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Abstract

Despite the existence of various solutions in the industrial domain for cooperation between
robots and humans, they tend to focus mainly on safety issues with very few advances in the
adaptation of industrial equipment to the characteristics of the operator and his way of working.
For several years, adaptation in a human-robot collaboration environment was single sided, as
only the operator adapts his working operations facing the robot characteristics, which leads to
high levels of stress and fatigue of the human operator. Nowadays, the paradigm is changing
towards the adaptation of human operator to industrial equipment and vise versa. The adaptation
of a robot to the human is achieved by enabling the machine to learn the physical and psychological
characteristics of each operator, in order to create a working profile for each individual. Thus, the
main objective is to analyze the relationship between human operators and robots in an industrial
environment, and therefore explore human-machine collaboration by correlating sensorial data
from all the entities involved in the process. With this in mind, by performing sensor fusion and
data analysis representing actions and biometric signals from the human operator, industrial robots
will be empowered of self-adaptation capabilities.

In this dissertation, an industrial collaborative environment is achieved using a Cyber-Physical
Production System (CPPS). This CPPS consists in three main parts, namely sensing and actuating
equipment, logical entities called Smart Components and a Cloud infrastructure. Sensing devices
are based on biometric sensors - BITalino’s ECG and EDA - and a vision system - Kinect - in order
to monitor the human operator working profile. A robotic arm is used as actuating device. Each
equipment is virtualized into an agent-based representation, based on the Smart Component con-
cept, which communicate sensor data with a Cloud infrastructure responsible for data processing
and decision making. Sensor data is analyzed in order to infer levels of stress and fatigue through
a fuzzy logic system. Decision making is based on the MAPE-K architecture, enabling the robotic
arm self-adaptation. Results from human subject tests are presented here to validate the proposed
methodology, proving that the system can detect stress with an accuracy of 77,6% and fatigue with
an accuracy of 70%, as well as detect the subject’s position and movement with a true positive rate
of 70,7%. Facing the movement and levels of stress and fatigue of the human operator, the robotic
arm should be able to change autonomously it’s task execution, namely speed of its movement and
the correct operation according to the habits of the operator.
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“I have not failed
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Chapter 1

Introduction

1.1 Context

Nowadays, most of the manufacturing processes are characterized by the collaboration be-

tween machines and human operators, where the machines are responsible for executing the heav-

ier and/or repetitive operations, while the human operators are responsible for handling shop-floor

equipment and supervising processes for high-level decision making. In a typical collaborative

environment, both human operators and machines execute operations in shared tasks. This col-

laboration makes the production process faster and more efficient while maintaining the quality of

the end product within standards.

Usually, this close collaboration between both parts demands an adaptation from the human

operator, mainly because the operator needs to adjust his actions accordingly to the machine’s

running level. For instance, if in an assembly line exists one machine with a high level of strain,

it will become the bottleneck of the line. This machine will require a doubled effort from the

operator to compensate its throughput regarding the others and avoid the accumulation of Work In

Progress (WIP). However, the human operator can be viewed as one resource in the production line

that might experience outworn the same way as a machine does. The difference is that the human

operator outworn occurs in the form of stress and/or fatigue. With this in mind, the collaboration

between human operator and machine should be bilateral, as the machine should also adapt to the

human operator, be aware of the operator’s state and be prepared to compensate in case of human

flaw.

Currently, the research work in the area of Human-Machine Collaboration (HMC) is mainly

focused on matters of operators’ safety. Novel approaches focus on stopping or movement rever-

1



2 Introduction

sion methods for the industrial robot if in a dangerous situation, equipping the robot with several

internal and external sensors. Faced with this situation, there is the need to develop collabora-

tive methodologies, providing emphasis on the adaptation of the industrial equipment towards the

human operators, on which the robots have to be aware of the physical and psychological charac-

teristics of each operator, creating a work profile, that will vary between the different workers.

1.2 Motivation

Although some solutions regarding collaboration between human operators and industrial

equipment already exist, few advances have been made in the matter of equipment’s adaptation

to the operators’ characteristics and way of acting in the production process. Therefore, the ma-

jor motivation of the research work developed in this dissertation is to contribute with a novel

approach in the area of HMC. The present approach focus in the adaptation of the machine fac-

ing the working profile of the human operator, such as speed of his task executions or the order

preference of operations during the task execution. This adaptation is achieved through machine

learning techniques, by understanding the operator’s working habits. The machine learning pro-

cess is based on sensor fusion and data analysis of representative information regarding biometric

signals and movement from the operator. The learning process results in the equipment capability

to infer the operator’s stress and fatigue levels. Based on this, the equipment will be capable of

adapting itself, not only making up failures that would harm the manufacturing process but also

try to improve the operator’s working conditions.

1.3 Objectives

This dissertation has as main objective the analysis of the relationship between human oper-

ators and industrial equipment when performing a task in a collaborative environment. This col-

laborative environment will be achieved by modeling the problem and building a Cyber-Physical

Production System (CPPS). The test case scenario consists of an operator equipped with several

biometric sensors, a robotic arm with external sensors and a Cloud infrastructure to analyze and

process data.



1.4 Dissertation Structure 3

With this analysis, it is intended to explore collaborative processes between man and machine,

analyzing and correlating relevant sensory data from the operator and from the robotic arm. The

collected sensory data allows, not only to understand habits and ways of executing the operator’s

tasks by creating a work profile but also to infer his stress and fatigue levels over time. The stress

and fatigue information will be used to introduce self-adaptation abilities into the robotic arm. This

will, not only allow to minimize human flaws impact in the overall process but also to improve

the worker’s conditions during manufacturing processes, without affecting product’s quality and

process efficiency.

1.4 Dissertation Structure

This document is divided into six main chapters. Chapter 2 presents the problem of Coopera-

tive Human-Machine Interaction (CHMI) in industrial environments, addressing the current HMI

reality. Moreover, it defines the paradigm of CPPS and self-adaptive systems, which are the key

enabling for new industrial businesses opportunities, such as CHMI. Chapter 3 refers to the liter-

ature regarding CHMI, focusing on the human operator monitoring strategies, methods, devices,

and metrics used for monitoring human operator’s performance, as well as systems that facili-

tate this monitoring. Chapter 4 describes the proposed solution for the CHMI problem, detailing

the solution implementation and development. Chapter 5 validates the proposed solution and ex-

plains the tests conducted to evaluate its performance, revealing and discussing its results. Finally,

Chapter 6 discusses and identifies conclusions and possible future work regarding the developed

work.
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Chapter 2

Cooperative Human-Machine
Interaction

In this chapter, the CHMI problem will be defined in the reality of today’s industrial environ-

ments, by presenting the Human Machine Interaction (HMI) paradigm and its three main vari-

ations - safety, human-machine interfaces and Human-Machine Collaboration (HMC). Also, the

importance of Cyber-Physical Systems (CPS) in the manufacturing context is presented, analyz-

ing its concepts and architectures, and introducing the particularities of the application of CPS in

production systems - CPPS. Moreover, and since CPS are by nature, self-adaptive systems, the

well known MAPE-K reference model for self-adaptation is also explained. Finally, the scope of

the proposed solution is presented.

2.1 Human-Machine Interaction

The current industrial production paradigm is concentrated with large scale manufacturing

industries that have high levels of automation. These automatic processes for collaborative as-

sembly are composed of human and non-human elements, where most of the machines, as robotic

manipulators, are used in industrial environments on account of their precision, repeatability, and

durability. They are normally applied in repetitive assembly tasks that can be efficiently performed

by machines, where the production system rarely changes, only being necessary to control the po-

sition of the robot. But with the arising of new manufacturing realities, such as multi human –

multi robot stations, the urgency for HMI solutions in the industrial environment has emerged,

obliging to a smooth integration of humans and robots in the same production line [8].

5



6 Cooperative Human-Machine Interaction

This integration should not lead to completely automated systems, where the machines per-

form most of the tasks, nor should become fully-manual, where the human takes the lead role in

task execution. Instead, this integration should be characterized by a cooperative interaction be-

tween the two parts, seeing the machine as the co-worker to the operator and complementing each

other in processes that require several tasks. Ultimately, by joining the machine’s resilience with

the human’s overall knowledge, will result in the improvement of task execution efficiency.

Until the present days in industrial environments, there has been little advances in the relation

between the shop-floor operator and the machines executing the manufacturing process. Therefore,

a step forward to a more advanced interaction between machine and operator should be taken,

towards a more adaptive and rich symbiosis. In order to achieve this kind of interaction, industrial

robots should be able to interact safely, intuitively and appropriately with operators, other robots,

and other systems within a production environment, responding to changes in that environment

and including the ability to apply auto-configuration strategies.

When trying to achieve this human-machine interplay, a better interaction can be obtained

by combining some aspects, such as safety parameters, human-machine interfaces and human-

machine collaboration. This combination leads to an increase of the flexibility of industrial robots,

enabling the cooperation with humans (including physical cooperation), and providing much faster

and much more intuitive automation systems [8].

2.1.1 Safety

In a collaborative environment, the interaction between application robots and humans is

mandatory, working in direct contact in a predefined space. So, as one would expect, the main

requirement for these interactions is to be safe. So, most of the efforts in recent years are done to

assure human safety. Until recently, the most common approach to guarantee the operator’s safety,

when it comes to HMI, is to isolate the machine (an industrial robot, for instance), by using phys-

ical barriers like fences. The industrial robot is required to stop completely in case of violation of

the robot’s workspace by a human worker. This can cause a great reduction in the productivity as

it leads to interruptions and rebooting of processes, and it also prevents true cooperation between

the two parts, restricting their potential and limiting the possible advantages that come from a

complete HMI.
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With the evolution of industrial processes and its collaborative necessities, new standards ap-

peared that allow human and machine coexistence in the same space if the robot respected velocity

limits (up to 250mm/s) and static force limits (150N) that prevented injuries in the operator [9], or

allowing the robots movement only when controlled by a human. Another solutions encompassed

human monitoring, using external sensors, to allow the robot to perceive when its co-worker is

close, calculating his distance, and slowing down, altering paths, or even coming to a full stop

if necessary. So to implement HMI in a safe way, pre-collision and/or post collision planning is

mandatory. The most common solution for post collision is to reduce the contact force when the

collision with the human is detected through torque sensors, while in pre-collision the robot’s path

is altered according to the distance to the human.

For the future of industrial processes, where a robot is able to safely collaborate with human

operators, these safety mechanisms need to be adaptable, possibly configured by the operators with

the use of interfaces instead of programmers, allowing a more specific solution for each situation

and given context. With these new methods to ensure human safety without physically limiting

the operator, CHMI can be achieved. This allows to freely use robots in industrial environments

with a high density of human operators. Consequently, the manufacturing process’s productivity

increases by allowing to bring together the resilience of the human operator and the accuracy of

the robot.

2.1.2 Human-Machine Interfaces

From an industrial perspective, human-machine interfaces have the advantage to allow the

human operator to closely monitor production processes and respond to changing demands, pro-

viding an intuitive way to control or maintain a machine, ultimately improving efficiency and

productivity. The traditional interface solutions involve devices as simple as computers with key-

pads, a mobile device or even the push of a button, that allow the shop-floor worker to interact

with the machines in a very primitive way. These solutions were stand-alone, isolated terminals

and only distributed by the original equipment manufacturer.

With the new demands of manufacturing processes, novel approaches were proposed, which

despite their complexity, are still intuitive interfaces. For instance, Augmented Reality (AR) and

Virtual Reality (VR) approaches can recreate the manufacturing process, serving as an interface
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between the user and the system, allowing to examine the production system [10]. With AR, using

smartphones, tablets, and smartglasses, pertinent information from the process can be inserted in

the worker’s field of vision. This enhances, e.g., the process’s maintenance, by supplying virtual

instructions and monitoring the manufacturing operation through the system’s status.

Other forms of HMI consist on speech and gesture recognition. Speech recognition brings

advantages in cases where the worker’s hands are occupied, allowing the use of voice commands

to control the process. In hands-free or even eyes-free environments, the human operator can com-

mand through speech, supporting much greater quantities of information than other interfaces [11].

Gesture recognition solutions allow the user to assign an action to a machine/robot through ges-

tures, which are captured by sensor networks or cameras. There are several solutions when it

comes to cameras for gesture and action recognition: from rigorous and expensive systems like

Optitrack, which requires the use of reflective markers for high precision track of movements, to

low-cost solutions, such as the Kinect sensor, that rely on the computation of skeleton models.

As it can be concluded, interfaces can improve overall HMI in industrial environments. Be-

sides allowing the user to see the system’s overall information in an intuitive way, it also lets him

send commands to the machines when a certain task is required to be executed. These new in-

terfaces provide the user with an intuitive way to teach a robot’s behavior or lead it to perform

the desired task in assembly sequences, without the need of specialized programmers. It is fair to

say that the existing solutions for industrial human-machine interfaces are evolving rapidly, being

adjusted to the needs of the environment. But with the emerging of CPS in the industrial reality,

these interfaces should also push and pull data to/from one or more Cloud infrastructure, enabling

the integration of devices as smartphones or tablets, as well as being easily networked with other

components on the plant floor.

2.1.3 Human-Machine Collaboration

Given today’s reality in industrial processes described in Section 2.1, it is mandatory that the

technologies and interaction aspects used in manufacturing widen its bases, in order to achieve the

new emerging goals for production systems: increase flexibility of the industrial robots, faster and

more intuitive configurations, and as usual, a more productive and efficient process. The use of in-

dustrial robots that can react to environmental changes can greatly improve the productivity of the
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manufacturing, creating a human machine symbioses, i.e, an HMC with the goal of compensating

dynamic changes in the process where the collaboration exists.

In order to develop this sensibility, these robots usually need to take into consideration addi-

tional sensory data derived from monitoring changes in the production system. Sensor information

enables them to adapt their behavior according to those changes, which can occur in the surround-

ing environment or with the worker in the collaboration environment. Availability in real-time

regarding all relevant information of the environment and the operator is essential, as it is the basis

for real-time adaptive motion planning, prediction, and control. This is especially beneficial in

CPPS, where the sensory data from all the physical devices in the system could enable a fusion

of all features, and consequently allow the machine to adapt its motion, compensating potential

human flaws or adapt its actions, in order to motivate the worker to increase productivity [12].

The research work regarding HMC in an industrial environment it is in its infancy, lacking

existent solutions that emphasize the industrial machine flexibility to the surrounding context.

Moreover, very few approaches focus in the machine self-adaptation facing the human co-worker,

where robots have knowledge of the operator’s state and the surrounding environment, being pre-

pared to compensate in case of decreased human efficiency or perform to improve the worker’s

conditions.

In general, most of the tasks in collaborative processes focus on holding an object for the oper-

ator and retrieving it on demand [13]. However Tsarouchi et al. [14] proposed a decision-making

method that permits human-robot task allocation for the execution of sequential tasks, where body

gestures are the means of HMI for commanding and guiding. Wang et al. [15] proposed an HMC

system as part of the assembly process of an automotive engine, where some steps were active

HMC actions, such as place and hold parts and tighten screws. The system also includes access

to smartphones and tablets, while the operator assistance is provided by a private Cloud server.

Moreover, within the European R&D project LOCOBOT, a toolkit for low-cost robots was de-

veloped from a set of plug-and-produce kinematic modules with intelligent sensing and actuating

structures. The robot is equipped with a stereo camera system and audio components to obtain

and process audio visual information so that it can learn to cooperate with human workers [8].
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2.2 Smart Manufacturing

Nowadays, the demands of the global markets for rapid product development, characterized by

high levels of customization (known as production oriented for mass customization) impose hard

requirements to manufacturing companies, such as resilience, robustness and reconfigurable man-

ufacturing processes. One of the proposed approaches to tackle these requirements consists in the

development of agent-based systems, which allow efficient, flexible, reconfigurable and resilient

overall plant control [16]. Agent-based systems enable the dynamic reconfiguration of the manu-

facturing system, in order to respond to changes in market demand for production [17]. This new

desired characteristics of manufacturing control systems require that they operate decentralized of

rigid control structures. Reconfigurability is one of the most important attributes, as it enables the

system to respond quickly, being able to decide which action to perform autonomously, without

central replanning, programming or human control [18].

Latest advances towards added value manufacturing were traduced in recent years mainly by

the Industrie 4.0 initiative or also known as the 4th Industrial Revolution [19]. The evolution of

industry and its revolutions is represented in Figure 2.1. Industrie 4.0 is characterized by the fusion

of several technologies, like Internet of Things (IoT), Big Data, Cloud Computing and Wireless

Sensor Network (WSN), which are emerging in the industrial world recently.

Industry 4.0 is based on the idea of converging both real and virtual worlds, by connecting

every physical object to each other, in order to identify themselves to other devices and be able

to communicate with each other. Also, based on Artificial Intelligent (AI) principles, it is em-

phasized the creation of intelligent machines, which make decisions and react to changes like hu-

man operators did. Wireless communication technologies together with ubiquitous Internet access

provide increasing interaction between machines, devices, sensors and people. Interconnection

of objects and people in industrial facilities is the basis of joint collaboration - human-human,

human-machine, and machine-machine, in order to reach common goals when performing tasks.

All these ideas pave the way for the Smart Manufacturing concept, which is being achieved with

the fusion of Cyber-Physical Systems (CPS), Service-Oriented Architectures (SOA), Cloud and

Fog Computing into the CPPS concept.
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Figure 2.1: The four industrial revolutions [1]

2.2.1 Cyber-Physical Systems

CPS are automated systems that allow a complete integration with the ongoing operations of

the physical reality, using collaborative computational components and communication, deliver-

ing and using SOA for data-accessing and data-processing [12]. CPS rely on the virtualization of

all entities involved in the process into an agent-based form. This virtualization consists, in this

work, in the creation of Smart Components [20, 21], which are basically digital twins (realistic

digital copies of industrial equipment and manufacturing processes [22]) or logical representations

of physical devices (like industrial equipment). These Smart Components present sensor data pre-

processing methods and can be implemented inside a physical device, with the required computing

power, storage, and network connection. These devices are known as Fog Nodes. By using this

digital copies, the user gains flexibility in the design and operation of the machine and manufac-

turing process, reducing cycle times, improving efficiency, and increasing market agility [22]. In

the CPS, sensor information is collected from the real world by the sensor equipment and sent

afterward to the Smart Component, where computation modules process the measured data. After

processing the data locally, the Smart Component sends the information to a Cloud infrastruc-
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ture, for a high level of data analytics and autonomous decision making. Decisions are sent back

to the Smart Components in the form of control commands to modify the surrounding physical

environment.

