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Abstract

The continuous growth of social networks in the past decade has led to massive amounts of in-
formation being generated on a daily-basis. While a lot of this information is merely personal or
simply irrelevant to a general audience, relevant news being transmitted through social networks
is an increasingly common phenomenon, and therefore detecting such news automatically has
become a field of interest and active research.

The contribution of the present thesis consisted in studying the importance of named entities
in the task of relevance detection. With that in mind, the goal of this work was twofold: 1) to
implement or find the best named entity recognition tools for social media texts, and 2) to analyze
the importance of extracted entities from posts as features for relevance detection with machine
learning.

There are already well-known named entity recognition tools, however, most state-of-the-art
tools for named entity recognition show significant decrease of performance when tested on social
media texts, in comparison to news media texts. This is mainly due to the informal character of so-
cial media texts: the absence of context, the lack of proper punctuation, wrong capitalization, the
use of characters to represent emoticons, spelling errors and even the use of different languages in
the same text. To address these problems, four different state-of-the-art toolkits — Stanford NLP,
GATE with TwitIE, Twitter NLP tools and OpenNLP — were tested on social media datasets. In
addition, we tried to understand how differently these toolkits predicted Named Entities, in terms
of their precision and recall for three different entity types (PERSON, LOCATION, ORGANIZA-
TION), and how they could complement each other in this task in order to achieve a combined
performance superior to each individual one, creating an Ensemble of Toolkits.

The developed Ensemble was then used to extract entities and different features were gener-
ated: the number of persons, locations and organizations mentioned in a post, statistics retrieved
from The Guardian’s open API, and finally word embeddings. Multiple machine learning models
were then trained on a relevance-labelled dataset of tweets. The obtained performances of different
combinations of selected features, ML algorithms, hyperparameters, and datasets, were analyzed.

Our results on two publicly available datasets from the workshops WNUT-2015 and #MSM-
2013 showed that the Ensemble of Toolkits was able to improve the recognition of specific entity
types - up to 10.62% for the entity type PERSON, 1.97% for the type LOCATION and 1.31% for
the type ORGANIZATION, depending on the dataset and the criteria used for the voting. Our re-
sults also showed improvements of 3.76% and 1.69%, in each dataset respectively, on the average
performance of the three entity types.

The relevance analysis showed that Named Entities can indeed be useful for relevance de-
tection, proving to be useful not only when used alone, having achieved up to 73.4% of AUC,
but also helpful when combined with other features such as word embeddings, having achieved a
maximum AUC of 92.7% in that case, a 1.4% improvement over word embeddings alone.
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Resumo

O crescimento contínuo das redes sociais ao longo da última década levou a que quantidades
massivas de informação sejam geradas diariamente. Enquanto grande parte desta informação é de
índole pessoal ou simplesmente sem interesse para a população em geral, tem-se por outro lado
vindo a testemunhar cada vez mais a propagação de notícias importantes através de redes sociais.
Como tal, a deteção automática destas notícias é uma temática cada vez mais investigada.

Esta tese foca-se no estudo da relação entre entidades mencionadas numa publicação de rede
social e a respetiva relevância jornalística dessa mesma publicação. Nesse sentido, este trabalho foi
dividido em dois grandes objetivos: 1) implementar ou encontrar o melhor sistema de reconheci-
mento de entidades mecionadas (REM) para textos de redes sociais, e 2) analisar a importância de
entidades extraídas de publicações como atributos para deteção de relevância com aprendizagem
computacional.

Apesar de existirem diversas ferramentas para extração de entidades, a maioria apresenta uma
perda significativa de desempenho quando testada em textos de redes sociais. Isto deve-se essen-
cialmente à informalidade característica deste tipo de textos, traduzida pela ausência de contexto,
pontuação desadequada, capitalização errada, representação de emoticons com recurso a carac-
teres, erros gramaticais ou lexicais e até mesmo utilização de diferentes línguas no mesmo texto.
Face a estes problemas, quatro ferramentas de reconhecimento de entidades — Stanford NLP, Gate
com TwitIE, Twitter NLP tools e OpenNLP — foram testadas em “datasets" de redes sociais. Para
além disso, tentamos compreender quão diferentemente é que estas ferramentas se comportavam,
em termos de Precisão e Recall para 3 tipos de entidades (PESSOA, LOCAL e ORGANIZAÇÃO), e
de que forma estas ferramentas se poderiam complementar de forma a obter um desempenho su-
perior, criando assim um Ensemble de ferramentas de REM. O Ensemble desenvolvido foi então
utilizado para extrair entidades, e diferentes atributos foram gerados: o número de pessoas, locais e
organizações mencionados numa publicação, estatísticas obtidas a partir da API pública do jornal
The Guardian, e finalmente word embeddings. Vários modelos de aprendizagem foram treinados
num dataset de tweets manualmente anotados. Os resultados obtidos das diferentes combinações
de atributos, algoritmos, hyperparameters e datasets foram analisados.

Os nossos resultados em dois datasets públicos, das conferências WNUT-2015 e #MSM2013,
mostraram que utilizar o Ensemble de ferramentas de NER melhorou o reconhecimento de tipos
de entidade específicos - até 10.62% para PESSOA, 1.97% para LOCAL e 1.31% para ORGANI-
ZAÇÃO, dependendo do dataset e do critério de voto utilizado. Os resultados motraram também
melhorias de 3.76% e 1.69% na média geral dos três tipos de entididades, em cada um dos datasets
mencionados, respectivamente.

A análise de relevância mostrou que entidades mencionadas numa publicação podem de facto
ser úteis na deteção da sua relevância, não apenas quando usadas isoladamente, tendo alcançado
até 73.4% de AUC nesse caso, mas também úteis quando combinadas com outros atributos como
word embeddings, tendo alcançado nesse caso um máximo de 92.7%, uma melhoria de 1.4% em
relação a usar exclusivamente word embeddings.
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“The important thing is not to stop questioning.
Curiosity has its own reason for existing.”

Albert Einstein
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Chapter 1

Introduction

This chapter will present the context of this thesis, not only in terms of its scientific domain but

also in terms of the research project this thesis finds itself integrated in. The motivations and goals

of this work will be explained, along with problems it aims to solve.

This introduction will also provide a brief summary of each of the following chapters.

1.1 Context

Everyday millions of people worldwide use social networks to communicate and share their opin-

ions about virtually any topic. Well-known social networks such as Facebook and Twitter gener-

ate and store massive amounts of data every second, constantly increasing potentially useful data

available for study. With so much data being stored everyday emerges the obvious opportunity to

analyze such data and learn from it.

On one hand, people began to willingly leave their footprint behind, by not only commenting

and leaving their opinions on the Internet but also by creating and filling in their own online

profiles. Therefore, most of this data could be considered personal and irrelevant to a general

audience.

On the other hand, the phenomena of relevant information being transmitted through so-

cial networks before being reported by the traditional media is becoming increasingly common

[KLPM10]. In fact, social networks have enabled anyone with access to the Internet to report inci-

dents around them in real time, creating a global “word of mouth" effect, as witnessed in multiple

situations such as the recent Paris and London terror attacks.

The ability to detect and gather such information from multiple and scattered sources within

the massive stream of posts generated by these social networks is therefore very useful for news

agencies [BG13], which need to review and structure the information as soon as possible in order

to deliver it as “news" to the public. This task, however, is very hard and presents great challenges

becoming, as a result, a field of active research in recent years [MCG15, GAPGC+13].
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1.2 Project

The work of this thesis is integrated in a international research project, REMINDS, which stands

for RElevance MINing Detection System.

This project is supported by the ERDF – European Regional Development Fund through

the COMPETE Programme (operational programme for competitiveness) and by National Funds

through the FCT (Portuguese Foundation for Science and Technology).

The goal of REMINDS is to build a system capable of automatically detecting relevant in-

formation (in a news-worthy sense of relevance) in social media, by using machine learning to

develop predictive data mining models.

To achieve this purpose, different algorithms have been be trained and tested on different

manually labeled datasets, with a number of extracted features, in an attempt to obtain the best

model able to predict the relevance of a social media post.

1.3 Motivations and Goals

While several studies have been conducted to address the problem of relevance detection [MCG15,

GAPGC+13], there is still room for research.

The main motivation of the present thesis is to contribute to such research, by analyzing the

potential usefulness of named entities mentioned in a post for assessing the relevance of the cor-

responding post.

A named entity is a “sequence of words that designate some real-world entity" [AZ12], for

example, the words “New York" should be identified and classified with the type LOCATION,

while the words “Barack Obama" should be classified with the type PERSON. The process of

identifying named entities in plain text is called Named Entity Recognition (NER), a sub-field of

Information Extraction.

That being said, the main goal of this thesis is to try multiple features based on named entities

mined from the text of the posts, such as the number of persons, locations and organizations

mentioned in a post, together with features previously used in the project, and analyze how these

features improve the system.

However, mining text data on social networks presents great challenges [RCE+11]. The main

challenge consists in the difficulty of dealing with its non-standard vocabulary: the absence of

context, the lack of proper punctuation, wrong capitalization, the use of characters to represent

emoticons, spelling errors and even the use of different languages in the same text, are some

examples of common problems which have been shown to significantly decrease named entity

recognition performance, even on reputable state-of-the-art tools.

For that reason, the intermediate goal of this thesis is to study different state-of-the-art tools

for NER — namely Stanford NER, OpenNLP, Twitter NLP tools and GATE with TwitIE — in the

context of social media.

2



Introduction

In an attempt to attenuate the limitations imposed by the characteristics of this type of text, it

is our goal to combine these tools to achieve the best possible performance in the task of entity

recognition.

This will allow a more efficient entity extraction on posts from Facebook or Twitter, which

will serve as the basis for our main purpose of studying relevance detection.

In summary, the goals of this thesis are as follows:

1. Compare different state-of-the-art tools for Named Entity Recognition in social network

messages

2. Analyze how differently they perform in terms of the core entity types: PERSON, LOCA-

TION, ORGANIZATION

3. Study the possible complementary nature of such toolkits, by using rules and machine learn-

ing to combine their outputs

4. Create an automatized ensemble of such NER tools with enhanced performance and use it

for extracting entities from the relevance-labeled dataset

5. Perform feature extraction from the entities obtained in the previous goal

6. Study the importance of named entities for the task of relevance detection

1.4 Thesis structure

This thesis is structured as follows. In chapter 2, a literature review on Named Entity Recognition

will be presented, including its context on Natural Language Processing, the methodologies nor-

mally used to perform this task, and the differences and difficulties encountered when performing

Named Entity Recognition on social media texts versus formal texts. Chapter 3 will provide a

brief literature review on feature analysis for classification systems, including feature engineering,

selection and generation techniques. Chapter 4 will be focused on the utilization of toolkits for the

extraction of named entities, as well as the results of a developed Ensemble of those NER tools.

In chapter 5, we will cover the process of features extraction based on named entities, and the

importance of each feature in different machine learning models for relevance detection. Finally,

in chapter 6, we will summarize the results of the whole work and present our final conclusions.
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Chapter 2

Named Entity Recognition: Literature
review

This chapter presents the state of the art of Named Entity Recognition on different types of text,

by reviewing related works and studies found in literature.

By the end of this section it should be clear what the current state of named entity recogni-

tion is, not only on formal texts but especially on social media texts, and what measures can be

implemented in order to tackle some of the challenges of these types of texts.

This chapter will also cover different tools chosen to be experimented in this project, and

provide a brief summary about each of these tools.

2.1 Introduction

Information extraction is the branch of text mining that aims to gather information from unstruc-

tured data. Named entity recognition is a sub-field of information extraction: its task is to structure

data by finding names of entities such as people, organizations and locations within some text, and

tag them with the respective predefined “label".

For example, given the unstructured sentence “In 2016, Donald Trump won the presidency of

the United States", it would be expected of a named entity recognizer the following output:

“In [2016]time, [Donald Trump]person won the presidency of the [United States]location”

2.2 The NLP Pipeline

In order to perform named entity recognition on a text, usually some preprocessing steps need to

be taken beforehand. This preprocessing is often split into separate but sequential modules, where
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the output of one module is used as input by the next module, following what is called a pipeline

design.

There is no standard structure for NLP pipelines, since multiple variations of the same can be

found in literature. However, there are some common steps among most of the pipelines proposed,

including tokenization, POS tagging, chunking and finally NER itself.

2.2.1 Tokenization

The tokenization step consists in dividing the text into multiple tokens. In the current context,

tokens are usually words. While tokenization might appear to be a simple task, rules must be

defined in order to clarify what a word is. A naive way to do so would be to consider a token

every string separated by a whitespace. For instance, given the input string “In 2016, Donald

Trump won the presidency of the United States", the corresponding output should be the following

list of words: [’In’, ’2016,’,’Donald’, ’Trump’,’won’, ’the’, ’presidency’, ’of’, ’the’, ’United’,

’States’,’.’].

However, simple approaches are usually unable to solve certain ambiguities. For example, the

commas and periods in “100.200,10" have a specific purpose and therefore the number should not

be split as if it was a sentence [ARS13].

