
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Named entity extraction
from Portuguese web text

André Ricardo Oliveira Pires

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Sérgio Sobral Nunes

Co-Supervisor: José Luís da Silva Devezas

June 27, 2017

Named entity extraction
from Portuguese web text

André Ricardo Oliveira Pires

Mestrado Integrado em Engenharia Informática e Computação

June 27, 2017

Abstract

In the context of Natural Language Processing, the Named Entity Recognition (NER) task focuses
on extracting and classifying named entities from free text, such as news. Entity detection enables
more complex tasks, such as Relation Extraction or Entity-Oriented Search, for instance the ANT
search engine. There are some NER tools focused on the Portuguese language, such as Palavras
or NERP-CRF, but their F-measure is below the F-measure obtained by other available tools, for
instance based on an annotated English corpus, trained with Stanford CoreNLP or with OpenNLP.

ANT is an entity-oriented search engine for the University of Porto (U.Porto). This search
system indexes the information available in SIGARRA, U.Porto’s information system. Currently
it uses handcrafted selectors to extract entities, based on XPath or CSS, which are dependent on
the structure of the page. Furthermore, it does not work on free text, specially on SIGARRA’s
news. Using a machine learning method allows for the automation of the extraction task, making
it scalable, structure independent and lowering the required work effort and consumed time.

In this dissertation, I evaluate existing NER tools in order to select the best approach and
configuration for the Portuguese language, particularly in the domain of SIGARRA’s news. The
evaluation was done based on two datasets, the HAREM collection, and a manually annotated
subset of SIGARRA’s news, which are used to assess the tools’ performance using precision,
recall and F-measure. Expanding the existing knowledge base will help index SIGARRA pages
by providing a richer entity-oriented search experience with new information, as well as a better
ranking scheme based on the additional context made available to the search engine. The scientific
community also benefits from this work, with several detailed manuals resulting of the systematic
analysis of available tools, in particular for the Portuguese language.

First, I carried an out-of-the-box performance analysis of some selected tools (Stanford
CoreNLP, OpenNLP, spaCy and NLTK) with the HAREM dataset, obtaining the best results
for Stanford CoreNLP (56.10%), followed by OpenNLP. Then, I performed a hyperparamenter
study in order to select the best configuration for each tool, having achieved better-than-default re-
sults in each tool, particularly for NLTK’s Maximum Entropy classifier, increasing the F-measure
from 1.11% to 35.24%. I also prepared a novel Portuguese corpus, called SIGARRA News Cor-
pus, composed of 905 annotated news, with 12644 entity annotations. Finally, using the best
configuration, I repeated the training process with the SIGARRA News Corpus, having achieved
F-measures as high as 86.86%, for Stanford CoreNLP. Furthermore, given this was also the out-of-
the box winner, it leads me to conclude that Stanford CoreNLP is the best option for this particular
context.

i

ii

Resumo

No contexto da área do Processamento de Linguagem Natural, a tarefa de Reconhecimento de
Entidades Mencionadas (REM) foca-se na extração e classificação de entidades mencionadas de
texto livre, como notícias. A deteção de entidades permite tarefas mais complexas, como Extração
de Relações ou Pesquisa Orientada a Entidades, como no motor de pesquisa do ANT. Há algumas
ferramentas de REM focadas na língua portuguesa, tais como o Palavras ou o NERP-CRF, mas
o seu F-measure está abaixo do obtido usando outras ferramentas disponíveis, por exemplo com
base num corpus inglês anotado, treinado com o Stanford CoreNLP ou com o OpenNLP.

O ANT é um motor de busca orientado a entidades da Universidade do Porto (U.Porto). Este
sistema de pesquisa indexa as informação disponível no SIGARRA, o sistema de informação
da U.Porto. Atualmente usa seletores construídos manualmente para extrair entidades, baseados
em XPath ou CSS, que são dependentes da estrutura da página. Além disso, não funcionam
em texto livre, especialmente nas notícias do SIGARRA. Um método baseado em aprendizagem
computacional permite a automatização da tarefa de extração, tornando-a escalável, independente
da estrutura, diminuindo o esforço de trabalho exigido e o tempo consumido.

Nesta dissertação, eu avaliei ferramentas de REM existentes para selecionar a melhor abor-
dagem e configuração a utilizar em relação à língua portuguesa, particularmente no domínio das
notícias do SIGARRA. A avaliação foi feita com base em dois conjuntos de dados, a coleção
HAREM, e um subconjunto manualmente anotado de notícias do SIGARRA, que foram usados
para calcular o desempenho das ferramentas usando precision, recall e F-measure. A expansão
da base de conhecimento existente ajudará a indexar as páginas do SIGARRA proporcionando
uma experiência de pesquisa orientada a entidades mais rica e com nova informação, bem como
um melhor esquema de classificação baseado no contexto adicional disponibilizado ao motor de
busca. A comunidade científica também beneficia deste trabalho, com múltiplos manuais detalha-
dos resultantes da análise sistemática das ferramentas, em particular para a língua Portuguesa.

Primeiramente, eu analisei a performance base de algumas ferramentas selecionadas (Stanford
CoreNLP, OpenNLP, spaCy e NLTK) com a coleção HAREM, obtendo os melhores resultados
com o Stanford CoreNLP (56.10%), seguido do OpenNLP. De seguida, efetuei um estudo aos
hiperparâmetros, de modo a selecionar a melhor configuração para cada ferramenta, conseguindo
alcançar melhorias em cada ferramenta, principalmente no classificador de Entropia Máxima do
NLTK, em que houve melhorias no F-measure de 1.11% para 35.24%. Preparei, também, um
corpus Português único, denominado de SIGARRA News Corpus, composto por 905 notícias
anotadas, com 12644 anotações de entidades. Finalmente, usando a melhor configuração, eu
repeti o treino com o dataset das notícias do SIGARRA, tendo obtido F-measures de 86.86%,
para o Stanford CoreNLP. Além disso, dado que este foi também o melhor classificador com as
configurações base, posso concluir que o Stanford CoreNLP é a melhor opção.

iii

iv

Acknowledgements

I would like to give special thanks to my supervisors, Sérgio Nunes and José Devezas, for their con-
tinuous support throughout all this process and for reviewing my work. Also, I would like to thank
the ANT team, specially José Devezas and Yulia Karimova, for helping me prepare SIGARRA
News Corpus and publish my work.

To my parents, who always believed in me and gave me the means to pursue my dreams.
Finally, to Catarina Mendes, Catarina Pires and all of my closest friends for making my life worth
living.

André Ricardo Oliveira Pires

v

vi

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation and goals . 2
1.3 Document structure . 2

2 Named Entity Recognition and Relation Extraction 5
2.1 Named Entity Recognition . 5
2.2 Relation Extraction . 6
2.3 Extraction methods . 6

2.3.1 Hand-coded techniques . 6
2.3.2 Machine learning techniques . 8
2.3.3 Ontology-based . 10

2.4 Evaluation and datasets . 11
2.4.1 Message Understanding Conference . 12
2.4.2 Conference on Natural Language Learning 13
2.4.3 Automatic Content Extraction . 14
2.4.4 HAREM Avaliação de Reconhecimento de Entidades Mencionadas . . . 14
2.4.5 Other approaches . 16
2.4.6 Conferences summary . 16

2.5 Summary . 17

3 Datasets and tools 19
3.1 Methodology . 19
3.2 The HAREM golden collection . 20
3.3 SIGARRA’s News Corpus . 20
3.4 Natural Language Processing tools . 24
3.5 Summary . 25

4 HAREM corpus transformation 27
4.1 Initial transformation . 27
4.2 Tool-specific transformation and running steps 28

4.2.1 Stanford CoreNLP . 28
4.2.2 OpenNLP . 29
4.2.3 spaCy . 30
4.2.4 NLTK . 31

4.3 Summary . 32

vii

CONTENTS

5 Evaluation 35
5.1 Evaluation method . 35
5.2 Results . 36

5.2.1 OpenNLP . 36
5.2.2 spaCy . 36
5.2.3 Stanford CoreNLP . 36
5.2.4 NLTK . 37
5.2.5 Comparison . 37

5.3 Summary . 39

6 Hyperparameter study 41
6.1 Description . 41
6.2 Results . 42

6.2.1 OpenNLP . 43
6.2.2 spaCy . 45
6.2.3 Stanford CoreNLP . 45
6.2.4 NLTK . 46

6.3 Summary . 48

7 SIGARRA News Corpus 51
7.1 Transformation . 51
7.2 Results . 52

7.2.1 OpenNLP . 52
7.2.2 spaCy . 52
7.2.3 Stanford CoreNLP . 53
7.2.4 NLTK . 53

7.3 Comparison by entity class . 54
7.4 Summary . 54

8 Conclusions and future work 55
8.1 Contributions . 55
8.2 Conclusions . 56
8.3 Future work . 57

References 59

A HAREM classes 65

B SIGARRA News Corpus entity distribution 67

C Hyperparameter study results 71
C.1 OpenNLP . 71
C.2 SpaCy . 72
C.3 Stanford CoreNLP . 72
C.4 NLTK . 73

D Baseline results by entity class 75
D.1 HAREM . 75
D.2 SIGARRA News Corpus . 78

viii

CONTENTS

E Manuals for Portuguese 79
E.1 Stanford CoreNLP . 79
E.2 OpenNLP . 80
E.3 SpaCy . 81
E.4 NLTK . 81

ix

CONTENTS

x

List of Figures

3.1 Screenshot of a SIGARRA news. 22
3.2 Number of news by SIGARRA domain. 23
3.3 Number of characters per news by SIGARRA domain. 23
3.4 Number of annotated entities by SIGARRA domain. 24

5.1 F-measure by entity class, by tool. 39

6.1 Results for cut-off values of OpenNLP. 44
6.2 Results for iteration values of OpenNLP. 44
6.3 Results for iteration values of spaCy. 45
6.4 Results for tolerance values of Stanford CoreNLP. 46

7.1 F-measure by entity class, by tool. 54

xi

LIST OF FIGURES

xii

List of Tables

2.1 Types of named entity recognition errors. 13
2.2 Overview of named entity recognition conferences. 16

3.1 Number of named entities per category. Values from do Amaral et al. [dAFLV14]. 21
3.2 Document distribution by Portuguese variant. Table from Mota et al. [MSC+08]. 21
3.3 Document distribution by text genre. Table from Mota et al. [MSC+08]. 21
3.4 Overview of the assessed tools. 25

5.1 Results for OpenNLP, for the HAREM collection. 36
5.2 Results for spaCy, for the HAREM collection. 37
5.3 Results for Stanford CoreNLP, for the HAREM collection. 37
5.4 Results for NLTK, for the HAREM collection. 38
5.5 Results for the category level, for all tools. 38
5.6 F-measure for all levels. 38
5.7 Average training time for all tools per fold. 40

6.1 Hyperparameters for each tool. 42
6.2 Results for cut-off values of OpenNLP. 43
6.3 Results for iteration values of OpenNLP. 44
6.4 Results for iteration values of spaCy. 45
6.5 Results for tolerance values of Stanford CoreNLP. 46
6.6 Results for NLTK’s Maximum Entropy classifier. 47
6.7 Results for NLTK’s Decision Tree classifier. 48
6.8 Summary results for the category level, for all tools. 49

7.1 Results for OpenNLP with SIGARRA News Corpus. 52
7.2 Results for spaCy with SIGARRA News Corpus. 52
7.3 Results for Stanford CoreNLP with SIGARRA News Corpus. 53
7.4 Results for NLTK with SIGARRA News Corpus. 53

A.1 Categories, types and subtypes for HAREM’s golden collection. 65

B.1 Distribution of SIGARRA news and average number of characters by domain. . . 67
B.2 Distribution of entity annotations in SIGARRA news. 68
B.3 Distribution of entity annotations in SIGARRA news, per domain. 69

C.1 Results for cutoff values in OpenNLP. 71
C.2 Results for iteration values in OpenNLP. 71
C.3 Results for number of iterations in spaCy. 72
C.4 Results for tolerance values in Stanford CoreNLP. 72

xiii

LIST OF TABLES

C.5 Results for maxNGramLeng values in Stanford CoreNLP. 72
C.6 Results for min_lldelta with 10 iterations to the left, and 100 iterations to the right,

for Maximum Entropy classifier. 73
C.7 Results for support cutoff in Decision Tree classifier. 73
C.8 Results for entropy cutoff in Decision Tree classifier. 74

D.1 F-measure by entity class (categories), by tool. 75
D.2 F-measure by entity class (types), by tool. 75
D.3 F-measure by entity class (subtypes), by tool. 76
D.4 F-measure by entity class, by tool. 78

xiv

List of Listings

2.1 Example of a correctly annotated text. 12
2.2 Example of an annotated output. 12
2.3 Example of ALT tag application. 15
4.1 ALT tag transformation example. 28
4.2 Stanford CoreNLP example input format. 28
4.3 Stanford CoreNLP training command. 29
4.4 Stanford CoreNLP command to perform NER. 29
4.5 OpenNLP example input format. 29
4.6 OpenNLP training command. 30
4.7 OpenNLP command to perform NER. 30
4.8 SpaCy example input format. 30
4.9 NLTK example input format. 31
4.10 NLTK training command. 32
7.1 SIGARRA News Corpus example format. 52

xv

LIST OF LISTINGS

xvi

Abbreviations

NE Named Entity
NER Named Entity Recognition
NLP Natural Language Processing
IE Information Extraction
ML Machine Learning
KB Knowledge Base
POS Part of Speech
CRF Conditional Random Fields
HMM Hidden Markov Model
MEMM Maximum Entropy Markov Model
ME Maximum Entropy
SVM Support Vector Machine
OBIE Ontology-Based Information Extraction
MUC Message Understanding Conference
CoNLL Conference on Natural Language Learning
ACE Automatic Content Extraction
HAREM HAREM Avaliação de sistemas de Reconhecimento de Entidades Men-

cionadas
U.Porto University of Porto

xvii

Chapter 1

Introduction

This chapter contextualizes the field of Named Entity Recognition (NER) regarding scientific pro-

duction, commercial applications and the applications in the ANT project. The main motivation

for this work consists in expanding beyond structure dependent information extraction in the web

for knowledge base construction, in order to support entity-oriented search. I close the chapter

with the structure for the remaining document.

1.1 Context

With the vastness of information made available in the web, there is a need for a method of filtering

the relevant data and presenting it to the readers. Most of the Internet’s information is not avail-

able in structured form. Natural Language Processing (NLP) is a field of Artificial Intelligence

concerned with making human language understandable to computers. This enables obtaining

structured information in a way that it can be indexed and used by a machine for knowledge-

driven tasks, such as question answering.

Information Extraction (IE) and NLP are intertwined. IE’s main task is to extract relevant

data from documents, which can either be unstructured or structured texts. One of the main sub-

tasks of information extraction is Named Entity Recognition. The concept of “named entity” was

first introduced in 1996, at the Message Understanding Conference - 6 (MUC-6), by Grishman

and Sundheim [GS96]. At that time, the concept of named entity referred to names of people,

locations, organizations and numeric expressions such as money and dates. Over the years, there

have been multiple redefinitions of named entities, mainly because there was a need to include

other entities for specific purposes, for example DNA sequences for the biomedical area.

NER provides a means for further, more complex, tasks in information extraction. One of

those tasks is Relationship Extraction, whose main objective is to identify semantic links between

the entities identified in a sentence.

1

Introduction

The launch of Google’s Knowledge Graph, in May 2012 [Sin12], or even Facebook’s Open

Graph1, boosted the focus on entity-oriented search. The ANT2 project represents a similar effort.

This project is being developed at InfoLab, at INESC TEC and Faculty of Engineering of the

University of Porto. Its main objective is to index and make available entities in the domain of

the University of Porto, such as students, staff or departments. This dissertation’s main focus

will be on information indexed by ANT and based on SIGARRA, the information system for

the University of Porto. In particular, experimenting with the HAREM golden collection and

SIGARRA News Corpus, with multiple tools, to identify the best tool for NER for Portuguese.

1.2 Motivation and goals

Currently, entity extraction in the ANT project is made using handcrafted rules, with selectors

such as XPath and CSS. This means that ANT’s developers have to look into all of SIGARRA’s

web pages DOM to find out which selector rule to use for the extraction. This is extremely time

consuming and requires a huge manual effort. Furthermore, given their strong structure depen-

dence, the extraction rules only work for specific pages, making it non-generalizable . In addition,

if the page’s structure changes, the extraction rules have to change accordingly, which means the

process of looking into the pages’ DOM has to begin again. This also leads to not being able to

extract entities from free text, such as SIGARRA’s news.

The main goal of this dissertation is to automate the extraction process, on free text, making

it less time consuming and greatly diminishing the amount of work required. Moreover, the new

extraction method will be less structure dependent, which will potentially increase its reusability

beyond the SIGARRA domain.

This will provide context to the ANT search engine, enabling it to improve entity ranking

as well as to provide contextual information about the entities and their connections. Given

SIGARRA is a Portuguese information system, the extraction methods will focus on this language.

There is a lot of Information Extraction software available, which already has significant per-

formance in this field. A study of some of the state of the art approaches will be performed in

order to decide on the best approaches to process the textual content available through ANT.

1.3 Document structure

This document is structured in seven additional chapters. In Chapter 2, I present the state of the

art for Named Entity Recognition and Relation Extraction, covering the extraction techniques and

evaluation methods. In Chapter 3, I describe the HAREM golden collection and the SIGARRA

News Corpus I prepared, along with the NLP tools selected I will assess. The transformation of the

HAREM dataset for the tools is explained in Chapter 4 and in Chapter 5 I present the evaluation

method and the obtained results. Next, in Chapter 6, I present the results of a hyperparameter study,

1See http://ogp.me/. Accessed: 2017-06-27.
2See http://ant.fe.up.pt. Accessed: 2017-06-27.

2

http://ogp.me/
http://ant.fe.up.pt

Introduction

carried in order to understand their individual impact in the respective classifier. Using the results

from the hyperparameter study, I performed NER with the SIGARRA News Corpus; the results

are available in Chapter 7. Finally, the conclusions, with the achieved objectives, contributions,

such as trained NER models for Portuguese, a novel annotated Portuguese dataset and guidelines

for NER for each used tool, future work, are presented in Chapter 8.

3

Introduction

4

Chapter 2

Named Entity Recognition and
Relation Extraction

Named Entity Recognition (NER) and Relation Extraction (RE) can be performed using many

different approaches. This chapter sums up the methods of extraction and the current evaluation

techniques. I will start by briefly explaining what are NER and RE, along with the main extraction

implementations. NER methods can be divided in two distinct approaches. The first approach

hinges on creating a set of hand-coded rules to extract entities and the second approach falls in the

category of machine learning systems, which is where a computer estimates the parameters using

a set of algorithms.

The machine learning methods can be divided into three categories based on the data required

as input by the training algorithm. The learning algorithms can either be supervised, where the

system needs an already annotated corpus, semi-supervised, where the main technique is boot-

strapping, that is to say it only requires a small set of marked examples and it can then further

extrapolate for unmarked examples, and unsupervised which does not require annotated exam-

ples. An ontology-based extraction method is similar to the other methods, but takes into account

an ontology to guide the extraction, mainly substituting the usual entity types with a predefined

ontology.

