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Abstract— This paper deals with discrete two-dimensional
behaviors which are described by linear systems of partial
difference equations with constant coefficients. Within the
behavioral framework a natural concept of interconnection has
been introduced by J.C.Willems, called regular interconnec-
tion. We investigate regular interconnections that yield finite
dimensional behaviors, and prove that when a finite dimensional
behavior can be achieved from a given behavior B by regular
interconnection then the controllable part of B is rectifiable.
We apply this result to characterize all stabilizable behaviors.

I. INTRODUCTION

As is well known, the central idea in the behavioral ap-
proach to control is the one of interconnection. This consists
in the interconnection of a given behavior to be controlled B
(the plant) with a suitable behavior (the controller), in order
to obtain a desired behavior Bd. If this is possible, we say
that Bd is implementable from B.

In this paper we focus on a particular kind of inter-
connection that is called regular interconnection. In such
interconnection, the restrictions imposed on the plant by
the controller are independent of the restrictions already
present in the plant, as happens, for instance, in a feedback
interconnection (see [6]).

More concretely, we are interested in studying regular
interconnections that yield finite dimensional behaviors, i.e.,
we wish to characterize the behaviors from which a finite
dimensional behavior is implementable by regular intercon-
nection.

This can be seen as a relaxation of the control objective
of implementing the zero behavior by regular interconnection
from a given behavior B, a problem that has already been
addressed in [8]. In this sense, regular implementability of a
finite dimensional behavior can be regarded as almost regular
implementability of zero.

On the other hand our problem is related with the stabi-
lization of 2D behaviors. Indeed the classical stabilization
problem can be reformulated in terms of interconnections as
the search for a controller behavior whose interconnection
with the given behavior yields a stable one. In this context,
a behavior that admits a stabilizing controller is said to be
stabilizable.

Using a notion of stability defined with respect to a
specified stability region by adapting the ideas in [5] to the
discrete case, it was recently proven, in [7], that the stable
behaviors considered there have the property of being finite
dimensional linear subspaces of (Rq)Z2

. Thus, the possibility
of stabilizing a behavior B is strictly connected with the

Department of Mathematics, University of Aveiro, 3810-193 Aveiro,
Portugal. procha@ua.pt, diego@ua.pt

regular implementation of a finite dimensional behavior from
B.

A complete characterization of the stabilization property
was given in [7] under the assumption that the controllable
part of the given behavior B, denoted by Bc, is rectifiable,
i.e., is a direct summand of (Rq)Z2

. This is a very strong
property and allows to derive several results that are in
general only valid for the one dimensional case (1D), such as,
for instance the existence of a decomposition of the behavior
into the direct sum of its controllable part and an autonomous
part.

However, in this paper we prove that if a finite dimensional
behavior is implementable by regular interconnection from a
given behavior B, then Bc is rectifiable. As a consequence
of this result we conclude that the assumption about the
rectifiability of Bc, used in [8] in order to obtain several
results on stabilization, is indeed not restrictive since it is a
necessary condition for stabilization.

The outline of the paper is as follows. We begin by
introducing some necessary background from the field of 2D
discrete behavioral theory. Most of this material is standard,
centering around concepts such as autonomy, controllability
and rectifiability. Section 3 is devoted to an exposition of
regular interconnection and finite dimensional behaviors.
Finally, in Section 4 we introduce the notions of stable
and stabilizable behavior and obtain a characterization of all
stabilizable behaviors.

II. PRELIMINARIES

In order to state more precisely the questions to be con-
sidered, we introduce some preliminary notions and results.

We consider 2D behaviors B defined over Z2 that can be
described by a set of linear partial difference equations, i.e.,

B = kerR(σ, σ−1) := {w ∈ U | R(σ, σ−1)w ≡ 0},

where U is the trajectory universe, here taken to be (Rq)Z2
,

σ = (σ1, σ2), σ−1 = (σ−1
1 , σ−1

2 ), the σi’s are the elementary
2D shift operators (defined by σiw(k) = w(k + ei), for
k ∈ Z2, where ei is the ith element of the canonical basis
of Z2) and R(s, s−1) is a 2D Laurent-polynomial matrix
known as representation of B. Since there is no ambiguity,
we will sometimes drop the reference to the variables
(s, s−1) and write, for instance, R for R(s, s−1).

