3a and 3b

Riot Mutants 1, 2a and 2b

SMSsync Mutants 1, 2a and 2b

Toffed Mutants 1, 2a and 2b

Unit Converter Ultimate Mutants 1, 2a and 2b

Web Opac Mutants 1, 2a and 2b

WiFiAnalyzer Mutants 1, 2a and 2b

4.3.1 iMPAcT tool results

In Figure 4.6 shows the results given by the iMPAcT tool for each mutant inserted and application.

The iMPAcT tool was able to detect every error that was injected. The combination of each mutant

and application was tested three times, and the error was detected every time. Different exploration

modes of the iMPAcT tool were used in different tests. The first and second tests used the "All

events" exploration and the third used the "Priority to not executed" exploration. The errors were

detected regardless of the exploration mode used, because once the side drawer was open the error

was immediately detected.

62

Case study

Table 4.6: Side Drawer Pattern: Mutants results

Application Mutant 1 Mutant 2b Mutant 2a Mutant 3b Mutant 3a

Timber YES YES YES Not tested Not tested

MusicDNA YES YES YES Not tested Not tested

Yaaic - IRC Client YES Not tested Not tested YES YES

GDG - News and Events YES YES YES Not tested Not tested

Polar Dashboard Sample YES YES YES Not tested Not tested

Etar - OpenSource Calendar YES YES YES Not tested Not tested

wallabag YES YES YES Not tested Not tested

Twittnuker for Twitter YES YES YES Not tested Not tested

Equate YES YES YES Not tested Not tested

FOSDEM Companion YES Not tested Not tested YES YES

AnkiDroid YES YES YES Not tested Not tested

Lightning YES Not tested Not tested YES YES

OctoDroid YES YES YES Not tested Not tested

QR Scanner YES YES YES Not tested Not tested

Quick Lyrics YES Not tested Not tested YES YES

Riot YES YES YES Not tested Not tested

SMSsync YES YES YES Not tested Not tested

Toffed YES YES YES Not tested Not tested

Unit Converter Ultimate YES YES YES Not tested Not tested

Web Opac YES YES YES Not tested Not tested

WiFiAnalyzer YES YES YES Not tested Not tested

4.4 Conclusion

This chapter exposes the results given by the iMPAcT tool when testing the various mutated ap-

plications. In most cases the iMPAcT tool was able to detect the insertion of the mutation, but in

some applications they were not detect. Next are presented the results by pattern and mutation

operator:

63

Case study

Orientation:

• Mutant 1 was inserted into three applications and was detected by the iMPAcT tool in

all applications.

• Mutant 2 was inserted into ten applications, but was only detected by the iMPAcT tool

in nine applications.

• Mutant 3 was inserted into two applications and was detected by the iMPAcT tool in

all applications

• Mutant 4 was inserted into eight applications but was only fully detected by theiMPAcT

tool in five applications.

Tab:

• The mutant was inserted into nine applications, but was only detected by the iMPAcT

tool in eight applications.

Side Drawer:

• Mutant 1 was inserted into twenty-one different applications and detected by the iM-

PAcT tool in all the applications.

• Mutant 2b was inserted into seventeen different applications and detected by the iM-

PAcT tool in all the applications.

• Mutant 2a was inserted into seventeen different applications and detected by the iM-

PAcT tool in all the applications.

• Mutant 3b was inserted into four different applications and detected by the iMPAcT

tool in all the applications.

• Mutant 3a was inserted into four different applications and detected by the iMPAcT

tool in all the applications.

By focusing in analysing the execution and the logs of the iMPAcT tool in the cases that it was

not able to detect the mutants, two problems were found:

• The iMPAcT tool is not prepared to detect the loss of information in the search widget. Fig-

ures 4.2 and 4.3 show the loss of information of the search widget in the Forkhub application.

This loss is not detected by the iMPAcT tool.

• The iMPAcT tool is not always able to reach all the screens/activities of an application, even

when the "all events" exploration mode is used.

64

Case study

Figure 4.2: Forkhub with mutant 4
before rotation

Figure 4.3: Forkhub with mutant 4
after rotation

Figures 4.2 and 4.3 show the error inserted into the application Forkhub (insertion of mutant 4),

after rotating the screen the search query is lost. Even though this error is visible in the application

it was not detected by the iMPAcT tool in any test.

The first problem is associated with the technique used by the iMPAcT tool to detect the loss

of information after rotating the screen, while the second problem is related with the algorithm

used by the iMPAcT tool to explore each application. These problems are still present even when

the exploration mode of the iMPAcT tool is changed.

65

Case study

66

Chapter 5

Conclusion and Future Work

In this work several Android specific mutation operators were defined. The mutation operators

were related to three patterns: four mutation operators for the orientation pattern; one mutation

operator for the tab pattern; and five for the side drawer pattern. No mutation operator was defined

for the resource dependency pattern. These mutation operators were defined having in considera-

tion the areas that are tested by the iMPAcT tool and the android guidelines in which the iMPAcT

tool is based.

These mutation operators were inserted in several Android applications, and then tested using

the iMPAcT tool. Since the iMPAcT tool is based on the exploration of the applications, the tests

were executed with two different exploration modes: "all events" and "priority to not executed".

The time spent in each test was around 20 minutes, and there was not a big difference in time spent

executing the tests with the "all events" exploration mode when compared with the time spent with

the priority to not executed.

During this work, a tool was developed to automate the insertion of the defined mutation op-

erators. Because of time constraints it was only automated the insertion of six mutation operators,

the operators are relative to the tab and the side drawer patterns. This tool was developed in Java,

and it capable of insert the mutation operators into the source code of an application and then

creating a new and mutated APK.

When analysing the results of testing the mutated applications using the iMPAcT tool, two

problems were found with the iMPAcT tool. One error related with the algorithm used to detect

the loss of information when rotating the screen and the other related with the algorithm used to

explore the applications.

The iMPAcT tool is not capable of detecting errors related with the search widget, even when

its behaviour is similar to a TextView widget that holds information inserted by the user. There was

67

Conclusion and Future Work

one application (Timber) that had an error in the search widget (query was lost when the screen

rotated) that the iMPAcT tool classified as having the orientation pattern correctly implemented.

In other applications (Forkhub, Lightning and NetGuard) the error was inserted by the mutation

operators, and once again the iMPAcT tool did not detect it. Another problem was detected in

the iMPAcT tool, and this one was not related with a specific pattern or mutation operator: some

screens are not reached by the iMPAcT tool even though the screen is reachable within the ap-

plication. No difference was encountered when testing those applications, namely the Network

Monitor application, with different exploration modes. The application Conversations had several

tests in which the iMPAcT tool did not detect the error, and only one in which the tool was able to

detect the error.

Regarding the mutation operators related with the side drawer pattern, those were always de-

tected by the iMPAcT tool. All applications that were tested had the side drawer implemented in

their main activity, which made easier the identification of the existence of a side drawer by the

iMPAcT tool.

5.1 Goal Satisfaction

The main goal of this work was to define a set of mutation operators that were specific to Android

programming and that could be used to assess the effectiveness of the iMPAcT tool in detecting

errors related with the bad implementation of the Android guidelines. This goal was successfully

met, even though it was not possible to define mutation operators related with the resource depen-

dency pattern. The insertion of these mutation operators was also automated to make the process

easier, except the four mutation operators that are related with the orientation pattern.

With those mutation operators it was possible to assess the effectiveness of the iMPAcT tool.

By analysing if the iMPAcT tool was able to detect the insertion of the mutation operators or not,

it was possible to find two problems that are associated with the iMPAcT tool: the tool is not able

to detect errors in the search widget; and the tool is not able to reach all the possible screens of an

application (depends on the size of the application). Because of the last problem some errors that

can be present in an application may never be found by the iMPAcT tool, on the grounds that the

screen in which the error is visible will never be reached during the tests.

