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 I 

SUMMARY 
 

Kinetochores bind spindle microtubules and also act as signaling centers 

that monitor this interaction. Defects in kinetochore assembly lead to 

chromosome missegregation and aneuploidy. The interaction between 

microtubules and chromosomes involves a conserved super-complex of 

proteins, known as the KNL1Mis12Ndc80 (KMN) network, composed by the 

KNL1 (Spc105), Mis12, and Ndc80 complexes. Previous studies indicate that 

this network is necessary for kinetochore-microtubule attachment and 

recruitment of different kinetochore proteins, playing essential functions in 

chromosome movement, congression, biorientation, and segregation. 

Previous results had shown that CENP-E promotes kinetochore-microtubule 

instability, suggesting a role in the correction mechanism that monitors 

microtubule attachment. In the first experimental chapter of this thesis we 

address the role of CENP-E and Aurora B kinase activities and how they 

cooperate to promote efficient chromosome biorientation. Our results, 

obtained in HeLa cells, do not support a model in which CENP-E regulates 

Aurora B kinase activity. However, they strongly suggest that Aurora B kinase 

destabilizes spindle pole proximal kinetochore-microtubule interactions 

keeping the SAC active to allow CENP-E-mediated congression of 

monoriented chromosomes. 

In the second chapter we investigate the dynamics during cell cycle of the 

Drosophila Mis12 kinetochore complex. We show that Mis12 is not a 

constitutive protein of the kinetochore since it fails to localize at the nucleus in 

a population of interphase cells indicating that is probably loaded either during 

the G1/S or the S/G2 transition. Moreover, our FRAP analysis showed no 

significant differences in Mis12 dynamics between interphase and mitosis, 

with identical mobile and immobile fractions and a high turnover of the protein 

levels in both phases. 

Finally, in the third chapter we performed a detailed study addressing the 

role of the different KMN network components in microtubule attachment, 

chromosome movement and SAC signaling during mitosis. We use dsRNAi 

and in vitro and in vivo fluorescence microscopy in Drosophila S2 cells 
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allowing us to suggest that different KMN network components perform 

different roles in microtubule attachment and chromosome segregation. 

Depletion of different components results in mostly lateral kinetochore-

microtubule attachments that are relatively stable revealing that Spc105 can 

sustain these interactions. In vivo analysis shows that lateral kinetochore-

microtubule interactions in Mis12 and Ndc80 depleted cells are still functional 

allowing poleward kinetochore movement. We also find that different KMN 

network components affect differently the localization of spindle assembly 

checkpoint proteins. Taken together, our results suggest that Mis12 and 

Ndc80 complexes help to properly orient microtubule attachment, whereas 

Spc105 plays a predominant role in the kinetochore-microtubule attachment 

as well as in the poleward movement of chromosomes and cell viability. 

Together, the work presented in this thesis through the study of specific 

network of kinetochore components provides further insights in the regulation 

of kinetochore-microtubule attachment, chromosome congression and 

segregation. 
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RESUMO 
 

Os cinetocóros ligam-se aos microtúbulos do fuso mitótico funcionando 

igualmente como centros de sinalização que monitorizam essa interação. 

Problemas na construção do cinetocóro resulta na mal-segregação 

cromossómica e aneuploidia. A interação entre microtúbulos e cromossomas 

envolve um grupo conservado de proteínas designado por complexo 

KNL1Mis12Ndc80 (KMN). Este conjunto inclui a proteína KNL1 (Spc105), um 

conjunto de proteínas designado por complexo Mis12 e ainda outro conjunto 

de proteínas designado por complexo Ndc80. Estudos anteriores sugerem 

que este grupo de proteínas seja necessário quer para a ligação entre 

cinetocóros-microtúbulos bem como para o recrutamento de diversas 

proteínas cinetocorianas. Foi igualmente demonstrado que CENP-E, a 

proteína motora dos microtúbulos promove a instabilidade cinetocóro-

microtúbulo, sugerindo um papel no mecanismo de correção que 

supervisiona a ligação dos microtúbulos aos cinetocóros. No primeiro capítulo 

do trabalho experimental desta tese, estudou-se o papel da actividade 

cinásica das proteínas CENP-E e Aurora B e como é que cooperam para 

promover uma eficiente biorientação cromossómica. Os resultados em 

células Hela por nós obtidos não suportam a teoria em que a proteína CENP-

E regula a actividade cinásica da proteína Aurora B. Contudo, os nossos 

resultados sugerem que a atividade cinásica da proteína Aurora B destabilize 

as interações entre cinetocóros e microtúbulos nos polos do fuso mitótico, 

mantendo o ponto de controlo do fuso mitótico (SAC) ativo e permitindo deste 

modo que a proteína CENP-E promova a congressão dos cromossomas 

monorientados.  

Na segundo capítulo do trabalho experimental estudou-se a dinâmica da 

proteína Mis12 durante o ciclo celular. Os nossos resultados mostram que a 

proteína Mis12 não é constitutiva nos cinetocóros; uma vez que não se 

encontra presente no núcleo de uma parte da população de células 

interfásicas. Esta deslocalização da proteína sugere um recrutamento da 

mesma para os cinetócoros durante a transição entre as fases G1/S ou S/G2. 

A análise da dinâmica da proteína por FRAP não revelou diferenças 
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significativas entre interfase e mitose, com idênticas frações móveis e imóveis 

e uma elevada rotação dos níveis da proteína em ambas as fases. 

Por último, na terceiro capítulo do trabalho experimental, realizou-se um 

estudo detalhado sobre o papel das diferentes proteínas do complexo KMN 

durante a mitose, recorrendo ao uso de ARNi e microscopia de fluorescência 

in vitro e in vivo. Os nossos resultados sugerem que as diferentes proteínas 

que constituem o complexo proteico KMN desempenhem diferentes funções 

na ligação cinetocóros-microtúbulos e segregação cromossómica. A depleção 

das diferentes proteínas do complexo resulta maioritariamente em ligações 

laterais entre cinetocóros e microtúbulos. Estas ligações demostraram ser 

relativamente estáveis, com exceção para a proteína Spc105 que parece ser 

a responsável por a manutenção das mesmas. A análise in vivo revelou que 

as ligações laterais entre cinetocóro e microtúbulos nas células sem as 

proteínas Mis12 e Ndc80 são funcionais permitindo o movimento dos 

cinetocóros em direção aos polos. Os nossos dados mostraram-nos ainda 

que as diferentes proteínas do complexo KMN influenciam de modo distinto a 

localização das proteínas envolvidas no ponto de controlo do fuso mitótico. A 

integração destes resultados sugere-nos que os complexos proteicos Mis12 e 

Ndc80 ajudem a orientar corretamente a ligação dos microtúbulos aos 

cinetocóros. Por sua vez a proteína Spc105 assume um papel mais 

importante na ligação propriamente dita entre cinetocóro-microtúbulos bem 

como no movimento dos cromossomas em direção aos polos e na viabilidade 

celular. 

Concluindo, o trabalho apresentado nesta tese, através do estudo de um 

complexo específico de proteínas abriu novas perspectivas na compreensão 

da regulação da ligação cinetocóro-microtúbulo, congressão e segregação 

cromossómica. 
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1. CELL CYCLE 
1.1 OVERVIEW 

 

In 1665, Robert Hooke took the first step towards the understanding of cell 

cycle; by visualizing at the microscope the honeycomb-like structure of cork 

that he termed as cells (Hooke, 1665). However only 200 years after, the cell 

was proposed to be the basic unit of all living organisms (Schwann, 1847). 

The first descriptions of the cell cycle were in 1880, when Walther Flemming 

described his observations in salamander cells. He identified a stainable 

material in the nucleus (chromatin) that during cell division suffered evident 

changes. These structures could undergo metamorphosis into threads (later 

called chromosomes) by shortening and thickening. More importantly, he 

described accurately the process of nuclear division where half of each 

chromosomes went to opposite directions of the dividing cell giving rise to two 

identical daughter nucleus. The threads became undistinguishable again 

resulting in two cells equal to the mother cell. He entitled this process mitosis 

(from the Greek word for thread) (reedited in Flemming, 1965). The essential 

features of cell cycle are conserved across species. This complex process 

has to be tightly regulated to ensure the fidelity of transmission of the genetic 

information. The cell cycle of eukaryotic organisms is divided in two major 

phases: interphase, the longest, in which cell duplicates its contents and 

grows and a shorter phase, M-phase, in which nuclear division takes place 

(mitosis) and two identical daughter cells are formed (cytokinesis) (Fig. 1). 

 

1.2 INTERPHASE 
 

Interphase is the period between the end of one M-phase and the 

beginning of the next and can be subdivided in three different stages. In the 

beginning of Synthesis phase (S phase), chromosomes start with a single 

chromatid and after DNA replication they end up with two sister chromatids. It 

is also during this phase that centrosomes, specialized structures associated 

with the nucleation of microtubules, are duplicated; but remain together until 

the beginning of mitosis. G1 and G2 are the two gap phases, where G1, 
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occurs before S phase and is particularly important since it is at this point that 

the cells become committed to either continue to divide or exit from cell cycle. 

When cells exit from cell cycle we say that enter G0, this situation may occur 

due to adverse growth conditions or inhibitory signal from other cells. G2 

takes place before M phase (Fig. 1). The Gap phases are very important 

since they provide additional time for cell to grow and to prepare for a new 

round of nuclear division (reviewed in Morgan, 2007). 

 

 

Figure 1. Schematic representation of eukaryotic cell cycle. There are two 
major phases, Interphase (blue) and M-phase (red). During interphase there are 
two GAP-phases G1 and G2, during which the cell grows by synthesizing 
components required for DNA synthesis or preparing for mitosis. During G1 
cell can exit cell cycle (G0), if the cell continues to divide it has to replicate 
DNA and continues to the next phase S phase. After DNA replication the cell 
enter in G2 and the cell ultimately prepares for mitosis. During M-phase cell 
equally segregated the genetic content into two new identical daughter cells. 
(Adapted from http://cyberbridge.mcb.harvard.edu). 

 

1.3 MITOSIS 
 

Mitosis is a highly regulated process of eukaryotic cell division and is 

responsible for the distribution of the duplicated genome into two genetically 

identical daughter cells. During mitosis, the nuclear contents and the cell itself 

suffers a major structural transformation, based on these changes, mitosis 
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can be divided in five different stages: Prophase, Prometaphase, Metaphase, 

Anaphase and Telophase (Fig. 2).  
 

 

Figure 2. Schematic representation of mitosis and cytokinesis in a vertebrate 
cell. Mitosis starts at Prophase, DNA start to condense into well-defined 
chromosomes and the duplicate centrosomes migrate the opposite poles of 
the cell. After nuclear envelope breakdown (NEBD) the microtubules nucleated 
from centrosomes invade the nuclear space defining the beginning of 
Prometaphase. This phase is characterized by formation of mitotic spindle and 
capture of chromosomes by microtubules through out specialized structures 
built on chromosomes, the kinetochores. The mitotic spindle promotes the 
alignment of chromosomes at the equatorial plane of the cell and the cell is 
said to be in Metaphase. At Anaphase, the cohesin that holds sister 
chromatids together is degraded and they move to opposite poles of the cell. 
Mitosis is completed in Telophase, when the chromosomes decondense and 
the nuclear envelope re-forms around each group of daughter chromosomes. 
At same time, the cytoplasm is divided to give rise to two independent 
daughter cells by a process called Cytokinesis. (Adapted from Rath and 
Kozielski, 2012). 

 

Prophase is characterized by the condensation of DNA into well 

individualized chromosomes, followed by separation of centrosomes, the 

major microtubule-organizing center (MTOC), that start to move to the 

opposite poles of the cell and begin to assemble the mitotic spindle. 

Prometaphase starts upon nuclear envelope breakdown (NEBD). 

Nuclear Envelope 
BreakDown (NEBD) 
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Microtubules invade the nuclear space and start to interact with chromosomes 

through a specialized structure that is assembled over the centromeric DNA, 

the kinetochore, also during this stage the mitotic spindle becomes fully 

organized. The kinetochore is responsible for the attachment of chromosomes 

to microtubules and also to recruit proteins that will monitor and correct 

erroneous attachments (Fig. 2). Eventually, chromosomes congress to the 

equatorial plane of the cell, align to form the metaphase plate and become 

bioriented so that each sister kinetochore is attached to microtubules 

emanating from opposite spindle poles. At this point the cell is in metaphase 

(Fig. 2). Anaphase starts with the degradation of cohesin, the structure that 

holds sister chromatids together, and subsequent movement of chromatis to 

the opposite poles of the spindle. Later due to spindle elongation, the poles 

move further apart. Finally, during telophase, the nuclear envelope reforms 

around each set of chromosomes. Concomitantly, the second stage of M-

phase takes place, cytokinesis (Fig. 2). This phase consists in separation of 

the cell cytoplasm resulting in two genetically identical daughter cells 

(reviewed in Morgan, 2007). 

 

1.4 CELL CYCLE CONTROL SYSTEM 
 

To guarantee that all the events during the cell cycle occur properly and in 

the correct order, progression through cell cycle is tightly monitored and 

regulated. Errors during cell cycle can lead to cell death or cells can overpass 

these errors, accumulate genetic alterations leading to cell transformation and 

cancer. The cell monitors events mostly at three regulatory checkpoints: G1/S 

transition, G2/M transition and third the metaphase-to-anaphase transition. 

Once initiated, these transitions are irreversible, since that the proteins 

responsible for triggering them are degraded, making cell cycle progression 

unidirectional (King et al., 1996). 
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1.4.1 Cell cycle regulation 
 

The central elements of the cell-cycle control system are a family of 

enzymes called cyclin-dependent kinases (Cdks). The level of the catalytic 

subunit of the enzymes is constant throughout cell cycle, however their 

activity oscillates triggering the initiation of cell cycle events. In order to be 

activated, Cdks have to bind to regulatory cell cycle specific Cyclins that are 

synthetized and degraded at different cell-cycle stages. Additionally, to be 

fully activated Cdks have to be phosphorylated at a threonine residue within 

the T-loop adjacent to the kinase active site. The enzymes responsible for this 

activation are known as Cdks-activating kinases (CAKs). Moreover, Cdk 

function can be negatively regulated by Wee1 phosphorylation at a T or Y 

residue within the ATP-biding site or desphosphorylated by Cdc25. As a result 

of these combined regulatory events, different Cyclins/Cdks complexes are 

formed at different cell-cycle stages. For example, in vertebrate cells, Cyclin D 

is essential for the cell to enter cell cycle and can be found associated to 

either Cdk4 or 6 kinases, in G1. Cyclin E is crucial for the initiation of DNA 

replication, forms a complex with Cdk2 in late G1 and falls during early S 

phase (Fig. 3).  

 

 

Figure 3. Cdk/Cyclin complexes during cell cycle. Cyclin D and E are present 
and responsible for several events during interphase. Cyclin A /Cdk2 complex 
starts to act during S phase and is involved in DNA replication and early 

!"# $# !%# &'(# &'()*+,# )*+,# ,-,# +*.(#

Mitosis 

Cyclin D/Cdk4-6 

Cyclin E/Cdk2 

Cyclin A/Cdk2 

Cyclin B/Cdk1 
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mitotic events. Cyclin B is the pivotal mitotic regulator, since its presence is 
essential for mitotic entry and exit. 

 

Cyclin A plays distinct roles during cell cycle, starts to be synthesized in 

early S phase and remains high until the protein is degraded soon after 

NEBD, Cyclin A-Cdk2 complexes stimulate DNA replication and help to 

promote early mitotic events. Finally, Cyclin B levels start to rise during G2 

and its association with Cdk1 increases dramatically during prophase. Cyclin 

B-Cdk1 is involved in the major mitotic events, centrosome separation, NEBD, 

and spindle formation, as well as mitotic exit that only happen after Cyclin B 

degradation (Fig. 3) (reviewed in Morgan, 2007). 

Cell cycle progression depends as much on Cyclin degradation as on 

Cyclin synthesis. Cyclin degradation occurs via two distinct pathways: the 

SCF (Skp1/Cullin/F-box protein) and the Anaphase-Promoting 

Complex/Cyclosome (APC/C). Both proteolytic pathways rely on addition of 

ubiquitin-polymeric chains to specific cell cycle regulators, as are the cyclins. 

This ubiquitynilation is sufficient to target them to proteolysis by a protease 

complex the 26S proteasome. The SCF complex activity seems to be present 

during different stages of cell cycle, since its controls S phase and mitotic 

entry. The APC/C is essentially working in mitosis and is responsible for the 

degradation of cohesion between sister chromatids but it is also present in G1 

where it keeps Cdk activity levels down allowing the reset of the cell cycle 

machinery (reviewed in Teixeira and Reed, 2013). 

 

1.4.2. Cell Cycle Checkpoints 
 
A true checkpoint must fulfill two different requirements; monitoring the 

process being tested and then transmitting an inhibitory signal to stop 

subsequent processes in case the previous events have not been completed 

successfully (Cooper, 2006).The goal of any checkpoint control is to prevent 

genetic alterations or situations that compromise cell survival (reviewed in 

Nojima, 1997). There are three major cell cycle checkpoints: Restriction point 

(R or G1-phase checkpoint), the DNA damage checkpoint and the third major 
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checkpoint, which monitors the metaphase-to-anaphase transition known as 

Spindle Assembly Checkpoint (SAC). 

 

1.4.2.1 R- G1 phase and DNA damage checkpoints 
 
When all the conditions are right for cell proliferation, G1/S cyclin-Cdk 

complexes are activated. After overcoming the restriction point the cell is 

committed to undergo a complete round of the cell cycle. However, if during 

G1, conditions are not right then, the G1-checkpoint is activated and the cell 

remains arrested in G1 (reviewed in Cooper, 2006). 

However, DNA damage is monitored all through G1, S and G2 allowing the 

cells to stop at the G1/S transition or at G2/M transition. The DNA damage 

checkpoints facilitate repair or induce programmed cell death in the presence 

of irreversible DNA damage. p53 plays an active role during G1 and S since 

after DNA damage p53 is phosphorylated and activates the transcription of 

genes necessary for genotoxic stress response. However, the DNA damage 

can also occur during G2 and in this case the cell is prevented from entering 

mitosis. This mechanism is p53 independent and is though to be regulated 

through Cdk1-Cyclin B inhibition (reviewed in Niida and Nakanishi, 2006). 

ATM (Ataxia telangiectasia mutated) activates the kinases Chk1 and Chk2, 

which in turn inactivates Cdc25 preventing the cell to enter mitosis by 

upregulating Wee1 and Myt1 kinases. All these events have a final outcome, 

the inhibition of Cyclin B /Cdk1. 

 

1.4.2.2 Spindle Assembly Checkpoint (SAC) 
 

There is an additional checkpoint during cell cycle and it can be activated 

during mitosis. The spindle assembly checkpoint (SAC) monitors the defects 

in kinetochore-spindle-microtubule attachments and stops cell-cycle 

progression until all chromosomes are bioriented and properly attached to the 

spindle. The genes involved in this surveillance mechanism were identified for 

the first time in a screen performed in budding yeast where mutants were not 

able to arrest during mitosis in the presence of spindle poisons. The genes 
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identified in these screens are also conserved in eukaryotes and included the 

MAD (mitotic-arrest deficient) genes MAD1, MAD2 and MAD3 (BubR1 in 

humans), the Bub (budding uninhibited by benzimidazole) gene Bub1 and 

Bub3 (Hoyt et al., 1991; Li and Murray, 1991). SAC proteins delay precocious 

chromosome segregation by sequestration of cell division cycle 20 (Cdc20) 

protein (Hwang et al., 1998; Kim et al., 1998), a co-factor of the ubiquitin 

ligase anaphase-promoting complex/cyclosome (APC/C) (Fang et al., 1998; 

Kramer et al., 1998). The APC/C complex targets cyclin B and securin to 

degradation by ubiquitylation through recognition of a destruction box (D-box) 

motif present in both of these proteins (Glotzer et al., 1991). To inhibit the 

APC/C, SAC proteins assemble into a mitotic checkpoint complex (MCC), a 

heterotetramer composed of Cdc20, Mad2, BubR1/Mad3 and Bub3. 

Incorporation of Cdc20 into the MCC prevents APC/C activation and 

subsequent cyclin B and securin degradation (Sudakin et al., 2001). After 

degradation, securin no longer inhibits the protease known as separase, 

which is responsible for the cleavage of the cohesion complex that keeps 

sister chromatids together. Concomitantly, the degradation of cyclin B 

inactivates the mitotic kinase, Cdk1 leading to mitotic exit (Fig. 4) (reviewed in 

Lénárt and Peters, 2006).  
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Figure 4. SAC components and mechanism. During prometaphase, Mad2 and 
BubR1-Bub3 together with Cdc20 are recruited to the unattached kinetochores 
to form MCC responsible for the “wait anaphase” signal. Cdc20 sequestration 
inhibits APC from ubiquitylating securin, which in turn prevents separase 
activation and loss of cohesion. The occupancy of kinetochores and 
chromosome biorientation turns off the “wait anaphase” signal. Cdc20 is able 
to activate APC/C causing the polyubiquitynilation of securin and subsequent 
activation of separase and cohesin degradation. Adapted from (Musacchio and 
Hardwick, 2002). 

 

Recently, it has been shown that the recruitment of checkpoint proteins to 

unattached kinetochores is phosphoregulated. Moreover, Mps1 has been 

identified as one of the proteins responsible to recruit essential SAC 

components to kinetochores (Maciejowski et al., 2010; Santaguida et al., 

2010; Hewitt et al., 2010). 

Finally, there are other proteins that directly or indirectly influences SAC 

activity such as Rod (rough deal) - ZW10 (zeste white 10) - Zwilch (RZZ) 

complex, p31comet, mitogen-activated protein kinase (MAPK), Cdk1-cyclin B, 
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Nek2 and polo-like-kinase 1 (PLK1), CENP-E, dynein/dynactin and CLIP170 

(reviewed in Musacchio and Salmon, 2007).  

 

2. KINETOCHORE 
 

2.1 OVERVIEW 
 

During mitosis a special structure is built at the site of the primary 

constriction of condensed chromosomes that attaches to spindle 

microtubules. This region is called the centromere (from the Greek ‘centro-’, 

meaning ‘central’, and ‘-mere’, meaning ‘part’) and later the kinetochore 

(from the Greek ‘kineto-’, meaning ‘move’, and ‘-chore’, meaning ‘means for 

distribution’). The kinetochore comprises a complex structure of proteins 

assembled on centromeric DNA. This interface interacts dynamically with 

microtubules, which is essential for faithful chromosome segregation during 

mitosis and meiosis. 

 

 

Figure 5. Schematic illustration of a mitotic chromosome. On the rigth it is 
represented an attached chromatid to microtubules and the chromatid on the 
left is unattached. The trilaminar layer structure, the inner kinetochore, the 
outer kinetochore, and the fibrous corona (unattached kinetochores), observed 
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by electron microscopy are represented here. Adapted from (Cheeseman and 
Desai, 2008).  

 

The first observation of this structure was reported using electron 

microscopy (EM) in Chinese hamster cells, and revealed a trilaminar 

morphology, including electron-dense inner and outer plates of 200-300 Å in 

diameter, known as the inner and outer kinetochore respectively, surrounded 

by a less dense zone 200-600 Å wide (Brinkley and Stubblefield, 1966) (Fig. 

5). When kinetochores are not attached to microtubules a meshwork of fibers, 

known as the fibrous corona, can be detected to extend from the surface of 

the outer kinetochore (Ris and Witt, 1981). Several proteins localize in this 

region, such as microtubules motors (CENP-E), or proteins involved in the 

mitotic checkpoint such as the Rod-ZW10-Zwilch (RZZ) complex (reviewed in 

Cheeseman and Desai, 2008). Recent biochemical and proteomic studies 

made possible the characterization of these super-complex protein structures. 

The players responsible for the attachment of chromosomes to microtubules 

localize at the outer kinetochore and form a network known as KMN 

(KNL1Mis12Ndc80) complex. The interaction established between 

kinetochores and microtubules by this network is tightly regulated by the 

Aurora B kinase, which localizes to centromeric chromatin before anaphase; 

(reviewed in Maresca and Salmon, 2010). It has been shown that 

microtubules penetrate into the outer kinetochore and sometimes reach the 

inner kinetochore (Rieder and Salmon, 1998). In budding yeast the interaction 

between kinetochores and microtubules is established by a single microtubule 

(O'Toole et al., 1999; Winey et al., 1995), however the number of 

microtubules interacting with kinetochores is not conserved across species. 

Fission yeast kinetochores have between 2-4 microtubules (Ding et al., 1993) 

and between 20–30 microtubules can be found in animal cells (McEwen et al., 

1997). The inner kinetochore interacts directly with centromeric chromatin that 

is specified by the presence of the histone H3 variant CENP-A (Warburton et 

al., 1997). 
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2.2 CENTROMERE SPECIFICATION 
 

The centromere is a specialized region on each chromosome required to 

specify the site at which the kinetochore will be assembled. Moreover, the 

centromeric region is also responsible for maintaining the attachment between 

sister chromatids through the accumulation of cohesion complexes. 

Two seminal studies are in the basis of centromere research in vertebrate 

cells. First, the discovery at the base of an autoimmune sera from patients 

affected by calcinosis, Raynaud’s syndrome, esophageal dysmotility, 

Sclerodactyly and Telangiectasia (CREST) syndrome that recognizes the 

centromere region (Moroi et al., 1980) and second the identification of the first 

set of three canonical human centromeric proteins: CENP-A, CENP-B, and 

CENP-C (Earnshaw and Rothfield, 1985). 

Centromeric DNA is one of the most rapidly evolving parts of the 

chromosome (Murphy et al., 2005). It usually contains a repetitive sequence 

with a repeating unit, usually 160–180 bp that is smaller than the average 

spacing between nucleosomes on chromosomal arms. However, 

centromeres, except in some budding yeasts (e.g. Saccharomyces cerevisiae 

and Kluyveromyces lactis), are not defined by a specific DNA sequence. In 

fact, it has been shown that centromere identity is specified epigenetically. 

The histone H3 variant, CENP-A (called Cse4 in yeast, CID in flies, and 

CenH3 in plants) is the key to the epigenetic specification of centromeres 

(Black and Bassett, 2008) since all active centromeres, including natural or 

experimentally induced neocentromeres, contain CENP-A (Shang et al., 2010; 

Marshall et al., 2008). Structurally what differentiates centromeric chromatin 

from the rest of the chromosome is the presence of CENP-A or its 

homologue. 

How epigenetic information encoded by chromatin at specific sites is 

retained during major chromosomal events, including DNA replication and 

transcription is poorly understood. One of the most challenging questions to 

be answer is how CENP-A that is already assembled into centromeric 

chromatin is kept at centromeres during replication, since during this process 

nucleosomes are disrupted by DNA polymerase and then reassembled onto 

each daughter centromere after replication. The deposition of newly 
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synthetized CENP-A at centromeres does not happens at same time as 

replication takes place. In human cells (Jansen et al., 2007) and fly embryos 

(Schuh et al., 2007) it has been reported that deposition of newly synthesized 

CENP-A onto centromeric DNA starts late in mitosis and extends through the 

G1 phase of the following cycle. The newly assembled histones primarily form 

complexes with other histones. To prevent promiscuous association of the 

highly basic proteins with highly acidic nucleic acids, the histone complexes 

are bound by “chaperones” (Ransom et al., 2010). The chaperone responsible 

for that process is called HJURP (Holiday JUnction Recognition Protein) in 

human cells (Foltz et al., 2009; Dunleavy et al., 2009) and Scm3 in yeast 

(Williams et al., 2009; Pidoux et al., 2009; Camahort et al., 2007; Mizuguchi et 

al., 2007; Stoler et al., 2007). HJURP binds CENP-A through the CENP-A 

Targeting Domain (CATD) to the CENP-A-H4 tetramer (Foltz et al., 2009). 

Different models have been proposed to explain the chromatin structure 

containing CENP-A. The most consensual is one that proposes an octameric 

structure with two copies of each histone, H2A, H2B, H4, and CENP-A (in 

place of H3) (Sekulic et al., 2010; Camahort et al., 2009; Conde e Silva et al., 

2007; Foltz et al., 2006; Shelby et al., 1997; Palmer and Margolis, 1985) and 

DNA wrapping around the histones with a left- hand twist (Sekulic et al., 

2010). However, several studies refute this model proposing additional 

structures for the CENP-A nucleosomes. There are six different models 

reported so far, the tetrasome, the hemisome, the octameric ‘‘reversome’’, the 

hexosome and the trisome model. Recently it has been proposed that all 

these structures can be found in centromeric DNA prior to the assembly of a 

final nucleosomal form. Moreover, prenucleosomal forms, nucleosomal forms 

(potentially including trisome/hexasome or tetrasome intermediates), 

nucleosomes are all stable structures, with the intrinsic properties of CENP-A 

leading this stability (Ben E Black and Cleveland, 2011).  

Interestingly, the incorporation of CENP-A into chromosomes is not 

sufficient to define the chromatin as centromeric. Additional events have to 

take place in order to reinforce centromere identity. Some studies have 

reported a possible cooperative effect of CENP-A nucleosomes recognizing 

other CENP-A nucleosomes in higher-order chromatin folding (Ribeiro et al., 
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2010; Blower et al., 2002); or direct recognition of CENP-A containing 

nucleosomes by other centromere components (Carroll et al., 2010; 2009). 