Instead of characterizing B by means of a representation
matrix R, it is also possible to characterize it by means of
its orthogonal module Mod(B), which consists of all the
2D Laurent-polynomial rows r(s, s−1) ∈ R1×q[s, s−1] such
that B ⊂ ker r(σ, σ−1), and can be shown to coincide with
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the R[s, s−1]-module RM(R) generated by the rows of R,
i.e., Mod(B) = RM(R(s, s−1)) and therefore there is a
one-to-one correspondence between B and Mod(B).

It turns out that sums and intersections of behaviors can be
formulated in terms of the corresponding modules.

Theorem 1: [13, pag.1074] Let B1 and B2 be two 2D
behaviors. Then, B1+B2 and B1∩B2 are also 2D behaviors
and

1) Mod(B1 + B2) = Mod(B1) ∩Mod(B2)
2) Mod(B1 ∩B2) = Mod(B1) + Mod(B2)

The notions of controllability and autonomy play an
important role in the sequel.

Definition 2: A behavior B ⊂ (Rq)Z2
is said to be

controllable if for all w1, w2 ∈ B there exits δ > 0 such that
for all subsets U1, U2 ⊂ Z2 with d(U1, U2) > δ, there exists
a w ∈ B such that w |U1 = w1 |U1 and w |U2 = w2 |U2 .

It was shown (see [10]) that this is equivalently to say that
R1×q[s, s−1]/Mod(B) is a torsion free R[s, s−1]-module.
On the other hand, we say that a behavior is autonomous if
it has no free variables (or inputs). B = kerR(σ, σ−1) is
autonomous if and only if R(s, s−1) has full column rank
(over R[s, s−1]), [11].

In the 1D case, all autonomous behaviors are finite-
dimensional vector spaces. For general multidimensional
variable behaviors this is no longer true. In fact,
an autonomous multidimensional behavior that is finite-
dimensional is called strongly autonomous in [5].

In order to characterize strong controllability we recall the
definition of zero of a Laurent-polynomial matrix.

Given a 2D Laurent-polynomial matrix R(s, s−1) with full
column rank, a zero of R is defined as λ ∈ (C \ {0})2 such
that

rank R(λ, λ−1) < rank R(s, s−1),

where, the first rank is taken over C and the second one over
R[s, s−1].

Theorem 3: (see [4, Th.17, Th.28] [11, Cor.1 pag. 141])
Let B = kerR be a 2D behavior. Then the following are
equivalent.

1) B has finite dimension,
2) R1×q[s, s−1]/Mod(B) has finite dimension,
3) for all i = 1, 2 there exists a non-zero polynomial

pi(σi) ∈ R[si, s−1
i ] such that

pi · (R1×q[s, s−1]/Mod(B)) = 0,

4) R has full column rank and B has a finite number of
zeros.

As also shown in [11], every 2D behavior B can be decom-
posed into a sum

B = Bc + Ba,

where Bc is the controllable part of B (defined as the largest
controllable sub-behavior of B) and Ba is a (non-unique)
autonomous sub-behavior said to be an autonomous part of
B.

Remark 4: It is important to remark that if B = ker R
and Bc = kerRc then the rank of R and the rank of Rc

must coincide. Indeed, by [3, Th. 2.69] the number of free
variables (inputs) in a behavior B = kerR ∈ (Rq)Z2

is given
by q-rank R. On the other hand by [8, Cor. 2.10], B and Bc

must have the same number of inputs.

If the controllable-autonomous decomposition happens to
be a direct sum decomposition, i.e., if B = Bc ⊕Ba, we
say that the autonomous part of Ba is an autonomous direct
summand of B.