5.2 Future work

Some of the mutation operators defined for the orientation pattern were tested against a small

number of applications. In the future more applications should be analysed in order to find more

errors, define other mutation operators for this pattern and to aid the validation of the mutation

operators defined here.

68

Conclusion and Future Work

In this work it was not possible to define any mutation operator related with the resource

dependency pattern (in this case the WiFi resource) because no application was found that had the

pattern incorrectly implemented. More time should be invested in finding applications that have

this pattern implemented incorrectly in order to define the mutation operators for the pattern.

Since the automation of the insertion of the mutation operators is only implemented to two

patterns, it would be beneficial to extend this automation to the orientation pattern and its mutation

operators. The development of a GUI to help the configuration of the tool would also improve it,

since, at the moment, all the configuration is done with the use of hardcoded variables.

69

Conclusion and Future Work

70

References

[ABL05] J H Andrews, L C Briand, and Y Labiche. Is Mutation an Appropriate Tool for Test-
ing Experiments? In Proceedings of the 27th International Conference on Software
Engineering, ICSE ’05, pages 402–411, New York, NY, USA, 2005. ACM.

[AFT11] Domenico Amalfitano, Anna Rita Fasolino, and Porfirio Tramontana. A GUI
crawling-based technique for android mobile application testing. In Proceedings -
4th IEEE International Conference on Software Testing, Verification, and Validation
Workshops, ICSTW 2011, pages 252–261. IEEE, mar 2011.

[And] Android. Handling Configuration Changes | Android Developers.
https://developer.android.com/guide/topics/resources/runtime-changes.html.

[App] AppBrain. Top categories on Google Play. https://www.appbrain.com/stats/android-
market-app-categories.

[App16] AppBrain. Number of available Android applications.
http://www.appbrain.com/stats/number-of-android-apps, 2016.

[BV08] Mabel Vazquez Briseno and Pierre Vincent. Observations on performance of client-
server mobile applications. In Proceedings of the 2008 1st International Conference
on Information Technology, IT 2008, pages 1–4. IEEE, may 2008.

[Cig] Cigniti. Top 10 Mobile Testing Problems and How to Avoid Them - Software Test-
ing Blog. http://www.cigniti.com/blog/top-10-mobile-testing-problems-and-how-to-
avoid-them/.

[Coi17] Inês Coimbra Morgado. Automated Pattern-Based Testing of Mobile Applications.
PhD thesis, 2017.

[CPN14] Pedro Costa, Ana C R Paiva, and Miguel Nabuco. Pattern based GUI testing for mo-
bile applications. In Proceedings - 2014 9th International Conference on the Quality
of Information and Communications Technology, QUATIC 2014, pages 66–74. IEEE,
sep 2014.

[Deva] Android Developers. Activity | Android Developers.
https://developer.android.com/reference/android/app/Activity.html.

[Devb] Android Developers. Android Developers API Guides - The Activity Lifecycle.
https://developer.android.com/guide/components/activities/activity-lifecycle.html.

[Devc] Android Developers. Android Vitals | Android Developers.
https://developer.android.com/topic/performance/vitals/index.html.

71

REFERENCES

[Devd] Android Developers. Creating Swipe Views with Tabs | Android Developers.
http://developer.android.com/intl/es/training/implementing-navigation/lateral.html.

[Deve] Android Developers. DrawerLayout | Android Developers.
https://developer.android.com/reference/android/support/v4/widget/DrawerLayout.html.

[Devf] Android Developers. Kotlin and Android | Android Developers.
https://developer.android.com/kotlin/index.html.

[Devg] Android Developers. ViewGroup.LayoutParams | Android Developers.
https://developer.android.com/reference/android/view/ViewGroup.LayoutParams.html.

[Devh] Android Developers. ViewPager | Android Developers.
https://developer.android.com/reference/android/support/v4/view/ViewPager.html.

[Dev13] Android Developers. Application Fundamentals - Android Develop-
ers, http://developer.android.com/guide/components/fundamentals.html.
https://developer.android.com/guide/components/fundamentals.html, 2013.

[DMAO15] L Deng, N Mirzaei, P Ammann, and J Offutt. Towards mutation analysis of Android
apps. In Software Testing, Verification and Validation Workshops (ICSTW), 2015
IEEE Eighth International Conference on, pages 1–10, 2015.

[DOAM17] Lin Deng, Jeff Offutt, Paul Ammann, and Nariman Mirzaei. Mutation operators for
testing Android apps. Information and Software Technology, 81:154–168, 2017.

[JH09] Yue Jia and Mark Harman. Higher Order Mutation Testing. Information and Software
Technology, 51(10):1379–1393, 2009.

[JH11] Yue Jia and Mark Harman. An Analysis and Survey of the Development of Mutation
Testing. IEEE Trans. Softw. Eng., 37(5):649–678, sep 2011.

[JJI+14] René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and
Gordon Fraser. Are Mutants a Valid Substitute for Real Faults in Software Testing? In
Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2014, pages 654–665, New York, NY, USA, 2014. ACM.

[MDE12] Henry Muccini, Antonio Di Francesco, and Patrizio Esposito. Software Testing of
Mobile Applications: Challenges and Future Research Directions. In Proceedings
of the 7th International Workshop on Automation of Software Test, AST ’12, pages
29–35, Piscataway, NJ, USA, 2012. IEEE Press.

[MEK+12] Sam Malek, Naeem Esfahani, Thabet Kacem, Riyadh Mahmood, Nariman Mirzaei,
and Angelos Stavrou. A framework for automated security testing of android appli-
cations on the cloud. In Proceedings of the 2012 IEEE 6th International Conference
on Software Security and Reliability Companion, SERE-C 2012, pages 35–36. IEEE,
jun 2012.

[MP15] Ines Coimbra Morgado and Ana C R Paiva. The iMPAcT Tool: Testing UI Patterns
on Mobile Applications. pages 876–881, 2015.

[MP16] Inês Coimbra Morgado and Ana C R Paiva. Impact of Execution Modes on Finding
Android Failures. In Procedia Computer Science, volume 83, pages 284–291, 2016.

72

REFERENCES

[MPF] Inês Coimbra Morgado, Ana C R Paiva, and João Pascoal Faria. Automated Pattern-
Based Testing of Mobile Applications.

[ND14] Yi-Shuai Niu and Tao Pham Dinh. Advanced Computational Methods for Knowledge
Engineering. Advances in Intelligent Systems and Computing, 282:37 – 63, 2014.

[Off89] A. Jefferson Offutt. The Coupling Effect: Fact or Fiction. ACM SIGSOFT Software
Engineering Notes, 14(8):131–140, 1989.

[Off92] A. Jefferson Offutt. Investigations of the software testing coupling effect. ACM
Transactions on Software Engineering and Methodology, 1(1):5–20, jan 1992.

[OP94] A Jefferson Offutt and Jie Pan. Using constraints to detect equivalant mutants. PhD
thesis, 1994.

[Ram13] Ravi Ramchandra Nimbalkar. Mobile Application Testing and Challenges. Interna-
tional Journal of Science and Research, 2(7):2319–7064, 2013.

[Sta17] Statista. Number of smartphone users worldwide 2014-2020 | Statista.
https://www.statista.com/statistics/330695/number-of-smartphone-users-
worldwide/, 2017.

[Wei] Yuan Wei. MuDroid: Mutation Testing for Android Apps Undergraduate Final Year
Individual Project. PhD thesis.

[YHJ14] Xiangjuan Yao, Mark Harman, and Yue Jia. A Study of Equivalent and Stubborn
Mutation Operators Using Human Analysis of Equivalence. Proceedings of the 36th
International Conference on Software Engineering, pages 919–930, 2014.

[ZGCU15] Tao Zhang, Jerry Gao, Jing Cheng, and Tadahiro Uehara. Compatibility Testing
Service for Mobile Applications. Service-Oriented System Engineering (SOSE), 2015
IEEE Symposium on, (April):179–186, mar 2015.

