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Abstract— This paper presents a nonlinear model based
predictive controller (NMPC) for trajectory tracking of the
Middle-size Omnidirectional Robots from the SDPO Robotic
Soccer team. The strategy proposed uses methods of numerical
optimization to perform real time nonlinear minimization of
the cost function. The cost function penalizes the robot position
error, the robot orientation angle error and the control effort.
Experimental results of the trajectories following and the
performance of the methods of optimization are presented.

I. INTRODUCTION

Nowadays, the prediction concept in the mobile robotics
is very important, because the robots are inserted more and
more in dynamic environments(for example: robotic soccer,
manufacturing plants, agriculture). Above all, in Robotic
soccer’s application the robots need to execute trajectories
quickly and with a perfect position to the objective, for
example, positioning to the ball, or to the goal, or to avoid
dynamic obstacles. Therefore, the capacity to predict the
control actions to follow a path or to avoid obstacles is very
useful.

Several applications of predictive control techniques can
be found in the literature. The article [1] talks about the
way of implementing a model-based predictive controller
for mobile robot navigation using genetic algorithms to
perform online nonlinear optimization. The cost function was
defined as a quadratic function of sum of the future errors in
reference tracking. Reference [2] presents a tracking method
for a mobile robot which combines predictive control and
fuzzy logic control, where the predictive control is used
to predict the position and the orientation of the robot,
while the fuzzy control is used to deal with the non-linear
characteristics of the system. A path tracking scheme for
mobile robot based on neural predictive control is presented
in [3], where a multi-layer back-propagation neural network
is employed to model non-linear kinematics of the robot.
In [4], a neural network multilayer perceptron has been
trained to reproduce the MBPC behaviour in a supervised
way. In [5], the minimization of the cost function has to be
carried out by a numerical optimization method, a neural
network is used to solve the problem. Another strategy

*The author is supported by the Program AlBan, the European Union
Program of High Level Scholarships for Latin America, scholarship
n.E04D028256BR

using neural network is used in [6], where a neural-network-
based technique for developing nonlinear dynamic models
from empirical data for an model predictive control (MPC)
algorithm is presented. A genetic algorithm based predictive
control strategy which allows the minimization of a nonlinear
cost function in real time is presented in [7].

In this paper a new approach of predictive controller is
presented, where methods of numeric optimization are used
to obtain the minimization of the controller’s cost function.
This approach became possible when we obtained good
times of minimization of the controller’s cost function (< 30
milliseconds). Nowadays with potent processors in personal
computers, the use of optimization algorithms became viable.

The paper is organized as follows. Section II presents
a brief description of the omni-directional mobile robot.
Section III presents the NMPC elements: NMPC scheme,
prediction model, cost function and control law. In this
section the optimization methods are presented. The expe-
rimental results of the NMPC are presented in section IV.
Finally, the conclusions are drawn in section V.

II. ROBOT DESCRIPTION

The robot, Fig. 3(a), is equipped with four omni-
directional wheels connected to geared motors. Connected to
each wheel there is a industrial encoder to measure its speed.
Each pair wheel-encoder is connected to a controller board.
This board has a microcontroller that measures the wheel
speed and implements a local controller. This controller
maintains the requested speed and is based on PID. This
low level loop has a sampling frequency of 100Hz. The four
controllers are connected to the PC by a RS-232 link running
at 115200 baud. The robot has a standard PC motherboard
with a 2GHz Celeron processor. Nevertheless, there is no
hard disk and the Linux OS and the programs are stored in
a 256 MBytes Compact Flash Card connected to the IDE.
Another very important module is the one that deals with
the image captured by the onmidirectional vision system
and extracts the most important features. This information
is used to construct an estimation of the robot position. The
vision camera also provides the sample time control of the
robot (t,=40 milliseconds). The mobile robot was built for
the SDPO Robotic Soccer team from the Department of
Electrical and Computer Engineering at the University of
Porto at Porto, Portugal.
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I1I. MODEL PREDICTIVE CONTROLLER

The strategy of the MPC controller is characterized by
scheme represented in Fig. 1. A process model is used to
predict the future outputs, based on past and current values
and on the proposed future control actions. These actions
are calculated by optimization of a cost function. Take into
account the trajectory tracking problem, the cost function J
of the predictive controller is defined as follow:
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where the first term in J penalizes the position error, the
second term penalizes the orientation angle error and the
third penalizes the control effort(AU). N; and N» ate the
minimum and maximum prediction horizons and N, is the
control horizon. The coefficients A\;, Ao and A3 are penalty
factors, which are usually chosen to be constant along the
time. ¥ (k + jlk) = [2(k + jlk) 9k + jlk) Ok + iR,
is an j step prediction of the robot position and orientation
angle made at instant k, and W(k+j) = [z.(k+7) y.(k+
J) Bc(k+37)]* is desired robot position and orientation angle.
AUk+j-1)=[Av(k+j—1) Avn(k+j—1) Aw(k+
j — 1)]T is the control effort, where v and vn are the robot
linear velocities and w is robot angular velocity, which are
the control variables.

