
Faculdade de Engenharia da Universidade do Porto

Whole-Body End-Pose Planning for
High-Degree-of-Freedom Robots on

Uneven and Inclined Surfaces

Henrique Manuel Martins Ferrolho

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Rosaldo J. F. Rossetti, PhD

Second Supervisor: Hugo Sereno Ferreira, PhD

External Supervisor: Sethu Vijayakumar, PhD

July 24, 2017

Contact Information:

Henrique Manuel Martins Ferrolho
henrique.ferrolho@gmail.com
https://ferrolho.github.io/

Faculdade de Engenharia da Universidade do Porto
Rua Dr. Roberto Frias
4200-465 Porto
Portugal

School of Informatics, University of Edinburgh
Informatics Forum, 10 Crichton Street
Edinburgh, EH8 9AB
United Kingdom

“Whole-Body End-Pose Planning for High-Degree-of-Freedom Robots on Uneven and Inclined
Surfaces”
Copyright c© Henrique Manuel Martins Ferrolho, 2017.
All rights are reserved.

mailto:henrique.ferrolho@gmail.com
https://ferrolho.github.io/

Whole-Body End-Pose Planning for
High-Degree-of-Freedom Robots on Uneven and

Inclined Surfaces

Henrique Manuel Martins Ferrolho

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Henrique Lopes Cardoso, PhD
External Examiner: Vladimir Ivan, PhD
Supervisor: Rosaldo J. F. Rossetti, PhD

July 24, 2017

Abstract

During the last few years there have been significant improvements in the field of humanoid
robotics. More powerful workstations capable of running more accurate - and therefore
more computationally demanding - simulations, and the rise of new generations of humanoid
robots with better hardware, have enabled researchers to keep pushing the boundaries and
create novel methods to improve the perception and motion of these robots.

Motion planning is the area of robotics which concerns with how and when a robot
should move a part of itself, and the execution of such motion. Motion planning has been a
thoroughly investigated area, but not all of the challenges related to it are solved yet.

Robots with a fixed base and few Degrees of Freedom (DoF), e.g. the industrial robotic
arms that revolutionised the automotive industry, have been used as a means to approach
the problem of motion planning. Often these type of robots are associated with an isolated
environment, in which they do not have to interact with people. Researchers have developed
successful motion planning algorithms to operate robots in these environments. Nonetheless,
those approaches fall short when humanoid robots are taken into consideration. Applications
aimed towards humanoid robots have to take into account the characteristics often associated
with them: many DoF, a floating base, and balance and dynamic constraints.

Implementing autonomous solutions with safe human interaction in complex and dynamic
environments, considering biped balance and possible external interferences is non-trivial.
Our goal is to tackle the problem of high dimensional kinematic and dynamic motion
planning. Namely, we will focus on the subproblem of humanoid end-pose planning on
uneven terrains.

i

ii

Acknowledgements

I would first like to thank the colleagues, flatmates, and friends I had the chance to meet
during my stay in Edinburgh. My exchange program at the University of Edinburgh changed
my openness to experience, and gave me different perspectives concerning innumerous
social, political, and ethical issues.

To the folks at the lab G.03 of the Informatics Forum: thank you so much for all the
knowledge you shared with me. I was truly lucky to get to know you, and have the chance
to learn from you. Yang Yiming and Wang Ruiqiu, your patience is remarkable when it
comes to teaching me Chinese. Wolfgang and Vlad, thank you for all the robot banter and
weekly doses of social interaction at Teviot.

Professor Sethu Vijayakumar, thank you so much for all the guidance during my thesis.
You are an extraordinary role model to look up to.

Finally, I cannot help but mention my favourite English teacher, Sandra Albuquerque.
You gave me the tools to understand one of the most spoken languages in the world. I hope
the correctness of this thesis lives up to your expectations.

Henrique Ferrolho

iii

iv

Agradecimentos

O meu sincero agradecimento ao Professor Rosaldo Rossetti por todo o apoio, orientação e
supervisão durante a escrita desta tese.
Gostava também de agradecer a todos os Professores da Faculdade de Engenharia da
Universidade do Porto com quem contactei, por tudo aquilo que me ensinaram durante o
meu percurso académico.
Para todos os meus amigos de Viseu e do Porto: todos vocês me marcaram de alguma
forma em alguma altura da minha vida. Muito obrigado a todos.
Um enorme obrigado ao meu amigo Hugo Sereno. Desde sempre que foste um exemplo
para mim, e alguém com quem eu sempre posso contar. Espero que continuemos a ter a
oportunidade de nos encontrarmos um pouco por todo o mundo, e de partilhar umas
cervejas enquanto criticamos a vida.
Finalmente, gostava de exprimir a minha mais sincera gratidão para com a minha mãe,
Alda Ferrolho, o meu pai, António Ferrolho, e a minha querida irmã, Ana Rita Ferrolho.
Sempre me apoiaram durante toda a minha vida, e o meu único desejo é deixar-vos o mais
orgulhosos possível em relação às minhas ambições e objectivos pessoais.