There is no standardized architecture for a CPS, but based on its definition, involved concepts,

and objectives, Han et al. [23] proposed a division into four essential layers, also represented in

Figure 2.2:

• Perception layer, where all of the system’s physical devices are located, allowing the moni-

toring of the process and subsequent actuation, if necessary.

• Network layer, where all the data obtained in the previous layer is transmitted. In this layer,

several networks can be used, like Bluetooth, Wifi, Zigbee, etc.

• The Middleware Layer is used for information processing and it can be divided into two

sub-layers: the low-level layer, characterized by the Fog Nodes performing the low-level

data processing; and the high-level layer, characterized by the Cloud performing the high-

level data processing. Not all CPS have this layer divided into two, some only include the

high-level Middleware layer.

• The Application Layer is where the data obtained can be monitored by the system end-user

through smart applications and HMI solutions.

Figure 2.2: CPS Layers

As represented in Figure 2.2, the resulting sensor information from the monitoring of the

process and physical devices in the Perception layer is transmitted through the Network layer to

the Fog Nodes (low-level Middleware layer), in order to process the sensor data at a low level. This
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data is sent afterward to the high-level Middleware layer, once more through the Network layer,

where the high-level data processing takes place, resulting in adaptive decision making, which is

sent back to the system’s actuators in the perception layer in the form of actuation commands. All

the information obtained about the process can be seen in the Application layer.

One of the main aspects of a CPS is the ability to control and monitor system devices remotely

through a network connection. With the implementation of IoT, those devices are able to swap

information through Internet. This process involves several phases [24], which are illustrated in

the CPS architecture shown in figure 2.3.

Figure 2.3: CPS Architecture

First, the CPS acquires sensory data from sensors embedded in the physical devices (monitor-

ing phase), which is transmitted through a gateway (networking phase) to an external device, such

as Cloud or a Fog Node, where it can be processed and examined remotely, as long as there is

a network connection (computation phase). The Fog Node is used to compensate the limitations

of the Cloud in terms of providing services that required local access to physical devices. Also,

the actions to be sent to the actuators can be decided on the computation phase or directly sent

by the end user (actuation phase). After the processing and actuation phases, the information can

be displayed in an end user application (displaying phase). These stages are sequential in a cycli-

cal process since the monitoring phase will collect data that traduces the impacts in the physical
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process of the previous actuation phase.

2.2.2 Cyber-Physical Production Systems

One of the most promising fields where a CPS can bring great improvements is in the manu-

facturing environment, expanding its resilience and adaptability. Given this, the notion of Cyber-

Physical Production System (CPPS) was created, as a specialized concept of a CPS [25].

A CPPS, like a CPS, consists of independent elements in cooperation that communicate across

all levels of production, from manufacturing processes in the industrial machines to the logistics

networks. In addition to typical CPS modules, the CPPS requires specific characteristics, such as

flexibility in the production system and adaptability of the assembly tasks. It enables communica-

tion between humans, machines, and products, being able to acquire and process data, and interact

with humans via interfaces [12]. CPPS differ from the traditional automation solutions since they

have a more decentralized way of functioning on higher levels of the hierarchy, although the con-

trol and field levels still exist, including the PLCs, in order to provide good performance in control

loops.

For CPPS, a 5-level architecture was proposed by Lee, Bagheri, and Kao [26], called 5c ar-

chitecture, represented in Figure 2.4. This architecture serves as a guideline for the creation of a

CPPS, from the initial data acquisition to analytics, and finally achieving the wanted production

system.

The 5c architecture is composed by the following levels:

1. Smart connection level: This level is where the data from the physical devices is acquired.

This data has to be reliable and precise, and it can be obtained, not only from sensors but also

from enterprise manufacturing systems. Since the data is acquired from several different

devices, it is important for the acquisition and transfer methods to be based on non-contact

remote techniques, allowing a simple data transmission to the central server. Besides this,

the selection of the sensors used (type and specifications) should be adequate to its purpose,

being an equally important step in this level.

2. Data-to-information conversion level: This level consists in deducing relevant and mean-

ingful information from the data acquired, effectively correlating and computing massive
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Figure 2.4: 5C architecture for CPPS

and multi-sensor data. Several methods generally utilized for data-to-information conver-

sion are used. These methods are used in several areas but are most applied in prognostic

and health management. Through significant information acquisition, like remaining useful

life of the machines, or even physiologic information of the manufacturing process workers,

this level of the CPPS creates self-awareness and environment awareness to the machines.

3. Cyber level: This level acts as the information hub, where all the information from every

physical device in the production system is gathered, forming a network of physical devices.

Given the huge amount of data gathered, specialized analytic methods need to be applied in

order to obtain additional information that gives some insight on particular machines on a

production line. This allows a machine to compare itself with other machines in matters of

performance.

4. Cognition level: This level is where the knowledge of the production system being moni-

tored is presented to the users, being of extreme importance since it leads to some decision

taking with regard to the production system. Using the scenery where the information avail-

able is related to the machine’s status and comparison between them, the user can observe

this information and use it, for example, to prioritize tasks. The use of proper info-graphics

is essential in this level, as it permits the complete transfer of acquired knowledge to the

users.
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5. Configuration level: The configuration level provides the feedback from the cyber system

to the physical system, also supervising and controlling the machines so that they can self-

adapt. This step applies to the monitored system the decisions made in the cognition level.

It can be concluded that the implementation of a CPPS in a factory is extremely beneficial,

providing several advantages. Developing a Smart Component for each factory component, a his-

torical data record can be captured and converted to meaningful information, allowing the creation

of steps to permit self-awareness. Also, with the knowledge that the Smart Component empowers

to the physical devices, the factory can become self-configurable and self-maintained, which re-

duces costs and improves productivity, as it assures near zero downtime production and allows a

close to optimal production planning and inventory management.

2.3 Self-Adaptive Systems

After acquiring the information that allows to perceive the human operator’s performance, the

CPPS should be capable of self-adapt to changes in the production process and the operator’s in-

dicators in real time, in order to manage and control actuation devices and the global behavior of

the CPPS in accordance with several performance indicators, with little or no human intervention.

Modern systems usually operate in dynamic environments, dealing with highly changing opera-

tional conditions, which require self-adaptation capabilities. This has been generally recognized as

an effective solution to deal with the increasing unpredictability, complexity, and dynamic nature

of these systems.

2.3.1 MAPE-k

A well-recognized engineering approach to realize self-adaptation is by means of a feedback

control loop called Monitor-Analyze-Plan-Execute plus Knowledge (MAPE-K) feedback loop.

The MAPE-k control loop was first introduced by IBM in their Autonomic Computing White Pa-

per [27], where the vision of autonomic computing was explained as the ability of a computational

environment to dynamically adapt to changes according to business objectives, as well as to man-

age itself. Figure 2.5 shows a self-adaptive system, extended with a feedback loop composed of

the following MAPE-K components [2]:
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Figure 2.5: MAPE-K model for self-adaptive systems [2]

1. Knowledge component: holds data of the managed system and its environment, as well as

adaptation goals and other relevant states that are shared by the MAPE components. It is

created by the monitoring component but updated by the execute component.

2. Monitoring component: acquires data from the managed system and its environment through

sensors, saving data to the Knowledge component accordingly. This component can aggre-

gate and filter these data until it determines a symptom that needs to be analyzed.

3. Analyze component: uses knowledge to perform data analysis and determine if there is a

need for adaptation of the system with respect to the adaptation goals. If there is a need for

adaptation, the Plan component is triggered by logically passing a change request.

4. Plan component: this component acts if adjustments to the environment are required, com-

posing single commands or complete work flows with adaptation actions fundamental to

accomplish the system’s objectives.

5. Execute component: the actions needed for adaptation are executed by this component

through effectors or actuators, leading to the wanted adaptation. The actions are the ones

recommended by the plan component.

All of these MAPE components can communicate directly or indirectly by sharing information

in the knowledge repository.
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2.4 Scope of Proposed Approach

Considering the CHMI problem definition, mainly in the HMC spectrum of proposed solu-

tions, it can be concluded that there is a lack of advances for collaboration between the human and

machine components of the production process. Also, given the CPS importance in the present re-

ality of industrial environments, this dissertation focus in the study of the cooperative relationship

between industrial robots and shop-floor operators, by adapting the robot task execution to the op-

erator’s working conditions, implementing a CPPS and the MAPE-k model for self-adaptation. To

ensure the system’s reliability and help perceive how the collaborative process can help improve

the operator’s work circumstances while in interaction with industrial machines, the following use

cases were defined:

• Robot adaptation to the operator’s psychological state: this point consists of six tests to

cover all possible classification combinations of the inferred psychological states. These

combinations are induced on the tested individual, checking if the machine perceives them,

adapting its actions in order to improve the worker’s state.

• Adaptation to the operator’s task order preference: in a process composed by a set of tasks,

those tasks are executed alternately by the operator and the machine. This is tested by

changing the task order performed by the operator, evaluating if the machine automatically

adapts.

These two use cases involve a continuous monitoring of the operator during the realization

of the manufacturing process. This is achieved by using additional external sensors that allow

inferring the user’s state, namely his stress and fatigue levels, and task order preference. The

machine will be able to operate a set of pre-defined but configurable tasks autonomously, where

these tasks will be alternately executed with another set of tasks that are performed by the operator.

Once the machine’s task is completed, the operator is required to intervene by carrying out a

task himself, that will lead to the execution of another task of the machine. This sequence of

tasks continues until the overall process is finished. According to the technology readiness levels

proposed by the Partnership for Robotics in Europe [8], this implementation classifies in a Level

5 of Human-Robot Interaction and a Level 2 in Task Adaptability.



Chapter 3

Human Operator Monitoring

In a cooperative human-machine industrial environment it is essential for both parts to mu-

tually adapt, as it allows the process to become more productive, secure and comfortable to the

human worker. As the human is required to adapt itself to the machine’s performance, the oppo-

site is also true. In order to enable machine adaptation, the machine should be able of perceiving

how the process is being executed by its human co-worker, or how it is affecting him. Assess-

ing, tracking and measuring the operator’s performance over time, several metrics are often used,

which allow perceiving when and how the process or human operator decreases or increases their

efficiency.

In this chapter, the monitoring of the human operator is addressed, namely in terms of stress

and fatigue levels, as well as their task order preference throughout the production process. The

effect of stress and fatigue in biosignals is overviewed, along with a literature review of compu-

tational methods to infer those states and wireless sensing equipment, such as wearables, that can

detect stress and/or fatigue.

3.1 Stress & Fatigue

Generally, high levels of stress and fatigue are directly related to poor human performance,

leading to low productivity and even safety and reliability issues. With this in mind, stress and

fatigue levels can be good key performance indicators (KPI), allowing to gauge the effectiveness

and quality of the operator’s work. Normally, people are poor self-assessors of how fatigued and

stressed they are throughout the manufacturing process, so measuring these KPIs is of overriding

19
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importance to the reduction of risk situations and also optimize the productivity by improving the

operator’s work conditions.

Stress can be defined as the conscience of not being able to deal with the demands of a certain

work environment. It is associated with a negative emotional response, which leads to serious con-

cern from the affected person [28]. Immediate stress threats provoke the body’s “fight or flight”

response, derived from stress stimuli. This response is based on the body’s hormone secretion,

which causes many physical changes, approached later in Subsection 3.1.1. On the other hand, fa-

tigue is defined as a temporary inability, or the decrease of ability, to answer to a certain situation.

This occurs mainly due to activity overloading, where this activity can be from emotional, physic

or mental nature. It provokes changes in the psychological and physiological state of an individual

during and following prolonged periods of demanding activity, which impairs their work perfor-

mance and puts them at increased risk for accidents and health problems [29]. It is important to

note that the human response to stress can be produced until he is feeling fatigued or exhausted.

Given this, fatigue can sometimes be considered an outcome of stress.

Fatigue and stress are psychological conditions that can damage severely human health and

working performance. In the American industry, for instance, fatigue in the workplace costs

slightly 77 billion dollars per year and is considered a major factor in the stress levels of sev-

eral employees. According to the researchers, the rate of lost productivity was much higher for

workers with fatigue (66%) when compared with 26% for workers without fatigue, while 35%

of workers say their jobs are harming their physical or emotional health [30, 31]. Facing this,

it is essential to continuously monitor operators’ stress and fatigue, this can be achieved by first

understanding the effects of these states in the human body, in order to define novel approaches of

obtaining stress and fatigue metrics.

3.1.1 Electrocardiogram & Photoplethysmograph

The human Autonomous Nervous System (ANS) controls the unintentional actions of the

body, regulating the glandular activity, smooth musculature and cardiac musculature. This system

is subsequently divided in the Sympathetic Nervous System (SNS) and Parasympathetic Nervous

System (PNS), both responsible for the cardiac activity. SNS is responsible for the control of

emergency situations, while SNP is responsible for the relaxing activities and the maintenance of
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the body. In normal situations, there is a balance between the activities of SNS and SNP: if the

activity of the SNS increases, the heart rate will also increase, while with an increase in SNP’s ac-

tivity, the heart rate will return to normal [32]. However, when the human mind perceives an event

that causes stress, this balance is broken, releasing adrenaline and cortisol, which consequently

increases heart rate and contracts blood vessels [33].

Additionally, through inter-beat intervals (IBIs), i.e. the time in milliseconds in-between two

subsequent “R” waves of an Electrocardiogram (ECG), the Heart Rate Variability (HRV) can be

obtained, which can be used to realize if a person is under a stress situation. HRV can be deter-

mined in both frequency and time signal domain, being that due to the amount of data necessary

for an accurate analysis in the time domain, is preferable to use the frequency domain. SNP and

SNS’s activities are associated with two frequency bands of HRV. The high-frequency component

(0.15 to 0.4 Hz) measures the influence of SNP’s activity, while the low-frequency component

(0.04 to 0.15 Hz) provides an index for the effects of SNS in the heart [32]. There is an inverse

relation between stress and the normalized high-frequency component from HRV, so it’s possible

to determine stress levels based on the HRV.

As it occurs on stress detection, ECG and HRV are revealed as excellent indicators of fatigue

existence on an individual. The heart rate substantially lowers when signs of fatigue are detected

and great changes happen in HRV due to the diminishing of alert state [34]. Zhao et al. [29]

presented results in an assessment of mental fatigue in a driving simulator, where they show that

fatigue leads to a decreased trend of the low frequency of HRV and an increasing trend at the high-

frequency component. Based on this, one can conclude that there are several methods to detect

situations of stress and fatigue using the ECG signal, while the most commonly used method is

the HRV frequency domain analysis [32, 35].

Using a Photoplethysmograph (PPG) valuable information about the cardiovascular system is

provided. According to Yoo & Lee [36], the Pulse Rate Variability (PRV) extracted from PPG can

be a potential replacement of HRV, so, when detecting mental stress, there are cases where several

signals are used for better results, for instance, using the pupil’s diameter, ECG and PPG, where

the data obtained is analyzed through methods of soft computing [37].
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3.1.2 Electrodermal Activity

One special feature of the SNS is that it exclusively controls the sweat glands and the skin’s

blood vessels. Thereby, the skin’s conductance, which is directly related to the number of active

sweat glands, is a reliable way to detect when a stressful situation occurs. Electrodermal Activ-

ity (EDA) is registered by measuring the skin’s conductivity, given that the relation between that

conductivity and sweat secretion is proportional. The Conductance Level (SCL) is normally mea-

sured on the palms of the hands or feet, where the sweat glands density is higher [3]. The SCL

translates a measure of psychophysiology activation, which is dependent on the characteristics of

the individual.

Figure 3.1: Skin Conductance Response [3]

The peaks in the signal (Figure 3.1) called Skin Conductance Responses (SCRs), occur in

reaction to single stimuli such as warning events and appear between 1.5 to 6.5 seconds after

the stimuli. The SCR can be described through its amplitude, latency and recovery time. Xia

et al. [38] proved that, when in a state of mental fatigue or stress, the SCL increases, as well as

the SCR. Setz et al. [3] was able to detect stress situations with a maximum precision of 82.8%,

by monitoring EDA with a glove like a device. They used a threshold to detect the EDA peaks,

and consequently infer stress. Hernandez et al. used EDA measurements to detect stress levels

in a Call Center, where EDA measurements were crossed with the workers’ opinions, as they

considered being under a stress situation, obtaining a maximum precision of 78.4%. There were

also other cases where the SCR’s utilization is combined with other signals, like the ECG, using

also the HR and HRV to detect situations of stress. To do so, data is obtained from the tested
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people in stressful situations in order to train and validate the detection system [39]. Healey and

Picard performed stress detection in drivers, using ECG and respiration monitoring, as well as

other signals, defining three distinct situations to differentiate three stress levels, namely resting

situation, driving in a highway situation and driving in the city. The biggest correlation with the

driver’s stress level was obtained through the heartbeat and skin conductance, obtaining a precision

of 97% [40].

3.1.3 Electroencephalography

A state of mental fatigue leads to a reduction in the cerebral activity and therefore drowsiness

and exhaustion. To better understand the occurrence of fatigue in a human, it is possible to quantify

the signals of an Electroencephalography (EEG) in terms of frequency band. This enables the

access to the phase in where the human is in between the state of being awake and asleep (stage

one of sleep), in order to isolate the relevant signals to identify fatigue.

From all of the existent cerebral waves, the ones that directly reveal the level of fatigue are the

Delta and Theta waves. Delta waves are characterized to be slow waves between 0.5 and 4 Hz,

which are presented during the transition to the drowsiness state and during sleep. Theta waves

are in the frequency band from 4 to 7Hz and are associated with low levels during the sleep stage

and tend to increase in cases of fatigue. On the other hand, studies show that the Beta Waves

(between 13 and 30 Hz) translate the increase of alert and excitement states, being possible to

admit that with the reduction of these waves’ activity, one might be in a fatigue state [34, 41].

