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Abstract

Nowadays, mobile applications are essential in people’s daily lives, especially in mobile appli-
cations for Android platforms. This is due to the fact that this system holds a large majority of the
mobile applications market that are available through the Google Play Store and the large number
of devices that use Android as an operating system. With this in mind, as well as the influence that
some of these applications have had on people’s lives, it becomes increasingly clear how important
it is to ensure the quality of the applications available to users, including the official platform, the
Google Play Store.

One way to increase the quality of these applications is through testing. However, often com-
panies, due to lack of time and resources, do not give due attention to this component of the
development and maintenance of their products / services. This factor led to the emergence of sev-
eral tools that automate and facilitate the testing of applications. However, the existing approaches
are still not satisfactory.

In this sense, this project intends to continue the development of a new approach initiated in
a previous work (the pattern-based mobile application testing tool - iMPAcT tool), which tests
whether good programming practices in Android are fulfilled by programmers and suppliers.

The iMPAct tool tests Android applications in an iterative process that combines reverse engi-
neering, pattern matching and testing. The purpose is to test recurring behavior that is defined in a
catalog (UI patterns). For each behavior there is an associated test strategy (UI Test Pattern) that
verifies whether or not the behavior was well implemented.

The objective of this research is to extend iMPAcT with more behavior to be tested by adding
new test strategies (UI Test Patterns).

In short, the development and improvement of iMPAcT Tool will allow Android developers
and entities involved in the development process of these applications to increase the quality of
their products and services and improve the quality of the applications that arrive to us every day
through the smartphone or tablet and which increasingly influence our daily lives.
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Resumo

Nos dias de hoje, as aplicações móveis são essenciais no dia-a-dia das pessoas, especialmente
no que toca às aplicações móveis para plataformas Android. Isto deve-se ao facto deste sistema
deter uma larga maioria do mercado de aplicações móveis que são disponibilizadas através da
Google Play Store e ao largo número de dispositivos que utilizem o Android como sistema opera-
tivo. Tendo isto em vista, bem como a influência que algumas destas aplicações têm tido na vida
das pessoas, torna-se cada vez mais evidente a importância de garantir a qualidade das aplicações
disponibilizadas aos utilizadores, nomeadamente na plataforma oficial, a Google Play Store.

Uma forma de aumentar a qualidade destas aplicações é através do teste. Contudo, muitas
vezes as empresas, por falta de tempo e recursos, não dão a devida atenção a esta componente
do desenvolvimento e manutenção dos seus produtos/serviços. Este fator levou ao surgimento de
diversas ferramentas que automatizam e facilitam o teste de aplicações. No entanto, as abordagens
existentes ainda não são satisfatórias.

Neste sentido, este projeto pretende continuação o desenvolvimento de uma nova abordagem
iniciada num trabalho anterior (a ferramenta de teste de aplicações móveis baseada em padrões -
iMPAcT tool), que testa se as boas práticas de programação em Android são cumpridas por parte
dos programadores e empresas fornecedoras.

A ferramenta iMPAct tool testa as aplicações Android num processo iterativo que combina
reverse engineering, pattern matching e teste. O objetivo é testar comportamento recorrente que
está definido num catálogo (UI patterns). Para cada comportamento existe uma estratégia de teste
associada (UI Test Pattern) que verifica se o comportamento foi ou não bem implementado.

O objetivo deste trabalho de investigação é estender a iMPAcT com mais comportamento a
testar adicionando novas estratégias de teste (UI Test Patterns).

Em suma, o desenvolvimento e melhoria da iMPAcT Tool permitirá aos programadores de
Android e entidades envolvidas no processo de desenvolvimento destas aplicações aumentar a
qualidade dos seus produtos e serviços, e melhorar a qualidade das aplicações que nos chegam
todos os dias através do smartphone ou tablet e que influenciam cada vez mais o nosso dia-a-dia.
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Chapter 1

Introduction

In today’s world, mobile applications and the Internet in general, have become almost essential

in our daily lives.

As of 2016, the global mobile internet users have exceeded half the population of the whole

world. And the time spent on the internet by the users of smartphones, tablets, computers or

wearables, on a daily average, has reached 185 minutes for Millennials, 110 for Generation X and

43 amongst the Boomers [Staa].

The number of applications available in the online stores keeps increasing exponentially reach-

ing more than 2.8 million available apps in Google Play Store alone, on March 2017, making it

the largest app store followed by Apple’s App Store with 2.2 million apps available in the same

period.

Much of this growth is due to the fact that mobile applications present themselves as relatively

easier to develop than computer applications, not to notice the fact that they are also developed at

a lower price, which makes it possible for the industry to grow at these rates and produce every

day more.

1.1 Problem

In order to guaranteer that their applications are successful in a world of millions now, devel-

opers and companies in the field need to assure that their products are in its correct functioning

and behaviour.

With the constant changes and new concepts of applications development becoming frequent,

testing this applications becomes one big challenge.

As referred by the World Quality Report 2014-15 [Capgemini et al., 2014] the number of

organizations that are testing mobile applications has grown from 31% in 2012, to 55% in 2013

and almost 87% in 2014. However, the biggest challenge is still the lack of the correct methods

and processes to do it, mixing with the short time and lack of in-house testing environments.

1



Introduction

Regarding all this, we can easily come to the conclusion that it is very important to automate

mobile applications testing.

Along with that, the increase that developers and companies are giving to testing, now more

than ever, is because the quality assurance of a product or service is, most of the time, the key to

success. Considering the rate growth of applications available to the common user, the growing

need the users have for these applications and their demand for a well developed and easy to use

product makes the suppliers aware of these issues and eager to have access to tools and frameworks

that will offer a simple, fast and economic way of guaranteeing that their product is the best

possible and the one picked by the users in a market of millions now that is becoming more and

more competitive.

1.2 Motivation and Goals

Even though there is already out there a few solutions that help developers and testers in this

task, with some of them being official Google Testing Frameworks, none of them, as of the date

of this dissertation, is capable of doing the whole process in an automatic manner, both generating

and applying the tests, which leaves a gap in the testing world.

This is where the iMPAcT Tool (Mobile Pattern Testing) enters. A previous research work

that has been developed that aims to verify if the guidelines - or best practices - of Android pro-

gramming are followed. This tool automates the whole process of testing by using a combination

of Reverse Engineering and UI (User Interface) Patterns. It presents a catalogue of recurring

behaviours (Patterns) that matches with the ones in Application Under Testing (AUT), and tests

them.

So for this dissertation, the work consisted in improving this tool, by improving its catalogue

and enlarge its number of patterns to match in order to enhance the testing range of the applications

and improve its results.

1.3 Methodology

For this dissertation, the methodology used was based on a research, in a first instance, both on

the topics covered, like mobile testing and patterns, but also on the concept of the tool explored,

the iMPAcT tool. Then, the details on the implementation of this approach, what was done and

achieved, and finally, a set of experiments to validate the work performed.

Research

The first step in developing this dissertation, like any work of research, was to make research

on the state of the art in the topics involved with the theme. There is a review, on Chapter 2, of

the topics covered, like the existent approaches on mobile testing, model based testing and mobile

reverse engineering. It is also covered topics like patterns and automated testing based on patterns.

Finally, there is also coverage on the best practices for Android development.

2
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Most of the information covered in this point is taken and then analyzed from several scientific

papers published in conference proceedings, but also from official documentation and websites on

the topics (in the case of the Android best practices).

Concept of the iMPAcT Tool

The next step is to analyse the tool that is the basis of this Dissertation and its concept. What

does the tool do, what are its functionalities, where it comes from and where it intents to go, what

can be done from this point. It is also mentioned the contributions of this tool to the field, what it

brings that is new to the world. All this is reviewed in Chapter 3.

Implementation

After analysing the concept and functionalities of the tool used, in this phase it is reviewed the

implementation of the work achieved in this dissertation.

The goal was to implement new patterns to the catalogue of UI and Test Patterns already

existent in the iMPAcT tool. In order to choose, which patterns would be added to the tool and

that would test if the best practices in Android development are being used, a few selection criteria

were chosen for the new patterns:

• Not yet implemented;

• Be a native characteristic of Android applications and/or system;

• Be possible to implement, i.e. passable of being fully tested by the tool, not in need of

external input;

• Be an embracing pattern amongst Android applications, i.e. be present in a varied number

of applications and not in a very few number of them;

• Contribute to enhance and improve the quality and coverage of the iMPAcT tool’s testing

results.

A description of the new patterns in the iMPAcT tool, with what is expected of them accord-

ing to the Android Best Practices Guidelines, their behaviour and details, as well as the formal

definition of both the UI and Test Patterns for each one of the patterns added, can be found in

Chapter 4.

Validation

In order to validate the work developed throughout this Dissertation, several experiments were

conducted and presented in Chapter 5. The goal was to understand how the work achieved im-

proved the iMPAcT tool and in which ways can it contribute to the field.

3
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The methodology of this process of validation went through several stages, like defining the

research questions that should be answered by the end of the experiments, the technical specifica-

tions of the device for the test environment, the criteria to select the applications to be tested and

the final list of applications under testing, as well as the performance of the said tests and a sample

of the results for each new patterns and the quality of the tests performed.

The discussion and conclusions of such experiments can later be found in Chapter 6.

1.4 Structure of the Dissertation

Besides the introduction, this report has five more chapters.

On chapter 2, the state of the art is described and the related works are presented. On chapter 3,

the tool that is used in this work and the methodologies, technologies and solution is presented.