During mitosis when kinetochores play a predominant role the centromeres 

contain only half of maximal complement of CENP-A. The biological relevance 

of this is still elusive, however it has been reported that one tenth of the 

CENP-A levels is still sufficient to assemble a functional kinetochore (Liu et 

al., 2006). One possible explanation is that half the amount of CENP-A 

nucleosomes confers the right chromatin quality and the right balance 

between rigidness and elasticity, necessary for chromosome segregation and 

movement (reviewed in Perpelescu and Fukagawa, 2011).  

Centromeres can be organized in three distinct structures: point 

centromere, regional centromere and halocentric centromere. In budding 

yeast centromeres are assemble upon a ∼125-bp specific DNA sequence and 

are called point centromeres (Furuyama and Biggins 2007). Centromeres that 

are built along all chromosomes length can be found in C.elegans and are 

designated as halocentric (reviewed in Dernburg et al., 2001). Finally, 

centromeres built on tandem repeats of highly repetitive (satellite) elements, 

so-called regional centromeres, are characteristic of higher eukaryotes (Pluta 

et al., 1995).  

 

2.3 KINETOCHORE STRUCTURE 

2.3.1 Constitutive Centromere Associated Network (CCAN). 
 

In vertebrates, the kinetochore is specified on centromeric chromatin by 

sequence-independent epigenetic mechanisms. However, although CENP-A 

deposition is necessary for kinetochore specification, it is not enough for the 

establishment of functional kinetochores in vertebrate cells (Gascoigne et al., 

2011; Van Hooser et al., 2001). In Drosophila it has been shown, that 

expression of ectopic CID induces kinetochore formation (Heun et al., 2006). 

However, recently, it has been reported that Drosophila CENP-C N-terminal 

ectopically expressed on centrosomes is sufficient to recruit different 

kinetochore proteins (Przewloka et al., 2011). This suggests that there are 

additional proteins that are required to generate centromere-specific 
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chromatin and direct sequence-independent kinetochore assembly. In 

vertebrates and fission yeast a group of 16 chromatin-proximal proteins 

termed the constitutive centromere associated network (CCAN) has been 

characterized, which also associates with centromeric chromatin and have 

been described as playing a role in kinetochore assembly. The major function 

of CCAN is to link the KMN network in the kinetochore ‘outer’ domain to 

centromeric DNA within the inner domain (Nishino et al., 2013; Hori et al., 

2008b; Saitoh et al., 1992) (Fig. 6). However, this network does not seem to 

be conserved across species, since in Drosophila and C. elegans only CENP-

C has been identified so far (Cheeseman et al., 2008; Hori et al., 2008b).  

 

 

 

Figure 6. Schematic model of vertebrate kinetochore structure. Kinetochores 
are assembled onto duplicated sister chromatids starting G2/prophase and are 
disassembled after completion of mitosis/ meiosis. Within kinetochores we can 
find proteins that localize near the inner centromere and constitutes the inner 
kinetochore (blue). This group of proteins established the bridge between 
centromeric DNA and the proteins localized in the more distal part of 
Kinetechore, the outer kinetochore (pink) that are usually responsible to the 
kinetochore-microtubule attachment. (Adapted from Perpelescu and 
Fukagawa, 2011). 

 

CCAN can be organized in distinct subgroups taking in account genetic and 

biochemical results. All components of the CCAN with the exception of CENP-
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B protein and CENP-O complex are essential and necessary for proper 

chromosome congression and segregation (Kapoor et al., 1998; Perez-Castro 

et al., 1998). CENP-C is a constitutive centromere protein with DNA-binding 

ability (Yang et al., 1996; Saitoh et al., 1992). It was the first protein 

characterized by immunoelectron microscopy and later it was shown to be 

essential for kinetochore assembly by antibody microinjection (Tomkiel et al., 

1994; Saitoh et al., 1992). More recently, several studies reported that upon 

CENP-C depletion severe defects in chromosome segregation and mitotic 

checkpoint were observed, confirming CENP-C fundamental role in the 

kinetochore integrity and function (Orr and Sunkel, 2010; Hori et al., 2008b; 

Przewloka et al., 2007; Kwon et al., 2007; Heeger et al., 2005; Moore and 

Roth, 2001). Several studies revealed that the N-terminal part of CENP-C is 

essential for the localization of proteins such as CENP-K, CENP-E, Mad2, 

Mis12, Dsn1, Nnf1, and KNL1 (Milks et al., 2009; Kwon et al., 2007; Liu et al., 

2006) to kinetochores. Additionally, in Drosophila S2 cells it has been shown 

that CENP-C depletion leads to a kinetochore null phenotype and is 

necessary for the recruitment of CID, MEI-S332, and chromosomal passenger 

proteins suggesting that CENP-C could fulfill the structural roles of the human 

centromere-associated proteins not identified in Drosophila (Orr and Sunkel, 

2010). More recently, in Drosophila, mass spectrometry and biochemical 

studies have demonstrated that the same region of CENP-C interacts with two 

subunits of the Mis12 complex (Nnf1 and more weakly with Nsl1) (Przewloka 

et al., 2011). With the exception of CENP-C, CENP-T/CENP-W complex acts 

upstream of other CCAN components. CENP-T and CENP-W are tightly 

associated and make a complex (Hori et al., 2008b). They interact with each 

other through the histone-fold domain (HFD) of both proteins. The HFD 

domain in CENP-W interacts directly with DNA (Gascoigne et al., 2011). 

CENP-T needs CENP-A to localize at centromeres despite of its intrinsic 

biding activity (Hori et al., 2008b). The N-terminal region of CENP-T interacts 

directly with NDC80 complex in the outer kinetochore and a motile structure in 

the middle region of the protein is thought to be able to stretch between the 

inner and outer kinetochore when tension is applied (Suzuki et al., 2011). 

Although CENP-C and CENP-T do not need CENP-A to localize at 
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centromeres, their presence is sufficient to generate ectopic kinetochore 

formation when associated to LacO arrays (Gascoigne et al., 2011).  

CENP-C and CENP-T/W depletion results in distinct phenotypes. CENP-C 

deficient cells exit mitosis prematurely (Orr and Sunkel, 2010; Kwon et al., 

2007); where CENP-T and CENP-W depleted cells exhibited a strong mitotic 

delay (Hori et al., 2008b). The data so far suggest that both CENP-C and 

CENP-T/W complexes works as mediators between the centromeric 

chromatin platform and outer kinetochore. The CENP-H complex, composed 

of CENP-H, -I and -K proteins appear to localize to centromeres downstream 

of CENP-T/W complex and are constitutively associated with centromeres 

(Okada et al., 2006; Sugata et al., 2000; 1999). CENP-H interacts with long 

sections of chromatin containing CENP-A without being directly associated to 

it (Hori et al., 2008b). However, the specific biological significance of CENP-H 

at the centromere still remains elusive. CENP-I is involved either in the 

recruitment of inner kinetochore proteins, such as CENP-C and CENP-H as 

well as in proteins from outer kinetochore as NDC80 and proteins involved in 

checkpoint such MAD1/2 (Liu et al., 2003; Measday, 2002; Nishihashi et al., 

2002). More recently has been reported that CENP-H and CENP-I can be 

found preferentially associated to microtubules kinetochore plus ends 

regulating their turnover rate resulting in a correct chromosome alignment at 

the metaphase plate (Amaro et al., 2010). 

CENP-L, CENP-M, and CENP-N were co-purified with CENP-H/I/K, the 

role-played by these sets of proteins in the assembly hierarchy is unclear, 

nevertheless, they depend on each other to localize at kinetochore. The 

depletion of each protein leads to severe mitotic defects (Okada et al., 2006). 

CENP-M depletion from kinetochores influences the assembly of CENP-H/I/K, 

which further directs CENP-O/P/Q/U/50 assembly (Hori et al., 2008a; b; Foltz 

et al., 2006; Okada et al., 2006; Izuta et al., 2006). After the depletion of this 

last group of proteins, Chicken DT40 cells are still viable but do not undergo 

prompt cycle progression after exit from nocodazole-induced mitotic block. 

The CENP-S/X group of proteins causes mitotic defects in vertebrate cells 

after depletion and is necessary for the recruitment of outer kinetochores 

proteins such as KNL1 and Ndc80/Hec1 (Amano et al., 2009) it also depends 

on CENP-H/I/K to localize at kinetochores. It has been proposed that CENP- 
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S-X proteins together with CENP-T and W form a tetrameric nucleosome-like 

structure working as a scaffold for kinetochore formation (Nishino et al., 

2013). 

 

2.3.2 KMN network 
 

2.3.2.1 Overall organization of the KMN network 
 

The KMN network plays a central role in kinetochore–microtubule 

attachment and SAC signaling in all eukaryotes so far examined. Each 

microtubule-binding site may contain from six to eight KMN complexes 

(Johnston et al., 2010; Joglekar et al., 2008; 2006). This network is named 

after its components KNL1/Spc105, Mis12 and NDC80 sub-complexes (KMN) 

(Cheeseman et al., 2004). The KMN network starts to localize to the 

kinetochore just before mitosis and dissociates from kinetochores in telophase 

(reviewed in Santaguida and Musacchio, 2009). The recruitment of each 

component of the KMN network differs and will be address in detail later one. 

Importantly, in most of the organisms different KMN complexes are 

interdependent for their localization to kinetochores. In human and yeast it 

has been shown that the localization of Ndc80 does not depend on KNL1 (Liu 

et al., 2010; Cheeseman et al., 2008; Kiyomitsu et al., 2007). The same is not 

true in C.elegans and Drosophila where after depletion of KNL1/Spc105, 

Ndc80 complex localization at kinetochores is severely impaired (Feijão et al., 

2013; Essex et al., 2009; Cheeseman and Desai, 2008). Interestingly, 

different studies have described an interdependence of both Mis12 and 

Spc105 for kinetochore localization (Venkei et al., 2012; Przewloka et al., 

2007; Cheeseman et al., 2004), however recently it has been reported that 

both components depend on each other only partially (Feijão et al., 2013). 

Due to its localization in the outer part of kinetochore the depletion of Ndc80 

from kinetochores has no impact on the structure of the inner kinetochore or 

the centromere. However, it has been described in S2 Drosophila cells it has 

been described a partial dependency of Mis12 protein on Ndc80/Nuf2 (Feijão 

et al., 2013). The localization of the Ndc80 complex is also affected upon 
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depletion of Mis12 complex (Feijão et al., 2013; Venkei et al., 2012; 

Przewloka et al., 2007; Kline et al., 2006; Cheeseman et al., 2004; 

Scharfenberger et al., 2003). 

Despite being highly conserved in function, in budding yeast the structure 

appears to be more complex since as to interact with the point centromere 

and a single microtubule, when compared to higher eukaryotes with their 

regional centromeres and microtubule bundles (Westermann et al., 2007). 

However, it has been shown that due to rapid evolutionary divergence of 

kinetochore proteins the level of sequence homology across eukaryotic 

species is low (between 15%–30%) with the highest levels of divergence 

found within Drosophila kinetochore proteins (Meraldi et al., 2006).  

 

2.3.2.2 KNL1/Spc105 
 

KNL1/Spc105 was first identified in budding yeast in a highly enriched 

spindle pole preparation (Wigge et al., 1998). Later, also in budding yeast 

Spc105 was co-purified with the protein Ydr532 (Kerres et al., 2004; Nekrasov 

et al., 2003) and called Spc105 complex. The same study also found that 

Spc105p, and Ydr532p localize to the nuclear side of the spindle pole body 

and along short spindles. Interestingly, this complex is not conserved in in all 

higher eukaryotes, and can be found, separately as a single protein. Although 

KNL-1 was previously reported to lack homologs outside of nematodes (Desai 

et al., 2003), further studies revealed that it shares primary sequence features 

with F15q14 in human cells (Cheeseman et al., 2004; Obuse et al., 2004a), 

Spc7 in fission yeast (Kerres et al., 2004), KNL-1 in nematodes (Desai et al., 

2003), dmSpc105R in Drosophila (Przewloka et al., 2007). It is a large protein 

of 2342 amino acids in human and 1959 in Drosophila, recruited to 

kinetochores during prophase and absent after telophase. This protein family 

has been shown to have a conserved N-terminal repeats [S/G]ILK and 

RRSVF motifs. In this region it is also localized a coiled-coil domain with 

divergent numbers of MELT repeats (Cheeseman et al., 2004; Desai et al., 

2003; Nekrasov et al., 2003) (Fig. 7). In Drosophila only one MELT motif was 

identified (Przewloka et al., 2007) so far. Additionally, at the N-terminus of the 
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protein two helical motifs denominated KI motifs, which interact with the TPR 

domains of BUBR1 and BUB1 were identified. Recently, different studies 

demonstrated the important of this interaction in the maintenance of SAC 

response in human cells (Krenn et al., 2012; Kiyomitsu et al., 2011; Bolanos-

Garcia et al., 2011).  

 

 

Figure 7. Schematic representation of KNL1/Spc105 structure. Human KNL1 is 
a large multi-domain protein with the known functional domains and motifs 
highlighted. (Adapted from Varma and Salmon, 2012). 

 

Zwint, was recently shown to form a tight complex with the C-terminal coiled-

coil region (Petrovic et al., 2010) of KNL1/Spc105, the same region which 

interacts with the Mis12 complex. Zwint has been described to play an 

important role in the recruitment of ZW10 to kinetochores (Starr et al., 2000). 

ZW10 is part of the RZZ complex (Rod-ZW10-Zwilch) that has been shown to 

recruit the adaptor protein Spindly, which serves as link between the dynein–

dynactin motor complex and checkpoint proteins such as Mad1-Mad2 

complex (Gassmann et al., 2008; Griffis et al., 2007). 

In all organisms studied so far KNL1/Spc105 was shown to be essential for 

kinetochore function (Feijão et al., 2013; Cheeseman et al., 2008; Przewloka 

et al., 2007; Cheeseman et al., 2004; Nekrasov et al., 2003). In C. elegans 

depletion of KNL1/Spc105 leads to a kinetochore null phenotype (KNL) (Desai 

et al., 2003) similar to what was observed upon depletion of CENP-C or 

CENP-A. It localizes downstream of CENP-A and CENP-C in a linear 

assembly hierarchy and depends on both for kinetochore localization (Desai 

KNL1/Spc105 
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et al., 2003). A similar phenotype was observed in Drosophila; with a dramatic 

decrease in stable kinetochore-microtubule interactions, severe chromosome 

misegragation, impaired SAC and lost of cell viability (Feijão et al., 2013; 

Schittenhelm et al., 2009; Przewloka et al., 2007). In human cells, depletion of 

KNL1 does not have such dramatic effects, however, it also causes a 

misegregation phenotype, affects SAC but the cell viability is not compromise 

(Cheeseman et al., 2008; Kiyomitsu et al., 2007). These differences in 

phenotypes could be explained by the fact that in C.elegans, Ndc80 (the 

primary binding protein to microtubules) fully depends on KNL1/Spc105 to 

localize to kinetochores. The same is not true in human cells where, Ndc80 

binds to the CCAN protein CENP-T (Gascoine et al. 2011). This dependency 

of Ndc80 recruitment on KNL1/Spc105 is also not observed in budding and 

fission yeast (Kerres et al., 2007). KNL1/Spc105 interacts with the rest of the 

KMN network through its C-terminal domain that binds to one of the proteins 

of Mis12 complex (Nsl1). Recently, in Drosophila it has been shown that 

depletion of Spc105 also impairs kinetochore localization of Mad2 to 

kinetochores (Feijão et al., 2013). The microtubule binding activity found in 

the N-terminus of C. elegans KNL1/Spc105 (Espeut et al., 2012; Cheeseman 

et al., 2006) was shown to be necessary for SAC response but not needed to 

the establishment of proper kinetochore-microtubule (KT-MT) attachments or 

in chromosome segregation (Espeut et al., 2012). The extreme N-terminus of 

KNL1 has also been shown to be important for the recruitment of protein 

phosphatase 1 (PP1) to the outer kinetochore (Meadows et al., 2011; 

Rosenberg et al., 2011) as well as the docking site for Mps1 checkpoint 

kinase in yeast, which is in turn responsible for the recruitment of the Bub1–

Bub3 checkpoint complex to kinetochores (London et al., 2012; Shepperd et 

al., 2012; Yamagishi et al., 2012). 
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2.3.2.3 Mis12 Complex 
 

The Mis12 complex works as a major platform for outer kinetochore 

assembly (reviewed in Cheeseman and Desai, 2008). Mis12 protein was first 

described amongst 12 mis (minichromosome instability) genetic loci in fission 

yeast (Takahashi et al., 1994) and later the budding yeast homologue was 

identified and designated as Mtw1. Both proteins exhibit kinetochore 

localization and in mutant strains result in chromosome misegragation 

(Goshima and Yanagida, 2000; Goshima et al., 1999). Posterior studies 

showed similar defects in chromosome alignment, orientation, and 

segregation after depletion of Mis12 complex (Feijão et al., 2013; Venkei et 

al., 2011; Przewloka et al., 2007; Kline et al., 2006; Goshima et al., 2003; 

Euskirchen, 2002). Mis12 forms a complex with a number of other proteins 

including Nsl1, Nnf1 and Dsn1 (Euskirchen, 2002). In C.elegans depletion of 

Dsn1 results in a severe phenotype, similar to the one of KNL1 and was 

named as KNL-3 (kinetochore null 3) (Cheeseman et al., 2004). In human 

cells it has been shown that all the proteins in the Mis12 complex are 

interdependent for localization (Kline et al., 2006). However, Mis12 appears 

upstream to Nsl1 in the recruitment hierarchy in Drosophila cells (Venkei et 

al., 2011). Interestingly, the four subunits of Mis12 complex are not recruited 

to the kinetochore at the same time. Mis12 is recruited to centromeres during 

late G2 and leaves in early G1 (Kline et al. 2006). In Drosophila, Nnf1 and 

Mis12 can be detected at kinetochores during most of cell cycle, however, 

Nsl1 is recruited to kinetochores during prophase (Venkei et al., 2012; 

Przewloka et al., 2007). Moreover, it has been shown that Mis12/Nnf1 and 

Nsl1/Spc105 establish stronger pair-wise interactions (Venkei et al. 2012). 

Similar interactions were described in human and yeast Mis12 complex 

subunits (Hornung et al., 2011; Maskell et al., 2010; Petrovic et al., 2010). 

The Mis12 complex is 22-nm long and has a rod-like shape, with the 

subunits linearly attached to each other in the order Nnf1, Mis12, Dsn1 and 

Nsl1 (Nekrasov et al., 2003; Euskirchen, 2002) (Fig. 8). The structure, 

however, is not conserved across species, in yeast, the Mis12 (Mtw1) 

complex has also been reported to associate directly with a Ctf19-containing 

complex called COMA (Hornung et al., 2011).  
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Figure 8. Structure of vertebrate Mis12 complex. The human Mis12 complex 
comprises four subunits Nnf1, Mis12, Dsn1 and Nsl1 that have been 
demonstrated to be disposed linearly, where Nnf1 interacts with the inner 
kinetochore and the C-terminal tail of Nsl1 with the two other components of 
KMN network. (Adapted from Varma and Salmon, 2012). 

 

This association was not described for higher eukaryotes. Moreover, in 

Drosophila the homologue of Dsn1 was not yet identified (Schittenhelm et al., 

2007; Przewloka et al., 2007). It has been proposed that the Drosophila KNL1 

homologue, Spc105 had functionally replaced this subunit (Przewloka et al., 

2009). Recently, an extensive study in human Mis12 complex structure 

revealed that the C-terminal tail of Nsl1 is necessary to interact with KNL1 and 

also with the subunits of the Ndc80 complex (Spc24-Spc25). However, the 

stretch of residues (257–281) and the PVIHL motif both present at the C-

terminal region of Nsl1 may be not conserved outside vertebrates (Petrovic et 

al., 2010). Indeed, in yeast the Dsn1–Nsl1 heterodimer alone was not 

sufficient to bind the Ndc80 complex. Mis12 (Mtw1) and Nnf1 could play a 

significant role in this interface. The same study also proposed that Nnf1 and 

Nsl1 flank the Mis12 complex structure. Moreover, Mis12 protein establishes 

cross-links with residues within the predicted globular region of Dsn1 

(K129MIS12 with K167DSN1 or K248DSN1), suggesting that it contacts 

directly with this subunit. It has also been proposed that Nnf1 was the 

responsible for the link between the inner kinetochore through interaction with 

Mis12 complex 
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the N-terminal domain of CENP-C and the outer kinetochore (Screpanti et al., 

2011; Przewloka et al., 2011). While Mis12 complex per se was never found 

to be associated directly to microtubules, the same study identified two 

distinct microtubule-binding activities within the KMN network. One associated 

with the Ndc80/Nuf2 subunits of the Ndc80 complex, and a second in KNL-1 

while the presence of the Mis12 complex synergistically enhances 

microtubule-binding activity (Cheeseman et al., 2006). Later, it has been 

shown that microtubule-binding affinity of the KMN network is regulated by the 

Aurora B kinase through phosphorylation of one of Mis12 subunits (Dsn1) 

(Welburn et al., 2010). Mis12 protein has also been implicated in interactions 

with the chaperone complex Hsp90–Sgt1 (Davies and Kaplan, 2010) and 

interaction of Nls1 and the heterochromatic protein (HP1) were shown to be 

important for the assembly of the inner kinetochore (Kiyomitsu et al., 2010; 

Obuse et al., 2004b).  

 

2.3.2.4 Ndc80 Complex 
 

The Ndc80 complex appears to play a key microtubule-binding role within 

the kinetochore. The proteins of the complex were for the first time identified 

in budding yeast upon isolation of SPBs (Wigge et al., 1998; Osborne et al., 

1994; Rout and Kilmartin, 1990). It was also in budding yeast that was shown 

that the four proteins of the complex Ndc80 (HEC1), Nuf2, Spc24 and Spc25 

were associated (Janke et al., 2001). In human cells Ndc80 protein was for 

the first time identified in a yeast two-hybrid screen with the retinoblastoma 

tumor suppressor as bait and named HEC1 (highly expressed in cancer 1) 

(Chen et al., 1996a). The Ndc80 complex is a 57-nm-long heterotetrameric 

complex with a dumb-bell shape (Ciferri et al., 2008; Wei et al., 2005; Ciferri 

et al., 2005). Studies using atomic force and electron microscopy have shown 

the complex to have an elongated rod-like structure with globular domains at 

both ends (Fig. 9) (Wei et al., 2005). At the N-terminal region of the complex 

is localized the globular dimer Ndc80 (HEC1)/Nuf2. The globular region of 

Ndc80 and Nuf2 subunits fold as a calponin-homology (CH) domain (Alushin 

et al., 2010; Wilson-Kubalek et al., 2008; Ciferri et al., 2008; Wei et al., 2006; 
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Cheeseman et al., 2006). The presence of these domains in several proteins 

has been associated to actin or microtubule binding (Gimona et al., 2002; 

Korenbaum, 2002). At N-terminal region of Ndc80 it also can be found an 

unstructured tail that ranges from 80 to 112 amino acids (Fig. 9), which is 

involved in bidding to microtubules in vitro (Ciferri et al., 2008; Wei et al., 

2006) and it is also required for stable kinetochore–microtubule attachment in 

vivo (Mattiuzzo et al., 2011; Guimaraes et al., 2008; Miller et al., 2008). It has 

been shown that the CH domain of Nuf2 does not interact directly with 

microtubules; nevertheless, it is required for generating normal microtubule-

dependent kinetochore force and timely mitotic progression (Tooley et al., 

2011; Sundin et al., 2011). The C-terminal region Ndc80 and Nuf2 interact 

with the N-terminus of Spc24/Spc25 dimer through an overlap of their α-

helical coiled coil domains (Fig. 9) (Ciferri et al., 2008; Wei et al., 2006). 

Spc24/Spc25 dimer is responsible for anchoring the complex with to the inner 

kinetochore through CENP-T in human and budding yeast (Bock et al., 2012; 

Nishino et al., 2013; Schleiffer et al., 2012; Gascoigne et al., 2011); or with 

KMN network through Nsl1 subunit of Mis12 complex in humans and 

Drosophila (Przewloka et al., 2011; Petrovic et al., 2010; Ciferri et al., 2008). 

Moreover, within the α-helical coiled coil domain of Ndc80 protein a stretch of 

amino acids, which are not associated with the Nuf2 protein and were 

implicated in the recruitment of additional microtubule-binding proteins, was 

identified (Hsu and Toda, 2011; Maure et al., 2011). 

 

 

Figure 9. Schematic view of the structure of the Ndc80 complex. The human 
Ndc80 complex is composed of four subunits NDC80 (Hec1), Nuf2, Spc24 and 
Spc25, which use their coiled-coil regions to assemble the heterotetramer. The 
N-terminus of Ndc80 protein interacts directly with microtubules using the CH 

Ndc80 complex 
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domain and the charged unstructured tail regions, where globular C-terminal 
domains of Spc24 and Spc25 bind the complex to CENP-T or the Mis12 
complex. (Adapted from Varma and Salmon, 2012). 

 

The CH domain of Ndc80 is implicated in the recruitment of checkpoint 

proteins Mad1–Mad2 and Mps1 (Miller et al., 2008; Guimaraes et al., 2008; 

Ciferri et al., 2007; Hanisch et al., 2006; McCleland et al., 2003; DeLuca et al., 

2003; Martin-Lluesma et al., 2002), as well as the kinase NEK2 (Wei et al., 

2011).  

In Drosophila the recruitment of Ndc80 occurs only after NEB (Venkei et al. 

2012) whereas in vertebrate cells this protein localizes at centrosomes at 

interphase (Hori et al., 2003) and relocates to the kinetochore outer plate in 

late G2, where it remains stably bound at nearly constant levels until late 

anaphase (Liu et al., 2006; DeLuca et al., 2006; Bharadwaj et al., 2004; Hori 

et al., 2003). 

The depletion of the complex leads to similar phenotypes in all the 

organisms studied so far, with disorganized metaphase plates, extensive 

chromosome misegregation, elongated mitotic spindles, checkpoint defective 

cells and impaired microtubule–kinetochore attachment (Feijão et al., 2013; 

Miller et al., 2008; Guimaraes et al., 2008; Wei et al., 2006; Przewloka et al., 

2007; DeLuca et al., 2005; Kline-Smith et al., 2005; Janke et al., 2001). 

 

2.3.3 The auxiliary proteins 
 

The kinetochore is a highly complex structure with proteins that transiently 

localize to kinetochore in different stages of mitotic progression. Apart from 

the proteins already address in the previous sections there are innumerous 

proteins that localize to the outer kinetochore and fibrous corona and that are 

involved in distinct functions such as centromeric chromatin binding, 

kinetochore-microtubule attachment/correction and SAC control and 

maintenance. The KMN network is therefore consider to be a platform for the 

recruitment of a number of these proteins (reviewed in Santaguida and 

Musacchio, 2009). CENP-E also known as CENP-meta in Drosophila is a 

plus-end directed kinesin-7 motor protein (Wood et al., 1997), which localizes 



  GENERAL INTRODUCTION 
 

 29 

at fibrous corona. CENP- E starts to be expressed during G2 and mitosis and 

localizes to kinetochores from early prometaphase through metaphase and it 

re-localizes to the antiparallel microtubules midzone at anaphase (Cooke et 

al., 1997; Brown et al., 1994; Yen et al., 1992). 

CENP-E promotes slow processive microtubule plus-end-directed 

movement (Kim et al., 2008; Yardimci et al., 2008). Cenp-E has been shown 

to be responsible for chromosome congression (Kapoor, 2006). This 

observation is supported by different studies (Goshima, 2003; Putkey et al., 

2002; Yucel et al., 2000; Wood et al., 1997). Additionally, it has been reported 

that AuroraB/PP1 phosphorylation/dephosphorylation switch regulates CENP-

E motor activity, which is critical for chromosome congression and correct 

biorientation (Kim et al., 2010). Recently it was shown that CENP-E tip-tracks 

bi-directionally through a tethered motor mechanism contributing to the 

stability of attachments between kinetochores and dynamic microtubules ends 

(Gudimchuk et al., 2013). CENP-F also localizes to the fibrous corona with an 

expression and localization pattern similar to CENP-E (Liao et al., 1995; 

Rattner et al., 1993). CENP-F depleted cells exhibit problems in congression, 

segregation and cytokinesis as well as prolonged mitotic arrest followed by 

cell death (Bomont et al., 2005; Holt et al., 2005; Yang et al., 2005). 

Dynein belongs to the group of Microtubule-Associated Proteins (MAPs) 

and is recruited to kinetochores during prometaphase (Pfarr et al., 1990; 

Steuer et al., 1990). It forms a tight complex with its co-factor dynactin and 

they appear to have a major role in SAC silencing by stripping the catalytic 

Mad1/Mad2 complex and other checkpoint proteins from kinetochores after 

microtubule attachment (Sivaram et al., 2009; Mische et al., 2008; Vergnolle 

and Taylor, 2007; Howell et al., 2001). The impact of kinetochore 

dynein/dynactin in the process of chromosome alignment is still elusive. It has 

been shown that when dynein/dynactin is inhibited after formation of a bipolar 

spindle, chromosome congression occurs normally (Vorozhko et al., 2007; 

Howell et al., 2001). 