Current state of the art tokenizers such as the Stanford tokenizer use more sophisticated heuris-

tics that allow it to determine when punctuation implies sentence boundaries, when single quotes

are parts of words, etc. Recently, a high performance tokenizer was proposed, claiming to be 13.9

times faster than the Stanford while using half the memory [ARS13].

2.2.2 POS tagging

A Part-Of-Speech Tagger (POS Tagger), assigns a part-of-speech to each token previously ex-

tracted. Examples of parts-of-speech are nouns, verbs, adjectives, adverbs, and determiners. There

are different POS Tagsets available, the most commonly used being the Penn TreeBank [MMS93],

composed of 45 tags.

Using the Stanford POS tagger as a state-of-the-art example, for the input string “This is an

example sentence", the output tagged sentence would be “This_DT is_VBZ an_DT example_NN

sentence_NN ", where DT stands for determiner, VBZ for Verb in the 3rd person singular present,

and NN for Noun, singular.

Stanford NLP pipeline offers two different models for POS tagging, namely a bidirectional

model and L3W (Left 3 words) model, the latter being the preferred tagger to use in practice.

These models achieved respective accuracies of 97.32% and 96.89%, but the LW3 model was 18

times faster than the Bidirectional model [ARS13].

2.2.3 Chunking

Chunking (or shallow parsing), consists in finding short phrases, such as noun-phrases, inside a

sentence.
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While POS tagging assigns parts-of-speech to each token individually, chunking goes further

by grouping different parts-of-speech to give some insight about the structure of the sentence.

Taking the example given by Bird et al. [BKL09], for the input sentence: “We saw the yellow

dog", the tagging output should have been “We_PRB saw_VBD the_DT yellow_JJ dog_NN ".

Then, this tagged sentence would be fed as input to the chunking module, which would output the

following “[We]_NP saw [the yellow dog]_NP".

In this case, “saw" was not grouped in any chunk. The standard representation for chunking

is the IOB representation. “I" stands for an inside chunk, “O" for an outside chunk and “B" for

the beginning of a chunk. Using this notation for the previous example, the output of the chunker

would be: “[We]_B-NP [saw]_O [the]_B-NP [yellow]_I-NP [dog]_I-NP". [BKL09]

Chunking can be seen as a middle ground between full parsing and POS tagging. The idea be-

hind chunking is that full parsing is computationally expensive and not always necessary. Besides,

parsing adapts badly to new domains [BKL09], such as Twitter.

Chunkers can be regular expression-based, using only part-of-speech tags to decide the chunks.

However using part-of-speech tags only and ignoring the content of the the words might not be

sufficient. To solve this problem, a classifier-based chunker could be used [BKL09].

2.2.4 NER

The output from chunking will provide useful features for named entity recognition. For example,

named entities are essentially definite noun phrases [BKL09], which were previously labeled by

the chunking module.

The NLP pipeline usually does not end in entity recognition. It could proceed to other tasks af-

ter named entity recognition, for example, relation extraction. For the scope of this work, however,

further NLP tasks will not be discussed.

The entity recognition module of the pipeline will be comprehensively explained in the next

section.

2.3 Methodologies

To perform Named Entity Recognition, different approaches were proposed over time. Early sys-

tems started by implementing dictionaries, relying on a list of named entities [WA86]. Later, rule-

based approaches were introduced to complement dictionary-based approaches and solve prob-

lems such as proper name recognition [SN14]. Nowadays, many state of the art entity recognizers

use supervised machine learning to reduce the work of manually of defining rules, by automatizing

the process.

2.3.1 Dictionary-based Approach

This approach makes use of a dictionary (also commonly referred to as gazetteer or lexicon) of

named entities. A dictionary is no more than a list of words already labeled with a named entity.
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For every word in a text, the algorithm simply checks its corresponding category in the dictionary,

and assigns that category to the word.

The obvious problem with this approach is the very large number of words existent and the

impracticability of manually defining the correct entity of each one, and also the ambiguity of

some words whose entity type might be context-dependent. Most NER systems also need frequent

updates, which are not practical with this approach.

Dictionary-based approaches can be useful, however, in conjunction with other approaches or

in specific contexts where we are only interested in identifying entities of a small and not very

dynamic dictionary [Ker16].

2.3.2 Rule-based Approach

Rule-based approaches have also been widely used in Named Entity Recognition.

These approaches rely on a set of rules, which are no more than “if-then" statements: if a

pattern, which can be defined by a regular expression for example, is detected in the text, then a

predefined corresponding action is triggered.

Let us follow the example from Mining Text Data (Charu C. Aggarwal,ChengXiang Zhai,2011)

[AZ12]:

“to label any sequence of tokens of the form “Mr. X" where X is a capitalized word

as a person entity, the following rule can be defined:

(token = “Mr." orthography type = FirstCap) -> person name

The left hand side is a regular expression that matches any sequence of two tokens

where the first token is “Mr." and the second token has the orthography type FirstCap.

The right hand side indicates that the matched token sequence should be labeled as a

person name.”

To prevent cases where multiple rules happen to be matched in a given string, a protocol should

be defined to handle these conflicts appropriately. A simple way to handle conflicts is to order the

rules by their priority, so that only the “stronger" rule is applied, for example. [AZ12]

These rules can either be defined manually or learned automatically (explained in the next

subsection in further detail). The first approach is very demanding, and therefore expensive. The

latter approach transfers most of the workload to the computer, although it still needs a training

set with manually labeled named entities.

2.3.3 Machine Learning Approaches

Machine learning approaches have also been widely used for Named Entity Recognition. They

are more versatile than rule-based approaches, and require less hand-work.

NER can be seen as multi-class classification problem. In this case, a dataset using some

features will be used to train a model.
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2.3.3.1 Algorithms

One of the most commonly used ML approaches for named entity recognition is Conditional

Random Fields (CRF), a special case of Markov Random Fields [AZ12]. The widely known

Stanford Named Entity Recognizer implements a CRF [FGM05].

Notwithstanding, many other ML algorithms can be used for NER. In fact, sixteen systems

have participated in the CoNLL-2003 shared task using multiple different machine learning ap-

proaches, including Maximum Entropy Models (MEM), Hidden Markov Models (HMM), Support

Vector Machines (SVM), among others. Some of the participants of the ConLL-2003 used com-

binations of previously mentioned ML algorithms, with good results. [TKSDM03]

Ensemble learning for named entity recognition has also been evaluated in [SN14], where the

authors compared several ML algorithms with this approach. This work concluded that NER based

on ensemble learning can achiever higher F1-scores than most state-of-the-art algorithms (Stan-

ford NER, Illionois,Balie, OpenNLP) and higher F1-scores than simple voting methods (studied

for example by Wu et al. [WNC03]).

ML approaches can also be used in conjunction with previously explained approaches such as

Rule or Dictionary based. In fact, most of the current implementations of Named Entity Recog-

nition rely on a combination of some machine learning algorithm with one or even both of these

approaches [Ker16].

2.3.3.2 Features

According to [TKSDM03], choosing good features is not only important but at least as important

as choosing the learning approach.

In the ConLL-2003 shared task [TKSDM03] the features used included affix information (n-

grams), parts-of-speech, bag-of-Words, global case information, chunk tags, global document in-

formation, gazetteers, lexical features, orthographic information and patters, previously predicted

named entities, quotation information and trigger words.

Studies have been conducted to study the best features for Named Entity Recognition. Tkach-

enko et al. [TS12] explored multiple combinations of features and compared their impact on NER

performance. The results showed that the set of features used had a significant impact on the

performance of NER.

In summary, most state-of-the-art tools rely on machine learning approaches for Named Entity

Recognition, due to their versatility and reduced overhead. However, other methods might be

helpful in a few cases, such as when dealing with specific small domains.

2.4 Evaluation measures in NLP

Performance in classification systems is measured by comparing the output of a classifier on un-

seen data with a golden standard - made by human annotators, and assumed as correct. A certain
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prediction can be either Positive or Negative, and according to the golden standard, that prediction

can be True or False.

In the context of information extraction: [GAT]

• True Positive (TP) - corresponds to a correct annotation

• False Positive (FP) - the annotation is present in the output set but not in the golden standard

set

• False Negative (FN) - the annotation is present in the golden standard set but not in the

output set

• True Negative (TN) - the annotation is absent in both sets. Therefore, it is not considered in

IE measures.

There are two ways of counting true positives. The strict way considers “only correct anno-

tations covering exactly the correct span of text" while the leniant way considers that “«partially

correct» or «overlap» annotations also count as correct: correct annotation covering part of the cor-

rect span of text (shorter, longer, overlapping at either end)" [GAT]. Common metrics to measure

performance of classification tasks include:

Accuracy: Calculates the percentage of correct predictions.

A =
T P+T N

T P+T N +FP+FN
(2.1)

Precision: Represents the ratio between correctly identified instances of a certain class and all

the predictions made for that class.

P =
T P

T P+FP
(2.2)

Recall: Represents the ratio between correctly identified instances of a certain class and all the

instances of that class. Thus, it tells us how much of the class is being predicted by the classifier.

R =
T P

T P+FN
(2.3)

Recall and Precision measures are not sufficient when used independently, meaning that know-

ing recall without knowing precision, or vice-versa, does not provide enough information about

the performance of the system. The most common way to combine Recall and Precision in one

single measure is the F-measure.

F-measure: Calculates the harmonic mean of precision and recall. The relative importance

(weight) of each component (precision and recall) is controlled by the β parameter (higher values

of β mean more weight on recall) [CFL13].
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Fβ =
(β 2 +1)×P×R

β ∗P+R
(2.4)

F1 score: Used when both measures have the same importance (β = 1)

F1 =
2×P×R

P+R
(2.5)

2.5 Corpora types

2.5.1 Formal text

Most of the initial NER research focused on news articles, scientific articles, books or web pages

[MWC05].

The text found in these types of documents is usually formal: writers are generally careful and

therefore mistakes or non-standard words are not to be expected. Besides, formal texts are usually

meant to be understood by anyone who could possibly read them. For this reason, they are usually

clear and avoid incurring in context ambiguities.

This type of text has been studied extensively through different approaches and state-of-the-art

systems, such as the Stanford NER, achieving F1 scores of over 92.0% [LZWZ11].

2.5.2 Informal text

Named entity recognition on formal text has been studied for longer than social media text. NER

research started growing in early 1990’s, while major social networks appeared more than a decade

later - Facebook was founded in 2004 and Twitter in 2006.

With huge (and still growing) social networks such as these, generating huge amounts of text

data mostly written by the users, the study of NER applied to social media texts has increased

greatly over time.

It is important to stress that social media texts differ from previously studied texts in their

lack of formality and standardization. These differences have been shown to severely degrade the

performance of standard NLP tools [RCE+11], and therefore multiple research studies have been

conducted in an attempt to attenuate such losses.

Some of these problems, and proposed approaches in the literature, are listed below:

• Lexical variations

In social media it is very frequent to see lexical variations of words, either misspellings

or often just to make texts more compact. For example, “tomorrow" could be written as

“tomorow", “2morrow" or even “2m". An usually effective way to deal with these lexical

variations is by using brown clustering [RCE+11], which relies on distributions to determine

the similarity between words. The intuition behind brown clustering is that similar words
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appear in similar contexts, i.e. similar words have similar distributions of words that precede

and follow them. This method can be applied to misspellings and abbreviations.

• Non-standard capitalization

Capitalization is an important detail in POS tagging and Named entity recognition since it

often carries the information of whether a word is a proper noun or a common noun. For

example, losing this information might lead a named entity recognizer to understand “apple"

as a fruit, when it actually meant “Apple", the technology company.

In [DMR+15] a comparison of NER performances between capitalized and non-capitalized

text was conducted, using the Standord NER, part of the CoNLL dataset (Tjong Kim Sang et

al., 2003), and the same dataset with all tokens lowercased. In the first dataset (the original)

the authors obtained 89.2 precision and 88.5 recall. In the lowercased dataset, the precision

dropped to 81.7 and the recall to 4.1.

Restoring capitalization (truecasing) is therefore useful for multiple NLP tasks. Strategies to

overcome the problem of unreliable capitalization have been proposed in existing literature.

A recent article [NBG15] uses an SVM classifier to determine if the capitalization of a given

tweet is informative or uninformative. According to [NBG15], this approach performed

better than the Stanford Truecaser which implements a discriminative model using a CRF

sequence tagger.

• Wrong punctuation and use of emoticons

As previously mentioned, punctuation is very important in NLP tasks, especially for the

tokenization part, since it often uses punctuation as one of the criteria to delimit tokens.

Many users, however, use punctuation to different purposes, such as to elaborate emoticons:

“8<:-)”, “orz” (represents a kneeling man), “<(-’.’-)>”, “(ò_ó)” or “(=^-^=)”. The range of

possibilities is so large that it would be nearly impossible to cover all of them in a dictionary.

The use of characters to represent emoticons presents a challenge in the tokenization pro-

cess, as punctuation is very important to determine where two tokens should be separated

[LSTO10]. In [LSTO10] a classification-based approach using SVM was tested, and shown

to outperform rules manually defined for the purpose of tokenization.