On chapter 4, the implementation details, such as the descriptions of the new patterns added to the

catalogue and the test strategies are described. On chapter 5, there are presented the results of the

experiments and tests done in the work developed through this dissertation.

On chapter 6, a summary for the topics covered in this dissertation, a wrap up and the conclu-

sions for the work done are taken.

4



Chapter 2

Testing Android Applications

In this chapter, there is a literary review of the state of the art in Testing in Android Applica-

tions.

First, a review of the evolution of mobile applications in the world in the last years is presented

on Section 2.1.

Next, there is a technological review of the current approaches existing in Mobile Testing

on Section 2.2, in which are presented some of the existing approaches for testing applications

consisting in a few tools and frameworks, both official frameworks and non-official, that have

changed the way we look into testing and quality assurance of mobile and particularly, Android

applications.

Once these approaches are presented, we step into some of the field’s research methods and

review them, such as Model Based Testing on Section 2.3, going to Mobile Reverse Engineering

on Section 2.4.

Following that, a review on Pattern-Based Testing on Section 2.5, where there is an analysis

on Patterns, both UI and Test Patterns. It is also mentioned the PBGT - Pattern Based GUI Testing

Project, a project for web that has been developed in the last few years and that plays as a base for

the approach of the solution used in this Dissertation and explored in the next Chapter 3, finishing

with Automated Pattern-Based Testing with a review on the basis of the iMPAcT tool.

Finally, a review on the Android Best Practices Guidelines, on Section 2.6, which guide this

work and the way the iMPAcT tool should test the patterns present in applications and the conclu-

sions that can be achieved from the state of the art presented.

2.1 Evolution of Mobile Applications

"In 2016, the global mobile internet user penetration has exceeded half the world’s

population, while the average daily time spent accessing online content from a mobile

device, such as a smartphone, a tablet computer or wearable, has reached 185 minutes
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Figure 2.1: Number of available applications in Google Play Store from December 2009 to March
2017

daily among Millennials, 110 minutes for Generation X and 43 daily minutes for

Boomers."[Staa]

If we alienate that fact that mobile applications are easier to create than computer applications

with the fact that developing them comes at a lower price to developers and companies, it is easy

to see why the market keeps growing at an exponentially rate.

On November 2015, there were 1.8 million apps available on Google Play Store. That is two

hundred thousand more than in July of the same year. And in June 2016, there were already 2.2

million apps available to Android users. This means that in a space of a year, the number of apps in

this store increased to almost the double. More so, in March 2017, there were already 2.8 million

applications available to Android users on the Google Play Store.

A timeline of the growth of the number of applications available on Google Play Store from

December 2009 to March 2017 1 is displayed in Figure 2.1.

Google Play Store is the biggest online app store in the world followed by Apple’s App Store,

1Statista;http://www.statista.com/graphic/5/266210/number-of-available-applications-in-the-google-play-store.jpg;
2017
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Figure 2.2: Number of available apps in Online Stores on March 2017

that on March 2017 2, had 2.8 million applications available for its customers as depicted in Fig-

ure 2.2, compared to the 2.2 million apps on the Apple App Store.

The difference between these big stores is increasing, as the number of available applications

on the Apple App Store on March 2017 is the one that the Google Play Store had previously

achieved almost one year before, on June 2016 [Stab]. This might be explained by the differ-

ences in the prices applied by both technological giants, with Google’s Android OS being the less

expensive of the two and therefore, the most bought and used by the majority of devices. Also,

with Android having the big majority of applications free of charge for a basic use, it is a huge

contribute to the increasing difference and fast grow on the Android side.

As stated in [MP15c] and according to the World Quality Report 2014-15, the number of

organizations performing mobile testing has grown from 31% in 2012 to 55% in 2013 and almost

87% in 2014. But, it is also mentioned that the biggest challenge for mobile testing is the lack

of the right methods and processes for testing as much as the insufficient time to do so and the

absence of in-house mobile test environments. These are some of the reasons why it is so important

to automate mobile testing.

Furthermore, considering the increase in the number of companies and freelancer developers

caring about mobile testing to ensure the quality of the applications launched in the official stores,

2Statista;https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/;2017

7



Testing Android Applications

which more than ever, is important and directly connected with the success of such applications,

in the last few years have emerged some frameworks and tools, both official and non-official, that

have helped the testing process and that will be reviewed in this next section 2.2.

2.2 Mobile Testing - Current Approaches

In the automation of tests, the current approaches aim their focus on either the test cases

generation or its execution. The community has had a special focus on automating the generation

of test cases because there are already some official frameworks and tools by Android that help

in the execution of such tests. Those frameworks are better explained in the next subsections

[MP15a].

More so, after the official frameworks, it is also reviewed some non-official frameworks for

Android testing. These frameworks exist as a way to fill the gap that existed at the beginning of

Android development, back at 2008. Even though Android had launched an official framework by

that time, its basic core forced the community of Android developers to develop tools that would

be satisfactory in its purposes and necessities.

The understanding of these existent frameworks helped the development of the tool presented

in Chpater 3, that was continued in this work and explored in Chapter 4.

2.2.1 Official Frameworks

Official Frameworks offered by Android exist since its launch in 2008. However, the first

frameworks did not perform nor offered the right features as desired by developers.

At the end of the year of 2012, in November, the first version of UIAutomator [uia] was re-

leased by Google, being the first sign of time and effort invested by Google in testing applications.

A new version of UIAutomator was later released in 2015, the UIAutomator 2.0, along with the

Android 5.1.

UI Automator

"The UI Automator testing framework provides a set of APIs to build UI tests that

perform interactions on user apps and system apps." 3

It allows to perform operations, like opening the Settings menu or the application launcher in

a test device. This framework is suited for writing black box-style automated tests, which means

that the test code does not rely on internal implementation details of the target application.

Some of the features of this framework are:

• UI Automator Viewer - A viewer to inspect layout hierarchy and that provides a GUI to

scan and analyze the UI components currently displayed on the screen. It can be used to

view the properties of UI components that are visible on the current screen;

3https://developer.android.com/topic/libraries/testing-support-library/index.html#UIAutomator; 2017
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• UI Automator APIs - APIs that support cross-app UI testing;

• An API to retrieve state information and perform operations on the target device - provides

a class to access and perform operations on the device on which the target application is

running.

Espresso

Released in 2014, Espresso 2.0 [esp] was, for many, the official version of the Robotium

framework, which will be explained later on in this section.

"The Espresso testing framework provides a set of APIs to build UI tests to test

user flows within an app." 4

Such APIs let the developer write automated concise and reliable UI tests. The framework is

also well-suited for writing white box-style automated tests, which means it uses implementation

details from the AUT.

Some of its key features are:

• View matching - flexible APIs for view and adapter matching in target applications;

• Action APIs - extensive set of APIs in order to automate UI interactions;

• UI thread synchronization - in order to improve test reliability.

Monkey and monkeyrunner

In Android SDK there are two tools that do the testing on a functional level5.

The Monkey, which is a command-line tool that sends streams of keystrokes, touches and

gestures to a device. It can be used to stress-test the application and report on errors found. It can

run multiple times and repeat a stream of events.

The monkeyrunner is an API and also execution environment for programs in Python. It

helps in tasks like installing and uninstalling packages, connecting to a device, comparing two

images, taking screenshots and running a test package against an application. Using this API

allows to write a large number of complex tests.

2.2.2 Non-Official Frameworks

As previously stated, the non-official frameworks were born out of necessity of the community

of having better testing frameworks than the very simple one that existed at the beginning of

Android development and that did not correspond to the needs and requirements of developers in

testing their applications.

These next frameworks are the most popular amongst the community in testing Android ap-

plications.
4https://developer.android.com/topic/libraries/testing-support-library/index.html#Espresso;2017
5https://developer.android.com/training/testing/start/index.html; 2017
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Robotium

Robotium [rob] is the most popular testing framework amongst the community, spreading

itself quickly and that appeared in 2010. As a test automation framework, it has a simple API that

works in any Android device, regardless of its version.

As any framework, it presents both advantages and disadvantages. The advantages of using

the Robotium framework are:

• Works with any Android version;

• Testes both native and hybrid Android applications;

• Does not require access to the AUT’s source code;

• Able to access and modify the device’s sensors and services’s state.

On the other end, it has some disadvantages such as:

• Is not able to read the content of the screen;

• It only accesses and modifies those services for which the AUT has permissions;

• The AUT’s main activity name needs to be hard coded.

Appium

As for Appium [appb], it is an open-source testing framework, that appeared in 2013. It

presents several advantages, like:

• Does not require access to the AUT source code;

• Supports both Android and iOS applications;

• Tests native, hybrid and mobile web applications;

• Able to access and modify the services and sensors’s status;

• Supports different frameworks and languages;

• AUT’s package name and main activity can be inserted by input and does not have to be

hard coded in the test code.

Among the disadvantages are:

• Not stable, sometimes creating unexpected erros;

• Does not return the screen content;

• It is not possible to locate an item by its id.
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Calabash

The Android and iOS test automation framework, Calabash [cal], joined the community in

2012 and brought to it advantages such as:

• Reports on the performance of the device;

• Syntax based on natural language easy to understand;

• Possible to access and modify the status of services and sensors.

As for the disadvantages:

• It needs to have access to the AUT’s source code;

• It is not capable of reading the content of the screen.