2.1 Named Entity Recognition

Named Entity Recognition is a sub-field of Information Extraction (IE). Its main purpose is to

identify entities from unstructured text, such as news articles, or semi-structured text, such as

Wikipedia articles. This extraction is the first part of a typical information extraction pipeline,

supporting further information extraction tasks, such as semantic analysis or relation extraction.

The concept of “entity” varies from approach to approach. It mainly depends on what is

considered relevant to extract in each case. As already stated, the first categories of named entities

5

Named Entity Recognition and Relation Extraction

emerged in MUC-6, where the entities were categorized as persons, locations, organizations, time

expressions and numeric expressions. These have been the most common categories extracted in

the field. However, some other categories are used in different, more specific, domains. Some

examples are biomedical entities, such as drugs or DNA sequences, as well as entities used for

military purposes, like vehicles or weapons.

2.2 Relation Extraction

Relation Extraction is also a sub-field of Information Extraction. Its objective is to recognize rela-

tions between the entities in a text. The type of relations extracted are usually highly dependent on

the domain. Some of the most common relations are in the linguistic domain: hyponyms — a word

with a more specific meaning —, for example, car and vehicle; antonyms — a word with contrary

meaning —, for example, happy and unhappy; and meronyms — a part-whole relationship —, for

example, chapter and book. Other relation types can be used in the film industry, such as stars-in,

director or film genres, or the food industry such as type of food, ingredients, quantities, or the

social domain, such as parent-of, child-of, and geographical domain, such as capital-of.

The main methods for relation extraction can be divided into similar categories as those used

in the named entity recognition domain. That being said, extraction can be done using hand-coded

patterns or machine learning methods. While NER extraction methods only focus on extracting

entities, RE focuses on extracting the relationships between the entities. Relation extraction often

requires previous text analysis, which involves POS tagging, syntactic parsing, NER and feature

engineering.

2.3 Extraction methods

In this section, I will present and explain the main methods for extracting entities and relations,

which can be divided into hand-coded techniques, machine learning techniques and ontology-

based techniques.

2.3.1 Hand-coded techniques

There are two approaches which can be considered hand-coded techniques, namely, rule-based,

where patterns are used to extract entities, and dictionary-based, where tokens are matched with a

gazetteer to recognize entities.

2.3.1.1 Rule-based

The first approaches to NER systems were based on the extraction of Named Entities (NEs) using

grammar rules. These approaches focus on matching words using patterns, such as regular expres-

sions. One of the first works in this field was by Lisa Rau [Rau91], in which she extracts company

names from text using a set of manually created rules and heuristics such as capitalization of

6

Named Entity Recognition and Relation Extraction

words or detection of company suffixes, like “Inc.” or “Corp.”, and also generating acronyms for

already existing company names. An example of a pattern could be a title match, such as “Mr.”,

followed by one or more capitalized-tokens, indicating that those tokens are probably a NE with

the person type. Mikheev et al. [MMG99] named these rules as “sure-fire”, as they would most

likely perform as expected and be successful, and used it in their system, where a match would

only classify the words as likely candidates. Later they used a Maximum Entropy model to decide

on the definitive NE classification, which is a Machine Learning (ML) technique.

Another example of entity extraction using this technique is PAMPO [RJS+16], which is an

entity extractor for the Portuguese language. It extracts entities in two phases: first, using a set

of regular expressions to gather common candidate entities with typical expressions such as cap-

italized words or personal titles (“president” or “deputy”); then, it performs POS tagging using

OpenNLP’s POS tagging module for Portuguese. In this second phase, using a new set of regular

expressions, now on the POS tags instead of the words, it discards some candidates. While it is

important to note that PAMPO only extracts named entities and does not perform classification

(assign entity classes), it reported an F-measure of 73.6% against the HAREM collection.

This kind of pattern-matching approach can also be used for relation extraction, with patterns

like “person lives in location”. For instance, Barrière [Bar16] used a set of regular expressions

to model lexico-syntactic patterns. Hearst [Hea92] also used lexico-syntactic patterns to extract

hyponym relations. Three starting patterns were defined and later, using a list of terms for which

a specific relation is known to hold, more patterns can be created, either by handcoding or by

bootstrapping from an existing lexicon or Knowledge Base (KB), using ML techniques. Berland

and Charniak [BC99] attempted to extract meronym relations from text, using patterns. They

began by identifying two words building and basement with close proximity from a corpus. From

that they extracted patterns, for example, using the possessive as in “building’s basement”, and

other patterns. Although they managed to extract some correct relationships, their overall accuracy

was low, at 55%.

Another example, using the relation (author, title) for books as use case, Brin [Bri99] devel-

oped DIPRE, whose algorithm worked as follows: given a small seed set of (author, title) pairs,

find its occurrences in the web and recognize patterns where they appear; then, using the extracted

patterns, new (author, title) pairs can be extracted; this steps can be repeated until some criteria is

met. The approach can be extended for other relation types by providing different pairs as a seed,

so that the algorithm can find meaningful patterns.

Although hand-coded patterns are not ideal, they can provide acceptable results. Using pat-

terns requires building them for each entity and relation, which is hard to write and hard to main-

tain. Furthermore, it is infeasible to write all the required patterns since there can be multiple

distinct ways of expressing entities and their relations. Finally, hand-coded patterns are usually

domain-dependent, meaning that different vocabularies are used in different domains.

7

Named Entity Recognition and Relation Extraction

2.3.1.2 Dictionary-based

Many approaches rely on an already existing KB to extract entities from other texts. This KB

is usually called gazetteer [SO06, KT08], which is a dictionary of a collection of entities. The

main approach usually consists of matching the words in a text with the gazetteer and, if a match

occurs, the word is annotated as an entity. Wikipedia can be used as a KB, because it provides

an enormous amount of entities. Gattani et al. [GDL+13] developed a Wikipedia-based approach

for NER in social media, where the relevant words from the text were linked to a Wikipedia page.

This approach was used to classify and tag tweets.

SIEMÊS [Sar06], a participating system in HAREM [Car06], used similarity rules to obtain

soft matching between the entities and a gazetteer. The used gazetteer was REPENTINO [SPC06],

a publicly available gazetteer for Portuguese. After identifying possible candidates as NE, the

system uses similarity rules to formulate judgments about the possible classes of a NE. So instead

of multiple hard-coded rules over the gazetteer, it only has a small set of rules, such as exact

matches, partial matches either on the beginning, the end or subsets of the NE candidate, and a

check for frequent words in certain subclasses, to score a match in REPENTINO.

Using gazetteers proves to be a simple method for NER. However, the entities recognized are

dependent on whether an entity exists in the gazetteer, which means that even very large gazetteers

only contain a portion of all used entities. Finally, the performance of the NER system may also

be affected by the introduction of new entities.

2.3.2 Machine learning techniques

There are multiple machine learning techniques applied in NER. The most used are probabilistic

techniques, such as Hidden Markov Models, Maximum Entropy Markov Models and Conditional

Random Fields. Next, I present them, along with some use cases.

Hidden Markov Model (HMM) A HMM is a statistical Markov Model, in which the state is

not directly visible. In NER, HMM states are usually a name of an entity class, with an extra state

for the current word not being an entity. Each state transition is dependent only on the current

state, and represents the probability for the next word to be of a specific category.

As Ponomareva et al. [PRPM07] explain, let o = {o1,o2, ...,on} be a sequence of words from

a text with length n. Let S be a set of states in a finite state machine, each associated with a label

(categories for entities). Let s = {s1,s2, ...,sn} be a sequence of states that correspond to the labels

assigned to words in the input sequence o. HMM defines the joint probability of a state given an

input sequence to be:

P(s,o) =
n

∏
i=1

P(oi|si)P(si|si−1) (2.1)

So, in order to train the HMM, the following probabilities have to be set:

1. Initial probabilities P0(si) = P(si|s0) to begin from a state i;

8

Named Entity Recognition and Relation Extraction

2. Transition probabilities P(si|si−1) to pass from a state si−1 to a state si;

3. Observation probabilities P(oi|si) of an appearance of a word oi conditioned on state si.

These probabilities are calculated using a training corpus. An example of the use of this

approach is Nymble, by Bikel et al. [BMSW97], achieving an F-measure of 93% for English and

90% for Spanish. Another example by Zhou and Su [ZS02], in which the HMM is based on the

mutual information independence assumption, instead of the conditional probability independence

assumption after Bayes’ rule, achieving an F-measure of 96.6%. Both used the MUC-6 dataset,

and the latter also used the MUC-7 dataset.

Maximum Entropy Markov Model (MEMM) MEMM works in the same way as HMM. How-

ever, it no longer assumes that features are independent, which means there can be correlated fea-

tures. While HMM is a generative model, MEMM is a discriminative model. In other words,

HMM learns the joint probability distribution P(s,o), while MEMM learns the conditional proba-

bility distribution P(s|o).
The probability of the state sequence given the observation can be computed as:

P(s|o) =
n

∏
i=1

P(si|si−1,oi) (2.2)

MENE [BSAG98] is an example of a maximum entropy framework for NER. It participated

in the Message Understanding Conference 7 (MUC-7), obtaining an F-measure of 92.20%. Also,

inspired by MENE’s results, Carvalho [Car07] developed a maximum entropy framework for NER

for the Portuguese language, using HAREM as training set, obtaining an F-measure of 42.48% by

HAREM’s evaluation standards.

Conditional Random Fields (CRFs) CRFs [LMP01] work similarly to HMMs but are not con-

strained with local features. This means that CRFs are able to deal with a much larger set of

features. Furthermore, while HMM’s probabilities must satisfy certain constraints, in CRFs there

are no restrictions. As Teixeira et al. [TSO11] states, according to Lafferty et al. [LMP01] and

McCallum and Li [ML03], let o = {o1,o2, ...,on} be a sequence of words from a text with length

n. Let S be a set of states in a finite state machine, each associated with a label (categories for

entities). Let s = {s1,s2, ...,sn} be a sequence of states that correspond to the labels assigned to

words in the input sequence o. CRFs define the conditional probability of a state given an input

sequence to be:

P(s|o) = 1
Zo

exp

(
n

∑
i=1

m

∑
j=1

λ j f j(si−1,si,o, i)

)
(2.3)

where Zo is a normalization factor of all state sequences, f j(si−1,si,o, i) is one of the m functions

that describes a feature, and λ j is a learnt weight for each feature function.

Kazama and Torisawa [KT07] developed a CRF NER, using Wikipedia as external knowledge,

to help classify entities and thus improve the accuracy of their NER model. They performed

9

Named Entity Recognition and Relation Extraction

entity linking to a Wikipedia article, and extracted a category label from the first sentence of a

Wikipedia article to use it as a feature. Another use of a CRF for NER was proposed by Amaral

and Vieira [dAV13], called NERP-CRF. This algorithm was trained using the HAREM corpora.

First, sentence segmentation and POS tagging was performed, so that the complexity in applying

the CRF method was decreased. Multiple features for the CRF algorithm were used, such as words

around the NE and the capitalization of the NE. Using the HAREM corpora to evaluate, it scored

57.92% and 48.43% for F-measure, respectively.

In Teixeira et al. [TSO11], they present a bootstrapping method using CRF. Firstly, using a

dictionary-based approach, a set of non-annotated news items is annotated. In this phase, only

entities with two or more words are considered. The sentences, where all the capitalized words

are annotated, are used as a seed corpus to infer a CRF model. This model, is used to annotate the

same corpus used in the first stage, resulting in an increase of annotated sentences. These are then

used to infer a new CRF model. This cycle is repeated until the model stabilizes.

Support Vector Machines (SVMs) SVMs [CV95], known as a large margin technique, defines

an optimal hyperplane which separates categories. The SVM algorithm is based on finding the best

hyperplane which gives the maximum margin between the decision border and the closest objects

from the classes. Although, originally, an SVM can only deal with linearly-separable tasks, by

using kernel functions it can transform non-linearly separable data, in its original space, into a

higher dimension space, where the data becomes linearly separable. SVMs can only deal with

binary classification. However, it can be used in non-binary classification tasks (such as NER),

by using methods like the one-against-one approach [DB96], in which multiple classifiers are

constructed and each one deals with two different classes. Afterwards, using a voting strategy, it

chooses the best category for the present object.

Mididiú and Duarte [MD07] is an example of SVM use for the Portuguese language, achieving

an F-measure of 88.11%, although not with the HAREM corpus. Other examples are by Ekbal

and Bandyopadhyay [EB10] for Bengali and Hindi, using lexical patterns as features for the SVM,

achieving an F-measure of 84.15%, and by Asahara and Matsumoto [AM03] for the Japanese

language, proposing a character-based chunking method, achieving an F-measure of 87.2%.

2.3.3 Ontology-based

The concept of Ontology-Based Information Extraction (OBIE) is relatively new. Wimalasuriya

and Dou [WD10] defined OBIE, in 2010, as:

“An ontology-based information extraction system: a system that processes un-

structured or semi-structured natural language text through a mechanism guided by

ontologies to extract certain types of information and presents the output using on-

tologies.”

The main goal of OBIE systems is to identify concepts, properties or relations expressed in

ontologies. Being NER a sub-task of IE, some techniques may also fall in this category. For

10

Named Entity Recognition and Relation Extraction

instance, Pandolfo et al. [PPA16] developed a framework for automatic population of ontology-

based digital libraries. They used some of OpenNLP’s [Fou] modules to perform NER using an

ontology as input so that the entities have the same name of the ontology classes considered for

the automatic ontology population. Their triple extractor module can extract triples from text and

add them to their knowledge base. Each triple represents a relation between the extracted entities,

based on a gazetteer of verbs.

This approach is particularly useful when dealing with specific domains, mainly because the

most common entity categories may not be sufficient in such cases. Yasavur et al. [YALR13] de-

fined an ontology-based approach for the domain of behaviour and lifestyle change, creating a be-

havioural health ontology to model world knowledge. They also used WordNet to extend the ontol-

ogy for NER purposes. Dictionary-based approaches to OBIE consist in having a gazetteer whose

entities follow a particular ontology. An example of this approach is Saggion et al. [SFMB07],

which adapted GATE’s ANNIE module using its own gazetteer containing countries and regions

gathered from multiple sources.

2.4 Evaluation and datasets

Evaluating NER systems allows us to know if new systems are evolving in a positive way, getting

higher precision and recall. There is a need for having systematic evaluations, so that all NER

systems have the same standards when evaluating their performance.

There are multiple proposed techniques to rank NER systems based on their ability to annotate

text correctly. These techniques were defined and used in conferences, such as MUC, CoNLL,

ACE or HAREM. There are lots of conferences in this area, I will only talk about these four, which

are the most relevant for this dissertation. These conferences not only differ in their evaluation

techniques but also on what is considered an entity, so they have different entity classes. This

makes it hard to compare different tools which participated in different conferences.

The evaluation task’s main objective is to compare the output of the NER system to an ac-

tual correct output by human linguistics (gold standard). The most common metrics used to rate

classification tasks are:

• Precision: the ratio of correct answers (True Positives) among the answers produced (Posi-

tives). This means checking if the answers marked as positive are truly positive.

precision =
T P

T P+FP
(2.4)

• Recall: the ratio of correct answers (True Positives) among the total possible correct answers

(True Positives and False Negatives). This means checking if all the positives are marked.

recall =
T P

T P+FN
(2.5)

11

Named Entity Recognition and Relation Extraction

• F-Measure: the harmonic mean of precision and recall.

F1-measure =
2∗ precision∗ recall

precision+ recall
(2.6)

The four different classes of classification results are [Kon12]:

• True Positive (TP): predicted value was positive and the actual value was positive.

• True Negative (TN): predicted value was negative and the actual value was negative.

• False Positive (FP): predicted value was positive and the actual value was negative.

• False Negative (FN): predicted value was negative and the actual value was positive.

As an example, let’s use the following correctly annotated text, marked up according to MUC

guidelines, where Porto is identified as a location, James Jr as a person, Acme as an organiza-

tion, Richard Doe as a person and Software Inc as an organization:

<ENAMEX TYPE="LOCATION">Porto</ENAMEX> received multiple personalities, such as <
ENAMEX TYPE="PERSON">James Jr</ENAMEX>, CEO of <ENAMEX TYPE="ORGANIZATION">Acme
</ENAMEX>, and <ENAMEX TYPE="PERSON">Richard Doe</ENAMEX>, CTO of <ENAMEX TYPE=
"ORGANIZATION">Software Inc</ENAMEX>.

Listing 2.1: Example of a correctly annotated text.

Now, imagine the following output produced by a NER system, where Porto was identi-

fied as a person, James Jr as a person, Acme was not identified, Richard was identified as a

person, although with the wrong boundary, CTO as an organization and Software Inc as an

organization:

<ENAMEX TYPE="PERSON">Porto</ENAMEX> received multiple personalities, such as <
ENAMEX TYPE="PERSON">James Jr</ENAMEX>, CEO of Acme, and <ENAMEX TYPE="PERSON">
Richard</ENAMEX> Doe, <ENAMEX TYPE="ORGANIZATION">CTO</ENAMEX> of <ENAMEX TYPE=
"ORGANIZATION">Software Inc</ENAMEX>.

Listing 2.2: Example of an annotated output.

As we can see in Table 2.1, the system outputted four different errors and three different

correct answers. The main objective now is to figure out what score to give to this output. The

NER conferences have different ways of dealing with this, which will be detailed in the following

sections.

2.4.1 Message Understanding Conference

The Message Understanding Conference 6 (MUC-6) [GS96] was the first conference to introduce

the NER task. Consequently this corresponded to the first evaluation technique definition for this

12

Named Entity Recognition and Relation Extraction

Table 2.1: Types of named entity recognition errors.

Correct solution System output Error

<Location>
Porto

</Location>

<Person>
Porto

</Person>

The system recognized an entity but
assigned it the wrong label.

<Organization>
Acme

</Organization>
Acme The system did not recognize the entity.

<Person>
Richard Doe
</Person>

<Person>
Richard

</Person>

The system recognized an entity but
assigned it the wrong boundaries.

CTO
<Organization>

CTO
</Organization>

The system hypothesized an entity
where there is none.

task. Its evaluation metrics were chosen based on other information retrieval tasks. In MUC

events, a system is scored according to two separate axes. One regarding its ability to find the

correct class (category) regardless of the boundaries, and another to check whether the entity

boundaries are correct, regardless of its class. For both of these axes, three measures were kept:

COR (correct answers), POS (number of original entities) and ACT (number of guesses). Both

precision, recall and F-measure are calculated using the sum of these two axes. This evaluation

scheme gives partial credit to errors occurring only on one axis, full credit for having both axes

correct, and zero credit for errors in both axes. MUC considered the following named entities:

personal names, organizations, locations and, at a later stage, temporal entities, such as date and

time, and numeral measurements, such as currency and percentage expressions. MUC focused

only on the English language.

While the MUC-6 only centered on NER, the MUC-7 [CM98] provided one extra task regard-

ing the identification of relations among categories (Template Relation). The main relationships

were of employee_of, product_of and location_of. In MUC-6 the leading participant obtained an

F-measure of 96.42%, while in MUC-7 it obtained 93.39%, in the NER task.

2.4.2 Conference on Natural Language Learning

The Conference on Natural Language Learning (CoNLL) [TD03] provided evaluation for systems

either in English or German. Contrary to the MUC evaluation, CoNLL only gives credit to exact

matches. That is to say, it only gives credit when both the boundaries and the class of the guessed

entity are correct, corresponding to an exact match in the ground truth. Consequently, having only

one of these axes correct, results in zero credit.