[ZSG16] Samer Zein, Norsaremah Salleh, and John Grundy. A systematic mapping study of
mobile application testing techniques. Journal of Systems and Software, 117:334–
356, 2016.

73

REFERENCES

74

Appendix A

Results Initial Tests

This appendix displays the result of testing the original applications with the iMPAcT tool.

A.1 Results all applications

75

Results Initial Tests
Ta

bl
e

A
.1

:I
nt

ia
lt

es
tr

es
ul

ts

A
pp

lic
at

io
n

C
at

eg
or

y
D

ow
nl

oa
ds

R
at

in
g

Vo
te

s
O

ri
en

ta
tio

n
Ta

b
Si

de
D

ra
w

er
W

iF
i

L
ot

tie
L

ib
ra

ri
es

an
d

D
em

o
5

00
0

–
10

00
0

4.
9

16
8

C
or

re
ct

ly
im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

im
pl

em
en

te
d

M
at

er
ia

l
D

i-
al

og
s

L
ib

ra
ry

D
em

o

L
ib

ra
ri

es
an

d
D

em
o

10
00

0
–

50
00

0
4.

8
65

9
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d

O
bs

er
va

bl
e

Sc
ro

llV
ie

w
de

m
o

L
ib

ra
ri

es
an

d
D

em
o

10
00

0
–

50
00

0
4.

7
36

5
C

or
re

ct
ly

im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d

w
al

ls
pl

as
h

|
w

al
lp

ap
er

ap
p

Pe
rs

on
al

iz
at

io
n

50
00

0
–

10
0

00
0

4.
6

15
58

C
or

re
ct

ly
im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

im
pl

em
en

te
d

M
at

er
ia

l
V

ie
w

-
Pa

ge
r

L
ib

ra
ri

es
an

d
D

em
o

5
00

0
–

10
00

0
4.

5
10

9
C

or
re

ct
ly

im
pl

em
en

te
d

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
im

pl
em

en
te

d
R

ec
yc

le
r

V
ie

w
A

ni
m

at
or

s
L

ib
ra

ri
es

an
d

D
em

o
10

00
0

–
50

00
0

4.
5

12
6

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

uC
ro

p
Ph

ot
og

ra
ph

y
10

00
0

–
50

00
0

4.
3

10
2

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

K
-9

M
ai

l
C

om
un

ic
at

io
n

5
00

0
00

0
–

10
00

0
00

0
4.

2
85

40
8

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

im
pl

em
en

te
d

A
dv

an
ce

d
R

ec
yc

le
rV

ie
w

L
ib

ra
ri

es
an

d
D

em
o

10
00

0
–

50
00

0
4.

8
25

4
C

or
re

ct
ly

im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d

w
ill

ia
m

ch
ar

t
L

ib
ra

ri
es

an
d

D
em

o
5

00
0

–
10

00
0

4.
8

19
2

C
or

re
ct

ly
im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

Ti
m

be
r

M
us

ic
an

d
A

u-
di

o
10

0
00

0
–

50
0

00
0

4.
3

26
69

C
or

re
ct

ly
im

pl
em

en
te

d
C

or
re

ct
ly

im
pl

em
en

te
d

C
or

re
ct

ly
im

pl
em

en
te

d
C

or
re

ct
ly

im
pl

em
en

te
d

76

Results Initial Tests

Ta
bl

e
A

.1
(c

on
tin

ue
d)

A
pp

lic
at

io
n

C
at

eg
or

y
D

ow
nl

oa
ds

R
at

in
g

Vo
te

s
O

ri
en

ta
tio

n
Ta

b
Si

de
D

ra
w

er
W

iF
i

C
on

ve
rs

at
io

ns
(J

ab
be

r
/

X
M

PP
)

C
om

un
ic

at
io

n
10

00
0

–
50

00
0

4.
5

79
0

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
C

or
re

ct
ly

im
pl

em
en

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

im
pl

em
en

te
d

Fo
rk

H
ub

fo
r

G
itH

ub
Pr

od
uc

tiv
ity

50
00

0
–

10
0

00
0

4.
4

11
21

C
or

re
ct

ly
im

pl
em

en
te

d
C

or
re

ct
ly

im
pl

em
en

te
d

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
C

or
re

ct
ly

im
pl

em
en

te
d

M
us

ic
D

N
A

M
us

ic
an

d
A

u-
di

o
10

00
0

–
50

00
0

4
14

8
C

or
re

ct
ly

im
pl

em
en

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

im
pl

em
en

te
d

C
or

re
ct

ly
im

pl
em

en
te

d
W

or
dP

re
ss

So
ci

al
5

00
0

00
0

–
10

00
0

00
0

4.
2

95
29

9
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

C
or

re
ct

ly
im

pl
em

en
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
im

pl
em

en
te

d
M

y
D

ia
ry

(u
n-

of
fic

ia
l)

L
if

es
ty

le
50

00
0

–
10

0
00

0
4.

9
27

05
C

or
re

ct
ly

im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
im

pl
em

en
te

d
M

at
er

ia
lis

tic
-

H
ac

ke
r

N
ew

s
W

ith
A

cc
ou

nt

N
ew

s
an

d
M

ag
-

az
in

es
10

00
0

–
50

00
0

4.
7

15
40

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
C

or
re

ct
ly

im
pl

em
en

te
d

L
oo

p
-

A
co

m
-

pa
nh

ad
or

de
H

áb
ito

s

Pr
od

uc
tiv

ity
50

0
00

0
–

1
00

0
00

0
4.

7
74

85
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d

C
on

ne
ct

B
ot

C
om

un
ic

at
io

n
1

00
0

00
0

–
5

00
0

00
0

4.
6

41
83

1
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
im

pl
em

en
te

d
Sl

id
e

fo
rR

ed
di

t
N

ew
s

an
d

M
ag

-
az

in
es

10
0

00
0

–
50

0
00

0
4.

5
48

57
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

C
or

re
ct

ly
im

pl
em

en
te

d
R

ed
R

ea
de

r
N

ew
s

an
d

M
ag

-
az

in
es

50
00

0
–

10
0

00
0

4.
6

20
52

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
C

or
re

ct
ly

im
pl

em
en

te
d

A
nt

ox
C

om
un

ic
at

io
n

10
00

0
–

50
00

0
3.

9
31

8
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

C
or

re
ct

ly
im

pl
em

en
te

d
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

C
or

re
ct

ly
im

pl
em

en
te

d

77

Results Initial Tests
Ta

bl
e

A
.1

(c
on

tin
ue

d)

A
pp

lic
at

io
n

C
at

eg
or

y
D

ow
nl

oa
ds

R
at

in
g

Vo
te

s
O

ri
en

ta
tio

n
Ta

b
Si

de
D

ra
w

er
W

iF
i

M
L

M
an

ag
er

:
A

PK
E

xt
ra

ct
or

To
ol

s
10

00
0

–
50

00
0

4.
6

94
2

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

L
ib

re
To

rr
en

t
V

id
eo

Pl
ay

er
s

10
00

0
–

50
00

0
4.

3
40

1
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
im

pl
em

en
te

d
H

ab
iti

ca
:

G
am

-
if

y
Y

ou
rT

as
ks

Pr
od

uc
tiv

ity
50

0
00

0
–

1
00

0
00

0
4.

3
72

10
C

or
re

ct
ly

im
pl

em
en

te
d

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
im

pl
em

en
te

d
Y

aa
ic

-
IR

C
C

lie
nt

C
om

un
ic

at
io

n
10

0
00

0
–

50
0

00
0

4.
1

18
54

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
im

pl
em

en
te

d
C

or
re

ct
ly

im
pl

em
en

te
d

G
D

G
-

N
ew

s
&

E
ve

nt
s

So
ci

al
10

00
0

–
50

00
0

4.
4

58
6

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

C
or

re
ct

ly
im

pl
em

en
te

d
C

or
re

ct
ly

im
pl

em
en

te
d

Po
la

r
D

as
h-

bo
ar

d
Sa

m
pl

e
(D

em
o)

L
ib

ra
ri

es
an

d
D

em
o

1
00

0
–

5
00

0
4.