Selendroid

Like Appium, Selendroid [sel] was released in 2013 and it is a test automation framework,

similar to Selenium6, but for Android applications.

The main advantages of this framework are:

• Supports both native and hybrid applications;

• Has an inspector tool to analyze the contents of the screen;

• Does not need access to the source code of the AUT;

• Simpler than Appium when it comes to the localization of the screen elements.

But it also has its disadvantages, like:

• It does not have access or is able to modify the status of the services and sensors;

• The inspector tool does not offer an API.

When comparing all these frameworks, it becomes clear that there is a lot in common between

them. There is also a few characteristics that make them distinguish themselves from the others.

But there are a few main problems amongst all of them:

1. It is necessary to know which AUT is to be tested beforehand;

2. It is not possible to analyze the screen to know automatically which events should be fired.
6Selenium - http://www.seleniumhq.org/ ; 2017
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2.3 Model Based Testing

There is a technique that enables the automation of test generation, which is the Model Based

Testing - MBT [MP15c, MPM13b, PFTV05, KMPK06, MP13]. In this technique, the test cases

are generated from a model/specification. More precisely, a model of the application’s behaviour,

that is an input whereas the output is a test suite.

However, the MBT has two main issues:

• The need of an input model of the application - that requires manual construction, which is

an error prone process and very time consuming;

• The combinatorial explosion of test cases.

To tackle the first problem, we can use reverse engineering in the application under testing

(AUT), which will be addressed in the next section, and/or by increasing the level of abstraction

of the model. More so, the PBGT project, which will be reviewed later in this chapter, diminishes

the effort required to build this model [MP15b]. As for the second problem, focusing on testing

recurring behaviours - behaviour patterns - will help in the addressing of the problem.

2.4 Mobile Reverse Engineering

For a very long time, Software Reverse Engineering has been a field of research. There has

been many approaches in extracting models from desktop and web applications.

However, for this Dissertation, the focus is on the research on reverse engineering for mobile

applications. In depth, Android reverse engineering, since the solution for this Dissertation focus

on Android and also because most approaches have been focusing on Android particularly.

The main goal is to obtain the source code of the application from the APK (Android Appli-

cation Package) - the Android executable file - through reverse engineering, which is used in the

solution of this Dissertation and will be better explained in the next chapter, and as long as the ap-

plication is not obfuscated, Java disassembling or decompiling techniques may be used [MP15c].

As such, reverse engineering approaches may focus on:

• Static reverse engineering - how to automatically analyze the source code;

• Dynamic reverse engineering - automatically analyze the application at run time;

• Hybrid reverse engineering - analyzing both the source code and the application at run time.

If we consider the nature of mobile applications, since they are event-based, dynamic and

hybrid approaches are the most common in this case, although some authors were able to identify

possible security vulnerabilities by using a static approach (Batyuk et al., 2011) [BHC+11].

But the purpose of using reverse engineering in mobile applications is to obtain a model and/or

test it. Some authors have already shown works regarding this, like Yang et al. in 2013 [YPX13]

that use an hybrid approach to obtain a model by identifying events to be fired in a first static step
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to then fire those events in a second dynamic phase; or Amalfitano et al. in 2012 [AFT+12], in

which they generate test cases following a dynamic approach.

2.5 Pattern-Based Testing

2.5.1 Patterns

In the last few years, there have been studies on the usefulness of using patterns for testing

mobile applications.

The author Erik Nilson [Nil09], in 2009, came to the conclusion that UI design patterns might

be useful in resolving recurring problems in Android applications development. If there is a be-

haviour associated with the patterns, then it is possible to identify the pattern by identifying auto-

matically the behaviour.

Shirazi et al. [SSHS+13], in 2013, performed a study on the layout of applications. One of

their goals was to verify if the same layouts presented any patterns. In their conclusions, there was

75.8% of unique combinations of elements that seemed to appear only once in the application,

though the study only took in consideration a static analysis of the layout and the elements of

the application might represent the same behaviour even if presented in a different combination.

Which means, different combinations of elements may represent the same behaviour, therefore,

the same pattern.

However, even being useful in testing mobile applications, some authors have different ap-

proaches, focusing on different types of patterns. For example, Batyuk et al. [BHC+11] consider

a pattern as a set of malicious access, while Amalfitano et al. [AAF+14] define three different

types of patterns: event patterns, model patterns and GUI patterns; Costa et al. [CPN14] consider

UI Test Patterns.

The approaches made by Costa et al. and Amalfitano et al. are similar to the ones in the

solution presented in this Dissertation in the next chapter, in the way that Amalfitano et al.’s

patterns are similar to the UI Patterns considered here and Costa et al.’s are similar to the Test

Patterns that will be used.

To assure that the reuse of patterns and the definition and addition of new patterns is an easy

process, a formal definition of these patterns is very important. It is important to understand that

the goal is not to test everything, but instead, to test recurrent behaviour. So the model is composed

by the UI Patterns and the Test Patterns. The formal definition presented next is both applied to

UI Patterns an Test Patterns.

Therefore, we can represent a pattern by a tuple < Goal, V, A, C, P >, in which:

• Goal is the ID of the pattern;

• V is a set of pairs {variable, value} that relates input data with involved variables;

• A is the sequence of actions to run;

• C is the set of checks to perform;
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• P is the precondition (a boolean expression) that defines the conditions in which the pattern

is applied.

In a formal definition:

G[con f iguration] : P−> A[V ]−>C (2.1)

,i.e., for each goal’s configuration G[configuration], if precondition P is true, a sequence of ac-

tions A is executed with the input values V. Finally, a set of checks C is performed [MP15c,

MP15a, MP15b].

UI Patterns

More particularly, in UI Patterns:

• P defines when to verify if the pattern exists;

• A defines which actions should be executed to verify the presence of the pattern;

• C validates the presence of the pattern.

Test Patterns

And in Test patterns:

• P defines when the test is applied - includes validation of the corresponding UI Pattern;

• A defines the action of the test in itself;

• C indicates whether the test passed or failed.

2.5.2 PBGT - Pattern Based GUI Testing Project

As previously stated, Pattern-Based GUI Testing Project (PBGT) [MP14b] is a project that

looks to diminish the effort that is required in building a model for MBT.

It does this by presenting a modeling framework with an easy use [MP13] and also by provid-

ing a Domain Specific Language (DSL) - PARADIGM [MP14a], which increases the abstraction

level of the model by describing test goals instead of system functionality. PARADIGM is built

on top of User Interface Test Patterns (UITPs) which provide the test strategies for the UI Patterns

themselves.

In the context of this project, there was conducted an experiment on mobile applications to

realize if this approach could also be applied to those applications. It was proved with the success

of the experiment, the necessity to develop appropriate test strategies for mobile applications.

This project is also based on the assumption that GUIs that are based on the same UI Patterns

should share the same UI test strategy as realized before. Basically, in this project was developed
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the concept of UI Test Pattern - the association of a set of test strategies to the corresponding UI

Pattern.

Furthermore, in the context of this project, a tool was developed on top of the Eclipse Mod-

elling Framework 7 and has the following components:

• A modelling environment to build and configure GUI models;

• A Domain Specific Language (PARADIGM) which builds the test models based on UITPs;

• A test case generator based on the PARADIGM models;

• A reverse engineering process that generates and extracts automatically the model of a web

application.

As stated before, and even though this project was originally goaled to test web applications,

with the experiments on mobile applications, there was the conclusion that the same approach

could be applied to those. However, in the case of mobile applications, there are adaptations

needed to be developed like specific test strategies, as stated before.

This is because there are different development concepts in the mobile world, like activities,

interaction gestures and limited memory [MP15b]. These differences will give space to a new

tool, the iMPAcT tool, which is the main focus of this Dissertation and will be later described in

Chapter 3.

2.5.3 Automated Pattern-Based Testing

From this point of research, it was important to develop another work of research - [MPF14] -

that puts all this together and that would, eventually, lead to projects like the tool from the solution

of this Dissertation - the iMPAcT tool.

The purpose of the research was to construct a catalogue of recurring behavioural patterns and

develop a tool that would explore a mobile application in an automatic way while identifying and

testing such patterns during its exploration.

In this approach, the main steps are:

1. Define a catalogue of mobile GUI patterns and the corresponding test strategies;

2. Apply an hybrid reverse engineering approach in order to explore the mobile applications

automatically;

3. Identify patterns on the fly and apply the corresponding and predefined test;

4. Store the information that regards all the behaviour explored;

5. Produce a test and matched patterns report.

7https://www.eclipse.org/modeling/emf/; 2017
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To validate this approach, there was a case study that was conducted in order to verify three

main aspects:

• Induce errors on an application to verify if the tool detects them;

• Analyse the percentage of code explored and tested;

• Compare results with those of other approaches.

This case study and some of its results as well as the specifics of the iMPAcT tool will be

looked deeper in the next chapter, Chapter 3.

2.6 Android Best Practices - Guidelines

The guidelines for the Best Practices in Android Development are a series of documents in the

web provided by Google in which the developers can and should follow in order to create the very

best apps in Android provided to the user. These guidelines are to be found in the documentation

of Android development provided to the developers. This documentation can be found at [And].

These guidelines are in the basis of this research work, as they tell how the patterns and other

specifications of Android applications should be and look in the final application. They are used in

the tool later described in chapters 3 and 4, as also guidelines in which the tool tests applications.