Interestingly, dynein/dynactin needs the Rod-Zw10-Zwilch (RZZ) complex 

to localize at kinetochores (Scaërou et al., 2001; Starr et al., 1998). The 

localization to kinetochores of RZZ complex is microtubule dependent and 

upon microtubule attachment this complex is removed from kinetochores 
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through the microtubules (Williams and Goldberg, 1994; Williams et al., 1992). 

Different studies have shown that RZZ complex is vital for the activity of the 

spindle checkpoint (Kops et al., 2005; Basto et al., 2000; Chan et al., 2000) 

most probably by promoting Mad2 accumulation at unattached kinetochores 

(Buffin et al., 2005). There is a third player in the interaction between 

dynein/dynactin and the RZZ complex characterized for the first time in 

Drosophila and called Spindly (Griffis et al., 2007). The depletion of Spindly in 

S2 cells impairs the recruitment of dynein to kinetochores where in C. elegans 

impairs the localization of both dynein and dynactin and needs the RZZ 

complex to be recruited to kinetochores (Gassmann et al., 2008). 

Interestingly, the same study reported that the co-depletion of Spindly and 

RZZ reversed the severe phenotype observed upon depletion of RZZ alone. 

Recently, it was proposed that the kinetochore dynein could inhibit initial 

Ndc80 mediated kinetochore-microtubule attachments via an Aurora B 

independent pathway. This regulation is mediated by RZZ and is necessary 

for faithful chromosome segregation (Cheerambathur et al., 2013).  

The bona fide SAC proteins Bub1, Bub3, Mad1, Mad2, BubR1 and Mps1 

are also recruited to the outer kinetochore and fibrous corona (Abrieu et al., 

2001; Martinez-Exposito et al., 1999; Chan et al., 1999; Basu et al., 1999; 

Jablonski et al., 1998; 1998; Basu et al., 1998; 1998; Chen et al., 1998; 1998; 

Taylor et al., 1998; 1998; Li and Benezra, 1996; 1996; Chen et al., 1996b). 

Although there are slight differences in kinetochores composition and 

structure across species, the basic kinetochore complexes appear to have a 

highly conserved function that has been maintained during evolution 

(reviewed in Cheeseman and Desai, 2008). 

 

3. LINKING KINETOCHORE STRUCTURE TO FUNCTION 
 

Kinetochores plays a main function of attach chromosomes to the mitotic 

spindle. This attachment is responsible to produce and/or transduce forces 

that are required for chromosome segregation. The fidelity of chromosome 

segregation is achieved by the stabilization of properly attached in a bi-

oriented conformation so that each sister chromatids attaches to opposite 
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spindle poles so that if kinetochores fail to attach properly, SAC activation can 

take place and this way prevent premature exit from mitosis and allow time for 

correction mechanisms to act. How these functions are integrated in one 

structure will be discussed in this chapter. 

 

3.1 KMN NETWORK AS THE CORE MICROTUBULE ATTACHMENT 
SITE 
 

The first’s Biochemical studies identified two distinct microtubule-binding 

activities within KMN network. The first was shown to be associated with the 

Ndc80/Nuf2 subunits of the Ndc80 complex and the second with KNL1 

(Cheeseman et al., 2006) (Fig. 10). It now generally accepted that the Ndc80 

complex is the first key component for microtubule-binding (reviewed in 

DeLuca and Musacchio, 2012). Integrated biochemical, cell biology, and 

structural studies support a model in which both the Ndc80 CH domain and N- 

unstructured tail play an important role in the formation of stable kinetochore-

microtubule attachments (reviewed in Tooley and Stukenberg, 2011). In turn, 

the CH domain of Nuf2 seems to be essential for producing normal 

microtubule-dependent kinetochore force and timely mitotic progression 

(Sundin et al., 2011). Additionally, it has been shown using Cryo-EM that 

Ndc80 complex binds tubulin monomers at both the inter-tubulin and intra-

tubulin dimer interfaces through a CH domain within Ndc80/Hec1, named the 

‘toe’, (Alushin et al., 2010; Wilson-Kubalek et al., 2008). This particular form of 

biding to microtubules allows Ndc80 complex to bind microtubules every 4nm, 

where other microtubule associated proteins only bind every 8nm, promoting 

the oligomerization of Ndc80 complex on microtubules. Furthermore, it has 

also been reported that the N-terminal tail of NDC80 could interact with the C-

terminal tails of tubulin monomers (known as E-hooks) (Tooley et al., 2011; 

Alushin et al., 2010; Ciferri et al., 2008). The ‘toe print’ located within the CH 

domain acts as a sensor of the tubulin conformation allowing Ndc80 complex 

to swop between high affinities biding state in straight microtubules 

protofilaments (polymerizing microtubules) and low affinity biding state in 

curled microtubules protofilaments (depolymerizing microtubules) (Alushin et 
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al., 2010; Wilson-Kubalek et al., 2008). The N-unstructured tail Ndc80/Hec1 

was described as being essential for driving cooperativity binding of Ndc80 

complex to microtubules (Alushin et al., 2012; 2010), this property is achieved 

either by tail-tail interaction or by coordinating the interactions between dual 

CHDs of adjacent complexes (Alushin et al., 2010). However these functions 

do not seem to be conserved in yeast, where the tail is necessary to enhance 

the microtubule binding but not for the cooperative binding of the Ndc80 

complex. Nevertheless in both systems the Ndc80 complex can couple 

microtubule depolymerization to bead movement (Powers et al., 2009; Ciferri 

et al., 2008; Wei et al., 2006). Moreover, in vivo yeast experiments show that 

the tail seems to be dispensable for kinetochore function (Kemmler et al., 

2009). Therefore, the N-unstructured tail of metazoan Ndc80/Hec1 seems to 

have two distinct roles increasing affinity for tubulin and modulate 

cooperativity. 

The difference observed between the two systems could be explained by 

the presence of the Dam1 complex, which has only been identified in yeast. 

The complex is built around microtubules and can form a closed stable ring-

like structure or open spirals around the MT lattice (Westermann et al., 2005; 

Miranda et al., 2005). In vitro, it has been shown that it is able to slide along 

microtubules in response to force (Westermann et al., 2007), increasing the 

processivity of the Ndc80 complex when attached to depolymerizing 

microtubules (reviewed in Lampert and Westermann, 2011). In fact, recently 

in yeast it has been shown that the Ndc80–Dam1 interaction is critical for cell 

cycle progression, sharing an essential function with the N-unstructured tail of 

Ndc80 (Lampert et al., 2013). Interestingly, no structural homologs of the 

Dam/Dash complex components have been identified in higher eukaryotes. 

Only recently, a complex, which associate with the KMN network has been 

described (Ska complex) that together can regulate the kinetochore 

microtubule interaction. This complex was first characterized in human cells 

(Hanisch et al., 2006) and it comprises three proteins Ska1, Ska2, Ska3 

(RAMA1) (Raaijmakers et al., 2009). All the three components localize at 

spindle microtubules and kinetochores and depletion of any of the three 

proteins results in impairment of kinetochore-microtubule attachment, severe 

chromosome alignment defects, checkpoint-dependent mitotic arrest and 
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defects during anaphase (Raaijmakers et al., 2009; Welburn et al., 2009; 

Gaitanos et al., 2009; Daum et al., 2009; Hanisch et al., 2006). In vitro 

reconstitution of the complex has been shown to bind microtubules in a 

cooperative manner, as well as assemble oligomeric structures capable of 

diffusing along microtubules. The same complex is also able to bind to 

depolymerizing microtubules plus-ends along both straight and curved 

microtubules protofilaments (Schmidt et al., 2012; Welburn et al., 2009). 

Similarly to what is observed for the DAM/Dash complex the association of 

Ska complex with the Ndc80 complex increases the ability of the Ndc80 

complex to bind microtubules in a cooperative manner (Schmidt et al., 2012). 

The Ndc80 complex is not the only component of KMN network that has been 

described to associate with Ska complex. Mis12 complex and KNL1 interact 

with the Ska complex and all of the three components of the KMN network are 

required to recruit Ska complex to kinetochores (Chan et al., 2012). All these 

findings support the idea that the Ska complex is indeed the functional 

homologue of DAM/Dash complex in higher eukaryotes. Recently, the 

prominent kink or bend (the loop domain) in the structure of the Ndc80 

complex, which localizes approximately 16 nm apart from the CH domain of 

Ndc80 protein, has been reported to contribute to stabilize kinetochore-

microtubule attachments (Zhang et al., 2012; Matson and Stukenberg, 2012; 

Varma et al., 2012). Two different studies in yeast have shown that the loop 

domain is necessary for the recruitment of the Dam/Dash complex (Maure et 

al., 2011) and MAP Dis1 (TOG or XMAP215) to kinetochores (Hsu and Toda, 

2011) In the absence of this loop domain the conversion of lateral to load-

bearing kinetochore-microtubule attachments is abnormal and kinetochore bi-

orientation fails (Maure et al., 2011). Mutations in the loop domain in 

vertebrate cells inhibit the association of SKA complex with the Ndc80 

complex. This study showed that the delocalization of the SKA complex from 

kinetochores due to mutation in loop domain resulted in defects in 

kinetochore-microtubule attachment (Zhang et al., 2012). Finally, in vertebrate 

cells, a DNA replication licensing protein CDT1 was identified as a novel 

kinetochore protein that interacts with the Ndc80 complex and promotes 

robust kinetochore-microtubule interaction (Varma et al., 2012).  
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Figure 10. Human kinetochore–microtubule attachment site. Structure and 
spatial arrangement of the KMN network (colored green) and Ska complex 
(colored orange). In blue is depicted the structure of CCAN, which links 
nucleosomes to microtubules, outlined in pink those that bind to 
DNA/histones. CENP-C bridges CENP-A, the CCAN and the KMN network. The 
proteins involved in direct binding to microtubules are outlined in red. Spatial 
distribution of kinetochore constituents within the kinetochore is based on 
super-resolution imaging and adapted from (Wan et al., 2009). (Adapted from 
McAinsh and Meraldi, 2011). 

 

Unequivocally, the Ndc80 complex plays a central role in kinetochore-

microtubule biding but is not alone in mediating this interaction. Within the 

KMN network, the N-terminal region KNL1/Spc105 has been described as the 

second microtubule-binding domain (Welburn et al., 2010; Pagliuca et al., 

2009; Cheeseman et al., 2006). At same time, KNL1/Spc105 is required for 

recruiting to kinetochores ZWINT, BubR1 and Bub1, as well as the RZZ 

complex in C. elegans (Gassmann et al., 2008). In agreement with the role 

played by KNL1/Spc105 in recruiting proteins involved in SAC response to 

kinetochore a recent study suggested that the microtubule binding motif of 

KNL1/Spc105 is likely to be a key sensor for controlling checkpoint activity 
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(Espeut et al., 2012). Although some of the functions of C- and N-terminus of 

KNL1 have been already identified, the function of central region of the protein 

is still unknown and detailed analyses could shed some light to additional 

involvement in the kinetochore-microtubule interaction. In C. elegans and 

Drosophila the phenotype caused by depletion of KNL1/Spc105 results in a 

severe phenotype with a decrease in cell viability and impairment of 

kinetochore-microtubule interaction (Feijão et al., 2013; Przewloka et al., 

2007; Desai et al., 2003). The phenotype cannot be explained only taking in 

account the dependency of Ndc80 for kinetochores recruitment on 

KNL1/Spc105, since depletion of Ndc80 complex does not have the same out 

come. Since kinetochores have evolved rapidly (Meraldi et al., 2006), and 

some of the components responsible for kinetochore-microtubule attachment 

are not conserved across species, it is possible that KNL1/Spc105 could have 

a more active and direct function in kinetochore-microtubule attachment.  

 

3.2 SWITCH ON/OFF OF SAC 
 

The Spindle-Assemble Checkpoint (SAC) is a surveillance mechanism, 

conserved across eukaryotes, that senses unattached kinetochores and 

prevents premature entry to anaphase, assuring the fidelity of chromosome 

segregation in mitosis. This is a subject of extensive research and it is now 

well established that both SAC activation and silencing are intrinsically linked 

to kinetochores. The proteins that are directly involved either in detecting the 

state of attachment of kinetochore to spindle microtubules or in transmitting 

the nature of attachment to the cell-cycle machinery are known as SAC 

proteins (reviewed in Musacchio and Salmon, 2007) and it includes Mps1, 

Bub1, Mad1, Mad2, Bub3 and BubR1 (Abrieu et al., 2001; Basu et al., 1998; 

Weiss and Winey, 1996; Chen et al., 1996b; Hoyt et al., 1991; Li and Murray, 

1991). The major questions in the field are; why SAC proteins are only 

recruited in presence of unattached kinetochores; how is this inhibitory signal 

produced and how is this process regulated. Specific kinetochores complexes 

play a major role in these processes since it has been shown that KMN 

network impairs recruitment of SAC proteins to the kinetochore and/or SAC 
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activity (Feijão et al., 2013; Kiyomitsu et al., 2007; McCleland et al., 2003; 

Martin-Lluesma et al., 2002; Janke et al., 2001; Wigge and Kilmartin, 2001). 

Some studies have demonstrated that KNL1/Spc105 is the docking site for 

Bub1 and BubR1, through interaction with KI motifs in KNL1/Spc105 and TPR 

sequences in Bub1 and BubR1 (Krenn et al., 2012; Kiyomitsu et al., 2011). 

Previously, it was already described that a point mutation in TPRs sequence 

of Bub1 impaired its kinetochore localization and in the same study it was 

shown that after depletion of KNL1/Spc105, Bub1 and BubR1 were not able to 

localize at kinetochores (Kiyomitsu et al., 2007). However, there is conflicting 

data on this point. Previous studies have shown that the TPR region was 

unnecessary for kinetochore localization and that Bub3 binding domain of 

Bub1 was sufficient for kinetochore localization (Taylor et al., 1998). Mutations 

in the Bub3 binding domain impaired kinetochore localization of Bub1 and 

BubR1, as well as affecting the function of BubR1 in checkpoint and 

chromosome congression (Elowe et al., 2010; Klebig et al., 2009; Taylor et 

al., 1998). These results are supported by recent results in human cells, 

where it has been show hat the Bub3-binding region of Bub1, rather than the 

TPRs, was essential for kinetochore recruitment of Bub1 and the interaction 

between Bub1 and Bub3 was essential to promote the interaction of Bub1 and 

BubR1 (Krenn et al., 2012). KI motifs within KNL1/Spc105 are not sufficient to 

recruit Bub1 to kinetochores and additional pathways must be involved in this 

regulation. Recent data shed some light on this process since 

phosphoregulation by Mps1 appears to be involved. In fission yeast and 

human cells it has been shown that phosphorylation of KNL1/Spc105 at 

different Thr residues within MELT repeats sequence by Mps1 recruits Bub1 

to kinetochores and is negatively regulated by protein phosphatase 1 (PP1) 

(London et al., 2012; Shepperd et al., 2012; Yamagishi et al., 2012). It was 

also demonstrated that in vitro this phosphorylation promotes the assembly of 

the Bub1-Bub3 complex (Yamagishi et al., 2012). Previous studies had 

already described that Bub1 is required and sufficient to recruit other SAC 

proteins to kinetochores (Vanoosthuyse et al., 2004; Sharp-Baker and Chen, 

2001). Moreover, it has been shown to be essential for kinetochore-based 

SAC activation and chromosome alignment (Sharp-Baker and Chen, 2001). 

KNL1 seems to be involved in an additional pathway of SAC activation. 
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ZWINT and KNL1/Spc105 interact through the C-terminal domain of 

KNL1/Spc105. This interaction is responsible to the recruitment of ZWINT to 

kinetochores. It has been suggested that ZWINT phosphorylation by Aurora B 

is necessary to recruit the RZZ complex and dynein to kinetochores and this 

regulation has been shown to be important for chromosome movement and 

SAC signalling (Kasuboski et al., 2011; Famulski and Chan, 2007). At the 

same time it has been shown that the RZZ complex also needs Mps1 

phosphorylation to be targeted to kinetochores (Santaguida et al., 2010; 

Hewitt et al., 2010; Maciejowski et al., 2010). 

So far, the evidences points in the direction that phosphorylations play an 

important role in SAC activation. It is logical to assume that a phosphatase 

can negatively regulate the process contributing to SAC extinction. Recent 

studies showed that KNL1 also plays a role in SAC silencing, in fact PP1 is 

recruited to the kinetochore through a PP1-binding motif present in KNL1. In 

yeast and C. elegans when this interaction is perturbed, SAC silencing is 

compromised (Espeut et al., 2012; Rosenberg et al., 2011; Meadows et al., 

2011). PP1 is also involved in regulating Aurora B activity, which is 

responsible to destabilize kinetochore-microtubule interactions through 

phosphorylation of multiple residues within the KMN network (Welburn et al., 

2010; Liu et al., 2010). Moreover, at the N-terminus of KNL-1/Spc105 a 

second microtubule binding site was identified (Cheeseman et al., 2006). In C. 

elegans, this site was shown not to be necessary for kinetochore-microtubule 

attachment in vivo, but rather participates in SAC silencing (Espeut et al., 

2012). The same study also demonstrates that the recruitment of PP1 by 

KNL1 also contributes to SAC inactivation, suggesting that are two 

independent routes to SAC extinction. In human cells, PP1 activity has only 

been demonstrated to participate in the stabilization of kinetochore–

microtubule attachments (Liu et al., 2010). Overlapping KNL1-independent 

mechanisms that contribute to SAC silencing at kinetochores may mask the 

role of PP1 in SAC extinction. 
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3.3 ERROR CORRECTION MECHANISM  
 

Accurate chromosome segregation implies that each pair of sister 

kinetochores attaches to microtubules from opposite spindle poles reaching 

biorientation. Prior to the establishment of biorientation incorrect attachments 

occur, for example when only one kinetochore is attached to microtubules is 

defined as monotelic attachment (Fig. 11), if both sister kinetochores are 

attached to microtubules of the same spindle pole is called syntelic 

attachment (Fig. 11) and when the same kinetochore is attached to 

microtubules from both spindle poles and is called merotelic attachment (Fig. 

11).  

 

 

Figure 11. Interactions between kinetochores and microtubules. (1) Amphitelic 
attachment, (2) monotelic attachment, (3) syntelic attachment and (4) merotelic 
attachment. (Adapted from Tanaka, 2012). 

 

In order to ensure faithful chromosome segregation chromosomes have to 

be bioriented by converting erroneous attachments into a corrected amphitelic 

orientation (Fig. 11). The studies so far have demonstrated that Aurora B 

plays a central role in this error correction process (reviewed in Lampson and 

Cheeseman, 2011). Aurora B is a serine/threonine protein kinase (Kimura et 

al., 1997) that phosphorylates preferentially sequences with a consensus 

motif as [RK]x[TS][ILV] (Cheeseman et al., 2002). Perturbing the activity of 

Aurora B has different outcomes taking into account the organism studied. In 

yeast, the homolog of Aurora B promotes kinetochore microtubules turnover, 
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which leads to a faster biorientation process (Tanaka et al., 2002). In 

vertebrate cells, an increased of incorrect attachments is observed when 

Aurora B activity is inhibited or the protein depleted (Hauf, 2003; Ditchfield, 

2003). Similar to what was observed in yeast, Aurora B levels also promote 

the turnover of kinetochore microtubules preventing segregation errors (Cimini 

et al., 2006). Aurora B has been described to phosphorylate preferentially a 

group of proteins intimately involved in kinetochore-microtubule attachment, 

such as the KMN network (Welburn et al., 2010; DeLuca et al., 2006; 

Cheeseman et al., 2006), the Dam1 complex (Cheeseman et al., 2002) and 

more recently, the Ska complex (Chan et al., 2012). The activity of Aurora B 

can act directly in the affinity of these proteins for microtubules (Cheng et al., 

2011; Welburn et al., 2010; Cheeseman et al., 2006) or indirectly, by 

perturbing the interaction between them, for example between Ndc80 and the 

Dam1 complex (Lampert et al., 2010) or the Ska complex (Chan et al., 2012). 

However, the first substrate of Aurora B to be identified and claimed to be 

involved in attachment error correction was a microtubule depolymerase 

protein, MCAK (Knowlton et al., 2006). Interestingly it has been demonstrated 

that phosphorylation of MCAK by Aurora B inhibits its depolymerase activity 

(Ohi et al., 2004; Lan et al., 2004; Andrews et al., 2004). 

There are different models that try to explain by which mechanism tension 

and/or microtubule attachment status is detected and how these states 

regulate Aurora B kinase activity. The model that is more consensual takes 

into consideration the distance between active Aurora B at the inner 

centromere and its kinetochore substrates. As bi-orientation of chromosomes 

is achieved and tension exerted upon sister chromatids the accessibility of 

Aurora B to kinetochores substrates would be severely impaired (Liu et al., 

2009) (Fig. 12). It was also described that the total levels of Aurora B are 

increased in misaligned chromosomes (Salimian et al., 2011). Also during 

prometaphase, intermediates levels of Aurora B are under tight regulation of 

B56-PP2A phosphatase that regulates negatively the phosphorylation levels 

of different kinetochore proteins and more specifically KMN network 

components (Foley et al., 2011). Recently, it was proposed a possible 

regulatory mechanism for kinetochore-microtubule attachment, where the 

phosphorylation of BubR1 by PLK1 was responsible to recruit PP2A-B56 
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phosphatase to kinetochores during prometaphase mediating 

dephosphorylation of Aurora B substrates at the kinetochore-microtubule 

interface (Suijkerbuijk et al., 2012).  

 

 

Figure 12. Regulation of kinetochore-microtubule attachment by Aurora B. (A) 
schematic representation illustrating the ‘spatial separation model’: In a 
situation of monotelic or syntelic attachment, sister kinetochores since there is 
no tension sister chromatids are not pull apart. This proximity of the 
kinetochores to the inner centromere leads to phosphorylation of KMN 
network components by Aurora B kinase (shown as ‘P’), which in turn results 
in kinetochore-microtubule attachment destabilization. (B) After biorientation, 
chromosomes are now under tension, and kinetochores are stretched both 
internally and externally. Aurora B is no longer able to phosphorylate the KMN 
components and kinetochore-microtubule interactions are stabilized. PP1 also 
plays an important role in this stabilization, since upon KNL1 
desphosphorylation, PP1 is recruited to KNL1 and helps to keeps the 
unphosphorylated state of KMN network components. (Adapted from Tanaka, 
2012). 

 

It is unclear how the first kinetochore-microtubule interactions are stabilized 

when the access of Aurora B to kinetochore substrates is expected to be 

highest at this stage. In fact, in early prometaphase when tension is low, the 

phosphorylation of KMN network components is increased but not saturated 

when compared with cells treated with microtubule poisons or with no tension 

(Welburn et al., 2010) (Fig. 12). Moreover, kinetochores initially interact 

laterally with microtubules walls (Magidson et al., 2011). KMN network does 

not seem mediate lateral attachments (Magidson et al., 2011; Cai et al., 2009) 

and therefore Aurora B and B56-PP2A cannot disturb the initial attachment, 

giving time the cell to switch from lateral to end-on attachment. As microtubule 

occupancy increases, tension is exerted across sister chromatids (Uchida et 
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al., 2009; Maresca et al., 2009) and phosphorylation of Aurora B substrates 

decreases and simultaneously B56-PP2A phosphatase is removed from 

kinetochores. This process is counter acted by the action of protein 

phosphatase 1 (PP1) in attached kinetochores (Liu et al., 2010; Posch et al., 

2010) keeping phosphorylated levels low on bi-oriented kinetochore pairs 

(Fig. 12). 

 

4. CHROMOSOME MOVEMENT AND CONGRESSION 
 

The main energy source for chromosome oscillation is centred in 

microtubule depolymerization at the leading kinetochore (Khodjakov et al., 

1996). The coordination between movement and attachment is a subject of 

extensive debate. In this section we will try to address some crucial points of 

this process. 

 

4.1 MICROTUBULES - STRUCTURE AND ORGANIZATION 
 

Microtubules can be found in all types of cells and are involved in a wide 

range of processes; for example, in cell morphogenesis, as intracellular 

transport tracks, and play a pivotal role in distinct cellular structures as 

axonemes and mitotic spindles. Accurate chromosome segregation is 

dependent on the assembly of a dynamic arrangement of microtubule 

structure called spindle. The spindle is responsible for the generation of forces 

that physically separate chromosomes to daughter cells and additionally 

establish the position of the cytokinetic furrow (Glotzer, 2003). 

The structural unit of the spindle is the microtubule. Microtubules are 

composed by heterodimers of α and β tubulin that bind head to tail to form 

polarized protofilaments. Approximately 13 of these protofilaments associates 

laterally to form a cylindrical wall of a 25 nm wide hollow polymer: the 

microtubule (Tilney et al., 1973). Since protofilaments are polarized and 

oriented in the same direction, β -tubulin is exposed at one end (plus-end) 

and α-tubulin at the other end (minus-end) (Desai and Mitchison, 1997). α- 

and β- tubulin heterodimers co-purify with two moles of guanine nucleotide 
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per mole αβ dimer (Weisenberg, 1972), although, α-tubulin binds GTP 

irreversibly and does not hydrolyse it (N-site for Non-exchangeable), β-tubulin 

binds GTP reversibly and can hydrolyse it to GDP, since GTP and GDP can 

swap, this site is called E-site (for Exchangeable) (Downing and Nogales, 

1998). When the α- and β-tubulin are associated to GTP, polymerization takes 

place and the α-tubulin subunit binds to β-tubulin at the microtubule plus-end, 

where it is stabilized by the β-tubulin - GTP at the plus end known as GTP-

cap. Microtubules can switch between states of polymerization or 

depolymerisation, when the GTP-cap is maintained at the plus-end, the 

microtubule continues to polymerize assuming a more “straight” and stable 

conformation. However, if hydrolysis of GTP is faster that polymerization, the 

GTP-cap will be lost and this allows GDP-tubulin dimmers to acquire their 

natural curved conformation, peeling away from the microtubule lattice and 

acquire a ram-horn-shaped structure at the microtubule end (Tran et al., 1997; 

Desai and Mitchison, 1997; Mandelkow et al., 1991) (Fig. 13). These two 

states of polymerization and depolymerisation are abrupt and stochastic and 

are known as "rescue" for the transition from shortening to growth and as 

"catastrophe" for the shift from growth to shortening. In living cells it was also 

observed a third behavior where microtubules are neither polymerizing nor 

depolymerizing which is referred as pause state (Walker et al., 1988; Schulze 

and Kirschner, 1988). This intrinsic behavior of microtubules is known as 

dynamic instability (Mitchison and Kirschner, 1984). 
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Figure 13. Microtubule dynamics. 12-15 parallel protofilaments of αβ-tubulin 
heterodimers associate laterally to form a 25 nm hollow cylindrical structure 
(microtubule). Dynamic instability is characterized by the coexistence of 
polymerizing and depolymerizing microtubules. GTP-tubulin is incorporated at 
polymerizing MT ends, the bound GTP is hydrolyzed during or soon after 
polymerization, and Pi is subsequently released. The switch from 
polymerization to depolymerization called catastrophe, and the reverse 
transition is defined as a rescue. (Adapted from Cheeseman and Desai, 2008). 

 

4.2 NUCLEATION AND ORIGIN OF MICROTUBULES IN THE SPINDLE 
 

The interaction between the 92 human kinetochore cells and microtubules 

has to be accomplished efficiently in a relatively short period of time (10-

15min). There are distinct spindle assembly pathways that ensure the 

proficiency of this process. The most widely accept mechanism is based on 

the nucleation of microtubules from centrosomes and the dynamic instability 

of microtubules, which increases the opportunity of kinetochores to encounter 

microtubules. The initial interaction with kinetochores leads to its stabilization 

and promotes spindle formation. This model called ‘search-and-capture’ 

model and has been extensively validated in many systems (Fig. 14) 

(Alexander and Rieder, 1991; Hayden et al., 1990; Kirschner and Mitchison, 

1986). However this model has been criticized mostly from the pit of view of 

modelling. According to mathematical modelling of kinetochore capture using 

the ‘search-and-capture’ hypothesis a human cell would take several hours 

25nm  
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before all kinetochores had been properly captured by microtubules (Wollman 

et al., 2005).  

 

 

Figure 14. Nucleation and origin of microtubule in the spindle. Search-and- 
capture” model. Microtubules are nucleated from centrosomes. This model is 
also based in the intrinsic dynamic instability of microtubules, which undergo 
in alternative cycles of polymerization and depolymerisation and eventually are 
captured and stabilized by kinetochores. A Ran-GTP gradient dependent “self-
assembly” model is based in the capacity that this gradient has to promote 
centrosome independent microtubule nucleation. Finally there is the 
Kinetochore-derived microtubule growth model, where microtubules are 
nucleated at kinetochores or near them and subsequently start to interact with 
other spindle microtubules and then are integrated into the mitotic spindle. 
(Adapted from Guo et al., 2013). 