9
10

6
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

im
pl

em
en

te
d

C
or

re
ct

ly
im

pl
em

en
te

d

E
ta

r
-

O
pe

n-
So

ur
ce

C
al

en
-

da
r

Pr
od

uc
tiv

ity
5

00
0

–
10

00
0

4.
6

11
9

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
im

pl
em

en
te

d
N

ot
D

et
ec

te
d

O
rg

zl
y:

N
ot

es
&

To
-D

o
L

is
ts

Pr
od

uc
tiv

ity
10

00
0

–
50

00
0

4.
6

69
5

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
C

or
re

ct
ly

im
pl

em
en

te
d

Si
m

pl
e

C
al

en
-

da
r

To
ol

s
10

0
00

0
–

50
0

00
0

4.
4

65
8

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

Pl
um

bl
e

-
M

um
bl

e
V

O
IP

C
om

un
ic

at
io

n
10

00
0

–
50

00
0

4.
5

80
1

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

im
pl

em
en

te
d

O
ne

B
us

A
w

ay
M

ap
s

an
d

N
av

i-
ga

tio
n

50
0

00
0

–
1

00
0

00
0

4.
3

75
83

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

im
pl

em
en

te
d

78

Results Initial Tests

Ta
bl

e
A

.1
(c

on
tin

ue
d)

A
pp

lic
at

io
n

C
at

eg
or

y
D

ow
nl

oa
ds

R
at

in
g

Vo
te

s
O

ri
en

ta
tio

n
Ta

b
Si

de
D

ra
w

er
W

iF
i

w
al

la
ba

g
Pr

od
uc

tiv
ity

10
00

0
–

50
00

0
4.

3
33

1
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

im
pl

em
en

te
d

C
or

re
ct

ly
im

pl
em

en
te

d
B

od
yw

ei
gh

t
Fi

tn
es

s
Pr

o
H

ea
lth

an
d

Fi
t-

ne
ss

1
00

0
–

5
00

0
4.

9
32

9
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
im

pl
em

en
te

d
M

em
en

to
-

B
ir

th
da

ys
&

N
am

ed
ay

s

L
if

es
ty

le
10

00
0

–
50

00
0

4.
5

57
7

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

im
pl

em
en

te
d

20
48

(A
ds

Fr
ee

)
Pu

zz
le

1
00

0
00

0
–

5
00

0
00

0
4.

5
96

66
C

or
re

ct
ly

im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d

G
ob

an
dr

oi
d

G
o

M
at

er
ia

l
B

oa
rd

10
0

00
0

–
50

0
00

0
4.

4
88

9
C

or
re

ct
ly

im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d

Tw
itt

nu
ke

r
fo

r
Tw

itt
er

So
ci

al
10

00
0

–
50

00
0

4
15

93
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

im
pl

em
en

te
d

C
or

re
ct

ly
im

pl
em

en
te

d
Si

m
pl

e
G

al
le

ry
To

ol
s

10
0

00
0

–
50

0
00

0
4.

4
19

54
C

or
re

ct
ly

im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d

C
ri

tic
al

M
ap

s
M

ap
s

an
d

N
av

i-
ga

tio
n

5
00

0
–

10
00

0
4.

8
16

7
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
E

as
y

xk
dc

C
om

ic
s

10
00

0
–

50
00

0
4.

8
41

8
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
im

pl
em

en
te

d
E

qu
at

e
To

ol
s

10
00

0
–

50
00

0
4.

8
17

6
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
FO

SD
E

M
C

om
pa

ni
on

B
oo

ks
an

d
R

ef
-

er
en

ce
5

00
0

–
10

00
0

4.
8

20
4

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

M
H

G
en

D
at

ab
as

e
B

oo
ks

an
d

R
ef

-
er

en
ce

10
0

00
0

–
50

0
00

0
4.

8
34

96
C

or
re

ct
ly

Im
pl

em
en

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d

79

Results Initial Tests
Ta

bl
e

A
.1

(c
on

tin
ue

d)

A
pp

lic
at

io
n

C
at

eg
or

y
D

ow
nl

oa
ds

R
at

in
g

Vo
te

s
O

ri
en

ta
tio

n
Ta

b
Si

de
D

ra
w

er
W

iF
i

B
ew

eg
un

gs
m

el
de

r
Tr

av
el

an
d

L
o-

ca
l

10
00

0
–

50
00

0
4.

7
11

5
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
A

nd
B

ib
le

B
oo

ks
an

d
R

ef
-

er
en

ce
10

0
00

0
–

50
0

00
0

4.
6

53
33

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

A
nt

en
na

Po
d

V
id

eo
Pl

ay
er

s
10

0
00

0
–

50
0

00
0

4.
6

11
93

1
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
C

ID
R

C
al

cu
la

-
to

r
To

ol
s

50
00

0
–

10
0

00
0

4.
6

99
1

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

C
lip

St
ac

k
Pr

od
uc

tiv
ity

10
0

00
0

–
50

0
00

0
4.

6
43

43
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d

D
eb

at
ek

ee
pe

r
To

ol
s

10
00

0
–

50
00

0
4.

6
44

7
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d

Si
m

pl
e

D
ra

w
To

ol
s

10
00

0
–

50
00

0
4.

6
11

1
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d

Fa
st

A
pp

Se
ar

ch
To

ol
To

ol
s

10
00

0
–

50
00

0
4.

6
49

6
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d

H
ub

bl
e

G
al

le
ry

E
du

ca
tio

n
50

00
0

–
10

0
00

0
4.

6
85

2
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d

A
nk

iD
ro

id
E

du
ca

tio
n

1
00

0
00

0
–

5
00

0
00

0
4.

5
28

78
9

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

C
hr

om
a

D
oz

e
M

us
ic

an
d

A
u-

di
o

50
00

0
–

10
0

00
0

4.
5

81
2

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

C
le

m
en

tin
e

R
e-

m
ot

e
M

us
ic

an
d

A
u-

di
o

10
0

00
0

–
50

0
00

0
4.

5
29

24
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d

80

Results Initial Tests

Ta
bl

e
A

.1
(c

on
tin

ue
d)

A
pp

lic
at

io
n

C
at

eg
or

y
D

ow
nl

oa
ds

R
at

in
g

Vo
te

s
O

ri
en

ta
tio

n
Ta

b
Si

de
D

ra
w

er
W

iF
i

C
PU

St
at

s
To

ol
s

10
0

00
0

–
50

0
00

0
4.

5
32

98
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d

D
O

Sw
im

m
er

Pr
od

uc
tiv

ity
10

00
0

–
50

00
0

4.
5

10
84

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

A
m

et
ro

M
ap

s
an

d
N

av
i-

ga
tio

n
10

0
00

0
–

50
0

00
0

4.
4

30
58

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

im
pl

em
en

te
d

B
ub

bl
e

C
om

ic
s

10
00

0
–

50
00

0
4.

4
27

8
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d

C
al

en
da

r
N

ot
i-

fic
at

io
ns

Pr
od

uc
tiv

ity
10

00
0

–
50

00
0

4.
4

15
9

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

Si
m

pl
e

Fl
as

h-
lig

ht
To

ol
s

5
00

0
–

10
00

0
4.

4
18

6
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d

fly
m

N
ew

s
an

d
M

ag
-

az
in

es
10

00
0

–
50

00
0

4.
4

11
16

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

Fr
en

ch
C

al
en

-
da

r
Pe

rs
on

al
iz

at
io

n
5

00
0

–
10

00
0

4.
4

11
7

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

H
ac

ke
rN

ew
s

N
ew

s
an

d
M

ag
-

az
in

es
50

00
0

–
10

0
00

0
4.