The documentation is divided in three big modules: Design, Develop and Distribute. The

documentation most used in this work can be found in the Develop module and also partially in

the Distribute module. Even though the Design module is not directly used, most of the Android

components depend on all three modules in one way or another, which means that the design

documentation also affects those from develop and distribute.

On the Develop module, the first part is focused on training, in which the guidelines are at,

and aims to give the Android developers the basics and the best practices they should follow while

developing their applications. Inside this, these series of documents are also divided in smaller

inner modules, where the modules for best practices are included. These modules are:

• Best Practices for Interaction and Engagement

• Best Practices for User Interface

• Best Practices for Background Jobs

• Best Practices for Performance

• Best Practices for Security and Privacy

• Best Practices Permissions and Identities

From these modules, we will focus on the ones later used directly in this dissertation: Interac-

tion & Engagement, User Interface and Background Jobs.
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On the Best Practices for Interaction and Engagement, it is possible to find the guidelines in

Design Effective Navigation, in which it is possible to find the document "Providing Ancestral and

Temporal Navigation" [Anc] where it gives a brief overview on these types of navigation. These

are later better explained in Implementing Effective Navigation, where the documents "Providing

Up Navigation" [UpN] and "Providing Proper Back Navigation" [BkN] can be found.

As for the Best Practices for User Interface, in Adding the App Bar, there is documents on

"Setting up the App Bar" [Appa] and "Adding an Up Action" [UpA]. And in the Best Practices

for Background Jobs, the documents present in Running in a Background Service [Bac] all were

fundamental in the research and development of this dissertation’s work.

More over, on the Distribute module, on the Core App Quality, there is also a list on which

details developers should check to make sure their applications are developed according to the

Android’s standards, which can be found on [Qua]. As for the influence that Design also has on

these applications, which has increased its importance in the last few years, as one of the pillars

of user interface and user experience, Android has developed what they call the Material Design
[Mat], a series of guidelines on applications design in which the Android applications become

more similar and thus, more familiar and friendly to the user.

2.7 Conclusions

With the technologies and new approaches that keep appearing, there is a lot of new informa-

tion and new researches being born in the field of testing applications, either for desktop, web,

or more importantly in this case, mobile applications. But with the exponentially growing market

for these applications, the results and researches done and the tools and different approaches that

come from that are just not fast enough, nor cost and time effective for the developers, testers and

companies in the business.

There is a growing need from the parties involved, for tools and systems that may assist them

in better performing and becoming more competitive in what is already, a market of millions.

That may help them prosper in a world of automation and constant change, both technological

and social. And as far as we know, there is not a tool in the market that tests the best practices in

mobile applications, except for the iMPAcT tool, presented in Chapter 3.

Furthermore, it is becoming obvious how automation and easiness in testing needs to be de-

veloped and soon. So in the next chapter, it will be presented one solution for this problem. A

solution that might help developers and testers a great deal by easing the task of testing, but also

open new doors in research for more improvement and new approaches and tools - the iMPAcT

tool. The goal of this research work is to help develop this tool, in order to test new patterns and if

the best practices are being applied.
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Chapter 3

The iMPAcT Tool

The tool here presented aims to automate the process of testing recurring behaviours that are

present in Android applications. Its main concern is to assure that the guidelines - or best practices

- in Android programming are followed.

In this chapter it is described the tool’s approach in Section 3.1, how it is divided and how its

configurator looks like, the phases it goes through, how it identifies the events, how it is imple-

mented and how its catalogue is built. It will also be referred what were the results achieved in a

previous case study in Section 3.2, in which ways the iMPAcT tool contributes to the community

in Section 3.3 and what is the work expected to be achieved with this dissertation in Section 3.4,

which will later be described in Chapter 4 with more detail.

3.1 Approach

It is presented in Figure 3.1 [MPF14] the testing approach that is supported by the iMPAcT

tool which has four main principles:

1. The goal is to test UI Patterns;

2. The whole process is completely automatic;

3. It is an iterative process combining automatic exploration, reverse engineering and testing;

4. The reverse engineering process is completely dynamic [MP16].

In the end, the tool shows two different types of results:

• Matched patterns - UI patterns present in the application;

• Failures detected - patterns that are not correctly implemented [MP15a].
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Figure 3.1: Block Diagram of the Architecture of the Approach

3.1.1 Test Configuration

The iMPAcT tool is divided in two parts:

• A Configurator - handles the configuration of the test process. It is where the user is able

to provide input information about the application about to go under testing.

• A Tester - Implements the approach itself, which will be explained in the next subsec-

tion 3.1.2.

Both these parts were developed in Java, the first one (Configurator) being a thir-party appli-

cation, while the second part (Tester) is an Android test project.

So the first step in using the iMPAcT tool, is giving the tool the necessary information it needs

to perform the test. That information is inputed by the user of the tool through an interface as

shown in Figure 3.2.

In this window, the user has to input and choose the configurations for the test to be performed

such as:

• The AUT - either by the APK of the application or its package name;

• Choose the type of exploration - later reviewed in this chapter, in subsection 3.1.3;

20



The iMPAcT Tool

Figure 3.2: iMPAcT tool Configurator - Main window

• Where to run the test - on a device or an emulator;

• Define the Patterns - choose the patterns to be tested from the catalogue available (showed

in another window).

3.1.2 Phases

The iterative process of this approach is divided in three phases:

1. Exploration

2. Pattern Matching

3. Tester

In the first phase - Exploration - there is an analysis of the current state of the application. It

identifies the different elements present, e.g. buttons or text boxes, in the current screen and also

determines which events are enabled, like click, edit or check. At the moment, the decision of

which event is fired is random. After selecting the event, the same is then fired. A summary of

this phase can be seen in Figure 3.3 [MP15a].

In the Pattern Matching phase, after the event from the previous phase has been identified

and fired, the tool will try to identify which UI Patterns are present on the screen at the moment.

All the patterns in the catalogue are analyzed to check if they are present in the current state of the

application. The matching itself, more precisely, consists in checking if the precondition of the UI

Pattern holds, executing the actions necessary and verifying if all checks are met [MP15c]. If this

happens, then the UI Pattern is considered found.
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Figure 3.3: Exploration Phase

Finally, in phase three - Tester - once the UI Pattern is matched from phase two, it is tested. So

this phase applies, to the UI Pattern found, the correspondent Test Pattern from the catalogue that

the tool provides. This process is similar to the one in phase two. It verifies is the preconditions

are met, executes the actions and verifies the checks. If everything goes through, then it means

that the test passes. If not, the test will fail and it will be reported in a log file.

It should be noted that if there is no pattern found in phase two, this phase is skipped altogether.

A sample of how this two phases work can be summarized in Figure 3.4 [MP15a].

Also, a summary of the approach’s cycle can be found in Figure 3.5 [MP15a].

3.1.3 Identification of Events

As previously stated, the decision of which event to execute in the exploration phase is random.

However, the set of events that are available for execution depends on a variable defined by the

user - the exploration mode [MP16].

The modes available are three:

1. Execute Once: Are only considered the events that have not yet been executed;

2. Prioritize Not Executed: Choice made among events that have not yet been fired. Note

that it may be possible to run an event a second time if all other events have already been

fired and the event is necessary to give access to a screen with not executed events;

3. Prioritize List Items and Not Executed: Similar to the previous mode but with two differ-

ences: 1) events executed on elements from a list have priority; 2) "click on the App button"

event is only fired when there is no more events to do so. This mode, basically, tries to fire

all events of each screen before moving on.

3.1.4 Stop Condition

When there is not an available event, the back button is actioned to reach the previous screen.

If this takes to the home screen of the device, the exploration stops. This stop condition should be

refined in the future.
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Figure 3.4: Pattern Matching and Tester Phases

3.1.5 Patterns Catalogue

The definition of the patterns catalogue is one of the most important aspects in this approach.

This catalogue is what ultimately defines what is to be tested and how. It consists on a set of UI

Patterns and the corresponding test patterns - the test strategies [MP15c].

This catalogue is defined only once and may be reused for any Android mobile application.

A Pattern in here is considered a pair of both UI and Test patterns and it is defined as a set of

tuples < G, V, A, C, P >, in which [MP16]:

• G is the ID (goal) of the pattern;

• V is a set of pairs [variable, value] that relates input data with the variables involved;

• A is the sequence of actions to execute;

• C is the set of checks to perform;

• P is the precondition that defines in which conditions the pattern should be applied.

To apply a pattern, the tester or developer will need to configure the value for each V variable.

There is the possibility of using the same pattern several times with different configurations.

Therefore, applying a pattern consists in: if a precondition P is true, a sequence of actions A

is executed with the values V. After this, a set of checks C is performed.

While in Pattern Matching, the preconditions result will indicate if the tool should try to iden-

tify the pattern and the checks result will indicate if the pattern is present or not. Then in the Tester

- when applying the Test Pattern - the preconditions tell if the test strategy that corresponds to the

pattern should be applied and the checks indicate whether or not the pattern is implemented in a

correct way.

The patterns that are currently present in the catalogue are based on the guidelines that Android

provides on how to design applications and how to test.
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Figure 3.5: Iteration of the Approach’s cycle

In order to understand better these patterns and the differences between the UI Pattern and the

Test Pattern, two examples of patterns identified and tested by the tool will be presented: the Side
Drawer Pattern and the Orientation Pattern.

The Side Drawer Pattern is a form of navigation through different screens and hierarchy

provided by the Android OS. It is a transient menu that opens when the user swipes the screen

from left to centre or clicks on the icon in the left of the application’s Action Bar. In Figure 3.6

[MP15c] there is an example of this pattern. The main challenge in the implementation of this

pattern is the correct identification of the side drawer element.