An interesting case is when the controllable part Bc is
rectifiable. A 2D behavior B = kerR(σ, σ−1) ⊂ (Rq)Z2

is
said to be rectifiable if there exists an invertible operator
U(σ, σ−1), where U(s, s−1) is a 2D Laurent-polynomial
matrix, such that

U(σ, σ−1)(B) := {Uw | w ∈ B} = {v | RU−1v = 0}

is equal to ker[Il 0], where Il is the l × l identity matrix,
for some l ∈ {1, . . . , q}.

The following theorem shows several characterizations
of rectifiable behaviors that have been appeared in several
papers.

Theorem 5: (see [8, Lemma 2.12] and [12, Th. 9 and Th.
10, page 819]) Let B = kerR be a behavior. Then the
following are equivalent.

1) B is rectifiable,
2) R is zero left prime (ZLP),
3) B is direct summand of (Rq)Z2

,
4) R1×q[s, s−1]/Mod(B) is free.

When a rectifying operator exists, it is possible to take
advantage of the simplified form of the rectified behaviors
in order to derive various results. In particular, it is not
difficult to obtain the next proposition.

Proposition 6: Let B = kerR(σ, σ−1) ⊂ (Rq)Z2
be

a 2D behavior with rectifiable controllable part Bc and
U(σ, σ−1) be a corresponding rectifying operator such that
U(σ, σ−1)(Bc) = ker[Il 0]. Then the following are
equivalent.

1) B = Bc ⊕Ba

2) Ba = ker
([

P 0
X Iq−l

]
U

)
, with P (s, s−1) such

that RU−1 = [P 0] and X(s, s−1) an arbitrary
Laurent-polynomial matrix of suitable size.

Note that the behaviors Ba of Proposition 6 always exist
and are autonomous. Thus, this result states that every
behavior with rectifiable controllable part has autonomous
direct summands and, moreover, gives a parametrization for
all such summands. This yields the following parametrization



of U(B).

Corollary 7: Let B = kerR(σ, σ−1) ⊂ (Rq)Z2
be

a 2D behavior with rectifiable controllable part Bc and
U(σ, σ−1) be a corresponding rectifying operator such that
U(σ, σ−1)(Bc) = ker[Il 0]. Then

U(B) =
[

0
(Rq−l)Z2

]
⊕
[
Il
Y

]
kerP,

with P (s, s−1) such that RU−1 = [P 0] and Y (s, s−1) an
arbitrary Laurent-polynomial matrix of suitable size.

Example 8: Let B be a 2D behavior represented by

B = ker
(
s1 − 1 s1s

2
2 − s22 − 1 + s1 s1s2 − s2

0 s1 + s2 −s1 − s2

)
.

Choose the unimodular matrix

U−1 =

 1 −s22 − 1 −s22 − s2 − 1
0 1 1
0 0 1


in order to obtain

U(Bc) = kerRcU−1 = ker
(

1 0 0
0 1 0

)
and

U(B)=

 0
0

(R)Z2

⊕
 1 0

0 1
y1 y2

 ker
(
s1 − 1 0

0 s1 + s2

)
where y1, y2 are arbitrary Laurent-polynomials.

III. CONTROL, REGULAR INTERCONNECTIONS AND Bc

Given two behaviors B1 and B2 their interconnection is
defined as the intersection B1 ∩B2. This interconnection is
said to be regular if

Mod(B1) ∩Mod(B2) = {0}.

Regular interconnections correspond to a lack of overlapping
between the laws of the interconnected behaviors and play
an important role in behavioral control, [9], [13], [6], [1].
The following result can be found in, for instance, [8,
Lemma 3, pag 115].

Lemma 9: Given the two behaviors B1 = kerR1 and
B2 = kerR2, the following are equivalent.

1) B1 ∩B2 is a regular interconnection,
2) B1 + B2 = (Rq)Z2

,

3) rank R1 + rank R2 = rank
(

R1

R2

)
Thus in a regular interconnection, the controller imposes
restrictions which are not already present in the plant. In this
sense a feedback controller is a simple example of a regular
interconnection where the controller imposes restrictions

only on the plant input, which in the plant is unrestricted.