4
13

46
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
L

if
eC

ou
nt

er
To

ol
s

10
00

0
–

50
00

0
4.

4
53

9
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d

M
IF

A
R

E
C

la
s-

si
c

To
ol

To
ol

s
10

0
00

0
–

50
0

00
0

4.
4

61
0

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

M
in

im
al

Pr
od

uc
tiv

ity
10

00
0

–
50

00
0

4.
4

69
8

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

im
pl

em
en

te
d

81

Results Initial Tests
Ta

bl
e

A
.1

(c
on

tin
ue

d)

A
pp

lic
at

io
n

C
at

eg
or

y
D

ow
nl

oa
ds

R
at

in
g

Vo
te

s
O

ri
en

ta
tio

n
Ta

b
Si

de
D

ra
w

er
W

iF
i

A
nu

to
T

D
G

am
e

St
ra

te
gy

5
00

0
–

10
00

0
4.

3
12

5
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d

A
R

C
ho

n
Pa

ck
-

ag
er

To
ol

s
10

0
00

0
–

50
0

00
0

4.
3

16
08

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

B
lo

ki
sh

Pu
zz

le
10

0
00

0
–

50
0

00
0

4.
3

20
37

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

D
ro

ir
B

ea
rd

V
id

eo
Pl

ay
er

s
10

00
0

–
50

00
0

4.
3

20
2

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

im
pl

em
en

te
d

Si
m

pl
e

Fi
le

M
an

ag
er

To
ol

s
10

00
0

–
50

00
0

4.
3

22
5

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

G
lu

co
si

o
M

ed
ic

al
5

00
0

–
10

00
0

4.
3

15
7

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

iF
ix

it
B

oo
ks

an
d

R
ef

-
er

en
ce

1
00

0
00

0
–

5
00

0
00

0
4.

3
90

36
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
20

48
Pu

zz
le

1
00

0
00

0
–

5
00

0
00

0
4.

2
55

19
7

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

A
nd

St
at

us
So

ci
al

5
00

0
–

10
00

0
4.

2
10

7
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
C

ad
ro

id
To

ol
s

10
00

0
–

50
00

0
4.

2
18

4
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
C

om
m

on
s

Ph
ot

og
ra

ph
y

5
00

0
–

10
00

0
4.

2
12

0
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
im

pl
em

en
te

d
L

ig
ht

ni
ng

C
om

un
ic

at
io

n
50

0
00

0
–

1
00

0
00

0
4.

2
11

63
4

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

82

Results Initial Tests

Ta
bl

e
A

.1
(c

on
tin

ue
d)

A
pp

lic
at

io
n

C
at

eg
or

y
D

ow
nl

oa
ds

R
at

in
g

Vo
te

s
O

ri
en

ta
tio

n
Ta

b
Si

de
D

ra
w

er
W

iF
i

A
cD

is
pl

ay
Pe

rs
on

al
iz

at
io

n
1

00
0

00
0

–
5

00
0

00
0

4.
1

63
50

2
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
B

an
kD

ro
id

Fi
na

nc
e

10
0

00
0

–
50

0
00

0
4.

1
50

62
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
im

pl
em

en
te

d
Si

m
pl

e
C

am
er

a
To

ol
s

10
00

0
–

50
00

0
4.

1
28

0
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d

C
he

ss
Pu

zz
le

10
0

00
0

–
50

0
00

0
4.

1
36

23
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
im

pl
em

en
te

d
Fi

le
M

an
ag

er
To

ol
s

5
00

0
–

10
00

0
4.

1
14

3
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
G

ap
ps

B
ro

w
se

r
C

om
un

ic
at

io
n

10
00

0
–

50
00

0
4.

1
28

6
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
G

PS
L

og
ge

r
Tr

av
el

an
d

L
o-

ca
l

50
0

00
0

–
1

00
0

00
0

4.
1

39
41

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

iB
ea

co
n

D
et

e-
to

r
To

ol
s

10
00

0
–

50
00

0
4.

1
13

5
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d

L
og

ic
al

D
e-

fe
nc

e
E

du
ca

tio
n

50
00

0
–

10
0

00
0

4.
1

44
7

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

L
uc

id
B

ro
w

se
r

C
om

un
ic

at
io

n
10

00
0

–
50

00
0

4.
1

68
8

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

A
lld

eb
ri

d
A

nd
ro

id
To

ol
s

10
00

0
–

50
00

0
3.

8
19

1
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
B

at
te

ry
Fu

To
ol

s
10

0
00

0
–

50
0

00
0

3.
8

16
10

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

83

Results Initial Tests
Ta

bl
e

A
.1

(c
on

tin
ue

d)

A
pp

lic
at

io
n

C
at

eg
or

y
D

ow
nl

oa
ds

R
at

in
g

Vo
te

s
O

ri
en

ta
tio

n
Ta

b
Si

de
D

ra
w

er
W

iF
i

B
lu

e
M

on
o

So
un

d
To

ol
s

10
0

00
0

–
50

0
00

0
3.

7
42

2
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d

C
yc

le
St

re
et

s
Tr

av
el

an
d

L
o-

ca
l

50
00

0
–

10
0

00
0

3.
7

49
0

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

H
ex

Pu
zz

le
50

00
0

–
10

0
00

0
3.

7
16

36
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
H

os
ts

E
di

to
r

To
ol

s
5

00
0

00
0

–
10

00
0

00
0

3.
7

48
43

7
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d

K
al

ei
do

sc
op

e
E

nt
er

ta
in

m
en

t
10

00
0

–
50

00
0

3.
7

28
9

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

M
is

se
d

N
o-

tifi
ca

tio
ns

R
em

in
de

r

To
ol

s
10

00
0

–
50

00
0

4.
1

14
3

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

M
on

go
E

x-
pl

or
er

To
ol

s
10

00
0

–
50

00
0

4.
2

26
2

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

M
ov

ia
n

R
em

ot
e

V
id

eo
Pl

ay
er

s
1

00
0

–
5

00
0

4.
5

11
1

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

M
T

G
Fa

m
ili

ar
To

ol
s

50
0

00
0

–
1

00
0

00
0

4.
6

10
93

2
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
M

ul
tit

ou
ch

Te
st

To
ol

s
10

00
0

–
50

00
0

4.
3

14
7

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

M
us

ic
Pl

ay
er

To
ol

s
10

00
0

–
50

00
0

4.
3

27
2

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

M
y

E
xp

en
se

s
Fi

na
nc

e
50

0
00

0
–

1
00

0
00

0
4.

4
63

39
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d

84

Results Initial Tests

Ta
bl

e
A

.1
(c

on
tin

ue
d)

A
pp

lic
at

io
n

C
at

eg
or

y
D

ow
nl

oa
ds

R
at

in
g

Vo
te

s
O

ri
en

ta
tio

n
Ta

b
Si

de
D

ra
w

er
W

iF
i

M
yH

ac
ke

rS
pa

ce
To

ol
s

10
00

0
–

50
00

0
4.

3
78

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

N
et

G
ua

rd
To

ol
s

10
0

00
0

–
50

0
00

0
4.

2
46

34
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
N

et
w

or
k

M
on

i-
to

r
To

ol
s

50
00

0
–

10
0

00
0

4.
3

43
2

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

N
oN

on
se

ns
e

N
ot

es
Pr

od
uc

tiv
ity

10
0

00
0

–
50

0
00

0
4.

4
17

97
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
e

C
ry

pt
Pr

od
uc

tiv
ity

5
00

0
–

10
00

0
4.

4
19

1
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d

N
ot

es
To

ol
s

10
00

0
–

50
00

0
4.