 

Recently, in vivo observations demonstrated that chromosomes and 

microtubules are spatially positioned at early stages of spindle assembly 

promoting chromosome-microtubule interactions, justifying the hypothetical 

parameters necessary for rapid spindle assembly posited in simulation 

(Magidson et al., 2011). Moreover the ‘search-and-capture’ model is not 

applicable to cells, which lack centrosomes such as those of higher plants and 

many meiotic eggs. In these organisms, spindle formation is promoted by a 

RanGTP gradient around chromosomes (Fig. 14) (reviewed in Clarke and 
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Zhang, 2008). Ran belongs to the family of regulatory GTPases that combines 

the binding and hydrolysis of GTP to specific cellular processes. This 

mechanism leads to spindle formation by facilitating the release of SAFs 

(spindle assembly factors) from importin a/b around chromosomes, which 

results in microtubule formation around chromosomes. Minus-end-directed 

motors are the responsible for regulating the formation of a bipolar spindle, 

additionally RanGTP gradient is also engaged in attracting microtubules to 

elongate preferentially towards chromosomes by enabling microtubule rescue, 

as is shown in Xenopus (Carazo-Salas and Karsenti, 2003). 

Apart from these two mechanisms, microtubules are also able to nucleate 

from kinetochores (Fig. 14) (Maiato et al., 2004; Khodjakov, 2003; Pepper and 

Brinkley, 1979; Snyder and McIntosh, 1975). The molecular mechanism 

beyond microtubule nucleation from kinetochores is still elusive. It was 

reported that small GTPase Ran could be involved in the process 

(Torosantucci et al., 2008; Tulu et al., 2006). Further studies, demonstrated 

that GTPase Ran around chromosomes could induce nucleation from 

centrosomes but on its own was not able to induce spindle formation 

(O'Connell et al., 2009). Other proteins were also describes as being involved 

in in kinetochore nucleation as TPX2 and NUP 106-170 complex (Mishra et 

al., 2010; Tulu et al., 2006). This population of microtubules is often seen 

growing rapidly after the use of depolymerizing drugs thereby helping spindle 

formation through bundling with microtubules from different kinetochores or 

spindle poles. In Drosophila such microtubules were observed even in the 

presence of microtubules derived from centrosomes and together promote an 

efficient kinetochore capture (Maiato et al., 2004). 

The recruitment of γ-tubulin onto preexisting microtubules constitutes an 

additional mechanism for microtubule generation known as microtubule-

branching nucleation (Mahoney et al., 2006). Also, in Drosophila was 

identified for the first time, a complex of proteins named Augmin responsible 

to recruit γ-tubulin to spindle microtubules (Goshima et al., 2008). Augmin 

was shown to be tightly associated with one component of γ-tubulin the γ-

TURC, this association was also reported in human cells (Uehara et al., 2009) 

predicting a model where Augmin binds to pre-existing microtubules recruiting 

γ-TURC to nucleate new microtubules. Together, this data suggest that 
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spindle formation is under regulation from different pathways, so that after 

NEBD, microtubule nucleation occurs at centrosomes and in the vicinity of 

chromosomes. These two processes are crucial to generate the first set of 

mitotic microtubules enabling the assembly of the mitotic spindle. However, 

the microtubule-branching nucleation mediated by Augmin can have a 

synergistic effect in the spindle formation since it can rapidly amplify the 

number of microtubules, which promotes chromosome capture and k-fiber 

formation. 

 

4.3. SPINDLE MICROTUBULES AND BIPOLARITY 
 

The bipolar, antiparallel arrangement of spindle microtubules is what 

certifies faithful chromosome segregation (Fig. 15). The highest density of 

microtubules minus-ends it’s localized at opposite ends of the spindle known 

as spindle poles. At spindle poles we can find microtubules organizing centers 

(MTOC) or centrosomes (Fig. 15), these two structures are responsible for 

microtubule nucleation and for ensuring that microtubule minus-ends are kept 

attached to spindle pole or near by.  

 

 

Figure 15. Metaphase spindle architecture and microtubules populations. 
Microtubules are organized in an antiparallel arrangement with their plus-ends 
oriented toward the center of the spindle and their minus-ends toward the 
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poles. Three different classes of microtubules compose mitotic spindle: 
kinetochore-microtubules, interpolar-microtubules and astral-microtubules. 
(Adapted from Helmke et al., 2013). 

 

The microtubules minus-ends are always oriented towards the spindle pole 

and the plus-ends towards chromosomes or cell cortex (Telzer and Haimo, 

1981; Heidemann et al., 1980). Within the mitotic spindle we can find three 

different classes of microtubules. Microtubules that are attached to 

kinetochores at the plus end and the minus ends to spindle poles and are 

designated as kinetochore-microtubules, which bundle and eventually form k-

fibers (kinetochores-fibers) (Fig. 15) ( Merdes and De Mey, 1990; Hayden et 

al., 1990; Rieder and Alexander, 1990). When all sister chromatids are 

properly attached to opposite poles, oscillations in sister chromatids occur. 

This dynamic movement is due to the growth and shrinking of k-fibers, 

promoting the congression and alignment of chromosomes at the metaphase 

plate. This population is present in all cell types and is essential for a correct 

spindle function (reviewed in Guo et al., 2013). 

Interpolar-microtubules (ipMT) constitute the second population of 

microtubules. These microtubules cross over at the center of the spindle and 

contact with microtubules in the opposite side of the spindle, which are 

oriented in an antiparallel manner (Fig. 15). In contrast to kMTs, most of 

minus-ends of ipMTs are not near the spindle poles but instead, distributed 

along the half of spindle length. These interactions are present during mitosis 

and are one of the key factors for establishing and maintaining spindle 

bipolarity and to ensure spindle poles separation by antiparallel microtubule 

sliding (Mastronarde et al., 1993; Sharp et al., 2000a). Finally, there is a third 

class of microtubules, the astral microtubules, whose plus-ends are oriented 

towards the cell cortex with their minus-ends connected to MTOC, 

centrosomes or near the spindle poles (Fig. 15). They are present in almost 

spindle types, however they are absent from female meiotic spindles and 

plant spindles without centrosomes. Since in many cell types they frequently 

contact the cell cortex, they can play a pivotal rule in orienting and position the 

metaphase spindle, which is essential for asymmetric cell divisions, tissue 

development and organization (reviewed in Noatynska et al., 2012). 
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There are special features that distinguish the different microtubule 

populations. K-fibers are resistant to treatments that depolymerize other 

spindle microtubules, such as cold temperature or low doses of MT-

depolymerizing drugs, however are less dynamic than interpolar or astral 

microtubules (Kirschner and Mitchison, 1986; Rieder, 1981; Salmon and 

Begg, 1980). 

 

4.4 MICROTUBULE DYNAMICS 
 

Despite in vitro studies that have shown the presence of polymerization 

and depolymerisation events in both microtubule ends, in vivo polymerization 

at minus-end has never been reported, perhaps due to a conserved 

mechanism that concomitantly inhibits polymerization and promotes 

depolymerisation (Dammermann et al., 2003; Walker et al., 1988). The 

poleward movement of tubulin subunits at a constant rate from microtubule 

plus end to microtubule minus end is called "treadmilling". So, a microtubule 

undergoing “treadmilling” is constantly assembling tubulin subunits at one 

end, with a balanced loss at the opposite end (Margolis and Wilson, 1981) 

causing a phenomenon known as flux. 

An association of microtubule speckling and kinetochore labelling 

techniques revealed that chromosome movements during metaphase and 

anaphase A are the result of two different mechanisms: poleward microtubule 

flux and “Pac-Man” motility. The poleward microtubule flux is bases on the 

movement of tubulin subunits from microtubule plus-ends to the microtubule 

minus-ends at the spindle pole (Mitchison, 1989). This activity is present 

either in microtubules associated to kinetochores as well as in interpolar 

microtubules. Interestingly, the flux velocity is more heterogeneous within a 

spindle that between spindles, denoting that this is a process spatial and 

temporally regulated with contributions from different proteins (Cameron et al., 

2006). 

This poleward movement of tubulin subunits is achieved by polymerization 

at microtubules plus-ends, shown in Drosophila S2 cells to be dependent on 

Mast protein (Maiato et al., 2005) and by minus-ends depolymerisation at 
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spindle poles under regulation of proteins from kinesin-13 family (Kif2a, 

KLP10A) (Ganem et al., 2005; Goshima et al., 2005). There is a third activity 

responsible for poleward microtubule flux, the sliding of antiparallel 

microtubules towards their minus-ends known as microtubule poleward 

translocation where, due to its antiparallel microtubule-sliding activity, kinesin-

5 is believed to be the central player (Cameron et al., 2006; Goshima et al., 

2005; Mitchison et al., 2004; Miyamoto et al., 2004).  

The “Pac-Man” activity is characterized by a coupled depolymerisation of 

the plus ends of kinetochore microtubules that maintain the attachment site at 

the kinetochore (Gorbsky et al., 1987; Mitchison et al., 1986). How the 

process is regulated is still unknown. However it is described that Drosophila 

kinesin-13 (KLP59C) is involved in the process (Rogers et al., 2004) since 

upon KLP59C inhibition anaphase chromatid movement is severely impaired 

with normal values of microtubule flux. The minus-end directed motor protein 

dynein (Yang et al., 2007; Savoian et al., 2000; Sharp et al., 2000b) and the 

plus-end directed motor protein CENP-E (McEwen et al., 2001; Lombillo et al., 

1995) have also been described to be involved in “Pac-Man” activity. 

The impact of these processes in chromosome movement during 

anaphase differs between model organisms. Where “Pac-Man” input in 

budding yeast and vertebrate tissue culture cells is 100% and 70% 

respectively. In meiotic oocyte spindles and early embryonic spindles, 

microtubule flux seems to be the major mechanisms contributing for 

microtubule dynamics and anaphase movement. The same is also valid for 

grasshopper and crane fly meiosis I spermatocytes where apparently 

microtubule flux is the only mechanism observed so far (reviewed in Maiato et 

al., 2004). 

 

4.5 FROM LATERAL BINDING TO END-ON ATTACHMENT 
 

The initial interaction between kinetochores and microtubules is mediated 

through lateral attachment. Lateral binding provides a much larger contact 

surface than through microtubule ends resulting in a more efficient 

kinetochore capture. The proteins involved in the initial interaction may differ 



GENERAL INTRODUCTION  

 50 

between organisms. In budding yeast has been reported that Ndc80, Mis12 

complex and Ctf19 complex are involved in this process (Tanaka et al., 2005), 

however in metazoans the process is not so well characterized. Nevertheless, 

different studies demonstrated that the motor protein minus end directed, 

dynein could be a key protein mediating this interaction (Vorozhko et al., 

2007). Dynein is also responsible to poleward movement of chromosomes 

during lateral attachment in metazoans (Yang et al., 2007; Alexander and 

Rieder, 1991). The protein responsible for this movement also differs in 

budding yeast where Kar3 mediates this transport, however it is not involved 

in establishing the initial lateral attachment (reviewed in Tanaka et al., 2005). 

Since Kar3 belongs to the family of kinesin-14 and its processivity is much 

slower that dynein and slower than the shrinking rate of microtubules, it was 

also demonstrated in the same system that Stu2 promotes microtubule rescue 

and therefore prevents kinetochores from falling from microtubules (Gandhi et 

al., 2011). In Drosophila it was also shown that Ncd a member of kinesin-14 

protein family, is also involved in this lateral sliding since it showed a high 

mobility along microtubules in vitro and has been implicated in kinetochore-

microtubule attachment (Endow and Komma, 1996; McDonald et al., 1990). 

CENP-E is also responsible for congression of mono-oriented chromosomes 

toward the metaphase plate via lateral attachments with existing k-fibers prior 

biorientation (Kapoor, 2006). However, it has argued that this congression 

mediated by CENP-E, once thought to be only possible in presence of k-fibers 

(Kapoor, 2006), also occurs along any microtubule bundle (Cai et al., 2009). 

The chromokinesin Kid was also described to be important in congression 

through the interaction between chromosomes arms and microtubules 

(Levesque and Compton, 2001; Tokai et al., 1996). 

Eventually, lateral attachments are converted to end-on attachments. In 

C.elegans it was proposed that the RZZ complex could prevent the formation 

of load-bearing attachments and this could be under the control of 

dynein/dynactin, by helping the conversion from the initial lateral attachment 

to an end-on attachment (Gassmann et al., 2008). Moreover, kinetochore 

dynein could also directly regulated Ndc80, in an Aurora B-independent 

manner, inhibiting initial microtubule binding by the Ndc80 complex 

(Cheerambathur et al., 2013). In budding yeast this transition occurs 
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spontaneously and irreversibly by microtubule depolymerisation until reaching 

the kinetochore attachment site (Tanaka et al., 2007). In metazoan cells, the 

conversion from lateral to end-on attachment is a process where different 

proteins have been shown to be involved. It has been shown that Bub1 and 

Bub3 are involved in this process (Logarinho et al., 2008; Meraldi and Sorger, 

2005). There are however, some circumstances where the initial interaction 

established between kinetochores and microtubules is end-on. Such events 

were reported in Drosophila and human cells and take place during k-fiber 

formation through a centrosome-independent microtubule generation 

mechanism promoted by the Augmin complex (Lawo et al., 2009; Uehara et 

al., 2009; Goshima et al., 2008). Recently, a combined analysis with electron 

microscopy, molecular perturbations and immunofluorescence has shown that 

lateral interactions between kinetochores and microtubules are the major 

microtubule population in early prometaphases responsible for the disposition 

of chromosomes in an equatorial ring around the nascent spindle. This 

chromosome arrangement promotes kinetochore interaction with microtubules 

from both spindle poles facilitating amphitelic attachment (Magidson et al., 

2011). In the light of these recent findings, lateral attachments turn out to be 

the predominant attachment in early prometaphase and seem to play an 

important role towards achieving biorientation. 

The end-on attachments established upon biorientation are characterized 

to be stable and highly dynamic. These dynamic interactions between 

kinetochores and microtubules plus-ends lead to chromosome movement 

coupled with microtubule polymerization and depolymerisation. How this 

process is regulated is subject of intensive research and different models 

have been proposed to explain it. It is, however, well established that different 

proteins contribute for this dynamic and stable attachment, as well as the 

processive microtubule plus-end tracking. 

The first model proposed was called the sleeve model (Hill, 1985). The 

kinetochore proteins involved in kinetochore-microtubule attachment would 

surround microtubules nearby the plus-ends and form a rigid sleeve at the 

outer face of microtubules. This model assumes that the proteins responsible 

for the attachment bind weakly in multiple sites in outer microtubule wall, 

allowing the sleeve to slide along polymerizing or depolymerizing 
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microtubules without dissociating. Further studies identified in yeast a 

oligomeric complex Dam1/DASH that forms a ring-like structure around 

microtubules making the Hill-Sleeve model more attractive (Westermann et 

al., 2005; Miranda et al., 2005). However this structure was never observed in 

vivo and no homologs of the Dam1/DASH complex have been identified in 

vertebrates. More recently, it has been proposed a biased-diffusion 

mechanism for force generation, where Ndc80 proteins play a key role (Wan 

et al., 2009; Powers et al., 2009; Ciferri et al., 2008). The Ndc80 complex 

structure and the weak affinity for microtubules make it the perfect candidate 

for biased diffusion (Cheeseman et al., 2006). It was also demonstrated that 

the Ndc80 complex binds to microtubules by recognizing α- and β- tubulin at 

both intra- and inter- tubulin interfaces. Due to these features the Ndc80 

complex is able to distinguish different tubulin conformations and still remain 

attached, as well as diffuse along them (Alushin et al., 2010). Additionally, in 

vitro, when the Ndc80 complex is associated with Dam1/DASH complex, its 

affinity to form load-bearing attachments is drastically increased promoting a 

permanent association of Ndc80 with dynamic microtubules plus ends 

(Lampert et al., 2010). The Ska complex, which has been described as being 

the functional vertebrate “homologue” of Dam1/DASH complex, needs Ndc80 

to be recruited to Kinetochores. All these results support the idea that Ndc80 

acts as the force generator in a biased diffusion model. The last two models 

are based in the assumption that kinetochores bind to microtubule sides near 

the plus ends. There is however a third and alternative model that proposes 

that kinetochores can bind to the luminal side of peeling protofilaments 

through fibril-like attachments. The fibril-like attachments were described for 

the first time in Ptk1 cells using electron microscopy (McIntosh et al., 2008). In 

this study both polymerizing and depolymerising microtubules plus-ends 

appeared to be curved where a fibril-like structure from the luminal side of 

microtubules interact with the inner kinetochores (McIntosh et al., 2013). 

These structures were not present in non-kinetochores microtubules. Later, 

the same authors preformed an integrated study analysing different 

organisms showing that the slender fibrils were present in all interactions 

between kinetochore microtubules protofilaments and the nearby chromatin 

(McIntosh et al., 2013). The molecular composition of these structures is still 
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unknown, as several of the kinetochore-associated proteins are filamentous, 

there are some candidates suggested to play this function. The kinetochore-

associated kinesin-like motor protein CENP-E is a good candidate, since its 

structure has a flexible coiled coil region 200nm long (Kim et al., 2008) that 

looks like the fibrils structure identified by electron microscopy. Other proteins 

such as Ndc80 and XMAP212 could be good candidates to play this function, 

however all these three proteins have been shown to bind to microtubule 

lattice. Finally, an alternative possibility is the 400 kDa kinetochore protein, 

CENP-F; whose structure is predicted to have a central region flanked by two 

coiled-coil regions (Rattner et al., 1993).  
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1. INTRODUCTION 

	
  
For the correct segregation of the DNA content during cell division, 

chromosomes need to be bioriented on the mitotic spindle. Before reaching 

biorientation, during prometaphase, chromosomes interact randomly with 

microtubules emanating from centrosomes that poduce chromosome 

movement that finally result in alignment at the metaphase plate. There are 

several players that contribute to these movements including the action of 

kinetochore and microtubule-associated motor proteins, as well as the 

balance between microtubule polymerizing and depolymerizing factors 

(McIntosh et al., 2002). In this study we will focus our attention on two 

particular proteins; centromere associated protein E (CENP-E) and one of the 

components of chromosomal passenger complex (CPC), Aurora B kinase. 

CENP-E, also known as plus-end-directed kinesin-7 motor protein has been 

described as responsible for mediating the sliding of mono-oriented sister-

chromatids along the kinetochore fibers of already bioriented sister-chromatid 

pairs, as well as, along microtubule bundle without needing of the losing 

kinetochore attachment (Cai et al., 2009). Aurora B kinase, plays a critical 

function in chromosome biorientation (Tanaka et al., 2002). This kinase is 

known to promote destabilization of incorrectly kinetochore-microtubule 

interactions via the microtubule deploymerase, mitotic centromere-associated 

kinesin (MCAK) (Andrews et al., 2004; Lan et al., 2004). More recently, it has 

been implicated in kinetochore function by the phosphorylation of KMN 

network and the Ska complex (Jeyaprakash et al., 2012; Welburn et al., 

2010).  

Here, our purpose was to determine if CENP-E and Aurora B cooperate to 

promote efficient chromosome biorientation and timely anaphase onset. To 

address these questions we initially characterized by time-lapse microscopy, 

the phenotype of Hela cells stably expressing YFP-H2B after depletion of 

CENP-E by small interfering RNA (siRNA). We find that in all cells (n=182) 

analysed, chromosomes close to spindle poles (polar chromosomes) were 

observed, allowing us to identify two distinct phenotypes. In phenotype (a): 

54% of the cells aligned their chromosomes into a metaphase plate after a 
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prolonged delay (time spent in mitosis (TIM) 238 ± 123 min vs. 50 ± 18 min for 

control cells) and anaphase onset started after the last chromosome 

congressed into the plate. In phenotype (b): In 37% of the cells, mitosis was 

also significantly delayed (TIM 306 ± 121min), but anaphase onset started 

while a few chromosomes still resided near the spindle poles and failed to 

align. The remaining 9% of the cells were delayed in mitosis for more than 

480 min of continuous filming and were therefore denominated as “stop”.

 

2. RESULTS 
 

2.1 Aurora B kinase is highly active on polar chromosomes 
 

The mitotic delay observed in CENP-E mitotic depleted cells is suggestive 

of an active spindle assembly checkpoint (Hemmerich et al., 2008; Tanudji et 

al., 2004). Indeed, publish data show that CENP-E depleted cells arrest in 

mitosis when treated with the spindle poisons nocodazole, colcemid or taxol; 

(Weaver et al., 2003). Moreover, previous studies already demonstrated that 

in CENP-E depleted cells polar chromosomes stain positive in 

immunofluorescence for SAC protein Mad1 (Chen et al., 1998) and of CLIP-

170, a microtubule “plus-end-tracking” protein that leaves the kinetochores 

upon microtubule attachment (Dujardin et al., 1998), confirming that these 

chromosomes were unattached or poorly attached and explaining why mitotic 

progression is delayed in CENP-E knockdown cells. 

We then asked why do kinetochores of the polar chromosomes remained 

unattached or poorly attached for such a long time. For this we follow CENP-E 

depleted cells by time-lapse microscopy and observed that the polar 

chromosomes are not static but show random movements away and towards 

the poles suggesting that microtubules are indeed able to interact with these 

chromosomes but these attachments might not be properly stabilized. Aurora 

B is responsible for destabilizing incorrect kinetochore-microtubule 

attachments through phosphorylation of Hec1/Ndc80 and MCAK (Cheeseman 

et al., 2006; DeLuca et al., 2006; Andrews et al., 2004) . To test if the failure 
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to stabilize pole-proximal kinetochore-microtubule attachments was due to 

local Aurora B activity, auto-phosphorylation of the kinase was monitored 

using phospho-specific antibodies designed to identified the T232 epitope in 

the kinase (Yasui et al., 2004). Strikingly, the levels of T232 phosphorylation 

were significantly increased on the polar chromosomes of CENP-E 

knockdown cells when compared to aligned chromosomes, suggesting high 

levels of active Aurora B kinase at the polar chromosomes (Fig. 1.1 A and B). 

This is most probably due to the increased protein levels of Aurora B as 

measured by antibodies that recognize the protein irrespective of its 

phosphorylated state (Fig. 1.2). The specificity of the phosphorylation signal 

was confirmed by inhibition of Aurora B kinase activity with the small-molecule 

inhibitor ZM447439 (Ditchfield et al., 2003) (Fig. 1.1 A and B). 

 

 

Figure 1.1 Aurora B kinase activity in CENP-E-depleted cells. (A) 
Immunofluorescence images after CENP-E depletion (-ZM447439) for T232 
autophosphorylation of Aurora B in green, DNA in blue and Crest in red. 
Specificity of the phosphorylation signal is shown by decrease in the IF signal 
of pT232 upon inhibition of Aurora B kinase activity (+ZM447439). White circles 
indicate representative kinetochore pairs used for the quantification of the 
pT232 fluorescent signal (B). Error bars represent SD of three independent 
experiments.  

 

 

 

 

A B
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Figure 1.2 Aurora B kinase protein levels and activity in CENP-E-depleted cells. 
Graphic representation of the quantification of pT232 and total Aurora B 
intensity levels in the aligned and unaligned chromosomes of CENP-E-
depleted cells. See materials and methods for further details on the 
quantification. Error bars represent SD 

 

To determine if the polar chromosomes in CENP-E depleted cells fail to 

establish stable kinetochore attachments due to high local activity of Aurora B 

kinase, CENP-E depleted cells were treated with a small molecule inhibitor of 

Aurora B kinase activity. Thus, ZM447439 was used to inhibit Aurora B and 

Mad1 was used to indirectly monitor kinetochore attachment status (Fig 1.3 A 

and B). In the absence of ZM447439, immunofluorescence analysis shows 

that most cells accumulate Mad1 in one or both kinetochores indicating that 

attachment is severely impaired. However, after treatment with ZM447439, 

almost all the polar chromosomes failed to accumulate Mad1 at kinetochores 

suggesting that these kinetochores had established stable microtubule 

attachments (Fig. 1.3 A and B). 
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Figure 1.3 Kinetochore-microtubule attachments in CENP-E depleted cells. (A) 
Immunofluorescence of Mad1 as an indirect marker for the attachment status 
of the kinetochore. Insets show higher magnifications of a single optical Z-
stack of an unaligned chromosome with attached kinetochores (no Mad1, inset 
1), with unattached kinetochores (Mad1 labels both kinetochores, inset 2) or 
with mono-attached kinetochores (Mad1 labels one kinetochore, inset 3). Mad1 
is not present in all of the unaligned chromosomes when cells are treated with 
ZM447439 (inset shows higher magnification of a representative chromosome). 
(B) Graphic representations of quantification of the number of unaligned 
chromosomes in CENP-E depleted cells with or without ZM447439 (left two 
bars). From these the number of chromosomes with unattached, mono-
attached or attached kinetochores was scored. Error bars represent SD of 
three independent experiments (n=27, DMSO; n=22, ZM447439). 

 

 

A

B
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As a control, CENP-E depleted cells treated with ZM447439 were treated 

with nocodazole to depolymerize microtubules and the levels of Mad1 at 

kinetochores were similar to those cells not treated with the Aurora B inhibitor 

(Fig. 1.4 A and B). Our results show that Aurora B kinase activity destabilizes 

kinetochore attachments of polar chromosomes in CENP-E depleted cells and 

demonstrates that phenotype (a) is caused by transient activation of the SAC 

due to destabilization of kinetochore microtubule attachment of polar 

chromosomes by the activity of Aurora B. 

 

 

 

Figure 1.4 Mad1 localization before and after Aurora B kinase inhibition. (A) 
Immunofluorescence images of control CENP-E depleted cells showing Mad1 
localization (green) DNA is shown in blue and CREST in red with or without 35 
min. treatment with ZM447439. Nocodazole (microtubule depolymerising drug) 
was also added to the cells. (B) Graphic representation of immunofluorescence 
ratio of Mad1 to CREST signal under control of (DMSO) or ZM447439 treatment. 
Error bars represent SD 

 

2.2 CENP-E-depleted cells do not slip out of mitosis but satisfy the 
SAC. 
 

CENP-E depletion causes also a second phenotype in which cells exit 

mitosis without proper chromosome alignment, which could be due either to 

mitotic slippage (Andreassen and Margolis, 1994) or by satisfying the SAC 

(reviewed in Musacchio and Salmon, 2007). Indeed, as indicate above, that 

37% of the cells have prometaphase delay that extends more than a five-hour 

A B
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delay and then undergo anaphase with a few misaligned chromosomes (data 

not shown) (Maia et al. 2010). Interestingly, cells that bypass the SAC are 

known to retain checkpoint proteins Mad1, Mad2, and BubR1 at kinetochores 

in telophase and do not degrade the APC/C substrate Tpx2 while cells that 

satisfy the SAC or overcome the checkpoint do not exit mitosis with SAC 

proteins at the kinetochores (Brito and Rieder, 2006). Therefore, we used 

immunofluorescence with antibodies against Mad1 and Tpx2 on CENP-E 

depleted cells associated with the phenotype (b) that had been arrested in 

mitosis for at least 5 hours. We found that while in mitotic cells Mad1 and 

Tpx2 was detected at kinetochores (Fig. 1.5 A, inset 1 and C), cells that exited 

mitosis and formed micronuclei show no positive signal (Fig 1.5 B, inset 2-3 

and C). The absence of both Mad1 and Tpx2 in the (micro) nuclei of CENP-E 

depleted cells indicates that exit from mitosis was associated with SAC 

silencing and was not due to mitotic slippage. 
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Figure 1.5. CENP-E depleted cells silence the SAC. Immunofluorescence 
images for the SAC protein Mad1 (A and B) and the APC/C substrate Tpx2 (C). 
Note the presence of Mad1 on the kinetochores of the polar chromosomes 
(inset 1) and absence of Mad1 in telophase (inset 2-3). (C) Tpx2 localization in a 
CENP-E-depleted mitotic cell and absence of Tpx2 in micronuclei 
(arrowheads). 

 
3. DISCUSSION 

 

Our data shows that CENP-E facilitates efficient and timely chromosome 

congression but is not absolutely essential for full chromosome alignment in 

most cells. In the absence of CENP-E a few chromosomes fail to congress 

and stay close to the spindle poles. Although, kinetochores of these polar 

chromosomes can interact with microtubules (a few polar chromosomes 

A

B

C
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negative for Mad1 are always found, Fig. 1.2 A and B), these microtubule 

attachments are not stabilized because of high local Aurora B kinase activity. 