• Use of multiple languages

Most information extraction methods are primarily focused on the English language. How-

ever, the presence of other languages in social media texts is far from negligible. In fact, a

study has shown that in a 62 million tweet dataset only 51% of the tweets were actually writ-

ten in English [HCC11]. Most of the algorithms used for English text perform worse when

applied to other languages, and are also difficult to adapt to multiple languages [DMR+15].
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One approach to deal with this problem is to identify the language being used before an-

alyzing the text, and then choosing the algorithm according to the language. The TwitIE

is an example of a toolkit which implements language identification as the first step of the

pipeline [BDF+13].

This approach, however, does not solve the problem of multiple languages being used within

the same post.

• Infrequent named entity types and lack of context

The fact that tweets are limited to short messages means they often lack sufficient context

to disambiguate the types of the entities mentioned in them. Usually, we (humans) can

easily understand these mentions because we have some prior knowledge that allows us to

understand what the likely context of that post is. For a computer, however, this can be

difficult to achieve since more training data is needed. This problem gets even worse due

to the fact that many different entity types can be found in Tweets, requiring even more

training data [RCE+11]. Ritter et al. addresses this problem with a distant supervision

approach applying LabeledLDA [RCE+11], to make use of a large list of entities gathered

from Freebase [BEP+08], an open-domain ontology, with large amounts of unlabeled data

in learning.

2.6 NLP toolkits

2.6.1 Stanford CoreNLP

Widely used as reference in NLP tasks, the Stanford CoreNLP1 provides a set of natural language

processing tools. As stated in [Cor16] “it can give the base forms of words, their parts-of-speech,

whether they are names of companies, people, etc., normalize dates, times, and numeric quantities,

mark up the structure of sentences in terms of phrases and word dependencies, indicate which noun

phrases refer to the same entities, indicate sentiment, extract particular or open-class relations

between entity mentions, get quotes people said, etc".

The Stanford NER2 is able to detect the following named entities: PERSON, LOCATION, OR-

GANIZATION, MISC, MONEY, NUMBER, ORDINAL, PERCENT, DATE, TIME, DURATION, SET

[Cor16].

Stanford CoreNLP can be used from the command-line, from its Java API or using third

party APIs when using other programming languages [Cor16] (Python, Ruby, Perl, Scala, Clo-

jure, Javascript (node.js), and .NET languages [MSB+14]) . Compared to other frameworks, it is

said to be simple to set up and use [PGOOA16].

1http://stanfordnlp.github.io/CoreNLP/
2http://nlp.stanford.edu/software/CRF-NER.shtml
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At the tokenization level, CoreNLP tries to mimic the Penn Treebank 3 tokenization [MMS93]

and implements a Maximum Entropy Model. At the NER level, CoreNLP uses a Conditional

Random Field (CRF) and is trained with the CoNLL-2003 dataset.

2.6.2 NLTK

NLTK3 is another toolkit, written in Python, for Natural Language processing, gathering not only

program modules (tokenizers, taggers, chunkers, entity recognizers) but also different datasets,

lexicons and tutorials.

One of the primary principles of NLTK, besides simplicity, consistency and extensibility, was

modularity. Modularity provides components that can be used independently [BKL09]. This

might be specially useful to tune only specific parts of the pipeline or even use third parties in

conjunction with this toolkit. Since NLTK uses Python, other Python libraries can also be used to

complement it, such as Scikits.learn, which includes algorithms for machine learning and prepro-

cessing.

The efficiency of NLTK in terms of runtime performance is not highly optimized, since the

goal of NLTK was to provide a simple and easy to understand out of the box tool, mainly for

learning purposes [BKL09].

2.6.3 OpenNLP

The Apache OpenNLP4 [Fou] is another natural language processing library written in Java, but it

can also be used in R using the openNLP package.

It is machine learning based and supports tokenization, sentence segmentation, part-of-speech

tagging, named entity extraction, chunking, parsing, and co-reference resolution.

With this toolkit it is possible to either use out-of-the-box pre-trained models or to train a

Perceptron or a Maximum Entropy Model, for each of the mentioned NLP tasks. POS tagging and

chunking make use of the Penn Treebank tagset, and the Chunker is trained on the CoNLL-2000

dataset [PGOOA16].

OpenNLP is able to detect entities of the types PERSON, LOCATION, ORGANIZATION, TIME,

DATE and PERCENTAGE, when using the pre-trained models provided.

2.6.4 GATE - ANNIE

GATE5 is an open source software for solving text processing problems, including Information

Extraction, which is done by a built-in IE component set called ANNIE [CMBT02].

This component includes a Sentence Splitter (which tries to identify individual sentences in

documents), a POS Tagger and three different Named Entity Recognition resources:

• ANNIE Gazetteer is a dictionary-based NER engine.
3http://www.nltk.org/book/
4https://opennlp.apache.org/
5https://gate.ac.uk
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• ANNIE NE Transducer is rule-based NER

• ANNIE OrthoMatcher is rule-based NER

With this tool it is possible to add new entity types manually, besides the traditional entities

PERSON, LOCATION, ORGANIZATION.

ANNIE components can be used independently or even in conjunction with customized mod-

ules in order to create new applications [BDF+13].

2.6.5 Twitter NLP tools

Ritter et al. [RCE+11] rebuilt the NLP pipeline (POS tagging, chunking and NER), for the specific

purpose of dealing with Tweets.

The novelty of this pipeline is that it “leverages the redundancy inherent in tweets" outper-

forming this way the Stanford NER system, by training tools on unlabeled in-domain and out-of-

domain data [RCE+11].

This NER tool can deal with distinctive named entity types, by using Freebase and LabeledLDA.

Some of these distinctive types are PRODUCT, TV SHOW and FACILITY.

2.6.6 TwitIE

TwitIE is a full GATE pipeline, including [BDF+13] social media data Language identification,

Twitter tokenizer, Twitter part-of-speech tagger and Text normalization.

It is another open-source NLP tool customized for Twitter text at every module of the pipeline

[BDF+13], based on GATE’s ANNIE algorithms.

As explained before in 2.6.4, ANNIE’s modules can be integrated with new customized ones.

That being said, TwitIE makes use of the default ANNIE’s sentence splitter (given that most tweets

consist in only one sentence, changing this module would not lead to significant improvements)

and name gazetteer (which includes lists of cities, organizations, days of the week, etc.), but the

other components of the pipeline have been adapted.

The first step of the pipeline is language identification. Then for the tokenization module,

TwitIE follows Ritter’s approach [RCE+11][BDF+13]. The following two steps are sentence split-

ting and gazetteer look-up, which are the unmodified ANNIE’s modules. After that, there is the

normalizer, which is basically a spell-corrector designed for social media texts. Then comes the

POS tagger, an adapted version of the Stanford POS tagger. All these modifications proved useful

for the final component of the pipeline, NER, which has performed better than Ritter’s approach

[BDF+13].

2.6.7 Performance comparison

Table 2.1, taken from a study of different NER toolkits by Pinto et al. [PGOOA16], presents the

precision, recall and F1 scores of five different toolkits (NLTK, OpenNLP, CoreNLP, TwitterNLP,
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TwitIE) when applied on two different datasets, the one used in CoNLL-2003 shared task (Reuters

corpus) and the one used by Ritter et al. [RCE+11].

Table 2.1: NER toolkit performance comparison for 2 different datasets [PGOOA16]

Task NER

Data set CoNLL Alan Ritter - Twitter

Tool P ± σ R ± σ F1 ± σ P ± σ R ± σ F1 ± σ

NTLK 0.88 ± 0.12 0.89 ± 0.11 0.89 ± 0.11 0.77 ± 0.16 0.84 ± 0.13 0.80 ± 0.15
OpenNLP 0.88 ± 0.09 0.88 ± 0.08 0.88 ± 0.08 0.85 ± 0.14 0.90 ± 0.11 0.87 ± 0.12
CoreNLP 0.70 ± 0.30 0.70 ± 0.30 0.70 ± 0.30 0.87 ± 0.15 0.89 ± 0.14 0.88 ± 0.15

Pattern n/a n/a n/a n/a n/a n/a
TweetNLP n/a n/a n/a n/a n/a n/a
TwitterNLP 0.88 ± 0.11 0.89 ± 0.10 0.88 ± 0.11 0.96 ± 0.07 0.97 ± 0.05 0.97 ± 0.06

TwitIE 0.74 ± 0.16 0.80 ± 0.14 0.77 ± 0.15 0.77 ± 0.17 0.83 ± 0.14 0.80 ± 0.15

Most of these tools implement different algorithms to perform NER, and their performances on

different entity types varies significantly [AL13, RBBL12, PGOOA16]. Moreover, it is common

to find disagreements between these tools regarding specific tokens and their corresponding named

entity.

2.6.8 Ensemble methods in NER

While ensemble methods have been proposed in literature for the task of NER, usually these

methods were applied at the level of the machine learning algorithms, rather than at the level of

ready-to-use toolkits. An example of previous use of ensemble methods for NER, proposed by

Wu, Chia-Wei, et al. [WJTH06], consisted in applying a memory-based ensemble method on

Chinese datasets to achieve better results than using individual classifiers. Another example of

the same use was proposed by S. Saha and A. Ekbal [SE13], once again showing that combining

different learning algorithms can improve the performance of Named Entity Recognition.

To the best of our knowledge, there have been few attempts to simultaneously use different

out-of-the-box toolkits to perform Named Entity Recognition on social media texts. The idea

of combining toolkits was applied in one of the submissions to the Making Sense of Microposts

challenge in 2013 [CBVR+13]. In this study the authors combined different toolkits using machine

learning techniques, and their results showed that several classification models could achieve better

results than the best individual tools [CBVR+13].

A more recent example of combining toolkits used two different toolkits (SpaCy and CoreNLP)

together to create an hybrid NER tool [JBL16].
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2.7 Conclusions

Named entity recognition has been widely studied in recent years. Multiple widely known NLP

toolkits are available for free use, such as the Stanford CoreNLP, OpenNLP and NLTK.

While most of these tools have shown solid performance on different, generally formal, text

corporas, there has also been a consistent decrease in performance when applying these tools to

texts extracted from social media.

Several measures have been proposed, studied and shown to improve performances in dif-

ferent parts of the pipeline, most of them by using techniques to normalize the irregularities of

this type of text. However, information about these techniques is sparse and few studies have

tried to summarize them and do explicit comparisons between their performances. Many of these

techniques have also been tried independently from each other, and the possible co-existence of

different techniques has not been studied comprehensively.

A few general NLP tools have been assembled for social media though, examples of that

being the Twitter NLP tools by Ritter et al. [RCE+11], an entire pipeline developed specifically

for twitter posts, and the TwitIE ANNIE’s modified pipeline.

It is fair to say that named entity recognition is far from a closed topic, specially in the social

media context, given there is still room for significant improvement. However, there is a wide

variety of tools available for free use that perform reasonably well, and while some tools have

been proved to be robust in many situations and datasets, no tool has been shown to outperform

all others in every context.

For the purpose of our work, the main take home messages from this literature review are as

follows:

• NER has been widely studied in formal text corpora, and multiple out-of-the-box tools are

freely available for use

• NER on social media texts presents great challenges, due to the text informality, which

reduce the performance of such tools

• There have been multiple attempts to attenuate these problems, and new out-of-the-box tools

have been developed for the specific purpose of NER in social media

• Each tool has specific strengths and weaknesses in terms of entity types

• Ensemble methods have not been extensively studied for out-of-the-box-tools, and to the

best of our knowledge, no attempts have been made to combine 4 of the most well-known

NER tools (Stanford NER, OpenNLP, Twitter NLP tools, TwitIE) for the task of NER in

social media. Our research intends to fill this gap.
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Chapter 3

Features in Machine Learning:
Literature review

In a classification problem the goal is to obtain a model able to automatically label unseen objects,

based on their features or attributes.

The most common approach to induce such model consists in using a machine learning algo-

rithm to learn from some training data, which is basically a set of pre-labeled objects [Seb02]. By

looking at previously labeled data the model will hopefully learn how the characteristics (repre-

sented by the features) of the objects relate with their label, and from there be able to predict new

unlabeled objects.

3.1 Feature Selection

The process of feature selection in classification is important for two main reasons. Firstly, most

algorithms perform worse with irrelevant features, and secondly feature selection provides faster

training and testing phases.

In some cases, variable dependencies can be important for the predictive power of a classifier.

Some of those situations, mentioned in [GE03] are:

• “Noise reduction and consequently better class separation may be obtained by adding vari-

ables that are presumably redundant. Variables that are independently and identically dis-

tributed are not truly redundant."

• “a variable that is completely useless by itself can provide a significant performance im-

provement when taken with others."

• “Two variables that are useless by themselves can be useful together."
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For the reasons mentioned above, the process of finding subsets of features that together have

good predictive power [GE03] can be useful.

3.1.1 Filter Methods

Filter methods remove features based on their characteristics and independently of the predictive

algorithm to be used. They are usually faster than other approaches like wrappers and can also be

used as a preprocessing step to reduce space dimensionality and avoid overfitting [GE03].

Filter methods can be either univariate or multivariate. The former ignores feature dependen-

cies and redundancy since only one feature is analyzed at a time. On text classification problems,

this drawback assumes even greater importance, given that text classifiers are usually of multivari-

ate nature, i.e, usually their analysis is based on a combination of features [For07].

On the other hand, this also means that univariate filters are even faster than multivariate filters.