5
18

0
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d

N
ot

if
y

Pr
od

uc
tiv

ity
5

00
0

–
10

00
0

4.
1

11
2

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

N
ou

no
ur

s
an

d
Fr

ie
nd

s
E

nt
er

ta
in

m
en

t
10

00
0

–
50

00
0

3.
8

37
1

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

N
um

ix
C

al
cu

la
-

to
r

To
ol

s
50

00
0

–
10

0
00

0
4.

1
19

72
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
O

ct
oD

ro
id

Pr
od

uc
tiv

ity
50

00
0

–
10

0
00

0
4.

5
14

98
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
O

I
Fi

le
M

an
-

ag
er

Pr
od

uc
tiv

ity
5

00
0

00
0

–
10

00
0

00
0

4.
2

52
46

9
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d

O
la

m
B

oo
ks

an
d

R
ef

-
er

en
ce

10
0

00
0

–
50

0
00

0
4.

3
32

34
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d

85

Results Initial Tests
Ta

bl
e

A
.1

(c
on

tin
ue

d)

A
pp

lic
at

io
n

C
at

eg
or

y
D

ow
nl

oa
ds

R
at

in
g

Vo
te

s
O

ri
en

ta
tio

n
Ta

b
Si

de
D

ra
w

er
W

iF
i

O
pe

n
L

in
k

W
ith

To
ol

s
10

00
0

–
50

00
0

4.
5

46
1

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

O
pe

nT
as

ks
Pr

od
uc

tiv
ity

10
0

00
0

–
50

0
00

0
4.

2
14

39
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d

O
SM

tr
ac

ke
r

Tr
av

el
an

d
L

o-
ca

l
10

0
00

0
–

50
0

00
0

4.
3

12
51

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

O
SR

S
H

el
pe

r
To

ol
s

10
00

0
–

50
00

0
4.

5
18

8
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
ow

nC
lo

ud
N

ew
s

N
ew

s
an

d
M

ag
-

az
in

es
1

00
0

–
5

00
0

4.
5

17
7

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

Pa
ss

A
nd

ro
id

Tr
av

el
an

d
L

o-
ca

l
1

00
0

00
0

–
5

00
0

00
0

4.
1

48
85

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

Pa
ss

w
or

dS
to

re
Pr

od
uc

tiv
ity

10
00

0
–

50
00

0
4.

5
24

0
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
pM

et
ro

Tr
av

el
an

d
L

o-
ca

l
10

00
0

–
50

00
0

4.
2

16
4

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

Po
et

A
ss

is
ta

nt
B

oo
ks

an
d

R
ef

-
er

en
ce

50
00

0
–

10
0

00
0

4.
6

47
2

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

Po
rt

A
ut

ho
ri

ty
To

ol
s

50
00

0
–

10
0

00
0

4.
3

30
6

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

Po
rt

K
no

ck
er

To
ol

s
10

00
0

–
50

00
0

4.
6

13
9

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

pO
T-

D
ro

id
So

ci
al

1
00

0
–

5
00

0
5

16
6

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

86

Results Initial Tests

Ta
bl

e
A

.1
(c

on
tin

ue
d)

A
pp

lic
at

io
n

C
at

eg
or

y
D

ow
nl

oa
ds

R
at

in
g

Vo
te

s
O

ri
en

ta
tio

n
Ta

b
Si

de
D

ra
w

er
W

iF
i

pr
im

iti
ve

ft
pd

To
ol

s
5

00
0

–
10

00
0

4.
4

16
0

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

Pr
iv

ac
y

W
ee

k
Sc

he
du

le
B

oo
ks

an
d

R
ef

-
er

en
ce

10
00

0
–

50
00

0
4.

8
31

7
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
qB

itt
or

re
nt

C
lie

nt
Pr

o
To

ol
s

10
0

00
0

–
50

0
00

0
3.

9
81

1
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
Q

R
Sc

an
ne

r
To

ol
s

10
00

0
–

50
00

0
4.

4
10

1
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d

Q
ui

ck
D

ic
e

R
ol

le
r

To
ol

s
10

0
00

0
–

50
0

00
0

4.
2

12
68

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

Q
ui

ck
Ly

ri
cs

M
us

ic
an

d
A

u-
di

o
10

0
00

0
–

50
0

00
0

4.
2

30
14

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

R
as

Pi
C

he
ck

To
ol

s
10

0
00

0
–

50
0

00
0

4.
5

90
4

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

R
ec

ur
re

nc
e

Pr
od

uc
tiv

ity
10

00
0

–
50

00
0

4.
5

73
1

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

R
ed

di
na

to
r

N
ew

s
an

d
M

ag
-

az
in

es
50

00
0

–
10

0
00

0
4.

3
47

6
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
R

F
A

na
ly

ze
r

To
ol

s
10

00
0

–
50

00
0

4.
3

41
3

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

R
G

B
To

ol
To

ol
s

10
00

0
–

50
00

0
4.

3
18

6
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d

R
io

t
C

om
un

ic
at

io
n

10
00

0
–

50
00

0
4.

6
32

2
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d

87

Results Initial Tests
Ta

bl
e

A
.1

(c
on

tin
ue

d)

A
pp

lic
at

io
n

C
at

eg
or

y
D

ow
nl

oa
ds

R
at

in
g

Vo
te

s
O

ri
en

ta
tio

n
Ta

b
Si

de
D

ra
w

er
W

iF
i

S
To

ol
s

+
To

ol
s

10
00

0
–

50
00

0
4.

2
59

9
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d

Se
al

N
ot

e
Pr

od
uc

tiv
ity

50
00

0
–

10
0

00
0

4.
5

20
49

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

Se
cr

et
C

od
es

To
ol

s
10

0
00

0
–

50
0

00
0

4.
1

20
92

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

Sh
ad

er
E

di
to

r
To

ol
s

10
00

0
–

50
00

0
4.

7
37

8
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d

Si
m

pl
e

L
as

t
fm

Sc
ro

bb
le

r
M

us
ic

an
d

A
u-

di
o

50
0

00
0

–
1

00
0

00
0

4.
2

14
89

6
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
Sl

id
e

Pr
od

uc
tiv

ity
1

00
0

–
5

00
0

4.
7

11
0

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

SM
Ss

yn
c

To
ol

s
10

00
0

–
50

00
0

4.
1

15
9

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

Ta
sk

ba
r

To
ol

s
10

0
00

0
–

50
0

00
0

4.
4

15
41

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

Ti
m

er
D

ro
id

To
ol

s
10

00
0

–
50

00
0

3.
9

21
5

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

To
ff

ed
So

ci
al

10
00

0
–

50
00

0
4.

1
86

0
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
Tr

ac
ca

rC
lie

nt
To

ol
s

50
00

0
–

10
0

00
0

4.
5

41
6

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

Tr
ad

ut
or

So
ft

-
ca

ta
la

To
ol

s
10

0
00

0
–

50
0

00
0

4.
3

74
4

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

88

Results Initial Tests

Ta
bl

e
A

.1
(c

on
tin

ue
d)

A
pp

lic
at

io
n

C
at

eg
or

y
D

ow
nl

oa
ds

R
at

in
g

Vo
te

s
O

ri
en

ta
tio

n
Ta

b
Si

de
D

ra
w

er
W

iF
i

Tr
ic

ky
Ti

pp
er

Tr
av

el
an

d
L

o-
ca

l
5

00
0

–
10

00
0

4.
6

12
5

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

T
V

K
ill

To
ol

s
10

00
0

–
50

00
0

4
10

0
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d

U
ni

t
C

on
ve

rt
er

U
lti

m
at

e
To

ol
s

50
0

00
0

–
1

00
0

00
0

4.
5

12
18

9
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
V

lil
le

C
he

ck
er

M
ap

s
an

d
N

av
i-

ga
tio

n
5

00
0

–
10

00
0

4.
7

11
1

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

W
av

eU
p

To
ol

s
10

0
00

0
–

50
0

00
0

4.
5

15
62

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

W
eb

O
pa

c
E

du
ca

tio
n

50
00

0
–

10
0

00
0

4.
3

61
3

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

W
ee

ch
at

A
n-

dr
oi

d
C

om
un

ic
at

io
n

50
00

0
–

10
0

00
0

4.
3

71
8

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

W
i-

FI
Pr

iv
ac

y
Po

lic
e

To
ol

s
50

00
0

–
10

0
00

0
4.