Instead, these pole-proximal kinetochore-microtubule attachments appear to 

be destabilized by Aurora B, resulting in a SAC-dependent mitotic delay. In 

the majority of the CENP-E-knockdown cells this allows extra time for 

chromosome congression by CENP-E independent mechanisms (McEwen et 

al., 2001), thus reducing chromosome segregation errors. Yet, in a subset of 

CENP-E depleted cells that arrest for long periods and that exit mitosis with 

misaligned chromosome the SAC was eventually silenced and the question 

remains; how do these cells with clearly miss-attached kinetochore manage to 

silence the SAC?. Studies in Xenopus extracts showed a direct link between 

CENP-E and the mitotic checkpoint protein BubR1 suggesting that depletion 

of CENP-E could directly weaken the checkpoint (Mao et al., 2003; Yao et al., 

2000). However, in human cells CENP-E knockdown does not shorten the 

mitotic delay induced by the microtubule poisons taxol and nocodazole 

(Tanudji et al., 2004); (data not shown), indicating that CENP-E is not required 

for a robust SAC response in these cells. In addition, it was found that 

inhibition of Aurora B only silenced the SAC in CENP-E-depleted cells when 

microtubules were present. In the presence of the microtubule depolymerizing 

drug nocodazole, co-inhibition of Aurora B and CENP-E did not further 

compromise the mitotic checkpoint. This indicates that in the CENP-E-

depleted cells the mitotic delay is due to the microtubule destabilizing activity 

of Aurora B (Pinsky et al., 2005) and silencing of the SAC in a subset of the 

cells is most likely due to acquisition of microtubule attachments. So, how do 

the kinetochores of these polar chromosomes eventually become attached? 

Since polar chromosomes still show high levels of active Aurora B kinase 

after a prolonged time in mitosis (data not shown), it is unlikely that these 

chromosomes acquired stable microtubule attachments because Aurora B 

kinase activity ceased over time. In light of recent data supporting a role for 

CENP-E in microtubule destabilization (Maffini et al., 2009; Maia et al., 2007), 

we favoured the idea that because microtubules are more stable in the 

absence of CENP-E, the microtubule destabilization rate on the polar 

chromosomes will be slower increasing the likelihood that the final 1-2 polar 

chromosomes eventually become attached even when Aurora B kinase 
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activity is high. This idea is supported by experiments that show that error 

correction can be attenuated over time while Aurora B is active, if 

microtubules are stabilized by high taxol concentrations (Yang et al., 2008). 

However, mitotic exit in cells of phenotype (b) could be a result of cohesion 

fatigue (Daum et al., 2011). 

Finally, although a cooperative function for Aurora B in CENP-E dependent 

congression has been implied earlier (Kapoor, 2006), our work suggest that in 

normal cells high local Aurora B kinase might release polar kinetochores from 

end-on attachments by destabilizing pole-proximal syntelic attachments. In 

this way, Aurora B could allow lateral attachment and CENP-E dependent 

sliding along microtubule bundles to promote efficient chromosome 

congression and timely anaphase onset. 

	
  

4. MATERIAL AND METHODS 
 

4.1 Cell Culture and siRNA 
 

HeLa cells were cultured in DMEM with 6% FCS and antibiotics, at 37ºC in 

a humidified atmosphere with 5% CO2. For cell synchronization at the G1/S 

transition, cells were incubated with 2.5 mM thymidine for 24 hours. siRNA 

transfection was done with HiPerFect (Qiagen) according to the 

manufacturer’s protocol. The CENP-E siRNA duplex 

(GAACUAAGAAGAAGCGUAU) and the Luciferase siRNA duplex 

(CGUACGCGGAAUACUUCGA) were from Dharmacon®. Drugs were used at 

the following concentrations: nocodazole, 0.25 µg/mL; MG132, 5 µM; 

ZM447439 (Tocris Bioscience, Bristol, UK), 2µM. Incubation with ZM447439 

was done for 35 minutes unless stated otherwise. To determine the mitotic 

index, RNAi-treated cells were released from a thymidine block to DMSO or 

nocodazole for 16 hours. Before fixation incubation with DMSO/ZM447439 

was performed for 1 hour. Cells were fixed for 5 minutes in 8% formaldehyde, 

washed once with PBS, followed by 5 minutes incubation in ice-cold 

methanol. After washes with PBS, cells were counterstained with DAPI. 

Determination of the mitotic index was done in a Thermo Scientific 
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Cellomics® ArrayScan® VTI, software version x.5. >104 cells were counted 

per condition. 

 

4.2 Antibodies and Reagents 
 

The following antibodies were used: Aurora B mAb (Transduction 

Laboratories, Lexington, KY), pT232-Aurora B pAb (Rockland, Philadelphia, 

PA), human CREST antiserum (Cortex Biochem, San Leandro, CA), Mad1 

mAb (gift of A. Musacchio, European Institute of Oncology, Italy), Tpx2 mAb 

(BioLegend, San Diego, CA), CLIP-170 pAb (gift of N. Galjart, Erasmus 

Medical Center, The Netherlands), CENP-E (gift of D.Cleveland, Ludwig 

Institute for Cancer Research, CA), α-Tubulin (Sigma, St. Louis, MO). 

Secondary antibodies for immunofluorescence (Alexa-488, -568 and -647) 

were for Molecular Probes (Eugene, OR). 

 

4.3 Immunoblotting and Immunofluorescence 
 

Immunoblotting was performed as described (Smits et al., 2000). Prior to IF 

coverslips were washed with PEM buffer (100 mM Pipes, 10 mM EGTA, 1 

mM MgCl2), fixed for 10 minutes in 4% paraformaldehyde/0.2% sucrose, then 

washed once with PEM and permeabilized with 0.5% Triton X-100/PEM for 15 

minutes. For IF, cells were washed with DPBS and incubated with the 

appropriate primary/secondary antibody combinations diluted in DPBS/3% 

BSA. Cells were counterstained with DAPI to visualize the DNA. Images were 

acquired using a Zeiss Axio Imager microscope (Carl Zeiss, Germany) using 

an Axiocam (Carl Zeiss, Germany). Data stacks were deconvolved using the 

Huygens Professional software (Scientific Volume Imaging BV, The 

Netherlands).  

4.4 Quantification of Active Aurora B 
 

For quantification of Aurora B centromere activity, cells were stained with 

pT232-Aurora B and CREST antibodies. Images with multiple z-planes were 
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captured and the integrated density of the T232 signal was quantified in 

individualized kinetochore pairs with ImageJ software (NIH) after 

deconvolution of the data stacks. Normalization for the background signal was 

performed. The average integrated density for pT232 was set in relation to 

average integrated density of the CREST signal. Five randomly chosen 

individual kinetochore pairs were analysed per cell in five different cells, in 3 

independent experiments. 
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1. INTRODUCTION  
 

The kinetochore provides the interface between the chromosomes and spindle 

microtubules, is also required for sister chromatid segregation and is a signalling 

center associated with the Spindle Assembly Checkpoint. The size and complexity 

of kinetochores vary considerably among different species (Chan et al., 2005). The 

interface responsible for the interaction between microtubules and chromosomes 

involves a conserved super-complex of proteins, known as the KNL1/Mis12/Ndc80 

(KMN) network.  

The Mis12 complex is composed of 4 subunits: Mis12, Nnf1, Nsl1 and Dsn1 

that localize at the inner plate of the Kinetochore (reviewed in Chan et al., 2005). 

The Drosophila Mis12 gene product was first reported by Meraldi and co-workers, 

and initially characterized in two different studies (Meraldi et al., 2006). Mis12 

proteins show low similarity among eukaryotes (approximately 15%-30%) with the 

highest levels of divergence found in the Drosophila protein. Nevertheless protein 

sequence alignments of Mis12 homologues of fungal, plant and metazoan 

revealed that sequence similarity is confined to 30 to 100 residues interspersed by 

stretches of low-homology, many of which correspond to coiled coil domains 

(Meraldi et al., 2006). In Drosophila S2 cell line Mis12 has been reported to 

localize at the kinetochores throughout the cell cycle similar to what was observed 

in fission yeast and humans; (Kline et al., 2006; Goshima et al., 2003; 1999). 

However in Drosophila transgenic embryos expressing EGFP-Mis12, the 

centromeric signal observed was mitosis-specific (Schittenhelm et al., 2007). 

Mis12 was first described in fission yeast where its inactivation leads to extensive 

DNA missegregation (Goshima et al., 1999). Although the Mis12 complex is not 

fully conserved between Drosophila and vertebrates (the former does not appear 

to contain the Dsn1 subunit), it has been shown that depletion of different subunits 

leads to similar phenotypes including defects in chromosome alignment, 

orientation, and segregation (Venkei et al., 2011; Przewloka et al., 2007; Kline et 

al., 2006; McAinsh et al., 2006; Obuse et al., 2004b; Goshima et al., 2003). 

Nevertheless, human Nnf1 was found not to be required for chromosome 

attachment per se, but rather for the metaphase alignment of chromosomes and 

for the correct generation of inter-kinetochore forces (McAinsh et al., 2006). 
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Moreover, some data indicates that depleting hMis12 by RNAi leads to a mitotic 

delay (Kline et al., 2006). Previous studies only reported a mitotic delay after 

hDsn1 depletion (Obuse et al., 2004b) but not after hMis12 depletion (Goshima et 

al., 2003). Recently, a mitotic delay has been reported in a study performed in 

Mis12 and Nsl1 Drosophila mutants (Venkei et al., 2011). 

Depletion of Mis12 components in yeast strongly inhibit recruitment of several 

outer kinetochore proteins, including Ndc80 and the DAM–DASH complex (Kline 

et al., 2006; Scharfenberger et al., 2003), and may also affect the localization of 

some inner centromere proteins such as CENP-A, although there are conflicting 

data on their interdependence. The data so far support a model in which the Mis12 

complex is functionally downstream and physically poleward of the inner 

kinetochore proteins and is necessary for correct localization of the outer 

microtubule binding proteins, as well as some checkpoint components such as 

Bub1, BubR1, Mad1, and Mad2 (Venkei et al., 2011; Kline et al., 2006; McAinsh et 

al., 2006). 

Therefore, it is crucial to study the function of each individual component of the 

KMN network in Drosophila in order to understand the evolutionary adaptations 

that may have occurred in its structure. In this section we will focus on the 

characterization of Drosophila Mis12 protein, its dynamics during the cell cycle and 

the mitotic phenotype resulting from its depletion. 

 

2. RESULTS 
 

2.1 Mis12 antibody production 
 

An antibody against DmMis12 was produced. We used the full-length cDNA 

clone RE19545 from the Drosophila Genomics Resource Center. The fragment 

was amplified in order to create two restriction sites EcoRV and EcoRI, digested 

and then cloned into pET-30 (A) expression vector using the same restriction sites 

(EcoRV and EcoRI) (Fig. 2.1). The positive recombinants as determined by 

restriction mapping were then sequenced to confirm if the Mis12 cDNA was cloned 

in frame (see Appendix 3). 
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Figure 2.1 Schematic representation expression plasmid pET-30a (+)_Mis12. Mis12 
cDNA was amplified and cloned into the expression vector using EcoRV and EcoRI 
sites. 

 

E.coli BL21 cells were transformed and protein synthesis was induced by the 

addition of 1 mM IPTG. After a 3 hours induction the bacterial suspension was 

sonicated and two different fractions were obtained, soluble fraction and insoluble 

fraction (inclusion bodies). The different samples were run in a SDS-PAGE gel. 

The SDS-PAGE analysis showed an efficient induction with most of the protein 

retained in the inclusion bodies (Fig. 2.2). The extraction of the inclusion bodies 

and solubilisation with guanidine hydrochloride was performed and the protein was 

purified using affinity chromatography. The chromatogram graph showed that the 

protein was enriched mainly in 3 of the 8 fractions obtained. The result was then 

confirmed in a 12% SDS-PAGE gel showing a high level of purification where the 

Mis12 protein was present in fraction 3,4 and 5. 

 

!"#$%&'()*+,-./01(



CHAPTER 2 - RESULTS   

 76 

 

Figure 2.2 SDS-PAGE gel. A - Analysis of the different bacterial fractions before and 
after induction with 1mM IPTG. The induced fractions where subjected to 
sonication and different fractions where obtained (soluble fraction; insoluble 
fraction – inclusion bodies) B - Purified protein fractions obtained by affinity 
chromatography. Highlight in red injected fractions for immunization.  

 

These fractions were precipitated with Trichloroacetic acid (TCA) and 

ressuspended in PBS to a final concentration of 1µg/µl. The protein suspension 

was injected in two rats and one rabbit. Immunofluorescence was performed in 

Drosophila S2 fixed cells to determine specificity and cellular localization of the 

antibody. A final dilution of 1:5000 either for rat and rabbit was established. A co-

staining with the centromeric marker CENP-C and CID was used confirming that 

Drosophila Mis12 protein localizes at the external region of the centromeres in 

mitotic cells. Specific signals were also present in interphase cells. The antibodies 

were also tested by western blot using a dilution of 1:1000 (Fig. 2.3).  
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Figure 2.3 Specificity of Mis12 antibodies by immunofluorescence and western-blot. 
(A, B) Anti-rabbit and anti-rat Mis12 antibodies were used 1:5000 in 
immunofluorescence. Specific signals of Mis12 (green) were detected co-localizing 
with CID and CENP-C (red) centromere markers in mitotic and cells in interphase. 
Scale bar is 5µm. (C, D) Antibody titration of anti-rabbit and anti-rat Mis12 
antibodies where 1:1000 of diluted antibody was used. Total protein extracts from 
1x106 cell/mL, 50µg, 25µg and 10µg cells were separated by SDS-PAGE and the 
protein level of Mis12 was monitored using western blotting techniques. α-tubulin 
was used as a loading control.  

 

 2.2 Establishment of S2 cell line stably expressing Mis12-GFP. 
 

In order to study the dynamic behavior of Mis12 during cell cycle, a cell line 

stably expressing Mis12 tagged with GFP was constructed using the S2 

Drosophila cell line derived from a macrophage-like lineage. The cloning of Mis12 

tagged with GFP was achieved using pENTR Directional TOPO Cloning Kit 

(Invitrogen). This technique allows the insertion of the cDNA in the correct 

orientation with efficiencies equal to or greater than 90%. The full-length cDNA of 

Mis12CID 10X

10X

Mis12CENP-C 10X

10X

Tubulin

Mis12
Rabbit

Tubulin

Mis12
Rat

1.0x106
 cel/mL 50 g 25 g 10 g

1.0x106
 cel/mL 50 g 25 g 10 g

A

B

C

D

Rabbit

Mis12CIDDNA

Mis12CENP-CDNA

Rat



CHAPTER 2 - RESULTS   

 78 

Mis12 was amplified by PCR using a forward primer with a CACC sequence in 5´ 

and then inserted in the entry vector. One Shot chemically competent E.Coli were 

transformed and restriction analysis with Acc1+EcoRV, Acc1 and EcoRV was 

performed to confirm positive recombinants. To transfer our gene of interest 

(Mis12) from the entry vector to the destination vector we used a LR 

recombination reaction using Gateway LR Clonase II enzyme mix. The positive 

recombinants as determined by restriction mapping were then sequenced to 

confirm if the Mis12 cDNA was cloned in frame with GFP (see Appendix 3). Two 

destination vectors from the Drosophila Gateway Vector collection (Invitrogen) 

tagged with GFP (C-Terminal and N-terminal) under the control of an Hsp70 (heat 

shock protein) promoter were used.  

 

 

Figure 2.4 Schematic representation of pHGW-Mis12 and pHWG-Mis12 plasmid. 

 

S2 cells were co-transfected with pHGW-Mis12, pHWG-Mis12 and a G418 

selection containing pyCOBlast (Invitrogen). Both plasmids were successfully 

transfected, however, the cells expressing the pHWG-Mis12 clone were used 

preferentially because a higher basal expression was observed and therefore 

there was not need for heat-shock induction, preventing oscillations in the protein 

expression levels that could affect our studies. Since the Mis12 protein was fused 

to GFP, we were able to monitoring the protein throughout the cell cycle. Cells 

were then plated in incubation chambers treated with concanavalin A and the S2 

stably expressing Mis12-GFP was monitored using in vivo fluorescent microscopy.  

!"#$%&'()* !"$#%&'()*
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Figure 2.5 In vivo analysis of pHWG-Mis12 during mitosis. pHWG-Mis12 S2 cells 
were placed in an appropriate chamber and images were taken every 60 sec using 
time-lapse microscopy. This figure shows still images from movies of mitotic cells 
between prometaphase and telophase. 

 

2.2.1 Subcellular localization of Mis12 during the cell cycle. 
 

The time-lapse image analysis suggests that Mis12 is present throughout 

mitosis including telophase. Given that the incubation chambers were treated with 

concanavalin A, preventing cells undergo cytokinesis, complete cell division and 

proceed to G1, it was not possible to follow these cells into subsequent cycles. 

Additionally the presence of markers indicating mitotic entry was required. We also 

observed by immunofluorescence in S2 fixed cells that while Mis12 is clearly 

visible in all mitotic cells, a proportion of interphase cells do not stain with anti-

Mis12 antibodies suggesting that the protein may not be present during a specific 

time in interphase (Fig. 2.6).  
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Figure 2.6 (A) Immunofluorescence was performed in S2 fixed cells, Mis12 (green), 
CID (red) and DNA (blue). Scale bar 5µm. (B) Quantification of Mis12-interphase 
positive cells. Errors Bars represent SD. 

 

The images and further quantification show that in mitosis Mis12 is always 

present at kinetochores. However, during interphase Mis12 fails to localize in 23% 

of cells. The low percentage of cells that do not show Mis12 signal suggest that 

Mis12 do not localize in the kinetochores at a specific stage and for a restricted 

period of time during the cell cycle. 

In Drosophila embryos, S phase is the longest among the three stages of 

interphase. We found a low proportion of the S2 interphase cells that do not stain 

for Mis12, suggesting that Mis12 is not at kinetochores during a short interphase 

period (see Fig. 2.6). In order to test if this period correspond to S phase we 

perform BrdU incorporation assay to label S phase cells (Soames et al., 1994) 

followed by staining with Mis12 antibody (Fig. 2.7). 
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Figure 2.7 BrdU incorporation and Mis12 staining in cells in interphase. BrdU was 
added to S2 cells and incubated for 30 minutes. (A) Immunofluorescence was 
performed after fixation showing Mis12 in green, BrdU in red and DNA in blue. 
Scale bar 5µm. (B) Quantification of Mis12-interphase positive cells in the positive 
BrdU cell population. Errors Bars represent SD. 

 

Our results show that only 55% of the cells that incorporate BrdU are also 

positive for the Mis12 protein suggesting that Mis12 is present at kinetochores 

even when DNA is being replicated in approximately half of the cells. We were 

unable to discriminate cells in G1 or G2 and therefore the exact period in which 

Mis12 is absent from kinetochores is not yet identified.  
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2.3 Dynamic behavior of Mis12 protein 
 

To study the dynamic behavior of Mis12 at kinetochore during interphase and 

mitosis we performed FRAP on the stably transfected Mis12-GFP cell line. FRAP 

(Fluorescence Recovery After Photobleaching) was used to determine the 

turnover of Mis12 protein during different stages of cell cycle. Previous studies in 

human cells had shown that hMis12 has a fast turnover during interphase while in 

mitosis it is much more stable (Hemmerich et al., 2008). Similar results had been 

achieved while studying the orthologue Mtw1p in S. cerevisiae (Joglekar et al., 

2006). These observations suggest that hMis12 is loosely attached to 

kinetochores in interphase whereas during mitosis it is stabilized supporting the 

idea that Mis12 is not a constitutive kinetochore protein (Hemmerich et al., 2008). 

To test these hypotheses in Drosophila melanogaster we perform FRAP analysis 

during interphase and mitosis (Fig. 2.8). 

 

 

Figure 2.8 Dynamics of Mis12 during interphase and mitosis. Short-term FRAP 
experiments were performed on interphase S2 cells expressing Mis12-GFP. Images 
of GFP fluorescence were captured as single confocal sections before (pre), 
immediately after (post) bleaching at different time points as indicated in the 
graphs. Graphs on the top display quantification of FRAP measurements from at 
least 10 cells each (±SD). Data could be fitted to exponential functions (one-phase 
association) from which the mobile fraction and residence time were determined.  

 

No differences in Mis12 dynamics were observed between interphase and 

mitosis on Drosophila S2 cells. The mobile fraction is similar in the two phases 

with a value of approximately 60%. A faster turnover of 21.34s was observed in 
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mitotic cells, when compared with 31.97s in cells in interphase, however both 

values correspond to a high turnover of the protein at kinetochores. Moreover, 

both in interphase and mitosis we found that there is 40% immobile fraction of the 

protein at the kinetochores. Regarding interphase, a more detailed FRAP analysis 

is required in order to distinguish different phases in interphase and draw more 

accurate conclusions regarding the dynamic behavior of Mis12 during this stage of 

the cell cycle. Nevertheless, our results in S2 Drosophila cells indicate that Mis12 

has an opposite behavior from that described in both yeast and human cells. The 

reasons for these discrepancies are not yet know. 

 

2.4 Mitotic progression is affected in Mis12 depleted cells.  
 

To investigate the role of Mis12 protein during mitosis, it was depleted by 

double-stranded RNA (dsRNA) in Drosophila S2 cells. After 120h transfection, we 

achieved a depletion of more than 90% of the protein as determined by 

immunofluorescence and western blot (Fig. 2.9). 

 

 

Figure 2.9 Depletion of Drosophila Mis12 protein by dsRNA in S2 cells. (A) After 
120h treatment, control and Mis12 dsRNA S2 cells were fixed and immunostained 
showing Mis12 (green), DNA (blue) and CID (red). 10X magnifications of selected 
regions are shown on the right. Scale bar is 5µm. (B) Quantification of the mean 
pixel intensity of Mis12 at kinetochores using immunofluorescence images shown 
in (A) where each dot represents an individual kinetochore (n>100). (C) Total 
protein extracts from 1x106 cell/mL and 50µg cells were separated by SDS-PAGE 
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and the protein level of Mis12 was monitored using western blotting techniques. 
Quantification of Mis12 depletion levels from total protein extracts was performed 
by densitometry analysis using BioRad software and α-tubulin was used as a 
loading control.  

 

We then characterized the mitotic phenotype of Mis12 depleted cells. Previous 

studies have already reported that Mis12 depleted cells showed problems in 

chromosome congression, segregation, as well as impaired biorientation and 

spindle formation (Przewloka et al., 2007; Kline et al., 2006; McAinsh et al., 2006; 

Cheeseman et al., 2004). Depletion of Mis12 in Drosophila displayed similar 

phenotypes; spindle elongation, problems in chromosome biorientation and 

segregation with anaphase figures containing lagging chromosomes (Fig. 2.10 A 

and C). Interestingly, incubation of Mis12 depleted cells in MG132 to allow more 

time for congression did not revert the alignment phenotype (Fig. 2.10 B and D).  
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Figure 2.10 Mitotic characterization of Mis12 depleted cells. (A) Mis12 dsRNA 
treated S2 Drosophila cells were fixed and immunofluorescence staining was 
performed showing DNA (blue), tubulin (green) and CID (red). Images of different 
mitotic figures were taken. (B) Immunofluorescence in S2 cells blocked in mitosis 
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with MG132 treatment showing DNA (blue), tubulin (green) and CID (red). (C) Mitotic 
progression of Mis12 depleted cells in asynchronous culture (D) Mitotic 
progression in cells incubated with MG132. (E) Interkinetochore distance in MG132 
and colchicine treated cells. 

 

Nevertheless, Mis12 depleted cells not incubated with MG132 are ultimately 

able to exit mitosis (Fig. 2.10 A and C). To analyse the impact of Mis12 in 

generating tension across sister kinetochores (Waters et al., 1996), we mesured 

the distance between CID signals in metaphase control cells and in cells lacking 

Mis12. The interkinetochore distance was measured in a condition where tension 

can be applied by treating cells with MG132 or with colchicine where no tension at 

kinetochores is exerted. We found that in MG132 treated cells the mean 

interkinetochore distance decreased from 1.25±0.18µm in control metaphase cells 

to 0.74±0.16µm in Mis12 depleted cells where no metaphase figures were 

observed. After colchicine treatment, control and Mis12 depleted cells exhibited no 

differences in interkinetochore distances, with 0.77±0.19µm in control cells and 

0.78±0.19µm in Mis12 depleted cells. Altogether the data suggests that the net 

force produced by kinetochore microtubule attachments is diminished upon 

depletion of Mis12 (Fig. 2.10 A and E). 

 

3. DISCUSSION 
 

The mitotic localization and recruitment of Mis12 during mitosis has been widely 

studied and data reported so far is consensual, despite the small differences 

observed across species (Venkei et al., 2012; 2011; Przewloka et al., 2007; Kline 

et al., 2006). What concerns the interphase localization of the protein, in 

mammalian cells it has been reported that the Mis12 complex subunits recruit 

together to the centromere in late G2 and dissociate in early G1 (Mcainsh et al., 

2006; Kline et al., 2006), however previous work in Drosophila reported that, 

Mis12 and Nnf1 subunits are constitutive at centromere during all the cycle 

(Venkei et al., 2012, 2011). Nevertheless, ours results differ from the reported so 

far. Using both fixed and in vivo analysis we observed that there is percentage of 

interphase cells (23%) that lacks Mis12 protein (Fig. 2.6). To further understand in 

what stage of interphase Mis12 was not at centromeres we co-stained cells with 
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Mis12 antibodies after a pulse of BrdU and observed that half of the BrdU positive 

cells fails to localize Mis12. Our results suggest that Mis12 is not at kinetochores 

during G1 and then is incorporated in S phase or leaves the kinetochore during S 

phase and is incorporated again in G2. Since S phase in these cells lasts about 10 

hours and our cells were exposed to the thymidine analogous only for 30 minutes, 

it is unlikely that Mis12 is loaded after S phase is completed. Therefore, we favour 

the interpretation that Mis12 protein is loaded either during the G1/S or the S/G2 

transition. However, further experiments using specific markers for G1 and G2 will 

be necessary to determine the exact moment of unloading and loading of Mis12 

on kinetochores. 

We also analysed the dynamic behavior of Mis12 in mitosis and interphase 

using FRAP. Surprisingly, our data are not in accordance with previously 

published work for the mammalian and yeast homologues (Hemmerich et al., 

2008; Joglekar et al., 2006). These studies reported differences in the percentage 

of mobile and immobile fraction between mitosis and interphase with Mis12 being 

highly mobile during interphase and vary stable during mitosis. We found the 

turnover of Drosophila Mis12 in mitosis to be slightly higher that in interphase but 

in both stages showed a 60% of mobile fraction. 

The production of Mis12 antibodies allowed us to further study the phenotype 

caused by the depletion of the protein. The phenotype observed is very similar to 

what has been reported in previous studies (Venkei et al., 2011; Przewloka et al., 

2007), where cells fail to align their chromosomes even when blocked in mitosis by 

the addition of the proteasome inhibitor (MG132). Cells exhibited problems in 

biorientation and in anaphase, lagging chromosomes and chromatin is observed 

(Fig 2.10). The reduced interkinetochore distance also suggests that 

chromosomes are not under tension. Despite the problems observed in 

congression and biorientation, Mis12 depleted cells are not blocked in mitosis. 

This preliminary characterization will be addressed further in the next section, 

integrated in the context of other components of the KMN network. 
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4. MATERIAL AND METHODS  
 

4.1. Mis12 antibody production 
 

In order to generate the antibody that recognizes DmMis12, the full-length 

cDNA clone (RE19545) from the Drosophila Genomics Resource Center was 

cloned into an expression vector pET-30a (+) (Novagen). 

 

4.2. Construction of pET-30a –Mis12 
 

The insert Mis12 was amplified by PCR using Mis12 cDNA (RE19545) as 

template, the primers EcoRVforward - 5' 

GATATCATGGACTTCAATAGCCTAGCC 3' (creates a EcoRV site) and EcoRI 

reverse - 5' GAATTCCAGTTAGTTAGTTTATTTAATC 3' (creates a EcoRI site), 

and the enzyme FidelTaq polymerase (USB) with proof reading activity, using the 

following program: 

95ºC - 

5min 
 

95ºC - 

45sec 

30 

cycles 

58ºC - 

45sec 

72ºC - 

1min  

72ºC - 

7min 
 

 

PCR product was digested with EcoRV and EcoRI and cloned into pET-30a (+) 

digested with the same restriction enzymes. 
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4.3 Mis12 protein expression and purification. 
 
Expression 

E.coli BL21 cells were transformed with the plasmid pET-30a (+) - Mis12 and 

protein synthesis was induced by the addition of 1 mM IPTG (Sigma-Aldrich) at 

37ºC for 3h. The soluble and insoluble fractions were obtained by sonication, 

centrifuged and ressuspended in Tris-HCL 20mM pH7.5. The fractions were 

loaded in 12% polyacrylamide gel and stained with Comassie blue for protein 

expression detection. 

Inclusion bodies extraction and solubilisation 

Inclusion bodies were extracted by sonication (4ºC); cell lysates were 

ressuspended in Isolation buffer (2M urea, 20mM Tris-HCl, pH 8, and 1mg/mL of 

lysozyme) and solubilized in buffer A (6M Guanidine Hydrochloride, 20mM Tris-

HCl, 0,5M NaCl, 5mM imidazole, 1mM 2-mercaptoethanol, pH 8).  

Purification 

Affinity Chromatography was performed using high-resolution purification of 

histidine-tagged protein column (BIO RAD). The purified fractions were collected 

solubilized in buffer B (8M urea, 20mM Tris-HCl, 0,5M NaCl, 1mM 2-

mercaptoethanol, pH 8). 

 

4.4 Protein precipitation and Immunization 
 

Protein precipitation with TCA (Sigma-Aldrich) was carried out using the 

enriched fractions, recovered in PBS, sonicated and injected in two different rats 

and one rabbit. After the third immunization the serums were collected and the 

specificity was confirmed by immunofluorescence and western blot analysis.  