Two examples of filter methods, explained by Sánchez-Maroño et al. [SMABTS07] are:

• RelieF

This algorithm is an example of a multivariate filter [GE03], which estimates the quality of

features based on how well they differentiate two objects from different classes that are near

each other. This is done by randomly selecting an object, and then calculating the Euclidean

distance to find its nearest same-class object, called "nearest hit", and the nearest different-

class object, called “nearest miss". The weights for each feature are then updated according

to the difference between the object, the nearest hit and the nearest miss [SMABTS07]

[LM07].

• Correlation-based

This algorithm ranks a feature subset based both on the correlation of its features with the

class and the correlation between its features. Essentially, a feature will be more relevant

if it has a high correlation with the class but not with other features, ensuring this way that

each feature "predicts classes in areas of the instance space not already predicted by other

features" [SMABTS07].

The advantages of Filter methods [KQ13] are that they work well even on high-dimensional

datasets, they are fast and computationally simple, and they are independent of learning algo-

rithms (can also be seen as disadvantage), which is also good since this way feature selection only

happens once, and then different classifiers can be evaluated.

3.1.2 Wrapper Methods

Differently from filter methods, wrapper methods are tested for a given predictive algorithm. The

algorithm is run with multiple subsets of features and the one that achieves best performance

(within that algorithm) is chosen. Therefore, the best feature subset depends on the algorithm to

be used.
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• Exhaustive Search (forward and backward)

As the name suggests, this method consists in searching all possible feature subsets. The

problem with this approach is that it suffers from combinatorial explosion, since a dataset

with n features has a total of 2n−1 possible subsets. For a high number of features this ap-

proach becomes very expensive computationally. For a small number of features, intuitively

it would seem better to perform an exhaustive search, instead of other heuristics, since an

optimal solution would be guaranteed that way. However, research shows that exhaustive

search can also lead to data overfitting, and thus heuristic searches might be preferred in

some cases [For07].

Exhaustive search could be done by forward selection (begins with empty subset and adds

relevant features to the subset iteratively) or backward selection (begins with a full set of

features and removes features iteratively).

• Sequential Forward Selection

Sequential Forward Selection (SFS) is an example of an heuristic method. As in the exhaus-

tive forward selection approach, this method begins with an empty subset and iteratively

adds features that are relevant to the algorithm.

The major difference between SFS and the exhaustive forward selection method is that in

this case the algorithm stops when some termination criteria is met.

Examples are stopping the algorithm when adding a new feature does not improve the per-

formance of the algorithm [LM07] or when the increase is smaller than a given threshold.

One problem with this approach is that once a feature is added to the subset, it cannot be

removed. Another problem is that, being an heuristic method, this method may get "stuck"

in a local optima.

• Sequential Backward Selection

Sequential Backward Selection (SBS) is another example of an heuristic method. Differ-

ently from SFS, SBS starts with all the features present in the subset and iteratively elimi-

nates features [GE03]. It stops when removing a feature does not improve the performance

of the algorithm. Similarly to SFS, in SBS once a feature is removed from the subset that

same feature will not be added back.

The drawbacks of these approach are the same as the drawbacks of SFS, namely the risk of

getting stuck on local optima.

The methods above are examples of deterministic wrapper methods. There are other non-

deterministic approaches, such as genetic algorithms and simulated annealing, which are usually

less prone to local optima. The negative side is that they are also more computationally expensive

than deterministic methods. [LD11]

In general, wrapper methods have a higher risk of overfitting than filtering methods, and are

more computationally expensive [LD11], but they perform better than filter methods.
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3.1.3 Embedded Methods

While wrappers use machine learning in a black box manner, embedded methods incorporate

variable selection as part of the training process [GE03].

Embedded methods try to optimize two things at the same time, the goodness-of-fit term and

a penalty for a large number of variables. These methods are usually specific to a given learning

algorithm [GE03].

According to [GE03], embedded methods are more efficient than wrappers for two reasons.

First, the data does not need to be split into training and validation sets, leading to more data

available. Second, they are also faster in finding a solution since they avoid retraining classifiers

for each possible subset.

3.1.4 Summary

Table 3.1 table provides a side-by-side summarized comparison of 3 different feature selection

methods.

Table 3.1: Feature selection methods

Filter methods Wrapper methods Embedded methods

Criteria Feature (subset) rele-
vance

Feature subset usefulness Feature subset usefulness

Search Order features (ranking
or nested subsets of fea-
tures)

Search the feature space Search guided by the
learning process

Assessment Statistical tests Cross-validation Cross-validation

Advantages Robust against overfitting Likely to find the most
"useful" features

Likely to find the most
"useful" features, less ex-
pensive, less prone to
overfitting

Disadvantages May fail to select the
most useful features

Prone to overfitting -

3.2 Feature Construction

Feature construction aims at finding better ways of representing the original data (for example to

compact data), or generating features more efficient for making predictions [GE03].

It can be done not only by manually adding some specific domain knowledge to the input, but

also by using generic algorithms for feature construction [GE03].

An example of a feature construction method is clustering. In this method the idea is to group

similar features, generating a cluster, and then using its centroid as a new feature. This is frequently
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used for bag of words representations of labeled texts, where each word corresponds to a feature.

These features are then grouped in a cluster, and the new features become categories of words,

instead of words [GE03].

Another example of feature construction happens in the hidden units of artificial neural net-

works. Each layer of the network constructs more abstracted features from the input features.

While feature construction is often associated with the idea of dimensionality reduction, it

can also be used to expand the feature space, by for exampling computing products of the original

features to create monomials (Non-linear expansions) [GE06]. This can be useful for very complex

problems where the initial features are not enough for the model to learn properly.

3.3 Conclusions

One of the most fundamental parts of a classification problem relies on having the right features.

Feature selection methods serve essentially three purposes: reduce the feature set, in order to

save resources; improve the performance; make data more understandable. There is no feature

selection method better than all others, and the choice on which to use will depend on the specific

problem addressed.

Feature construction may be seen as a method to reduce dimensionality while keeping impor-

tant information, or even as a preprocessing step. However, they may also be used to expand the

feature set in cases where the data is too complex to learn with the initial features.

In our study we will use two wrapper methods, Sequential Forward Selection and Sequential

Backward Selection. The reason for this choice was based on the availability of such methods

among the software and tools used.
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Chapter 4

Named Entity Recognition on Social
Media Texts

4.1 Problem definition

The fundamental goal of this thesis depends on the ability to perform named entity recognition on

a dataset of social media posts.

As explained in detail in 2.5.2 , Named Entity Recognition on social media posts presents

great challenges mainly due to the inherent informality of the content of such posts.

The first part of this thesis consists therefore in finding a way to address these challenges, and

building or finding a Named Entity Recognizer able to extract entities from the dataset in the most

efficient way.

Therefore, the following research questions arise:

• Which is the best available tool for Named Entity Recognition in social media?

• How can we improve such tool(s)?

4.2 Solution outline

Our solution to this problem begins therefore with the exploration of different out-of-the-box NER

tools.

As concluded in 2, multiple text normalization techniques have been proposed that can be used

to improve the accuracy of named entity recognition in informal texts, many of them included in

entire NLP pipelines designed for this specific task, such as the Twitter NLP tools [RCE+11]

(with part-of-speech tagging, chunking and named-entity recognition) and Gate with TwitIE plu-

gin [BDF+13] (a sequence of modules including language identification, tokenization, spelling

and orthographic corrector, Stanford POS tagger adapted to Twitter, and a Named Entity Recog-

nizer).
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Besides these two twitter-specific NLP pipelines, we decided to still use two traditional sys-

tems: CoreNLP and OpenNLP.

The reason to do so is because the results presented in different studies may differ in the

presence of a completely new dataset, as will be the case in this work. For example, according to a

toolkit performance comparison by Pinto et al.[PGOOA16], both CoreNLP and OpenNLP actually

performed better than the Ritter et al.’s [RCE+11] approach - which was proposed specifically for

twitter posts - on a twitter dataset. These examples of unexpected results support the idea that no

tool has a clear superiority over others in every context, and therefore analyzing as many tools as

possible can be important. This step includes:

• Finding appropriate annotated datasets of social media posts

• Setting up and experimenting Stanford NER

• Setting up and experimenting GATE (with the TwitIE plugin)

• Setting up and experimenting OpenNLP

• Setting up and experimenting Ritter et al. approach [RCE+11]

We could settle for the best-performing tool available and use that one for our further exper-

iments. However, as explained in section 2.6.7 these tools have different behaviours regarding

different entity types, and it is common to find disagreements between these tools. Therefore, it

was our intuition that the simultaneous use of different toolkits might help achieve better results

than using them separately. Apart from the obvious benefit that some of these toolkits predict dif-

ferent sets of entity types, complementing each other that way, we will analyze, for a standard set

of core entities (PERSON, LOCATION, ORGANIZATION), if a ponderation between toolkits reveals

to be beneficial.

That being said, in this chapter we study the combined use of four different NLP toolkits —

Stanford CoreNLP, GATE, OpenNLP and Twitter NLP tools — in the context of social media.

Previous studies have shown performance comparisons between these tools, both on news and

social media corpora. Here, we go further by trying to understand how differently these toolkits

predict Named Entities, in terms of their precision and recall for three different entity types, and

how they can complement each other in this task in order to achieve a combined performance

superior to each individual one.

The proposed solution to the problem, which from now on will be referred to as the "Ensemble

of NER tools" brought two new research questions:

• Can an ensemble of different toolkits achieve overall higher NER performance than any of

the involved toolkits, independently, for the same task?

• What is the best way to resolve conflicts/disagreements between different toolkits regarding

their entity predictions?
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The remainder of this chapter is presented as follows: in section 4.3 we describe our experi-

mental setup, including details on the datasets used, brief descriptions of the toolkits used and the

necessary steps taken to obtain their results for our analysis, the ensemble itself and the different

voting protocols tested, as well as the performance measures used; in 4.4 we present the results

and discuss them in detail; finally, in section 4.7 we present our conclusions and ideas for future

work.

4.3 Experimental Setup

4.3.1 Datasets

For comparison purposes, every toolkit used equally pre-tokenized datasets, following Ritter’s

[RCE+11] tokenization method. We also chose to focus only on the entities PERSON, LOCATION

and ORGANIZATION. The reason for this choice was that these entities are the only three entities

detected by all the toolkits tested.

For the first experiment, an original dataset of tweets from our project [FSF16] was partially

used. This dataset consists of 840 entries: 420 tweets, 107 Facebook posts and 313 Facebook

comments, retrieved by a crawler about 6 topics highly discussed in 2016: “Refugees Syria",

“Elections US", “Olympic Games" , “Terrorism" , “Daesh" and “Referendum UK EU".

This original dataset was then tokenized. Therefore, instead of 840 entries, the tokenized

dataset had 28172 entries (one per token). From the tokenized dataset, a subset of 3474 tokens

was extracted. The final dataset contains one token per row, and one entity for each token. The

ground truth for this dataset was manually annotated by the authors.

For the second experiment, a dataset from “WNUT NER - Workshop on Noisy User-generated

Text" [BDMH+15] - was used. This dataset used the same format seen in Twitter NLP tools by

Ritter et al., including less common entity types that were dropped for the purpose of this study,

which focuses only on the 3 core entities PERSON, LOCATION and ORGANIZATION.

In the third experiment, we tested the dataset from the 3rd workshop on “Making Sense of

Microposts" (#MSM13) [CBVR+13], which took place in 2013. It is important to note that for

this dataset we used the PTBTokenizer available as part of the CoreNLP libraries. The reason for

this choice was that in the conversion process we had to tokenize both the entities and the text of

the tweets, and for the tokenizations to match we needed a deterministic tokenizer.

Therefore, our testing datasets are (each entry corresponds to a token):

• Dataset 1: Project REMINDS - 3474 entries

• Dataset 2: WNUT NER - 48 862 entries

• Dataset 3: #MSM2013 - 62 494 entries

• Dataset 4: Subset of #MSM2013 - 10 000 entries
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Every dataset used in this study (excluding Dataset 2, which we are not allowed to dis-

tribute) is available in a public repository created for the purpose: https://bitbucket.org/

filipebatistaner/ensemblener

4.3.2 Toolkits and Data preparation

4.3.2.1 Stanford CoreNLP1

Stanford CoreNLP was run using the default toolkit via command line [MSB+14]. This toolkit

accepts as input format the tokenized text and the output format in a tab formatted file, convenient

for this study.

Since there was not enough labeled data for training our own model, as the data was manually

annotated by the authors and that is a very costly task timewise, we used the “3 class model”

provided by CoreNLP, which was trained on both MUC 6 and MUC 7 training data sets with some

additional data (including ACE 2002 and other generated data).

4.3.2.2 GATE using TwitIE plugin2

GATE provides a graphical interface which was used in this study to run the TwitIE [BDF+13]

pipeline, available as part of the Twitter plugin.

The output format consists in surrounding any detected entity with XML tags. In order to

convert this type of output to the tab separated format, a small script using regular expressions was

written in Python.

While GATE is able to detect many other entity types, we used only the three core entities

(PERSON, LOCATION and ORGANIZATION). We used the default configurations of the TwitIE

pipeline.