2
11

80
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d

W
iF

i
A

ut
o-

m
at

ic
To

ol
s

1
00

0
00

0
–

5
00

0
00

0
4.

1
90

09
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
W

ifi
W

al
ki

e
Ta

lk
ie

C
om

un
ic

at
io

n
50

00
0

–
10

0
00

0
3.

9
27

0
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
W

iF
iA

na
ly

ze
r

To
ol

s
1

00
0

00
0

–
5

00
0

00
0

4.
4

42
08

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

W
ig

le
W

ifi
W

ar
dr

iv
in

g
FO

SS

To
ol

s
50

0
00

0
–

1
00

0
00

0
4.

2
30

21
N

ot
C

or
re

ct
ly

Im
pl

em
en

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

C
or

re
ct

ly
Im

pl
em

en
te

d

89

Results Initial Tests
Ta

bl
e

A
.1

(c
on

tin
ue

d)

A
pp

lic
at

io
n

C
at

eg
or

y
D

ow
nl

oa
ds

R
at

in
g

Vo
te

s
O

ri
en

ta
tio

n
Ta

b
Si

de
D

ra
w

er
W

iF
i

W
or

dP
ow

er
M

ad
e

E
as

y
E

du
ca

tio
n

10
00

0
–

50
00

0
4

25
4

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
N

ot
D

et
ec

te
d

W
ri

te
ily

Pr
o

Pr
od

uc
tiv

ity
5

00
0

–
10

00
0

4.
3

11
8

N
ot

C
or

re
ct

ly
Im

pl
em

en
te

d
N

ot
D

et
ec

te
d

N
ot

D
et

ec
te

d
C

or
re

ct
ly

Im
pl

em
en

te
d

90

Results Initial Tests

A.2 Results rotation allowed

In Table A.2 distinguishes the applications that have the orientation pattern correctly implemented

and that allow rotation from the applications that have the orientation pattern correctly imple-

mented but do not allow rotation. If the application does not allow rotation then it will not have

any of the problems associated with the changing of orientation because they only allow or the

portrait or the landscape mode.

Table A.2: Applications with orientation pattern correctly implemented: rotation allowed or not

Allows rotation Does not allow rotation

ObservableScrollView demo Lottie

wallsplash | wallpaper app williamchart

MaterialViewPager MusicDNA

Advanced RecyclerView My Diary(unofficial)

williamchart Habitica: Gamify Your Tasks

Timber 2048 (Ads Free)

ForkHub for GitHub Gobandroid Go Material

Simple Gallery Critical Maps

Bewegungsmelder MHGen Database

CIDR Calculator Simple Flashlight

Hubble Gallery ARChon Packager

AnkiDroid 2048

Chroma Doze Simple Camera

Calendar Notifications Hex

Simple Flashlight Mongo Explorer

Hacker News Movian Remote

MIFARE Classic Tool Note Crypt

Anuto TD Olam

Blokish RGB Tool

Simple File Manager TV Kill

AndStatus Wifi Walkie Talkie

Cadroid

Lightning

iBeacon Detetor

91

Results Initial Tests

Table A.2 (continued)

Allows rotation Does not allow rotation

Lucid Browser

BatteryFu

Kaleidoscope

Mongo Explorer

Multitouch Test

NetGuard

Network Monitor

NoNonsense Notes

Notes

Open Link With

QR Scanner

RasPi Check

Recurrence

Reddinator

S Tools +

Secret Codes

Traccar Client

Vlille Checker

Weechat Android

WiFiAnalyzer

WordPower Made Easy

92

Appendix B

Results Mutants

B.1 Orientation

Table B.1 displays the reason for the exclusion from the case study of each application that had

the orientation pattern correctly implemented and that allowed the screen rotation. Figure B.1

presents an example of the interface of a game application (Blokish), which made it impossible to

use the application in the case study.

Figure B.1: Example of a game interface,
Blokish application

Figure B.2: Example of a simple interface,
Simple Flashlight application

The mutant 1 was only inserted into three applications. Each application was tested three

93

Results Mutants

Table B.1: Orientation Pattern: Excluded applications

Application Reason for exclusion
ObservableScrollView demo There is nothing to test in this application
wallsplash | wallpaper app There is nothing to test in this application

MaterialViewPager There is nothing to test in this application
Advanced RecyclerView There is nothing to test in this application

williamchart There is nothing to test in this application
Timber There is nothing to test in this application. Has an error in the

search widget, that is not detected by the iMPAcT tool
Simple Gallery Uses kotlin
Hubble Gallery There is nothing to test in this application
Chroma Doze There is nothing to test in this application

Calendar Notifications Uses kotlin
Simple Flashlight There is nothing to test in this application

Hacker News There is nothing to test in this application
Anuto TD It is a game, only one screen. Nothing to test
Blokish It is a game, only one screen. Nothing to test

Simple File Manager There is nothing to test in this application
AndStatus There is nothing to test in this application

iBeacon Detetor There is nothing to test in this application
Lucid Browser Screen that contains information in which the mutants could be

inserted, is not reachable because the settings menu is hidden
BatteryFu There is nothing to test in this application

Kaleidoscope There is nothing to test in this application
Mongo Explorer There is nothing to test in this application, needed connection to

mongo server to explore further
Multitouch Test There is nothing to test in this application

Notes Uses kotlin
Open Link With There is nothing to test in this application

QR Scanner There is nothing to test in this application
S Tools + There is nothing to test in this application

Secret Codes There is nothing to test in this application
Traccar Client It is an hidden application
Vlille Checker Application contained an error in the settings menu, that was not

previously detected by the iMPAcT tool
WiFiAnalyzer There is nothing to test in this application

WordPower Made Easy There is nothing to test in this application

94

Results Mutants

times, using two different exploration modes of the iMPAcT tool ("priority to not executed" and

"all events"). The errors were detected in every test as is shown in Table B.2.

Table B.2: Orientation Mutant 1: extended results

Mutant 1

Application "priority to not executed" "all events" "all events"
AnkiDroid YES YES YES

Network Monitor YES YES YES

NoNonsense Notes YES YES YES

The mutant 2 was only inserted into ten applications. Each application was tested three times,

using two different exploration modes of the iMPAcT tool ("priority to not executed" and "all

events"). The iMPAcT tool was not able to detect the error in the Network Monitor application,

because it never reached the screen in which the mutant was inserted. Even when using the explo-

ration mode of "all events", the error was not detected.

Table B.3: Orientation Mutant 2: extended results

Mutant 2

Application "priority to not executed" "all events" "all events"
ForkHub for GitHub YES YES YES

CIDR Calculator YES YES YES

AnkiDroid YES YES YES

MIFARE Classic Tool YES YES YES

Cadroid YES YES YES

Lightning YES YES YES

Network Monitor NO 3 NO 3 NO 3

NoNonsense Notes YES YES YES

RasPi Check YES YES YES

Weechat Android YES YES YES

The mutant 3 was only inserted into two applications. Each application was tested three times,

using two different exploration modes of the iMPAcT tool ("priority to not executed" and "all

events"). The errors were detected in every test as is shown in Table B.4.

95

Results Mutants

Table B.4: Orientation Mutant 3: extended results

Mutant 3

Application "priority to not executed" "all events" "all events"
CIDR Calculator YES YES YES

RasPi Check YES YES YES

The mutant 4 was inserted into eight applications. Each application was tested three times,

using two different exploration modes of the iMPAcT tool ("priority to not executed" and "all

events"). The iMPAcT tool was not able to detect all the errors, in some applications the tool

detected the disappearance of popups but it did not detect any of the errors that were inserted in

the search widget. This happened in two applications: Lightning and NetGuard. In the ForkHub

application there was no errors related with popup only with the search widget and the iMPAcT

tool did not detect them.