Example 10: Let B1 a behavior represented by

B1 = ker
(

s1 s1s2 0
s1 + s2 0 1

)
and B2 = ker

(
1 0 1

)
be two behaviors. Then the

interconnection of B1 and B2 is regular, i.e., Mod(B1)∩
Mod(B2) = {(0, 0, 0)}.

Based on the notion of behavior interconnection it is
possible to formulate a control problem in set theoretic terms.
Indeed, if B is the behavior of the system to be controlled
(the plant) and K is the set of all signals compatible with
the additional restrictions to be imposed on w, i.e., the
controller, then the resulting controlled behavior is given by
the interconnection

B ∩ K (1)

of the behaviors B and K. Thus, in the behavioral setting,
a control problem consists in, given a desired controlled
behavior Bd, finding a controller K such that its intercon-
nection (1) with the plant behavior B results in Bd. In
case this interconnection is regular, the controller is called a
regular controller and the desired behavior Bd is said to be
achievable or implementable by regular interconnection.

The following necessary condition for implementation by
regular interconnection has been derived in [8, Th. 4.5, pag
124].

Theorem 11: Let B and Bd be two behaviors. Then if
Bd is implementable by regular interconnection from B then
B = Bc + Bd.

Based on the result it is possible to show the next Lemma.

Lemma 12: Let B and K be two 2D behaviors. If the
intersection of B and K is regular then is also the intercon-
nection between Bc and K.

Proof: Let B ∩ K = Bd with regular interconnection,
i.e. Mod(B)⊕ Mod (K) = Mod(Bd). Using Theorem 11
we have that B = Bc + Bd or equivalently Mod(B) =
Mod(Bc)∩Mod(Bd) = Mod(Bc)∩(Mod(B)⊕Mod(K)).
Since Mod(B)∩Mod(K) = {0} and Mod(Bc)∩Mod(K) ⊂
Mod(B) we obtain that Mod(Bc) ∩Mod(K) = {0} �

Example 13: Let B and K as in Example 10. It is easy
to see that

Bc = ker
(

1 s2 0
s1 + s2 0 1

)
.

As expected from Lemma 12, we have that Mod(Bc) ∩
Mod(K) = 0 i.e. the interconnection with the controllable
part is also regular.



Lemma 12 shows that the controllable part of a
behavior plays an important role in the context of
regular interconnections. Since a controller which does
not interconnect with Bc in a regular way, is not a
regular controller. Moreover, the following two lemmas,
which hold only for the 2D case, will be used to show
that the controllable part of B must be rectifiable if a
strongly controllable (finite dimensional) behavior can be
implemented from B by regular interconnection.

Lemma 14: (see [2, Th.12]) Let B be a behavior.
Then there exists a unique (up to isomorphism) free
R[s, s−1]-module Mod(B)+ ⊂ R1×q[s, s−1] such that
Mod(B)+/Mod(B) has finite dimension.

Note that Mod(B)+ is the smallest free module
containing Mod(B) and its computation can be effectively
implemented, see [2]

Lemma 15: (see [2, Cor.23]) Let B be a behavior and
Bd ⊂ B be a sub-behavior. Then there exists Bc such that
(B∩Bc)/Bd has finite dimension if and only if Mod(B)+

is direct summand of Mod(Bd)+.

Theorem 16: Let B be a behavior. If there exists a
controller behavior K such that Bfd = B ∩ K is finite
dimensional (strongly autonomous) and the interconnection
is regular then Bc is rectifiable.

Proof: Applying Lemma 15 with Bd = 0
one obtains that Mod(B)+ is direct summand of
Mod(0)+ = R1×q[s, s−1]. Define B+ as the unique
behavior such that Mod(B)+ = Mod(B+). By Theorem 1,
B is direct summand of R1×q[s, s−1]. Thus, by Theorem 5,
B+ is a rectifiable behavior and therefore also controllable.