 

4.5. Stable S2 cell line expressing Mis12-GFP 

4.5.1 Construction of pHGW/ pHWG – Mis12 
 

Gateway technology was used in order to construct the pHGFPMis12 

(pGWMis12) and pHMis12GFP (pWGMis12) expressing plasmids. The cDNA 

(RE19545) was used as template to amplify the complete coding region of Mis12. 
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The forward primer 5’CACCATGGACTTCAATAGCCTAG 3’ (with an additional 

CACC sequence for the proper entry in the vector) and a reverse primer 5’-

ATCAGTCTCCTTCTTTATCTGCAG 3 where used together with the enzyme 

FidelTaq (USB) with proof reading activity using a specific PCR program: 

 

95ºC - 

5min 
 

95ºC - 

45sec 

35 

cycles 

55ºC - 

45sec 

72ºC - 

1min  

72ºC - 

10min 
 

 

pENTR Directional TOPO cloning Kit from Gateway System (Invitrogen) was used 

to introduce the Mis12 coding sequence to the entry vector which use the 

properties of Topoisomerase I from Vaccinia virus for efficiently cloning of blunt-

end PCR products. Topoisomerase I bind to double-strand DNA and cleaves the 

phosphodiester backbone in one strand at the specific sequence CCCTT. During 

this cleavage, the energy released is conserved in the covalent bond that forms 

between the 3′ phosphate of the cleaved strand and the tyrosyl residue (Tyr-274) 

of topoisomerase I. The directional joining of our blunt-end cDNA with the vector is 

possibly because of the sequence (CACC) that is added at the forward primer 

used to amplify our gene of interest. This sequence is the complement of the 

overhang in the cloning vector created by Topoisomerase I cleavage allowing the 

hybridization of these two sequences and the directional cloning of Mis12 cDNA. 

The Mis12 cDNA fragment and the TOPO vector (Gateway System-Invitrogen) 

were mixed with a salt solution (MgCl2 and NaCl) and incubated for 30 min at room 

temperature (RT) and then incubated on ice to proceed to transformation. 

Transformation 

One Shot chemically competent E.Coli (Invitrogen) were used. The construct 

and the cells were incubated on ice for 30 min and then heat shocked at 42ºC for 
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30 sec and put on ice for 3 min. 400µL of S.O.C. medium (Invitrogen) were added 

and cells incubated for 1h at 37ºC. The transformation reaction was plated on LB 

kanamycin (50µg/mL) (Sigma-Aldrich) plates and incubated overnight at 37ºC. 

Construction of Mis12- GFP 

This technology uses lambda integrase in order to recombine the ORF of the 

entry vector, flanked by attL1 and attL2 recombination sites, with the attR1 and 

attR2 recombination sites of the destination vector. Recombination was performed 

using Gateway LR Clonase II Enzyme mix (Invitrogen). The entry, destination 

vector and LR Clonase II were incubated for 2h at 25ºC in TE buffer (pH=8) and 

Proteinase K (Invitrogen) was added to stop the recombination. E.coli DH5α 

(Invitrogen) was transformed with LR reaction and as mentioned above. The 

transformation was plated on LB ampicillin (100µg/mL) (Sigma-Aldrich) plates and 

incubated overnight at 37ºC. The transformants were analysed by restriction 

analysis using ACCI (Biolabs) and EcoRV (Biolabs). DNA from positive colonies 

was then confirmed by sequencing analysis. 

 

4.5.2 Stable Transfection of S2 Drosophila culture cells 
 
Stable Transfections were performed using Cellfectin reagent (Invitrogen). 1x 

106 cells/mL of S2 cells were seeded in a 6 well plate in 2 mL Schneider’s medium 

(Sigma-Aldrich) supplemented with 10% of foetal bovine serum (FBS-GBICO) 

overnight at 25ºC. Solution A (1µg of pHWG-Mis12-GFP plasmid or pHGW-Mis12, 

0.2µg of the selection marker plasmid - pyCOBLAST (Invitrogen) and 25µL of 

Schneider’s medium without FBS) and solution B (5µL of Cellfectin and 25µL of 

Schneider’s medium without FBS) were prepared and incubated for 30 min at RT, 

mixed and incubated for 1h at RT. The medium was replaced with 400µL of 

Schneider’s medium without FBS and the previous solution (A+B) was slowly 

added to each well, incubated for 4h at 25ºC and then replaced with Schneider’s 

medium supplemented with 10% of FBS. After 48h, the antibiotic for selection was 

added (Blasticidin 25µg/mL) (Fluka). Every 4 days the medium was replaced and 

the drug was added until the cells reached a density of 6x106 cells/mL. Selection 

was carried out for 1 month. 
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4.6. Double-Stranded RNA interference (dsRNA), cell culture and drug 
treatment 
 

The depletion of Mis12 in Drosophila S2 cells by RNAi was performed as 

previously described (Maiato et al., 2003). Double-stranded RNA (dsRNA) was 

generated from PCR product using specific primers that incorporate a 5' T7 RNA 

polymerase promoter site (underlined sequence) and used as templates for the 

transcription reaction using MEGAscript T7 kit (Ambion) according to the 

manufacturer's instructions. 30 µg of dsRNA was used in all dsRNA experiments. 

S2 cells were grown in Schneiders’s medium (Sigma) supplemented with 10% 

foetal bovine serum (GIBCO) without antibiotics, at 25ºC. At selected time points, 

cells were collected and processed for immunofluorescence, time-lapse 

microscopy and immunoblotting. Treatment with drugs was performed as follows: 

20mM MG132 (Calbiochem) for 2 hours to inhibit the proteosome and arrest cells 

in mitosis in a checkpoint independent manner; 30mM colchicine (Sigma-Aldrich) 

for 1hour to induce microtubule depolymerisation. 

 

Protein Sequence 

Mis12 
FW 5’ TAATACGACTCACTATAGGGATGGACTTCAATAGCCTAGCC 3’	
  

RV 5’ TAATACGACTCACTATAGGGTTAATCAGTCTCCTTCTTTAT 3’	
  

 

4.7 Immunofluorescence in S2 cells 
 

Cells were centrifuged onto slides (5 minutes at 1500 rpm) and processed for 

simultaneous fixation and extraction in 3.7% methanol-free formaldehyde (Sigma-

Aldrich), in 1x PBS, 0.5% Triton X-100 (Sigma-Aldrich) for 10 minutes followed by 

3x for 5 minutes washes in 1x PBS, 0.05% Tween20 (Sigma-Aldrich). For 

sequential fixation and extraction protocol (used to visualize spindle morphology) 

the fixation solution was prepared using 3.7% methanol-free formaldehyde in 1x 

PEM for 12 minutes and then extraction was performed 3x for 5 minutes using 1x 

PBS, 0.5% Triton X-100. Primary antibody incubations were prepared in blocking 

solution (1x PBS, 0.05% Twee20, 10% FBS) for at least 1 hour at (RT) or 

overnight at 4°C, followed by 3x for 5 minutes washes in 1x PBS, 0.05% Tween20. 
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Secondary antibody incubations were performed during 45 minutes, followed by 3x 

5 minutes washes. Slides were then mounted using Vectashield mounting medium 

for fluorescence with DAPI (Vector Laboratories, Inc.Burlingame, CA 94010). Z-

series optical sections were collected with 0,24 µm using a 63x objective on an 

AxioImager Z1 (Carl Zeiss, Germany) microscope, using an AxioCam MR ver.3.0. 

Data stacks were deconvolved using the Huygens Essential version 3.0.2p1 

(Scientific Volume Imaging B.V., The Netherlands). Images treated using Fiji and 

Adobe Photoshop CS (Adobe Microsystems, CA). 

 

4.8 SDS-PAGE and Western Blot 
 

For immunoblotting, cells were collected by centrifugation, washed 1x in PBS 

and ressuspended in Ripa lyses buffer supplemented with 1x protease (Complete, 

Roche) and phosphatase (Sigma-Aldrich) inhibitors. Whole cell protein extracts 

were quantified by Bradford method and 50µg of protein was used. After boiling for 

5 minutes at 95ºC, the extracts were loaded on polyacrylamide gel, 

electrophoresis and transferred to a nitrocellulose membrane (Whatman) using a 

wet system (BioRad) for 1,5 hour at 100V. To analyse transference efficiency, 

membrane was incubated for 5 minutes with Ponceau S. Nitrocellulose membrane 

was blocked 30 minutes at RT with 5% non-fat milk in 1x PBS, 0.05% Tween20. 

All antibodies were diluted in the same blocking solution and incubated for 1 hour 

at RT or overnight at 4ºC. After incubation with primary antibody, membrane was 

washed 3x for 5 min with 1x PBS, 0.05% Tween20 and incubated for 45 min with 

secondary antibody. After wash 3x for 5 minutes with 1X PBS, 0.05% Tween20 

blots were developed by ECL method.  

 

4.9 Antibodies 
 

The primary antibodies used for immunofluorescence were newly generated 

anti-Mis12 (rabbit and rat) (1:4000), anti-Mad2 (Rb 1223) (1:10), anti-BubR1 (Rb 

666) (1:1500) (Logarinho et al., 2004); anti-phospho Histone H3 (Ser10) (Upstate) 

(1:1000), anti α-tubulin (clone B-5-1-2) (Sigma) (1:5000), anti-Ndc80 rabbit (kindly 

provided by Byron Williams and Michael Goldberg) (1:1500), anti-Spc105 (sheep) 
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(Venkei et al., 2011) (1:500) and anti-CID antibody (C.E.S. and Soren Steffensen, 

IBMC, University of Porto, Portugal, unpublished) (1:2000). Secondary antibodies 

used for immunofluorescence were Alexa 488, Alexa 568, Alexa 647 from mouse, 

rabbit, rat (Molecular Probes) (1:2000). Primary antibodies used for 

immunoblotting were anti-α-tubulin mouse DM1A (Sigma-Aldrich), anti-Mis12, anti-

Ndc80 (Byron Williams and Michael Goldberg) (1:5000). Secondary antibodies 

used for immunoblotting were HRP mouse, rabbit and rat (Vector Laboratories). 

 

4.10 BrdU analysis 
 

S2 cells were plated on glass coverslips previously coated with 0.25mg/mL 

concanavalin A (Sigma-Aldrich) and incubate during 1h at 25ºC. 10 µL of BrdU 

(Bioscience Pharmingen) were added and incubated for 30 min. Cells were 

washed 2x with 1X PBS and fixed with 3,7% Formaldehyde (Sigma-Aldrich) in 

PBS 0.1%Triton X-100 (MercK) for 15 minutes at RT. Cells were washed 3x in 

PBS 0.1% Triton X-100 and incubated with DNase I (Ambion) for 1h at 37ºC for 

DNA denaturation. Blocking was performed in PBS 0.1% Trinton X-100 with 10% 

of FBS for 45 min at RT. Cells were incubated O.N at 4 ºC in primary antibodies 

diluted in blocking solution. After washing 3x with PBS 0.1% Trinton-X100, cells 

were incubated with secondary antibodies for 45 min at RT. Coverslips were 

washed again three times with PBS 0.1 Triton X-100% for 5 min and mounted in 

Vectashield medium containing DAPI (Vector). Images were acquired on an 

AxioImager Z1 (Carl Zeiss, Germany) connected to an Axiocam MR ver.3.0 (Carl 

Zeiss, Germany) using a 63X objective and deconvolved with Huygens Pro 

(Scientific Volume Imaging, Hilversum, The Netherlands), projected using Fiji 

software and processed with PhotoShop CS (AdobeMicrosystems, CA). 

 

4.11 FRAP (Fluorescence Recovery After Photobleaching) 
 

FRAP analysis was performed at 25ºC using a laser scanning confocal 

microscope (Leica SP2 AOBS SE) using a 63X oil objective with 8X digital zoom 

with the confocal pinhole set to 3 Airy unit in a 256:256 format. Four baseline 

scans were acquired using 10% of full laser power and then the photobleaching of 
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a circular region was performed by repetitively scanning the bleach region 4x 

using 100% laser power. Images were collected every 0.995s during the recovery 

phase for a total of 140 s. The analysis was performed using Fiji software. 

Correction of the fluorescence due to photobleaching was achieved by subtraction 

of the background to the total fluorescence in the bleached area dividing for the 

control fluorescence without the background. FRAP curves were analysed using 

nonlinear regression by fitting the data points to a single exponential curve (one 

phase association) using Prism software version 4.0 (GraphPad Software Inc., 

San Diego, CA).  

Mobile fraction = (RFIt∞ − RFIt0) ⁄ (1− RFIt0) 

Mean Residence time = 1 ⁄ k 

k = constant       
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1. INTRODUCTION 
 

Proper cell division is essential to generate two genetically identical 

daughter cells and maintain genomic stability. The kinetochore is a multi-

protein structure located at the centromeres that provides the interface 

between the chromosomes and spindle microtubules, essential for the 

segregation of sister chromatids during anaphase. Additionally, it also 

participates in a surveillance mechanism known as the Spindle Assembly 

Checkpoint (SAC). 

The size and complexity of kinetochores vary considerably among different 

species, however, the network of proteins that are transiently recruited and 

involved in microtubule capture, spindle checkpoint response and regulation 

of microtubule dynamics are mostly conserved. The interaction between 

microtubules and chromosomes involves a conserved super-complex of 

proteins, known as the KMN network (reviewed in Cheeseman and Desai, 

2008). The complete KMN network appears to assemble during 

prometaphase, however in most species, the Mis12 complex localizes at the 

kinetochores throughout the cell cycle (Liu et al., 2010; Cheeseman et al., 

2008; Kiyomitsu et al., 2007). 

The kinetochore assembly pathway has been widely studied in different 

organisms. The connection of the Ndc80 complex and the KNL1 complex 

(KNL1 and Zwint-1 in humans) to the inner kinetochore appears to differ 

between different cell types. The results suggest that the Mis12 complex is 

necessary for the localization of the Ndc80 complex (Venkei et al., 2012; 

2011; Przewloka et al., 2011; 2007; Kline et al., 2006; Cheeseman et al., 

2004; Scharfenberger et al., 2003). However, it has been reported that 

kinetochore localization of Ndc80 in humans, budding and fission yeast does 

not depend on KNL1 (Liu et al., 2010; Cheeseman et al., 2008; Kiyomitsu et 

al., 2007). In human cells, CENP-T plays a major role as a link to the Ndc80 

complex (Nishino et al., 2013). Interestingly, the Mis12 complex and Spc105 

are interdependent for their kinetochore localization in yeast and Drosophila 

(Venkei et al., 2012; Przewloka et al., 2007; Cheeseman et al., 2004). The 

Mis12 complex is thought to play a central role in kinetochore assembly 
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(reviewed in Cheeseman and Desai, 2008). In Drosophila, it interacts with the 

centromere protein Cenp–C via the Nnf1 subunit (Przewloka et al., 2011) 

however in vertebrates it is not clear which subunit of the Mis12 complex is 

responsible for the interaction (Screpanti et al., 2011). The most distal subunit 

of the Mis12 complex is Nsl1, that interacts with the Ndc80 complex via 

Spc25/Spc24 and also Spc105 using different interfaces (Petrovic et al., 

2010). 

The Ndc80 complex interacts with microtubules through the N-terminal tail 

and calponin homology domain of Ndc80 (DeLuca and Musacchio, 2012; 

Tooley and Stukenberg, 2011; Alushin et al., 2010; Joglekar et al., 2010; 

Guimaraes et al., 2008; Miller et al., 2008; Wilson-Kubalek et al., 2008). Point 

mutations in the calponin homology domain prevent stable kinetochore-

microtubule attachments in vivo and in vitro and the affinity of the Ndc80 

complex for microtubules is compromised (Sundin et al., 2011; Tooley et al., 

2011; Ciferri et al., 2008; Alushin et al., 2010; Miller et al., 2008; Guimaraes et 

al., 2008; Ciferri et al., 2007; DeLuca, 2002). Recently, it has been shown that 

the Ndc80 complex has a bent in its structure that corresponds with a break in 

registry of the central coiled-coil region within NDC80 (Wang et al., 2008). 

This region of Ndc80 complex is called loop domain and it is involved in 

stabilizing kinetochore-microtubule attachments (Zhang et al., 2012; Varma et 

al., 2012; Matson and Stukenberg, 2012), thus providing a total of three 

different kinetochore-microtubule binding domains within the Ndc80 complex 

(Maure et al., 2011). 

Within the KMN network Ndc80 is not the only protein involved in 

microtubule binding. Despite of Mis12 complex not being able to co-sediment 

with microtubules alone, its presence significantly increases the microtubule-

binding capacity of KNL1/Spc105 (Cheeseman et al., 2006). Furthermore, it 

has been shown that Aurora B kinase phosphorylates three spatially distinct 

targets within the KMN network, which are essential for generating different 

levels of microtubule-binding activity, resulting in a tightly regulated 

mechanism (Welburn et al., 2010). Several studies have been addressing the 

role of KMN network in kinetochore-microtubule attachment. When the Mis12 

complex is absent defects in chromosome alignment and biorientation, 

unstable kinetochore-microtubule interactions and abnormal chromosome 
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segregation occur (Venkei et al., 2011; Przewloka et al., 2007; Kline et al., 

2006; Obuse et al., 2004b; Goshima et al., 2003). Similarly, depletion of the 

Ndc80 complex results in impairment of kinetochore-microtubule attachment 

and chromosome missegregation. When Spc105 is depleted, a stronger 

phenotype is observed in respect to the stability of kinetochore-microtubule 

interactions. In C.elegans depletion of KNL1 causes a “kinetochore null” 

phenotype (Desai et al., 2003). A similar phenotype is observed in Drosophila, 

where depletion of Spc105 results in a severely impaired chromosome 

congression, alignment and segregation, leading to a dramatic decrease in 

cell viability (Przewloka et al., 2007). In human cultured cells the phenotype is 

milder. Nevertheless, stable kinetochore-microtubule fibers are significantly 

reduced and chromosome missegregation is observed. This is most probably 

due to the KNL1-independent kinetochore localization of Ndc80 (Cheeseman 

et al., 2008; Kiyomitsu et al., 2007). 

It is well established in metazoans that microtubule subunits are 

continuously added to microtubule plus ends at the kinetochore in mature K-

fibers and is counter balanced by their removal at their minus ends at spindle 

poles. This condition is known as microtubule poleward flux (Mitchison, 1989). 

In Drosophila S2 cells, kinetochore-microtubule flux requires cytoplasmic 

linker associated protein (CLASP) mediated incorporation of tubulin subunits 

at kinetochores (Maiato et al., 2005) balanced by KLP10A-dependent MT 

depolymerization at the poles. Since, the depletion of KMN network perturbs 

the kinetochore-microtubule interaction, it is probable that in these conditions 

the kinetochore-microtubule flux is altered significant biological impact. 

The role of KMN network in SAC response is not yet well understood. The 

first studies in human cultured cells only reported a mitotic delay after hDsn1 

depletion but not after hMis12 depletion (Obuse et al., 2004b; Goshima et al., 

2003). Subsequently, others reported a mitotic arrest after depletion of the 

four subunits separately (Kline et al., 2006). More recently, a delay in 

anaphase onset has been observed in Mis12 and Nsl1 Drosophila mutants 

embryos (Venkei et al., 2011). Studies performed in budding yeast reported 

an impairment of checkpoint response in Spc24 and Spc25 conditional lethal 

mutants (Janke et al., 2001), while in Xenopus and human cultured cells a 

mitotic arrest is observed upon depletion of different proteins of the Ndc80 
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complex (McCleland et al., 2004; Bharadwaj et al., 2004; DeLuca, 2002). 

However, it has been shown that the extent of depletion of Ndc80 complex 

has different outcomes in the kinetochore localization of Mad2 and SAC 

response (Meraldi et al., 2004) that may explain the observed discrepancy in 

results. More recently, it has been shown that the deletion of the N-terminal 

207 amino acid region containing both the tail domain and a calponin 

homology (CH) domain of Ndc80 protein abolishes the SAC (Guimaraes et 

al., 2008). Also, recent findings suggest that KNL1 plays a role in SAC 

activation and silencing. It has been shown that SAC activation at 

kinetochores is dependent on recruitment of Bub1-Bub3 to the MELT motifs 

on KNL1 through phosphorylation by Mps1 (Yamagishi et al., 2012; London et 

al., 2012; Shepperd et al., 2012). The interaction of TPR domains of BubR1 

and Bub1 with KI motifs in the N-terminal region of KNL1 are also important 

for the SAC in human cells (Krenn et al., 2012; Bolanos-Garcia et al., 2011; 

Kiyomitsu et al., 2011). A second pathway of SAC activation involving ZWINT 

was described in metazoans. ZWINT is associated both to KNL1 and the RZZ 

complex and is necessary for the recruitment of MAD1 to kinetochores 

(Kiyomitsu et al., 2007; Kops et al., 2005). KNL1 also has a binding motif to 

PP1, which recently has been shown to be involved in SAC silencing 

(Rosenberg et al., 2011; Pinsky et al., 2009; Vanoosthuyse and Hardwick, 

2009). Additionally, a second mechanism of SAC silencing has been identified 

in C. elegans involving the N-terminus of KNL-1 (Espeut et al., 2012). 

While depletion of different KMN network components in different model 

systems leads to apparently similar phenotypes, a directly comparable 

detailed study of the different KMN components in the same system is 

lacking. Therefore, in this study we have analysed in detail the interactions 

between kinetochores and microtubules in Drosophila tissue culture cells 

upon depletion of different KMN components, as well as the outcome in terms 

of chromosome segregation. Additionally, we also addressed the role of the 

individual components of KMN network in SAC signalling. 
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2. RESULTS 
 

2.1 KMN network components depend partially on each other for 
kinetochore localization 
 
Kinetochores are highly dynamic structures whose composition changes to 

fulfil different requirements at specific stages of mitosis. The structural core of 

the kinetochore contains a super-complex of proteins, the KMN network 

named after its constituents: KNL-1/Spc105/Blinkin, Mis12 and Ndc80 

complexes. All together the KMN network is responsible for the proper 

interaction between chromosomes and microtubules. Therefore, it is of crucial 

importance to study the function of each individual component of the KMN 

network in different species in order to understand the evolutionary 

adaptations that may have occurred within this structure. 

To further dissect the role of the KMN network assembly and the role of 

each component, we performed double-stranded RNA (dsRNA) interference 

in Drosophila S2 tissue culture cells. Mis12 and Spc105 were depleted 

individually while to deplete the Ndc80 complex we performed simultaneous 

depletion of two subunits, Ndc80 and Nuf2. The protein levels upon dsRNA 

treatment were monitored by immunofluorescence and western blot (Fig. 3.1). 

An efficient depletion of Mis12 was achieved after 120h of RNAi treatment 

(Fig. 3.1 A and B). The Ndc80 complex (Ndc80 and Nuf2) and Spc105 protein 

levels were evaluated after 96h post-treatment (Fig. 3.1 A, C and D, B´, C´ 

and D). More than 90% of depletion of protein levels was observed for all the 

components tested (Fig. 3.1 A). 
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Figure 3.1 KMN network depletion by dsRNA. (A) Antibody titration of KMN 
components. 100, 50, 25, 10µg of S2 cells total protein extracts were separated 
by SDS-PAGE and the presence of Spc105, Ndc80 and Mis12 proteins was 
detected by western blot. The level of the same proteins upon dsRNA 
treatment was evaluated in protein-depleted extracts where 50µg of protein 
was loaded. (B, C, D) Immunofluorescence analysis of control or depleted cells 
for Mis12, Spc105 and Ndc80/Nuf2 showing CID or CENP-C (red), Mis12, Ndc80, 
Spc105 (green), Nuf2 (white) and DNA (blue). CID and CENP-C were used as 
centromere markers. Magnifications of selected regions are shown on the right 
panel. Scale bar is 5µm. (B’, C’, D’) Quantification of the mean pixel intensity of 
Mis12, Spc105, Ndc80 and Nuf2 at kinetochores relative to the centromeric 
signals (CID and CENP-C) using immunofluorescence images shown in (B, C, 
D) where each dot represents an individual kinetochore, (n>100). Error bars 
represent SEM. 
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Next we investigated the dependencies of kinetochore recruitment between 

the different KMN components during mitosis. Surprisingly, a reduction of 

Mis12 signal at kinetochores was observed upon depletion of Ndc80/Nuf2 and 

Spc105 (Fig. 3.2 A and D). Ndc80 levels were highly reduced when we 

depleted either Mis12 or Spc105 (Fig. 3.2 B and D). A reduction in Spc105 at 

kinetochores is observed when the Mis12 protein is depleted (Fig. 3.2 C and 

D). These results indicate that in Drosophila there is a partial dependency of 

Mis12 on Ndc80/Nuf2 and Spc105 for its kinetochore localization. Additionally, 

the Ndc80 complex depends on both Mis12 and Spc105 to localize to 

kinetochores and Spc105 to a lesser extend depends on Mis12.  

 

 

Figure 3.2 KMN network proteins are interdependent for localization at 
kinetochores. (A, B, C) Immunofluorescence of KMN network proteins. CID and 
CENP-C (red) were used as centromeric markers and the KMN network 
components were labelled in green. Magnifications of selected regions are 
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shown on the right panel. Scale bar is 5µm. (D) Quantification of the mean pixel 
intensity of Mis12, Ndc80, and Spc105 at kinetochores relative to the 
centromeric signals (CID and CENP-C) using immunofluorescence images 
shown in (A, B, C), n=150 kinetochores per condition from two independent 
RNAi experiments.  

 

To determine whether depletion of Mis12 also affected other kinetochore 

proteins we also monitored the localization of ZW10 and CENP-meta (CENP-

E Drosophila homologue). A decreased in protein localization was observed 

for both proteins, showing that Mis12 also affects other components of the 

outer kinetochore (Fig. 3.3).  

 

 

Figure 3.3 Kinetochore localization of CENP-meta and ZW10 after depletion of 
Mis12 protein. (A and B) Immunofluorescence in S2 cells showing CENP-meta 
and ZW10 (green), CID (red) and DNA (blue). Magnifications of selected regions 
are shown on the right panel. (C and D) Quantifications of the mean pixel 
intensity of CENP-meta and ZW10 at kinetochores relative to the centromeric 
signals CID using immunofluorescence images shown in (A and B), n>100 
kinetochores per condition from two independent RNAi experiments.  
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2.2 Kinetochore-microtubule attachment after depletion of KMN 
network components 
 

Previously, it has been shown that the KMN network plays a crucial role in 

kinetochore-microtubule attachment. However, a detailed analysis of the 

contribution of each component in the same cell type was lacking. 

Accordingly, we analysed the kinetochore-microtubule attachment after 

depletion of the different components (Fig. 3.4). No metaphase cells were 

found upon depletion of Mis12, Ndc80/Nuf2 or Spc105, and most mitotic cells 

were in prometaphase with chromosomes dispersed along the mitotic spindle. 

However, closer analysis of these cells revealed that almost all the 

kinetochores were still able to establish lateral interactions with microtubules 

(Fig. 3.4 A). To further evaluate the nature of these kinetochore-microtubule 

attachments and to exclude the possibility that this was due to an interaction 

with immature kinetochore fibers, cells were incubated with MG132 prior to 

fixation to prevent them from exiting mitosis allowing to extend the time 

chromosomes have for alignment (Fig. 3.4 B). In this condition, chromosomes 

in control cells reach biorientation and align to the metaphase plate (Fig. 3.4 

B). However, after depletion of Mis12, Ndc80/Nuf2 or Spc105, and MG132 

incubation for 2 hours chromosomes are not able to congress and the 

kinetochore-microtubule interactions remained lateral (Fig. 3.4 B and D). This 

indicates that the lateral kinetochore-microtubule attachments we observed do 

not depend on the time cells spend in mitosis but it is intrinsic to the modified 

kinetochores after specific KMN network components depletion. Since in the 

absence of Ndc80 complex the motor proteins dynein and CENP-E are still 

able to localize to kinetochores (DeLuca et al., 2005), we investigated if these 

proteins were involved in the establishment of the lateral interactions we 

observed upon depletion of the Ndc80 complex. Accordingly, we co-depleted 

with Ndc80/Nuf2 and ZW10 a component of the RZZ complex, known to be 

responsible for dynein localization to the kinetochore (Starr et al., 1998), or 

the plus-end directed motor protein CENP-meta ( Fig. 3.4 E). The results 

show that kinetochores still bind microtubules laterally (Fig. 3.4 C and D) 

indicating that these motor proteins do not provide the molecular mechanism 
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responsible for these lateral attachments and suggesting that Spc105 is likely 

to play a significant role in this process. 