Table B.5: Orientation Mutant 4: extended results

Mutant 4

Application "priority to not executed" "all events" "all events"
ForkHub for GitHub NO 1 NO 1 NO 1

AnkiDroid YES YES YES

Bewegungsmelder YES YES YES

MIFARE Classic Tool YES YES YES

Lightning NO1/YES 2 NO1/YES 2 NO1/YES 2

NetGuard NO1/YES 2 NO1/YES 2 NO1/YES 2

Recurrence YES YES YES

Reddinator YES YES YES

B.2 Tab

Table B.9 shows the results of testing each application after the insertion of the mutants. In all the

applications, with the exception of the Conversations application, the iMPAcT tool was able to

detect the insertion of the mutants. When testing the Conversations application the iMPAcT tool

had difficulties in detecting the error, only detected the error in one test. This happened because

the iMPAcT tool did not reach the screen with the mutation in most tests, making it impossible to

detect the error. In the test that it did reach the desired screen, the iMPAcT tool was able to detect

the error.

96

Results Mutants

Table B.6: Tab Pattern: Mutants results

Tests

Application "priority to not executed" "all events" "all events"
Timber Yes Yes Yes

Conversations (Jabber / XMPP) No Yes No

WordPress Yes Yes Yes

FOSDEM Companion Yes Yes Yes

MHGen Database Yes Yes Yes

OctoDroid Yes Yes Yes

Open Tasks Yes Yes Yes

Poet Assistant Yes Yes Yes

Forkhub Yes Yes Yes

Since theiMPAcT tool was having difficulties in detecting the mutation operator inserted in

the application Conversations, more tests were executed against this application, and this time the

four possible configurations were used at least once. Only one test was able to detect the error, the

others did not reach the desired screen.

Table B.7: Conversation application: Mutants extended results

Configuration used Error detected
"priority to not executed and list items" No

"priority to not executed" No

"execute once" No

"all events" No

"priority to not executed" No

"execute once" No

"all events" No

"priority to not executed" No

"execute once" No

"all events" Yes

B.3 Side Drawer

The mutant 1 was applied to twenty-one applications. Each application was tested three times

using two different exploration modes of the iMPAcT tool ("priority to not executed" and "all

97

Results Mutants

events"). The errors were detected in every test as is shown in Table B.8.

Table B.8: Side Drawer Mutant 1: extended results

Mutant 1

Application "priority to not executed" "all events" "all events"
Timber YES YES YES

MusicDNA YES YES YES

Yaaic - IRC Client YES YES YES

GDG - News and Events YES YES YES

Polar Dashboard Sample YES YES YES

Etar - OpenSource Calendar YES YES YES

wallabag YES YES YES

Twittnuker for Twitter YES YES YES

Equate YES YES YES

FOSDEM Companion YES YES YES

AnkiDroid YES YES YES

Lightning YES YES YES

OctoDroid YES YES YES

QR Scanner YES YES YES

Quick Lyrics YES YES YES

Riot YES YES YES

SMSsync YES YES YES

Toffed YES YES YES

Unit Converter Ultimate YES YES YES

Web Opac YES YES YES

WiFiAnalyzer YES YES YES

The mutant 2b was only applied to seventeen applications. Each application was tested three

times using two different exploration modes of the iMPAcT tool ("priority to not executed" and

"all events"). The errors were detected in every test as is shown in Table B.9.

98

Results Mutants

Table B.9: Side Drawer Mutant 2b: extended results

Mutant 2b

Application "priority to not executed" "all events" "all events"
Timber YES YES YES

MusicDNA YES YES YES

GDG - News and Events YES YES YES

Polar Dashboard Sample YES YES YES

Etar - OpenSource Calendar YES YES YES

wallabag YES YES YES

Twittnuker for Twitter YES YES YES

Equate YES YES YES

AnkiDroid YES YES YES

OctoDroid YES YES YES

QR Scanner YES YES YES

Riot YES YES YES

SMSsync YES YES YES

Toffed YES YES YES

Unit Converter Ultimate YES YES YES

Web Opac YES YES YES

WiFiAnalyzer YES YES YES

The mutant 2a was only applied to seventeen applications. Each application was tested three

times using two different exploration modes of the iMPAcT tool ("priority to not executed" and

"all events"). The errors were detected in every test as is shown in Table B.10.

99

Results Mutants

Table B.10: Side Drawer Mutant 2a: extended results

Mutant 2a

Application "priority to not executed" "all events" "all events"
Timber YES YES YES

MusicDNA YES YES YES

GDG - News and Events YES YES YES

Polar Dashboard Sample YES YES YES

Etar - OpenSource Calendar YES YES YES

wallabag YES YES YES

Twittnuker for Twitter YES YES YES

Equate YES YES YES

AnkiDroid YES YES YES

OctoDroid YES YES YES

QR Scanner YES YES YES

Riot YES YES YES

SMSsync YES YES YES

Toffed YES YES YES

Unit Converter Ultimate YES YES YES

Web Opac YES YES YES

WiFiAnalyzer YES YES YES

The mutant 3b was only applied to four applications. Each application was tested three times

using two different exploration modes of the iMPAcT tool ("priority to not executed" and "all

events"). The errors were detected in every test as is shown in Table B.11.

Table B.11: Side Drawer Mutant 3b: extended results

Mutant 3b

Application "priority to not executed" "all events" "all events"
Yaaic - IRC Client YES YES YES

FOSDEM Companion YES YES YES

Lightning YES YES YES

Quick Lyrics YES YES YES

The mutant 3a was only applied to four applications. Each application was tested three times

using two different exploration modes of the iMPAcT tool ("priority to not executed" and "all

100

Results Mutants

events"). The errors were detected in every test as is shown in Table B.12.

Table B.12: Side Drawer Mutant 3a: extended results

Mutant 3a

Application "priority to not executed" "all events" "all events"
Yaaic - IRC Client YES YES YES

FOSDEM Companion YES YES YES

Lightning YES YES YES

Quick Lyrics YES YES YES

101

Results Mutants

102

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation and Goals
	1.3 Structure of the document

	2 State of the Art
	2.1 Testing Mobile Applications
	2.1.1 Problems

	2.2 Android Programming
	2.3 iMPAcT tool
	2.4 Mutation Testing
	2.4.1 Problems

	2.5 Mutation Testing on Android
	2.5.1 Mutation Operators
	2.5.2 Problems of mutation testing on Android
	2.5.3 Existing Tools

	2.6 Conclusions

	3 iMPAcT Tool – Mutation Testing
	3.1 Selection of Android Applications
	3.1.1 Compiling the Applications

	3.2 Tests
	3.2.1 Orientation
	3.2.2 Tab
	3.2.3 Side Drawer
	3.2.4 Resource Dependency

	3.3 Mutant definition
	3.3.1 Orientation
	3.3.2 Tab
	3.3.3 Side Drawer
	3.3.4 Resource Dependency

	3.4 Automation
	3.4.1 Tab
	3.4.2 Side Drawer
	3.4.3 Limitations

	3.5 Conclusion

	4 Case study
	4.1 Orientation
	4.1.1 iMPAcT tool results

	4.2 Tab
	4.2.1 iMPAcT tool results

	4.3 Side Drawer
	4.3.1 iMPAcT tool results

	4.4 Conclusion

	5 Conclusion and Future Work
	5.1 Goal Satisfaction
	5.2 Future work

	References
	A Results Initial Tests
	A.1 Results all applications
	A.2 Results rotation allowed

	B Results Mutants
	B.1 Orientation
	B.2 Tab
	B.3 Side Drawer