Also, Simon et al. study fatigue effects on drivers considering Alpha waves (7 Hz to 13 Hz),

where they demonstrated that Alpha waves are directly related to the assessment of changes in

visual perception performance and can be used to detect early stages of fatigue.

3.1.4 Electromyography

The Electromyography (EMG) is used to measure the muscular activity through the detection

of superficial tension, which occurs when a muscle is contracted. Therefore, given that stress

leads to disorders in the musculature, namely in upper muscular tension during both physical

effort and resting, is possible to detect the occurrence of a stress situation through an EMG [42].

EMG has been used to study emotional stress in several situations, most of them using facial
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muscles [32, 43]. However, there are also cases where other muscles are used, for instance, Rissén

et al. [44] studied the presence of stress in thirty-two women in repetitive jobs, as well as its

influence in the muscular activity of the trapezius, concluding that exists a substantial correlation

between the two.

3.1.5 Motion

The stress and fatigue levels are generally obtained by measuring biometric signals. However,

they can also be measured using human movement patterns, through either vision techniques or

movement sensors. There are some cases of fatigue detection by filming the individual’s face while

under test. Vision techniques were used to evaluate the skin tone, closing eyelids, yawning, eye

movement and other indicators, knowing that in states of fatigue the act of blinking and yawning

happens more often and ocular movement is reduced. Ji et al. [45] detected fatigue through vision,

by developing a probabilistic model to predict fatigue of a human driver based on visual clues as

eyelids, ocular and head movement, as well as facial expression. Also, Matsushita et al. [46] used

accelerometers to detect movement and developed a fatigue detection system, taking a shape of a

helmet that detects head tilting.

It is important to refer that in most of the stress and fatigue detection systems, accelerometers

are used to complement biometric signals and not as main sensors. This fact is essentially due to

the need of taking into consideration the changes that physical activity provokes on the biometric

signals. For instance, the heart rate increases significantly when changes in posture or physical

activity happen. Facing this, sometimes is possible to confuse alterations due to stress and fatigue

with effects derived from physical movement. Physical activity also affects skin conductance

levels and provokes breathing arrhythmias. Sun et al. [47] used an ECG, combined with EDA

measures, and an accelerometer, in order to differentiate the effects of physical activity from stress.

Data from 20 participants were collected in three different activities. Better precision in stress

classification was obtained using the data from all sensors and the Decision Tree J48 method,

obtaining a 92.4% precision.
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3.1.6 Stress & Fatigue Classification

The physiological metrics described in the previous subsections are not, by themselves, reli-

able indicators to determine if an individual is under stress and/or fatigue. However, when com-

bined, they can provide a complete stress and fatigue inferring system. To accomplish this, it’s

essential to use machine learning techniques regarding sensor fusion and classification methods.

Consequently, sensor fusion will improve the process of stress and fatigue classification by au-

tomatizing the metrics analysis. The computational models will use a set of combined stress and

fatigue metrics as inputs in order to obtain the levels of stress and fatigue at the time when those

metrics were measured [48].

A survey was performed, in order to identify some of the most used computational methods

for stress and fatigue detection. This subsection briefly reviews the basics of those techniques,

where they were used, and their reported accuracy. Also, a resume of the usage of the considered

classification techniques, considering the accuracy and input signals for each one, is represented

in Table 3.1. To obtain this Table a research was performed with the terms "stress classification"

and "fatigue classification" from which a total of 4 280 000 results were obtained for stress and

1 920 000 for fatigue. From those results, only the ones accessing human fatigue or stress were

considered, then removing the one without experiments or with no use of body signals.

3.1.6.1 Bayesian Classification

Bayesian classifiers are based on the application of Bayesian analysis to classification prob-

lems. If a record of samples is denoted as t, and those records have been assigned to q known class

labels, there is a class label set C = Ci with the greatest posterior probability for this record that

will classify it. This probability of a record t towards class label Ci is given by [59] and represented

in Equation 3.1.

P(C j|t)> P(Ck|t), j = 1, ...,q;k = 1, ...,q; j 6= k (3.1)
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Table 3.1: Review of techniques used for modeling stress and fatigue

Modeling Technique Accuracy Inputs for model
Naive Bayesian classifier 78,65% [49] [50] BVP, GSR, PD and ST

Bayesian Networks 86% [47]
Not Revealed [51]

ECG and GSR
Facial Expression, Eye/Head Movement

Neura Networks 90% [41] ECG

Decision Trees

88.02% [50] [49]
92.4% [47]

Not Revealed [52]
Not Revealed [53]

BVP, GSR, PD and ST
ECG, GSR and ACC

Pedal controlling pattern
EEG

Support Vector Machine

90.10% [50] [49]
84% [47]

78.5% [37]
87.2% [54]

BVP, GSR, PD and ST
ECG, GSR and ACC
PD, ECG and PPG

EEG
EOG

Kth-Nearest Neighbor 88.89% [55]
88.28% [56]

EEG
ECG

Fuzzy
Not Revealed [57] [35] [32]

100% [58]
99.5% [39]

ECG
Eyes/Mouth Movement

GSR and ECG

From Bayes rules, the posterior probability of a record t towards C j is given in Equation 3.2,

where P(t|C j) is the conditional probability of a record t for a class C j.

P(C j|t) =
P(t|C j)P(C j)

P(t)
(3.2)

There are several Bayes Classifiers, for instance, the Naive Bayes classifier makes use of all

the classes contained in the record sample, and analyses them individually and independently. It

considers each attribute separately, working under the assumption that one class works indepen-

dently of the other attributes contained in the sample. Naive Bayesian classifiers have been used to

classify if the individual is under stress or not, in several stress detection systems [49, 50]. Also,

Bayesian Networks (BN) were used to detect if the stress measures were high or in a baseline,

being that only the Dynamic BN used by Liao et al. allowed to show how the properties of stress

modified overtime [51, 47].

3.1.6.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are based on neural connections, capable of learning and

reacting. Figure 3.2 represents an ANN diagram example. ANNs use basis functions, which are
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nonlinear functions of a linear combination of inputs, where the coefficients in the linear combi-

nation work as adaptive parameters [60].

Figure 3.2: Neural Network Diagram

A ANN model can be characterized as a succession of functional transformations, where M lin-

ear combinations of D inputs (x1,...,xD) are constructed, as shown in Equation 3.3, where j=1,...,M

and (1) indicates the layer of the network, in this case the first one. w(1)
ji are weights and w(1)

j0

biases (parameter that allows fixed off sets in the data).

a j =
D

∑
i=1

w(1)
ji xi +w(1)

j0 (3.3)

The parameter a j is known as activation and is transformed by an activation function that is

chosen accordingly to the nature of the data and the distribution of target variables. For multiple

binary classifications, each output unit activation is transformed using a sigmoid function so that

the network outputs yk can be obtained, using the Equation 3.4, where k=1,...,K, being K the total

number of outputs.

yk = σ(ak) (3.4)

One of the most important parts of implementing an ANN is choosing the number of hidden

layers and neurons per layer. A small number of hidden layers and neurons could inhibit the differ-

entiation between complex patterns, while a large number could bring weak results mainly due to

lack of ANN convergence and the necessity of a large number of input data points. Nevertheless,

Patel et al. used an ANN to classify drivers’ fatigue were the accuracy for one and two hidden
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neuron layers were similar [41].

3.1.6.3 Decision Trees

The decision tree classifier is a popular and practical method that uses a "divide-and-conquer"

approach based on a tree-like structure. Each node tests an attribute, each branch is an output of the

test, and each final node (leaf node) represents classes [48]. It basically involves the disassembly

of a complex decision into a merge of various simpler decisions to obtain the desired solution.

The classification of an unknown sample is performed by testing the values of the attributes

in each node. Consequently, it creates a path until it reaches a final node, where the instance

is classified according to the class assigned to that final node. The branches between the nodes

provide possible values that these attributes can have in the observed samples, whereas the terminal

node determines the final value of the variable. A path is traced from the root node to a final node

that has the class prediction for that sample [49]. A generic Decision tree and its constituent parts

are represented in Figure 3.3.

Figure 3.3: Generic Decision Tree model

This method has been used to classify booth stress and fatigue. Zhai and Barreto [50] pro-

posed a system where the combination of Blood Volume Pulse (BVP), Galvanic Skin Response

(GSR), Pupil Diameter (PD) and Skin Temperature (ST), by using a J48 decision tree, obtained

an accuracy of 88.02%. Sun et al. [47] used ECG, GSR, and ACC data to create a metal stress

predictor, also using a J48 decision tree as the classifier. To detect mental fatigue in drivers, Kim

et al. [52] used the driver’s pedal controlling pattern, where the sensor data was processed using

a combination of Decision Tree learning algorithms, with ID3 algorithms to determine the shape
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of the decision tree. Also, to detect driver’s fatigue, in this case with EEG, Shen et al. [53] used

a Random Forest, which is an estimator that fits a number of decision tree classifiers on various

subsamples of the dataset so that the output is the plurality vote of all these decision-trees.

3.1.6.4 Support Vector Machines

Support Vector Machines (SVM) are computational learning methods that transform a clas-

sification problem in such way that allows the application of linear classification techniques to

nonlinear data. SVMs belong to the class of Kernel Methods that are formed by a general purpose

learning machine and a problem specific kernel function. Since linear machine learning methods

can only classify data in a linear space with separable features, the kernel-function can be used to

obtain the linear feature space by mapping the training data into a higher dimensional space where

the data is linearly separable. These Kernel functions can be of many types, from polynomial to

Gaussian (Radial Basis) or Sigmoid.

Having a certain training data set that comprises N input vectors x1,...xN with matching target

values t1,...,tN , with tn being either -1 or 1, the goal is to separate that set into several individual

classes. The SVM approaches this problem through the concept of margin, i.e. the largest distance

between the decision boundary and any of the samples. The margin’s value is given by the per-

pendicular distance to the closest point from the data set xn so, optimizing the parameters w and b,

the margin is maximized. Equation 3.5 represents this optimization problem [60].

argmax
w,b

{
1
||w||

min
n
[tn(wT

φ(xn)+b)]
}

(3.5)

Given their characteristics, SVMs have been used to foresee stress using BVP, GSR, PD and ST

data [50, 49]. An activity-aware mental stress detection scheme using ECG, GSR, and accelerom-

eter data was proposed by Sun et al. [47], by using SVM as a classifier. Also using an SVM, but

in this case a fuzzy one, Mokhayeri et al. [37] proposed a mental stress detection system, using

PD, ECG, and PPG. Shen et al. [54] used a Fuzzy SVM to classify fatigue. They propose an

EEG-based mental-fatigue monitoring system using a probabilistic-based SVM method obtained

an accuracy of 87.2%.
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3.1.6.5 kth-Nearest Neighbor

The nonparametric method kth-Nearest Neighbor (kNN), is used for classifying observations

into groups, based on a set of quantitative variables. The classifier compares a new sample (testing

data) with the baseline data (training data), and finds the k neighborhood in the training data, as-

signing the class that appears more frequently in the neighborhood of k. The k value is by default

1 but varies, in order to find the match class between training and testing data. The default neigh-

borhood setting is “Euclidean” and “nearest”. To find the object similarity in the k neighborhood,

the “Euclidean” distance is used [55], as represented in Equation 3.6.

d(Xi,X j) =
√

∑(Xi−X j)2 (3.6)

Sulaiman et al. used the combination of EEG power spectrum ratio and Spectral Centroids

techniques to extract features for human stress, by implementing a kNN classifier to detect and

classify human stress from two cognitive states. Also, Wang et al. [56] used a kNN classifier with

HRV feature-based transformation algorithms, employing a kernel-based class separability as the

selection criterion for feature selection, achieving accuracies between 81.06% and 88.28%.

3.1.6.6 Fuzzy Classification

Fuzzy logic systems or fuzzy inference system (FIS) are based on rules containing three con-

ceptual components: 1) a collection of fuzzy IF–THEN rules - the rule base; 2) a database defining

the membership functions used in the fuzzy rules; and 3) an inference mechanism that aggregates

these rules in order to obtain the outputs of the system from the inputs. The basic structure of

fuzzy logic systems is presented in Figure 3.4.

The If-Then rules are expressed in a way that can be easily interpreted, permitting a simple

understanding of the system, being expressed directly by human words, where each word is con-

sidered a fuzzy set [61]. All fuzzy sets need to be defined by membership functions before being

used to build If-Then rules. In a Fuzzy set, contrary to the classical sets, the membership of ele-

ments does not use binary logic, i.e, there isn’t a definition only to whether the element is from a

certain crisp set or not. In a fuzzy set, elements have a degree of membership (from 0 to 1) to a

certain membership between belonging there and not belonging [61].
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Figure 3.4: Block diagram of a fuzzy inference system [4]

Fuzzy-based techniques are one of the most used computational methods to infer stress and

fatigue. Kumar et al. [57] used a fuzzy-based modeling technique to filter uncertainties regarding

the relation between physiological parameters and the workload score of individuals, evaluated by

their HR. Also, Kumar et al. [35] proposed a fuzzy clustering and robust identification techniques

for mental stress assessment using HRV, since there were several uncertainties due to individual

variation. The HRV analysis was also used by Rani et al. [32] to infer the stress condition based

on the level of activation of the sympathetic and parasympathetic nervous systems, utilizing fuzzy

logic in order to allow a robot to recognize human psychological states like stress. Another stress

detection system based on fuzzy logic was proposed by de Santos Sierra et al. [39], where the

behavior of an individual under stress stimuli was described, detecting stress with an accuracy of

over 90%, using GSR and HR to supply information on the psychological state of the individual.

Fuzzy classification was also used by Azim et al. [58] to detect fatigue. A non-intrusive fatigue

detection system based on video analysis of drivers, monitoring information of eyes and mouth,

that is further passed to Fuzzy Expert System to classify the true state of the driver. This system

generated an average accuracy of 100% on the videos tested.
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3.2 Sensing Equipment

Sensing equipment can be used to monitor the operator’s performance since it is important to

observe the emotional state during the manufacturing process, namely stress and fatigue levels.

This monitoring can be achieved through several sensors, which can be integrated into wearable

solutions designed for this purpose, wireless sensor boards, and other proprietary sensing devices.

These devices acquire physical data from the environment and human operator using specific

sensors, such as biosignals, human motion, and activity tracking. Later, the collected data is the

input of data analytics algorithms, in order to calculate meaningful results, namely stress and

fatigue [62]. The sensors used in both the wearables and acquisition boards allow perceiving

variations in the individual’s emotional state that generate several responses in the human body,

like bio-electric impulses and muscle contractions. Therefore, most of the sensors need to be

placed on the human body. Other solutions, such as vision systems, are not as intrusive. In

situations where the person needs to move freely, the presence of sensing equipment placed in

the human body could create an obstacle in the movements, becoming uncomfortable, and even

sometimes disconnecting from the body and stopping acquisition process.

3.2.1 Stress Detection Wearables

Nowadays, there are several wearable solutions to monitor stress. While some of the solutions

are more reliable than others, many of those solutions take form in wristbands with integrated

sensors on them, monitoring a variety of physiological signals such as EDA, BVP, and ST. Com-

putational algorithms translate those biosignals into emotions like happiness, anger, sadness, and

stress.

This is the case of the Feel Wristband1, represented in Figure 3.5. Besides these sensors, the

system also provides a mobile app that syncs with the wristband to track the emotions throughout

the day, giving the advice to achieve emotional well-being. A team of several people from diverse

engineering fields created the Empatica E2, represented in Figure 3.6, which is a wearable wireless

multisensor device for real-time computerized biofeedback. Data acquisition occurs with four dif-

ferent sensors, namely PPG, EDA, 3-axis accelerometer, and temperature. This device operates in

1http://www.myfeel.co/gallery
2https://www.empatica.com/product-embrace
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two modes: 1) streaming mode for real-time data processing using a Bluetooth low energy inter-

face; and 2) recording mode using its internal flash memory [63]. They also created the Embrace

Watch that specifically monitors the nervous system with four sensors (ACC, Gyroscope, EDA

and Peripheral Temperature Sensor), detecting seizures, patterns of sleep and physical activity.

Figure 3.5: Feel Wristband Figure 3.6: Empatica Watch

Besides wristbands, there are also other types of wearable solutions, like headsets that detect

and monitor mental stress. The InteraXon Muse3, represented in Figure 3.8 is one of them. This

brain sensing headband measures brain signals with seven calibrated EEG sensors and several

ACC to detect and measure the activity of the brain, which is then translated into actionable data

and sent to a smartphone or computer. Another headset solution is the Emotiv Insight4, represented

in Figure 3.7, which is a wearable EEG headset that can transmit brain wave data wirelessly

to a smartphone or computer. This device offers five EEG sensors and two reference sensors

providing in-depth information on brain activity. The measurements are based on six key cognitive

and emotional metrics: focus, stress, excitement, relaxation, interest, and engagement. These

measurements allow an individual to monitor his cognitive health and well being [64].

Figure 3.7: Emotiv Insight Headset Figure 3.8: InteraXon Muse Headset

3http://www.choosemuse.com/
4http://www.autodidacts.io/neurotech-hardware-roundup-eeg-bci-tdcs-neurofeedback/
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3.2.2 Fatigue Detection Wearables

There are numerous wearable solutions to monitor physical fatigue, most of them dedicated to

fitness applications, designed to maximize athletes performance by tracking and reporting strain,

sleep, and recovery analysis. That is the case of the WHOOP Strap 2.05, represented in Figure

3.9, which collects HR, HRV, ambient temperature and motion via a 3-Axis ACC, allowing the

athletes to appropriately balance their strain with the body’s recovery, giving daily insights into

how fatigued the body is [65].