This is a simple evaluation scheme, underestimating the system score. This technique is often

too restrictive, giving zero credit to an “almost good” answer, which sometimes is enough for the

13

Named Entity Recognition and Relation Extraction

task at hand. This conference concentrates on four classes of named entities, namely persons,

locations, organizations and miscellaneous. Although, this is an annual conference since 1999,

only the 2002 and 2003 editions focused on the NER task. In the 2003 edition of CoNLL, results

were as high as 88.76% (F-measure).

2.4.3 Automatic Content Extraction

The Automatic Content Extraction (ACE) [DMP+04] succeeded MUC, in 1999, and has a different

view of the NER task. This program relates to English, Arabic and Chinese texts and considers

multiple classes of NEs, such as persons, organizations, locations, facilities, weapons, vehicles

and geo-political entities. It also considers subclasses for these classes, for example, fictional

characters is a subclasses of person. The ACE program not only deals with NER, but also relation

detection and event extraction, so they have different evaluation techniques for each of these tasks.

ACE’s 2003 relation types are ROLE, corresponding to a role a person plays in an organization,

PART, part-whole relationships, AT, location relationships, NEAR, relative locations, and SOCIAL,

such as parent.

Its evaluation is based on a complex weighting scheme where each distinct NE class and each

type of error have a different weight. Partial matches are allowed to a certain extent. The final

score is 100% minus the sum of the penalties from these weights. The relation detection and event

extraction are evaluated using the same scheme. This is a powerful method of evaluation due to its

ability to customize the cost of error. However, given the complexity of this method with multiple

parameters, it is difficult to compare different systems.

2.4.4 HAREM Avaliação de Reconhecimento de Entidades Mencionadas

HAREM is an evaluation contest for NER in Portuguese. There were two main HAREM events,

in 2005 and 2008. In the HAREM conference, there were types for entities, but also categories and

subtypes. It evaluated the task of identification, the task of morphological classification and the

task of semantic classification. The first event [Car06, SSCV06] gave partial credit to producing a

correct type identification of an entity and having wrong boundaries, and to producing wrong type

identification and having the correct boundaries. This partial credit is given through the equation:

score = 0.5
nc

nd
(2.7)

where nc represent the number of common terms, and nd the number of distinct terms between the

output entities and the ones in the HAREM’s golden collection, being 0.5 the maximum partial

credit. The full credit is given when both type and boundaries are identified correctly. Besides

precision, recall and F-measure, the HAREM event also used other metrics, such as under and

over-generation and combined error.

14

Named Entity Recognition and Relation Extraction

The second event [FMS+10] had a different approach. This was due to the introduction of a

new system of classification. This new system allowed for the classification with multiple alterna-

tives in each entity, using the ALT category, for example in Listing 2.3.

<ALT><Barcelona Olympic Games> | <Barcelona> <Olympic Games></ALT>

Listing 2.3: Example of ALT tag application.

in which it can output the “Barcelona Olympic Games” as an event, or “Barcelona” place and

“Olympic Games” event. This second event only has a single new measure, which is an extension

of the combined measure of the first HAREM, taking into account the existence of subtypes and

the optionality of all values. The second event not only included the NER task but also the task

of identifying the semantic relations between the NE - ReRelEM [FSM+09] track. The relations

defined in this event are Identity, Inclusion, Location and Other. Relations were scored as correct,

missing or incorrect. That being said, only correct identifications received one point and the

remaining received none, where a correct identification only considered the triples which linked

the correct NE and whose relation was well classified. The HAREM task is considerably more

difficult and fine-grained than other classical NER tasks.

HAREM’s golden collection [SC06] (described in more detail in Section 3.2), is a collection

of portuguese textual documents of several genres, such as web pages and newspapers, in which

NEs have been identified, semantically classified and morphologically tagged in context. There

were 10 categories identified, namely Works of art (Obra), Event (Acontecimento), Organization

(Organização), Misc (Outro), Person (Pessoa), Abstraction (Abstração), Time (Tempo), Value

(Valor), Local (Local) and Thing (Coisa).

2.4.4.1 Participants overview

In both HAREM conferences, almost all participants resorted to hand-coded techniques. For the

first conference, out of nine participants, only two (NERUA [FKT+07] and MALINCHE [Sol07])

used machine learning techniques, and, for the second conference [FMS+10], only one out of ten

(R3M [Mot08]). For the NER task, the top scoring participants for the first HAREM conference

were PALAVRAS [Bic07], using a rule-based approach and scored an F-measure of 58%, and

SIEMÊS [Sar07], which used similarity rules and scored 53%. For the second HAREM, Priberam

[AFM+08], with a rule-based approach, scored 57% and REMBRANDT [Car08], using also a

rule-based approach, but using Wikipedia as a KB, scored 56%.

In the second HAREM, a Relation Extraction task was added. Out of ten participants, only

three submitted for the RE task (REMBRANDT, SEI-Geo [Cha08] and SeRelEP [BDVR08]),

where the others only participated in the NER task. Since they chose to cover different relation

types, it is not possible to compare them directly. However, taking into account all relations,

REMBRANDT takes the lead with an F-measure of 45%.

15

Named Entity Recognition and Relation Extraction

2.4.5 Other approaches

There are other attempts at evaluation apart from the shared-tasks conferences, mainly correspond-

ing to specific cases. Furthermore, the above-mentioned conferences provide an evaluation only

for participating members, being hard for non-participating programs to evaluate their own ap-

proaches. For instance, Marrero et al. [MSCMA09] evaluated multiple programs which had not

participated in conferences, using mainly precision and recall, but also several features such as

the typographical, lexical, semantic or heuristic factors used by each evaluated program. Other

example is Konkol [Kon12], who states that attributing the correct span is hard, thus it gives more

importance to the categorization.

For the Portuguese language, apart from the HAREM golden collection, there are other Por-

tuguese datasets, such as CINTIL1, although not freely available; or even Amazônia, which is a

Portuguese (from Brazil) corpus and a subset of the Floresta Sintá(c)tica2, available in tree form.

2.4.6 Conferences summary

Table 2.2 summarizes the information for each conference, covering relevant years, that is to say

years in which the main focus was NER and/or RE, entity classes and language. All conferences

have Person, Organization and Location as an entity class in common. English is the most used

language when dealing with NER and RE, being HAREM the only conference which focused on

the Portuguese language.

Table 2.2: Overview of named entity recognition conferences.

Conference Relevant years Entity classes Languages

MUC 1996, 1998
Person, Organization, Location,

Date, Time, Money, Percent
English

CoNLL 2002, 2003
Person, Location, Organization,

Miscellaneous
Spanish, Dutch,
English, German

ACE 2003
Person, Organization, Location,

Facility, Weapon, Vehicle
and Geo-Political Entity

English, Arabic,
Chinese

HAREM 2005, 2008

Pessoa, Organização, Local,
Tempo, Obra, Acontecimento,

Abstração, Coisa, Valor,
Outro

Portuguese

1http://cintil.ul.pt/. Accessed: 2017-06-27.
2http://www.linguateca.pt/floresta/corpus.html. Accessed: 2017-06-27.

16

http://cintil.ul.pt/
http://www.linguateca.pt/floresta/corpus.html

Named Entity Recognition and Relation Extraction

2.5 Summary

Named Entity Recognition and Relation Extraction have been largely studied in recent years.

The first approaches were mainly done through hand-coded techniques, either with patterns or

with dictionary-based matching. However, throughout the years there was a shift in focus, where

machine learning techniques started to gain more interest. This is due to the scalability of these

techniques and the amount of work required, however data in specific domains remains scarce.

Machine learning supervised approaches continue to be the most used techniques, but, recently,

many semi-supervised approaches, involving bootstrapping, started to appear, because they require

less annotation effort.

There were a lot of attempts to evaluate the current state of the art for NER and RE. Some

examples are conferences such as MUC, CoNLL, ACE or HAREM. They had different views on

which classes of entities would be considered and how to evaluate their recognition; for instance,

while MUC allows partial NE recognition, CoNLL only considers exact-matches. HAREM pro-

vided a good state of the art for the Portuguese language but it is outdated, since there have been no

more evaluation conferences focused on the Portuguese language in recent years. Nevertheless,

the HAREM conferences showed that hand-coded techniques were still preferred over machine

learning ones. This is probably due to HAREM being an initial effort regarding the Portuguese

language, and there was still no opportunity to explore ML methods for this language.

Although there are some attempts at NER and RE for the Portuguese language they still per-

form worse than for other languages, such as English.

17

Named Entity Recognition and Relation Extraction

18

Chapter 3

Datasets and tools

This chapter presents the methodology used in this dissertation, and also the description of the

HAREM golden collection and the SIGARRA News Corpus, including its main characteristics

regarding the annotated entities. In addition, this chapter also describes the Named Entity Recog-

nition (NER) tools used for this dissertation, namely Stanford CoreNLP, OpenNLP, spaCy and

NLTK.

3.1 Methodology

As stated in the state of the art (Chapter 2), the NER tools focused on the Portuguese language

still underperform in comparison to other languages, like English, with the best results achieved

in the last HAREM with an F-measure of 57%. In order to try to improve this, I decided to test

well-established generic NER tools with the Portuguese language. This tools would have to be

completely free and able to be trained with a custom corpus, in Portuguese. I chose Stanford

CoreNLP, OpenNLP, spaCy and NLTK, which are described in Section 3.4.

To my knowledge, the only freely available Portuguese dataset annotated with entity classes

was the one developed in the HAREM conferences. Another Portuguese dataset is CINTIL1, but

it is not publicly available. Also, there is the Amazônia dataset, however it is only composed

of Portuguese from Brazil textual content. So, the HAREM collection is the dataset that will be

used to train the tools. This dataset is described in Section 3.2. Since the Portuguese language

was altered, with the latest Portuguese orthographic reform (1990)2, the HAREM dataset can

be considered outdated. Because of this, and also because the main goal is to perform NER in

SIGARRA (the information system of the University of Porto), I decided to manually annotate a

subset of SIGARRA’s news. The prepared corpus is described in Section 3.3.

1http://cintil.ul.pt/. Accessed: 2017-06-27.
2http://www.portaldalinguaportuguesa.org/?action=acordo&version=1990. Accessed: 2017-

06-27.

19

http://cintil.ul.pt/
http://www.portaldalinguaportuguesa.org/?action=acordo&version=1990

Datasets and tools

First, I will assess the out-of-the-box performance of the selected tools with the HAREM

dataset, to establish a baseline. This will be done using repeated 10-fold cross-validation (with

four repeats), to ensure robustness. The dataset needed to be transformed to be used as an input to

each tool. This required transformation is explained in Chapter 4 and the obtained baseline results

are presented in Chapter 5.

Next, after establishing the baseline, I will perform a hyperparameter study for every tool, to

see if I can improve the performance. This study will also be done using the HAREM dataset

but with repeated holdout (with four repeats), in order to save time. Check Chapter 6 for more

information on this hyperparameter study. Finally, after obtaining the best hyperparameter values,

I will assess the performance of the tools, with these values, against the SIGARRA corpus, to

see whether the prepared corpus has influence on the tools’ performance. For the SIGARRA

News Corpus, the evaluation was the same as with the HAREM baseline — repeated 10-fold cross

validation, with four repeats. The results are presented in Chapter 7.

3.2 The HAREM golden collection

HAREM is an evaluation contest for NER in Portuguese. There were two main HAREM events,

in 2005 [Car06, SSCV06] and 2008 [FMS+10]. Both provided golden collections and, for this

dissertation, only the second one was used. HAREM’s golden collection [SC06] is a collection

of Portuguese textual documents of several genres, such as web pages and newspapers, in which

named entities have been manually identified, semantically classified and morphologically tagged

in context, together with identified relations between the named entities. It defines three levels

of entity annotations, namely categories, types and subtypes, in which categories have types and

types have subtypes. As already stated, there were 10 categories identified, specifically Works of

art (Obra), Event (Acontecimento), Organisation (Organizacao), Misc (Outro), Person (Pessoa),

Abstraction (Abstracao), Time (Tempo), Value (Valor), Local (Local) and Thing (Coisa). Apart

from the categories, it has a total of 43 types and 21 subtypes. Table A.1 illustrates all categories,

types and subtypes for HAREM.

The HAREM golden collection’s annotated classes are not equally distributed. Table 3.1 shows

the number of named entities in each category in the second HAREM golden collection. Pessoa

is the most common category with 2,035 words, and Outro is the least common, with only 148

words. This golden collection has a total of 129 documents, divided into two Portuguese variants,

as shown in Table 3.2, being Portuguese from Portugal the main variant. These documents were

gathered from different sources, with multiple text genres, described in Table 3.3, with a third

being news text.

3.3 SIGARRA’s News Corpus

SIGARRA is the information system of the University of Porto (U.Porto), where every organic

unit has its own domain. Organic Unit is the entity of the organizational model, endowed with

20

Datasets and tools

Table 3.1: Number of named entities per category. Values from do Amaral et al. [dAFLV14].

Categories Number of
entities %

Pessoa 2,035 28%
Local 1,250 17%
Tempo 1,189 16%
Organizacao 960 13%
Obra 437 6%
Valor 352 5%
Coisa 304 4%
Acontecimento 302 4%
Abstracao 278 4%
Outro 148 2%

Total 7,255 100%

Table 3.2: Document distribution by Portuguese variant. Table from Mota et al. [MSC+08].

Portuguese
variant

Number of
documents %

pt_PT 93 72.09%
pt_BR 36 27.91%

Total 129 100%

Table 3.3: Document distribution by text genre. Table from Mota et al. [MSC+08].

Text genre Total %

News 45 34.88%
Didactic 29.5 22.87%
Journalistic blog 13 10.08%
Personal blog 11.5 8.91%
Questions 6 4.65%
Rehearsal 5 3.88%
Opinion 5 3.88%
Humour blog 4 3.1%
Legislative 3 2.33%
Promotional 3 2.33%
Interview 2 1.55%
Private manuscript text 1 0.78%
FAQ questions 1 0.78%

Total 129 100%

21

Datasets and tools

Figure 3.1: Screenshot of a SIGARRA news.

own personnel, that can be endowed with tributary personality and that has a direct hierarchi-

cal relation with the central government of the University of Porto. The University of Porto has

17 SIGARRA domains, namely FADEUP (Faculty of Sport), FAUP (Faculty of Architecture),

FBAUP (Faculty of Fine Arts), FCNAUP (Faculty of Nutrition and Food Sciences), FCUP (Faculty

of Sciences), FDUP (Faculty of Law), FEP (Faculty of Economy), FEUP (Faculty of Engineer-

ing), FFUP (Faculty of Pharmacy), FLUP (Faculty of Arts and Humanities), FMDUP (Faculty of

Dental Medicine), FMUP (Faculty of Medicine), FPCEUP (Faculty of Psychology and Education

Sciences), ICBAS (Abel Salazar Biomedic Sciences Institute), Reitoria (Rectory), SPUP (Shared

Services of U.Porto) and UP (U.Porto) itself.

ANT periodically gathers SIGARRA news, which allowed me to get a sample of the latest

1000 SIGARRA news to the date of extraction (2017-03-02). This extraction was validated, to

make sure that the extraction included news from all domains, as well as to make sure the number

of news matched in accordance with the news flow of every organic unit. These news were con-

catenated into a csv file, with the attributes being: news id, title, subtitle, source url, content and

published date. The gathered news were published between 2016-12-14 and 2017-03-01. I manu-

ally annotated some of those news using the Brat rapid annotation tool [SPT+12]. The reason for

not annotating all 1000 news, was due to some of them not being in Portuguese. That being said,

I annotated 905 news. Figure 3.1 shows an example of a news in SIGARRA.

I selected eight different classes for the entities, namely Hora (Hour), Evento (Event),

Organizacao (Organization), Curso (Course), Pessoa (Person), Localizacao (Location),

Data (Date) and UnidadeOrganica (Organic Unit). For this selection, I read some news from

each organic unit, to understand the relevant entity classes present in each of them, which had the

most value to the ANT project. Figure 3.2 shows the distribution of news per SIGARRA domain,

in the SIGARRA News Corpus, showing that FLUP, FAUP, FEUP and FMUP have the highest

number of news (over 100 news), in that order, each representing over 10% of the collection. Fur-

thermore, UP and FMDUP have the least amount of news (less than 10 news), in that order, each

representing less than 1% of the collection. I annotated a total of 905 news for SIGARRA News

22

Datasets and tools

128

116 114
110

83

73

58

45
39 36

27
21

17 17
11 8 7

0

20

40

60

80

100

120

140

N
u

m
b

er
 o

f
n

ew
s

FLUP FAUP FEUP FMUP FCUP FPCEUP SPUP FADEUP ICBAS

FDUP FBAUP FEP FCNAUP FFUP REITORIA FMDUP UP

Figure 3.2: Number of news by SIGARRA domain.

Corpus (see Table B.1 for more detail). Finally, we can see in Figure 3.3 the statistical data about

the number of characters in each news by SIGARRA domain. SPUP shows the highest dispersion.

In addition, SPUP has the highest average of characters (2340 characters) and FDUP the lowest

(582). Also, on average, there are 1154 characters per news.

The entity classes and their distribution by SIGARRA domain in this annotated corpus can be

seen in Figure 3.4 (see the distribution of entity annotations in Table B.2 and the distribution by

SIGARRA domain in Table B.3). It is clear that Date (Data) has the highest number of annotations

with 22.23% of the total entities, as expected because there were very few news which had no

date (only 43 news). Since this is an academic domain, Organization (Organizacao) has a high

percentage of mentions, mainly because it is common to name the organization a person works

for as well as project funding organisms. Person (Pessoa) also represents a big fraction, mainly

because of news related to presentations of master’s and doctoral theses. On the other hand, Event

(Evento) represents a lower percentage, because it is difficult to pinpoint the exact boundary for

this entity tag, which can lead to sometimes skipping their annotation. This figure also shows that

0

2000

4000

6000

8000

10000

12000

14000

16000

N
u

m
b

er
 o

f
ch

ar
ac

te
rs

SIGARRA domain

Figure 3.3: Number of characters per news by SIGARRA domain.

23

Datasets and tools

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

FADEUP

FAUP

FBAUP

FCNAUP

FCUP

FDUP

FEP

FEUP

FFUP

FLUP

FMDUP

FMUP

FPCEUP

ICBAS

REITORIA

SPUP

UP

Percentage of entity class

En
ti

ty
 c

la
ss

es

Hora

Evento

Organizacao

Curso

Pessoa

Localizacao

Data

UnidadeOrganica

Figure 3.4: Number of annotated entities by SIGARRA domain.

FAUP has the highest number of annotations (2789), followed by FEUP (1711), and that FMDUP

has the lowest number (56). Overall, there are 12644 entity annotations.

3.4 Natural Language Processing tools

In order to choose the best fitting tool to tackle the proposed challenge, I compared some of

the main tools capable of performing NER in multiple languages, with particular focus on the

Portuguese language. The main criteria for choosing the tools were:

• The tool has to be completely free.

• The tool has to be language and domain independent.

• The tool has to allow training a custom model for NER, with custom entity classes.