4.3.2.3 Twitter NLP tools3

Twitter NLP tools was run via command line, following the usage presented in the Twitter NLP

tools Github repository.

Twitter NLP tools’ [RCE+11] output is by default in the IOB format [RM99] (B for beginning

of a Named Entity (NE), I for inside an NE, O for outside of NE), and the “token/ENTITY" format.

The IOB format was dropped, so instead of B-ENTITY and I-ENTITY we opted to use ENTITY only.

Besides, 2 entity types were converted: COMPANY to ORGANIZATION, and GEO-LOCATION to

LOCATION, while all the remaining entity types (except PERSON) were simply dropped.

We used this tool as is, without any re-training or tuning.

1https://stanfordnlp.github.io/CoreNLP/
2https://gate.ac.uk/download/
3https://github.com/aritter/twitter_nlp
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4.3.2.4 OpenNLP4

OpenNLP is a Java library which supports several common NLP tasks, including Named Entity

Recognition.

OpenNLP can be used directly as a tool, or via its API. We decided to use the API in a small

Java project in order to easily output the entities to the tab-separated format.

We used the pre-trained models for the OpenNLP 1.5 series, for each entity type used.

4.3.3 Ensemble voting methods

In order to study the viability of a NER toolkit ensemble, all the outputs from the previous toolkits

previously mentioned were merged to a single comma-separated values file, one column for the

tokens, another column for the ground truth entities, and one column for each of the entities

predicted from each toolkit.

The first step was to compute the precision, recall and F1 measure for each toolkit individually,

using the ground truth obtained by manual labeling.

The second step was to define different voting protocols to resolve the conflicts between the

different toolkits predictions.

Finally, we used different machine learning algorithms taking as input features the predictions

of each tool.

4.3.3.1 Protocol use 1:

A token is tagged with entity type A if and only if at least one of the following conditions are met:

• 50% of the toolkits predicted entity type A and the other 50% did not predict any entity type

• At least 75% of the toolkits predicted entity type A

4.3.3.2 Protocol use 2:

A token is tagged with entity type A if and only if at least one of the following conditions are met:

• 50% of the toolkits predicted entity type A and the other 50% did not agree on any other

entity between them.

• At least 75% of the toolkits predicted entity type A

4.3.3.3 Machine learning approach:

The models for predicting the combined output were obtained by running each of the following

ML algorithms on a training set, with 10-fold cross validation, and then tested on an independent

test set.
4https://opennlp.apache.org/
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Both the train and test sets were subsets, each of 10 000 entries, of the previously mentioned

MSM2013 dataset. Every ML experiment was performed in RapidMiner Studio. The algorithms

used were Naïve Bayes, Random Forest, k-nearest neighbors (k-NN) and Neural Network. The

features used consisted of the 4 individual outputs of each tool.

4.4 Experimental results

In this section we explore the performances of each toolkit and compare them to the Ensembles’

performances using different protocols and datasets. Ensemblen (En) will be the notation used to

refer to the Ensemble using protocol number n, previously defined. Bold will be used to highlight

the highest result, and “Avg." corresponds to the average of the three entity types.

For each dataset we provide an extensive analysis, providing not only the F1 score results but

also the Precision and Recall (these metrics were explained in detail in 2.4). In this study we chose

to use the lenient way of counting true positives (i.e. we consider that partially correct or overlap

annotations are correct).

For dataset 4 more experiments were added using ML algorithms. This type of experiments

was not conducted on the other datasets.

4.4.1 Dataset 1 - REMINDS

4.4.1.1 F1 score analysis

Table 4.1: F1 scores on Dataset 1

PERSON LOCATION ORGANIZATION Avg.

CoreNLP 67.37 78.26 28.57 58.07

TwitIE 67.5 85.87 44.90 66.09

TwitterNLP 44.90 72.84 10.39 42.71

OpenNLP 63.63 67.95 23.08 51.55

Ensemble1 80.00 84.52 30.59 65.04

Ensemble2 74.07 88.14 30.59 64.27

Ensemble 1 Looking at Table 4.1 and Figure 4.1 we can see that Ensemble1 achieved the highest

F-measure for detecting the entity PERSON.

In terms of LOCATION and ORGANIZATION entities, while Ensemble1 was better than CoreNLP,

Twitter NLP tools and OpenNLP, it did not perform better than TwitIE.

On average, TwitIE still achieved the best F1 measure, with 66%, followed immediately by

the ensemble, which achieved an average F1 of 65%. This is not surprising, given that TwitIE was,

among all the 4 toolkits, the one to achieve better results for every entity type.
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Figure 4.1: F1-scores of the entities Person, Location and Organization on the REMINDS dataset

Nevertheless, it was possible to achieve an improvement of 12.5% on the detection of the

entity Person by using Ensemble1.

Ensemble 2 Ensemble2 also achieved the best F1 score for the entity type PERSON when com-

pared to any other toolkit individually, however its F1 score was lower than Ensemble1.

On the other hand, Ensemble2 scored higher than Ensemble1 and any other toolkit and in

terms of detecting the entity LOCATION.

On average, Ensemble2 was worse than Ensemble1, which in turn was worse than TwitIE.

While for this dataset our ensembles did not outperform the best individual toolkit, TwitIE,

there were still visible improvements in specific entity types, namely PERSON and LOCATION.

4.4.1.2 Recall analysis

Ensemble 1 In terms of recall, it is possible to see in Table 4.2 that the Ensemble1 ranked second

for every entity type. The toolkit with highest recall for the entity PERSON was the Stanford

CoreNLP, while TwitIE was the toolkit to achieve highest recall for the entities LOCATION and

ORGANIZATION.

Ensemble 2 Ensemble2 ranked better than Ensemble1 for the entity type LOCATION, but scored

the same for PERSON and ORGANIZATION.

The fact that protocol 2 was less strict than protocol 1 is the likely reason for the improve in

recall from Ensemble1 to Ensemble2
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Table 4.2: Recall scores on Dataset 1

PERSON LOCATION ORGANIZATION Avg.

CoreNLP 80 65.63 16.67 54.1

TwitIE 67.5 82.29 30.56 60.12

TwitterNLP 55 61.46 5.56 40.67

OpenNLP 52.5 55.21 16.67 41.46

Ensemble1 75 73.96 18.06 55.67

Ensemble2 75 81.25 18.06 58.10

4.4.1.3 Precision analysis

Table 4.3: Precision scores on Dataset 1

PERSON LOCATION ORGANIZATION Avg.

CoreNLP 58.18 96.92 100 85.03

TwitIE 67.5 89.77 84.62 80.63

TwitterNLP 37.93 88.33 80 69.11

OpenNLP 80.77 88.33 37.5 63.13

Ensemble1 85.71 98.61 100 94.79

Ensemble2 73.17 96.30 100 89.82

Ensemble 1 In terms of precision, Ensemble1 ranked first for the three entity types, as we can see

in Table 4.3. This result makes sense and indicates that using this protocol helped significantly in

detecting entities efficiently, by eliminating predictions with less than a certain level of confidence

(see protocol 1).

Ensemble 2 Ensemble2 overall precision dropped when compared to Ensemble1, 12.54% on

PERSON and 2.31% on ORGANIZATION. Once again it makes sense that reducing the strictness

of the protocol would likely reduce the precision.

4.4.2 Dataset 2 - WNUT NER

In Table 4.4 and chart 4.2 we can see that for this dataset the results were generally low for all the

toolkits, when compared to the performances obtained from the other datasets tested. Since this

dataset used Twitter NLP tools format, it had to suffer the same conversion explained in Section

4.3.2.3, which probably led to the worse results.
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Table 4.4: F1-scores on Dataset 2

PERSON LOCATION ORGANIZATION Avg.

CoreNLP 56.62 32.5 20 36.37

TwitIE 59.95 48.14 38.23 48.77

TwitterNLP 52.78 34.9 45.12 44.27

OpenNLP 43 34.79 6.59 28.13

Ensemble1 70.57 41.45 42.37 51.46

Ensemble2 70.44 44.53 41.73 52.53

Figure 4.2: F1-scores of the entities Person, Location and Organization on the WNUT dataset
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Nevertheless, we can see that both Ensembles achieved better F-scores on average than any

other toolkit alone, which is the question we sought to answer in this work.

In terms of precision (Table A.2) and recall (Table A.2 in Appendix A) , the conclusions were

the same as for Dataset 1: the stricter protocol (Ensemble1) had less recall but more precision than

the less strict protocol (Ensemble2).

4.4.3 Dataset 3 - #MSM2013

Table 4.5: F1 scores on Dataset 3

PERSON LOCATION ORGANIZATION Avg.

CoreNLP 69.20 54.18 27.09 50.16

TwitIE 77.06 67.96 43.95 62.99

TwitterNLP 55.04 41.91 16.18 37.71

OpenNLP 55.40 47.68 25.47 42.85

Ensemble1 79.93 62.20 41.37 61.17

Ensemble2 82.36 66.42 45.26 64.68

Figure 4.3: F1-scores of the entities Person, Location and Organization on the MSM13 dataset

Looking at Table 4.5 and Figure 4.3 it is possible to see that once again ensemble 2 performed

better on average than any other toolkit individually. Ensemble 2, while not better than TwitIE on

average still performed reasonably well with only 1.82% less F1-score.
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Also, once again, both Ensembles outperformed every toolkit on the entity type PERSON, and

Ensemble 2 on the entity type ORGANIZATION.

Once again, the conclusions in terms of Precision and Recall remained the same. As we can

see in Tables A.3 and A.4 in Appendix A, Ensemble1 achieved higher precision and less recall

than Ensemble2.

4.4.4 Dataset 4 - Subset of #MSM2013

Table 4.6: F1 scores on Dataset 4

PERSON LOCATION ORGANIZATION Avg.

CoreNLP 54.21 65.64 40.20 53.35

TwitIE 71.13 82.20 61.02 71.45

TwitterNLP 51.73 55.59 15.85 41.06

OpenNLP 52.80 63.05 41.20 52.35

Ensemble1 80.08 77.07 53.57 70.24

Ensemble2 81.26 81.45 57.74 73.48

Random Forest 80.68 82.58 51.4 71.55

Naive Bayes 80.88 83.82 57.37 74.02

kNN, k=3 75.09 84.17 47.76 69.00

kNN, k=10 80.68 82.53 53.16 72.12

Neural net 79.62 83.71 58.68 74.00

We extracted a subset of 20000 tokens from #MSM2013 and split it into two equally sized

datasets for training and testing purposes. For a fair comparison, we ran our manually defined

protocols and the individual toolkits again on the test set.

Looking at Table 4.6, we can see that Naive Bayes was the best method on average (74.02%

F1), followed by the Neural Network (74.00% F1), and our manually defined Ensemble2 (73.48%

F1). Every ML algorithm that we experimented, except kNN with k=3, performed better than

TwitIE (the best among the tools).

In terms of individual entity types, our Ensemble2 was the best for PERSON, achieving 81.26%

of F1, an improvement of 10.13% against TwitIE. For LOCATION, the best achieved was 84.17%,

using kNN with k=3, an increase of 1.97% (again against TwitIE). For the entity type ORGANI-

ZATION none of our ensembles was able to perform better than TwitIE.

An interesting fact to note is that the best Ensemble on average (Naive Bayes) was not the best

Ensemble for any specific entity type alone.
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4.5 Results summary

Differently from results previously shown in literature [RCE+11, PGOOA16], in our experiments

Twitter NLP tools achieved overall worse performances than other toolkits across all the 3 tested

datasets. We believe this performance difference was related to the way we converted the output

of this toolkit for our study. We expose our rationale for this.

Firstly, Twitter NLP recognizes multiple entity types, but those entities do not include OR-

GANIZATION nor LOCATION. Instead, they include COMPANY and GEO-LOCATION, which were

converted directly to ORGANIZATION and LOCATION. We are aware that the former is probably

not optimal, since a company does not need to be an organization and vice-versa.

Secondly, there is also the fact that Twitter NLP tools recognizes other entity types that we

decided to ignore in this study (such as SPORTSTEAM, BAND, and MOVIE) which could be, in

some cases, sub-categories of more general entity types (for example a SPORTSTEAM could be

seen as an ORGANIZATION/COMPANY). Therefore, ignoring such entity types could be another

reason for the comparatively worse results obtained by Twitter NLP tools in our experiments.

Finally, we did not include optional features based on POS and chunk tags, which leads to

faster but lower quality results [RCE+11].

For the first dataset, while TwitIE has remained better than both ensembles on average, we

witnessed a positive boost of PERSON detection using Protocol 1, achieving more 12.5% F1-score

than the best individual toolkit (TwitIE with 67.5%), and a boost in LOCATION detection using

Protocol 2, achieving more 2.27% F1-score than the best individual toolkit (TwitIE with 85.871%).

On the second dataset, both ensembles have beaten the best individual toolkit. The perfor-

mance boost was very noticeable on the entity type PERSON (up to 10.62%), and the ensembles

managed to keep a reasonable performance on the detection of ORGANIZATIONS (42.37% and

41.73% respectively), given that two of the toolkits (CoreNLP and OpenNLP) achieved very low

results for this entity type (20% and 6.59% respectively).