Besides fitness solutions, there are also wearables dedicated to monitoring fatigue in shop floor

workers and drivers. The Fatigue Science ReadiBand6, represented in Figure 3.10, is a wristband

that collects data from wrist movement to calculate the quality and quantity of sleep during the

night, as well as activity levels during the day. It is also able to quantify the wearer’s effectiveness

score, reaction times and relative accident risk.The ReadiBand is approximately 93% accurate at

determining when the user is asleep. The fatigue levels are calculated through an algorithm that

correlates sleep and fatigue and determines that the user is indeed fatigued if the level reaches the

equivalent of having a 0.08 blood alcohol level. This is possible by comparing a person’s fatigue

levels to the number of errors and delayed reaction time of an impaired person [66].

Figure 3.9: WHOOP Strap 2.0 Figure 3.10: Fatigue Science ReadiBand

The SmartCap system7, represented in Figure 3.12, is often used by drivers or operators of

heavy vehicles. It is a fatigue monitoring tool that provides real-time measurements, based on

processed brain wave information. The fatigue information is displayed to the user on a Bluetooth

enabled device [67].

5https://get.whoop.com/products/whoop-strap
6https://www.fatiguescience.com/
7http://www.smartcaptech.com/our-product/
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Figure 3.11: Maven Co-Pilot Figure 3.12: SmartCap

Another existent solution is the Maven Co-Pilot8, represented Figure 3.11, which is an hands-

free Bluetooth headset designed to address driver’s fatigue and distraction. The device is able to

detect the difference between mirror check and moments of micro-sleep and alert the driver in

situations of danger [68].

3.2.3 BITalino

From the survey performed regarding wearable devices developed to measure stress and fa-

tigue, no solution was found that allowed to obtain both states at the same time. Also, the very few

solutions that could retrieve real time levels of stress or fatigue revealed themselves as extremely

expensive devices. So, in order to obtain stress and fatigue values, a cheaper solution would be

able to acquire physiological signals, which are processed afterward to calculate stress and fatigue

levels. For this purpose, one cheap, mobile and flexible solutions are the wireless BITalino board.

This board is a low-cost hardware platform developed by a Portuguese team designed to enable

makers to create projects using body signals. It becomes more accessible not only financially but

also allowing to attain several psychological and physiological measures in one single device.

BITalino consists of a set of modular blocks capable of measuring physiological signals, con-

necting with remote gateways over Bluetooth [5]. Each individual block can be physically de-

tached from the main board, allowing the user to apply it in many different ways as represented in

Figure 3.13.

The BITalino architecture enables three different configurations:

• Board - is simply the board with no modification, allowing the individual to use the onboard

sensors (Figure 3.13 (a));

8http://mavenmachines.com/co-pilot/
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Figure 3.13: BITalino biosignal acquisition hardware in its different configurations: a) board, b)
plugged, c) freestyle [5]

• Plugged - plugs are added to the BITalino and only the individual sensor blocks are separated

from the main board, allowing people to use different sensor combinations (Figure 3.13 (b));

• Freestyle - all the blocks are detached from the BITalino main board, enabling people to

combine them in any way that best suits their projects (Figure 3.13 (c)).

The digital back-end integrates a control block based on a Microcontroller Unit (MCU), a

power management block (regulation and battery charger), and a wireless communication block

that uses a Bluetooth module [69]. BITalino is battery supported with a 550mAh rechargeable

LiPo battery, that in the most battery demanding scenario (all the LEDs are on, and all the sensors

are connected and collecting at a sampling rate of 1000 Hz), uses around 65 mA per hour [5],

where 60% is used by the Bluetooth module, and 15% by the LEDs. It has approximately 8.46

hours of battery life in full usage, being able to monitor an individual’s signals for longer if not all

LEDs and sensors are used. All BITalino’s primary specifications are described in Table 3.2.

The analog front-end incorporates separate sensor blocks: Electromyography (EMG), Ac-

celerometry (ACC), Electrocardiography (ECG), and Electrodermal Activity (EDA), and also pos-

sesses a Light sensor (LUX) and Light-Emitting Diode (LED) block, allowing sampling rates of
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Table 3.2: BITalino’s specifications

Specification
MCU ATMega 328P
Clock 8MHz
Power Vcc = 3.3V Vss=1.67V;
Battery 550 mAh rechargeable 3.7V LiPo battery

Consumption ∼65 mAh (if at 1000Hz sampling rate and simultaneous
acquiring all sensors while all LEDs on)

Data Link Class II Bluetooth v2.0 module
Analog ports 4 input (10bits) + 2 input (6bits)
Digital ports 4 input (1bit) + 4 output (1bit)
Sensors EMG, ECG, EDA, ACC and LUX
Actuators LED
Weight 30g

1, 10, 100 and 1000 Hz. All the sensors are single-ended (0−3.3V) and the sensors that measure

biosignals (ECG, EMG and EDA) also need an auxiliary mid-supply voltage (Vss =1.65V) as a

virtual ground. The specifications to this biometric sensors are summarized in Table 3.3.

Table 3.3: ECG,EMG and EDA sensors specifications

ECG EMG EDA

Principle Bipolar differential
measurement

Bipolar differential
measurement

Skin resistance
measurement

Number of Electrodes 2 or 3 3 2
Bandwidth 0.5-40Hz 10-400Hz 0-3Hz
Input impedance 100GOhm 100GOhm -
CMRR 110dB 110dB -
Range ±1.5 mV ±1.65 mV 0-1 MOhm
Gain 1100 1000 2
Consumption ∼4 mAh ∼4 mAh ∼2 mAh

Besides the board, the BITalino has numerous software components including the firmware

on the MCU and programming API’s that allow the most development possible. This program-

ming API’s are available in several languages including Android, Arduino, C++, Java, LabView,

MATLAB, Python, RaspberryPi, and Unity 3D, which allows users to access the sensor data using

their own applications. Although the BITalino board is easy to attach and move around, there is

the possibility to create wearables from the board, similar to the ones created in projects like an

armband controller for the Parrot Jumping Sumo drone using muscle and gestures or Heart rate

monitor on bicycle handlebars. Recently the BITalino team made a collaboration with Printoo,

a company that produces paper-thin, flexible technology, making both platforms compatible and
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creating a production version of BITalino that is bendable and appropriate for anatomical forms,

facilitating the creation of wearable solutions9.

3.2.4 Kinect

Kinect v2, represented in Figure 3.14, is a motion-sensing device originally developed for the

Xbox One, that contains a 3D depth camera to measure depth in millimeters, an infrared (IR)

camera and emitter, an RGB (red-green-blue) camera for color video, and a multi-array micro-

phone [6]. Kinect allows several applications, including tracking humans’ position and activities

while being performed. Apart from this components, the Kinect device also has a power adapter

for external power supply and a USB adapter to connect to the computer.

Figure 3.14: Microsoft Kinect v2 and its components

The RGB camera captures the color video data, detecting red, blue, and green colors, and

streaming the data by still image frames, supporting a speed of 30 frames per second (fps), de-

creasing to a minimum of 15fps if in low light [70]. The depth sensor consists of an IR emitter

and an IR camera in order to obtain the depth value of every point in the visible area, i.e. the

distance from that point to the sensor. The Kinect v2 uses the "Time of Flight" (TOF) method,

that determines the depth by measuring the time the light emitted takes from the camera to the

measured point and back. Therefore, it constantly emits IR light with modulated waves and finds

the shifted phase of the returning light [71]. The developed applications for Kinect, support fea-

tures like color and images, audio input, and skeletal data, allowing, for instance, to determine the

distance between an object and the camera, or recognize and track people using body tracking. All

9http://www.bitalino.com/en/community/projects
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Table 3.4: Technical specifications of Kinect v2 (based on [7])

Feature Kinect v2
Depth Sensing Technology Time of flight

Color Image Resolution 1920x1080
IR Image Resolution 512x424

Depth Sensing Resolution 512x424
Minimum and Maximum Depth Range 50 cm to 4.5 m

Depth Technology Indirect ToF

Frame Rate 30fps
(Color Image: 15fps low light)

Field of View 60 degrees vertical and 70 degrees horizontal
Skeleton Tracking
(with full skeleton)

Total 6 skeletons tracked
25 joints per skeleton

of the technical specifications mentioned above, as well as other particularities, are summarized in

Table 3.4.
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Chapter 4

Implementation

Based on the cooperative human-machine interaction problem defined in Chapter 2, a solution

based in a CPPS is proposed. The CPPS is characterized by its self-adaptation skills, which are

enabled by the implementation of a MAPE-K feedback loop, that serves as functional architecture.

In the context of human-robot collaboration, this self-adaptation consists in the adaptation of the

industrial equipment to the human operator, based on the operators’ working profile, e.g., prefer-

ence in a certain order of operation execution while performing a task, and operators’ emotional

conditions, such as stress and fatigue levels.

In order to achieve this scenario, first, the operator’s stress and fatigue monitoring need to be

performed, by acquiring and analyzing several biosignals with the BITalino board. Later, collected

sensor data is processed in the MATLAB’s signal processing tool in order to retrieve metrics and

posterior classification of those levels using a fuzzy classifying method. The monitoring of the

operator’s position and activity tracking is also needed, using for that the Kinect’s body tracking

function. This function retrieves the area where an operator is executing his tasks, which is one

of the inputs for the adaptation of the robotic arm when executing its own tasks in that same area.

This chapter will explain all the steps undertaken to achieve the implementation, describing the

CHMI architecture and all the methods used.

4.1 Stress & Fatigue Monitoring

Monitoring the operator’s stress and fatigue levels required the acquisition of several biosignals

in real time, using the hardware platform BITalino. Considering all the APIs that BITalino provides

41
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(see Section 3.2.3), the MATLAB API was the one chosen for this dissertation. This API allows the

acquisition and visualization of the signals from the BITalino board, needing only to previously

define the Bluetooth RemoteID from the BITalino device, the channel from which we want to

acquire the signal and the sampling rate (1, 10, 100, 1000Hz). The API was modified in order to

allow real time acquisition, obtaining consecutive one-second samples of all the signals. This was

possible by using a timer object, which uses callback functions to perform commands every time

the timer executes in order to read all the data from the buffer and process the signals.

In this dissertation only the ECG, EDA and EMG were acquired from the BITalino board, all

at a 1000Hz sampling rate, as recommended by Němcová et al. [72]) in order to preserve more

detail valuable for some of the features extracted. For the acquisition of the signals’ features, a

one minute window of acquired and processed samples was used in order to obtain more reliable

values, since some of those features require at least one minute of data. These features are acquired

at a low sampling rate of 1Hz since the stress and fatigue variations are very gradual. The following

subsection will focus on the acquisition and analysis of this three biosignals captured from the

BITalino board.

4.1.1 Electrocardiogram

An ECG is a recording of the heart’s electrical activity based on Bipolar differential measure-

ment, where low amplitude bioelectrical signals produced by the sinoatrial node (SA node) trigger

heartbeats. These signals can be translated into values through the ECG, allowing to obtain a lot

of information, such as health inference and the occurrence of stress and fatigue situations, like

mentioned in Chapter 3. The acquisition with BITalino is made with three silver/silver chloride

(Ag-AgCl)1 electrodes connected to 1x3 Electrode Leads2, represented in Figures 4.1 and 4.2.

The electrodes can be placed in several configurations: 1) in the hands, using only two elec-

trodes one on each hand; 2) in the hands and leg, where it is placed one on each wrist and the

ground on the leg; and 3) only in the chest, forming a triangle shape, to the left side of the chest,

with the ground electrode as the top corner of the triangle. This last configuration, represented in

1https://www.virtuabotix.com/product/bitalino-emgecgekgedaluxacc-sensors-raspberry-pi-pc-android/
2https://www.adafruit.com/product/2773
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Figure 4.1: Ag-AgCl electrodep Figure 4.2: 1x3 Electrode Leads

Figure 4.33, was the one chosen to acquire the ECG signal, given that facilitates users mobility in

comparison to the others.

Figure 4.3: Chest electrode placement used for ECG acquisition

4.1.1.1 ECG Preprocessing

After the ECG acquisition, the signal needs to be processed. First, the output values from

the ECG sensor in BITalino were converted to standard units of measure using the following

Equation 4.1, where ECGmV is the ECG value in millivolts, the ECGB the value obtained from

BITalino, V cc is the operating Voltage (3.3v), n the number of bits (10 bits) and GECG the ECG

Sensor Gain (1100 as showed in Table 3.3). All this values and formula can be seen on the ECG

sensor data sheet from BITalino in appendix B.

ECGmV =
(ECGB× V cc

2n − V cc
2 )

GECG
×1000 (4.1)

3http://www.civicview.org/projects/
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Following the data conversion, several filters were applied. First, a Savitzky-Golay filter was

used to smooth the signal. This filter is based on local squares polynomial approximation, where

first the least square polynomial fit to the signal samples is found, then it was processed through

a linear functional transformer to extract the smoothed signal. This filter is equivalent to a digital

low pass filter and is used to increase signal-to-noise ratio [73]. After smoothing the signal, it still

presented some noise, so to detect the noise’s frequency, a power spectral density (PSD) analysis

of the signal was done, finding an impulse at 50Hz and some harmonics as well, represented as

additional spikes in the PSD at multiples of the fundamental frequency. This noise is commonly

considered electrical noise and to remove this electromagnetic interference, a Finite Impulse Re-

sponse (FIR) stopband filter was implemented to cut off 48Hz to 52Hz noise, i.e., a digital filter

with finite-duration impulse response [74]. To implement this filter in MATLAB, the Fir1 func-

tion was used. It applies a Hamming window to design a nth-order, type specified (in this case a

stopband) FIR filter with linear phase. The filter’s order was calculated by Bellanger’s equation

( 4.2), where f s is the sampling rate, ∆f the transition width, i.e., the difference between end of

pass band and start of stop band, δ1 the ripple in passband, i.e., the affordable variation in the

original amplitude and δ2 the suppression in the stop band [75].

n≈ 2
3

log
(

1
10×δ1×δ2

)
× f s

∆ f
(4.2)

The effects of the FIR filter, along with the Savitzky-Golay smoothing, in a five-second sample

of the ECG signal are represented in Figures 4.5 and 4.4.

Figure 4.4: ECG signal preprocessing
Figure 4.5: ECG signal smoothed and with

no electrical noise
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The ECG signal can also be affected by muscular noise interference, especially in industrial

environments, where the acquisition is done with the operator physically moving around. This

noise is very difficult to remove as it is in the same region as the actual ECG signal. However,

after trying several filters, the best one to filter this noise was a 6th order lowpass Butterworth

filter, at 30Hz cutoff frequency [76], removing some of the muscular interference, with the catch

of reducing the amplitude of some of the ECG peak waves. To test this filter, an acquisition was

made while slowly moving the arms and consequently contracting the chest area, obtaining the

ECG signal showed in Figure 4.6, which after removing the muscular noise became the signal

represented in Figure 4.7. As can be seen, with movement, the ECG signal shows strong EMG

interference, which is improved after filtering, although not being totally removed.

Figure 4.6: ECG signal preprocessed while
the moving right arm

Figure 4.7: ECG signal after filtering, while
moving right arm

Another common noise source in an ECG is the baseline wander, a low-frequency high band-

width component that can be induced by electrodes due to perspiration, respiration and body

movements [77]. To remove this baseline wander, a highpass second order Butterworth filter was

used to filter lower frequency components, the cut-off frequency was defined by the slowest heart

rate (it was considered 35 beats per minute (bpm)), implying the lowest frequency at 0.58Hz (one

bpm equals to 1/60Hz). This filter revealed itself not so accurate, as sometimes it did not remove

the baseline wander. Figures 4.8 and 4.9 show the best results achieved for this filter application

to the ECG signal.

The ECG structure is typically composed of three waves: P, QRS, and T waves, as represented

in Figure 4.10. One of the challenges in processing the ECG is the different peaks detection.

After all the noise removed, the ECG signal was squared in order to facilitate this detection.
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Figure 4.8: ECG signal with baseline
wander

Figure 4.9: ECG signal after filtering the
baseline wander

Figure 4.10: P, QRS and T waves

To detect the R peaks was used a MATLAB function, findpeaks, that finds local maximum with

a defined minimum peak distance of 200ms, taking into consideration that two adjacent R peaks

cannot be more close than 200ms at the considered maximum heart rate of 150bpm; and a defined

minimum peak height. This minimum peak height is initialized as 0.05, but when the first three

R peaks are found, this value turns 0.75 times the mean amplitude value of those three R peaks,

in order to more accurately detect the peaks. This function detects where these peaks are and

what is their amplitude value for each window of one minute. You can see detected R peaks in

Figure 4.11.

4.1.1.2 ECG Features Extraction

As mentioned in Section 3.1.1, the ECG delivers several features that allow detecting stress and

fatigue moments. For this dissertation, the features used were the Heart Rate (HR), the Inter-Beat

Interval (IBI), and the Low/High-Frequency Ratio (RATIO). Their meaning and abbreviation used
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Figure 4.11: Detection of R peaks

can be reviewed in Table 4.1. For the IBI calculation, the R peak detection was used, calculating

the time between two subsequent R-peaks in seconds (R-R interval, Figure 4.10). The HR in beats

per minute is then easily obtained using the median of RR intervals in seconds and dividing 60

by it. In order to achieve the Frequency Ratio, a Frequency Domain Analysis of the Heart Rate

Variation (HRV) is necessary. The HRV is the variation of the intervals between beats, in time, i.e,

the variation in the R-R intervals or IBI. The idea for the frequency domain analysis is to transform

the HRV from time to power spectral density (PSD), displaying the data in frequency, with two

bands of interest: the high frequency (HF) band (defined between 0.15 Hz and 0.7 Hz) and the low

frequency (LF) band (defined between 0.04 Hz and 0.15 Hz).