With these criteria in mind, I chose four different, well established tools: Stanford CoreNLP

[FGM05], OpenNLP [Fou], spaCy [Hona] and NLTK [BKL09]. These tools are described in

Table 3.4, which shows that all are freely available, with Apache, MIT or GNU General Public

licenses, use either Java or Python as the main language and, apart from already having multiple

default language models, all allow training with other languages. Also, I used the latest ver-

sions available at the beginning of this dissertation, namely 3.7.0 for Stanford CoreNLP, 1.7.2 for

OpenNLP and spaCy and 3.2.2 for NLTK.

Neither of these tools have a Portuguese model for NER, so all of them require training with a

Portuguese corpus, such as the HAREM collection. Apart from spaCy, all tools use well known al-

gorithms to perform NER, for instance CRF and Maximum Entropy. spaCy uses its own algorithm,

24

Datasets and tools

Table 3.4: Overview of the assessed tools.

Tool License Version Language NER classifiers Default language
models

Stanford
CoreNLP

GNU General
Public License

3.7.0
(2016)

Java CRF
Arabic, Chinese,
English, French,
German, Spanish

OpenNLP Apache License
1.7.2

(2017)
Java Maximum Entropy

Dutch, English,
Spanish

spaCy MIT License
1.7.2

(2017)
Python

Thinc
linear model

English, German

NLTK Apache License
3.2.2

(2016)
Python

Naive Bayes,
Decision Tree,

Maximum Entropy
English

called Thinc [Honb] linear model, which is a machine learning library, with an implementation of

a structured average perceptron.

3.5 Summary

Although some years have passed since HAREM was built, it still remains the only publicly and

freely available golden collection for the Portuguese language (from Portugal), with entity anno-

tations, to my knowledge. The golden collection has 129 documents from different sources, with

multiple text genres, such as news or legislative texts. I manually annotated a subset composed

of 905 SIGARRA news, from the multiple domains, using the Brat rapid annotation tool. Result-

ing in a corpus with 12644 entity annotations, twice the size of the HAREM golden collection.

Finally, I decided to work with four tools, all of them freely available and able to work with the

Portuguese language. All of these tools have machine learning algorithms in order to train a NER

model.

25

Datasets and tools

26

Chapter 4

HAREM corpus transformation

The HAREM golden collection cannot be directly used as input to the selected tools, so it had to be

transformed for each tool. This transformation is described in this chapter. The golden collection

is available in XML format, and contains information that was not used in this dissertation, so this

information was stripped. Also, since the referred tools are not able to deal with entity subclasses,

I flattened the types and subtypes levels. Since I will use a common script to evaluate all tools,

it is required that all outputs have the same format, namely the CoNLL format with IOB tags —

where I (Inside) means that the current token is inside an entity tag, O (Outside) means that the

current token is outside an entity tag and B (Begin) means that the current token is the first one in

an entity tag.

4.1 Initial transformation

This first transformation was applied for all tools. First of all, the tag OMITIDO was used to allow

some control in the parts of the text without linguistic relevance to the evaluation. As stated in

the HAREM book [OMF+08], it was ignored in the HAREM evaluation, so it was stripped from

the golden collection, keeping the text without any annotation. Then, since HAREM provides

alternatives to the annotation of entity tags, regarding the entity boundary, using the ALT tag,

these tags were stripped. I decided to keep:

• The alternative which had the highest amount of entity tags OR

• The first alternative when there were no entity tags inside the ALT tag

This was required because the selected tools cannot handle alternative annotations. Apart from

the alternatives using the ALT tag, there were alternatives in the annotation, regarding the category,

type and subtype of an entity, separated by the | character. In this case, the first alternative for each

case was selected. Also, there were tags which had no categories, and were identified only as an

entity. In this case, the tag was stripped. A simplified example of this is presented in Listing 4.1.

27

HAREM corpus transformation

<ALT><EM CATEG="ABSTRACCAO|ABSTRACCAO" TIPO="DISCIPLINA|IDEIA">Reforma de Henrique<
/EM> | <EM CATEG="ABSTRACCAO" TIPO="DISCIPLINA">Reforma de <EM CATEG="
PESSOA" TIPO="INDIVIDUAL">Henrique</ALT>

<EM CATEG="ABSTRACCAO" TIPO="DISCIPLINA">Reforma de <EM CATEG="PESSOA" TIPO="
INDIVIDUAL">Henrique

Listing 4.1: ALT tag transformation example.

Since the tools only allowed one level of entities, the levels were flattened, producing three

different outputs: one with only the categories, one with only the types and another with only the

subtypes. For scripting purposes, the types and subtypes were concatenated to keep the semantics

and context inside the parent category (e.g. “LOCAL_HUMANO_PAIS”). Finally, apart from the

category attribute, all other attributes were removed. For evaluation purposes, this dataset was

divided into folds for repeated cross validation (see Chapter 5).

4.2 Tool-specific transformation and running steps

After the initial transformation, and in order to be able to use the dataset as input to each tool, the

golden collection went through further transformations, described in this section. Each tool has a

particular set of requirements in order to train a Named Entity Recognition (NER) model and then

to perform NER. The steps for each tool are presented next, namely the required input format, the

steps for converting HAREM into that format, how to train the NER model, how to perform NER,

and finally how to convert it to the CoNLL evaluation format.

4.2.1 Stanford CoreNLP

CoreNLP requires a tokenized file as input, where each line contains a token and its entity class

separated by a tab character. This entity class is the class of the entity for entity tokens, and an

“O” class for other tokens. An example of the input format can be seen in Listing 4.2.

Desde TEMPO
1947 TEMPO
, O
o O
jovem O
William PESSOA
M.Gaines PESSOA

Listing 4.2: Stanford CoreNLP example input format.

The first approach was to use corpus-processor [Dad13], whose purpose is to convert the

HAREM golden collection into the Stanford CoreNLP format. However, since this tool used

28

HAREM corpus transformation

a different tokenization scheme from the one in Stanford CoreNLP, the output from the entity

recognizer was different, in terms of tokenization, from the test set. Because of this, I had to use

the Stanford CoreNLP tokenizer edu.stanford.nlp.process.PTBTokenizer. The entity

classes in XML were also tokenized in the process, so afterwards I “de-tokenized” them and then

looped through the file adding the entity classes from the first match in an entity tag to a match in

the closing tag. Every token outside this was tagged “O”. It is important to note that I tokenized

using the XML annotated file so I wouldn’t loose the entity annotations. The classifier was trained

using the command in Listing 4.3.

java -cp stanford-corenlp.jar edu.stanford.nlp.ie.crf.CRFClassifier -prop <file.
prop>

Listing 4.3: Stanford CoreNLP training command.

where file.prop sets the hyperparameters and features to use and the path for the training file

and output model.

To classify text documents, I used the command in Listing 4.3.

java -cp stanford-corenlp.jar edu.stanford.nlp.ie.crf.CRFClassifier -loadClassifier
<ner-model.ser.gz> -testFile <file_test.txt>

Listing 4.4: Stanford CoreNLP command to perform NER.

where file_test.txt represents the input unannotated text to be classified.

Then, after performing the NER, I added IOB tags to the output for it to be comparable in the

evaluation stage.

4.2.2 OpenNLP

This tool requires a sentence per line as input, where entities are annotated with a starting tag

(<START:tag-name>) and an end tag (<END>). An example of this format can be seen in

Listing 4.5.

<START:TEMPO> Desde 1947 <END> , o jovem <START:PESSOA> William M.Gaines <END>

Listing 4.5: OpenNLP example input format.

First, I converted the HAREM XML entity tags to the OpenNLP format. Then, using NLTK’s

sentence segmentation module, the dataset was segmented by sentences. Since this segmentation

was not perfect, I had to join faulty segmentations by checking if every open entity tag had a

corresponding closing tag and vice versa, in each sentence. When they had no corresponding

tag, I joined the current sentence with the previous sentence. These faulty segmentations were

mainly due to the segmentation being done with the presence of XML tags. Similar to Stanford

29

HAREM corpus transformation

CoreNLP tokenizing issue, I decided to perform sentence segmentation with the XML tags, so that

I wouldn’t loose the entity annotations. This is not ideal, but it is a simpler method. Furthermore,

I had to make sure that there was a space character before and after each tag, or else OpenNLP’s

interpreter would not work.

To train the model, I had to run the command in Listing 4.6.

opennlp TokenNameFinderTrainer -model <model.bin> -lang <pt> -data <training_data.
txt> -encoding <UTF-8>

Listing 4.6: OpenNLP training command.

and to classify the text, the command was the one in Listing 4.7.

opennlp TokenNameFinder <model.bin> < <corpus_test.txt> > <output file>

Listing 4.7: OpenNLP command to perform NER.

Finally, after performing NER, I converted the output from the OpenNLP format to the CoNLL

format, adding IOB tags.

4.2.3 spaCy

spaCy requires that the input dataset is in the standoff format, that is to say, there has to be two

files: one with the plain text, and another with the entity annotations, containing a tab separated

entry with the beginning and ending positions of the entity along with its class. The text had to be

segmented into sentences. Listing 4.8 shows an example of the standoff format, first with a text

file and next the ann format with annotations.

-- TXT --
Desde 1947, o jovem William M.Gaines
-- ANN --
0 10 TEMPO
20 36 PESSOA

Listing 4.8: SpaCy example input format.

Since I had already converted HAREM to the OpenNLP format, I used this data and trans-

formed it to standoff. The transformation was done using the following steps:

1. Search until <START:tag> tag

2. Save starting position

3. Delete matched tag

4. Search for <END> tag

30

HAREM corpus transformation

5. Save end position

6. Delete matched tag

7. Save standoff = (beginPos, endPos, tag)

8. Repeat from step 1 until no matches occur

9. Output to a tab separated file

The resulting files were then used to train a NER model in spaCy. The training script was based

on an example script in spaCy’s repository, with the additional preprocessing task of converting

to the standoff format. The main NER classifier was changed from EntityRecognizer to

BeamEntityRecognizer. This change was because this classifier, in direct conversations with

the developer responsible for spaCy, was said to have better results. After the NER process, the

result was converted to the CoNLL format with IOB tags for evaluation purposes.

4.2.4 NLTK

This toolkit not only requires that the input dataset is in the CoNLL format with IOB tags, but

also that it has the associated POS tag. In other words, the input file must be a tab separated file,

where each line has the token, the POS tag and the entity tag in IOB format. Listing 4.9 shows an

example of this format.

Desde n B-TEMPO
1947 num I-TEMPO
, , O
o art O
jovem adj O
William n B-PESSOA
M.Gaines n I-PESSOA

Listing 4.9: NLTK example input format.

The requirement for having both the IOB and the POS tags led to the need for three major

steps, namely tokenizing and performing POS tagging, tokenizing while keeping the entity tags,

and joining both files. The steps for this were the following:

1. Tokenize and POS tag

• Remove all tags from the HAREM dataset, in order to tokenize the text

• Tokenize the dataset using nltk.tokenize.word_tokenizer (TreebankWordTo-

kenizer)

• Using the resulting tokenized text, perform POS tagging

– Train POS model using floresta corpus from nltk.corpus

31

HAREM corpus transformation

– POS tag resulting file from tokenizer step

2. Tokenize while keeping the entities

• Tokenize the dataset using nltk.tokenize.word_tokenizer (TreebankWordTo-

kenizer)

• Join consecutive tokenized entity tags

• Transform dataset, matching the entity tags using regular expressions, assigning tags

to each token

– For each token, after an entity tag, assign a B-tag

– For each token after the first entity token (previous step), or after an Inside (I)

token, assign an I-tag

– Assign an O tag for other tokens

3. Join POS tagged file with entity tagged file

• Iterate through both files simultaneously

• For each line, set token POS-tag IOB-entity-tag

To train the NLTK’s classifiers, I used NLTK trainer1. This allowed me to run the command

in Listing 4.10.

python train_chunker.py <path-to-training-file> [--fileids <fileids>] [--reader \
<reader>] [--classifier <classifier>]

Listing 4.10: NLTK training command.

I had to choose a different document reader, nltk.corpus.reader.conll-

.ConllChunkCorpusReader, since the training files were in the CoNLL format. For

this reader, I had to specify the entity categories in the NLTK trainer init file. Running the

command resulted in a serialized model saved in the pickle format.

In order to classify text, the model had to be loaded, the dataset to be classified was re-

quired to contain POS tag annotations and then classified with chunker.parse(tagged).

The parser returned the result in a tree format, which was converted to the CoNLL format us-

ing nltk.chunk.util.tree2conlltags(ner_result).

4.3 Summary

Since the HAREM golden collection cannot be used directly as an input to the selected tools, this

chapter provided the steps to transform it to the right input type. The HAREM golden collection

was first subjected to an initial transformation, common to all tools, and then to a tool specific

1https://github.com/japerk/nltk-trainer. Accessed: 2017-06-27.

32

https://github.com/japerk/nltk-trainer

HAREM corpus transformation

transformation. Stanford CoreNLP required, as input, a file in the CoNLL format. OpenNLP

required a sentence segmented file with specific tags. SpaCy required the input file be in the

standoff format. And NLTK required not only a entity tagged text in the CoNLL format, but also

POS tags.

This chapter provided important guidelines to transform datasets, specifically HAREM, into

well-known formats. These guidelines can be used by the scientific community to transform be-

tween input formats required by different tools. Furthermore, sometimes tools’ documentation

can be scarce or have too much detail, so it can be difficult to understand the basic configurations

needed to run each tool.

33

HAREM corpus transformation

34

Chapter 5

Evaluation

This chapter describes the evaluation method and the results obtained for Named Entity Recogni-

tion (NER) for the discussed tools in Chapter 3. The method used to assess the performance of

each tool is described next. Each tool has its own evaluation scheme, hence they are not directly

comparable. To make it comparable, a common evaluation scheme was used. The chosen evalua-

tion method was the one used in the CoNLL [TD03] conference, meaning credit was only given to

exact-matches or, in other words, both entity tags and boundaries had to be correct for it to count

as a correct match.

5.1 Evaluation method

Evaluation was done using the conlleval1 script, taken directly from the website for the confer-

ence’s occurrence in 2000. The script requires a file in the CoNLL format, with both the output

of the NER tool and the golden standard. To be more precise, it is a space separated file, where

each line contains a token, the golden standard tag and the predicted tag. It accepts files with or

without IOB tags, being that, for the latter, each identification is treated as a single token entity.

For this dissertation, the results were evaluated with IOB tags. Since not all the tools outputted the

results with IOB tags, I added them whenever they were missing. After each run, I had to merge

the outputs with the golden standard, so that it could be used as input for the evaluation script. For

this merge to be correct, I had to use each tool’s tokenizer for the testing set, or else the merge

would not be successful as the tokens would not match correctly to the golden standard set.

In order to ensure the robustness of the evaluation metrics, I used repeated 10-fold cross val-

idation, with four repeats, and calculated the average of the precision and recall, and the macro-

average for the F-measure, from every run. In other words, in each repeat, I split the dataset into

10 equal sized folds (in terms of documents), where one fold was used for testing and the rest for

1See http://www.cnts.ua.ac.be/conll2000/chunking/conlleval.txt - version: 2004-01-26.

35

http://www.cnts.ua.ac.be/conll2000/chunking/conlleval.txt

Evaluation

training. Then I ran each tool for each fold and for each repeat, and also for each level (categories,

types and subtypes). Resulting in a total of 4 repeats×10 f olds×3 levels×4 tools = 480 runs.

Finally, after running all the folds and repeats for each tool, that is to say training the models,

and performing NER on the testing set, I evaluated the outputs using the CoNLL script and then

computed the average for each level. This resulted in an average for each tool, each level, and each

entity tag. The results are presented in Section 5.2.

5.2 Results

The results from the repeated 10-fold cross validation with the HAREM dataset, for all tools,

along with a comparison between them, are presented in this section. There is a clear distinction

between the tools, and also between the different entity class levels.

5.2.1 OpenNLP

Table 5.1 presents the results obtained for the Maximum Entropy classifier from OpenNLP. Cate-

gories have the best result, with an F-measure of 53.63%, followed by subtypes (50.74%). This is

probably due to the large amount of categories when compared to the types and subtypes. Subtypes

have the best precision, probably due to being very specific.

Table 5.1: Results for OpenNLP, for the HAREM collection.

Level Precision Recall F-measure

Categories 55.43% 51.94% 53.63%
Types 52.13% 45.40% 48.53%
Subtypes 72.60% 39.00% 50.74%

5.2.2 spaCy

Table 5.2 presents the results obtained for the Beam Entity Recognizer from spaCy. Categories

have the best results, with an F-measure of 46.81%, followed by types (44.04%). Similar to

OpenNLP, this is probably due to the large amount of categories when compared to the types and

subtypes. Subtypes have the best precision, probably due to being very specific.

5.2.3 Stanford CoreNLP

Table 5.3 presents the results obtained for the CRF classifier from Stanford CoreNLP. It is impor-

tant to note that Stanford CoreNLP is highly computationally demanding, so I was not able to run

it with the default configuration for the remaining levels, i.e. types and subtypes. Because of this,

comparison between the levels was not possible, but I obtained an F-measure of 56.10% for the

categories.

36

Evaluation

Table 5.2: Results for spaCy, for the HAREM collection.

Level Precision Recall F-measure

Categories 51.21% 43.10% 46.81%
Types 49.76% 39.50% 44.04%
Subtypes 79.21% 24.88% 37.86%

5.2.4 NLTK

Since NLTK provides different classifiers to perform NER, I present the results for each of them in

Table 5.4. Table 5.4a presents the results obtained for the Naive Bayes classifier from NLTK, Ta-

ble 5.4b for the Maximum Entropy classifier and Table 5.4c for the Decision Tree classifier. Look-

ing at Table 5.4, we can see the average results for each classifier, for the highest level (categories).

The NaiveBayes and DecisionTree classifiers have similar results, although NaiveBayes

has better results. Maxent (Maximum Entropy), however, performed way worse than the other

classifiers, with almost zero recall and F-measure. One possible explanation for these results is

the default number of iterations (ten) that the algorithm goes through, or even the features used for

training. OpenNLP’s classifier also uses Maximum Entropy and it performed much better, but it

was configured to use 100 iterations in the default configuration.

5.2.5 Comparison

Table 5.5 represents the evaluation metrics for all tools (precision, recall and F-measure), for the

highest entity class level (categories). Stanford CoreNLP takes the lead with an F-measure of

56.10%, followed by OpenNLP with 53.63% and then by spaCy (46.81%) and NLTK (30.97%).

The results for NLTK are the ones obtained using the Naive Bayes classifier. It was NLTK’s best

result but it was the lowest score among all tools, way below the other tools performance. Table 5.6

shows the average F-measure for all the levels. The ranking was similar to the categories result. In

other words, Stanford CoreNLP remains on top in the category level, followed by OpenNLP, then

spaCy and finally NLTK, in all levels. Again, NLTK’s results remain far below the values for the

other tools. Naive Bayes remained the best scoring algorithm amongst NLTK’s algorithms.

Table 5.3: Results for Stanford CoreNLP, for the HAREM collection.

Level Precision Recall F-measure

Categories 58.84% 53.60% 56.10%
Types - - -
Subtypes - - -

37

Evaluation

Table 5.4: Results for NLTK, for the HAREM collection.

(a) NaiveBayes classifier.

Level Precision Recall F-measure

Categories 30.58% 31.38% 30.97%
Types 29.66% 28.01% 28.82%
Subtypes 21.15% 22.72% 21.91%

(b) Maxent classifier.