We have that for the 2D case Mod(Bc) is free (see [3,
Th.7.42]) and since Mod(B)+ is the largest free module
containing Mod(B) we have that Bc ⊂ B ⊂ B. Further
Bc is the largest controllable sub-behavior which implies
B+ ⊂ Bc and therefore Bc = B+ is rectifiable. �

Remark 17: Note that, according to [8], rectifiability is
equivalent to the possibility of obtaining the zero behavior by
regular interconnection. Therefore, the possibility of obtain-
ing a finite dimensional behavior by regular interconnection
from B can be regarded as almost regular interconnection
to zero, since it represents the implementation of the zero
behavior up to a finite dimensional one. Equivalently, by
Theorem 16 and Corollary 7, the regular implementation of
a finite dimensional behavior can also be seen as almost
rectificability since B can be written as B = Bc ⊕ Bfd

where Bfd is a finite dimensional behavior and Bc is
rectifiable, i.e., B coincides with a rectifiable behavior up
to a finite dimensional one.

IV. STABILITY AND STABILIZABILITY

A discrete 1D behavior B ⊂ (Rq)Z is said to be stable if
all its trajectories tend to the origin as time goes to infinity.

In the 2D case, we shall define stability with respect to a
specified stability region, as in [7] by adapting the ideas in [5]
to the discrete case. For this purpose we identify a direction
in Z2 with an element d = (d1, d2) ∈ Z2 whose components
are coprime integers, and define a stability cone in Z2 as the
set of all positive integer linear combinations of 2 linearly
independent directions.

Given a stability cone S ⊂ Z2, a trajectory w ∈ (Rq)Z2
is

said to be S-stable if it tends to zero along every half line
in S.

By a half-line associated with a direction d ∈ Z2 we mean
the set of all points of the form αd where α is a nonnegative
integer; clearly, the half-lines in a stability cone S are the
ones associated with the directions d ∈ S.

A behavior B is S-stable if all its trajectories are S-stable.
It turns out that stable behaviors on (Rp)Z2

must be finite
dimensional.

Lemma 18: ([7, Lemma 2]) Every 2D behavior B ⊂
(Rq)Z2

which is stable with respect to some stability cone
S is a finite dimensional linear subspace of the trajectory
universe, (Rq)Z2

.

In order to characterize stability, we introduce some prelim-
inary notation. Given two elements λ = (λ1, λ2) ∈ C2 and
k = (k1, k2) ∈ Z2, we define

λk := λk11 λ
k2
2 .

Now, let B be an autonomous behavior. Since the set of
zeros of the different representations of B coincide, we
may define the set N (B) of zeros of the behavior B as the
set of zeros of any of its kernel representations. As pointed
out in Theorem 3, B is finite dimensional if and only of
N (B) is a finite set. In the sequel, whenever we refer to
N (B) we implicitly suppose that B is autonomous.

Theorem 19: ([7, Th. 8]) Let B ⊂ (Rq)Z2
be a behavior,

and let S be a stability cone. The the following are equiva-
lent:

1) B is S-stable
2) N (B) is finite and for every zero λ ∈ N (B) and every

direction d ∈ S,
|λd| < 1.

If we call λ ∈ C2 is S-stable if for every direction d ∈ S,
|λd| < 1, Theorem 19 can be rephrased as: B is S-stable if
and only if it has a finite number of zeros and these zeros
are S-stable.

This is of crucial importance for the study of stability and
stabilizability.

As for stabilization, our definition of S-stabilizability
is similar to the one proposed in [5], but has the extra
requirement of regularity.

Definition 20: Given a stability cone S ⊂ Z2, we say that
a behavior B ⊂ (Rq)Z2

is S-stabilizable if there exists an



S-stable sub-behavior Bs ⊂ B that is achievable from B
by regular interconnection.

The following theorem provides a characterization of all
stabilizable behaviors.

Theorem 21: Let B = kerR(σ, σ−1) ⊂ (Rq)Z2
be a

behavior and S ⊂ Z2 be a stability cone. Then the following
statements are equivalent.