Table 4.1: Features extracted from the ECG signal

Feature Abbreviation Meaning
Heart Rate HR Heart Rate in beats per minute

Inter-Beat Interval IBI
Time between two subsequent

R-peaks in seconds

Frequency Ratio RATIO
Ratio between the low frequency (LF) and

the high frequency (HF) bandpower

The PSD estimation can be performed using many methods like Fast-Fourier Transform (FFT)

and autoregressive modeling (AR). But, since this method requires the analyzed signal to be sta-

tionary and uniformly sampled, which is not the case with IBI signals, the Lomb-Scargle peri-

odogram (LSP) was utilized. To compute the LSP, the MATLAB function plomb was used. LSP

does not require resampling or stationarity signals, it only uses available data estimating the fre-



48 Implementation

quency spectrum and the LF/HF ratio more accurately by performing a least squares fit of sinusoids

to the data, while the FFT periodograms overestimate the LF/HF ratio because of the resampling

process, which adds to the LF component and reduces the HF content [78]. After obtaining the

LSP, the bandpower function is used to return the average power contained in the HF and LF

band. The average power is computed by integrating the LSP estimate, where the integral is ap-

proximated by the rectangle method. Subsequently, the RATIO is calculated by dividing the LF

bandpower by the HF bandpower, where its typical value is between 1.5 and 4.5 [79].

4.1.2 Electrodermal Activity

Electrodermal activity (EDA), or galvanic skin response, is a biosignal that is associated with

the sympathetic nervous system activity. This signal indicates that the skin’s electrical features

variated, as a result of sweat glands’ activity caused by various internal or external stimuli, which

is translated into conductivity [80]. This signal is obtained by measuring the voltage between

two electrodes across which a current is applied, and its most common unit is the microSiemens

(µS). The EDA acquisition with BITalino was made with two silver/silver chloride (Ag-AgCl)

electrodes4. These electrodes can be placed in several ways like AB (index - middle finger), AC

(index - 3rd finger) and DE (thenar eminence), all of this showed in Figure 4.12.

Figure 4.12: Possible EDA electrodes dispositions

4http://www.civicview.org/projects/
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Since all of this locations bind the electrodes to the user’s hand, the choice of disposition

doesn’t matter as all of them hamper the normal movement of the hand. So, for this dissertation,

the electrodes were placed in the index and middle finger of the non-dominant hand, in order to

reduce the negative impact of the worker’s activity.

4.1.2.1 EDA Preprocessing

Similar to the ECG, EDA also needs to be converted to its standard units. To do that, first the

Sensor resistance in megaOhms(MOhm), the RMOhm, is obtained using the Equation 4.3, where

ADC is the value sampled from the channel and n the number of bits of the channel (10 bits). All of

these values and the converting equation can be seen in the EDA sensor Data Sheet, in appendix C.

With the sensor resistance value, it is possible to obtain the EDA value in micro-Siemens(uS), as

represented in Equation 4.4.

RMOhm = 1− ADC
2n (4.3)

EDA(uS) =
1

RMOhm
(4.4)

Following the EDA unit conversion, the noise removal was performed. For smoothing the

signal, an exponential smoothing function with α = 0.05 was used to remove high frequency

noise, as shown in Equation 4.5, where xt is the contribution of new input data, and (1−α)Ft−1

adds inertia from previous data, while α represents the smoothing factor (0<α<1).

Ft = αxt +(1−α)Ft−1 (4.5)

After unit conversion, to eliminate high-frequency noise, a second-order low-pass Butterworth

filter with a cutoff frequency of 1 Hz was applied to the signal. The EDA signal before and after

smoothing and filtering the noise can be seen in Figures 4.13 and 4.14.

For posterior stress and fatigue detection, another essential part of the EDA processing is

a reliable SCR detection. To properly detect SCRs, the method used by Kim et al. [80] was

implemented. Initially, the original signal was downsampled to 20 samples/second in order to

increase processing speed. After this, the approximate first time-derivative of the filtered EDA
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Figure 4.13: EDA signal preprocessed Figure 4.14: EDA signal without noise

signal was obtained using the diff MATLAB function, followed by a 20 point Bartlett window

convolution, using the bartlett MATLAB function.

This procedure generated the output waveform shown in Figure 4.16 for the input signal shown

in Figure 4.15. The SCR is detected when the first derivative sign changes, i.e, the detection

occurs when two consecutive zero-crossings are identified (from negative to positive and positive

to negative).

Figure 4.15: EDA signal before resample,
convolution and first-derivative

Figure 4.16: EDA signal after resample,
convolution and first-derivative

4.1.2.2 EDA Features Extraction

A general problem when detecting SCRs is determining apriori if a given SCR is event-related

(ER) or nonspecific (NS). It exists a risk to include NS-SCRs into the analysis for ER-SCRs if

the criteria used is too sloppy, or the risk of missing many ER-SCRs if the criteria are too strict,

ending up discarding important ER-SCRs. So, with this in mind, the SCRs detected with less than
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15% of the maximum SCR amplitude in the segment were discarded, as implemented in by Kim

et al. [80]. After several tests, this method showed reliable detection of ER-SCRs. Two features

were acquired from the EDA signal, the SCR amplitude mean, i.e., the average of the amplitude of

the detected SCRs, and the number of detected SCRs, meaning the number of the detected SCRs

in the EDA signal. A review of this features can be found in Table 4.2.

Table 4.2: Features extracted from the EDA signal

Feature Abbreviation Meaning
SCR_number SCR_nr Number of relevant SCR per minute

SCR Amplitude Mean SCR_ampl Mean amplitude of the relevant SCR

4.1.3 Electromyography

Low amplitude bioelectrical signals sent from motor control neurons trigger muscle activa-

tion, which can be used as a reliable measure of the activation level of the muscle [81]. EMG

allows these electrical signals to be translated into numerical values. With BITalino, a surface

EMG (sEMG) was performed, this type of EMG uses a bipolar differential front end for enhanced

signal to noise ratio (SNR). This means that, while a three lead accessory is used to obtain EMG

sensor data, two leads correspond to the common positive and negative voltage and the third lead

is a reference lead. So, measurements from each of the negative/positive poles are subtracted,

providing a 1-D time series [82].

Most of the EMGs performed for stress and fatigue detection uses facial muscles, inferring the

individual’s state from his facial expressions, which in an industrial environment is unpractical.

So, the muscle chosen was the trapezius, as used by Schleifer et al. [83] and Wijsman et al. [84]

for stress verification. The electrode disposition was based on the recommendations found in

the European R&D SENIAM (Surface Electromyography for the Non-Invasive Assessment of

Muscles) project website5, which is represented in Figure 4.176.

4.1.3.1 EMG Preprocessing

The first step of processing the EMG data is its normalization, where Equation 4.6 was used. It

converts the values sampled from the EMG channel (ADC) to EMG value in milliVolts (EMGmV ),

5http://seniam.org/
6https://www.biofeedback-tech.com/articles/2016/6/21/back-pain
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Figure 4.17: Trapezius EMG electrode placement

with n as the number of bits in the channel (10 bits), V cc the operating voltage (3.3V) and GEMG

the sensor gain (1000). All these values can be seen in the EMG data sheet on appendix D.

EMGmV =

(ADC
2n − 1

2

)
V cc

GEMG
×1000 (4.6)

Afterward, the data is passband filtered, passing frequencies from 10 to 400 Hz (the bandwidth

of the BITalino EMG sensor), using an eighth-order Butterworth filter as used by Schleifer et

al. [83]. After that, the EMG signal was filtered using the same FIR filter as implemented for ECG

to remove residual power line interference. As the EMG is performed on the left trapezius muscle,

there is contamination of the ECG signal due to the proximity of the electrode placement to the

heart and the volume conduction characteristics of the ECG through the torso [85]. To remove

this ECG interference, it was used a highpass Butterworth filter with a cutoff frequency of 30 Hz,

as it was demonstrated by Drake and Callaghan [85]. They showed that it provided the optimal

balance between ease of implementation, time investment, and performance across all contractions

and heart rate levels for the EMG levels. The EMG signal before and after the methods of noise

removal is represented in Figure 4.18 and Figure 4.19, respectively.

4.1.3.2 EMG Features Extraction

Several features were calculated from the EMG signal, which are presented in Table 4.3. To

retrieve these features, initially, the root mean square (RMS) for segments of 1 minute was cal-

culated individually, then the static (10th percentile), median (50th percentile) and peak (90th
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Figure 4.18: EMG signal before processing Figure 4.19: EMG signal after processing

percentile) load were also determined. To enable this, the calculated RMS values were ordered,

finding the values allocated to each percentile.

The mean and the median frequency of the EMG signal were also extracted. For each segment,

the Lomb-Scargle periodogram (LSP) was calculated (as used for the Frequency Ratio of the ECG

in Section 4.1.1.2). After obtaining the LSP, the mean frequency was acquired, by calculating the

mean frequency of the magnitude of the frequency spectrum and the median frequency. This was

determined by calculating the median value, where the surface of the magnitude of the frequency

spectrum on the left side equals the right side [84].

Table 4.3: Features extracted from the EMG signal

Feature Abbreviation Meaning
Root mean

square EMGRMS Root Mean Square (RMS) value

Static load EMGStatic
10th percentile of rank
ordered RMS values

Median load EMGMedian
50th percentile of rank
ordered RMS values

Peak load EMGPeak
90th percentile of rank
ordered RMS values

Contrarily to the features extracted from EDA and ECG, the EMG features revealed them-

selves non-suitable for stress and fatigue inferring. This is true because, during signal acquiring,

it was observed that all the features increased not only with emotional stimuli but also with any

movement. A slight movement was enough to introduce noise to the signal, from simple muscular

contractions due to activity execution, to minimal movements originated from body position ad-

justment. It was tried to surpass this setback by setting a default muscular contraction value for
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the individual being monitored, but the contractions, due to induced stress, most times revealed

the same values. Considering that in a cooperative human-machine interaction in the industrial

environment there will be constant movement from the operator while performing tasks, this fea-

ture had to be removed from the classifier, has it would increase the number of false positives in

the stress and fatigue detection.

4.1.4 Fuzzy Classifier

After acquiring the biosignals and calculating the important features from those signals, it

is necessary a classification technique to combine this features in a way that can allow stress

and fatigue inferring. Since the transition from a low stress or low fatigue level to a high level

is progressive over time, these levels cannot be treated as classical sets, since it would either

include a given feature or completely exclude it. Therefore, the classification to whether a certain

feature belongs to a high stress or low-stress state, or high fatigue or low fatigue state, can not be

binary [32]. Since fuzzy logic is used to represent continuous processes that cannot be separated

into discrete segments, with continuous variables like the features retrieved from the operator,

a Fuzzy classifier was the method chosen for this implementation. Also, given the quantity of

information provided by the features, the use of fuzzy logic simplifies the model by reducing

the amount of data, as it quantifies the data with linguistic variables, like low, normal or high,

representing an ample range of values.

In order to implement the Fuzzy method, MATLAB Fuzzy Logic Toolbox7 was used. This

toolbox allows the user to establish multiple input and output variables and membership functions

of different shapes, having as main components an FIS editor, a membership function editor, a rule

editor, a fuzzy inference viewer, and an output surface viewer, as represented in Figure 4.20.

The FIS editor displays the general information about the inference system, while the member-

ship function editor allows the display and edit of membership functions associated with the FIS

input and output variables. After defining the membership functions appropriately, the fuzzy rule

editor and viewer is used for defining, viewing and editing the rule base, using one of three for-

mats: full English syntax, symbolic notation, or an indexed notation. Finally, the Surface Viewer

generates a 3-D surface from two input variables and one output, allowing the user to visualize the

7https://www.mathworks.com/products/fuzzy-logic/features.html
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Figure 4.20: The Membership Function Editor (top left), FIS Editor (center), Rule Editor (top
right), Rule Viewer (bottom left), and Surface Viewer (bottom right)

rule base. The design and implementation of the fuzzy model in MATLAB used to obtain stress

and fatigue levels involved performing the two main steps: 1) Specifying the input and output vari-

ables membership functions; and 2) Defining the rule-base. Besides these two steps, MATLAB’s

Fuzzy Logic Toolbox executes by itself other necessary steps for fuzzy classification.

4.1.4.1 Input and Output Variables Membership Functions

A membership function defines how an element is mapped to a membership value, translating

the input variable into a range of values between 0 and 1. This range of values signifies the degree

of confidence to which an input belongs to a specific set (0 means the element does not belong

to the fuzzy set and 1 indicates the element completely belongs to the fuzzy set). There are vari-

ous types of membership functions, as they can be built from simple functions like straight lines,

triangular or trapezoidal memberships, or more complex like Gaussian distribution functions and

polynomial based curves. The Gaussian membership function can be specified with two parame-

ters: mean value and standard deviation, so due to its smoothness and succinct specification was

the one used for the input and output memberships.

For each input (HR, IBI, RATIO, SCRnumber, and SCRamp), the membership functions were
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created using the standard deviation and mean value of those inputs in three different situations:

high stress, high fatigue, and total relaxation. The high-stress condition was induced by making

the subject play a timed smartphone game of increasing levels of difficulty against another on-

line player, inciting competitiveness and pressure of performance, and therefore stress. The high

fatigue condition was encouraged by doing approximately 30 minutes of heavy physical effort,

after which occurred a rest period of 10 minutes then measuring the inputs. The total relaxation

scenario involved the individual in a stationary and comfortable form while listening to relaxing

music. The relax condition was tested before all the others to ensure that they did not tamper with

the neutral condition, due to possible remains of stress and fatigue levels if performed later, while

the high fatigue condition was simulated after all the others, increasing the fatigue level. Each

condition test was executed 20 times, for periods of 10 minutes, having a total of 20 samples for

each situation, with 10 minutes of continuously acquired and processed data.

In order to normalize the data, the minimum, maximum, mean value and standard deviation

(STDV) from each set of samples of each input were calculated. This was necessary in order to

use the Z-score method. The Z-score method preserves range (maximum and minimum) while

introducing the dispersion of the series (standard deviation) and has a range from -3 standard

deviations up to +3 standard deviations. The basic Z-score formula for a sample is represented in

Equation 4.7, where xi is the sample data, x is the sample mean, s the standard deviation, and zi is

the ith normalized data.

zi =
xi− x

s
(4.7)

After obtaining the normalized inputs through the Z-score method, the Equation 4.8 was used

to set the values between 0 and 1, where xi=(x1,...,xn) is the z-score normalized data and zi is the

ith data obtained in values from 0 to 1.

Zi =
xi−min(x)

max(x)−min(x)
(4.8)

The normalized mean values and standard deviations obtained for each input in each simulated

situation are presented in Table 4.4. These values were used to define the Gaussian membership

functions that suit the distribution of the inputs.
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Table 4.4: Mean Value and Standard deviation of the normalized inputs for each condition
simulated

High Stress High Fatigue Relaxation
Mean STDV Mean STDV Mean STDV

HR 0,712 0,087 0,112 0,069 0,391 0,043
IBI 0,095 0,041 0,731 0,135 0,273 0,042

RATIO 0,841 0,101 0,151 0,112 0,538 0,083
SCRnumber 0,470 0,185 0,052 0,071 0,060 0,058

SCRamp 0,206 0,226 0,078 0,185 0,110 0,193

Figure 4.21: HR (top left), IBI (top right), RATIO (center left), SCRnumber (center right),
SCRamp (bottom left) and stress or fatigue memberships (bottom right)

The Gaussian membership functions are represented in Figure 4.21, where the ones with an

orange background are inputs and the one with the blue background is membership used for both

outputs. The membership functions for the two outputs (stress and fatigue) were distributed evenly

through the Gaussian function, being defined with three memberships: low, medium and high.

4.1.4.2 Defining the Rule-base

Once the input and output variables and memberships are defined, the rule-base needs to be

created, being composed of IF-THEN rules that connect the input and output fuzzy sets. These

rules are constituted by several inputs connected by the logic “AND” or “OR” that are applied to

establish the FIS with fuzzy operations. To create the rules for this fuzzy a study of all possible

combination of inputs was performed, obtaining a total of 27 rules. These rules were grounded in

the theory of how the physiological metrics retrieved from the signals relate to the psychological
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concepts of stress and fatigue, described in Section 3.1. All of the rules created are annexed

in Appendix E. The rule base is an essential component, as the stress and fatigue levels will be

obtained rigorously in accordance with the pattern of the rule base, and therefore defective patterns

will result in erroneous levels.

4.1.4.3 MATLAB’s Fuzzy Logic Toolbox Inner Steps

Besides these steps performed, MATLAB’s Fuzzy Logic Toolbox executes by itself other nec-

essary steps for fuzzy classification:

• Fuzzification of the inputs - The inputs are fuzzified from the crisp values of the variables

to membership values before evaluating the defined rules. Independently of what the in-

put variable describes, the output is the degree of membership. So, having as inputs the

crisp normalized values of IBI, HR, RATIO, SCRnumber, and SCRamp, and as output a

fuzzy degree of membership in the corresponding set (stress or fatigue), a fuzzification is

performed.

• Fuzzy Inference - The fuzzy inference is a process of mapping an input to an output space

based on the test of all IF-THEN rules, membership functions, and fuzzy logical operations.

All the rules are combined and evaluated and the output of each rule is aggregated into a

single fuzzy set whose membership function assigns a weight for every output. Generally,

three types of fuzzy inference methods are used: Mamdani fuzzy inference, Sugeno fuzzy

inference, and Tsukamoto fuzzy inference. For this Fuzzy classifier, the Mamdani-Type

Fuzzy inference process was the one used as it is more intuitive, has widespread acceptance,

and it is well suited to human input. In Mamdani inference the IF-THEN rules obtain an

output value defined by a fuzzy set, that will be reshaped by a matching number, is required

to execute a defuzzification after combining all of these reshaped fuzzy sets.

• Defuzzification of the outputs - This process transforms its input (the resulting aggregated

output fuzzy set) into a single number, and can employ methods like centroid, bisector, mid-

dle of maximum (the average of the maximum value of the output set), largest of maximum

and smallest of maximum. The defuzzification method used was the centroid calculation,

which returns the center of the area under the curve.
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In resume, the MATLAB Fuzzy Logic Toolbox allows creating a fuzzy classifier that only

requires a previous definition of the input and output memberships, as well as the rule-base. Then,

using the readfis function, the defined fuzzy inference system is read from a file. After this, it

follows the evalfis function that performs the fuzzy inference calculations, returning the stress

and fatigue levels in an output matrix of size 1x2, based on a 1-by-5 input matrix (HR, IBI,

RATIO, SCRnumber, and SCRamp) and the FIS file. The simplified version of the Fuzzy classifier

implemented in MATLAB is demonstrated in Figure 4.22.