Level Precision Recall F-measure

Categories 18.19% 0.58% 1.13%
Types 9.84% 1.07% 1.93%
Subtypes 0.19% 0.28% 0.23%

(c) DecisionTree classifier.

Level Precision Recall F-measure

Categories 21.84% 25.72% 23.62%
Types 25.37% 24.34% 24.84%
Subtypes 27.71% 35.81% 31.25%

Table 5.5: Results for the category level, for all tools.

Tool Precision Recall F-measure

Stanford CoreNLP 58.84% 53.60% 56.10%
OpenNLP 55.43% 51.94% 53.63%
SpaCy 51.21% 43.10% 46.81%
NLTK 30.58% 31.38% 30.97%

Table 5.6: F-measure for all levels.

Tool Categories Types Subtypes

Stanford CoreNLP 56.10% - -
OpenNLP 53.63% 48.53% 50.74%
SpaCy 46.81% 44.04% 37.86%
NLTK 30.97% 28.82% 21.91%

38

Evaluation

0

10

20

30

40

50

60

70

80

F-
m

ea
su

re
 (

%
)

Entity class - Categories

OpenNLP Stanford CoreNLP spaCy NLTK DT NLTK ME NLTK NB

Figure 5.1: F-measure by entity class, by tool.

Figure 5.1 shows the F-measures for every tool, regarding the entity classes, for the category

level (detailed results can be seen in Table D.1). Needless to say, NLTK’s Maximum Entropy

classifier is the lowest scoring algorithm, with zero F-measure in almost all entity classes. Stanford

CoreNLP has the highest score in almost all entity classes, followed by OpenNLP. Overall, the

best results belong to the Tempo entity class, and the worse to Outro. In addition, details for the

types and subtypes entity classes can be seen in Table D.2 and Table D.3, respectively. Stanford

CoreNLP is missing due to it not being ran with these entity levels. In the types level, the ones

related to time and people got the best scores. Additionally, NLTK’s Decision Tree classifier got

interesting results in Coisa_Substancia and Pessoa_GrupoCargo, being the only classifier with

decent results in these classes (70.32% and 63.67%, respectively). Finally, in the subtypes level,

location and time related entity classes got the best F-measure; all others were close to zero.

Table 5.7 shows the comparison between the average training time for all tools. As I said

before, it is important to note that Stanford CoreNLP did not run for the types and subtypes levels.

This table shows that NLTK’s NaiveBayes is the fastest to run (needing only 2s per level),

followed by OpenNLP (with less than a minute for each levels). NLTK’s DecisionTree is the

slowest (with 11h47m to run all repeats and folds), however, I estimate that if I were able to run

all the levels for Stanford CoreNLP, this tool would be the slowest despite having the best results.

Although, Stanford CoreNLP got the best results, according to the obtained F-measures, OpenNLP

could be considered the best tool to use since it was the second best, and it is much faster. That

being said, if the NER process is time sensitive, OpenNLP should be the one to use.

5.3 Summary

This experiment only provided a comparison for the baseline configuration of each tool, so, in

order to improve the results, one has to tune the hyperparameters as well as experiment with

feature engineering for each algorithm implementation. While it is important to note that these

results are not directly comparable to the ones in HAREM, since different methods of evaluation

39

Evaluation

Table 5.7: Average training time for all tools per fold.

Tool Categories Types Subtypes All

Stanford CoreNLP 11m40s - - 7h47m
OpenNLP 22s 52s 44s 1h19m
spaCy 3m17s 5m19s 5m20s 9h18m

NLTK
NaiveBayes 2s 2s 2s 4m19s
Maxent 1m56s 5m23s 4m24 7h50m
DecisionTree 5m55s 5m54s 5m52s 11h47m

were used, there is a strong indication that these tools perform similar to the results achieved in the

HAREM conferences, with the best F-measure of 56.10% by Stanford CoreNLP, with a difference

of only 1% in the highest scoring participant in the last HAREM, about 10 years ago.

Results have shown that the tools perform worse when there are more entity classes. Also,

these results are still less precise when compared to other languages, such as English. This might

be because the HAREM dataset is too much specific in its annotation scheme. In other words,

while in a MUC conference, for example, only generic entity classes were considered, in HAREM

there were a lot more entity classes, with more specific meanings.

40

Chapter 6

Hyperparameter study

This chapter presents the effects of hyperparameters, measuring the effect of individually changing

each individual hyperparameter for every available tool, using the HAREM dataset. Furthermore,

it also provides a small description of each hyperparameter. I tested the effects of a total of nine

hyperparameters. The number of iterations is the most common of all, being present in almost all

classifiers.

6.1 Description

In the previous chapter, I presented the results for the baseline of every tool, meaning that all

tools were run with the default configuration (default hyperparameters). In order to improve those

results, I re-ran the tools with different configurations. Table 6.1 shows the available hyperparame-

ters for each tool and their default value. I also present a short description of each hyperparameter,

focusing on its goal within the named entity recognition algorithm. The most common hyperpa-

rameter is the number of iterations the classifier goes through, being present in three out of five

classifiers. OpenNLP and NLTK both share a Maximum Entropy classifier, having both the num-

ber of iterations as a hyperparameter. There are also multiple cut-off values for classifiers, such as

entropy or depth cut-off.

• OpenNLP

– Iterations - Number of iterations in the Maximum Entropy algorithm.

– Cutoff - Minimum number of instances that are required so that the feature is chosen.

• NLTK [Per14]

– MaxEnt

∗ max iterations - “The max_iter variable specifies the maximum number of itera-

tions to go through and update the weights” [Per14].

41

Hyperparameter study

Table 6.1: Hyperparameters for each tool.

Tool Parameter Default value

OpenNLP
iterations 100
cutoff 5

NLTK

[ME] max iterations 10
[ME] min_lldelta 0.1
[DT] entropy cutoff 0.05
[DT] depth cutoff 100
[DT] support cutoff 10

Stanford CoreNLP tolerance 1e-4

spaCy iterations 10

∗ min_lldelta - This value specifies the minimum change in the log likelihood, in

each iteration. The algorithm stops training when the log likelihood delta between

two consecutive iterations is below this value.

– DecisionTree

∗ entropy cutoff - Entropy value of the tree. When entropy is greater than this value,

the tree must be refined with further decisions to reduce the uncertainty.

∗ depth cutoff - This value controls the depth of the tree, specifying the that the tree

is no deeper than this value.

∗ support cutoff - This value sets the number of labeled feature sets that are required

to refine the tree. Labeled feature sets that have a number below this value, are

eliminated since they no longer provide value to the training process.

• Stanford CoreNLP

– Tolerance - Convergence tolerance in optimization. In other words, the optimization

function attempts to find an unconstrained minimum of the objective function starting

at the initial value, accurate to within the tolerance value.

• SpaCy

– Iterations - Number of iterations in the training algorithm.

6.2 Results

To perform this study, I used repeated holdout, with four repeats. In other words, I split the

HAREM dataset into two distinct sets: 70% for training and 30% for testing, at the document

level, meaning 98 documents were used for training and 31 for testing. And then, I repeated this

process four times. Since training the classifiers is very time consuming, I decided to do repeated

holdout as opposed to the repeated 10-fold cross validation, which was done in the previous task

42

Hyperparameter study

— obtaining baseline results for the aforementioned tools. That being said, if I only tested a single

value on each hyperparameter, I would have done 1080 runs (4 repeats× 10 f olds× 3 levels×
9 hyperparameters = 1080 runs) with the repeated 10-fold cross-validation, and with only re-

peated holdout I would have only performed 108 runs (4 repeats×3 levels×9 hyperparameters=

108 runs). So, taking into account all hyperparameter values tested, I would have performed 13560

runs, but instead I only performed 455 runs, which allowed me to save an enormous amount of

time. That being said, taking into account the training times, in Table 5.7, and the previously

stated hyperparameters and the tested values, and ignoring the hyperparameters’ effects on train-

ing time, I estimate a total running time of approximately 35 days (837h31m19s)1 if I were to run

repeated 10-fold cross validation for this hyperparameter, which is not feasible. With the repeated

holdout, and taking into account all hyperparameter values tested, and estimating similar times to

one fold for a single repeat, I estimate a total training time of approximately 10 and a half days

(4 repeats× 3 levels× 20h55m25s = 251h05m ≈ 10.5days). For the same reason, this hyper-

parameter study was not performed using a grid search, because it would mean I would have to

perform 30696 runs, instead of the 455 I mentioned previously. Another option would be to use a

sample of the dataset instead, however this was not done because the dataset can already be consid-

ered small, and some algorithms do not gain much time difference from changing the training size.

This section presents the results for all four tools, showing the effects of their hyperparameters.

6.2.1 OpenNLP

OpenNLP allows tuning the iterations and the cut-off values. Table 6.2 shows the results for the

relevant tested cut-off values, showing that the value 4 was the best scoring for the categories level

(52.38%), and the value 3 was the best for the types (48.90%) and subtypes (52.52%). Figure 6.1

clearly shows that the best values are 3 and 4. Check Table C.1 for further detail.

Table 6.2: Results for cut-off values of OpenNLP.

Value Categories Types Subtypes

3 52.05% 48.90% 52.52%
4 52.38% 48.12% 52.35%
5 (default) 50.90% 47.59% 50.76%

Table C.2 also shows the details for the default value and the best F-measures for the different

iterations. Looking at Figure 6.2, the behaviour indicates that the higher the number of iterations,

the higher the resulting F-measure, however, it seems to reach a plateau at around 170 iterations.

That being said, categories and subtypes had the best result at 170 iterations (51.52% and 52.61%,

respectively) and types at 120 (47.81%). See Table C.2 for the details on the remaining results.

1837h31m19s = 7h47 × 6 stan f ordcorenl p_hyper_values + 1h19 × 21 opennl p_hyper_values +
9h18 × 12 spacy_hyper_values + 4m19 × nltk_naivebayes + 7h50 × 23 nltk_me_hyper_values + 11h47 ×
40 nltk_dt_hyper_values

43

Hyperparameter study

42

44

46

48

50

52

54

0 3 4 5 6 7 10

F-
m

ea
su

re
 (

%
)

Cutoff

Categories

Types

Subtypes

Figure 6.1: Results for cut-off values of OpenNLP.

Table 6.3: Results for iteration values of OpenNLP.

Value Categories Types Subtypes

100 (default) 50.90% 47.59% 50.76%
120 51.19% 47.81% 51.81%
170 51.52% 47.43% 52.61%

45

46

47

48

49

50

51

52

53

70 80 90 100 110 120 125 130 135 150 160 170 180 200

F-
m

ea
su

re
 (

%
)

Number of iterations

Categories

Types

Subtypes

Figure 6.2: Results for iteration values of OpenNLP.

44

Hyperparameter study

38

39

40

41

42

43

44

45

46

47

48

10 20 30 40 50 60 70 80 90 100 110 120

F-
m

ea
su

re
 (

%
)

Number of iterations

Categories

Types

Subtypes

Figure 6.3: Results for iteration values of spaCy.

6.2.2 spaCy

To my knowledge, the only hyperparameter available for tuning is the number of iterations. I used

the default value of 10 iterations, and tested for all values between 10 and 120 iterations (with a 10

iterations span). Results, in Figure 6.3, show that the higher the iterations, the better the results.

Table 6.4 shows that the best obtained result was for 110 iterations, where the categories level got

an F-measure of 46.60% and subtypes an F-measure of 42.46%. On the other hand, types seem

to get their highest score with higher than 90 iterations, with an F-measure of 45.48%. All results

can be seen in Table C.3.

Table 6.4: Results for iteration values of spaCy.

Value Categories Types Subtypes

10 (default) 45.70% 44.48% 39.07%
90 46.51% 45.48% 42.00%
110 46.60% 45.27% 42.46%

6.2.3 Stanford CoreNLP

Stanford CoreNLP allows specifying some of the parameters in a properties file. I decided to

check the influence of the tolerance. The results for the tested tolerance values can be seen in

Figure 6.4 (and in Table C.4), with the most relevant results displayed in Table 6.5. The default

value (1e-4) got an F-measure of 54.15%, and the best obtained result an F-measure of 54.31%,

for the 1e-3 tolerance value. As I have previously stated, the types and subtypes levels were not

tested due to the amount of computational effort required. I also checked the influence of the

epsilon parameter, however it did not have any effect at all. I believe this parameter is not used

45

Hyperparameter study

53,4

53,6

53,8

54,0

54,2

54,4

54,6

54,8

55,0

1E-05 5E-05 1E-04 5E-04 1E-03 5E-03

F-
m

ea
su

re
 (

%
)

Tolerance

Categories

Figure 6.4: Results for tolerance values of Stanford CoreNLP.

with this configuration. On a side-note, despite not being a hyperparameter, I also tested changing

the value of maxNGramLeng. Results for this last parameter can be seen in Table C.5, showing

that the performance increases with higher values. However, this was not used in the SIGARRA

dataset (Chapter 7), leaving the default value of 6.

Table 6.5: Results for tolerance values of Stanford CoreNLP.

Value Categories Types Subtypes

1e-4 (default) 54.15% - -
1e-3 54.31% - -

6.2.4 NLTK

NLTK was trained using three different classifiers - NaiveBayes, MaxEnt and DecisionTree.

Only two of them allow changing hyperparameters (MaxEnt and DecisionTree). The results

for the hyperparameter study for these classifiers are presented next.

6.2.4.1 MaxEnt

The Maximum Entropy classifier allows tuning three different hyperparameters, namely max_iter

(maximum iterations) and min_lldelta (minimum log-likelihood delta). Table 6.6 shows the results

for the Maximum Entropy classifier. Table 6.6a shows the results from the default number (10)

to the highest tested value (120), with a delta of 10. It shows that the number iterations does not

change the outcome of the classifier, this is probably due to the default min_lldelta hyperparameter

value being so high that it stops the algorithm before reaching any maximum iteration value.

I experimented with different min_lldelta values, with two different iteration values. The

most relevant results can be seen in Table 6.6b, where the first three columns have 10 iterations

(default) and the next three columns have 100 iterations (See Table C.6 for detailed results). The

46

Hyperparameter study

results show that the performance stays the same above the 0.01 value, starting at the 0.05 value.

However, when min_lldelta is below that threshold, it starts to get better results. This means that

this hyperparameter is the main reason that the algorithm performs so poorly. Also, it is important

to note that this classifier overflows when training in the types and subtypes levels, leading to the

poor results shown this section.

Table 6.6: Results for NLTK’s Maximum Entropy classifier.

(a) Results for maximum iteration (max_iter) values for MaxEnt.

Value Categories Types Subtypes

10 (default) 1.11% 1.68% 0.29%
10 - 120 (All) 1.11% 1.68% 0.29%

(b) Results for minimum log-likelihood delta (min_lldelta) values for MaxEnt.

Value Categories Types Subtypes Categories Types Subtypes

0 22.28% 1.68% 0.29% 35.24% 1.68% 0.29%
0.01 22.28% 1.68% 0.29% 24.40% 1.68% 0.29%
0.05 1.11% 1.68% 0.29% 1.11% 1.68% 0.29%
0.1 (default) 1.11% 1.68% 0.29% 1.11% 1.68% 0.29%

6.2.4.2 DecisionTree

The Decision Tree classifier allows changing three distinct hyperparameters, namely sup-

port_cutoff, depth_cutoff and entropy_cutoff. The results for these hyperparameters are presented

in Table 6.7, where Table 6.7a shows the most relevant results for the multiple values for the sup-

port_cutoff hyperparameter, having a default value of 10. It shows that this hyperparameter has

little effect in the outcome of the classifier. That being said, in the category level the best achieved

result was with a support cut-off of 16 (with an F-measure of 26.18%), the type level had the

highest value at 14 (with an F-measure of 24.31%) and the subtypes level had the best value at 11

(with an F-measure of 32.63%). Check Table C.7 for the detailed results.

Table 6.7b shows the results for the multiple values for the depth_cutoff hyperparameter, hav-

ing a default value of 100. It shows that this hyperparameter has no effect whatsoever in the

outcome of the classifier. So, all results were the same, with categories having an F-measure of

26.14%, types with 24.24% and subtypes with 32.61%. Table 6.7c shows the best results for the

entropy_cutoff hyperparameter, having a default value of 0.05. As we can see, this hyperparam-

eter had the highest impact of the three available. Overall, it shows that the higher the entropy

cut-off value, the higher the outcome, reaching the best results at around 0.08 and 0.09, namely

categories at 26.36% F-measure, types at 24.29% and subtypes at 32.70%. See Table C.8 for all

of the results.

47

Hyperparameter study

Table 6.7: Results for NLTK’s Decision Tree classifier.

(a) Results for support cut-off in Decision Tree classifier.

Value Categories Types Subtypes

10 (default) 26.14% 24.24% 32.61%
11 26.14% 24.25% 32.63%
14 26.13% 24.31% 32.63%
16 26.18% 24.27% 32.50%

(b) Results for depth cut-off in Decision Tree classifier.

Value Categories Types Subtypes

100 (default) 26.14% 24.24% 32.61%
70-120 (All) 26.14% 24.24% 32.61%

(c) Best results for entropy cut-off in Decision Tree classifier.

Value Categories Types Subtypes

0.05 (default) 26.14% 24.24% 32.61%
0.08 26.36% 24.29% 32.69%
0.09 26.36% 24.29% 32.70%

6.3 Summary

While the best solution for this study would be a grid search for hyperparameter tuning, I was not

able to do it because of time issues (a grid search would mean having to perform 30696 runs instead

of the performed 455). However, this study proved to be valuable nonetheless. Table 6.8 presents

a summary of the results obtained, showing that some hyperparameters indeed have effects on the

tools performance. In OpenNLP, I managed to get almost a 2% improvement by using a cut-off

of 4 instead of 5. I also noticed improvements by changing the iterations, but only improving up

to 51.52%, with 170 iterations. In addition, spaCy’s performance also improved by almost 1% by

changing the number of iterations, with the best result for 110 iterations. Furthermore, for Stanford

CoreNLP, it proved to be more difficult to find the available hyperparameters. That being said, I

obtained a better F-measure by changing the tolerance hyperparamenter to 1e-3, resulting in an

F-measure of 54.31%. Finally, NLTK’s Naive Bayes classifier did not have any hyperparameters,

so only the remaining two classifiers were tested. The Decision Tree classifier got an improvement

of 0.22%, with an entropy_cutoff of 0.08, and also there was a smaller improvement by changing

the support_cutoff to 16. The best improvement was, without a doubt, from NLTK’s Maximum

Entropy classifier, which increased more than 34%, which leads to the conclusion that the default

parameters are not even close to acceptable. It is important to note that the default results obtained

in this chapter may differ from the ones in Chapter 5 because this time repeated holdout was used

48

Hyperparameter study

instead of repeated 10-fold cross-validation.

Table 6.8: Summary results for the category level, for all tools.

Tool Default
F-measure Best configurations Best F-measure

OpenNLP 50.90%
cutoff=4 52.38%

iterations = 170 51.52%

SpaCy 45.70% iterations=110 46.60%

Stanford CoreNLP 54.14% tolerance=1e-3 54.31%

NLTK DT 26.14%
entropy_cutoff=0.08 26.36%

support_cutoff=16 26.18%

NLTK ME 1.11%
min_lldelta=0,
iterations=100

35.24%

49

Hyperparameter study

50

Chapter 7

SIGARRA News Corpus

This chapter presents the results obtained when training the selected tools with the SIGARRA

News Corpus, which I manually annotated. Furthermore, it also explains how the corpus was built

and the necessary transformations for it to be used as a training set with each tool.