A. Reference trajectory of the controller, W

The predictive controller needs the desired positions and
orientation angles of the robot for the next NV periods of time,
see Fig. 2. The trajectory R is defined as points in the world
frame(OXY): R(i) = [z,(i) y-(i) 0,())]T, i =0,1,..., M,
where M is the total number of the trajectory points. The
initial position (z., y.) is located at the intersection between
the desired trajectory and its perpendicular, traced from
the robot position (z,y). The next N points are spaced
equally on the trajectory R by AS(meters), which is a design
parameter. The desired orientation () is the linear variation
between the reference angular position 6,.(¢) and 0,.(i + 1)
of the trajectory R:

0. =0,(i)(1 — d) + 6, (i + 1)d, (2)

where d is the projection from robot position(z,y) to line
segment (.., y.); and (z,, y,)i+1, it is normalized to length
of the line segment.

B. Prediction model

The use of the process model is determined by the
necessity to predict the future positions and orientation angle
of the robot at future instants, Y (k+j|k) = [2(k+jlk) §(k+
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Fig. 3.  Omni-Directional robot

jlk) 6(k+ j|k)]T. The omni-directional mobile robot model
is developed based on the dynamics, kinematics and DC
motors of the robot.

The World frame(OXY), the robot’s body frame and the
geometric parameters is shown in Fig. 3(b). The following
symbols, in SI unit system, are used to modelling:

b (m) — distance between the point P and robot’s wheels
M (kg) — robot mass

r (m) — wheel radius

I — motor reduction

v,vn (m/s) — linear velocities of the robot

w (rad/s) — angular velocity of the robot

0 (rad) — orientation angle of the robot

J (kg.m?) — robot inertia moment

By, Buyn (N/(m/s)) — viscous friction related to v and vy,
Bw (N/(rad/s)) — viscous friction related to w

Cy, Cun (IN) — coulomb friction related to v and vy,
Cyw (N.m) — coulomb friction related to w

Fy, Fon (N) — traction forces of the robot

I’ (N.m) — rotation torque of the robot

v1,v2,v3,v4 (m/s) — wheels linear velocities

f1, f2, f3, fa (N) — wheels traction forces
T1,T2,T3,Ty (N.m) — wheels rotation torque

1) Robot Dynamics: By Newton’s law of motion and the
robot’s body frame, in Fig. 3(b), we have

Ft) = M5 B+ i) @)
Foo(t) = Mdvn(t) + Bynon(t) + Cynsgn(vn(t))

dt
4)
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dw(t
ri) = J% + Byw(t) + Cysgn(w(t)) (5)
where
1, a >0,
sgn(a) =4¢ 0, a=0,
-1, a<0.

The relationships between the robot’s traction forces and
the wheel’s traction forces are,

Fy(t) = fa(t) — fat) (6)
Fon(t) = fi(t) — f3(t) (7
L) = (@) + f2(t) + f3(1) + fa@)b (8)

The wheel’s traction force(f) and the wheel’s torque(7),
for of each DC motor, is as follow:

sy = 10 ©
T(t) = 1Ksia(t) (10)

where K is motor torque constant and i, (t) is the armature
current. The armature current is limited to save battery,

0 <ig(t) <imaz

where 7,4, 1S a design parameter.

The dynamics of each DC motor can be described using
the following equations,

u(t) = Ladizit)—i-Raia(t)—i—Kvwm(t) (11)
Tt) = Kiig(t) (12)

where L, is the armature inductance, R, is the armature
resistance, w,,(t) is the rotor angular velocity in rad/sec,
k, is the emf constant. In SI unit system, the values
of K; and K, are identical, see [8]: K;(N.m/A) =
K,(Volts/(rad/sec)). The armature voltage is u(t), with
input signal constraints,
—24 <wu(t) <24 for t>0.
2) Robot Kinematics: By geometric parameters of the
robot and the robot’s body frame, in Fig. 3(b), is possible to

Scheme of the predictive controller.

derive the motion equations,

42 — v (t)cos(6(t)) — vn(t)sen(6(1))

d% D — y(t)sen(6(t)) + vn(t)cos(6(t)) (13)
W) — w(t)

The relationships between wheel’s linear velocities (vy, va,
v3 and wvy4) and robot velocities (v,on and w) are,

v1(t) = vn( ) + bw(t)
va(t) = —v(t) + buw(t)

)
vs(t) = —on(t) + bu() 19
va(t) = v(t) + bw(t)
where x(t) and y(t) is the localization of the point P, and

6(t) the orlentatlon angle of the robot.