In our third experiment, the boost on the entity type person remained noticeable for both

ensembles (2.87% and 5.3% higher than the best toolkit). Ensemble2 performed better on average

than any other toolkit, achieving 1.69% higher F1-score than TwitIE, the best individual toolkit

with 62.99% F1-score.

In terms of precision and recall, the conclusions were the same as for every dataset: the stricter

protocol (Ensemble1) had less recall but more precision than the less strict protocol (Ensemble2).

Finally, our last experiment showed that there were some ML algorithms able to outperform

TwitIE and even our Ensemble2, namely Naive Bayes and the Neural Network.

4.6 Ensemble tool implementation in Java

All of the above results and experiments were performed manually, by running each toolkit, clean-

ing and formatting their outputs, merging them in a single file, and measuring their performances

using R.
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It was our goal, however, to implement an easy-to-use tool with this whole process automa-

tized, in a concurrent multi-threading system.

Since most of these toolkits were implemented in Java, for our Ensemble system we decided

to use Java as well. This system receives a tokenized dataset, with or without labels, and outputs

both Protocol 1 and Protocol 2 predictions - we used manually defined protocols instead of a

Naive Bayes or a Neural network for simplification and efficiency purposes. In case the dataset

has labeling, the system also provides Precision, Recall and F1-scores for each toolkit and the

protocols implemented.

The developed system has also the capability of generating a dataset with entity features, useful

for the next chapter experiments.

4.7 Conclusions

The first conclusion of this study is that using an ensemble of toolkits with a voting system seems

to improve the performance of NER on tweets, answering the first question of our research.

As for the second question, we can say that both manually defined protocols were, to some

extent, "naive" yet they achieved promising results. This indicates that a more refined protocol

will probably improve these results even further. It proves to be false, this approach could still be

used with a combination of both protocols for the entities PERSON and LOCATION, and keeping

ORGANIZATION predicted by TwitIE. We also showed that using machine learning algorithms for

predicting entities based on the outputs of each toolkit is viable.

Additionally, we implemented an automatic "out-of-the-box" Ensemble tool for Named Entity

Recognition, with feature generation capabilities, based on the entities extracted.
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Chapter 5

Relevance Detection

In this chapter we study the importance of named entities mentioned in a post, namely PERSON,

LOCATION and ORGANIZATION for evaluating the relevance of that post.

For this purpose, we extracted entities from a dataset of posts, using our ensemble of NER

tools, and then experimented feature extraction and selection methods to analyze if such features

could be used effectively (and how effectively) to build a machine learning classifier for detecting

relevant and irrelevant posts.

5.1 Problem definition

As explained in the introduction (section 1.2), this thesis is integrated in a relevance detection

research project, REMINDS [FSF16]. This project aims to build a system capable of detecting

relevant information (in a news-worthy sense of relevance) in social media, namely on tweets and

Facebook posts and comments.

This can be seen as a binary classification problem, in which the goal is to classify a post as

“relevant" or “not relevant", given a number of different features.

While many different features related to the posts have been previously studied in the context

of this project, named entities referred in the text of these posts deserve a more detailed study.

Therefore, the contribute of this thesis to this research work is to add new features based on

named entities to the current input vector of features, and analyze the impact of such features in

the classification system.

Therefore, the following research questions arise:

• RQ1: can an automatic system detect such entities? Is it possible to improve the accuracy

of existing systems?

• RQ2: are named entities useful to predict relevance of social media posts?

39



Relevance Detection

• RQ3: are statistics related to named entities useful to predict relevance of social media

posts?

• RQ4: which features are more important for relevance detection?

• RQ5: do named entity-based features improve the performance of a classifier when com-

bined with a word-to-vector approach?

• RQ6: how does the system behave across different datasets?

The remainder of this chapter is presented as follows: in section 5.2, we describe the datasets

used. In section 5.3, we will present a descriptive analysis on the dataset used. In section 5.4 we

will explain the different experimental setups and the obtained results. Finally, in section 5.5 we

will present our conclusions and answer our research questions.

5.2 The Data

5.2.1 Training Dataset 1

The first dataset used for relevance detection analysis consisted of 35833 tweets, 15680 classified

as “relevant" and 20153 as “not relevant".

This classification was done manually, by 5 human annotators. However, instead of classifying

each post individually, the classification was based on the authors’ potential of being news-worthy.

To decide if a user had potential to post relevant information, i.e, information that could appear in

credible newspapers or media, each annotator labeled users by analyzing 10 tweets posted by that

user. Then every tweet posted by that user was classified based on the user’s own classification.

The agreement used for the labeling was 4, and the inter-rater agreement was of 86.2%.

5.2.2 Validation dataset

To better ensure the performance of our classifiers, we decided to use a validation dataset in some

of our experiments.

We experimented using as validation dataset an external dataset, with tweets obtained from a

completely different temporal window, different topics, and using a different labeling system. The

validation dataset consisted of 1050 posts from both Facebook and Twitter, manually annotated

by 3 human annotators. Each post was annotated by only one person from a set of annotators

composed by researchers and University students, who were explained the goal of the task, and

therefore there is no agreement or inter-rater agreement.

The use of this validation dataset aimed to analyze the versatility of the system, by testing the

possibility of overfitting to the dataset, for example due to common topics and/or users.
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5.2.3 Feature extraction

To analyze the importance of Named Entities in relevance detection we started by creating features

based on entities extracted from the text of the posts. These entities were extracted using both

Stanford NER in some experiments, and using our NER ensemble (previously developed and

explained in detail in chapter 4) in other experiments. The entire feature list can be seen in Table

5.1.

5.2.3.1 Internal named entity-based features

These features include statistics of the entities extracted, within the scope of a post , i.e., the

number of persons, locations, organizations mentioned in a single post.

Besides these numerical features, we created seven boolean features based on them: the pres-

ence of persons, locations, or organizations in a post (3 features), the simultaneous presence of

pairs of entity types (3 features), the simultaneous presence of all entity types (1 feature), and the

total absence of entities (1 feature).

5.2.3.2 External named entity-based features

Since the goal of this investigation consisted in analyzing how named entities help in the task of

relevance detection, it seemed only logical that if a specific named entity was common in news

articles, its presence in a social media post would potentially indicate the relevance of that post.

With that in mind, we decided to weigh named entities based on a “news-worthiness" ranking.

We created this ranking by using the open API provided by The Guardian1. This API allowed

us to retrieve the number of mentions of a given named entity in the news, for a given period of

time - we decided to count mentions in the news from 1 month before the date of each post.

Therefore, for each post, six additional features were created, three of them consisting of the

sum of the number of mentions in the news for each named entity type, and the remaining three

the average number of mentions in the news per each entity type.

For instance:

Figure 5.1: Example tweet from “Reuters Top News"

Three entities were detected by our ensemble for the tweet above: 1 person entities (Orban), 1

organization entity (EU) and 1 location entity (Hungary).

The tweet was posted in 2017-04-24. Since we counted every mention up to 1 month before

the post date, the interval in this case was from 2017-03-27 to 2017-04-27.

1http://open-platform.theguardian.com/
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There were a total of 11 mentions in the news for the entity “Orban", therefore the n_PER_news

is set to 11. Then, there were 32 mentions of the entity “Hungary", therefore the n_LOC_news

feature is set to 32. Finally, there were 779 mentions of the entity “EU", therefore n_ORG_news

feature is set to 779.

The other three features are simply averages. In this specific example, the rates were the same

as the previous features, because there was only one entity per entity type.

5.2.3.3 Word embeddings-based features

Apart from testing entity-based features in isolation, we decided to also try to combine them with

word embeddings-based features.

In previous experiments, our relevance detection system obtained maximum performance with

these features. Therefore, we wanted to understand if adding entity-based features on top of word

embeddings could help improve our system’s performance even further.

Word embeddings consist in vector representations of words, i.e., words are mapped to a

dense vector of numbers. For our experiments, we used Word2vec, a method proposed by Tomas

Mikolov et al. [MCCD13, MSC+13], implemented in the R package “wordVectors"2. We trained

our own word2vec model using our dataset. We chose to produce 100 vectors, with a window size

of 12 words.

Table 5.1: Features list

ID Type Description

1 Numerical Number of persons mentioned in the post

2 Numerical Number of locations mentioned in the post

3 Numerical Number of organizations mentioned in the post

4 Numerical Total number of entities (sum of the previous features) mentioned in the post

5 Boolean Persons mentioned in the post

6 Boolean Locations mentioned in the post

7 Boolean Organizations mentioned in the post

8 Boolean Persons and locations simultaneously mentioned in the post

9 Boolean Persons and organizations simultaneously mentioned in the post

10 Boolean Locations and organizations simultaneously mentioned in the post

11 Boolean All entity types simultaneously mentioned in the post

12 Boolean No entities mentioned in the post

13 Numerical Sum of the number of mentions in the news of all person entities mentioned in the post

14 Numerical Sum of the number of mentions in the news of all location entities mentioned in the post

2https://github.com/bmschmidt/wordVectors
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15 Numerical Sum of the number of mentions in the news of all organization entities mentioned in the post

16 Numerical Sum of the number of mentions in the news of all entities mentioned in the post

17 Numerical Average of the number of mentions in the news per person entity mentioned in the post

18 Numerical Average of the number of mentions in the news per location entity mentioned in the post

19 Numerical Average of the number of mentions in the news per organization entity mentioned in the post

20 Numerical Word embeddings (100 features)

L Boolean relevance (label)

5.3 Descriptive Analysis

5.3.1 Data distribution

Figure 5.2: Entity type distribution

As we can see in Figure 5.2, the predominant entity type in the dataset is PERSON (with

44.2%), followed by LOCATION (with 34.7%) and ORGANIZATION (with 21.2%).

5.3.2 Feature correlation analysis

In order to analyze the correlation between features, the Pearson Correlation was used.

r =
cov(X ,Y )√

var(X)
√

var(Y )
(5.1)

Two correlation matrices were plotted: one for the numerical features (Figure 5.3), and another

for the dichotomous (boolean) features (Figure 5.4).

The reason to do such separation was twofold. Firstly, most of the dichotomous features were

strongly correlated with the numerical features, which was expected since these features were

generated from the numerical features. Secondly, it would not make sense to compare correlation

values between pairs of different types: i.e, comparing a numerical-dichotomous correlation with
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a numerical-numerical correlation, for example. Therefore, there was no point in having all of

these variables in the same correlation matrix.

Dichotomous variables were converted from “true" and “false", to 1 and 0 respectively.

Figure 5.3: Correlation matrix for numerical features

Figure 5.3 presents the correlation coefficients between numerical features. Starting by the

correlations for the label (relevance), it is possible to see that the most correlated feature with the

label was the total number of entities. This was an expected result, since news-worthy (relevant)

posts should intuitively include at least some named entities.

The second most correlated attribute with the relevance was the number of locations mentioned

in a post (n_LOC), followed by the number of organizations (n_ORG) and then the number of

persons (n_PER).

Neither of these correlation coefficients were strong, however, with all of them standing be-

tween 0.17 and 0.33.

For the news-based features, the highest correlation was achieved by location mentions in the

news (n_LOC_news), followed by person mentions in the news (n_PER_news) and organization

mentions in the news (n_ORG_news). However, these correlations were very weak, scoring a

maximum of 0.2.
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The remaining correlations show the redundancy between attributes. As expected, the total

number of entities showed high correlations with the number of each specific entity type. There

were significant correlations between the number of entities and the number of news mentions, a

result that was also expected.

Figure 5.4: Correlation matrix for dichotomous features

Looking at Figure 5.4, new insights about the combination of different entities can be retrieved.

As expected, the absence of entities in posts (represent by the attribute NONE) had a significant

negative correlation with their relevance (-0.42). Therefore, it is more correlated with the "not

relevant" label.

On the other hand, the simultaneous presence of every entity type (represented by the attribute

ALL), had an almost nonexistent correlation with the relevance.

It is also interesting to see that the combination of different entity types had lower correlation

with relevance than the independent entity types alone. For example, Person had a correlation co-

efficient of 0.14, and organization a correlation coefficient of 0.23. When combined (PER+ORG),

however, the correlation coefficient was only 0.12. The same applied to the pairs PER_LOC and

LOC_ORG.
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5.3.3 Feature weights by Information Gain Ratio

Table 5.2: Feature weights by information gain ratio

Feature Weight

n_locations 0.147

location_mentioned 0.147

n_entities 0.137

none_mentioned 0.137

location_organization_mentioned 0.108

n_organizations 0.096

organization_mentioned 0.082

person_location_mentioned 0.080

person_organization_mentioned 0.079

all_mentioned 0.067

n_persons 0.055

person_mentioned 0.023

Analyzing Table 5.2, we can see that the most important features were the number of locations

and the respective boolean “location_mentioned". This indicates that the presence of locations

in a text is probably important for the detection of relevance, which is corraborated by the high

correlation between these attributes and the relevance, discussed in section 5.3.2.

The number of entities and the boolean feature “none_mentioned" scored immediately after.

Since there was a high negative correlation between the absence of entities and the relevance of a

post, it is likely that this feature could be very important for detecting “not relevant" posts.

5.4 Predictive Analysis

5.4.1 Methodology

5.4.1.1 Feature selection

In most of the experiments, the subsets of features were manually chosen, based on our intuition.