I decided to prepare a new annotated corpus — SIGARRA News Corpus — due to the follow-

ing reasons:

• Get better results when performing Named Entity Recognition (NER) in SIGARRA news.

• The HAREM collection is outdated, primarily because of the latest Portuguese orthographic

reform (1990).

• The HAREM collection does not have the same entity classes required for the ANT project.

For the stated reasons, I prepared this new annotated corpus from a subset of SIGARRA news

from its multiple domains. I used the Brat rapid annotation tool for this task. For more information

on this dataset check Section 3.3.

7.1 Transformation

Similarly to the HAREM dataset, this dataset also went through the transformations described

in Chapter 4. However, it did not go through the same initial transformation. After manually

annotating the Named Entities (NE) in all 905 news, I converted the annotations from the standoff

format to a XML format similar to the HAREM format. This was done with the purpose of reusing

the pipeline already created for the HAREM dataset. After that, I joined the different files of news,

into a single XML file, with each news being a DOC element, with an id attribute being the news

id. Afterwards, as I previously stated, this dataset was transformed in the required input formats

for all the four tools. An example of a news document excerpt can be seen in Listing 7.1.

51

SIGARRA News Corpus

<DOC id="feup-12345">
Os estudantes estudam na <EM CATEG="Organizacao">Universidade do Porto.

</DOC>

Listing 7.1: SIGARRA News Corpus example format.

7.2 Results

I evaluated the same four tools — OpenNLP, spaCy, Stanford CoreNLP and NLTK —, using

repeated 10-fold cross validation, with four repeats. The tested hyperparameters were the default

ones, and the best ones found in the hyperparameter study (Section 6.2).

7.2.1 OpenNLP

For OpenNLP, the default configuration has 100 iterations and a cut-off value of 5, which resulted

in an F-measure of 83.52%. With the best configuration found in the previous chapter — 170

iterations and cut-off value of 4 — I obtained an F-measure of 83.74%. The results can be seen in

Table 7.1.

Table 7.1: Results for OpenNLP with SIGARRA News Corpus.

Precision Recall F-measure Hyperparameters

88.43% 79.12% 83.52% default

88.03% 79.85% 83.74%
Iterations=170,

Cutoff=4

7.2.2 spaCy

For spaCy, the default configuration has 10 iterations, which resulted in an F-measure of 79.95%.

With the best configuration found in the previous chapter — 110 iterations — I obtained an F-

measure of 81.27%. The results can be seen in Table 7.2.

Table 7.2: Results for spaCy with SIGARRA News Corpus.

Precision Recall F-measure Hyperparameters

84.85% 75.58% 79.95% default
83.95% 78.76% 81.27% Iterations=110

52

SIGARRA News Corpus

7.2.3 Stanford CoreNLP

Table 7.3 shows the results obtained, while using the SIGARRA News Corpus, for Stanford

CoreNLP. I obtained an F-measure of 86.78% with the best configuration (tolerance=1e-3), with

only a slight decrease from the default configuration (86.86%).

Table 7.3: Results for Stanford CoreNLP with SIGARRA News Corpus.

Precision Recall F-measure Hyperparameters

89.80% 84.10% 86.86% default
89.81% 83.95% 86.78% tolerance=1e-3

7.2.4 NLTK

As for NLTK, the results for the three classifiers can be seen in Table 7.4. Since NaiveBayes

does not have hyperparameters it only presents the default result, with an F-measure of 58.36%.

The DecisionTree classifier has entropy_cutoff=0.05, support_cutoff=10 and

depth_cutoff=100 as the default configuration, resulting in an F-measure of 62.37%. On

the other hand, the best configuration has entropy_cutoff=0.08, support_cutoff=16

(and depth_cutoff=100 equal to the default configuration), obtaining a smaller F-measure

of 62.26%. Finally, the MaxEnt classifier got an F-measure of 5.11% with the default con-

figuration (iterations=10, min_lldelta=0.1), and 38.49% with the best configuration

(iterations=100, min_lldelta=0).

It is interesting to note that the MaxEnt classifier got a similar problem as the types and

subtypes levels in the HAREM dataset, overflowing when training, in some folds. If those folds

hadn’t overflowed, it would have gotten an F-measure close to 75% with the best configuration.

Table 7.4: Results for NLTK with SIGARRA News Corpus.

Classifier Precision Recall F-measure Hyperparameters

NaiveBayes 54.47% 62.86% 58.36% default

DecisionTree
56.03% 70.32% 62.37% default

55.93% 70.21% 62.37%
entropy_cutoff=0.08,

support_cutoff=16

MaxEnt
16.29% 3.03% 5.11% default

45.30% 33.47% 38.49%
Iterations=100,
min_lldelta=0

53

SIGARRA News Corpus

0
10
20
30
40
50
60
70
80
90

100

F-
m

ea
su

re
 (

%
)

Entity class

OpenNLP Stanford CoreNLP spaCy NLTK DT NLTK ME NLTK NB

Figure 7.1: F-measure by entity class, by tool.

7.3 Comparison by entity class

Figure 7.1 shows the comparison between the F-measures for every tool, regarding the entity

classes. All results can be seen in Table D.4. It is clear that Stanford CoreNLP has the best score

over all entity classes, except for Localizacao, where OpenNLP scores higher, with an F-measure

of 75.61% (and Stanford CoreNLP with 75.47%). Overall, Data and Hora are the highest scoring

entity classes, and Evento the lowest. The lowest scoring algorithm is NLTK’s Maximum Entropy

in all entity classes, except for Evento, where the lowest ranking classifier was NLTK’s Naive

Bayes.

7.4 Summary

The results were significantly better with the SIGARRA News Corpus than with the HAREM

golden collection. This could be due to the SIGARRA corpus having a lot of documents with

the same structure, making it easier to learn. Also the SIGARRA News Corpus is bigger than

the HAREM collection, which could improve the training process. The tools’ ranking remained

the same as the one in the baseline ranking (Section 5.2), namely Stanford CoreNLP obtained the

best F-measure, with 86.64%, followed by OpenNLP with 83.19%, then spaCy with 80.30%, and

finally NLTK with 64.70% with the Decision Tree classifier.

Overall the hyperparameter study proved to be beneficial, because almost all “best configura-

tions” had better results, apart from the NLTK’s Decision Tree classifier and Stanford CoreNLP,

which had better results with the default configuration. It would be interesting, in the future, to

make the same hyperparameter study for the SIGARRA News Corpus, because the hyperparame-

ters could have a different effect on different corpora.

54

Chapter 8

Conclusions and future work

This chapter presents the conclusions of this dissertation regarding the results obtained in the base-

line and best performances of the selected tools against the HAREM dataset and the SIGARRA

corpus, and the achieved objectives and major contributions. In addition, some possible future

work in this area is described, namely improve the hyperparameter study, or even continuing im-

proving the SIGARRA corpus.

8.1 Contributions

This dissertation allowed me to make several contributions to the scientific community, in partic-

ular to the Named Entity Recognition (NER) field. Here are the most significant ones:

• Provided an out-of-the-box assessment of several popular tools, based on the HAREM

dataset.

• Made a hyperparameter study, improving over the default configuration and describing the

impact of individual hyperparameters for each tool.

• Developed a number of scripts to transform datasets, more specifically the HAREM dataset,

into various formats. Including the dataset already transformed1.

• Provided documents with guidelines for each tool, to make it easier to know how to run,

train and test each tool. (See Appendix E)

• Prepared an annotated Portuguese dataset (SIGARRA News Corpus [PND17]), twice as big

as HAREM.

• Created, and published, trained NER models for the HAREM dataset [Pir17a] and the

SIGARRA News Corpus [Pir17b], for every tool.
1Check https://github.com/arop/ner-re-pt/tree/master/datasets/harem. Accessed: 2017-06-

27.

55

https://github.com/arop/ner-re-pt/tree/master/datasets/harem

Conclusions and future work

• Proposed the best tool for the context of SIGARRA.

8.2 Conclusions

The main goal of this dissertation was achieved, as I was able to find a tool for entity extraction that

works in the SIGARRA news domain. Not only it works in this domain, but results show that it

can also work on other domains in the Portuguese language, which by itself is a major contribution

since this area — Named Entity Extraction for the Portuguese language — is underdeveloped in

comparison to other languages.

First, I established a baseline performance of well known tools, with the HAREM dataset, with

the best result, by Stanford CoreNLP, being the same as the latest work with this dataset, namely

an F-measure of 56.10%. This was followed by OpenNLP (53.63%), spaCy (48.81%) and NLTK

(30.97%). This shows that machine learning classifiers can perform as well as a pattern-based

algorithm, in the Portuguese language. However, results are still below the state of the art for

other languages, such as English, which already show F-measures higher than 90%. Comparison

between entity classes (see Appendix D) leads me to conclude that the HAREM dataset is too

fine-grained, it has too many entity classes in comparison to other datasets, for example the ones

used in the MUC conference.

Another contribution was a set of documents with guidelines (see Appendix E) for how to run

the selected tools (Stanford CoreNLP, OpenNLP, spaCy and NLTK) with a custom dataset. More

specifically, I laid out the requirements for every tool, with regards to the input dataset format and

how to transform the datasets to that format; how to train a custom model with a custom dataset

and custom entity classes; and finally how to use the model to perform NER.

After establishing a baseline performance, I performed a hyperparameter study, which allowed

me to select the best configurations for each tool, with the HAREM dataset. Again, the best results

showed that the ranking of the tools’ performance remained the same, with Stanford CoreNLP

taking the lead. This experience allowed me to improve the baseline results by an average of

2% for every tool, except for NLTK’s Maximum Entropy classifier, for which I managed to get

an improvement of almost 35%, leading me to conclude that the default parameters were not

well chosen, at all. The best performing models are published in INESC TEC’s CKAN research

data repository [Pir17a]. These models were trained with the HAREM dataset, producing three

different models, one per entity level, for each tool, and can be directly used for Portuguese NER.

The development of a new annotated dataset for the Portuguese language — SIGARRA News

Corpus —, using Brat, is a contribution to the scientific community and in particular to the ANT

project. Apart from the HAREM collection, this is a novel Portuguese (from Portugal) annotated

corpus. In addition, this dataset has entity classes not present in other datasets, which are specific

to the SIGARRA academic domain, such as Course or Organic Unit. The developed corpus is

twice the size of the HAREM collection (HAREM has approximately 86k tokens, and SIGARRA

has 185k tokens), with twice the number of entity annotations (HAREM has 7255 annotations,

and SIGARRA has 12644 annotations). Due to legal copyright processes, in the time of this

56

Conclusions and future work

dissertation, I was not able to publish this dataset, however it is planned to be published in the near

future in INESC TEC’s CKAN [PND17].

Finally, using the best configurations found in the hyperparameter study, I trained a NER

model, with the SIGARRA News Corpus, for all tools. As with the results obtained with the

HAREM dataset, the tools ranking remained the same, with Stanford CoreNLP having the best

result with an F-measure of 86.86%. The best performing models are published in INESC TEC’s

CKAN [Pir17b]. These models were trained with the SIGARRA News Corpus for each tool, and

can be directly used for Portuguese NER.

8.3 Future work

This experience presented promising results, showing that it is possible to train well-established

tools with a Portuguese corpus and obtain acceptable results. However, it is important to note

that the training dataset is central and, in particular, expanding the dataset can improve results. In

addition, the hyperparameter study was not ideal but feasible, because of time constraints. Instead,

I should have done hyperparameter tuning with a grid search in order to find the best configuration,

and not only the best single value for each standalone hyperparameter. So future work could be

performing a more thorough study in this matter.

Apart from Named Entity Recognition, it would be interesting to have these or other tools

perform entity linking and Relation Extraction, as these tasks would improve greatly the ANT

search engine. Finally, in this dissertation I created trained models with the SIGARRA News

Corpus, which should be used, together with the tools, as an API integrated in the ANT search

engine in the future.

57

Conclusions and future work

58

References

[AFM+08] Carlos Amaral, Helena Figueira, Afonso Mendes, Pedro Mendes, Cláudia Pinto,
and Tiago Veiga. Adaptação do sistema de reconhecimento de entidades men-
cionadas da Priberam ao HAREM. In Cristina Mota and Diana Santos, editors,
Desafios na avaliação conjunta do reconhecimento de entidades mencionadas: O
Segundo HAREM, chapter 9, pages 171–179. Linguateca, 2008.

[AM03] Masayuki Asahara and Yuji Matsumoto. Japanese Named Entity extraction with
redundant morphological analysis. In Proceedings of the 2003 Conference of
the North American Chapter of the Association for Computational Linguistics on
Human Language Technology - NAACL ’03, volume 1, pages 8–15, Edmonton,
Canada, 2003. Association for Computational Linguistics.

[Bar16] Caroline Barrière. Pattern-Based Relation Extraction. In Natural Language Under-
standing in a Semantic Web Context, chapter IV, pages 205–229. Springer Interna-
tional Publishing, Cham, 2016.

[BC99] Matthew Berland and Eugene Charniak. Finding parts in very large corpora. In
Proceedings of the 37th annual meeting of the Association for Computational Lin-
guistics on Computational Linguistics, pages 57–64, Morristown, NJ, USA, 1999.
Association for Computational Linguistics.

[BDVR08] Mírian Bruckschen, José Guilherme Camargo De Souza, Renata Vieira, and San-
dro Rigo. Sistema SeRELeP para o reconhecimento de relações entre entidades
mencionadas. In Cristina Mota and Diana Santos, editors, Desafios na avaliação
conjunta do reconhecimento de entidades mencionadas: O Segundo HAREM, chap-
ter 14, pages 247–260. Linguateca, 2008.

[Bic07] Eckhard Bick. Functional aspects on Portuguese NER. In Diana Santos and Nuno
Cardoso, editors, Reconhecimento de entidades mencionadas em português: Doc-
umentação e actas do HAREM, a primeira avaliação conjunta na área, chapter 12,
pages 145–155. Linguateca, 2007.

[BKL09] Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with
Python. O’Reilly Media Inc, 2009.

[BMSW97] Daniel M. Bikel, Scott Miller, Richard Schwartz, and Ralph Weischedel. Nymble:
a High-Performance Learning Name-finder. In 5th International Conference on
Applied Natural Language Processing, pages 194–201, Washington, DC, 1997. As-
sociation for Computational Linguistics.

59

REFERENCES

[Bri99] Sergey Brin. Extracting Patterns and Relations from the World Wide Web. In
Selected Papers from the International Workshop on The World Wide Web and
Databases, pages 172–183, London, UK, 1999. Springer-Verlag.

[BSAG98] Andrew Borthwick, John Sterling, Eugene Agichtein, and Ralph Grishman. Ex-
ploiting Diverse Knowledge Sources via Maximum Entropy in Named Entity
Recognition. In Proceedings of the Sixth Workshop on Very Large Corpora, pages
152–160, 1998.

[Car06] Nuno Francisco Pereira Freire Cardoso. Avaliação de Sistemas de Reconhecimento
de Entidades Mencionadas. Master’s thesis, University of Porto, 2006.

[Car07] Wesley Seidel Carvalho. Reconhecimento de entidades mencionadas em português.
Master’s thesis, Universidade de São Paulo, São Paulo, February 2007.

[Car08] Nuno Cardoso. REMBRANDT -Reconhecimento de Entidades Mencionadas
Baseado em Relações e ANálise Detalhada do Texto. In Cristina Mota and Diana
Santos, editors, Desafios na avaliação conjunta do reconhecimento de entidades
mencionadas: O Segundo HAREM, chapter 11, pages 195–211. Linguateca, 2008.

[Cha08] Marcirio Silveira Chaves. Geo-ontologias e padrões para reconhecimento de locais
e de suas relações em textos: o SEI-Geo no Segundo HAREM. In Cristina Mota and
Diana Santos, editors, Desafios na avaliação conjunta do reconhecimento de enti-
dades mencionadas: O Segundo HAREM, chapter 13, pages 231–245. Linguateca,
2008.

[CM98] Nancy Chinchor and Elaine Marsh. MUC-7 Information Extraction Task Defini-
tion. In Proceedings of a 7th Message Understanding Conference (MUC-7), pages
359–367, 1998.

[CV95] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995.

[Dad13] Das Dad. Corpus processor. https://github.com/dasdad/corpus-processor, 2013.
Accessed: 2017-06-27.

[dAFLV14] Daniela O. F. do Amaral, Evandro Fonseca, Lucelene Lopes, and Renata Vieira.
Comparative Analysis of Portuguese Named Entities Recognition Tools. In Nico-
letta Calzolari, Khalid Choukri, Thierry Declerck, Hrafn Loftsson, Bente Mae-
gaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, and Stelios Piperidis, edi-
tors, Proceedings of the Ninth International Conference on Language Resources
and Evaluation (LREC’14), pages 244–249. European Language Resources Asso-
ciation (ELRA), 2014.

[dAV13] Daniela O. F. do Amaral and Renata Vieira. O Reconhecimento de Entidades
Nomeadas por meio de Conditional Random Fields para a Língua Portuguesa. In
Proceedings of the 9th Brazilian Symposium in Information and Human Language
Technology, pages 59–68, 2013.

[DB96] Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems via
error-correcting output codes. Journal of Artificial Intelligence Research, 2(1):263–
286, 1996.

60

https://github.com/dasdad/corpus-processor

REFERENCES

[DMP+04] George Doddington, Alexis Mitchell, Mark Przybocki, Lance Ramshaw, Stephanie
Strassel, and Ralph Weischedel. The Automatic Content Extraction (ACE) Pro-
gram Tasks, Data, and Evaluation. In 4th International Conference on Language
Resources and Evaluation, pages 24–30, Lisbon, Portugal, 2004.

[EB10] Asif Ekbal and Sivaji Bandyopadhyay. Named Entity Recognition using Sup-
port Vector Machine : A Language Independent Approach. International Jour-
nal of Computer, Electrical, Automation, Control and Information Engineering,
4(September):155–170, 2010.

[FGM05] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incorporating Non-
local Information into Information Extraction Systems by Gibbs Sampling. In Pro-
ceedings of the 43nd Annual Meeting of the Association for Computational Lin-
guistics (ACL 2005), pages 363–370, 2005.

[FKT+07] Óscar Ferrández, Zornitsa Kozareva, Antonio Toral, Rafael Muñoz, and Andrés
Montoyo. Tackling HAREM’s Portuguese Named Entity Recognition task with
Spanish resources. In Diana Santos and Nuno Cardoso, editors, Reconhecimento
de entidades mencionadas em português: Documentação e actas do HAREM, a
primeira avaliação conjunta na área, chapter 11, pages 137–144. Linguateca, 2007.

[FMS+10] Cláudia Freitas, Cristina Mota, Diana Santos, Hugo Gonçalo Oliveira, and Paula
Carvalho. Second HAREM : Advancing the State of the Art of Named Entity
Recognition in Portuguese. In Proceedings of the Seventh International Conference
on Language Resources and Evaluation (LREC’10), number 3, pages 3630–3637,
2010.

[Fou] The Apache Software Foundation. Apache OpenNLP. https://opennlp.apache.org/.
Accessed: 2017-06-27.