The UI Pattern is [MP15c, MP15a]:

Goal:"Side Drawer exists"

V: {}

A: []

C: {"side drawer exists and is hidden"}

P: {true}

The corresponding Test Pattern is:

Goal: "Side Drawer occupies full height"

V: {}

A: [open side drawer]

C: {"covers the screen in full height"}

P: {"UIP present && side drawer available && TP not applied to current activity"}

As for the Orientation Pattern, in Android devices there are two possible orientations of the

screen: portrait (a) and landscape (b) as seen in Figure 3.7 [MP15c].
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Figure 3.6: Example of the Side Drawer Pattern

When rotating the device, the layout of the application is updated. Nevertheless, according

to the guidelines from Android for testing, developers should be aware of two aspects that they

should test. Those are that the custom UI code can and should ensure that the main elements of

the layout are present and that no user input data is lost. This is also visible in Figure 3.7. As for

the main challenges in the implementation of this pattern, it is how to match the elements from the

pre-rotation screen to those on the post-rotation screen.

In this case, the UI Pattern is:

Goal: "Rotation is possible"

V: {}

A: []

C: {"it is possible to rotate screen"}

P:{"true"}

The respective Test Patterns - there is two possibilities in this case - are:

Goal: "Data unchanged when screen rotates"
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Figure 3.7: Example of Orientation Pattern. a)portrait and b) landscape

V: {}

A: [read screen, rotate screen, read screen]

C: {"user entered data was not lost"}

P: {"UIP is present && user data was entered && TP not applied to current activity"}

and

Goal: "UI main components are still present"
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V:{}

A: [read screen, rotate screen, read screen]

C: {"main components still present"}

P: { "UIP is present && TP not applied to current activity"}

One of the main challenges that both examples share is on how to tell apart the activities which

means that a special care is needed regarding this aspect.

3.1.6 Technologies

The iMPAcT tool uses, essentially, two technologies/tools: Java and Android SDK.

Java is the main language in which the tool is developed and it is also the base language for

Android development itself.

Android SDK - which stands for Software Development Kit - is the framework provided by

Android in which compiles several development tools. It includes a debugger, libraries, documen-

tation, tutorials and example codes.

Since the tool was already in development and uses these technologies, they were also the ones

used on this Dissertation.

3.2 Case Study

Regarding this new tool, and to validate its approach, a case study was conducted [MP16].

As stated before, in the iMPAcT tool it is possible to select the exploration mode as well as

defining the order in which the patterns are identified and tested. So it is easy to realize that it

is possible that the results might change according to this settings. Moreover, depending on this

setting, the failures detected may be different as well as the number of events executed.

The goal to this experiment was to compare results obtained by the three different exploration

modes and two testing orders. At the end, there was a total of six possible combinations for each

application tested.

Analysing the results of the test on Tomdroid application, which can be found in [MP16], it

was possible to conclude that there is a significant difference between the exploration times of

mode 1 compared to modes 2 and 3. This can be explained by the fact that exploration mode 1

executed a much lower number of events. It was also possible to notice that as modes 2 and 3 have

the possibility of a more deep exploration, this leads to more failures being found. An image of

the results obtained can be found in Figure 3.8.

As for the testing on the Book Catalogue application, which is a bigger application than the

previous one, as mode 3 detects more events and executes a higher percentage of those events, it

gives us a more insightful exploration and also detects more failures. On the negative side, this

mode takes much longer to perform its exploration when compared to the other two modes. An

image with these results should be found in Figure 3.9.
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Figure 3.8: Results of the case study on Tomdroid application

In the end we can conclude that modes 2 and 3 are better suited for better results (more cov-

erage of the applications), yet, mode 3 is better for bigger applications. When we have smaller

applications the differences between modes 2 and 3 is not significant. But the main conclusion

is that the exploration mode affects the overall time and number of events tested. The number of

failures found is not necessarily affected.

3.3 Contributions to the Community

There are several advantages that the iMPAcT tool brings to the community of developers,

testers and researchers of the testing in mobile applications field in general.

Among this advantages, there are characteristics [MP15a] like:

• Access to Source Code - the source code is never accessed nor is any code instrumentation

required since the reverse engineering process is fully dynamic;

• Manual Effort - None is needed since the whole process is automatic;

• Reuse - As UI Patterns are present in several applications, the ones defined in the catalogue

may be reused without any modifications needed;

• Maintenance and Evolution - The tool’s code structure eases the process of adding new

interactions, therefore, it is prone to evolution.

• Usability - The user does not need to have any information or knowledge about the appli-

cation, nor the patterns that it contains, in order to use the tool;

• Innovation - Up until now, there is no knowledge of a tool that tests mobile applications

that mixes reverse engineering techniques and UI Patterns.
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Figure 3.9: Results of the case study on Book Catalogue application

3.4 Work from here

So, for this Dissertation, the main work consisted in, from this state of the tool:

• Increase the testing behaviour - Add new patterns to the catalogue in order to increase the

range of the testing on the applications and improve the final results. The number of patterns

presented in catalogue was one of the biggest limitations that the tool had and that needed

to be fulfilled in order to get better testing.

• Improve Test Results Visualization - At this point, the results of the testing were presented

in a log file that showed the patterns and failures found. The goal was to change this pre-

sentation to that of a proper report (an HTML or PDF file) with this information and other

information that may be considered relevant for the developers/testers.

The first step is to parametrize the tool’s configuration and the behaviour to be tested. After

this, new patterns are added to the tool. With this step concluded, a case study is made in order to

test the new changes and comparing the new results with the previous ones.

3.5 Summary and Conclusions

Summarizing, the iMPAct tool has revealed to be in a good path with a new and different

approach in the testing of mobile applications. Therefore, the continuing of this work, thus the

improvement of the tool, may lead to a very good and simple way of helping developers/tester-

s/companies in the testing and quality assurance of their applications which are brought to the

market and also open new trails and challenges in the future of mobile applications, and more

specifically in this case, Android applications testing research.
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Implementation

In this chapter, it is presented an overview on the work developed in this dissertation. The

patterns that are new to the catalogue are reviewed in Section 4.1. In Section 4.2, a summary and

some conclusions of the work achieved are made.

The results from a series of tests to the work developed and described in this chapter will be

looked through in Chapter 5.

4.1 Patterns Catalogue

In this section, the new patterns on the catalogue added to the iMPAcT tool are described and

reviewed, as well as described the formal tests performed in order to check if these same patterns

are correctly implemented by the AUT and that they follow the Android guidelines of the Best

Practices in Android Developing.

The pattern added that are described next are the Background Pattern, the Action Bar Pattern,

the Back Pattern and the Up Pattern.

4.1.1 Background Pattern

In Android applications, most of the work done by the app is performed on the foreground. As

some of the tasks that the several applications running on a device tend to use a lot of resources

and, thus, affect the performance, the Android framework has provided several classes that allow

some operations to run on a background service. Besides this factor, and on the line of providing

the user the best experience possible, it is also possible for the user, and should be expected, that

when using an application and hitting the home button of the device, the user is taken to the home

screen of the device. But this action does not fully exit the application that was being used. It

is expected that the application continues to run on background and to keep the state exactly the

same as the one last seen by the user. This means, that if the user wished to open said application

again, he should click the app item on the device or click on the recent apps menu, look for that
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Figure 4.1: Recent Apps working in background on Android

app and click to open it. By opening the app, the screen presented to the user, should be the same,

and in the same state that it was, just before the user hit the home button and left the app.

The goal of testing this pattern is to check if the states, before the application goes to back-

ground and after it is brought back to foreground, are the same. So in this test, the strategy is to

send the AUT to the background by clicking on the home button. Then it is performed a click

on the recent apps menu and the AUT is clicked to open again. Then, a comparison between the

screen in the beginning of the test and the current screen is performed. A sample of how the recent

apps menu, which hold all applications running in background, is shown in Figure 4.1

In short, this test aims to:

• Check if the AUT goes to background when the home button is pressed and the process is

not killed or the app does not crash.

• Check that when bringing from background to foreground, the app is in the same state as it

was previous to being sent to background.

Considering that to test this pattern the only condition is that the AUT is open, there is not the

necessity of formally defining an UI Pattern, since it exists by nature.

Only the Test Pattern is formally defined as follows:

Goal: "App goes to background and keeps the same state from before background event"

V: {}
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Figure 4.2: Action Bar on Android Apps

A: ["observation", app goes to background, "observation", send app to foreground, "obser-

vation"]

C: {"Verify the app state is equal to the previous one"}

P: {"AUT is open && TP not applied to current activity"}

In the end, if the test fails, the error is displayed in the final report.

4.1.2 Action Bar Pattern

One of the most important design elements in an application is its App Bar, or also com-

monly known as Action Bar. This is due to the fact that it gives the user a visual structure and

elements that are familiar to him/her. The use of the Action Bar, according to the Android guide-

lines, provides consistency, making it similar to other Android applications, which allows users to

understand the application quickly and easily and in order to enhance to user’s experience.