Figure 4.22: Inferring stress and fatigue from physiological data. The system used 12 rules to
transform the 5 inputs into the 2 outputs

4.2 Position Monitoring & Motion Tracking

For the adaptation of the robotic manipulator to the operator’s task order preference, human po-

sition monitoring is essential. The idea is to track how the different industrial operators performed

their actions, allowing the machine to perceive automatically where it should execute its task in

the cooperative process, according to the operator. In order to perceive the operator’s motion and

body position the Microsoft’s Kinect v2 sensor (see Section 3.2.4) and Software Development Kit

(SDK), 2.0 were used.

4.2.1 Body Tracking

The Kinect SDK 2.0 provides several code samples, enabling the creation of applications using

the Kinect sensor, connected to machines running Windows operating system. One of the most

pertinent parts of the Kinect SDK for this dissertation is its support for tracking the human body,
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which allows to track up to 6 people, and 25 joints per body. The joints supported by the Kinect

v28 are shown in Figure 4.23.

Figure 4.23: Kinect v2 Joint Map

The body tracking function was the one used to monitor the operator’s task order preference,

tracking, in this use case, his right hand during the manufacturing process, in order to detect in

which region in the shared area of production he is acting. The body-tracking feature is built in

the depth data processing, matching the raw depth data from the sensor with the sampled trained

data (data with different heights, clothes, and other factors labeled with each body part) to identify

which part of the body it belongs to [86].

This process includes several steps. Initially, the sensor identifies the human body object by

matching each pixel of depth data with the data used for training; secondly the body parts are

labeled by creating segments that are developed by matching similar probable data, as shown

in Figure 4.24 b), and finally, a trained decision tree, specifically a Decision Forrest, is used to

match the data to a type of body. The Decision Forrest used is composed of nodes that are data

labeled with body parts, with several different characteristics, where every pixel of depth data

passes through to match with body parts. When some data is matched, the sensor starts creating

body segments and, when identified, the 3D joint points with the most probable matched data

are positioned. In the Figure 4.249 is shown the positioning process of the joints, as described

8https://vvvv.org/documentation/kinect
9based on http://www.i-programmer.info/news/105-artificial-intelligence/2176-kinects-ai-breakthrough-

explained.html
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above [87].

Figure 4.24: Joint positioning process

The joint positions that were defined are measured by X , Y , and Z coordinates as shown in

Figure 4.25. While X and Y define the position of the joint, Z represents the distance from the

sensor, all measurement in meters. This system of axis is projected on the subject, consequently

having X and Y as negative or positive values, and the Z coordinate always as positive. In order to

obtain the proper coordinates, Kinect calculates the front, left and top view from the same image,

defining the 3D body [88]. The three views can be seen in Figure 4.24 c).

With Kinect SDK 2.0 is possible to easily access the body joints since each one of the 25 possi-

ble joint positions are identified by a name, as shown in Figure 4.23. To access the operator’s right

hand and understand what task he is performing, a C# code was created that uses the monitoring

of X , Y and Z coordinates of the right hand to return the area in which the operator is performing

its task in real time.

Figure 4.25: Kinect coordinate system

In the code, after initializing the Kinect sensor, the MultiSourceFrameReader class is used to
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access the body and color streams, followed by the creation of a frame reader method, which is

called whenever a new frame is available. By using the BodyFrameReader, is possible to access

the BodyFrame that contains all the computed real-time tracking information about the people that

are detected by the sensor, using the method GetAndRefreshBodyData. It’s important to check for

null values in the frames acquired, as Kinect provides 30 frames per second, and anything could

be null or missing, leading to program crashes.

After having access to the body that Kinect identifies, its state must be checked to know

whether it is tracked or not before acquiring the right-hand coordinates. The HandRight Joint-

type is used to detect the right hand, as shown in Figure 4.23, retrieving its X , Y and Z coordinates

from the joint position in the camera space. With the coordinates acquired in real time, the next

step consists of checking if their position in the axis match the range of values defined to limit the

areas associated with certain tasks in the production process, returning the corresponding area in

where the hand is located. The area returned is acquired each 500ms, having a sampling rate of

2Hz, and it can result in different integer values:

• area is 0 if the operator is not performing a task in a defined work area.

• area is a positive integer number if the operator is performing a task in a defined work area.

Like any other sensor, the Kinect also has physical limits, namely regions outside of the camera

scope. There are preferable spots where an optimal experience can be obtained and consequently

achieving better results when tracking the operator’s hand. The fixed measures to these physical

limitations and preferable spots are represented in Figure 4.26.

To make the area monitoring more reliable and stable, many factors had to be taken into ac-

count. For instance, external lighting sources affect image quality and depth sensing, given that

with large amounts of natural light, body tracking becomes less reliable. This occurs due to the

low contrast of the IR image and therefore depth values of 0 (unknown). The environment light-

ing parameter should be taken into account when performing the operator’s monitoring, namely

maintaining the ambient light as a controlled parameter. Also, other features such as individual’s

clothes or objects that the human holds during the production process can interfere with the mea-

suring process. For example, black clothing, as well as reflective items, can meddle with the IR

camera, making again the body tracking method less reliable. Likewise, to guarantee a robust

tracking method, the individual should keep his arms and hands to the side of the body, and his
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Figure 4.26: Physical limits and preferable spots for Kinect v2(Based on [6])

face to the sensor when performing actions, since hand movements in front of the body and facing

sideways can be unreliable [6].

Livingston et al. [89] made a study of performance measurements for the Kinect Skeleton, in

which tracker noise was considered one of the biggest limitations. To quantify that noise, the user

was physically restrained with hidden structures in order to stand still, taking 1000 samples for the

tracked body, and obtaining more noise in the right-hand joint (22.6mm) and right wrist (31.0mm)

than in any other joint. Latency was also considered a problematic performance characteristic. At

the normal frame rate of 30 Hz, while tracking the body, they obtained a mean latency of 146ms

(maximum 243ms), while bringing the right hand down to the left, in which a mouse was held

and thus the button hit. All of this limitations had to be taken into account when monitoring the

operator’s hand, demanding a very controlled environment as well as steady movements when

performing actions.

4.3 Cooperative Human-Machine Interaction Architecture

The CHMI solution consists in the implementation of a system that represents the cooperative

environment between the human operator and industrial robot, in form of a CPPS. Since the CPPS

presents self-adaptation capabilities, a MAPE-K methodology was used. The overall implementa-

tion is resumed in Figure 4.27.
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Figure 4.27: CHMI implementation scheme

So, in a nutshell, this solution is mainly composed by a CPPS with an adaptive module

(MAPE-k), a Cloud infrastructure (SELSUS project Sensor Cloud), Fog Nodes, and three dif-

ferent SelComps: BITalino SelComp, Kinect SelComp, and Robotic Arm SelComp, where the

first two provide data from the monitored operator and the last one serves as actuator. The BITal-

ino Selcomp and the Kinect Selcomp are implemented inside the Fog node where all the data is

processed and information inferred, being posteriorly sent to the Sensor Cloud via HTTP. The

adaptive module (MAPE-k) is called every time the Cloud receives values from the SelComps,

having as inputs the data from the SelComps and as outputs the adaptation parameters determined

in the case of necessary adjustments in the process, these outputs are then sent to the Robotic arm

SelComp to actuate.

All these concepts and its methods of implementation are described in the next subsections.

4.3.1 Physical architecture (CPPS)

The CPPS architecture used is based on the one described for production systems in the Chap-

ter 2.2.
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• The Smart connection level is where all physical (sensing and actuating) devices from the

process are located, namely the Kinect, BITalino and Robotic arm. This level is character-

ized by the collection of all the data from the sensors, such as biometric signals and body

motion.

• The Data-to-information conversion level consists in inferring the information needed for

the system adaptation, such as the stress and fatigue levels and the area from, respectively,

the biometric data and the process from the operator’s position. This information results

from a fuzzy classifier, which correlating the metrics retrieved from the BITalino’s ECG

and EDA sensors, and an algorithm that corresponds the depth measures from the Kinect to

certain areas were used.

• For the Cyber level, an agent-like system based on Smart Components is utilized, virtu-

alizing all the physical devices from the previous level in a Cloud infrastructure. Both

Smart Component and Cloud infrastructure result from the R&D European project SelSus

- Self Sustaining Manufacturing Systems, where Smart Components are materialized into

SelComps and the Cloud infrastructure developed is called Sensor Cloud.

• In the Cognition Level, the same Sensor Cloud is used, as it allows to graphically represent

all the historical and real-time data from the monitored operator, transferring this knowledge

to the users, using a web-based interface.

• In the Configuration level, the knowledge of the monitored process in terms of the operator’s

psychological state and task preference is used by the adaptive module (MAPE-k) to decide

which values should be sent in the adaptation parameters. These parameters are then sent to

the robotic arm as complete actions for direct actuation in the environment.

The proposed CPPS is composed by three physical devices: 1) the BITalino (detailed in Sec-

tion 3.2.3); 2) the Kinect (detailed in Section 3.2.4); and 3) the Robotic arm. The robotic arm used

in this scenario is the Linxmotion’s AL5d and possesses four axis + gripper, with a range of mo-

tion of 180 degrees per axis, lifting up to 368.5 grams. It has a local closed loop as servo motion

control and a SSC32U servo controller. All these physical devices (Kinect, BITalino, and Robotic

arm) are virtualized into Smart Components or, in the scope of the SelSus project, SelComps. Sel-

Comps consist in the encapsulation of physical devices, characterized by their modules for sensor

integration and posterior sensor data local processing. This data is later sent to the Sensor Cloud,
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for high-level data analytics. This Sensor Cloud provides user interfaces that allow the users to

monitor and control the system’s sensors via Web browsers [90].

In order to create the SelComp, a XML file format, entitled Selcomp Self Descriptor (SSD),

is sent via HTTP to the Sensor Cloud, before starting the data acquisition/actuation. This SSD

file represents the identification and capability characterization of each SelComp that is integrated

into the CPPS. This file includes the SelComp name (that will be displayed in the Cloud), type,

ID (unique or each device’s), IP and port, allowing to associate the data with the physical device.

After sending the SSDs, all SelComps are created in the Sensor Cloud. The BITalino Selcomp

acquires data from the ECG and EDA sensors, that after processed are used to infer stress and

fatigue levels in real time, while the Kinect Selcomp obtains the operator’s work area from the

position of his right hand. All SelComps are implemented inside a Fog Node, which extends

the Sensor Cloud data analytics capabilities to the devices level. Devices are connected to these

Fog Nodes into several forms, namely via USB in the case of the Kinect and via Bluetooth for

BITalino. Ultimately, the SelComps in the Fog Nodes communicates the sensed data remotely

with the Sensor Cloud.

In order transmit each measurement of stress and fatigue, as well as the areas, the SelComps

send another XML-type file every time a new value is acquired, namely the Payload. The payload

contains the data acquired from the physical devices, in a simple and XML schema, which is

transmitted to the Sensor Cloud with the corresponding timestamp. In this file, besides the value

and timestamp, the service type is also defined, which can be "DIAGNOSIS", "MAINTENANCE"

and "OBSERVATION" state. With all the SelComps implemented in the Sensor Cloud and the

SSD and Payload files defined, the Physical component of the CHMI architecture is complete and

therefore the implementation of the functional architecture (MAPE-k) follows.

4.3.2 Functional Architecture (MAPE-k)

As described in Section 2.3, a common reference model used in self-adaptive systems is

MAPE-K. So, for the functional part of the CHMI architecture, a MAPE-k feedback loop was

applied, which allowed the adaptive actuation of the robotic manipulator, performing different ac-

tions with distinct parameters according to the human in the cooperative environment. Figure 4.28

shows the described MAPE-K implementation.
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Figure 4.28: MAPE-K implementation

While monitoring the operator, MAPE-k uses the stress and fatigue levels as well as the areas

obtained, to plan the necessary adaptive measures. These measures consist on sending commands

that lead to executing a specific action through the robotic arm, in the case of existing a condition

that drives to the need of adaptation, like high-stress levels or high fatigue or task area. The

adaptation parameters defined are the robotic arm’s execution time while performing its tasks, and

the position in which that task should be performed. The task execution time is adapted according

to the operator’s psychological levels, while the identification of the area depends on the values

detected by the Kinect sensor, that is the position where the human operator is performing his task.

The MAPE-k function is implemented as a module in the Sensor Cloud, being called every time a

new value of stress and fatigue or operator’s area is received in the Cloud, returning the adaptation

parameters task area and time, which are sent to the robot.

When data is received, the code analyzes it, using a set of conditions to conclude if a command

to execute an action needs to be sent to the robotic arm. If the MAPE-k decides that no action is

necessary, the code returns -1 as the task area and time values. Since the psychological levels

returned from BITalino were acquired at a frequency of 1 Hz and the areas from Kinect at 2

Hz, the synchronization when receiving values was not possible, so the use of the Sensor Cloud

database was essential in order to store the stress and fatigue levels of the user, when an area

associated with a task was not acquired.
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So, in cases where only the values of stress and fatigue are received, the outputs of the MAPE-

k are sent as -1, followed by the call of a function that stores the stress and fatigue values in the

database. This storing and posterior acquiring of levels in the database did not compromise the

adaptive nature of the process since stress and fatigue suffer very slow and gradual variations. A

read database function is called every time the MAPE-k function runs. Conversely, when only the

area is received, the MAPE-k checks if the user is in that position for the time taken for the user

to complete its task. If the area was received for less than that time, the function returns -1 and no

task is executed, but if the time condition checks, the most recent value of stress and fatigue from

the database is used, determining in which task area the robotic arm should perform its action and

with what execution time. These values are then returned as JSON, to posteriorly be sent to the

actuator.

The execution time is calculated according to stress and fatigue levels, by multiplying the

maximum time the robotic arm can achieve (1600ms) by a "discomfort factor", k, that takes its

highest value (1) for cases of High/High stress and fatigue classifications combined, and minimum

value (0.375) for Low/Low. This discomfort factor decreases with the reduction of stress and

fatigue levels, allowing the process to adapt the time of task execution of the robotic manipulator.

This enables an improvement in the operator’s work conditions, giving him more time to recover

between tasks. In cases where the classifications of stress and fatigue switched, for instance,

Low stress/High fatigue and High stress/Low fatigue, or Medium Stress/Low fatigue and Low

stress/Medium fatigue and so on, the k value applied was the same, given that when in the same

classification level, the impact of stress or fatigue in the operator’s performance is practically equal

(both diminish productivity and worsen the individual’s work conditions). So a total of 6 different

k values were defined, one for each Stress/Fatigue level combination.
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Validation & Testing

In this chapter, the global use case scenario is explained, as well as all the tests performed to

validate and evaluate the proposed implementation, explaining and discussing its results.

5.1 Use Case Scenario

For simulating the cooperative interaction between the human operator and industrial equip-

ment, the robotic arm described in Section 4.3 was used, collaborating with an individual to ex-

ecute a shared production process. The process is defined by a total of 21 sequential tasks, 9

executed by the robotic arm and 12 by the subject. These tasks can be classified into two groups,

according to the entity that executes them, as described in Table 5.1.

Table 5.1: Possible tasks in the process for each entity

Robotic Arm Human operator
Place screw in Box 1 (3x) Place Box 1 (1x) / Rotate screw in Box 1 (3x)
Place screw in Box 2 (3x) Place Box 2 (1x) / Rotate screw in Box 2 (3x)
Place screw in Box 3 (3x) Place Box 3 (1x) / Rotate screw in Box 3 (3x)

Regarding the use case scenario, a human operator is sited in front of the work area, executing

the tasks of placing a box in the corresponding area. In the end of the process, the operator should

place all the boxes and can freely choose how to do it, e.g., placing in sequence boxes 1-2-3, or any

other order. While executing the tasks, the human operator’s ECG and EDA are being monitored,

as described in Subsections 4.1.2 and 4.1.1. After a human task regarding placing a box, the

robotic arm immediately executes one of its tasks, which consists of putting a screw inside a box.

In order to put the screw in the right box, the robotic arm should be aware of what was the area that

69
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the human chose to place a box in. Right after the robotic arm task execution, the human executes

again one of this tasks, which can be placing another available box in the corresponding area or

rotating the screw placed by the robotic arm. In total, there are three screws to place and rotate in

each box.

After the individual’s choice of task in a certain box, the robot will acknowledge that choice

and perform the placement of the next screw in the right box. All of the robotic arm’s tasks are

executed within the same normal execution time. However, in order to test the adaptation to the

stress and fatigue levels of the operator, this execution time is modified in accordance with those

levels, as mentioned in Subsection 4.3.2. The use case scenario and its components can be seen in

Figure 5.1.

Figure 5.1: Use case scenario and its components

5.2 Experiments and Results

5.2.1 Experiments

Since the robotic arm reacts directly to the values returned from the operator’s monitoring,

the accuracy of the proposed solution is straightforwardly related to the accuracy of the stress and
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fatigue classifier as well of the position monitoring and motion tracking. So to assess the solution’s

reliability the following experiments were performed:

1. Stress and Fatigue Classifier evaluation:

Two subjects (A and B) were tested in two different conditions - induced stress and induced

fatigue - where each subject performed 15 tests of 5 minutes for each psychological level

in each condition. The induced conditions were provoked on the subjects using the same

procedures explained in Subsection 4.1.4 for high stress and high fatigue situations when

acquiring the initial data.

Considering that the stress and fatigue classifier must reach a compromise between detect-

ing properly if the subject is under stress/fatigue and detecting when it is not, a Receiver

Operating Characteristic (ROC) curve analysis was performed by evaluating the Area Un-

der the ROC curve (AUROC), along with a accuracy, sensibility and specificity calculation.

For this analysis, the True Positives (T P), False Positives (FP), True Negatives (T N) and

False Negatives (FN) were obtained by comparing the subject’s self-assessment regarding

his own levels of stress and fatigue with the result returned by the classifier. After each

test, the subject would determine if he was under stress or fatigued if the Fuzzy classifier

obtained a level greater than 0.3 (cut-off value) the detection of stress or fatigue was con-

sidered positive.