[FSM+09] Cláudia Freitas, Diana Santos, Cristina Mota, Hugo Gonçalo Oliveira, and Paula
Carvalho. Relation detection between named entities: report of a shared task.
In Proceedings of the NAACL HLT Workshop on Semantic Evaluations: Recent
Achievements and Future Directions, pages 129–137, Boulder, Colorado, 2009.
Association for Computational Linguistics.

[GDL+13] Abhishek Gattani, AnHai Doan, Digvijay S. Lamba, Nikesh Garera, Mitul Tiwari,
Xiaoyong Chai, Sanjib Das, Sri Subramaniam, Anand Rajaraman, and Venky Hari-
narayan. Entity extraction, linking, classification, and tagging for social media. In
Proceedings of the VLDB Endowment, volume 6, pages 1126–1137. VLDB En-
dowment, August 2013.

[GS96] Ralph Grishman and Beth Sundheim. Message Understanding Conference-6. In
Proceedings of the 16th conference on Computational linguistics, volume 1, pages
466–471, Morristown, NJ, USA, 1996. Association for Computational Linguistics.

[Hea92] Marti A. Hearst. Automatic acquisition of hyponyms from large text corpora. In
Proceedings of the 14th conference on Computational linguistics, volume 2, pages
539–545, Morristown, NJ, USA, 1992. Association for Computational Linguistics.

[Hona] Matthew Honnibal. spaCy. https://spacy.io/. Accessed: 2017-06-27.

61

https://opennlp.apache.org/
https://spacy.io/

REFERENCES

[Honb] Matthew Honnibal. Thinc: Practical Machine Learning for NLP in Python.
https://github.com/explosion/thinc. Accessed: 2017-06-27.

[Kon12] Michal Konkol. Named Entity Recognition PhD Study Report. Technical report,
University of West Bohemia in Pilsen, Pilsen, Czech Republic, 2012.

[KT07] Jun’ichi Kazama and Kentaro Torisawa. Exploiting Wikipedia as External Knowl-
edge for Named Entity Recognition. In Proceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), pages 698–707, Prague, Czech Republic,
2007. Association for Computational Linguistics.

[KT08] Jun’ichi Kazama and Kentaro Torisawa. Inducing Gazetteers for Named Entity
Recognition by Large-scale Clustering of Dependency Relations. In Proceedings
of ACL-08: HLT, pages 407–415, Columbus, Ohio, USA, 2008. Association for
Computational Linguistics.

[LMP01] John Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional Ran-
dom Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In
Proceedings of the eighteenth international conference on machine learning, pages
282–289, 2001.

[MD07] Ruy Luiz Milidiú and Julio Cesar Duarte. Machine Learning Algorithms for Por-
tuguese Named Entity Recognition. Intel. Artif., 11(36), 2007.

[ML03] Andrew McCallum and Wei Li. Early results for named entity recognition with con-
ditional random fields, feature induction and web-enhanced lexicons. In Proceed-
ings of the seventh conference on Natural language learning at HLT-NAACL 2003,
volume 4, pages 188–191, Stroudsburg, PA, USA, 2003. Association for Computa-
tional Linguistics.

[MMG99] Andrei Mikheev, Marc Moens, and Claire Grover. Named Entity recognition with-
out gazetteers. In Proceedings of the ninth conference on European chapter of
the Association for Computational Linguistics, pages 1–8, Morristown, NJ, USA,
1999. Association for Computational Linguistics.

[Mot08] Cristina Mota. R3M, uma participação minimalista no Segundo HAREM. In
Cristina Mota and Diana Santos, editors, Desafios na avaliação conjunta do re-
conhecimento de entidades mencionadas: O Segundo HAREM, chapter 10, pages
181–193. Linguateca, 2008.

[MSC+08] Cristina Mota, Diana Santos, Paula Carvalho, Cláudia Freitas, and Hugo Gonçalo
Oliveira. Apresentação detalhada das coleções do Segundo HAREM. In Cristina
Mota and Diana Santos, editors, Desafios na avaliação conjunta do reconhecimento
de entidades mencionadas: O Segundo HAREM, chapter Apêndice H, pages 355–
377. Linguateca, 2008.

[MSCMA09] Mónica Marrero, Sonia Sánchez-Cuadrado, Jorge Morato, and Yorgos An-
dreadakis. Evaluation of Named Entity Extraction Systems. Research In Computer
Science, 41:47–58, 2009.

62

https://github.com/explosion/thinc

REFERENCES

[OMF+08] Hugo Gonçalo Oliveira, Cristina Mota, Cláudia Freitas, Diana Santos, and Paula
Carvalho. Avaliação à medida do Segundo HAREM. In Cristina Mota and Diana
Santos, editors, Desafios na avaliação conjunta do reconhecimento de entidades
mencionadas: O Segundo HAREM, chapter 5, pages 97–129. Linguateca, 2008.

[Per14] Jacob Perkins. Python 3 Text Processing with NLTK 3 Cookbook. Packt Publishing,
2014.

[Pir17a] André Pires. HAREM NER Models for OpenNLP, Stanford CoreNLP, spaCy,
NLTK. https://rdm.inesctec.pt/dataset/cs-2017-005, June 2017.

[Pir17b] André Pires. SIGARRA News Corpus NER Models for OpenNLP, Stanford
CoreNLP, spaCy, NLTK. https://rdm.inesctec.pt/dataset/cs-2017-006, June 2017.

[PND17] André Pires, Sérgio Nunes, and José Devezas. SIGARRA News Corpus.
https://rdm.inesctec.pt/dataset/cs-2017-004, June 2017.

[PPA16] Laura Pandolfo, Luca Pulina, and Giovanni Adorni. A Framework for Automatic
Population of Ontology-Based Digital Libraries. In AI*IA 2016 Advances in Artifi-
cial Intelligence, pages 406–417. Springer International Publishing, 2016.

[PRPM07] Natalia Ponomareva, Paolo Rosso, Ferran Pla, and Antonio Molina. Conditional
Random Fields vs. Hidden Markov Models in a biomedical Named Entity Recog-
nition task. In Proc. of Int. Conf. Recent Advances in Natural Language Processing,
RANLP, pages 479–483, 2007.

[Rau91] Lisa F. Rau. Extracting company names from text. In Proceedings of the Seventh
IEEE Conference on Artificial Intelligence Application, volume i, pages 29–32.
IEEE Comput. Soc. Press, 1991.

[RJS+16] Conceição Rocha, Alípio Jorge, Roberta Sionara, Paula Brito, Carlos Pimenta, and
Solange Rezende. PAMPO: using pattern matching and pos-tagging for effective
Named Entities recognition in Portuguese. CoRR, abs/1612.0, December 2016.

[Sar06] Luís Sarmento. SIEMÊS - A named-entity recognizer for Portuguese relying on
similarity rules. In Renata Vieira, Paulo Quaresma, Maria das Graças Volpe Nunes,
Nuno J. Mamede, Cláudia Oliveira, and Maria Carmelita Dias, editors, Computa-
tional Processing of the Portuguese Language: 7th International Workshop, PRO-
POR 2006, Itatiaia, Brazil, May 13-17, 2006. Proceedings, volume 3960 LNAI,
pages 90–99. Springer Berlin Heidelberg, 2006.

[Sar07] Luís Sarmento. O SIEMÊS e a sua participação no HAREM e no Mini-HAREM.
In Cristina Mota, editor, Reconhecimento de entidades mencionadas em português:
Documentação e actas do HAREM, a primeira avaliação conjunta na área, chap-
ter 14, pages 173–189. Linguateca, 2007.

[SC06] Diana Santos and Nuno Cardoso. A Golden Resource for Named Entity Recogni-
tion in Portuguese. In Proceedings of the 7th International Workshop, PROPOR
2006, pages 69–79. Springer Berlin Heidelberg, 2006.

[SFMB07] Horacio Saggion, Adam Funk, Diana Maynard, and Kalina Bontcheva. Ontology-
based Information Extraction for Business Intelligence. In Proceedings of the 6th
International The Semantic Web and 2Nd Asian Conference on Asian Semantic Web
Conference, pages 843–856, Berlin, Heidelberg, 2007. Springer-Verlag.

63

https://rdm.inesctec.pt/dataset/cs-2017-005
https://rdm.inesctec.pt/dataset/cs-2017-006
https://rdm.inesctec.pt/dataset/cs-2017-004

REFERENCES

[Sin12] Amit Singhal. Introducing the Knowledge Graph: things, not strings.
https://googleblog.blogspot.pt/2012/05/introducing-knowledge-graph-things-
not.html, May 2012.

[SO06] Andrew Smith and Miles Osborne. Using gazetteers in discriminative information
extraction. In Proceedings of the Tenth Conference on Computational Natural Lan-
guage Learning, pages 133–140, New York City, New York, 2006. Association for
Computational Linguistics.

[Sol07] Thamar Solorio. MALINCHE: A NER system for Portuguese that reuses knowl-
edge from Spanish. In Diana Santos and Nuno Cardoso, editors, Reconhecimento
de entidades mencionadas em português: Documentação e actas do HAREM, a
primeira avaliação conjunta na área,, chapter 10, pages 123–136. Linguateca,
2007.

[SPC06] Luís Sarmento, Ana Sofia Pinto, and Luís Cabral. REPENTINO – A Wide-Scope
Gazetteer for Entity Recognition in Portuguese. Lecture Notes in Computer Sci-
ence, 3960:31–40, 2006.

[SPT+12] Pontus Stenetorp, Sampo Pyysalo, Goran Topić, Tomoko Ohta, Sophia Ananiadou,
and Jun’ichi Tsujii. brat: a web-based tool for NLP-assisted text annotation. In
Proceedings of the Demonstrations Session at EACL 2012, Avignon, France, April
2012. Association for Computational Linguistics.

[SSCV06] Diana Santos, Nuno Seco, Nuno Cardoso, and Rui Vilela. HAREM: An Advanced
NER Evaluation Contest for Portuguese. In Proceedings of the 5th International
Conference on Language Resources and Evaluation, LREC’2006, pages 1986–
1991, 2006.

[TD03] Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the CoNLL-2003
shared task. In Proceedings of the seventh conference on Natural language learn-
ing at HLT-NAACL 2003, volume 4, pages 142–147, Morristown, NJ, USA, 2003.
Association for Computational Linguistics.

[TSO11] Jorge Teixeira, Luís Sarmento, and Eugénio Oliveira. A Bootstrapping Approach
for Training a NER with Conditional Random Fields. In Progress in Artificial
Intelligence, pages 664–678. Springer Berlin Heidelberg, 2011.

[WD10] Daya C. Wimalasuriya and Dejing Dou. Ontology-based information extraction:
An introduction and a survey of current approaches. Journal of Information Sci-
ence, 36(3):306–323, 2010.

[YALR13] Ugan Yasavur, Reza Amini, Christine Lisetti, and Naphtali Rishe. Ontology-based
Named Entity Recognizer for Behavioral Health. In Proceedings of the 26th Inter-
national Florida Artificial Intelligence Research Society Conference, (3):249–254,
2013.

[ZS02] Guodong Zhou and Jian Su. Named Entity Recognition using an HMM-based
Chunk Tagger. In Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 473–480, Philadelphia, 2002. Association
for Computational Linguistics.

64

https://googleblog.blogspot.pt/2012/05/introducing-knowledge-graph-things-not.html
https://googleblog.blogspot.pt/2012/05/introducing-knowledge-graph-things-not.html

Appendix A

HAREM classes

Table A.1: Categories, types and subtypes for HAREM’s golden collection.

Categories Types Subtypes

Abstraccao

Disciplina

Estado

Ideia

Nome

Acontecimento

Efemeride

Evento

Organizado

Coisa

Classe

MembroClasse

Objecto

Substancia

Local

Fisico Ilha, AguaCurso, Planeta, Regiao, Relevo, AguaMassa, Outro

Humano Rua, Pais, Divisao, Regiao, Construcao, Outro

Virtual ComSocial, Sitio, Obra, Outro

Obra

Arte

Plano

Reproduzida

Organizacao

Administracao

Empresa

Instituicao

Pessoa

Cargo

GrupoCargo

GrupoInd

GrupoMembro

Continued on next page

65

HAREM classes

Table A.1 – continued from previous page
Categories Types Subtypes

Individual

Membro

Povo

Tempo

Duracao

Frequencia

Generico

Tempo_Calend Hora, Intervalo, Data, Outro

Valor

Classificacao

Moeda

Quantidade

Outro

66

Appendix B

SIGARRA News Corpus entity
distribution

Table B.1: Distribution of SIGARRA news and average number of characters by domain.

SIGARRA domain News % Average number
of characters

FLUP 128 14.14% 1151
FAUP 116 12.82% 1343
FEUP 114 12.60% 1384
FMUP 110 12.15% 831
FCUP 83 9.17% 1156
FPCEUP 73 8.07% 1324
SPUP 58 6.41% 2340
FADEUP 45 4.97% 901
ICBAS 39 4.31% 1053
FDUP 36 3.98% 582
FBAUP 27 2.98% 667
FEP 21 2.32% 759
FCNAUP 17 1.88% 986
FFUP 17 1.88% 1635
REITORIA 11 1.21% 1441
FMDUP 8 0.88% 959
UP 7 0.77% 1111

Total 905 100% (Average) 1154

67

SIGARRA News Corpus entity distribution

Table B.2: Distribution of entity annotations in SIGARRA news.

Entity tag Number of
annotated classes %

Data 2811 22.23%
Organizacao 2320 18.35%
Pessoa 2159 17.08%
UnidadeOrganica 1814 14.35%
Localizacao 1593 12.60%
Hora 1015 8.03%
Curso 521 4.12%
Evento 411 3.25%

Total 12644 100%

68

SIGARRA News Corpus entity distribution

Table B.3: Distribution of entity annotations in SIGARRA news, per domain.

SIGARRA
domain Hora Evento Organizacao Curso Pessoa Localizacao Data UnidadeOrganica

FADEUP
66

(15.3%)
18

(4.2%)
68

(15.7%)
10

(2.3%)
35

(8.1%)
57

(13.2%)
128

(29.6%)
50

(11.6%)

FAUP
155

(5.6%)
119

(4.3%)
438

(15.7%)
35

(1.3%)
693

(24.8%)
514

(18.4%)
535

(19.2%)
300

(10.8%)

FBAUP
48

(17.3%)
12

(4.3%)
10

(3.6%)
18

(6.5%)
49

(17.6%)
38

(13.7%)
75

(27%)
28

(10.1%)

FCNAUP
19

(10.2%)
2

(1.1%)
8

(4.3%)
38

(20.4%)
16

(8.6%)
11

(5.9%)
82

(44.1%)
10

(5.4%)

FCUP
53

(6.2%)
22

(2.6%)
211

(24.8%)
30

(3.5%)
111

(13.1%)
137

(16.1%)
188

(22.1%)
98

(11.5%)

FDUP
65

(23.8%)
2

(0.7%)
4

(1.5%)
15

(5.5%)
36

(13.2%)
7

(2.6%)
104

(38.1%)
40

(14.7%)

FEP
20

(12%)
2

(1.2%)
12

(7.2%)
26

(15.6%)
17

(10.2%)
7

(4.2%)
51

(30.5%)
32

(19.2%)

FEUP
84

(4.9%)
52

(3%)
301

(17.6%)
58

(3.4%)
303

(17.7%)
139

(8.1%)
326

(19.1%)
448

(26.2%)

FFUP
71

(26.8%)
15

(5.7%)
32

(12.1%)
21

(7.9%)
7

(2.6%)
27

(10.2%)
63

(23.8%)
29

(10.9%)

FLUP
125

(7.5%)
65

(3.9%)
325

(19.5%)
46

(2.8%)
344

(20.7%)
247

(14.8%)
360

(21.6%)
153

(9.2%)

FMDUP
2

(3.6%)
2

(3.6%)
7

(12.5%)
3

(5.4%)
3

(5.4%)
4

(7.1%)
19

(33.9%)
16

(28.6%)

FMUP
110

(8.4%)
57

(4.4%)
256

(19.6%)
38

(2.9%)
199

(15.2%)
169

(13%)
282

(21.6%)
194

(14.9%)

FPCEUP
122

(10.1%)
20

(1.6%)
287

(23.7%)
69

(5.7%)
159

(13.1%)
148

(12.2%)
269

(22.2%)
139

(11.5%)

ICBAS
35

(6%)
14

(2.4%)
106

(18.2%)
66

(11.4%)
89

(15.3%)
49

(8.4%)
123

(21.2%)
99

(17%)

REITORIA
34

(19.5%)
6

(3.4%)
27

(15.5%)
1

(0.6%)
32

(18.4%)
14

(8%)
37

(21.3%)
23

(13.2%)

SPUP
2

(0.3%)
0

(0%)
204

(32.6%)
47

(7.5%)
64

(10.2%)
10

(1.6%)
148

(23.7%)
150

(24%)

UP
4

(5.4%)
3

(4.1%)
24

(32.4%)
0

(0%)
2

(2.7%)
15

(20.3%)
21

(28.4%)
5

(6.8%)

Total
1015
(8%)

411
(3.3%)

2320
(18.3%)

521
(4.1%)

2159
(17.1%)

1593
(12.6%)

2811
(22.2%)

1814
(14.3%)

69

SIGARRA News Corpus entity distribution

70

Appendix C

Hyperparameter study results

C.1 OpenNLP

Table C.1: Results for cutoff values in OpenNLP.

Value Categories Types Subtypes

0 49.93% 46.73% 47.00%
3 52.05% 48.90% 52.52%
4 52.38% 48.12% 52.35%
5 (default) 50.90% 47.59% 50.76%
6 50.85% 46.41% 50.64%
7 50.21% 46.34% 50.73%
10 49.09% 44.78% 50.65%

Table C.2: Results for iteration values in OpenNLP.

Value Categories Types Subtypes

70 50.75% 47.39% 50.04%
80 50.85% 47.51% 50.52%
90 50.91% 47.54% 50.75%
100 (default) 50.90% 47.59% 50.76%
110 50.94% 47.67% 51.22%
120 51.19% 47.81% 51.81%
125 51.31% 47.77% 51.81%
130 51.33% 47.68% 51.91%
135 51.22% 47.68% 51.94%
150 51.31% 47.56% 52.02%
160 51.46% 47.46% 52.20%
170 51.52% 47.43% 52.61%
180 51.45% 47.50% 52.58%
200 51.38% 47.58% 52.59%

71

Hyperparameter study results

C.2 SpaCy

Table C.3: Results for number of iterations in spaCy.

Value Categories Types Subtypes

10 (default) 45.70% 44.48% 39.07%
20 45.71% 44.96% 40.31%
30 46.07% 45.11% 41.03%
40 46.20% 45.05% 41.15%
50 46.14% 45.08% 41.55%
60 46.33% 45.13% 41.33%
70 46.57% 45.17% 41.62%
80 46.43% 45.17% 42.09%
90 46.51% 45.48% 42.00%
100 46.21% 45.48% 42.11%
110 46.60% 45.27% 42.46%
120 46.13% 45.48% 41.79%

C.3 Stanford CoreNLP

Table C.4: Results for tolerance values in Stanford CoreNLP.

Value Categories Types Subtypes

1e-5 54.07% - -
5e-5 54.02% - -
1e-4 (default) 54.15% - -
5e-4 54.02% - -
1e-3 54.31% - -
5e-3 54.12% - -

Table C.5: Results for maxNGramLeng values in Stanford CoreNLP.