That being said, the subsets chosen were as follows. Our first subset of features consisted

of the internal named entity-based features only, i.e., the 4 basic numerical features (number of

persons, number of locations, number of organizations, number of total entities - represented in

the experimental results as “1-4").
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Then we added the dichotomous features (5-12) to the first subset, to see if using boolean

features deduced from the numerical features would bring any benefit to the models.

The third subset was the previous one plus the externally obtained entity-features, based on

The Guardian’s mentions, as explained in 5.2.3.2, to see if that improved the models further.

We then repeated the above subsets but including word vectors as features as well.

Besides manual “feature selection" approaches, we also experimented Forward and Backward

feature selection and compared those selections with our own.

5.4.1.2 Models creation and evaluation

In the following experiments, different models were trained using different machine learning al-

gorithms. For each algorithm, the whole dataset was used for training and testing, using 10-fold

cross-validation.

In order to fairly compare different models, we used the same seed for cross-validation and for

the algorithms (if applicable).

For each model we will be reporting the Precision and Recall, F1-score (for the class “rele-

vant") and AUC.

5.4.2 Experimental results

5.4.2.1 Features evaluation

In this subsection we will analyze the importance of each feature, by comparing results using dif-

ferent subsets of features and ranking their importance according to different metrics, in multiple

scenarios.

In tables 5.3 and 5.4, the results of 14 different setups are presented. The results presented on

5.3 were obtained using a Random Forest (detailed information on the hyperparameters used can

be consulted in appendix B.2.1) . The results presented on table 5.4 were obtained using a Naive

Bayes classifier with Laplace correction.

Both algorithms were analyzed for 6 different subsets of features.

Entity-based features

Our first experiment consisted in using the 4 numerical features only (number of persons,

locations, organizations and total sum of entities). The results were the lowest in terms of AUC

for the random forest model, that also being the case for the Naive Bayes classifier.

The boolean features of mentioned entities (5-12) were mostly redundant: for example, the

boolean feature “persons_mentioned" (ID 5 in table 5.1) adds no new information, given that we

could deduce that from the feature “number of persons" being 0 or greater than 0.

However, both classifiers showed to learn better with these features included than without

them: both the AUC and F1-score were higher using the second subset of features (1-12) when

compared to using the first subset of features (1-4).
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Table 5.3: Random Forest results

Random Forest on dataset 1 with Ensemble2-entities features

Features Precision Recall F1 AUC

1-4 83.22% 38.62% 52.75% 73.0%

1-12 82.97% 40.40% 54.33% 73.2%

1-19 83.22% 37.30% 51.49% 73.4%

20 97.62% 48.39% 64.70% 91.2%

1-12 ∪ 20 98.12% 52.51% 68.40% 92.6%

All 98.39% 51.41% 67.53% 92.5%

In the third experiment we added 7 features (13-19) on top of the original ones (1-12). These

features were statistics provided from the newspaper The Guardian, and our results show that these

features improved the Random Forest model in terms of AUC (by only 0.2%), but on the other

hand reduced its F1-score. In the Naive Bayes case, both AUC and F1-score were lower when

these features were added. Looking at the precision and recall for the class “relevant", present in

table 5.4, we can see that these news-worthiness-based features made our models more precise,

but decreased their recall.

In table 5.5, it is possible to see the feature weight values by Tree Importance, which uses

a random forest model (with the same hyperparameters used for previous experiments, detailed

in B.2.1) to extract the importance of each feature. The definition of such importance, from the

official RapidMiner documentation [Wei], is as follows:

“This weighting schema will use a given random forest to extract the implicit impor-

tance of the used attributes. Therefore each node of each tree is visited and the benefit

created by the respective split is retrieved. This benefit is summed per attribute, that

had been used for the split. The mean benefit over all trees is used as importance."

The results were similar to the importances analyzed in Table 5.2 for the top ranked features.

However, the feature “n_organizations" was more important than the feature “none_mentioned".

Word-embeddings-based features

As previously mentioned, we wanted to not only evaluate entities as features for relevance

detection, but to compare it with other state-of-the-art methodologies, such as word embeddings.

The next three setups consisted of word embeddings only, word embeddings plus our entity-based

features, and word embeddings, our entity-based features and the news-worthiness features.

Word embeddings achieved a significantly higher performance in every metric than our previ-

ous experiments with entities alone. This was actually expected, since word embeddings use all
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Table 5.4: Naive Bayes results

Naive Bayes on dataset 1 with Ensemble2-entities features

Features Precision Recall F1-score AUC

1-4 76.67% 57.44% 65.67% 72.7%

1-12 76.67% 57.44% 65.67% 73.0%

1-19 77.24% 42.58% 54.80% 72.7%

20 87.70% 72.16% 79.21% 91.3%

1-12 ∪ 20 87.97% 78.26% 82.83% 92.7%

All 88.26% 74.95% 81.06% 91.8%

the words present in the text, while our statistics about entities ignore most of the text. The inter-

esting step, however, was to see if adding our entity-based features could improve the performance

of word embeddings, which proved to be the case. Our high-level entity-based features led to an

improvement of 2.1% in terms of AUC for the Random Forest model, and 1.7% in terms of AUC

for the Naive Bayes model, as we can see in Tables 5.3 and 5.4.

Finally, our last experiment included every feature from Table 5.1. This time, adding the news-

worthiness features did not improve our models in either case, and even reduced the performance

of both classifiers in terms of AUC.

We can say that, in general, for both of the algorithms, the more features used, the better the

performances of our classifiers.

In every of the above experiments, the AUC scores were higher than F1-scores.

While the AUC score takes into consideration the whole range of precision/recall trade-offs

(thresholds), the F1 score considers only one specific precision and recall pair, in this case 0.5.

This indicates that the threshold of 0.5 was not the best one for the different models, and that

there were different thresholds with better performance.

Automatic feature selection

In table 5.6 we present the results of Forward and Backward selection for the Naive Bayes

algorithm. We chose this algorithm since it was the fastest among all the experimented algorithms.

We also chose 2 subsets of features for this experiment: first using all the features available,

including word embeddings, and then using only the internal named-entity features.

It is possible to see that both methods (forward and backward selection) worked better than

our subsets of features. While this might seem like an obvious result, it is important to note that

both these feature selection methods are greedy approaches, and therefore it could have been the

case that the feature selection methods performed worse than our manually chosen subsets.
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Table 5.5: Feature weights by Tree Importance

Features Weight

location_mentioned 0.041

n_locations 0.032

n_entities 0.023

n_organizations 0.019

none_mentioned 0.016

n_persons 0.011

person_organization_mentioned 0.009

location_organization_mentioned 0.006

organization_mentioned 0.006

With forward selection, there was an improvement of 2.9% AUC, using all the features as

input - in this case the algorithm only used the feature “none_mentioned" and 9 word vectors,

excluding the remaining features. When using only the internal entity-based features, there was

an improvement of 0.3% AUC, and the features selected were the n_locations, n_entities, per-

sons_mentioned, locations_mentioned, organization_mentioned, person_organization_mentioned

,and location_organization_mentioned.

Using backward elimination, the improvement was only of 1.3% in terms of AUC, when us-

ing all the features as input - the external entity-based features were discarded, except for “per-

sons_news_worthiness"; For the internal entity-based features, there was an improvement of 0.4%,

and the features selected in this case were the n_locations, n_organizations, location_mentioned,

person_location_mentioned, location_organization_mentioned, all_entities and persons_news_wo

rthiness.

Table 5.6: Feature Selection

Feature selection experiments

Method Input features Selection Precision Recall F1-score AUC

Forward All 12 ∪ 9 word vectors 89.67% 80.06% 84.59% 94.7%

Forward 1-12 2,4,5,6,7,9,10 78.38% 50.45% 61.38% 73.3%

Backward All All -{14-19} 88.12% 78.85% 83.22% 93.2%

Backward 1-12 2,3,6,8,10,11,13 79.40% 51.46% 62.44% 73.4%
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5.4.2.2 Algorithms evaluation

In section 5.4.2.1 two different ML algorithms were used, with the sole purpose of verifying if our

conclusions about subsets of features depended heavily on the algorithm used or not.

In this section, however, our goal is to compare the performance of different ML algorithms

on the task of relevance detection. In our comparisons we will use the performance metrics AUC

and F1.

For the following experiments, we chose to use as features only the 4 numerical features

(number of persons, number of locations, number of organizations, and number of entities). We

decided to exclude the boolean features to maximize the number of algorithms used (since some

of them allowed only numerical inputs). The news-worthiness features were also ignored, mainly

due to the bad results in previous experiments. Finally, we did not use word embeddings since the

goal was to isolate the entity-based features understand that way which algorithms worked better

for them, without word embeddings likely interference.

Seven ML algorithms were experimented: Naive Bayes, Random Forest, Logistic Regression,

SVM, Neural Network, Deep Learning and Decision Tree. The results (Precision, Recall, F1 and

AUC) can be seen in Table 5.7. Specific details about the hyperparameters used for each algorithm

can be seen in appendix B.2.1.

Table 5.7: Algorithms’ performances comparison with numerical entity features

Algorithm Precision Recall F1 AUC

Naive Bayes 76.67% 57.44% 65.67% 72.7%

Random Forest 83.13% 38.99% 53.07% 73.0%

Logistic Regression 76.67% 57.44% 65.67% 73.4%

SVM 77.69% 30.11% 40.12% 68.2%

Neural Network 77.85% 53.71% 63.49% 73.3%

Deep Learning 62.39% 55.12% 53.98% 57.9%

Decision Tree 83.24% 38.62% 52.75% 66.3%

5.4.2.3 External dataset validation

As mentioned in 5.2.2, we used an external dataset to validate our results.

It is possible to see in Table 5.8 that all validation results were worse than the original cross-

validation results.

However, for the setups using entity-based features, the performances were still acceptable

both in terms of F1 and AUC. For the subset of features 1-4, the F1-score dropped only 2.02% and

the AUC 4.8%. For the second subset of features, 1-12, the difference was even smaller for AUC,

with a drop of 4.1%.
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Table 5.8: Original cross-validation results versus validation set results (Naive Bayes)

Original Results VS Validation Results

Features Original F1 Validation F1 Original AUC Validation AUC

1-4 65.67% 63.65% 72.7% 67.9%

1-12 65.67% 63.65% 73.0% 68.9%

1-19 54.80% 55.41% 72.7% 67.7%

20 79.21 62.04% 91.3% 66.3%

1-12 ∪ 20 82.83% 67.36% 92.7% 73.4%

All 81.06% 68.80% 91.8% 73.5%

On the other hand, the setups using word embeddings revealed to have major drops in per-

formance: for word embeddings alone, the F1 dropped 17.17% and the AUC 25%. Adding or

entity-features, the gaps in performance were already slightly lower: 15.47% for F1 and 19.3%

for AUC. With all features included, the differences were even smaller, with the F1 dropping

12.26% and AUC 18.3%.

Overall, despite the predictable drop of performance in the validation set, one could say that

all the models were robust enough to still be useful in a significantly different dataset, from a

different temporal window and from different users and topics.

While word embeddings learn the words present in the text directly, being therefore very

susceptible to overfitting the model to the data, our entity-based features are more abstract and

high-level, that being the likely reason of the respective models’ robustness. We have witnessed

significantly less difference in validation results using entity-based features only, and also that

adding those features to word embeddings resulted in smaller performance differences between

the two datasets.

5.4.2.4 Ensemble vs Stanford NER

All of the previous experiments were performed using for the entity extraction our Ensemble

implementation using protocol 2. From our perspective it would be interesting, however, to see if

our improved NER system had any impact on the relevance detection.

Looking at Table 5.9, it is possible to see the F1 and AUC results for both the Ensemble entities

and the Stanford entities.

In terms of F1, the ensemble achieved higher values in all subsets of features, except for the

third subset, the one that included news-worthiness from The Guardian.

On the other hand, in terms of AUC , the results were less consistent: for 2 subsets of features

our Ensemble achieved higher score, and for the other 3 subsets the Stanford features were actually

better.
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Table 5.9: Ensemble Results versus Stanford Results using Naive Bayes

Ensemble Results VS Stanford Results

Features Ensemble F1 Stanford F1 Ensemble AUC Stanford AUC

1-4 65.67% 58.81% 72.7% 74.4%

1-12 65.67% 64.04% 73.0% 74.5%

1-19 54.80% 62.16% 72.7% 75.5%

1-12 ∪ 20 82.83% 81.79% 92.7% 92.3%

All 81.06% 80.96% 91.8% 92.0%

These results were therefore not very conclusive. The ensemble features did not improve the

results of relevance detection clearly, despite the fact that our previous experiments had shown the

protocol 2 was better that CoreNLP by a large margin on the detection of the 3 entities (however,

that margin was not so large for the entity type person, the most important in relevance detection).