The main functions of the Action Bar are the following:

• A space dedicated to give identity to the app and localize the user inside it;

• Give access to the user to important actions in a predictable way, i.e. search or new;

• Support to navigation and changes in the view within the app;

In its most simple mode, the Action Bar presents the activity title on the left side and a floating

menu on the right side. This floating menu should link to the most important actions in the context

of the app. If these actions can not be all displayed in the Action Bar, an overflow menu is added to

fit the actions necessary. Besides these two main components, the Action Bar should also include

on the left side of the app (also on the left of the title), an Up caret when not in the main screen

of the application (later review in Up Pattern 4.1.3), or the button for the side drawer when one

exists. In Figure 4.2 there is an example of the Action Bar with its components described above.

The goal of this test is to:

33



Implementation

• Check if the app bar (Action Bar) is present in the AUT screen as described above;

• Check if the existing Action Bar components follows the rules stated (Title and floating

menu).

Like in the Background Pattern, considering that the Action bar should exist in the application,

there is no need to check for the UI Pattern.

The corresponding Test Pattern is:

Goal: "Action Bar exists in the app screen"

V: {}

A: ["observation"]

C: {"is Action Bar present"}

P: {"AUT is open && TP not applied to current activity"}

4.1.3 Up Pattern

In line with the previous pattern, the Up Pattern and the Up Action is a very specific part of

the Action Bar and also one of the fundamental ways of navigation in Android applications, along

with the back pattern (in Section 4.1.4).

According to the guidelines of good practices in Android developing, every screen in an ap-

plication which are not the home screen of the app, should offer the user a way to navigate to

the screen that is its logical parent, in the hierarchy of the application, by pressing the up button

present in the action bar. This gives the user an easy way to follow his/her path backwards on the

application right until the app’s main screen.

The main goals in testing the Up pattern are to:

• Verify if, in every screen different from the home screen of the app, the action bar is present

and that, except in the existence of a Side Drawer, there is an Up button;

• Check if the up button, when clicked, sends the app to the current screen’s logical parent in

the hierarchy.

A sample of the way the up button is presented in applications is shown in Figure 4.3.

The UI Pattern of the test is:

Goal:"Exists Up Pattern"

V: {}

A: []

C: {"Has Action Bar && Does not Exist Side Drawer"}
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Figure 4.3: Up Button on the left of Android Action Bar

P: {"Not home screen" }

The corresponding Test Pattern is:

Goal: "Exists Up button and goes to parent screen"

V: {}

A: ["observation", click on the up button, "observation"]

C: {"App goes to the logical parent screen"}

P: {"UIP present && TP not applied to current activity"}

The up button is one way of navigating backwards in an application, in this case, in the hi-

erarchy of the application and not necessarily the immediate previous screen. For this case, in

contrast, there is the back button, described in the following section.

4.1.4 Back Pattern

In all Android devices a back button is provided to correctly use the back navigation. This type

of navigation is the way users have to go backwards on the history of screens previously visited

by them, regardless of other state. This type of navigation is also known as temporal navigation

and should be ensured to respect the Android conventions.

As stated in Android best practices, the application itself should not add a back button to the

UI as this button is already existent in all Android devices and, therefore, the only one that should

be used for this kind of action and navigation.
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Figure 4.4: Back Button on Android devices

In most situations, the system will handle this type of navigation by using the back stack.

However, it is possible to override this and manually specify what the back behaviour should be,

in order to give the user the best experience possible. This is possible in situations like:

• Certain cases when navigating between fragments;

• When the users enters through a notification, navigation drawer or app widget;

• Navigating in pages through a WebView.

Even so, once this behaviour is no longer in use, the app should use the system default back

stack once again.

In Figure 4.4 there is an example of the back button provided in the Android devices.

So in short, the Back Pattern tests if:

• The AUT uses the default back button navigation of the system and not a personalized back

navigation;

• Checks if the AUT is not on the initial screen (screen 0, or else the exploration would finish

immediately and there would be no point in executing the test);

• Checking that by clicking on the back button, the AUT changes to the previous visited

screen.

As stated before, the goal is to test if the application uses correctly the back button from the

device. Due to this, there is also no need to verify if the UI Pattern exists, since it is an integrated

part of the device and thus, it always exists.

The corresponding Test Pattern is:
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Goal: "Back goes to previous screen"

V: {}

A: ["observation", execute back, "observation"]

C: {"Changed screen to the one immediately visited before "}

P: {"Not the first screen visited && TP not applied to current activity"}

Up Pattern vs. Back Pattern

It is important to understand the differences between the up button and the back button. Since

Android 3.0 version that the back button is a part of the Android system itself and therefore,

present in all devices. So this made possible to create two different types of navigation on the

applications (ancestral and temporal), making more clear for the user what behaviour they should

expect when going back on their actions.

The up button is an ancestral type of navigation, which means that it navigates according to

the hierarchy of the application and it is only for the app itself. This means that when achieving

the screen that is on top of the hierarchy (the app’s main screen), there should not be an up button

present, since there is no more screens above on the hierarchy.

As for the back button of the device, a temporal type of navigation, its behaviour is to navigate

on a chronological way through the history of screens visited by the user in the device.

It is common for the up button and the back button to have the same final result, if the previous

screen is also the superior hierarchical of the current screen. However, the up button guarantees

that the user stays inside the application and the back button, on the other hand, allows the user to

leave the application to the device’s home screen or even another application previously visited.

To better understand these differences, a pratical example is visible in Figure 4.5. In this figure,

there is an example of navigation in an Android application. From the screen Book List, the user

clicks on one of the list items, which takes him/her to the Book 1 details screen. From this screen,

the user has several options. If he decides to press the Back Button on the device menu, it will

take him/her to the previous screen visited, in this case, the Book List Screen. If he/she decides

to press the Up Button, it will take the user to the parent screen. In this case, also the Book List

screen, the same as the back navigation. Or he/she can continue navigating to related screens, like

the Book 2 details screen. The differences start here. On hitting the back button, the user will go

back to the Book 1 details screen. If he/she decides to instead hit the up button, then it will go

to its parent - the Book list screen. On the other hand, going to the parent screen does not need

necessarily to be a screen previously visited before. Proof of this, is that it is possible to go to

Movie 1 details screen from the Book 2 details screen, and then, by pressing the up button, go to

the Movie 1 details parent, the Movie list screen, which was not previously visited by the user.
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Figure 4.5: Up button behaviour vs. Back button behaviour

4.2 Summary and Conclusions

On a review on the work developed during this dissertation, it was possible to add four new

patterns to the iMPAcT tool.

As mentioned in Chapter 1, the patterns added were chosen according to the following require-

ments:

• Not be already implemented;

• Be a native characteristic of Android applications and/or system;

• Be possible to implement, i.e. passable of being fully tested by the tool, not in need of

external input;

• Be an embracing pattern amongst Android applications, i.e. be present in a varied number

of applications and not in a very few number of them;

• Contribute to enhance and improve the quality and coverage of the iMPAcT tool’s testing

results.
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So, in the end, the choice fell on the Background Pattern, the Action Bar Pattern, the Up
Pattern and the Back Pattern.

We believe that these aforementioned patterns, once implemented in the iMPAcT tool, bring a

good contribution to increase the behaviour that the tool can test and that they test patterns present

in a huge majority of the existent Android applications, specially for its characteristics, for which

some of them are deeply involved with the Android system itself and therefore, very important

that these applications follow the guidelines and behave as expected so not to interfere both with

the system and with the user experience.

In short, applications working in background should keep their state, in order to, when brought

to foreground, the user knows exactly where in the app he/she is and what it is doing. The Action

Bar should exist at all times and have the same characteristics for all applications as to facilitate

the user experience and learning of the application. The up button should be present in the Action

Bar whenever the user is not on the home screen of the app, so he/she can have an easy way of

going back/up in the app’s hierarchy. The back navigation should always send to the previous

screen and use the system stack.

In order to validate the implementation of these patterns, a set of experiments was conceived

and performed. The results to these experiments can be found in the next chapter, Chapter 5.
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Experiments

This chapter aims to show the results of the experiments made on the new patterns added to

the tool in order to validate the new developments and changes to the iMPAcT tool.

It will be presented in Section 5.1 the research questions. On Section 5.2, it is presented the

technical specifications of the device and the environment of the experiments made with the tool.

As for the results and quality of those experiments, Sections 5.4 and 5.5 follow in this chapter,

with the requirements in choosing the applications that would go under testing, the final list of

applications to test, as well as the results of these experiments.

Finally, research questions are answered and there are drawn conclusions, which will also be

reviewed, among other conclusions, in Chapter 6.

5.1 Research Questions

In this section, it is presented the research questions raised within the development of this

work. Their goal is that, by the end of these experiments, their answers provide a clear vision

and conclusion as to whether the results achieved with this work are satisfactory or not and if

the contribute to the improvement of the iMPAcT tool is reached. The answer to these following

questions (RQ) will be held in the next Chapter 6.

RQ1 - Is the iMPAcT tool able to detect failures in Android applications based on the new

patterns of the tool’s catalogue?

RQ2 - Are the existing failures in the applications properly identified by the iMPAcT tool?

RQ3 - Are the failures detected by the iMPAcT tool actual failures of the applications?

The answers to these questions can be found in Chapter 6, according to the results of the

experiments held that are described in the next sections of this chapter.
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On a side note, it is important to underline that the main goal of the iMPAcT tool is to detect

failures in applications, but the non detection of failures does not mean that the AUT is free of

having them.