 

 

Figure 3.4 Kinetochore–microtubule interactions after depletion of KMN 
network components. (A-C) Kinetochore-microtubule interactions accessed 
either in asynchronous culture or after MG132 incubation. CID (red) was used 
as centromeric marker, α-tubulin (green) and DNA (blue). Magnifications of 
insert regions are shown on the right panel corresponding to 3 z-stacks of the 
focal plane of CID signals. (D) Overall quantification of kinetochore-
microtubule interactions in the presence of MG132 after depletion of the 
different KMN network components alone or the Ndc80 complex together with 
ZW10 or CENP-meta. Error bars represent SEM. Note that none of the 
depletions completely abolished kinetochore-microtubule interactions. (E) 
Immunofluorescence analysis of control or depleted cells for ZW10 (depletion 
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level determined by ZW10 streaming on the spindle, 11/12 control cells and 
0/22 depleted cells exhibited streaming) or CENP-meta (93% reduction on 
protein levels was observed in depleted cells by immunofluorescence, n=150 
kinetochores), showing DNA (blue), CID (red) and α-tubulin (green) in the 
merged image and the ZW10 or CENP-meta in single channel. Scale bar is 5µm. 

 

2. 3 Mis12, Ndc80/Nuf2 and Spc105 proteins have different 
contributions in kinetochore-microtubule attachment 
 
It has been reported that kinetochores that bind laterally to microtubules do 

not establish stable interactions (Inoué, 1964). To determine the level of 

stability of kinetochore-microtubule interactions after depletion of the different 

KMN network components, cells were exposed to cold treatment (0º C) for 10 

minutes prior to fixation and antibody staining. Under these conditions only 

microtubules stably bound to kinetochores should resist to cold-induced 

depolymerisation (Rieder, 1981). As a control for efficient depolymerisation, 

we depleted Cenp-C (Fig. 3.5 A), a protein that forms the interface between 

the centromere and the kinetochore and that after depletion results in a 

kinetochore null phenotype in S2 cells (Orr and Sunkel, 2010). The results 

show that after depletion of Mis12 or Ndc80/Nuf2 most cells contain stable, 

though fewer, microtubule bundles when compared to control cells (Fig. 3.5 A 

and B) and a significant proportion of chromosomes remain attached (Fig. 3.5 

A and B). Even after depletion of Spc105, microtubule bundles are still visible 

and over 40% of chromosomes remain attached to microtubules. However, 

when we co-depleted ZW10 or CENP-meta with the Ndc80 complex we 

observed a significant increase in unattached kinetochores (50% and 60% 

respectively) similar to the values observed for Spc105 dsRNA (Fig. 3.5 A and 

B). These results suggests that while dynein and/or CENP-meta are not 

required for the latter kinetochore microtubule interaction, these motor 

proteins might be playing an essential role in promoting the stability of the 

lateral attachments. 
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Figure 3.5 Stability of lateral attachments. Immunofluorescence analysis of 
control or depleted S2 cells for different KMN components after cold-treatment. 
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(A) Immunofluorescence images show DNA (blue), CID (red) and α-tubulin 
(green). Magnifications of selected regions are shown on the right panel. Scale 
bar is 5µm. (B) Quantification of kinetochore-microtubule interactions from (A). 
Control cells (n=19), Mis12RNAi (n=19), Ndc80Nuf2RNAi (n=21), Spc105 (n=12), 
Ndc80Nuf2ZW10RNAi (n=20), Ndc80Nuf2CENP-metaRNAi (n=17) from two 
independent RNAi experiments. The graph shows the percentage of 
chromosomes attached per cell including those that are bioriented, 
monoriented and laterally attached. Error bars represent SEM. 

 

Previous studies in different model systems suggest that depletion of KMN 

network proteins prevented all types of kinetochore attachment (review in 

Varma and Salmon, 2012). To further explore the nature of the interaction 

between kinetochores and chromosomes that was observed after depletion of 

KMN network components, we subjected these cells to the MG132-Taxol 

assay, previously developed to analyse strength and stability of kinetochore-

microtubule interactions (Maia et al., 2007). In this assay, cells depleted of a 

KMN network protein were incubated with MG132 to prevent mitotic exit 

followed by a high dose of taxol for a short period to cause collapse of the 

spindle prior to fixation (Fig. 3.6 A and B). Depletion of Mis12, Ndc80/Nuf2 or 

both complexes at the same time, confirms that chromosomes are able to 

maintain a strong interaction with microtubules that is sufficiently stable to 

withstand the forces exerted by the collapse of the spindle after taxol 

incubation. 
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Figure 16 Stability of lateral attachments. Immunofluorescence analysis of 
control or depleted S2 cells for different KMN components after MG132+Taxol 
assay. (A) Immunofluorescence images show DNA (blue), CID (red) and α-
tubulin (green). Magnifications of selected regions are shown on the right 
panel. Scale bar is 5µm. (B) Quantification of kinetochore-microtubule 
interactions from (A). Control cells (n=35), Mis12 RNAi treated cells (n=39), 
Ndc80Nuf2 RNAi treated cells (n=49), Mis12Ndc80Nuf2 RNAi treated cells 
(n=28), Spc105 RNAi treated cells (n=10) from two independent RNAi 
experiments. The graph shows the percentage of chromosomes attached per 
cell including those that are bioriented, monoriented and laterally attached. 
Error bars represent SEM. 
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To address whether these stable kinetochore-microtubule interactions were 

able to promote force across sister kinetochores, we measured the 

interkinetochore distance in control and RNAi treated cells after a short 

incubation with MG132 to prevent mitotic exit, using CID as the centromere 

marker. We found that the mean interkinetochore distance in control cells was 

almost double that observed after depletion of Mis12, Ndc80/Nuf2 and 

Spc105 (Table 1). As a control for loss of tension across sister kinetochores, 

control and dsRNA treated cells were subjected to colchicine incubation to 

depolymerize all microtubules before fixation. In all conditions we observed a 

decrease of the interkinetochore distance (Table 1). All together, these results 

suggest that the interaction established between kinetochores and 

microtubules after depletion of KMN network components although partially 

stable, is not able to promote sufficient forces between sister kinetochores. 

Nevertheless, these observations suggest for the first time that the lateral 

interactions established between kinetochores and the microtubule lattices 

are significantly stronger than previously thought and that motor proteins 

(dynein and CENP-meta) play a role in the stability of the lateral attachment. 

 

Table 1. Interkinetochore distance in Drosophila S2 cells treated with 
MG132 or colchicine. 

 MG132 Colchicine 

Control 1,25±0,18 (n=182) 0,77±0,19 (n=118)  

Mis12 RNAi 0,74±0,16 (n=101)*** 0,78±0,19 (n=100) ns 

Ndc80Nuf2 RNAi 0,78±0,21 (n=100)*** 0,68±0,24 (n=90)** 

Spc105 RNAi 0,72±0,17 (n=135)*** 0,80±0,18 (n=61) ns 

n = pairs of kinetochores, *** p<0,0001, **p<0,001, ns (not statistically 

significant). 

2.4 Drosophila Mis12 does not bind directly to microtubules 
 

It has already been described that Ndc80 and Spc105 proteins exhibit 

microtubule-binding and bundling activity (Tooley and Stukenberg, 2011; 

Joglekar et al., 2010; Pagliuca et al., 2009; Cheeseman et al., 2006). 

Moreover, Aurora B regulated kinetochore-microtubule binding by 
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phosphorylating different components of KMN network (Welburn et al., 2010). 

In C. elegans it has been shown that Mis12 does not co-sediment with 

microtubules. However across species there are always differences in 

function of KMN network proteins. Therefore, we investigated whether 

Drosophila Mis12 protein could bind microtubule directly. Accordingly, we 

performed an overlay assay with purified recombinant Mis12 recombinant 

protein, a commercial available microtubule associated proteins (MAPS) 

(Cytoskeleton) as a positive control and BSA as a negative control. All the 

samples were incubated with GDP or GTP and further on incubated with 

polymerized tubulin. The results were analysed by SDS-page and wester-blot 

where only MAPs showed a specific band for α−tubulin. In order to test 

specificity of the overlay assay, the experiment was repeated without 

polymerized bovine tubulin. Total cell extracts and MAPs were used and 

incubated with and without GTP, no reactivity was found for the MAPs and a 

specific band for α−tubulin was obtained for the total cell extracts meaning 

that the results obtained in the overly assay where due to the previous 

incubation with polymerized microtubules (Fig. 3.7 B). 

 

 

Figure 3.7 Overlay assay of recombinant Mis12 protein. (A) 12% SDS-page was 
performed to run the proteins samples. BSA used as negative control, MAP´s 
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as positive control and Mis12 recombinant as the protein of interest. Western-
blot was made and the proteins were incubated with polymerized tubulin in 
presence of GDP or GTP. Hybridization against α−tubulin was performed. (B) 
SDS-page and western-blot were done with total cell extracts and MAP´s. 
Hybridization with anti-tubulin antibody was made but without previous 
incubation of polymerized tubulin and in presence or absence of GTP. 

 

2.5 Chromosome segregation upon individual KMN network 
depletions. 
 
So far, our results are consistent with a very significant role for Spc105 in 

kinetochore-microtubule interactions while Ndc80 could play a role in 

facilitating end–on microtubule binding (Maure et al., 2011). These 

observations led us to explore the outcome of chromosome segregation in 

vivo after depletion of individual KMN components. Cells stably expressing 

CID-mCherry (Drosophila CENP-A homologue) and GFP-Tubulin were 

treated with dsRNA against different KMN components and followed during 

mitosis (Fig. 3.8 A-D and supplementary movies S1-S4). In order to study 

kinetochore behavior, we manually tracked kinetochore pairs from 

prometaphase until late anaphase in all conditions (Fig. 3.8 A’-D’). The results 

show that chromosomes in control cells display minor oscillations and reach 

biorientation within approximately 10 minutes prior to anaphase onset (Fig. 

3.8 A and A’). Mis12 and Ndc80 depleted cells behave differently from control. 

Cells depleted either of Mis12 or Ndc80/Nuf2 exhibit significant chromosome 

movements towards and away from metaphase plate and at anaphase onset 

a high percentage of chromatids do not separate so that sister chromatids 

segregate together (Fig. 3.8 B, B’, C and C’). Chromosomes in cells depleted 

of Spc105 do not oscillate during prometaphase and at anaphase onset sister 

chromatids do not separate and some chromosomes completely fail to 

segregate remaining at the equatorial plane of the cell (Fig. 3.8 D and D’). 
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Figure 3.8 Figure 3.8 Time-lapse microscopy of S2 cells stably expressing 
GFP–Tubulin and CID–mCherry recorded every 30s to evaluate chromosome 
segregation. (A-D) Stills were taken from representative movies and (A’-D’) 
quantitative analysis of kinetochore tracking of the corresponding condition. 
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Several pairs of kinetochores were manually tracked from prometaphase until 
late anaphase after depletion of different KMN network components. 

 

 

Figure 3.9 (A) Outcome of chromosome segregation in different conditions. 
The graph reflects the final position of pairs of kinetochores relative to initial 
position at time of anaphase onset from the time-lapse movies of S2 cells 
stably expressing GFP–Tubulin and CID–mCherry recorded every 30s to 
evaluate chromosome segregation. Each kinetochore pair is represented by 
two dots of the same colour (B) Average velocity of individual kinetochores 
during anaphase. Anaphase was divided in two phases, 0-2 minutes and 2-5 
minutes. Error bars represent SEM. 

 

Manual kinetochore tracking, allowed us also to calculate the initial and 

final position of kinetochores within the cell. This analysis showed that 

chromosome segregation after depletion of Spc105 is significantly more 

compromised than depletion of any other KMN component (Fig. 3.9 A). We 

then evaluated the ability of chromosomes to move along spindle 

microtubules by determining their velocity during anaphase. We find, as 

expected, that the average velocity of kinetochores during anaphase for cells 

depleted of any KMN component is much slower than in controls. However, it 

is surprising that even after depletion of Spc105 kinetochores are still able to 

migrate polewards, although with a velocity that is about half of control 

kinetochores. Further analysis revealed that kinetochores depleted of either 

Mis12 or Ndc80 although showing a slower poleward movement when 

compared to control cells, display first a slow phase followed by a faster 

phase, while after depletion of Spc105 no differences are observed between 

these two time intervals (Fig. 3.9 B). These results show that depletion of 

Mis12 or Ndc80 do not prevent kinetochores from showing significant 
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poleward movement while depletion of Spc105 severely compromise the 

ability of kinetochores to move along microtubules. 

 

2.6 Lateral interactions display an increased poleward “flux” 
 

Proper interactions between kinetochores and microtubules are 

responsible for the correct biorientation and segregation of chromosomes. 

Poleward flux is present in both ipMTs and kMTs being slower in the last ones 

(Maddox et al., 2003). We investigated whether lateral attachments resulting 

from KMN protein depletion have any impact in flux velocity. To address this 

question we simultaneously depleted Ndc80 and Nuf2. We choose to deplete 

these two KMN network components since depletion of the Ndc80 complex do 

not seem to affect other proteins of outer kinetochore as CENP-E that have 

been already reported as affecting flux (Maffini et al., 2009). To test this 

possibility an improved methodology for speckle microscopy (Inducible 

Speckle Imaging or ISI) was used in S2 cells stably expressing GFP-tubulin 

and CID-mCherry. Kymographs were aligned placing the mitotic spindle 

parallel to an imaginary X-axis. CID-mCherry signal at kinetochores was used 

as a reference for the lateral attachments of kinetochores to microtubules, 

allowing us to determine the rate of plus-end microtubule polymerization. The 

frames were taken every 2 sec for a period of 2 minutes (Fig. 3.10 A and B). 

In control cells kMTs flux is 0.8±0.36 µm/min (supplementary movie S5) 

where microtubules laterally attached to kinetochores in Ndc80Nuf2 RNAi 

exhibited a flux of 1.6±0.17 µm/min (supplementary movie S6) (Fig. 3.10 A 

and B). 
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Figure 3.10 Microtubule flux of lateral interactions. To carry on the experiment 
a S2 cell line stable expressing GFP-tubulin and CID-mcherry was used. (A) ISI 
images of control cells and Ndc80Nuf2 depleted cells. First frame before 
bleaching and consecutive frames reveal the dynamicity of microtubules. the 
Total cell kymographs are also represented. (B) Detailed ISI experiment and 
quantifications of end-on attachment in control cells and lateral attachment 
after depletion of Ndc80/Nuf2 with the respective kymograph of the fiber 
highlight in red. Average (± s.d.) of three independent experiments (n=105, 
control end-on attached fibers; n=98, Ndc80Nuf2RNAi lateral attached fibers). 
(C) Quantification of ipMT in control and Ndc80/Nuf2 depleted cells. 

 

The flux of microtubules in lateral attachments is double when compared to 

normal end-on attachments. It was not possible to quantify the lateral 

attachments in control cells since lateral attachments are converted to end-on 

very rapidly during early prometaphase. However when we analysed the 

interpolar microtubules in both conditions the poleward flux is very similar, 

suggesting that the differences observed between control and Ndc80Nuf2 

depleted cells are due to the nature of the attachments (Fig. 3.10 C). 

 

2.7 Spindle Assembly Checkpoint after depletion of KMN network 
proteins 
 
Recent studies indicate that SAC proteins bind to specific receptors within 

the KMN network (Kiyomitsu et al., 2007; Kline et al., 2006; Martin-Lluesma et 

al., 2002; Janke et al., 2001). It has been shown that Bub1 and BubR1 

recognize the KI motifs within Spc105 in human cultured cells and an 

impairment of SAC is observed when Spc105 is depleted (Krenn et al., 2012; 

Bolanos-Garcia et al., 2011; Kiyomitsu et al., 2011). This suggests that 

kinetochore-microtubule interaction is directly monitored by the SAC (review 

in Foley and Kapoor, 2013). However, depletion of either Mis12 or Nsl1 has 

been associated with a delay in mitotic exit in Drosophila mutants (Venkei et 

al., 2011). The Drosophila homologue of KNL1, Spc105R, has been shown to 

interact with Bub1 in a yeast two-hybrid assay. However, the interaction with 

BubR1 has not yet been confirmed (Schittenhelm et al., 2009). In order to 

further understand the role of KMN network in SAC response we quantified 

the mitotic index in control versus Mis12, Ndc80 or Spc105 depleted cells 
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either in asynchronous culture or colchicine treated cells. Despite the 

chromosomes fail to align upon depletion of each of the KMN network 

components, cells were not arrested in mitosis in asynchronous culture, since 

the mitotic index did not differ between control cells and the KMN network 

depleted cells. The only difference observed was a reduced mitotic index in 

asynchronous culture for Spc105 depleted cells. When SAC was challenged 

by treating cells with microtubule poisons (colchicine), an effect on mitotic 

index was already present for Ndc80 depleted cells after 4h of treatment 

where only after 8h a decreased in the mitotic index was observed in Mis12 

depleted cells. In Spc105 depleted cells the mitotic index is dramatic 

decreased for all time point treatments after colchicine treatment. These 

results show that for Ndc80 or Spc105 depleted cells the SAC is severely 

compromised and a weakened checkpoint phenotype was observed in Mis12 

depleted cells (Fig. 3.11 A). 

To address further the relationship between SAC proteins and the KMN 

network, we determined whether depletion of KMN components leads to 

premature exit from mitosis by in vivo time-lapse microscopy using S2 cells 

stably expressing GFP-Tubulin and the centromere marker CID-mCherry. 

Control and RNAi treated cells were filmed from mitotic entry until telophase 

and the time from NEBD to anaphase onset was determined (Fig. 3.11 B). 

Our results show that Ndc80/Nuf2 or Spc105 depleted cells exhibit premature 

mitotic exit (18.12 ±5.5 min and 17.04±3.5 min, respectively) when compared 

to (26.44±8.25 min) in control cells (Fig. 3.11 B and C). However, cells 

depleted of Mis12 take on average more time to exit mitosis (35.68±9.88 min) 

than either control cells or cells depleted of Ndc80/Nuf2 or Spc105 (Fig. 3.11 

B and C). These observations suggest that after Mis12 depletion sufficient 

levels of SAC proteins can still localize at kinetochores to generate a wait 

anaphase signal. To test this hypothesis we co-depleted Mis12 and different 

SAC proteins. The depletion of ZW10 was used to prevent Mad2 from 

localizing to kinetochores (Buffin et al., 2005). The results clearly show that 

the delay in mitotic exit after depletion of Mis12 is SAC dependent, since 

delocalization of Mad2 (depletion of ZW10) or co-depletion with BubR1 or 

Mps1 abrogates the delay (Fig. 3.11 B and C). Additionally, we also analysed 

the behavior of S2 cells when we co-depleted Mis12, Ndc80 and Nuf2. This 
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resulted in cells not being able to sustain SAC activity exiting mitosis 14 

minutes after NEDB (Fig. 3.11 B and C). Interestingly, the time from NEBD to 

anaphase onset for Ndc80/Nuf2 and Spc105 RNAi are very similar. 

 

 

 

Figure 3.11 SAC response after depletion of different KMN network 
components. (A) Mitotic index in asynchronous culture and after different 
incubation time with colchicine, quantifications were made using α-tubulin/PH3 
double staining (B) Table and (C) graphical representation of the quantification 
of mitotic time in control and after depletion of different KMN network 
components on their own or after co-depletion of different SAC proteins. 
Mitotic timing was determined from NEBD to anaphase onset in cells stably 
expressing GFP–Tubulin and CID–mCherry. Values in the graphs represent 
mean ±  SD from at least 10 different cells for each experimental condition. 
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Figure 3.11 SAC proteins localization after KMN network depletion. Levels of 
SAC proteins by immunofluorescence of SAC proteins (A) Mad2 (C) BubR1 (E) 
Mad1 (F) BUB3 at kinetochores in S2 cells after depletion of KMN network 
components. . Mad2 and BubR1, Mad1 and BUB3 (green), CID (red) and DNA 
(blue). Magnifications of selected regions are shown on the right panel. Scale 
bar is 5µm. (B, D, G and H) Quantification of the mean pixel intensity of Mad1, 
Mad2, BubR1 and BUB3 at kinetochores relative to the centromeric signal CID 
using immunofluorescence images shown in (A, C, E and F) where each dot 
represents an individual kinetochore, n>100 from two independent RNAi 
experiments. Error bars represent SEM.  

 

In order to confirm these results and to study the differences observed in 

the mitotic timing, we analysed the localization of the SAC proteins Mad2 and 

BubR1 in the absence of various KMN network components. Given the 

variability of labelling in asynchronous culture, quantification of Mad2 levels 

was only possible after cells were treated with MG132 and Colchicine (Fig. 

3.11 A). Additionally the levels of Mad1 and BUB3 were also tested for Mis12 

depleted cells (Fig. 3.11 E-H). After depletion of Mis12, Ndc80/Nuf2 or 

Spc105 we observed a strong reduction of Mad2 levels (Fig. 3.11 A and B). 

The levels of BubR1 were only affected upon depletion of Mis12 and Spc105 

(Fig. 3.11 C and D) but remained unaffected after Ndc80/Nuf2 depletion, as 

previously reported by our group. Interestingly, the same study described that 

Mps1 depends on Ndc80/Nuf2 for kinetochore localization (Conde et al., 

2013). Moreover the levels of Mad1 and BUB3 are reduced in Mis12 depleted 
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cells (Fig. 3.11 E-H). Together our results suggest that the impaired SAC 

upon Ndc80 complex and Spc105 depletion is due to an inability of the 

checkpoint proteins Mad2 and BubR1 to localize to kinetochores and the 

delay in mitotic exit after Mis12 depletion could depend on a more 

heterogeneous levels of Mad2, BubR1, BUB3 or Mps1 at the kinetochores. 

 

 

3. DISCUSSION 
 

Here we show that KMN network components play different roles in 

kinetochore-microtubule interaction and checkpoint signalling during 

progression through mitosis. Spc105 plays a major role in microtubule 

attachment probably by providing a platform for microtubule binding, while 

Ndc80 appears to be involved in transforming a lateral interaction into an end-

on kinetochore-microtubule attachment. Furthermore, dynein and CENP-meta 

appear to confer stability to the lateral kinetochore-microtubule interactions. 

The role of Mis12 is more complex since it appears to affect the overall 

stability of the KMN network both with respect to microtubule binding and 

checkpoint signalling.  

The assembly of the KMN network has been previously studied 

including in Drosophila (Venkei et al., 2012; Schittenhelm et al., 2009; 

Przewloka et al., 2007) and although the kinetochore localization 

dependencies within the KMN network are conserved among species, there 

are some exceptions, such as Ndc80, which does not depend on Spc105 for 

its kinetochore localization (Liu et al., 2010; Cheeseman et al., 2008; 

Kiyomitsu et al., 2007). In fact, the phenotype caused by the absence of 

Spc105 in human cultured cells does not display the kinetochore null 

phenotype observed in other organisms such as C. elegans and Drosophila 

(Przewloka et al., 2007; Cheeseman et al., 2004). We have also analysed the 

dependencies of recruitment between KMN network components in mitosis 

and although our results are mostly in accordance with the previous studies, 

some important differences were identified. We find that Mis12 localization is 

partially affected by the Ndc80 complex. Implying that Mis12 is not only 
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involved in anchoring the KMN network within the centromere (reviewed in 

Cheeseman and Desai, 2008) but it is itself also stabilized by the outer 

kinetochore domain.  

Previous studies have suggested that loss of any KMN network component 

leads to loss of stability of kinetochore fibers and microtubule attachment 

(Guimaraes et al., 2008; Miller et al., 2008; Kiyomitsu et al., 2007; Kline et al., 

2006; DeLuca et al., 2005; DeLuca, 2002). Our study shows that when 

different KMN network components are absent, at least within the limitations 

of a knockdown experiment, kinetochores can still interact with microtubules 

but they do so through lateral attachments. In order to test whether these 

lateral attachments were due to well-known kinetochore motor proteins we co-

depleted dynein and CENP-E, two proteins that still localize to kinetochores 

upon depletion of the Ndc80 complex (DeLuca et al., 2005). Our results show 

that these proteins are not involved in the establishment of the lateral 

interactions. This observation led us to investigate to what extent these lateral 

interactions were functional. Our data shows that depleted cells were still able 

to exhibit cold stable kinetochore fibers. Interestingly, it has been already 

observed that human cultured cells, where only Spc25 has been depleted, 

exhibit stable kinetochore fibers after treatment with calcium and cold 

(Bharadwaj et al., 2004). In Drosophila, we find that depletion of Spc105 has a 

much more severe effect on microtubule attachment than depletion of Mis12 

or Ndc80. Furthermore, when we co-depleted the proteins ZW10 and CENP-

meta together with Ndc80 complex. Although lateral attachments can be 

formed they are not stable suggesting a synergistic effect upon kinetochore-

microtubule interactions between KMN components and these motor proteins. 

The nature of the lateral interactions were studied by subjecting the cells to 

the MG132-Taxol assay and the results show complete loss of attachments 

after depletion of Spc105, in accordance with previous reports (Cheeseman et 

al., 2008; Kiyomitsu et al., 2007). However, neither the depletion of Mis12 nor 

the Ndc80 complex resulted in a complete loss of lateral attachments. 

Presumably, in the absence of Mis12 or Ndc80, microtubules are able to bind 

the kinetochore through direct interactions with Spc105, which has been 

previously shown to bind microtubules in vitro (Cheeseman et al., 2006) or 

with proteins that require Spc105 for their kinetochore localization. 
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Interestingly, in vivo functional analysis showed that, at least in cells depleted 

of Mis12 or the Ndc80 complex, kinetochores that bind laterally move 

poleward along microtubules during anaphase. Nevertheless, as previously 

reported, depletion of any KMN network proteins led to severe problems in 

chromosome alignment, biorientation and segregation (Venkei et al., 2011; 

Przewloka et al., 2007; Kline et al., 2006; Cheeseman et al., 2004; Goshima 

et al., 2003; Obuse et al., 2004b). Additionally, we observe that in Drosophila, 

depletion of Spc105 causes a severe loss in cell viability, which is not 

observed after depletion of either Mis12 or Ndc80 (data not shown). 

Interestingly, our flux analysis revealed a 2-fold increase in Ndc80Nuf2 

depleted cells (1.6±0.17 µm/min) when compared to control cells (0.8±0.36 

µm/min). This is the first time that has been described an increase in flux 

upon depletion of kinetochore proteins. Previously, it has been reported that 

the depletion of CLASP lead to impairment of microtubule subunit 

incorporation into K-fibers at the kinetochore, whereas proteins such as 

KLP10A/Kif2a regulate microtubule depolymerisation at the poles (Matos et 

al., 2009; Maiato et al., 2005). Our study also reveals that besides the 

increased flux in lateral interaction the poleward velocity of chromosomes 

during anaphase is decreased when compared to end-on attachments (Fig 

3.9 B). These observations suggests that when microtubules are not end-on 

attached to kinetochores, the flux is identical to interpolar microtubules since 

there are no kinetochores offering resistance to the entry of tubulin subunits. 

During progression through mitosis, cells monitor the interaction between 

kinetochores and microtubules through the activation of the SAC, preventing 

mitotic exit if chromosomes are not properly attached (reviewed in Foley and 

Kapoor, 2013). SAC proteins monitor kinetochore attachments through 

transient accumulation at unattached kinetochores resulting in the production 

of an inhibitor of mitotic exit. It has been shown that KNL1/Spc105 provides 

the surface for the interaction of Bub1 and possible BubR1 with kinetochores 

(Krenn et al., 2012; Kiyomitsu et al., 2011; Bolanos-Garcia et al., 2011). It has 

also been suggested that localization of Mps1 requires the Ndc80 complex. 

The localization of Mad1/Mad2 complex appears to involve the RZZ complex 

(Buffin et al., 2005). However, our analysis indicates that the levels of SAC 

proteins after depletion of KMN components do not fully explain the 
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differences observed. Mad2 levels are reduced in Mis12 and Ndc80/Nuf2 

RNAi and almost absent in Spc105 RNAi, whereas BubR1 levels are 

decreased in Mis12, almost absent in Spc105 depleted cells and normal for 

Ndc80/Nuf2 RNAi. Indeed, these results differ from those previously published 

(Schittenhelm et al., 2009) where Spc105 mutant embryos analysed during 

mitosis do not seem to abolish SAC function and levels of BubR1 are still 

detected at kinetochores. It is however possible that the mutant used was not 

a null allowing a low but significant level of proteins that could contribute 

towards a partial functional SAC. 

Previously, it has been reported that impairment of KNL-1 at kinetochores, 

either in C.elegans or budding yeast, inhibits the formation of load-bearing 

attachments (Pagliuca et al., 2009). However, recently it has been shown in 

C.elegans, that the extreme N-terminus responsible for the microtubule 

binding activity of KNL1 is not necessary either for load-bearing attachment 

formation or checkpoint activation but instead plays a role in checkpoint 

silencing at the kinetochore (Espeut et al., 2012). Our results also show that 

depletion of Spc105 has a more dramatic effect in chromosome segregation 

and cell viability when compared to depletion of other KMN network 

components. This phenotype cannot be explained purely based on the 

dependencies of recruitment of KMN network components. However, the 

impact of Spc105 in the organization of the outer kinetochore could to some 

extent explain the severity of the phenotype.  