C. Control law

The robot model is nonlinear, so an analytical solution
cannot be obtained and an iterative method of optimization
in real time should be used. In order to obtain control values
U(k + jlk) it is necessary to minimize the cost function
J, in 1. Between many different methods of numerical
optimization, in [9]-[14], methods with low computational
time and simple implementation was chosen for test in the
controller. Three optimization methods had been tested:

o The method of steepest descent, also known as the
gradient method (G);

o Nonlinear Conjugate Gradient method - Fletcher
Reeves(GCFR);

« Nonlinear Conjugate Gradient method - Polak Ro-
biere(GCPR).

The method of steepest descent is the simplest example of
a gradient based method for minimizing a function of several
variables. It has a simple implementation, but with slow
convergence. The conjugate gradient method is slightly more
complicated than steepest descent, but it converges faster
than steepest descent. This methods make good optimization
progress because it is based on gradients.

The algorithm 1 presents the method of steepest descent
for minimizing f(x).

The algorithm 2 presents the Fletcher Reeves and Polak
Robiere conjugate gradient method for minimizing f(z). The
methods Flecher Reeves and Polak Robiere differ only in the



Algorithm 1 - Steepest descent

1. Given xg, set k = 0.
2. Compute dj, = —V f(xg),
where V f denotes the gradient of f.
3. If dj, < ¢, stop. Else, find the new point x1 = x), + ady,
« is the size of the step in the direction of the travel;
x), and xyq are the variables values in the k and k 4 1;
€ is the stop criterion.
4. Increment k = k 4 1, go to step 2.

choice of 3, where 377 denotes the Flecher Reeves method
and BFF denotes the Polak Robiere method.

Algorithm 2 - Conjugate Gradient methods - Fletcher Reeves
and Polak Robiere
1. Given zg, compute dg = —V f(z4), k = 0;
V f(x) is the vector of gradients of the cost function at point f(x);
2. Using dj,, compute 41 = ) + ady,
where « is the step size that minimizes f(xx + ady).
3. Compute V f(xg41), if Vf(zr+1) < e, stop. Else

rr _ V(@) TV (@rs1)

Pt = TG 1 )T f ()
T p - @) (Vi) = V@)
S V(i) TV f () ’

2 and xyq are the variables values in the k and k 4 1;
€ is the stop criterion.
4. Compute new direction di+1 = —V f(Tr+1) + Br+1dk-
5. Increment k = k + 1, go to step 2.

IV. EXPERIMENTAL RESULTS

The proposed control strategy has been tested with the
mobile robot following two trajectories, and it was repeated
for the 3 algorithms of the optimization (G,GCFR and
GCPR). The first trajectory, Fig. 4(a), is a movement of
rotation and translation in the same time. The second tra-
jectory has special features, as sudden change of direction
and orientation to the robot, in order to test the controller in
hard condition, see Fig. 4(b).
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(a) "Diagonal" trajectory. (b) "Pulse" trajectory.

Fig. 4. Trajectories of test.

Firstly, we made simulations with the controller using the
robot’s model. The first objective of these simulations was
to define a first calibration in the controller’s parameters,
as prediction and control horizons(N1, N» and N, ), penalty
factors (A1, Aqand A3) and stop criterion of the optimization
algorithms(e). Another objective was to verify the computa-
tional time to calculate the minimization of the cost function.

Informations about the computational time are extremely
important to define the controller’s parameters. The robot
uses a sample time equal to 40 milliseconds, then it is
necessary to project the controller to respect this restriction of
time. In the experimental tests with the robot was necessary
to insert a restriction in the time used by the optimizator of
the predictive controller. It was defined as 20 the maximum
number of iterations of the algorithms. That means that the
minimization of the cost function will be truncated in the
iteration 20, in case it has not found a minimum.

A. Experimental test 1

For the first experimental test with the robot and after
the simulations results, the controller parameters have been
chosen as follows in table I. In this test, we used a prediction

Ny No | Nu | M1 A2 | As €
0 10 1 2 1 1 le—3

AS[m]
0.04

TABLE I
PARAMETERS OF THE CONTROLLER, TEST 1.

horizon of 10 samples (N = Ny — N; = 10), because it
was verified in the simulation results that the optimization
algorithms get a good minimization of the cost function in
these conditions. The table II and the figures 5 and 6, show
the results of the trajectory’s following, for the three methods
of optimization. For the two trajectories, the method of the
conjugated gradients GC_PR is the fastest in the minimiza-
tion of the cost function, as in the simulated tests, see the
table II. This method (GC_PR) presents robot position errors
slightly larger than the other methods, but this difference in
the errors is not significant. It was verified that the time for an
iteration of the cost function minimization is approximately
1 millisecond for all methods, due to the algorithms almost
have the same complexity for implementation. Usually the
algorithms possess a larger contribution for the solution in
the first iterations and a small contribution in you finish,
as shown in the last iterations in the Fig. 5(d) and 6(d),
therefore the truncation in the algorithms did not harm in a
preoccupying way the trajectory’s following. Table III shows
the amount of truncations and the number of samples along
the robot navigation.