5.2 Technical Specification

For the experiments conducted in this Dissertation and presented and analysed in this chapter,

the iMPAcT tool was run on an Android device - Wiko U Feel Prime -, with the following technical

specifications:

• Operating System: Android 6.0.1

• CPU: Octa-Core 1.4 GHz, Cortex-A53

• Chipset: Qualcomm Snapdragon 430 MSM8937

• GPU: Adreno 505

• RAM: 4GB

The characteristics of the smartphone used to test are the only ones relevant since the tool runs

solely on the Android device. The specifications of the computer used to connect the smartphone

are not relevant in this case.

5.3 Test Methodology

In order to assess the most reliable results possible, it is important to define the methodology

to use in these experiments. To achieve this, it was defined a plan of testing and a selection of

applications to go under testing.

So, the steps followed during the experiments were the following:

1. Select the applications to be tested by the iMPAcT Tool.

2. Run the tool for each of the patterns to be tested.

3. Collect the results of the test, i.e. failures found by the tool.

4. Perform a manual inspection on the applications tested to assess the existent failures.

5. Compare both results (from the tool inspection and the manual inspection).

6. Draw conclusions on the results taken from the whole process.

Taking the first step in the experiment, and considering the massive amount of applications

available in the Play Store, as stated previously in Chapter 2, Section 2.1, it was imperative to

make a selection that was both consistent and widely ranged.
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The first step of the selection was to select five categories of applications available in the Store:

Books & Reference, Food & Drink, Sports, News & Magazines and Health & Fitness. These

categories conferred a range of different features and aspects amongst the applications tested in

the end. From these five categories of applications, there were selected three applications for each

category, making a total of fifteen applications.

The selection of the applications was executed in April 2017 and later reviewed and updated

in June 2017, to assure the novelty and up-to-date state of the applications under testing.

The requirements each application had to meet in order to be selected were:

• Run on a Wiko Ufeel Prime with Android 6.0.1;

• Be free;

• Be a native Android application;

• Not depend on other applications;

• Not require login to interact;

• Not require access to the device’s camera, contacts or documents;

• Have more than five hundred thousand downloads;

• Possible to be read by uiautomatorviewer;

• Has at least one of the following characteristics:

– Works in background;

– Has present the Action Bar;

– Has present the Up Button;

– Responds to the device’s Back Button.

The final selection of applications to be tested can be found in Table 5.1.

To have reliable results, due to the fact that the events fired during the exploration are random

and, consequently, the order of the events fired might change the outcome and results of the test

experiment, each result for the experiments conducted in this chapter is the average of the three

results, since that, for each application, the iMPAcT tool was run three times. This makes it

possible to diminish the randomness of the tool’s exploration.

It is also important to notice that, in order to reach the best test coverage on each application,

i.e. test the biggest number of screens possible, the exploration algorithm chosen was Priority to

Not Executed.
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Table 5.1: Final Selection of Applications to be Tested

Application Version
Books & Reference
Wattpad 6.47.1
Sky Map 1.9.2

Wikipedia 2.6.198
Food & Drink

myTaste 2.3.5
Kitchen Stories 6.4.1A

Receitas de Culinária 8.63
Sports

Placard 1.1.1
Onefootball 9.6.0

MSN Desporto 1.2.0
News & Magazines

BBC News 4.3.0.21
BuzzFeed 5.9.1

CNN 5.2
Health & Fitness

Desafio Fitness 30 dias 1.0.33
Lifesum 5.1.1

Calm 3.4.1

5.4 Detecting Failures

In this section, the goal is to make an experiment that answers the RQ1 (Is the iMPAcT tool

able to detect failures in Android applications based on the new patterns of the tool’s catalogue?).

In order to do this, a simple experiment was conducted, testing five applications, one for each of

the categories and the taken from the final selection of applications from Table 5.1.

All four patterns developed in this work were considered, so for all five applications chosen,

all four patterns were tested, one at a time.

So in the end of this experiment, it should be possible to understand if the tool is able to both

identify the patterns present in the applications and detect failures when existent.

The results for this first experiment can be depicted in Table 5.2. In this table, the results are

shown as: DT - Detected Failure; NF - Not Failure (Does not exist). As all the new patterns should

be present in all Android applications, all patterns apply to all applications tested.

Analyzing the reports from each of the applications tested, it is possible to conclude that:

1. Sky Map: The Sky Map application is a good example of applications that do not follow

most of the best practices. One of the major problems found was that, even though an Action

Bar exists and it is recognized by the iMPAcT tool, most of the times it is hidden from the

user (most importantly, it is hidden on the very first screen, obliging the user to touch the

screen to be able to see it). This goes against the best practices since it is not intrinsic to
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Table 5.2: Results of Experiment 1

Application Background Action Bar Up Back
Sky Map DF DF DF DF

Kitchen Stories NF DF NF NF
Placard NF DF DF NF

BuzzFeed NF NF DF DF
Calm NF DF DF NF

the user to find it. This also works for the Up button and also for the back button, since the

device menu is also hidden, which forces the user to touch the screen in order to see the

back button, only being able to press it after this action.

As for the background, the tool detected that before going to background, when the action

bar and other tools of the application were available, disappeared once the application was

brought to foreground again, as depicted in Figure 5.1.

2. Kitchen Stories: Action Bar is not correctly implemented. In a few screens it is missing or

not correctly identified, as in some screens the elements usually present in an action bar are

present in the top of the screen, but no bar appears. In the main screen instead of an action

bar with a search icon, there is a search bar, which does not comply with the best practices

for Android applications.

3. Placard: As for Placard application, one of its major problems it is not presenting an Action

Bar throughout the entire application, as well as an up button in most of the screens, showing

only a little bar on top of the screen with the app name and a refresh button, as seen in

Figure 5.2. In one of the screens, there is an arrow similar to the up button that mimics its

action, but besides not being present in all the screens (except for the home screen), it is not

present in an action bar.

The absence of an up button makes the user only be able to use the back button to navigate

backwards, losing the possibility of navigating back in the hierarchy.

4. BuzzFeed: Up button is sometimes missing in a few screens and Back button sometimes

does not behave as expected.

5. Calm: The Calm application is missing in some screens the Action Bar, as well as the up

button. On a side note, sometimes, the buttons are not clearly visible to the user.

Considering these results, the next Section 5.5, presents another experiment, that aims to an-

swer the other two research questions presented in Section 5.1.

5.5 Quality of Results

In this section, after knowing that the iMPAcT tool is able to detect failures, like shown in

the previous Section 5.4, the goal is to understand if these detected failures are actual failures
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Figure 5.1: Different Screens on the Sky Map Background Test. On the left, screen before back-
ground. On the right, screen back to foreground

(RQ3 - Are the failures detected by the iMPAcT tool actual failures of the applications?) and if

the existing failures in the application are properly identified by the tool (RQ2 - Are the existing

failures in the applications properly identified by the iMPAcT tool?).

In this second experiment, as aforementioned in the test methodology in Section 5.3, besides

the test performed by tool, it is also performed a manual inspection, in order to analyze if the

results given by the tool are correct and, therefore, reliable.

Taking this into account, the experiment conducted and analysed in this section is, in short, an

analysis of the true and false positives and true and false negatives. This means that:

• A true positive means that a failure detected by the iMPAcT tool is an actual failure - the

tool works correctly;

• A false positive means that a failure detected is not actually a failure of the application;

• A false negative is when the iMPAcT does not detect what it is a failure;

• Finally, a true negative means that the tool does not detect a failure when it does not exist

one - the tool works correctly.

The results for each experiment of each application present in the final list (Table 5.1, can be

found in Appendix A. In this appendix, there is a table for each application and pattern with the

count of true/false positives/negatives taken from the experiment. An example of those tables can

be found in Table 5.3.
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Figure 5.2: Placard screen - The Action Bar is not correctly implemented according to the Best
Practices

Table 5.3: Definition of the counting table of positives and negatives

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure True Positive False Negative
Is Not Failure False Positive True Negative

Once again, in order to minimize the randomness of the exploration, each application was run

three times, and the results presented are the average of all three explorations.

On a side note, since the goal is to find failures, the count of true negatives is not taken into

account in these experiments.

The final results on the new patterns added (Background, Action Bar, Up and Back), can be

analized in Tables 5.4, 5.5, 5.6 and 5.7.

Table 5.4: Final Results for the Background Pattern

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 1 2
Is Not Failure 0 -
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Table 5.5: Final Results for the Action Bar Pattern

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 52 0
Is Not Failure 3 -

Table 5.6: Final Results for the Up Pattern

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 34 8
Is Not Failure 2 -

Table 5.7: Final Results for the Back Pattern

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 7 0
Is Not Failure 2 -

5.6 Conclusions

In this chapter, it was presented two different experiments. The first one, a more simple one,

aimed to verify if the iMPAcT tool was able to detect failures for the new patterns added, therefore,

to answer the first research question, presented at the beginning of the chapter. As for the other

two questions, in order to answer them, a more complete set of tests was conducted, and its results

are expressed in this chapter in Section 5.5 and also, a more detailed version of the results, can be

found in Appendix A.

The answers to the questions raised, a brief discussion and overview on the experiments can

be found in the next chapter, Chapter 6, along with the conclusions for the work performed in this

Dissertation and the results achieved.
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Discussion and Conclusions

In the last chapter (Chapter 5), there were research questions raised, which answers aim at

validate the work developed in this Dissertation.

In this final chapter, those same questions are answered and discussed in Section 6.1.

Finally, as a way to summarize all items previously exposed, the conclusions wrap up the

Dissertation in Section 6.2.