2. Position Monitoring and Motion Tracking evaluation:

One subject was tested executing the tasks defined in Section 5.1. The individual carried

out 15 tests with the duration of 2 minutes each, remaining sited within the Kinect’s fixed

measures for better tracking, and executing the tasks with his right hand. During the 2

minutes tests, it was attempted to equally separate the time spent in each area, alternating

between the four existing areas (area 1 corresponding to box 1, area 2 to box 2, area 3 to box

3 and area 0 when out of those defined coordinates, see Figure 5.1 for the boxes’ locations).

It’s important to refer that the user needed to always initially "calibrate" the Kinect, by

opening its arms in front of the camera while sitting.

For this evaluation four parameters were defined: True Area Detection (TAD) - when the

position tracking system properly detects an area, False Area Detection (FAD) - when the
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system incorrectly detects an area, TAD rate (TADR) and FAD rate (FADR). Notice that the

higher the TADR and the lower the FADR, the more accurate the performance of the system.

3. Use Case Scenario testing:

In order to conclude in what way the collaboration between the operator and the robotic arm

could influence the production system, the use case scenario explained above in this sec-

tion was enacted, including the monitoring systems with the adaptation module and overall

CPPS. The test was performed by two subjects of different genders and lifestyles, induc-

ing different stress and fatigue levels with the objective of testing all possible adaptation

combinations (Low/Low, High/High, Medium/Medium, Low/Medium, Medium/High and

Low/High). Each subject executed a total of 18 tests, three times for each type of test, i.e

for each combination of stress and fatigue levels mentioned above. These tests only serve

as demonstrators to the adaption according to the monitoring performed in each individual,

since the results obtained will depend on the accuracy of the previously defined classifier

and monitoring evaluation.

The mean values of the times returned from the MAPE-k were calculated for every task the

robotic arm performed in each box and from these values, the following evaluation param-

eters were obtained for each subject: Mean Execution Time (MET ) in milliseconds for box

1, 2, 3 and total process for all adaptation combinations, and MET Variation (V MET ) in

relation to the no stress and no fatigue state (Low/Low combination) MET .

5.2.2 Results

5.2.2.1 Stress and Fatigue Classifier

For the Stress and Fatigue Classifier evaluation, the inferred levels were extracted during the

tests from the MATLAB BITalino API to a text file. Also, in order to evaluate the data generated

from the tests, the historical data stored in the Sensor Cloud was used. For the ROC curve analysis,

the true positive rate (T PR) and the false positive rate (FPR) were calculated by Equation 5.1 and

Equation 5.2, allowing then to obtain the ROC curve by plotting TPR against FPR.

T PR =
T P

(T P+FN)
(5.1)
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FPR =
FP

(T N +FP)
(5.2)

Table 5.2 shows the T P, T N, FP, FN, T PR and FPR values for each subject, while in Table 5.3

those same values are calculated for each experiment combining stress and fatigue of both subjects.

Table 5.2: ROC analysis for Subject’s A and B fatigue and stress detection results in each test

Stress Fatigue
TP TN FP FN TPR TNR TP TN FP FN TPR TNR

Induced Stress
Subject A 9 3 2 1 90% 60% 2 11 2 0 100% 85%

Induced Stress
Subject B 12 1 2 0 100% 34% 1 10 3 1 50% 77%

Induced Fatigue
Subject A 8 2 0 5 62% 100% 3 9 3 0 100% 75%

Induced Fatigue
Subject B 10 1 0 4 71% 100% 1 9 4 1 50% 69%

Table 5.3: Global ROC analysis of the stress and fatigue detection for each test scenario

Stress Fatigue
TP TN FP FN TPR TNR TP TN FP FN TPR TNR

Induced Stress
Test 20 4 4 2 91% 50% 3 21 5 1 75% 81%

Induced Fatigue
Test 4 18 7 1 80% 72% 18 0 9 3 67% 100%

The AUROC, calculated using the Trapezoid Rule, was then evaluated as it serves as a great

indicator of the accuracy of the fuzzy classifier, being equivalent to the "probability that the clas-

sifier will rank a randomly chosen positive instance higher than a randomly chosen negative in-

stance" [91]. Random guessing produces the diagonal line between (0, 0) and (100, 100), being

equivalent to an area of 5000, so no realistic classifier should have an area lower than that value.

Figures 5.2 and 5.3 represent the ROC curves for each test condition and for each classification,

while in Table 5.4 the AUROC values for stress and fatigue classification in each condition are

represented.

Finally the values of accuracy (ability to differentiate stress/fatigue from non-stress/non-fatigue

cases correctly), sensitivity (ability to determine the stress/fatigue cases correctly) and specificity
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Figure 5.2: ROC curves for the fatigue condition experiment (left curve - Stress Levels inferring
and right curve - Fatigue Levels inferring)

Figure 5.3: ROC curves for the stress condition experiment (left curve - Stress Levels inferring
and right curve - Fatigue Levels inferring)

Table 5.4: AUROC for stress and fatigue classification, in each experiment

Induced Stress Test Induced Fatigue Test
Stress Fatigue Stress Fatigue

AUROC 8296 8606 7560 8519

(ability to determine the non-stress/fatigue cases correctly) of the stress and fatigue classifier were

calculated, using Equations 5.3, 5.4 and 5.5. The obtained results are shown in Table 5.5.

Accuracy =
T P+T N

T P+T N +FP+FN
(5.3)

Sensitivity =
T P

T P+FN
(5.4)

Speci f icity =
T N

T N +FP
(5.5)
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Table 5.5: Accuracy, Sensitivity and Specificity for the Stress and Fatigue detections

Accuracy Specificity Sensitivity
Stress Classification 77,6% 67,6% 88,9%

Fatigue Classification 70,0% 60,0% 84,0%

5.2.2.2 Position Monitoring & Motion Tracking

In the Position Monitoring & Motion Tracking evaluation 3600 area values were generated

from the tests. Once again, in order to evaluate the data generated from the tests, not only the

area values were retrieved to a text file, as also the SYSTEC-FOF Sensor Cloud Historical Data

Function was used, sending the areas from the Kinect’s SELCOMP to the Cloud. The metrics

defined to analyze the accuracy of this system TAD and FAD were used to calculate the TADR

and FADR as specified in Equations 5.6 and 5.7.

TADR =
TAD

TAD+FAD
×100 (5.6)

FADR =
FAD

TAD+FAD
×100 (5.7)

The TAD, FAD, FADR and TADR parameters were calculated for all areas in general and

for each in particular. This allows to analyze the overall system accuracy and determine if any

particular area generated more false detections than the others. The values obtained are presented

in Table 5.6.

Table 5.6: Position Tracking evaluation parameters

Area 0 Area 1 Area 2 Area 3 Total
TAD 559 511 497 484 2051
FAD 150 199 241 259 849

TADR 78,84% 71,97% 67,34% 65,14% 70,72%
FADR 21,16% 28,03% 32,66% 34,86% 29,28%

5.2.2.3 Use Case Scenario

In the Use Case Scenario evaluation the values returned from the MAPE-k (box and time) were

stored in the Cloud database and retrieved after each test (Figure 5.4). In Tables 5.7 and 5.8 the
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MET values are shown for subject A and B, respectively, for each box and adaptation combination,

while in Table 5.9 the METV values for each subject and each stress/fatigue combination are

presented. The METV of the ij stress/fatigue combination, was calculated using Equation 5.8.

Figure 5.4: Box and time values returned from MAPE-k

V METi j =
METi j−METLow/Low

METLow/Low
×100 (5.8)

Table 5.7: MET values in milliseconds for each box and adaptation combination for Subject A

Subject A Box 1 Box 2 Box 3 Total
Low/Low 600 666,7 600 622,2

Medium/Medium 1000 1000 933,3 977,8
High/High 1533,3 1533,3 1466,7 1511,1

Medium/High 1266,7 1133,3 1333,3 1244,4
High/Low 1133,3 1111,1 1155,6 1133,3

Medium/Low 888,9 933,3 866,7 896,3

Table 5.8: MET values in milliseconds for each box and adaptation combination for Subject B

Subject B Box 1 Box 2 Box 3 Total
Low/Low 644,4 666,7 600 637

Medium/Medium 881,5 933,3 866,7 925,9
High/High 1177,8 1155,6 1133,3 1155,6

Medium/High 1111,1 1133,3 1133,3 1125,911
High/Low 1066,7 1088,9 1044,4 1066,7

Medium/Low 866,7 1000 911,1 893,8
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Table 5.9: Ideal METV and METV for each subject

METV Subject A METV Subject B Ideal METV
Low/Low 0% 0% 0%

Medium/Medium 57% 40% 67%
High/High 143% 81% 167%

Medium/High 100% 77% 133%
High/Low 82% 67% 100%

Medium/Low 44% 45% 33%

5.2.3 Discussion of Results

5.2.3.1 Stress and Fatigue Classifier

In the Stress and Fatigue Classifier evaluation, regarding the results presented in Table 5.2 from

the ROC analysis for each subject, one can conclude that subject A has globally better results than

Subject B, possibly due to the fact that different categories of people may respond differently to

stress and fatigue stimuli, so the membership functions used in the fuzzy classifier could be more

fit to the biosignals of Subject A. The overall ROC analysis shown in Table 5.3 demonstrates that

the induced stress experiment obtained a T P rate of 91% for the stress detection and 75% for

fatigue, while the T N rate was of 50% for stress and 89% for fatigue. This 50% T NR can be

explained by the fact that humans are poor assessors of their own stress, whereas fatigue is more

easily classified, so the subject could not perceive his own stress condition, since the value of the

T NR increases in other test conditions. The AUROC values are presented in Table 5.4, where all

the areas are above 7500, which demonstrates good reliability for the classification method. In

terms of the accuracy, specificity and sensitivity values showed in Table 5.5, better results were

obtained for stress classification than for fatigue, obtaining 77,6% accuracy, 67,6% specificity and

88,9% sensitivity for stress classification, while fatigue classification revealed 70% accuracy, 60%

specificity, and 84% sensitivity.

While testing the Stress and Fatigue Classifier, most of the false positives occurred due to

peaks in the EDA signal, which led to mistakes in the SCR. This can be explained by occasional

movement of the left hand of the subject, where the electrodes were placed. Also, the fact that

the fuzzy classifier memberships were obtained from data from a single subject, brought more

accurate results to the inputs of subject A than subject B, since biosignals and its features highly

variate with individual characteristics (gender, age, weight, among other factors). Moreover, given
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Figure 5.5: Graphic with Stress and Fatigue Levels from the Sensor Cloud Historical Data

that the stress and fatigue conditions were artificially induced, it was very hard to maintain those

conditions throughout the tests. In Figure 5.5 these limitations can be observed, showing peaks

occurred in stress and fatigue levels, that led to incorrect classifications in some moments.

5.2.3.2 Position Monitoring & Motion Tracking

In the Position Monitoring & Motion Tracking evaluation from the values acquired nearly

500 were discarded in order not to wrongly consider them false detection, as they were transition

values that occur when the subject changes from one area to another, having to cross some other

in between (like showed in the right side graphic in Figure 5.6, when crossing from area 2 to area

3 - time 8:51:10). Figure 5.6 presents two examples of the graphics provided by the Sensor Cloud

Historical Data where some irregularities in the areas detection are demonstrated right after 9:10

in the left graphic, and after 8:51:30, when detecting area 1, in the right side graphic.

Figure 5.6: Graphics with the areas returned in two of the position tracking tests from the Sensor
Cloud Historical Data (x-axis:time, y-axis:area)
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From the general parameters calculated showed in Table 5.6, it can be concluded that the

tracking system has an overall satisfactory performance, given that its TADR is almost 71%, while

the percentage of areas incorrectly detected is of 29%. The TADR for the area 0 is clearly higher

than for the other areas, this fact can be due to the dimension of that area being much greater

in comparison, not being as affected to the discrepancies stemming from the right-hand tracking

noise (see Subsection 4.2.1). In contrast, area 3 has the highest FADR, which is explained due to

its position right behind the robotic arm, that obstructs Kinect’s vision and sometimes causes it

"loose" the right-hand position.

While performing the tests some limitations were perceived that demanded special conditions

in order to achieve the position tracking. First, it was concluded that the individual needed to be

sited in the exact same position since the tracking system has the coordinates for each area defined

in the code, so if the person moved considerably from the spot used to initially "calibrate" the

Kinect, the system would not correctly track if the right hand was in a determined area. Another

limitation was the hand movement’s quickness due to the latency existing in the body tracking. In

general, the results are satisfactory but, for industrial applications, the system needs improvements

and more testing scenarios and conditions.

5.2.3.3 Use Case Scenario

In the Use Case Scenario testing, when comparing the MET values obtained for each sub-

ject, presented in Tables 5.7 and 5.8, it can be concluded that in both cases the system adapted

to the individual’s state, demonstrating superior MET values in higher fatigue and stress levels

(High/High and Medium/High combinations), increasing the robotic arm’s time of executing its

tasks, and consequently reducing the speed of each task. On the other hand, the METV allows

perceiving the level of adaptation, when compared to the normal execution conditions of the co-

operative process. As it can be observed in Table 5.9, in the Subject A tests there is at least a 40%

difference between the METV of almost every stress/fatigue classification combinations, which

indicates that the adaptation is successful and easily observed during the process. The only excep-

tion occurs between the Medium/Low and Medium/Medium cases and it can be explained due to

the difficulty in maintaining both stress and fatigue at a medium level. When it comes to Subject
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B, the METV values are lower but still, there is a difference of almost 10% between classifica-

tion combinations (again only between the Medium/Low and Medium/Medium that difference is

lower). This difference between the two subjects is due to better stress and fatigue classification

in the subject A as explained in the earlier.

Finally, when observing the difference between the ideal METV values and the ones obtained,

a discrepancy is clear. Since the use case scenario involves the fatigue/stress monitoring combined

with the position monitoring, it is natural that the values obtained are less accurate than the optimal,

as there is inaccuracy associated to those monitoring systems. Also, maintaining a specific induced

combination of stress and fatigue in an individual is very hard, especially maintain it throughout

the execution of the tests. Nonetheless METV values obtained are satisfactory and in the case of

the Subject A close to the ideal.



Chapter 6

Conclusions & Future Work

This chapter is reserved for final conclusions of the work done through this semester and

possibilities of future work in aspects of optimizations and additional functionalities.

6.1 Conclusions

This dissertation focused essentially on the implementation of a CHMI system: a robotic arm,

Kinect, and BITalino virtualized in a CPPS, with the main objective of adapting the robot to the

operator’s emotional state in terms of stress and fatigue, and also to his task order preference when

in the cooperative process.

The ECG and EDA sensors were used, acquiring the signals with BITalino, and later process-

ing them, making the acquisition more robust to obtain the metrics that allowed to infer stress

and fatigue levels. This acquisition showed several limitations, as the data was very sensitive

to the manner of sensor placement and sudden body motion, causing interference in the signals

and consequently erroneous values in the metrics. Also, the signals suffered from day-to-day

and subject variability, so the definition of processing methods that surpassed these variations and

encompassed all types of signals and people were very hard to attain.

The fuzzy classifier used allowed to retrieve the wanted levels in a very intuitive way, but the

development revealed itself very problematic, considering that for the memberships construction

a set of reliable metrics when in stress and fatigue had to be gathered, and gathering physiological

data related to mental stress and fatigue in a human being is not an easy task since it is difficult to

simulate and sustain. The tests performed on this detection system revealed an accuracy of 77,6%

for stress classification and 70% for fatigue. This lower result for fatigue can be explained with a

better signals’ correlation to stress than to fatigue (most human fatigue detectors use EEG signals).

It is also important to refer that when comparing the results of different subjects the accuracy also

varies due to the earlier explained variation in the biosignals from individual to individual.

For the Position monitoring & Motion tracking, the Kinect human tracking functions helped

to facilitate the process. After some initial issues with the mapping of the joints, the detection of

the right hand was relatively easy, only having to compare its position with the predefined areas.

81
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Although this system shows overall satisfactory results (70,7% of true area detection rate) and

allows an easy adaptation to other industrial processes, it has many limitations: from the user’s

restrictions in movements and positions and only suitable for right-handed individuals, to the light

conditions and necessity of initial "calibration".

The MAPE-K implemented used the data acquired from the monitoring systems to determine

if there was a need for adaptation, posteriorly sending commands with the adaptation parameters

(execution time and box) to the robotic arm if a change was needed. This implementation was

facilitated by the use of the Sensor Cloud that allowed to retrieve the data from the several sensors.

Finally by creating Smart Components of all physical devices existing in the system, and

connecting them to a network, i.e., by creating a CPPS, the overall CHMI process became more

efficient and flexible in terms of the design and operation of the robotic arm and complete process,

and facilitated reconfigurations to respond to changes in its surrounding environment in real time,

or in this dissertation case, to the changes in the operator.

With the implementation of the CPPS (including a Sensor Cloud integration) for the CHMI

solution, much advantages emerged, like allowing to easily change HMI process if intended, fa-

cilitating environment/operator’s monitoring and posterior visualization of data through the cloud,

decreasing the response time and the cost of building and operating the system when compared to

the usual automation solutions. It is important to emphasize that although all constituent parts of

this system were implemented for this particular case, with the CPPS this solution could easily be

adapted to other scenarios with different physical devices and different adaptation parameters.

6.2 Future work

Regarding all the work done in the implementation of this CHMI solution, there are still some

aspects that can be improved and tested.

First, in order to allow more freedom of movement when performing the signals acquisition,

the BITalino board should be transformed into a wearable that would not allow the electrodes to

disconnect so easily. Also, the fuzzy classifier could be trained, being able to provide optimum

outputs by adapting its rules and membership functions to the training data, potentially increasing

the accuracy of the stress/fatigue classifier for several individuals.

With regard to the monitoring position system, the use of image processing to detect the boxes,

or white markers to delimit the areas, also as making the system adaptable for both left-handed

and right-hand individuals, would not only improve the precision of the detection but also increase

the adaptability of the system.