1) B is S-stabilizable
2) Bc is rectifiable and if U is a rectifiable operator such

that RU = [P 0] then kerP (σ, σ−1) is S-stable.
3) Bc is rectifiable and every autonomous direct sum-

mand of B is stable.

Proof: 1 ⇒ 2: Assume that B is S-stabilizable. Then,
by Lemma 18 and Theorem 16, Bc is rectifiable. If B =
kerR = kerPRc with Rc such that Bc = kerRc and U
is a rectifying operator for Bc then PRc = P (I 0)U ,
U(B) = ker(P 0) and U(Bc) = ker(I 0).

If K = ker(K1 K2)U is a controller behavior such that its
interconnection with B is regular and yields an autonomous
behavior then, by Lemma 9,

rank
(

P 0
K1 K2

)
= rank (P 0) + rank (K1 K2).

On the other hand, P must have full column rank
(by remark 4) as well as K2 (otherwise U(B ∩ K) =

ker
(

P 0
K1 K2

)
would not be full column rank) and

therefore we have that

rank
(

P 0
K1 K2

)
= rank P + rank K2.

Thus rank K2 = rank (K1 K2). In particular this implies
that for all λ ∈ C2

K1(λ, λ−1) = K2(λ, λ−1) · Lλ

for some matrix Lλ with complex entries.

Assume now that P is not stable. Then
rank P (λ∗, (λ∗)−1) < rank P (σ, σ−1) =: ` for some λ∗

such that |λ∗d| ≮ 1 and some d ∈ S.
Hence

M : =
(

P (λ∗, (λ∗)−1) 0
K1(λ∗, (λ∗)−1) K2(λ∗, (λ∗)−1)

)
=

(
P (λ∗, (λ∗)−1) 0

K2(λ∗, (λ∗)−1) · Lλ K2(λ∗, (λ∗)−1)

)

=
(
P (λ∗, (λ∗)−1) 0

0 K2(λ∗, (λ∗)−1)

)(
I 0
Lλ I

)
and since rank P (λ∗, (λ∗)−1) < ` it follows that rank M <
`, implying that U(B ∩ K) and hence B ∩ K is not stable.

In this way, we conclude that if B is S-stabilizable then
P must be stable, i.e., 1⇒ 2.

2 ⇒ 1: Because we can take K such that U(K) =
ker(0 I).

2 ⇒ 3: According to [7, Proposition 1] the autonomous
direct summands B∗ of B (in the case Bc is rectifiable) are

such that U(B∗) = ker
(
P 0
X I

)
with P as before, and

X an arbitrary L-polynomial matrix of suitable size. Thus if
P is stable so are all the autonomous direct summands of
B.

3 ⇒ 2: Obvious, taking into account the form of the
autonomous direct summands of B.

�

We conclude this paper giving two easy examples.

Example 22: Let B be the behavior considered in Exam-
ple 8. Then

U(B)a =

 1 0
0 1
y1 y2

 ker
(
s1 − 1 0

0 s1 + s2

)
where y1, y2 are arbitrary Laurent-polynomials. Since
U(B)a is not finite dimensional then Ba is not finite
dimensional and therefore not stable (with respect to any
stability cone). Hence we have that B is not stabilizable
since not every autonomous direct summand of B is stable.

Example 23: Let a behavior B be represented by B =
kerR and S the positive orthant, where

R =


0 1 0 0

s1s
2
2 0 0 0

s1 − 2 2s1 − s21 s1 − 1
2 0

0 s1 − s32 s2 − 1
4 0

 .

Clearly, another representation of B is

B = ker


0 1 0 0
1 0 0 0
0 0 s1 − 1

2 0
0 0 s2 − 1

4 0

 .

Further,

Bc = ker

 1 0 0 0
0 1 0 0
0 0 1 0


is rectifiable. Hence, B is stabilizable since B = ker(P 0)
with

kerP = ker


0 1 0
1 0 0
0 0 s1 − 1

2
0 0 s2 − 1

4


a stable behavior.
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