6.1 Discussion

6.1.1 RQ1 - Is the iMPAcT tool able to detect failures in Android applications based
on the new patterns of the tool’s catalogue?

The goal to this question was to make an experiment that was able to answer it and show that

the iMPAcT tool is capable of testing the new patterns added.

By the experiment conducted in Chapter 5, Section 5.4, we can easily conclude that the new

patterns were added successfully and that the iMPAcT tool is, indeed, capable of identifying and

detect failures for all four new patterns (Background, Action Bar, Up and Back).

6.1.2 RQ2 - Are the existing failures in the applications properly identified by the
iMPAcT tool?

This question can be answered by the experiment conducted in the Section 5.5.

By analysing the results of this experiment, it is possible to say that the iMPAcT is able to

identify a good percentage of errors existent in the applications. However, this depends on the

pattern and the percentage of identification may vary from pattern to pattern.

Looking more closely to the results in Appendix A, we can say that:

• Most errors not detected in the Up Pattern are due to the tool not being able to identify an

Action Bar;
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• The error in the Background Pattern not detected is due to the work of a timer that starts

over when coming to the foreground, which the iMPAcT tool is not able to identify as it is

just a normal component of the screen like any other.

6.1.3 RQ3 - Are the failures detected by the iMPAcT tool actual failures of the
applications?

The experiment from Section 5.5 can also answer this question. We can say that the results

are positive, and that the iMPAcT tool is a reliable one. Most of the failures detected by the tool

that are not actually failures, happen because of other characteristics of the application and its

implementation and navigation form, not directly related to patterns under testing by the iMPAcT,

which makes it, most of the time, difficult to avoid.

6.2 Conclusions

In the work performed in this Dissertation, it has become obvious, that the field of testing and

the market for mobile applications, and more specifically, the Android applications, have become

huge, becoming a market of millions in the last couple of years and that keeps growing at an

exponentially rate.

So it is very difficult to grasp all that it is already out there about this issue. It is needed a

constant research, since we are talking about such a metamorphosing market and field.

Almost every day now, there are new information, new approaches, new tools, new devices,

new development ways, a bit of a new everything.

Yet, the solution presented that was continued in this Dissertation, tries to fulfill a need that

has not yet been completely eased. The need to automate testing in its full range, diminishing time

and cost for companies and developers when assuring the quality of their applications.

As expected by the end of this Dissertation, the iMPAcT tool has improved its quality of testing

Android applications, by having new patterns in its catalogue. This increases the behaviour the

tool is able to test and also the test coverage of Android applications.

The work achieved might even be possible to grow more, to be continued and improved with

even more patterns and better visualization. It may even give space to new approaches that might

help in guaranteeing that the applications that reach us on a daily basis are what we expect them

to be, the best app possible. Simple, quick and not failing.
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Appendix A

Results of the Experiments

A.1 Quality of Results

Books & References

Wattpad

Table A.1: Results for the Background Pattern for the Wattpad application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -

Table A.2: Results for the Action Bar Pattern for the Wattpad application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -

Table A.3: Results for the Up Pattern for the Wattpad application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 4 0
Is Not Failure 0 -
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Table A.4: Results for the Back Pattern for the Wattpad application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 1 -

SkyMap

The inspection for this application is quite quick, since this is a very simple application.

Table A.5: Results for the Background Pattern for the SkyMap application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 1 0
Is Not Failure 0 -

Table A.6: Results for the Action Bar Pattern for the SkyMap application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 1 0
Is Not Failure 0 -

Most of the times the Action Bar is hidden.

Table A.7: Results for the Up Pattern for the SkyMap application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 8 1
Is Not Failure 0 -

Table A.8: Results for the Back Pattern for the SkyMap application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 1 0
Is Not Failure 0 -
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Wikipedia

Table A.9: Results for the Background Pattern for the Wikipedia application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -

Table A.10: Results for the Action Bar Pattern for the Wikipedia application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -

Table A.11: Results for the Up Pattern for the Wikipedia application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 2 0
Is Not Failure 0 -

Table A.12: Results for the Back Pattern for the Wikipedia application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 2 0
Is Not Failure 0 -

Food & Drink

myTaste

Table A.13: Results for the Background Pattern for the myTaste application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -
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Table A.14: Results for the Action Bar Pattern for the myTaste application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -

Table A.15: Results for the Up Pattern for the myTaste application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 1 1
Is Not Failure 0 -

The tool does not detect the up button in one or two screens because it considers it is the main

screen (due to inferior tabs that should lead to a new screen), which is not.

Table A.16: Results for the Back Pattern for the myTaste application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 1 0
Is Not Failure 1 -

This false positive maybe due to a bug in the tool. The tool triggered the back event, but this

did not occur.

Kitchen Stories

Table A.17: Results for the Background Pattern for the Kitchen Stories application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 1
Is Not Failure 0 -

There was one minor error in the background behaviour that was not detected by the tool.

Besides that, no errors were found.

Table A.18: Results for the Action Bar Pattern for the Kitchen Stories application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 22 0
Is Not Failure 2 -
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The false positives may be due to the fact that the Action bar is bigger than usual, and has the

tabs embedded in it, which does not follow the guidelines.

Table A.19: Results for the Up Pattern for the Kitchen Stories application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -

Table A.20: Results for the Back Pattern for the Kitchen Stories application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -

Receitas de Culinária

Table A.21: Results for the Background Pattern for the Receitas de Culinária application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -

Table A.22: Results for the Action Bar Pattern for the Receitas de Culinária application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 2 0
Is Not Failure 0 -

Table A.23: Results for the Up Pattern for the Receitas de Culinária application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 1
Is Not Failure 0 -

The non detection of the failure is due to the fact that the action bar is not well implemented.
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Table A.24: Results for the Back Pattern for the Receitas de Culinária application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -

Sports

Placard

Table A.25: Results for the Background Pattern for the Placard application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -

Table A.26: Results for the Action Bar Pattern for the Placard application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 19 0
Is Not Failure 0 -

Table A.27: Results for the Up Pattern for the Placard application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 9 1
Is Not Failure 0 -

In one of the screens, there is an up button, but as it is not inserted in a correctly implemented

action bar, the tool could not detect it properly.

Table A.28: Results for the Back Pattern for the Placard application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -
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Onefootball

Table A.29: Results for the Background Pattern for the Onefootball application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -

Table A.30: Results for the Action Bar Pattern for the Onefootball application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -

Table A.31: Results for the Up Pattern for the Onefootball application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 4 2
Is Not Failure 0 -

The non detection of the failure is due to other errors in the navigation of the application, not

necessarily connected to the tool missing the failure, nor the patterns here tested.

Table A.32: Results for the Back Pattern for the Onefootball application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -

MSN Desporto

Table A.33: Results for the Background Pattern for the MSN Desporto application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -
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Table A.34: Results for the Action Bar Pattern for the MSN Desporto application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -

Table A.35: Results for the Up Pattern for the MSN Desporto application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 2 0
Is Not Failure 0 -

Table A.36: Results for the Back Pattern for the MSN Desporto application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -

News & Magazines

BBC News

Table A.37: Results for the Background Pattern for the BBC News application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -

Table A.38: Results for the Action Bar Pattern for the BBC News application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -

Table A.39: Results for the Up Pattern for the BBC News application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -
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Table A.40: Results for the Back Pattern for the BBC News application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 1 0
Is Not Failure 0 -

BuzzFeed

Table A.41: Results for the Background Pattern for the BuzzFeed application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -

Table A.42: Results for the Action Bar Pattern for the BuzzFeed application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -

Table A.43: Results for the Up Pattern for the BuzzFeed application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 3 1
Is Not Failure 1 -

Table A.44: Results for the Back Pattern for the BuzzFeed application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 1 0
Is Not Failure 0 -

CNN

Table A.45: Results for the Background Pattern for the CNN application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -
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Table A.46: Results for the Action Bar Pattern for the CNN application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -

Table A.47: Results for the Up Pattern for the CNN application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -

Table A.48: Results for the Back Pattern for the CNN application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -

Health & Fitness

Desafio Fitness 30 dias

Table A.49: Results for the Background Pattern for the Desafio Fitness 30 dias application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -

Table A.50: Results for the Action Bar Pattern for the Desafio Fitness 30 dias application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 1 -

The false positive is due to the fact that the application has an opening screen with the logo,

which in the new versions of Android applications should not exist.
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Table A.51: Results for the Up Pattern for the Desafio Fitness 30 dias application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -

Table A.52: Results for the Back Pattern for the Desafio Fitness 30 dias application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 1 0
Is Not Failure 0 -

Lifesum

Table A.53: Results for the Background Pattern for the Lifesum application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -

Table A.54: Results for the Action Bar Pattern for the Lifesum application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 4 0
Is Not Failure 0 -

Table A.55: Results for the Up Pattern for the Lifesum application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -

Table A.56: Results for the Back Pattern for the Lifesum application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -
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Calm

Table A.57: Results for the Background Pattern for the Calm application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 1
Is Not Failure 0 -

In one of the screens, there is a timer that, when sent to background and then brought back to

foreground, starts all over again.

Table A.58: Results for the Action Bar Pattern for the Calm application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 4 0
Is Not Failure 0 -

Table A.59: Results for the Up Pattern for the Calm application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 1 1
Is Not Failure 1 -

Table A.60: Results for the Back Pattern for the Calm application

iMPAcT Tool

Manual Inspection
Detects Failure Does not Detect Failure

Is failure 0 0
Is Not Failure 0 -
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