When it comes to the adaptation to the human operator, other scenarios could be tested, like

compensating the operator’s decrease in productivity instead of trying to facilitate his work con-

ditions. Additionally, a learning module could be implemented in the robotic arm, ceasing to be

purely reactive to the surrounding environment and allowing it to perceive and adapt its actions

based on acquired knowledge.



6.2 Future work 83

Finally, in order to specifically evaluate the impact of the CPPS in the overall solution, a com-

parison with an identical CHMI process that did not use CPS would have been very enlightening

in what extent did actually the CPS improve the process, in terms of adaptation, latency and exe-

cution times.
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PLUX – Wireless Biosignals, S.A. 

Av. 5 de Outubro, n. 70 – 8. 
1050-059 Lisbon, Portugal 

bitalino@plux.info 
http://bitalino.com/ 

 
REV A	
  

 
© 2015 PLUX  

 
This information is provided "as is," and we make no express or implied warranties whatsoever with respect to functionality, operability, use, 
fitness for a particular purpose, or infringement of rights. We expressly disclaim any liability whatsoever for any direct, indirect, consequential, 
incidental or special damages, including, without limitation, lost revenues, lost profits, losses resulting from business interruption or loss of data, 
regardless of the form of action or legal theory under which the liability may be asserted, even if advised of the possibility of such damages. 
 

 BEWARE: DIRECT OR INDIRECT COUPLING TO THE MAINS MAY RESULT IN SHOCKING HAZARD  
   
	
  

SPECIFICATIONS 
> Sampling Rate: 1, 10, 100 or 1000Hz 
> Analog Ports: 4 in (10-bit) + 2 in (6-bit) 
> Digital Ports: 4 in (1-bit) + 4 out (1-bit) 
> Communication: Bluetooth 2.0+EDR 
> Range: up to ~10m (in line of sight) 
> Sensors: EMG; ECG; EDA; ACC; LUX 
> Actuators: LED 
> Size: 105x60x6mm 
> Battery: 500mA 3.7V LiPo (rechargeable) 
> Consumption: ~65mA (everything active) 
> Accessories: 3-lead cable (EMG/ECG); 
2-lead cable (ECG/EDA); 5 electrodes 
 
FEATURES 
> Perfect for biosignal exploration 
> All-in-one system 
> Snappable blocks 
> Raw data acquisition 
> On-board battery charger 
> Easy-to-use 
> Affordable 
 
APPLICATIONS 
> Psychophysiology 
> Biomedical projects 
> Computer science 
> Electrical engineering 
> Human-Computer Interaction 
> Robotics & Cybernetics 
> Physiology studies 
> Biomechanics 
> Biofeedback 
 
GENERAL DESCRIPTION 
Our signature BITalino Board kit has an all-
in-one ready-to-use hardware design, with 
all the blocks pre-connected between them, 
making it perfect for biosignal exploration 
and lab activities. The kit has all the 
accessories needed to get started, namely 
the hardware modules, battery, cables, and 
electrodes. Along with our cross-platform 
OpenSignals software, it enables instant 
biosignal data visualization and recording.	
  
 

 
Fig. 1. All-in-one design ready to use out-of-the-box. 

 

 
Fig. 2. The BITalino Board kit enables you to have your 

own personal biosignal acquitision system. 
 

 
Fig. 3. Parts and accessories included in the kit. 
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PLUX – Wireless Biosignals, S.A. 

Av. 5 de Outubro, n. 70 – 8. 
1050-059 Lisbon, Portugal 

bitalino@plux.info 
http://bitalino.com/ 

 
REV A	
  

 
© 2015 PLUX  

 
This information is provided "as is," and we make no express or implied warranties whatsoever with respect to functionality, operability, use, 
fitness for a particular purpose, or infringement of rights. We expressly disclaim any liability whatsoever for any direct, indirect, consequential, 
incidental or special damages, including, without limitation, lost revenues, lost profits, losses resulting from business interruption or loss of data, 
regardless of the form of action or legal theory under which the liability may be asserted, even if advised of the possibility of such damages. 
 

 BEWARE: DIRECT OR INDIRECT COUPLING TO THE MAINS MAY RESULT IN SHOCKING HAZARD  
	
  

	
  

SPECIFICATIONS 
> Gain: 1100 
> Range: ±1.5mV (with VCC = 3.3V) 
> Bandwidth: 0.5-40Hz 
> Consumption: ~4mA 
> Input Impedance: 100GOhm 
> CMRR: 110dB 
> Electrodes: 3 or 2 (virtual REF) 
 
FEATURES 
> Bipolar differential measurement 
> Pre-conditioned analog output 
> High signal-to-noise ratio 
> Small form factor 
> Raw data output 
> Easy-to-use 
> “On-the-person” and “off-the-person” use 
 
APPLICATIONS 
> Heart rate & heart rate variability 
> Human-Computer Interaction 
> Biometrics 
> Affective computing 
> Physiology studies 
> Psychophysiology 
> Biofeedback 
> Biomedical devices prototyping 
 
GENERAL DESCRIPTION 
Heartbeats are triggered by bioelectrical 
signals of very low amplitude generated by 
a special set of cells in the heart (the SA 
node). Electrocardiography (ECG) enables 
the translation of these electrical signals into 
numerical values, enabling them to be used 
in a wide array of applications. Our sensor 
allow data acquisition not only at the chest 
(“on-the-person”), but also at the hand 
palms (“off-the-person”), and works both 
with pre-gelled and most types of dry 
electrodes. The bipolar configuration is ideal 
for low noise. Here are a few examples: 
http://vimeo.com/98075534h 
https://www.youtube.com/watch?v=hQ3BUBV-BBMh 
https://www.youtube.com/watch?v=lKWM2TL1toM 

 
Fig. 1. Pin-out and physical dimensions. 

 

 
Fig. 2. Typical raw ECG data (acquired with BITalino) 

using 2 electrodes at the hands (left)  
and 3 electrodes at the chest (right). 

 

  
Fig. 3. Example of a 2 electrodes placement at the hands 

(left) and a 3 electrodes placement at the chest (right).  
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TRANSFER FUNCTION 
[-1.5𝑚𝑉, 1.5𝑚𝑉] 
 

𝐸𝐶𝐺 𝑉 =
𝐴𝐷𝐶
2! − 12 .𝑉𝐶𝐶

𝐺!"#
 

 
𝐸𝐶𝐺 𝑚𝑉 = 𝐸𝐶𝐺 𝑉 . 1000 
 
𝑉𝐶𝐶 = 3.3𝑉 (operating voltage) 
𝐺!"# = 1100 (sensor gain) 
 
𝐸𝐶𝐺 𝑉  – ECG value in Volt (𝑉) 
𝐸𝐶𝐺 𝑚𝑉  – ECG value in millivolt (𝑚𝑉) 
𝐴𝐷𝐶 – Value sampled from the channel  
𝑛 – Number of bits of the channel1  
 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  The number of bits for each channel depends on the resolution of the Analog-to-Digital 
Converter (ADC); in BITalino the first four channels are sampled using 10-bit resolution 
(𝑛 = 10), while the last two are sampled using 6-bit (𝑛 = 6). 
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PLUX – Wireless Biosignals, S.A. 

Av. 5 de Outubro, n. 70 – 8. 
1050-059 Lisbon, Portugal 

bitalino@plux.info 
http://bitalino.com/ 

 
REV A	
  

 
© 2015 PLUX  

 
This information is provided "as is," and we make no express or implied warranties whatsoever with respect to functionality, operability, use, 
fitness for a particular purpose, or infringement of rights. We expressly disclaim any liability whatsoever for any direct, indirect, consequential, 
incidental or special damages, including, without limitation, lost revenues, lost profits, losses resulting from business interruption or loss of data, 
regardless of the form of action or legal theory under which the liability may be asserted, even if advised of the possibility of such damages. 
 

 BEWARE: DIRECT OR INDIRECT COUPLING TO THE MAINS MAY RESULT IN SHOCKING HAZARD  
	
  

	
  

SPECIFICATIONS 
> Gain: 2 
> Range: 0-1MOhm (with VCC = 3.3V) 
> Bandwidth: 0-3Hz 
> Consumption: ~2mA 
> Electrodes: 2 
 
FEATURES 
> Skin resistance measurement 
> Pre-conditioned analog output 
> High signal-to-noise ratio 
> Small form factor 
> Raw data output 
> Easy-to-use 
 
APPLICATIONS 
> Arousal detection 
> Human-Computer Interaction 
> Emotional cartography 
> Affective computing 
> Physiology studies 
> Psychophysiology 
> Relaxation biofeedback 
> Biomedical devices prototyping 
 
GENERAL DESCRIPTION 
Sweat glands secretion is a process that 
allows our body to regulate its temperature, 
but it is also associated the sympathetic 
nervous system activity. Whenever we 
become aroused (e.g. nervous) or relaxed, 
that state is partially translated into the 
sweat production or inhibition at the glands 
on our hands palms and feet. This changes 
the resistance of our skin; Electrodermal 
Activity (EDA) monitoring enables the 
translation of these resistance changes into 
numerical values, allowing its use in a wide 
array of applications. Known uses of this 
sensor include emotional mapping, the 
polygraph test (aka lie detector), and also 
stress / relaxation biofeedback. 

 
Fig. 1. Pin-out and physical dimensions. 

 

 
Fig. 2. Typical raw EDA data (acquired with BITalino). 

 

  
Fig. 3. Example electrode placement.  

 
  



Electrodermal Activity (EDA) 
Sensor Data Sheet   
	
  

 
 

PAGE 2 OF 2 
	
  
	
  

TRANSFER FUNCTION 
[1𝜇𝑆, ∞𝜇𝑆] 
 

𝑅 𝑀𝑂ℎ𝑚 = 1 −
𝐴𝐷𝐶
2!

 
 

𝐸𝐷𝐴 𝜇𝑆 =
1

𝑅 𝑀𝑂ℎ𝑚
 

 
𝑅 𝑀𝑂ℎ𝑚  – Sensor resistance value mega-Ohm (𝑀𝑂ℎ𝑚) 
𝐸𝐷𝐴 𝜇𝑆  – EDA value in micro-Siemens (𝜇𝑆) 
𝐴𝐷𝐶 – Value sampled from the channel  
𝑛 – Number of bits of the channel1  
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  The number of bits for each channel depends on the resolution of the Analog-to-Digital 
Converter (ADC); in BITalino the first four channels are sampled using 10-bit resolution 
(𝑛 = 10), while the last two are sampled using 6-bit (𝑛 = 6). 
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PLUX – Wireless Biosignals, S.A. 

Av. 5 de Outubro, n. 70 – 8. 
1050-059 Lisbon, Portugal 

bitalino@plux.info 
http://bitalino.com/ 

 
REV A	
  

 
© 2015 PLUX  

 
This information is provided "as is," and we make no express or implied warranties whatsoever with respect to functionality, operability, use, 
fitness for a particular purpose, or infringement of rights. We expressly disclaim any liability whatsoever for any direct, indirect, consequential, 
incidental or special damages, including, without limitation, lost revenues, lost profits, losses resulting from business interruption or loss of data, 
regardless of the form of action or legal theory under which the liability may be asserted, even if advised of the possibility of such damages. 
 

 BEWARE: DIRECT OR INDIRECT COUPLING TO THE MAINS MAY RESULT IN SHOCKING HAZARD  
	
  

	
  

SPECIFICATIONS 
> Gain: 1000 
> Range: ±1.65mV (with VCC = 3.3V) 
> Bandwidth: 10-400Hz 
> Consumption: ~4mA 
> Input Impedance: 100GOhm 
> CMRR: 110dB 
 
FEATURES 
> Bipolar differential measurement 
> Pre-conditioned analog output 
> High signal-to-noise ratio 
> Small form factor 
> Raw data output 
> Easy-to-use 
 
APPLICATIONS 
> Human-Computer Interaction 
> Robotics & Cybernetics 
> Physiology studies 
> Psychophysiology 
> Biomechanics 
> Biofeedback 
> Muscle reflex studies 
> Nerve conduction measurement 
> Biomedical devices prototyping 
 
GENERAL DESCRIPTION 
Muscle activation is triggered by bioelectrical 
signals of very low amplitude sent from motor 
control neurons on our brain to the muscle 
fibers. Electromyography (EMG) enables the 
translation of these electrical signals into 
numerical values, enabling them to be used 
in a wide array of applications. Our sensor is 
especially designed for surface EMG, and 
works both with pre-gelled and most types of 
dry electrodes. The bipolar configuration is 
ideal for low-noise data acquisition, and the 
raw data output enables it to be used for 
human-computer interaction and biomedical 
projects alike. Here are a few examples: 
https://www.youtube.com/watch?v=pVAaFeym8TQ 
https://www.youtube.com/watch?v=7Q4HC0vxFsc 
http://www.physioplux.com/ 

 
Fig. 1. Pin-out and physical dimensions. 

 

 
Fig. 2. Typical raw EMG data (acquired with BITalino). 

 

 
Fig. 3. Example electrode placement, with REF in a bone 

region (electrically neutral), and IN+ & IN- 20mm apart 
over the muscle belly (aligned with the muscle fibers).  
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TRANSFER FUNCTION 
[-1.65𝑚𝑉, 1.65𝑚𝑉] 
 

𝐸𝑀𝐺 𝑉 =
𝐴𝐷𝐶
2! − 12 .𝑉𝐶𝐶

𝐺!"#
 

 
𝐸𝑀𝐺 𝑚𝑉 = 𝐸𝑀𝐺 𝑉 . 1000 
 
𝑉𝐶𝐶 = 3.3𝑉 (operating voltage) 
𝐺!"# = 1000 (sensor gain) 
 
𝐸𝑀𝐺 𝑉  – EMG value in Volt (𝑉) 
𝐸𝑀𝐺 𝑚𝑉  – EMG value in millivolt (𝑚𝑉) 
𝐴𝐷𝐶 – Value sampled from the channel  
𝑛 – Number of bits of the channel1  
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  The number of bits for each channel depends on the resolution of the Analog-to-Digital 
Converter (ADC); in BITalino the first four channels are sampled using 10-bit resolution 
(𝑛 = 10), while the last two are sampled using 6-bit (𝑛 = 6). 
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Appendix E

Fuzzy Module Rules

1. IF HR is Low AND IBI is High AND RAT IO is Low AND SCR not High THEN Stress is

Low AND Fatigue is Low

2. IF HR is Low AND IBI is High AND RAT IO is Medium AND SCR not High THEN Stress

is Low AND Fatigue is Medium

3. IF HR is Low AND IBI is High AND RAT IO is High AND SCR not High THEN Stress is

Low AND Fatigue is Low

4. IF HR is Low AND IBI is High AND RAT IO is High AND SCR High AND SCL High

THEN Stress is Low AND Fatigue is Medium

5. IF HR is Low AND IBI is High AND RAT IO is Medium AND SCR High AND SCL High

THEN Stress is Low AND Fatigue is High

6. IF HR is Low AND IBI is High AND RAT IO is Low AND SCR High AND SCL High

THEN Stress is Low AND Fatigue is High

7. IF HR is Low AND IBI is High AND RAT IO is High AND SCR High AND SCL Low

THEN Stress is Low AND Fatigue is Medium

8. IF HR is Low AND IBI is High AND RAT IO is Medium AND SCR High AND SCL Low

THEN Stress is Low AND Fatigue is Medium

9. IF HR is Low AND IBI is High AND RAT IO is Low AND SCR High AND SCL Low

THEN Stress is Low AND Fatigue is High

10. IF HR is Medium AND IBI is Medium AND RAT IO is Low AND SCR not High THEN

Stress is low AND Fatigue is Medium

11. IF HR is Medium AND IBI is Medium AND RAT IO is High AND SCR not High THEN

Stress is Medium AND Fatigue is Low
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12. IF HR is Medium AND IBI is Medium AND RAT IO is Medium AND SCR not High THEN

Stress is Medium AND Fatigue is Medium

13. IF HR is Medium AND IBI is Medium AND RAT IO is High AND SCR High AND SCL

High THEN Stress is High AND Fatigue is Low

14. IF HR is Medium AND IBI is Medium AND RAT IO is Medium AND SCR High AND SCL

High THEN Stress is Medium AND Fatigue is Low

15. IF HR is Medium AND IBI is Medium AND RAT IO is Low AND SCR High AND SCL

High THEN Stress is Medium AND Fatigue is Medium

16. IF HR is Medium AND IBI is Medium AND RAT IO is High AND SCR High AND SCL

Low THEN Stress is Medium AND Fatigue is Low

17. IF HR is Medium AND IBI is Medium AND RAT IO is Medium AND SCR High AND SCL

Low THEN Stress is High AND Fatigue is Low

18. IF HR is Medium AND IBI is Medium AND RAT IO is Low AND SCR High AND SCL

Low THEN Stress is Medium AND Fatigue is Medium

19. IF HR is High AND IBI is Low AND RAT IO is Low AND SCR not High THEN Stress is

Medium AND Fatigue is Low

20. IF HR is High AND IBI is Low AND RAT IO is High AND SCR not High THEN Stress is

High AND Fatigue is Low

21. IF HR is High AND IBI is Low AND RAT IO is Medium AND SCR not High THEN Stress

is Medium AND Fatigue is Low

22. IF HR is High AND IBI is Low AND RAT IO is High AND SCR High AND SCL High

THEN Stress is High AND Fatigue is Low

23. IF HR is High AND IBI is Low AND RAT IO is Medium AND SCR High AND SCL High

THEN Stress is High AND Fatigue is Low

24. IF HR is High AND IBI is Low AND RAT IO is Low AND SCR High AND SCL High

THEN Stress is High AND Fatigue is Medium

25. IF HR is High AND IBI is Low AND RAT IO is High AND SCR High AND SCL Low

THEN Stress is High AND Fatigue is Low

26. IF HR is High AND IBI is Low AND RAT IO is Medium AND SCR High AND SCL Low

THEN Stress is High AND Fatigue is Low

27. IF HR is High AND IBI is Low AND RAT IO is Low AND SCR High AND SCL Low

THEN Stress is Medium AND Fatigue is Low
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