5.5 Conclusions

Based on the previous comparisons, and respective results, the main conclusions of this study were

as follows:

• RQ1 answer: as extensively explained in the previous chapter, there are multiple automatic

systems for named entity extraction. We were able to improve that accuracy by creating and

Ensemble of tools. That system was then used to provide features for our dataset

• RQ2 answer: entities mentioned in a social media post can provide useful features for a

relevance detection prediction model

• RQ3 answer: simple statistics about the number of entities mentioned in a post were enough

to achieve a performance up to 73.04% of AUC, without using the text of the entities

• RQ4 answer: in terms of the importance of the features used for relevance detection (RQ3),

we have witnessed that locations were more important than organizations or persons, and

that the absence of entities was very important to detect non-relevant posts

• RQ5 answer: our entity-based features were also useful when added on top of word embeddings-

features, showing to improve the performance of our classifiers up to 1.4%.

• RQ6 answer: the models showed, as expected, losses in performance when tested on an

independent validation dataset. However, this losses were significantly higher on word-

embeddings based features than in entity-based features, corroborating the idea that entity-

based features are more general and less prone to overfitting.
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Chapter 6

Conclusions

6.1 Synthesis

The main focus of this thesis was to study the viability of using named entities mentioned in social

media posts as features for training a machine learning model to predict the posts’ relevance.

Therefore, the success of this analysis depended heavily on the success of extracting named entities

in the first place.

Named entity recognition is a particularly difficult task in social media texts, since they carry

specific characteristics, such as spelling errors or incorrect casing, as a result of their informal na-

ture. Different approaches have been attempted to improve Named Entity Recognition in general,

and also on this specific type of text (social media), but so far there is not a single method or tool

that outperformed all others and that is widely recognized as the best NER system. In that regard,

our first task was to find the most widely known NER tools, study and try them experimentally on

our own proprietary datasets, and find out which one worked out better for our purposes.

While many approaches have been proposed in literature, most of them lack an out-of-the-box

tool, easy to set up and reproduce the results. As implementing a system from scratch is very

time consuming and not the main goal of this study, we opted to try four different out-of-the-box

systems, namely Stanford NER, Twitter NLP tools, GATE with TwitIE and OpenNLP.

The first conclusion of this analysis was that, once again, there was not a single tool that

outperformed all others in every entity type (even though GATE performed overall better than any

other toolkit across multiple datasets). In order to try to make full use of these differences between

toolkits, we decided to create an Ensemble of toolkits, first by using manually defined voting rules,

and later by using machine learning algorithms to predict the final entity for each token, using as

features the inputs of each tool.

Both of these approaches achieved promising results: the results showed that using an en-

semble of toolkits can improve the recognition of specific entity types, depending on the criteria

used for the voting, and even the overall performance average of the entity types PERSON, LO-

CATION and ORGANIZATION. Besides the scientific contribution of these findings, we developed

an easy to set up system that combines 4 state-of-the-art toolkits with improved performance over
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each tool individually. This way, anyone looking for an out-of-the-box NER system could use our

ensemble for their own works.

With that being said, we proceeded to the second and main part of this study — the analysis

of the importance of named entities for relevance detection.

The first task was to generate features from the entities extracted. We created basic statistics

based on the number of mentions in each post (number of persons in the post, for instance), and

statistics obtained from The Guardian’s open API, which returned the number of times a specific

entity had been mentioned in the news in a given span of time, giving a sense of "news-worthiness"

for each entity.

We started by picking one algorithm (random forest) and testing it for our features based on

the extraction of the ensemble tool versus the features based on the extraction of the Stanford

toolkit. We concluded that our improved ensemble had a slight impact on the F1-scores, despite

the inconclusive results in terms of AUC.

After that experiment, we chose the toolkit that provided the features with best relevance de-

tection performance. This was a greedy choice, and probably not optimal, but testing every com-

bination of toolkits, datasets, algorithms, hyperparameters, would not be feasible. Therefore we

opted for this approach. These features were used as inputs for training and testing our prediction

models. We tried 7 machine learning algorithms (Naive Bayes, Random Forest, kNN, Logistic Re-

gression, SVM and Neural Network), using static hyperparameters (no tuning). The best results

were achieved by Logistic Regression, for the 4 basic entity features. Therefore, we can conclude

that these entities were enough to predict relevance up to 73.4% AUC, when used in isolation.

Then, to better understand the impact of each feature, we ranked them by various criteria, such

as "Information Gain Ratio" using only entity-based features. The results showed that locations

were the most important entity type for relevance detection. The correlation between our features

and the label "Relevance" showed that the number of entities was the highest correlated with the

"relevant" label, while no named entities was the highest correlated with the "not relevant" label.

We also experimented using different subsets of features for the same ML algorithm, to ana-

lyze the importance of each feature subset in the task of predicting relevance. The general tendency

was that the more features used, the better the performance of our models. In addition, we experi-

mented the use of word embeddings as features for the relevance classifier, in isolation, and later

combined with our entity-based features. Adding our features to the word embeddings showed to

improve the performance of the classifiers.

Lastly, to further investigate the versatility of the developed models, we used an external

dataset for validation. The results showed that there was no major overfitting to the original

dataset, and that word-embeddings performed significantly worse on the external dataset while

entity-based features managed to obtain not very different results.

Our final conclusion is that information about named entities mentioned in social media posts

can help in the task of relevance detection, as the presence of some entity types, such as location,

showed to be important to detect relevant posts, and the complete absence of entities important to

detect irrelevant posts. Entities alone did not achieve better results than other previous methods
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tested in our project, such as word embeddings. That is not very surprising, given that entity recog-

nition in social media is very hard and that state-of-the-art performances are far from 100%. That

being said, having machine learning models learning from features obtained by machine learning

themselves necessarily leads to a significant error accumulation. However, the very abstract na-

ture of entity-based features showed to be significantly more robust across different datasets than

word embeddings, and were able to improve previous models (word embeddings) using this type

of features.

6.2 Contributions

The main contributions of this thesis for the computer science community were the following:

• Publication of the scientific paper “The complementary nature of different NLP toolkits

for Named Entity Recognition in social media" to the “18th EPIA Conference on Artificial

Intelligence":

– Analysis of 4 state-of-the-art NER tools (Stanford NER, OpenNLP, Twitter NLP tools

and GATE with TwitIE) on social media datasets

– Creation of an Ensemble of toolkits, with a combined performance superior to each

individual tool.

• Creation of an automatic named-entity feature extraction system

• Study on the viability of such features in the task of relevance detection

• Conclusions on the importance of specific named entity types for relevance assessment.

6.3 Future work

As future work, additions could be made to improve the Ensemble of toolkits. More toolkits

could be added to the system, such as NLTK or others. It would also be interesting to experiment

more refined protocols — for example with weighted voting based on the performance of each

toolkit for a given entity type — and machine learning algorithms, in the latter case by tuning the

hyperparameters. Other entity types could also be explored, such as Dates, which are an important

element of news articles and therefore the mention of such entities could help in the detection of

relevance, and also other less common entity types such as PRODUCT, COMPANY, BAND, MOVIE,

etc.

In terms of the results, a deeper analysis could be conducted in the future in order to better

understand the behaviours observed in each toolkit, as well as the differences across corpora.

Statistical tests would also be interesting to check if improvements between tools are statistically

significant or not.
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For the machine learning algorithms, more complex features and hyperparameters could be

tried and analyzed. It would also be interesting to apply the ML approach to different datasets and

compare the results.

In terms of the relevance detection system, more entity types could be used as well. In addi-

tion, more models could be trained using more feature subsets, feature selection methods could be

improved (using for instance embedded methods instead of wrapper methods) and the hyperpa-

rameters for each algorithm could be tuned for optimal performance.
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Appendix A

Chapter 4 Extended results

Table A.1: Recall scores on Dataset 2

PERSON LOCATION ORGANIZATION Avg.

CoreNLP 71.84 20.60 13.04 35.16

TwitIE 70.33 40.07 45.89 52.09

TwitterNLP 39.31 22.28 32.37 31.32

openNLP 34.49 25.28 12.56 24.11

Ensemble1 62.65 27.90 36.23 42.26

Ensemble2 64.61 30.90 37.20 44.24

Table A.2: Precision scores on Dataset 2

PERSON LOCATION ORGANIZATION Avg.

CoreNLP 46.72 76.92 42.86 55.5

TwitIE 52.24 60.28 32.76 48.43

TwitterNLP 80.31 80.41 74.44 78.39

openNLP 57.11 55.79 4.47 39.12

Ensemble1 80.78 80.54 51.02 70.78

Ensemble2 77.44 79.71 47.53 68.23

63



Chapter 4 Extended results

Table A.3: Recall scores on Dataset 3

PERSON LOCATION ORGANIZATION Avg.

CoreNLP 81.24 40.44 16.69 46.12

TwitIE 76.35 63.68 43.34 61.12

TwitterNLP 39.74 30.87 9.04 26.55

openNLP 47.41 36.68 28.39 37.49

Ensemble1 71.85 48.31 29.32 49.83

Ensemble2 76.02 54.5 33.49 54.67

Table A.4: Precision scores on Dataset 3

PERSON LOCATION ORGANIZATION Avg.

CoreNLP 60.27 82.06 72 71.44

TwitIE 77.79 72.85 44.58 65.07

TwitterNLP 89.51 65.22 77.23 77.32

openNLP 66.65 68.09 23.09 52.61

Ensemble1 90.06 87.31 70.28 82.55

Ensemble2 89.85 84.77 69.81 81.48
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Detailed specifications of experimental
setups

B.1 Ensemble NER

B.1.1 Naïve Bayes classifier:

For this algorithm the following parameters were used:

• Laplace correction

B.1.2 Random Forest classifier:

For this algorithm the following parameters were used:

• Number of trees: 10

• Criterion: Gain ratio

• Maximal depth: 20

• Pruning with a confidence of 0.25

• Pre-pruning

• Minimal gain: 0.1

• Minimal leaf size: 2

• Minimal size for split: 4

• Number of pre-pruning alternatives: 3

• Voting strategy: confidence vote
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B.1.3 k-nearest neighbors classifier (k-NN):

For this algorithm the following parameters were used:

• k of 3 and k of 10

• Mixed Euclidean Distance

B.1.4 Neural Network classifier:

For this algorithm the following parameters were used:

• No hidden layers

• 500 training cycles

• Learning rate: 0.3

• Momentum: 0.2

• Shuffling and normalization

• Error epsilon: 1.5ε-5

B.2 Relevance Detection

B.2.1 Random Forest classifier:

This classifier was built using the "Neural Net" RapidMiner operator. For further details consult

the official documentation. For this algorithm the following parameters were used:

• 200 trees

• Criterion: information gain

• maximal depth: 20

• Minimal gain: 0.1

• Minimal leaf size: 2

• Minimal size for split: 4

• Number of prepruning alternatives: 3

• Voting strategy: confidence vote
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Detailed specifications of experimental setups

B.2.2 Logistic Regression classifier:

This classifier was built using the "Neural Net" RapidMiner operator. For further details consult

the official documentation. For this algorithm the following parameters were used:

• solver: AUTO

• reproducible: disabled

• use regularization: disabled

• standardize: enabled

• non-negative coefficients: disabled

• add intercept: enabled

• compute p-valued: enabled

• remove collinear columns: enabled

• Missing values handling: mean imputation

• max iterations: 0

• max runtime seconds: 0

B.2.3 SVM classifier:

This classifier was built using the "Neural Net" RapidMiner operator. For further details consult

the official documentation. For this algorithm the following parameters were used:

• Kernel type: dot

• Kernel cache: 200

• C: 0.0

• Convergence epsilon: 0.001

• Max iterations: 100000

• Scale: enabled

• L pos: 1.0

• L neg: 1.0

• epsilon: 0.0

• epsilon plus: 0.0
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Detailed specifications of experimental setups

• epsilon minus: 0.0

• balance cost: disabled

• quadratic loss pos: disabled

• quadratic loss neg: disabled

B.2.4 Neural Network classifier:

This classifier was built using the "Neural Net" RapidMiner operator. For further details consult

the official documentationofficial documentation. For this algorithm the following parameters

were used:

• 1 hidden layer: 100 neurons

• Training cycles: 500

• Learning rate: 0.3

• Momentum: 0.2

• Decay: disabled

• Shuffle: enabled

• Normalize: enabled

• Error epsilon: 1.0e−5

B.2.5 Deep Learning classifier:

This classifier was built using the "Deep Learning" RapidMiner operator. For further details con-

sult the official documentation. For this algorithm the following parameters were used:

• Activation: Rectifier

• 2 hidden layers of 50 neurons each

• Epochs: 10

• Compute variable importances: disabled

• Train samples per iterations: auto-tuning

• Adaptive rate: enabled

• Epsilon: 1.0e−8

• rho: 0.99
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Detailed specifications of experimental setups

• Standardize data: enabled

• L1: 1.0e−5

• L2: 0.0

• max w2: 10.0

• loss function: automatic

• distribution function: AUTO

• early stopping: disabled

• missing values handling: Mean Imputation

B.2.6 Decision Tree classifier:

This classifier was built using the "Decision Tree" RapidMiner operator. For further details consult

the official documentation. For this algorithm the following parameters were used:

• Criterion: Gain ratio

• maximal depth: 20

• apply pruning: enabled

• confidence: 0.25

• apply prepruning: enabled

• Minimal gain: 0.1

• Minimal leaf size: 2

• Minimal size for split: 4

• Number of prepruning alternatives: 3
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