Value Categories Types Subtypes

4 53.47% - -
5 53.77% - -
6 (default) 54.15% - -
7 54.37% - -

72

Hyperparameter study results

C.4 NLTK

Table C.6: Results for min_lldelta with 10 iterations to the left, and 100 iterations to the right, for
Maximum Entropy classifier.

Value Categories Types Subtypes Categories Types Subtypes

0 22.28% 1.68% 0.29% 35.24% 1.68% 0.29%
0.0000001 22.28% 1.68% 0.29% 35.24% 1.68% 0.29%
0.000001 22.28% 1.68% 0.29% 35.24% 1.68% 0.29%
0.00001 22.28% 1.68% 0.29% 35.24% 1.68% 0.29%
0.0001 22.28% 1.68% 0.29% 35.24% 1.68% 0.29%
0.001 22.28% 1.68% 0.29% 32.69% 1.68% 0.29%
0.01 22.28% 1.68% 0.29% 24.40% 1.68% 0.29%
0.05 1.11% 1.68% 0.29% 1.11% 1.68% 0.29%
0.1 (default) 1.11% 1.68% 0.29% 1.11% 1.68% 0.29%
0.15 1.11% 1.68% 0.29% 1.11% 1.68% 0.29%
0.2 1.11% 1.68% 0.29% 1.11% 1.68% 0.29%

Table C.7: Results for support cutoff in Decision Tree classifier.

Value Categories Types Subtypes

3 26.12% 24.25% 32.59%
7 26.14% 24.25% 32.62%
8 26.14% 24.25% 32.61%
9 26.14% 24.24% 32.61%
10 (default) 26.14% 24.24% 32.61%
11 26.14% 24.25% 32.63%
12 26.14% 24.28% 32.60%
13 26.13% 24.30% 32.63%
14 26.13% 24.31% 32.63%
15 26.17% 24.28% 32.50%
16 26.18% 24.27% 32.50%
17 26.18% 24.27% 32.46%
18 26.16% 24.29% 32.46%
19 26.16% 24.27% 32.47%
20 26.14% 24.28% 32.47%

73

Hyperparameter study results

Table C.8: Results for entropy cutoff in Decision Tree classifier.

Value Categories Types Subtypes

0.03 26.14% 24.24% 32.60%
0.04 26.14% 24.24% 32.61%
0.05 (default) 26.14% 24.24% 32.61%
0.06 26.19% 24.24% 32.61%
0.07 26.19% 24.25% 32.62%
0.08 26.36% 24.29% 32.69%
0.09 26.36% 24.29% 32.70%
0.10 26.36% 24.29% 32.70%
0.11 26.36% 24.28% 32.70%
0.12 26.36% 24.28% 32.65%
0.13 26.36% 24.28% 32.65%

74

Appendix D

Baseline results by entity class

D.1 HAREM

Table D.1: F-measure by entity class (categories), by tool.

Entity class OpenNLP Stanford
CoreNLP spaCy NLTK DT NLTK ME NLTK NB

Abstraccao 8.05% 12.95% 2.57% 8.90% 0.00% 0.76%
Acontecimento 31.81% 29.14% 20.17% 16.49% 0.00% 8.46%
Coisa 13.00% 17.67% 4.06% 16.72% 0.00% 4.32%
Local 59.12% 61.74% 51.38% 42.92% 4.81% 38.41%
Obra 33.32% 32.81% 26.82% 6.49% 1.65% 14.67%
Organizacao 48.61% 47.96% 39.47% 26.57% 0.00% 24.16%
Outro 21.14% 7.28% 0.00% 10.40% 0.00% 0.00%
Pessoa 58.55% 62.53% 54.78% 24.05% 0.00% 38.35%
Tempo 67.18% 71.01% 62.54% 28.51% 1.09% 31.65%
Valor 55.63% 55.97% 35.58% 16.74% 0.00% 18.54%

Table D.2: F-measure by entity class (types), by tool.

Entity class OpenNLP spaCy NLTK DT NLTK ME NLTK NB
Abstraccao_Disciplina 7.27% 3.93% 12.43% 0.00% 0.29%

Abstraccao_Estado 29.16% 0.00% 0.00% 0.00% 0.00%

Abstraccao_Ideia 0.00% 0.00% 0.00% 0.00% 0.00%

Abstraccao_Nome 7.73% 0.56% 0.00% 0.00% 0.00%

Acontecimento_Efemeride 25.12% 18.74% 15.98% 0.00% 0.00%

Acontecimento_Evento 3.34% 0.00% 0.00% 0.00% 0.00%

Acontecimento_Organizado 24.62% 22.61% 26.21% 0.00% 9.58%

Coisa_Classe 11.94% 7.72% 18.78% 0.00% 5.64%

Continued on next page

75

Baseline results by entity class

Table D.2 – continued from previous page
Entity class OpenNLP spaCy NLTK DT NLTK ME NLTK NB

Coisa_MembroClasse 0.00% 0.00% 0.00% 0.00% 0.00%

Coisa_Objecto 4.17% 0.00% 0.00% 0.00% 0.00%

Coisa_Outro 0.00% 0.00% 0.00% 0.00% 0.00%

Coisa_Substancia 0.00% 0.00% 70.32% 6.46% 0.00%

Local_Fisico 13.70% 0.76% 16.14% 0.00% 0.00%

Local_Humano 57.32% 53.77% 47.07% 7.43% 35.68%

Local_Outro 0.00% 0.00% 16.46% 0.00% 0.00%

Local_Virtual 11.87% 3.80% 6.43% 0.00% 0.00%

Obra_Arte 8.64% 0.00% 8.41% 0.00% 0.00%

Obra_Plano 23.59% 12.12% 13.77% 2.08% 5.26%

Obra_Reproduzida 31.41% 30.10% 4.11% 0.44% 17.43%

Organizacao_Administracao 39.81% 33.12% 32.96% 0.00% 14.60%

Organizacao_Empresa 14.90% 2.94% 8.93% 0.00% 1.29%

Organizacao_Instituicao 37.09% 35.35% 20.63% 0.00% 14.83%

Pessoa_Cargo 31.92% 33.98% 13.36% 0.00% 1.71%

Pessoa_GrupoCargo 1.67% 0.00% 63.67% 1.31% 0.00%

Pessoa_GrupoInd 0.00% 0.00% 0.00% 0.00% 0.00%

Pessoa_GrupoMembro 21.75% 9.22% 21.31% 0.00% 6.95%

Pessoa_Individual 62.67% 56.59% 23.87% 1.72% 42.85%

Pessoa_Membro 0.00% 0.00% 0.00% 0.00% 0.00%

Pessoa_Povo 0.00% 0.00% 0.00% 0.00% 0.00%

Tempo_Duracao 7.45% 7.89% 1.83% 0.00% 0.00%

Tempo_Frequencia 30.23% 12.19% 19.08% 0.00% 0.00%

Tempo_Generico 7.36% 2.53% 12.62% 0.00% 0.00%

Tempo_Tempo_Calend 68.59% 67.43% 28.51% 1.71% 32.89%

Valor_Classificacao 11.62% 30.82% 13.35% 0.00% 0.00%

Valor_Moeda 52.09% 29.63% 5.09% 0.00% 16.99%

Valor_Quantidade 45.76% 31.78% 17.77% 0.00% 20.61%

Table D.3: F-measure by entity class (subtypes), by tool.

Entity class OpenNLP spaCy NLTK DT NLTK ME NLTK NB
Local_Fisico_AguaCurso 25.01% 0.00% 0.00% 0.00% 0.00%

Local_Fisico_AguaMassa 8.80% 0.00% 33.63% 1.19% 0.00%

Local_Fisico_Ilha 0.00% 0.00% 7.86% 3.10% 0.00%

Continued on next page

76

Baseline results by entity class

Table D.3 – continued from previous page
Entity class OpenNLP spaCy NLTK DT NLTK ME NLTK NB

Local_Fisico_Outro 0.00% 0.00% 0.00% 0.00% 0.00%

Local_Fisico_Planeta 0.00% 0.00% 16.25% 0.00% 0.00%

Local_Fisico_Regiao 0.00% 0.00% 6.28% 0.00% 0.00%

Local_Fisico_Relevo 14.68% 0.00% 12.75% 6.86% 0.00%

Local_Humano_Construcao 17.91% 3.09% 12.39% 0.00% 5.14%

Local_Humano_Divisao 52.20% 27.60% 50.75% 0.09% 24.89%

Local_Humano_Outro 23.76% 0.00% 0.00% 0.00% 0.00%

Local_Humano_Pais 58.87% 38.28% 64.62% 0.00% 22.70%

Local_Humano_Regiao 13.45% 2.03% 16.47% 0.00% 0.00%

Local_Humano_Rua 22.17% 5.16% 1.39% 0.00% 0.00%

Local_Virtual_ComSocial 3.98% 0.00% 8.80% 0.00% 0.00%

Local_Virtual_Obra 0.00% 0.00% 0.00% 0.00% 0.00%

Local_Virtual_Outro 0.00% 0.00% 0.00% 0.00% 0.00%

Local_Virtual_Sitio 0.00% 0.00% 0.00% 0.00% 0.00%

Obra_Arte_Construcao 0.00% 0.00% 0.00% 0.00% 0.00%

Obra_Arte_Edificio 0.00% 0.00% 0.00% 0.00% 0.00%

Obra_Arte_Outro 0.00% 0.00% 0.00% 0.00% 0.00%

Obra_Arte_Pintura 0.00% 0.00% 0.00% 0.00% 0.00%

Obra_Reproduzida_Filme 0.00% 0.00% 0.00% 0.00% 0.00%

Obra_Reproduzida_Livro 0.00% 0.00% 0.00% 0.00% 0.00%

Obra_Reproduzida_Musica 8.60% 0.00% 0.00% 0.00% 0.00%

Obra_Reproduzida_Outro 0.00% 0.00% 0.00% 0.00% 0.00%

Obra_Reproduzida_Programa 0.00% 0.00% 0.00% 0.00% 0.00%

Obra_Reproduzida_Teatro 0.00% 0.00% 0.00% 0.00% 0.00%

Organizacao_Administracao_Sub 0.00% 0.00% 0.00% 2.27% 0.00%

Organizacao_Empresa_Sub 0.00% 0.00% 0.00% 0.00% 0.00%

Organizacao_Instituicao_Sub 2.62% 0.00% 11.12% 0.00% 0.00%

Tempo_Tempo_Calend_Data 64.16% 59.47% 30.22% 0.99% 27.51%

Tempo_Tempo_Calend_Hora 16.63% 5.34% 0.00% 0.00% 0.00%

Tempo_Tempo_Calend_Intervalo 48.70% 46.28% 0.00% 0.00% 0.00%

77

Baseline results by entity class

D.2 SIGARRA News Corpus

Table D.4: F-measure by entity class, by tool.

Entity class OpenNLP Stanford
CoreNLP spaCy NLTK DT NLTK ME NLTK NB

Hora 89.69% 96.70% 93.49% 90.16% 63.40% 71.42%
Evento 37.10% 33.42% 32.67% 11.29% 14.62% 3.24%
Organizacao 75.59% 77.43% 72.06% 53.30% 51.02% 44.07%
Curso 66.64% 66.99% 60.73% 43.97% 43.30% 22.48%
Pessoa 81.88% 91.22% 77.30% 54.62% 51.82% 58.05%
Localizacao 74.97% 77.36% 69.16% 56.87% 55.95% 43.50%
Data 94.79% 96.48% 93.37% 88.24% 68.40% 72.47%
UnidadeOrganica 92.08% 93.22% 90.75% 77.59% 65.80% 91.94%

78

Appendix E

Manuals for Portuguese

These are some guidelines to run the tools used in this dissertation. For more information check

the wiki page at https://github.com/arop/ner-re-pt/wiki.

E.1 Stanford CoreNLP

Main steps to run Stanford CoreNLP with HAREM dataset. Version: 3.7.0

1. First download Stanford CoreNLP tool jar from its webpage1.

2. Navigate to the path of the stanford-corenlp.jar.

3. Run command:

java -cp stanford-corenlp.jar edu.stanford.nlp.ie.crf.CRFClassifier -prop <file.
prop>

(a) This command trains and generates a CRF model according to file.prop.

(b) file.prop specifies the training file and the features to be used in the training pro-

cess.

4. Run command:

java -cp stanford-corenlp.jar edu.stanford.nlp.ie.crf.CRFClassifier -loadClassifier
<ner-model.ser.gz> -testFile <file_test.txt>

(a) This command classifies the file file_test.txt using the CRF model generated in

Step 3.

(b) It also presents the evaluation regarding the Precision, Recall and F1 for the multiple

classes.
1http://stanfordnlp.github.io/CoreNLP/download.html - Accessed: 2017-06-27.

79

https://github.com/arop/ner-re-pt/wiki
http://stanfordnlp.github.io/CoreNLP/download.html

Manuals for Portuguese

Input format: File with each line having a token and the respective entity type, being O the

tokens which are not an entity.

E.2 OpenNLP

Main steps to run OpenNLP with HAREM dataset. Version: 1.7.2

1. Download OpenNLP from its webpage 2.

2. Run command to train model:

opennlp TokenNameFinderTrainer -model <model.bin> -lang <pt> -data <training_data.
txt> -encoding <UTF-8>

(a) model.bin - Output model name

(b) pt - Language of the model

(c) training_data.txt - Input dataset, in the right format, for training the NER model

(d) UTF-8 - Encoding of the model

3. Run command to perform NER:

opennlp TokenNameFinder <model.bin> < <corpus_test.txt> > <output file>

(a) model.bin - Input model name

(b) corpus_test.txt - Input dataset, in the right format, for evaluating the NER model

(Note: it has to be in UTF-8)

(c) output file - Output file for the tagged text

4. Run command to evaluate NER:

opennlp TokenNameFinderEvaluator -encoding <UTF-8> -model <model.bin> -data <
corpus_test.txt>

(a) model.bin - Input model name

(b) corpus_test.txt - Input dataset, in the right format, for evaluating the NER model

(c) UTF-8 - Encoding of the model
2https://opennlp.apache.org/ - Accessed: 2017-06-27.

80

https://opennlp.apache.org/

Manuals for Portuguese

Input format: File with sentences separated with a new line character. Entities separated with

a <Start:tag-name> and <END> tags.

E.3 SpaCy

Main steps to run spaCy with HAREM dataset. Version: 1.7.2

Install spaCy: run command:

pip install -U spacy

1. Training a NER model (check script3)

(a) Choose main algorithm

(b) Change language from EN to PT

(c) Gather standoff files to a list

2. Perform NER (check script4)

(a) Load NER model

(b) Get testing data from files to a list

(c) Get the same tokenization

(d) Tag the untagged text

(e) Output both the golden data and the tagged text to CoNLL format

Input format: File in the standoff format.

E.4 NLTK

Main steps to run NLTK with HAREM dataset. Version: 3.2.2

Install NLTK run command:

sudo pip install -U nltk

Install Numpy (optional) run command:
3https://github.com/arop/ner-re-pt/blob/master/tools/spacy/src/ner-train-spacy.

py - Accessed: 2017-06-27.
4https://github.com/arop/ner-re-pt/blob/master/tools/spacy/src/ner-test-spacy.py

- Accessed: 2017-06-27.

81

https://github.com/arop/ner-re-pt/blob/master/tools/spacy/src/ner-train-spacy.py
https://github.com/arop/ner-re-pt/blob/master/tools/spacy/src/ner-train-spacy.py
https://github.com/arop/ner-re-pt/blob/master/tools/spacy/src/ner-test-spacy.py

Manuals for Portuguese

sudo pip install -U numpy

Test installation run python then type import nltk.

Training model

1. Download NLTK trainer5

2. (Optional) Put training data in nltk-data folder

3. Run command for training using train_chunker.py:

python train_chunker.py <path-to-training-file> [--fileids <fileids>] [--reader <
reader>] [--classifier <classifier]

(a) path-to-training-file: specifies path to training file (or files) relative to

nltk-data folder or current path. (file has to be in UTF-8 encoding)

(b) fileids: regex expression to match the files inside the path-to-training-

-file, (if no expression is given, all files will be used)

(c) reader: specify the reader for the corpus. In my case, since the cor-

pus was in the Conll2002 IOB format I chose nltk.corpus.reader.conll-

.ConllChunkCorpusReader. Note: For this reader I had to specify the entities

classes used in the __init__.py file from nltk-trainer

(d) classifier: specify the classifier to use, main options: Maxent, DecisionTree,

NaiveBayes

Perform NER

1. Load chunker model using pickle: pickle.load(open(model_path))

2. Load input dataset (already tokenized and POS-tagged, done in training step)

3. Perform NER; chunker.parse(tagged)

4. The parser returns the result in a tree format, which was converted to the CoNLL format

using nltk.chunk.util.tree2conlltags(ner_result)

5. Output to file

Input format: File in the CoNLL format, with POS tag and NER tag with IOB tagging scheme.

5https://github.com/japerk/nltk-trainer - Acessed: 2017-06-27.

82

https://github.com/japerk/nltk-trainer

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Context
	1.2 Motivation and goals
	1.3 Document structure

	2 Named Entity Recognition and Relation Extraction
	2.1 Named Entity Recognition
	2.2 Relation Extraction
	2.3 Extraction methods
	2.3.1 Hand-coded techniques
	2.3.2 Machine learning techniques
	2.3.3 Ontology-based

	2.4 Evaluation and datasets
	2.4.1 Message Understanding Conference
	2.4.2 Conference on Natural Language Learning
	2.4.3 Automatic Content Extraction
	2.4.4 HAREM Avaliação de Reconhecimento de Entidades Mencionadas
	2.4.5 Other approaches
	2.4.6 Conferences summary

	2.5 Summary

	3 Datasets and tools
	3.1 Methodology
	3.2 The HAREM golden collection
	3.3 SIGARRA's News Corpus
	3.4 Natural Language Processing tools
	3.5 Summary

	4 HAREM corpus transformation
	4.1 Initial transformation
	4.2 Tool-specific transformation and running steps
	4.2.1 Stanford CoreNLP
	4.2.2 OpenNLP
	4.2.3 spaCy
	4.2.4 NLTK

	4.3 Summary

	5 Evaluation
	5.1 Evaluation method
	5.2 Results
	5.2.1 OpenNLP
	5.2.2 spaCy
	5.2.3 Stanford CoreNLP
	5.2.4 NLTK
	5.2.5 Comparison

	5.3 Summary

	6 Hyperparameter study
	6.1 Description
	6.2 Results
	6.2.1 OpenNLP
	6.2.2 spaCy
	6.2.3 Stanford CoreNLP
	6.2.4 NLTK

	6.3 Summary

	7 SIGARRA News Corpus
	7.1 Transformation
	7.2 Results
	7.2.1 OpenNLP
	7.2.2 spaCy
	7.2.3 Stanford CoreNLP
	7.2.4 NLTK

	7.3 Comparison by entity class
	7.4 Summary

	8 Conclusions and future work
	8.1 Contributions
	8.2 Conclusions
	8.3 Future work

	References
	A HAREM classes
	B SIGARRA News Corpus entity distribution
	C Hyperparameter study results
	C.1 OpenNLP
	C.2 SpaCy
	C.3 Stanford CoreNLP
	C.4 NLTK

	D Baseline results by entity class
	D.1 HAREM
	D.2 SIGARRA News Corpus

	E Manuals for Portuguese
	E.1 Stanford CoreNLP
	E.2 OpenNLP
	E.3 SpaCy
	E.4 NLTK