We conclude that Spc105 plays a fundamental role for the stability of the 

kinetochore-microtubule interaction while other KMN network components 

appear to contribute to orient microtubules properly and to allow segregation 

to opposite spindle poles. Furthermore, at least in Drosophila, dynein and 

CENP-meta contribute for the stabilization of lateral attachments. The role of 

different KMN components in the SAC is becoming clearer, however, further 

work is necessary to determine why depletion of Mis12 still allows a partially 

functional checkpoint. 
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4. MATERIAL AND METHODS 
 

4.1. Double-Stranded RNA interference in Drosophila S2 cells 
 

The depletion of the proteins in Drosophila S2 cells by dsRNA was 

performed as previously described in Material and Methods Chapter 2. 30µg 

of dsRNA was used to deplete Mis12, Ndc80, Nuf2 and Spc105 proteins. At 

selected time points, cells were collected and processed for 

immunofluorescence, time-lapse microscopy and immunoblotting. 

 

Protein Sequence 

Mis12 
FW 5’ TAATACGACTCACTATAGGGATGGACTTCAATAGCCTAGCC 3’ 

RV 5’ TAATACGACTCACTATAGGGTTAATCAGTCTCCTTCTTTAT 3’ 

Ndc80 
FW 5’ TAATACGACTCACTATAGGGCTGGAGAATAAGTTGCATGATCC 3’ 

RV 5’ TAATACGACTCACTATAGGGCTCTTTATCAGGVACAAATCAC 3’ 

Nuf2 
FW 5’ TAATACGACTCACTATAGGGGCAAGGTGGATGATTACAAAGAG 3’ 

RV 5’ TAATACGACTCACTATAGGGTTAAGTGGAATTCATCTGCCAGT 3’ 

Spc105 
FW 5’ TAATACGACTCACTATAGGGAACCTATGGAAGAGGAAATGAGC 3’ 

RV 5’ TAATACGACTCACTATAGGGTAATAATAGCGTGTGCCTCGATT 3’ 

Zw10 
FW 5’ TAATACGACTCACTATAGGGTGGCACCTACGTTCGATT 3’ 

RV 5’ TAATACGACTCACTATAGGGATCATGCAGCGTGGGAAG 3’ 

CENP-meta 
FW 5’ TAATACGACTCACTATAGGGTGTTCCCGTCTTTCAACTGG 3’ 

RV 5’ TAATACGACTCACTATAGGGTCGCCTCTTTAGAGCCAACC 3’ 

BubR1 
FW 5' - TAATACGACTCACTATAGGGAGCTTTTTAAATCGACACAGGG - 3' 

RV 5' - TAATACGACTCACTATAGGGAGTAGATGCTTAGTTCCGACGC - 3' 

Mps1 
FW 5' - TAATACGACTCACTATAGGGTCTTCCAAACACCTATGACCG - 3' 

RV 5' - TAATACGACTCACTATAGGGCGTTTAGATATCCCTGCACCA - 3' 

 

4.2 Cell culture, RNAi and drug treatment 
 

S2 cells were grown in Schneiders’s medium (Sigma) supplemented with 

10% foetal bovine serum (GIBCO) without antibiotics, at 25ºC. RNAi was 

performed in Drosophila S2 tissue culture cells as previously described 
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(Maiato et al., 2003). 30µg of dsRNA was used to deplete Mis12, Ndc80, Nuf2 

and Spc105 proteins. At selected time points, cells were collected and 

processed for immunofluorescence, time-lapse microscopy and 

immunoblotting. Treatment with drugs was performed as follows: 20mM 

MG132 (Calbiochem) for 2 hours to inhibit the proteosome and arrest cells in 

mitosis in a checkpoint independent manner; 30mM colchicine (Sigma-

Aldrich) for 1hour to induce microtubule depolymerization and 100nM taxol 

(Sigma-Aldrich) for 3 hours to promote microtubule stabilization, before cells 

were collected for immunofluorescence analysis. 

MG132-Taxol assay.  

Cells were incubated with 20mM of MG132 (Calbiochem) during 1 hour 

and then with 100nM of taxol (Sigma-Aldrich) for 3 hours, which induces the 

collapse of the mitotic spindle into a monopolar structure with all the 

chromosomes localized around the aster allowing an easy read-out of the 

microtubule-kinetochore attachments; as described in (Maia et al., 2007). 

Cells were then processed for immunofluorescence as described below. 

Cold-Treatment assay. 

1.0x105 S2 cells were plated in coverslips coated with 100mg/ml 

concanavalin A (Sigma-Aldrich) in 6 wells plate and incubated with 20mM of 

MG132 (Calbiochem) for 2 hours. The 6 wells plate was placed on ice for 10 

minutes to depolymerize all microtubules except the fibers stably attached to 

chromosomes. Cells were then processed for immunofluorescence as 

described below. 

 

4.3 Immunofluorescence in S2 cells 
 

The approach was the same used in Material and Methods of Section 2. 

 

4.4 SDS-PAGE and Western Blot 
 

The approach was the same used in Material and Methods of Section 2. 
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4.5 Antibodies 
 

The primary antibodies used for immunofluorescence were newly 

generated anti-Mis12 rabbit and rat (1:4000); anti-Mad2 (Rb 1223) (1:10), 

anti-BubR1 (Rb 666) (1:1500) (Logarinho et al., 2004); anti-phospho Histone 

H3 (Ser10) (Upstate) (1:1000), anti α-tubulin (clone B-5-1-2) (Sigma) 

(1:5000), anti-CENP-C (Rb1) (Heeger et al., 2005) (1:10000), anti-Ndc80 and 

anti-Nuf2 (kindly provided by Byron Williams and Michael Goldberg) (1:1500); 

anti-Spc105 (sheep) (Venkei et al., 2011) (1:500), anti-Spc105 (rat) (Conde et 

al., 2013) (1:2000) and anti-CID antibody (C.E.S. and Sore Steffensen, IBMC, 

University of Porto, Portugal, unpublished) (1:2000). Secondary antibodies 

used for immunofluorescence were Alexa 488, Alexa 568, Alexa 647 from 

mouse, rabbit, rat, guinea pig and sheep (Molecular Probes) (1:2000). 

Primary antibodies used for immunoblotting were anti-α-tubulin mouse DM1A 

(Sigma-Aldrich), anti-Mis12, anti-Ndc80, anti-Nuf2 (Byron Williams and 

Michael Goldberg) (1:5000) and anti-Spc105 sheep (Venkei et al., 2011) 

(1:8000). Secondary antibodies used for immunoblotting were HRP mouse, 

rabbit, rat, guinea pig and sheep (Vector Laboratories). 

 

4.6 Time-lapse fluorescence imaging of S2 cells and Chromosome 
tracking 
 

Depletion of Mis12, Ndc80, Nuf2, Spc105, Zw10, Mps1 was performed in 

S2 cells stably expressing GFP-Tubulin and CID-mcherry (Coelho et al., 

2008) using dsRNA. Cells were then plated at least 15 minutes on 35mm petri 

dishes (MatTek corporation) previously coated with 0.25 µg/µl concanavalin A 

(Sigma). Images were collected using a spinning disk confocal (Andor 

Revolution XD) with an electron multiplying charge-coupled device camera 

(iXonEM+; Andor) and a CSU-22 unit (Yokogawa) based on an inverted 

microscope (IX81; Olympus), and a 100X objective was used. Z stacks were 

acquired at 0.5µm steps every 30s. Acquisition parameters, as exposure time 

or steps, were controlled by IQ2.1.2 (ANDOR Technology, UK) software. 
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Image processing and movie assembly was processed using IQ 2.1.2 

(ANDOR Technology, UK) software. 

 

4.7 Overlay Assay 
 

Microtubule overlay assays were performed as previously described 

(Saunders et al., 1997). 500 ng per lane of recombinant Mis12, recombinant 

MAP’s and BSA (Sigma) were fractionated by 12% SDS-PAGE and blotted 

onto Nitrocellulose membranes (WatProtman). The membranes were pre-

incubated in TBST (50 mM Tris, pH 7.5, 150 mM NaCl, 0.05% Tween 20) 

containing 5% low fat powdered milk for 1 h and then washed three times for 

15 min in lysis buffer. The filters were then incubated for 30 min in lysis buffer 

containing 1 mM GDP, 1 mM GTP, or 1 mM GTP-S. MAP-free bovine brain 

tubulin (Cytoskeleton) was polymerized at a concentration of 2g/ml in lysis 

buffer by addition of GTP to a final concentration of 1 mM and incubated at 

37ºC for 30 min. The nucleotide solutions were removed and the buffer 

containing polymerized microtubules added to the membranes for incubation 

for 1 h at 37ºC with addition of taxol at a final concentration of 10 M for the 

final 30 min. The blots were then washed three times with TBST and the 

bound tubulin detected using standard Western blot procedures using anti–

tubulin antibodies (Sigma) at 2.5 g/ml and the ECL detection system. 

 

4.8 Quantification of microtubule flux 
 

The flux rate was measured by Inducible Speckle Imaging (ISI), which 

produces, at a specific moment a high-contrast speckle pattern (António J. 

Pereira PhD thesis). This new technique does not require low fluorescence 

samples and S2 cells stably expressing GFP-tubulin and CID-mCherry were 

used to perform the analysis (Coelho et al., 2008). By collecting images every 

2 seconds at 25 ºC, using a spinning disk confocal system (ANDOR 

Technology) we could follow the movement of the fluorescent speckles within 

the spindle. This movement was represented on a kymograph, keeping the 

labelled kinetochores as the reference point. The slope of the lines obtained 
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from individual speckles was used to calculate flux rates on kinetochore 

microtubules. All kymographs were analysed using a program from a custom 

routine written in Matlab (Natick, MA) (Matos et al., 2009).
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General Discussion 
Cell division is the key process that allows development and function of all 

living organisms. During this process cells undergo dramatic changes that 

during mitosis result in the equal segregation of the chromosomes so as to 

give rise to two genetically identical daughter cells. Errors in chromosomes 

segregation occurring during mitosis can result either in loss of cell viability or 

tumourigenisis. Thus mitosis must be a highly regulated process in order to 

guarantee faithful chromosome segregation.  

The work presented in this thesis aimed to further our understanding on the 

individual contributions of the three complexes of KMN network in 

kinetochore-microtubule attachment and SAC signalling, as well as the role 

played by the kinetochore as a vehicle through which the chromosomes move 

within the mitotic spindle during early stages of congression and what are the 

contribution of these events for a correct chromosome segregation. 

The work in the first chapter of this thesis came in the sequence of 

previous findings. In Drosophila S2 cells, CENP-meta/CENP-E seems to 

promote destabilization of kinetochore-microtubule attachment (Maia et al., 

2007). Interestingly, previously it has been suggested that CENP-E could 

contribute for the stability of kinetochore microtubule attachment (Putkey et 

al., 2002), nevertheless, it was demonstrated by fluorescence decay after 

photoactivation (FDAP) that kinetochores microtubules have a higher half-

time turnover, in CENP-E depleted cells (Maffini et al., 2009). These data, in 

mammalian cells is in agreement with the results observed in Drosophila S2 

cells where CENP-meta/CENP-E appears to promote kinetochore-microtubule 

instability (Maia et al., 2007). Surprisingly, the same work also demonstrated 

that upon depletion of BubR1, impairment on kinetochore-microtubule 

interactions was observed and that this destabilization was reverted after co-

depletion of BubR1 and CENP-E/CENP-meta. Previously, it was already 

reported that PLK1 phosphorylates BubR1, which recruits PP2A-B56 

phosphatase to kinetochores during prometaphase (Suijkerbuijk et al., 2012), 

resulting in the negatively regulation of Aurora B activity. However, how 

CENP-E participates in this pathway is still elusive. So, we hypothesized that 

the correction of defective microtubule attachment could be mediated by 
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CENP-E through a direct or indirect regulation of Aurora B. The results in 

chapter one of this thesis do not support this model. The chromosomes that 

fail to align and stay at spindle poles after CENP-E depletion exhibit high 

levels of Aurora B activity resulting in a continuous destabilization of 

kinetochore attachment. Instead, the high levels of active Aurora B on polar 

chromosomes is indicative that Aurora B might support CENP-E in its function 

of helping the sliding of the kinetochores along microtubule bundles during 

chromosome congression as was already proposed by others (Cai et al., 

2009; Kapoor, 2006). We have shown that Aurora B kinase activity 

destabilizes the attachments of polar chromosomes present in CENP-E-

depleted cells. Apart from activating the SAC, the destabilization of 

kinetochore-microtubule attachment seems to free monoriented or synthelic 

chromosomes so they can slide towards the metaphase plate and achieving 

amphithelic attachment. However in our and other studies, in CENP-E 

depleted cells, half of the cells are still able to congress their chromosomes to 

the metaphase plate and exit mitosis (Maia et al., 2010; Johnson et al., 2004; 

McEwen et al., 2001). The reason why this happens is most probably due to 

independent mechanisms for chromosome congression providing strong 

support for the existence of redundant mechanisms for such an important 

cellular function (Putkey et al., 2002; McEwen et al., 2001; Yucel et al., 2000). 

However, this model fails to explain how polar chromosomes with high levels 

o Aurora B are still able stabilize microtubule attachments and silence SAC. 

The role of CENP-E in microtubule destabilization has already been proposed 

(Maffini et al., 2009; Maia et al., 2007), so it could be that when CENP-E is not 

present, microtubules themselves became more stable (Yang et al., 2008). 

Alternatively, the kinetochore-microtubule interactions are less prone to be 

destabilized and the probability of 1-2 polar chromosomes to congress to the 

metaphase plate increases even in the presence of high levels of Aurora B. 

This model is supported by the recent data that demonstrated that in early 

prometaphase the levels of phosphorylated KMN network components by 

Aurora B are increased, however, these levels are much lower when 

compared to situations with no tension (Welburn et al., 2010). Moreover, the 

initial interactions between kinetochores and microtubules are lateral 

(Magidson et al., 2011) and the KMN network does not seem to participate in 
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these initial interactions (Magidson et al., 2011; Cai et al., 2009). Thus, Aurora 

B and B56-PP2A cannot disturb the initial attachment, giving time the cell to 

congress and switch from lateral to end-on attachment. Our results in the third 

part of this thesis also point in the same direction. We have demonstrated that 

upon depletion of KMN network components the interactions established 

between kinetochores and microtubules are lateral, even though, when 

subjected to cold or MG+Taxol treatment the attachments in Mis12 and 

Ndc80 depleted cells were surprisingly more stable that what initially thought 

(Feijão et al., 2013). Moreover, we have also shown that at least in Drosophila 

S2 cells, kinetochore dynein and CENP-meta/CENP-E are not involved in the 

initial lateral attachments in the absence of KMN network, contributing instead 

to their stability. 

When we depleted Spc105 a more severe phenotype was observed, this 

phenotype can be explained taking in consideration two different results. First, 

in Drosophila the centromere-kinetochore structure evolved differently when 

compared to other species. The CCAN is not a conserved structure, being 

CENP-C the only conserved protein of the above-mentioned structure 

(Meraldi et al., 2006). In organisms where CCAN is conserved, the Ndc80 

complex does not depend totally on the rest of KMN network to localize at 

kinetochores since it binds directly to the inner kinetochore through interaction 

with CENP-T (Nishino et al., 2013; Suzuki et al., 2011). Therefore in 

Drosophila S2 cells upon Spc105 depletion, the two known microtubule-

binding activities are abolished. Second, the impairment of recruitment to 

kinetochores of checkpoint proteins, as well as proteins that are directly 

involved in kinetochore-microtubule attachment by depletion of Spc105 have 

been reported in different studies (Feijão et al., 2013; Chan et al., 2012; Krenn 

et al., 2012; Kiyomitsu et al., 2011; Gassmann et al., 2008). These two sets of 

results together can explain why in Drosophila S2 cells the depletion of 

Spc105 results in kinetochore null phenotype. A similar phenotype was also 

observed in S2 cells after depletion of CENP-C (Orr and Sunkel, 2010) or in 

C.elegans after depletion of KNL-1 (Desai et al., 2003). In fact, Spc105 has 

been described to be the platform for recruitment of different SAC proteins 

(Krenn et al., 2012; Kiyomitsu et al., 2011; Bolanos-Garcia et al., 2011). 

Ndc80, which has been described as necessary for the localization of Mps1 at 
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kinetochores (Conde et al., 2013; Martin-Lluesma et al., 2002), in our study 

also revealed to be SAC deficient. Despite of having the same phenotype in 

terms of SAC response, and apparently similar problems is chromosome 

alignment, biorientation and segregation, Spc105 depleted cells also display a 

severe loss in cell viability. 

Supporting these findings our in vivo functional analyses demonstrated that 

either in Mis12 or Ndc80 depleted S2 cells kinetochores that bind laterally to 

microtubules still exhibit poleward movement during anaphase, where in 

Spc105 depleted cells this is severely impaired. These results cannot be 

explained taking in consideration the KMN network dependencies, since our 

results show that when Spc105 is removed, Mis12 is still able to localize at 

kinetochores and the reverse is also true. What is consensual between our 

and other studies in Drosophila, (Feijão et al., 2013; Venkei et al., 2012; 

Schittenhelm et al., 2009; Przewloka et al., 2007) is that Ndc80 needs both 

proteins to localize to kinetochores. Finally, in Mis12 S2 depleted cells we 

observed a slight mitotic delay that is somewhat suprising given that upon 

depletion of Mis12, the levels of Mad2, Mad1, BubR1 and Bub3 were 

significantly decreased. However, we were also able to demonstrate that 

when Mis12 was co-depleted with different checkpoint proteins, the delay was 

abolished, showing that perhaps this phenotype might be due to 

heterogeneous levels of SAC proteins at kinetochores. 

The results of Drosophila Mis12 characterization reveal additional 

differences to previous studies. We demonstrated that Mis12 protein is not a 

constitutive protein at kinetochore as previously reported (Venkei et al., 2012; 

Kline et al., 2006; Goshima et al., 2003; 1999). We found that Mis12 

delocalizes from the centromeric region as labeled by CID during a small 

interval in interphase during the G1/S or the S/G2 transition. Our analyses of 

Mis12 dynamics also showed a minor increase in the turnover of the protein 

during mitosis, however the mobile fraction was identical during interphase 

and mitosis. These results are in conflict with previous ones (Hemmerich et 

al., 2008; Joglekar et al., 2006) but further work is needed to resolve this 

issue. 

The work presented in this thesis, suggests evolutionary adaptations in 

Drosophila kinetochore. Spc105 seems to share with the Ndc80 complex a 
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more active role in kinetochore-microtubule attachment, as well as 

maintaining the outer kinetochore identity. Additionally, Ndc80 together with 

Mis12 helps to reorient the kinetochore promoting conversion from lateral to 

end-on attachment also known to be essential to faithful chromosome 

segregation. 

In conclusion, our studies have provided new insights on how 

chromosomes, through kinetochores make their way towards the metaphase 

plate and how can kinetochores delay mitotic exit when errors occur thus 

avoiding aneuploidy. Furthermore, how different kinetochore protein 

complexes can contribute to chromosomes attachment to the mitotic spindle 

and the final outcome on the process of cell division. 
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APPENDIX 1  
a.a.: aminoacids 

Ab: Antibody 

APC: Adenomatous Polyposis Coli 

APC/C: Anaphase-Promoting Complex/Cyclosome 

ATM: Ataxia telangiectasia mutated 

BDGP: Berkeley Drosophila Genome Project 

bp: base pairs 

BSA: Bovine Serum Albumin 

Bub: budding uninhibited by benzimidazole 

C. elegans: Caenorhabditis elegans 

CAK: Cdk-activating kinase 

CCAN: Constitutive Centromere-Associated Network 

cDNA: complementary DNA 

Cdk: Cyclin-dependent kinase 

CENP: Centromere-associated Protein 

CID: Centromere identifier 

CLASP: CLIP-Associated Proteins 

CPC: Chromosomal Passenger Complex 

CREST: sera from a form of Systemic Sclerosis, showing Calcinosis, 
Raynaud’s phenomenon, Esophageal dysmotility, Sclerodactyly, 
Telangiectasia. Recognizes CENPA, CENP-B and CENP-C. 

DAPI: 4’,6’- diamidino-2-phenylindole 

DMEM: Dulbecco's Modified Eagle Medium 

DMSO: Dimethyl sulfoxide 

DPBS: Dulbecco's Phosphate Buffered Saline 

DNA: deoxyribonucleic acid 
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dsRNA: double stranded RNA 

E. coli: Escherichia coli 

ECL: Enhanced ChemiLuminescence 

EDTA: Ethylenediaminetetracetic acid 

EGFP: Enhanced Green Fluorescent Protein 

e.g.: exempli gratia 

EM: Electron Microscopy 

FBS: Fetal Bovine Serum 

FDAP: Fluorescence Decay After Photoactivation,  

FRAP: Fluorescence Recovery After Photobleaching 

g: gram 

G1: Gap phase 1 

G2: Gap phase 2 

GFP: Green Fluorescent Protein 

HeLa: Human immortal cell line 

HJURP: Holiday JUnction Recognition Protein 

hr: hours 

HRP: Horse redish peroxidase 

Hsp: Heat-shock protein 

IB: Immunoblotting 

IF: immunofluorescence 

ipMTs: interpolar microtubules 

KBD: Kinetochore-Binding Domain 

kDa: kiloDalton(s) 

K-fiber: kinetochore fiber 

Klp: Kinesin-like protein 

kMTs: Kinetochore Microtubules 
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KNL1: kinetochore null 

Kt: Kinetochore 

L: Liter 

LB: Luria-Bertani culture medium 

M phase: Mitosis 

M: Molar 

Mad: Mitotic-arrest deficient 

MAP: Microtubule Associated Proteins 

MBD: Microtubule-Binding Domain 

MCAK: Mitotic Centromere Associated Kinesin 

MCC: Mitotic Checkpoint Complex 

min: minutes 

MIPs: Microtubule Interacting Proteins 

Mis12 

ml: mililiter 

mM: milimolar 

MPF: Maturation/Mitosis-Promoting Factor 

mRFP: monomeric Red Fluorescence Protein 

mRNA: messenger RNA 

MT(s): Microtubule(s) 

MTOC: Microtubule-Organizing Center 

n: number of samples in the study 

NEBD: Nuclear Envelope Breakdown 

nm: nanometer 

nM: nanoMolar 

OD: Optical density 

ORF: Open Reading Frame 
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p(T232): antibody against phosphorylation in Threonine 232 on Aurora B 

PAGE: Polyacrilamide Gel Electrophoresis 

PCR: Polimerase Chain Reaction 

PEM: PIPES-EGTA-Magnesium Chloride buffer 

PBS: Phosphate-buffered saline 

RNA: ribonucleic acid 

RNAi: RNA interference 

rpm: Rotations per minute  

ROD: rough deal 

RT: room temperature 

RZZ: Rod-ZW10-Zwilch 

SAC: Spindle Assembly Checkpoint 

SAFs: Spindle assembly factors 

S. cerevisiae: Saccharomyces cerevisiae 

S phase: DNA synthesis phase 

S. pombe: Schizosaccharomyces pombe 

S2: Drosophila Schneider 2 cell line 

SCF: (Skp1/Cullin/F-box protein) 

SD: standard deviation 

SDS: Sodium dodecyl sulphate 

SDS-PAGE: Sodium dodecyl sulfate-Polyacrylamide Gel Electrophoresis 

sec: seconds 

SEM: Standard Error of the Mean 

TIM: Time In Mitosis 

TPR: Tetracopeptide domain 

Tris: Tris(hidroximethyl)aminomethane 

t-test: Student’s t test 
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UV: ultraviolet 

X. laevis: Xenopus laevis 

YFP: Yellow Fluorescent Protein 

µg: microgram 

µl: microliter 

µm: micrometer 

µM: microMolar 

ZM447439: Aurora B kinase small-molecule inhibitor 

ZW10: zeste white 10 

+TIPs: Microtubule Plus-end Tracking Proteins 
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APPENDIX 2  
Buffer A  

6M Guanidine Hydrochloride 

20mM Tris-HCl 

0,5M NaCl  

5mM imidazole 

1mM 2-mercaptoethanol, pH 8 

 

Buffer B 
8M urea 

20mM Tris-HCl 

0,5M NaCl 

1mM 2-mercaptoethanol, pH 8 

 

Isolation buffer:  
2M urea 

20mM Tris-HCl, pH 8 

1mg/mL of lysozyme) 

 

LB Medium: 
1% Tryptone 

0.5% Yeast extract 

1% NaCl 

 
LB Agar: 
1.5% (w/v) Agar in LB medium 

 
Ampicillin plates: 
Autoclaved LB Agar was melted and ampicillin added to a final 

concentration of 50 µg/ml 
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Tetracycline plates: 
Autoclaved LB Agar was melted and tetracycline added to a final 

concentration of 12.5 µg/ml 

 
PBS (Phosphate-Buffered Saline) pH 7.4: 
137 mM NaCl 

2.7 mM KCl 

10 mM Na2HPO4 

1.8 mM KH2PO4 

 
PEM: 
100 mM Pipes 

10 mM EGTA 

1 mM MgCl2 

 
2x SDS-PAGE sample buffer: 
100 mM Tris-HCl pH 6.8 

4% (w/v) SDS 

0.2% (w/v) Bromophenol blue 

20% (v/v) Glycerol 

200 mM DTT (dithiothreitol) 

 
Protein Electrophoresis: 
Stacking gel: 4% acrilamide; 125 mM Tris-HCl, pH 6.8; 0.1% SDS; 

Separating gel: 7.5% acrilamide; 375 mM Tris-HCl, pH 8.8; 0.1% SDS; 

Running buffer: 25 mM Tris, pH 8.3; 250 mM Glycine; 0.1% SDS 

 
Ponceau S: 
0.1% Ponceau 

5% acetic acid 

 
TBS: 
50 mM Tris-HCl, pH7.5 

150 mM NaCl 
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Transfer Buffer: 
25 mM Glycine 

192 mM Tris pH 8.3 

 
Enhanced Chemiluminescent (ECL): 
Solution A: 10 ml Tris 100 mM pH 8.5, 44 µl Cumaric acid (Sigma) 90 mM 

and 100 µl Luminol (FLUKA) 250 mM; 

Solution B: 10 ml Tris 100 mM pH 8.5 and 6 µl H2O2 30% (Merck) 

Solution A and B are mixed and incubated with the membrane at the time 

of ECL detection. 

 

Schneider’s Insect Medium: 
Schneider’s Insect Medium, with L-glutamine and sodium bicarbonate, 

(Invitrogen) was supplemented with 10% (v/v) FBS (Invitrogen) 
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APPENDIX 3 
pGW-Mis12 
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pWG-Mis12 
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pWG-Mis12 
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pET30 (A)_Mis12 
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APPENDIX 4 
Supplementary Movies Legends 
 

Movie S1 – Time-lapse microscopy of untreated S2 cells stably expressing 

GFP-Tubulin and Cid-mCherry. Chromosomes display minor oscillations and 

reach biorientation within approximately 10 minutes prior to anaphase onset. 

Images were collected using a spinning disk confocal system (see “Materials 

and methods” section) at intervals of 30s. NEBD is indicated by the rapid 

entry of GFP-Tubulin into the nuclear space and anaphase onset takes place 

when centromere identifier (Cid) separation is observed.  

 

Movie S2 - Time-lapse microscopy of Mis12 depleted S2 cells stably 

expressing GFP-Tubulin and Cid-mCherry. Chromosomes exhibit significant 

movements towards and away from metaphase plate, and by the time of 

anaphase onset a high percentage of chromatids do not separate so that 

sister chromatids segregate together. Images were collected using a spinning 

disk confocal system (see “Materials and methods” section) at intervals of 

30 s. NEBD is indicated by the rapid entry of GFP-tubulin into the nuclear 

space and anaphase onset takes place when centromere identifier (Cid) 

separation is observed. 

 

Movie S3 - Time-lapse microscopy of Ndc80/Nuf2 depleted S2 cells stably 

expressing GFP-Tubulin and Cid-mCherry. Chromosomes exhibit significant 

movements towards and away from metaphase plate, and by the time of 

anaphase onset a high percentage of chromatids do not separate so that 

sister chromatids segregate together. Images were collected using a spinning 

disk confocal system (see “Materials and methods” section) at intervals of 

30 s. NEBD is indicated by the rapid entry of GFP-Tubulin into the nuclear 

space and anaphase onset takes place when centromere identifier (Cid) 

separation is observed. 
 

Movie S4 - Time-lapse microscopy of Spc105 depleted S2 cells stably 

expressing GFP-Tubulin and Cid-mCherry. Chromosomes do not oscillate as 
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much as in movies S2 and S3 during prometaphase and at anaphase onset 

sister chromatids do not separate and some chromosomes fail to segregate. 

Images were collected using a spinning disk confocal system (see “Materials 

and methods” section in chapter 3) at intervals of 30 s. NEBD is indicated by 

the rapid entry of GFP-Tubulin into the nuclear space and anaphase onset 

takes place when centromere identifier (Cid) separation is observed. 

 

Movie S5 - Time-lapse microscopy using inducible speckle imaging (ISI) in 

control S2 cells stably expressing GFP-Tubulin and Cid-mCherry (see 

“Materials and methods” section in chapter 3) collecting images every 2 

seconds for 2 minutes. 

 

Movie S6 - Time-lapse microscopy using inducible speckle imaging (ISI) in 

Ndc80/Nuf2 depleted S2 cells stably expressing GFP-Tubulin and Cid-

mCherry (see “Materials and methods” section in chapter 3) collecting images 

every 2 seconds for 2 minutes. 