Diagonal trajectory

Method ‘ Iteration ] n}lmbers Optimizati.o'n time

Maximum | Minimum | mean mean[milisec]
G 20 4 9.13 7.42
GC_FR 20 4 7.98 6.65
GC_PR 16 4 7.31 6.21

Pulso trajectory

Method _ Iteration .n}lmbers Optimizati_op time

Maximum | Minimum | mean mean[milisec]
G 20 4 13.15 11.19
GC_FR 20 4 10.21 8.57
GC_PR 20 4 8.75 7.25

TABLE II

DIAGONAL AND PULSE TRAJECTORY - TEST 1.



Diagonal trajectory

Method Numbe? of | Total of

truncation | samples
G 4 115
GC_FR 1 89
GC_PR 0 69

Pulse trajectory

Method N umbeg of | Total of

truncation samples
G 48 213
GC_FR 10 196
GC_PR 1 184

TABLE III

TRUNCATION - TEST 1.

Trajectory 1 - Diagonal Trajectory 1 - Diagonal
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Fig. 5. Diagonal trajectory - test 1.

B. Experimental test 2

In the experimental test 2 the controller parameters in
the table IV were used. In this test a larger horizon of the

N1 | No | Ny | A1 | Ao | A3 €
0 12 1 2 1 1 le—3

AS[m]
0.04

TABLE IV
PARAMETERS OF THE CONTROLLER, TEST 2.

prediction was used (N = 12), to verify the performance of
the optimizator and the behavior of the robot in the following
of the trajectories. Fig. 7 and Fig. 8 show the results of the
trajectory’s following, for the three methods of optimization.
Fig. 7(c) and Fig. 8(c) show the errors of the position (z,y)
and posture () of the robot. The linear(v,vn) and angular(w)
velocities of the robot are shown in the figures 7(d) and 8(d).
The table V shows information about the number of iteration
of the optimizator. The method GC_PR was the fastest again,
and any truncation did not happen, see the table VI.

In the experimental test 2 the number of iterations reduced
comparing with the test 1. With the increase of the prediction

Trajectory 2 - Puise Trajectory 2 - Puise.
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Fig. 6. Pulse trajectory - test 1.

horizon (N = 12), it is probable that the errors in the
trajectory following have an increase, mainly in trajectories
with abrupt changes of direction, as the pulse trajectory. The
behavior of the robot tends to predict the control actions,
avoiding the points of abrupt changes, for example the
position £ = 1 and y = 0 of the pulse trajectory, see Fig.
8(a).

Another important characteristic is that the quantity of
iterations of the optimization algorithms increases with the
decrease of the prediction horizon, consequently it increases
the time of calculation of the signs of control of the robot in
each sampling. A good prediction horizon range is larger
than 8 and smaller than 12 (8 < N < 12), it is a
good commitment between the number of iterations of the
optimization algorithms and the behavior of the mobile robot.

In both experimental tests, the conjugated gradient me-
thods are faster than the steepest descent method.

Diagonal trajectory

Method ' Iteration.n}lmbers Optimization time

Maximum | Minimum | mean mean|mseg]|
G 20 4 9.37 823
GC_FR 16 4 7.32 6.53
GC_PR 14 4 6.80 6.13

Pulse trajectory

Method _ Iterationin}lmbers Optimization time

Maximum | Minimum | mean mean[mseg]
G 20 Z] 12.01 10.76
GC_FR 20 4 8.45 7.63
GC_PR 14 4 6.93 6.27

TABLE V

DIAGONAL AND PULSE TRAJECTORY - TEST 2.



Diagonal trajectory
Method NumbeF of | Total of
truncation | samples

G 2 97
GC_FR 0 89
GC_PR 0 76

Pulse trajectory
Method N umbeg of | Total of
truncation samples

G 16 189

GC_FR 1 182

GC_PR 0 180
TABLE VI

TRUNCATION - TEST 2.

Trajectory 1 - Diagonal Trajectory 1 - Diagonal
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Fig. 7. Diagonal trajectory - test 2.

V. CONCLUSIONS

A nonlinear model based predictive controller has been
proposed for a mobile robot path tracking problem. A new
approach of predictive controller is presented, where methods
of numeric optimization are used to obtain the minimization
of the cost function of the predictive controller. The struc-
ture of the controller allows a vast capacity of calibration.
The optimization algorithms, mainly the methods based on
conjugate gradients, present good times of minimization of
the cost function, allowing its use in the predictive controller.
Some experimental results have shown the good performance
of the strategy of the control proposed.
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