Henrique Ferrolho

v

vi

“We are all apprentices in a craft where no one ever becomes a master.”

Ernest Hemingway

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Goals . 3
1.4 Publications . 3
1.5 Document Structure . 3

2 Literature Review 5
2.1 Motion Planning . 5

2.1.1 Common Concepts . 7
2.1.2 RRT . 7
2.1.3 RRT-Connect . 7
2.1.4 PRM . 9
2.1.5 Humanoid Motion Planning . 10

2.2 End-Pose Planning . 10
2.2.1 Reachability Map . 10
2.2.2 Inverse Reachability Map . 13
2.2.3 iDRM: inverse Dynamic Reachability Map 15

2.3 Conclusion . 20

3 End-Pose Planning on Flat Surfaces at Different Heights 21
3.1 Dynamic Reachability Maps . 21

3.1.1 Offline Pre-Processing . 22
3.1.2 Online Update . 24

3.2 Whole-Body Kinematic Split . 24
3.3 End-Pose Planning for Bi-manual Tasks on Uneven Terrain 25

3.3.1 Constructions of DRM/iDRM for Humanoids 25
3.3.2 End-Pose Planning . 26
3.3.3 Footstep and Motion Planning . 29

3.4 Evaluation . 29
3.4.1 Construction of Dynamic Reachability Maps 29
3.4.2 End-Pose Planning Benchmarking Setup 30
3.4.3 Simulation Benchmarking . 31
3.4.4 Hardware Experiments . 33

3.5 Summary . 35

ix

CONTENTS

4 Extending End-Pose Planning to Inclined Surfaces 37
4.1 Robust Static Equilibrium . 38

4.1.1 Robust Static Equilibrium Applied to Whole-Body End-Poses 40
4.1.2 Computing the Robustness of Lower-Body Samples 41

4.2 Lower-Body DRM Construction . 42
4.2.1 Sampling Methodology . 42
4.2.2 Lower-Body Datasets Robustness . 43

4.3 End-Pose Planning on Inclined Terrain . 44
4.4 Evaluation . 47

4.4.1 End-Pose Planning Benchmarking Setup 47
4.4.2 Simulation Benchmarking . 47

4.5 Summary . 49

5 Conclusion 51
5.1 Overview . 51
5.2 Contributions . 52
5.3 Future Work . 52

5.3.1 Parallelisation . 52
5.3.2 Compression . 53
5.3.3 Selective Sampling Threshold . 53
5.3.4 "Extremely Robust" Lower-Body Samples 53

Acronyms 55

Glossary 57

References 59

x

List of Figures

2.1 RRT exploring different environments . 8
2.2 RRT-Connect growing two trees towards each other 8
2.3 Roadmap built in the PRM learning phase 9
2.4 Capability map illustrations . 11
2.5 Reachability Map of the left arm of a dual arm Husky robot 12
2.6 Reachability Maps of an ARMAR-III and NAO humanoid 13
2.7 Possible ground stances of a given grasping target 14
2.8 iDRM collision update illustration in 2D . 16
2.9 Octant view of an iDRM collision update 18
2.10 Example of end-pose planning with iDRM 18

3.1 Motion planning during a grasping exercise on uneven terrain 22
3.2 Examples of DRM and iDRM offline map construction 23
3.3 Examples of DRM and iDRM online update 23
3.4 Kinematic split of NASA’s Valkyrie 38-DoF humanoid robot 25
3.5 Upper-body Reachability Map voxels . 26
3.6 Lower-body Reachability Map voxels . 27
3.7 Overlaid end-pose samples and two planning scenarios 29
3.8 Bimanual box-picking tasks on terrains at different heights 34
3.9 Single-handed grasping tasks on terrains at different heights 35

4.1 End-pose planning taking into account the inclination of support regions . . 38
4.2 Centre of pressure and support polygon . 38
4.3 Close-up photo of the feet of NASA’s Valkyrie 39
4.4 Comparison between robust and non-robust whole-body end-poses 41
4.5 Two extremely robust lower-body samples 42
4.6 Robustness histograms of benchmarked lower-body datasets 44
4.7 Pipeline overview of the proposed planning framework 44
4.8 Test environment generated with our custom terrain parser 45
4.9 Whole-body candidate solution before and after the IK adjustment 46
4.10 Example of two generated end-pose planning problems 47

xi

LIST OF FIGURES

xii

List of Tables

2.1 Computational times of humanoid motion planning 20

3.1 Map construction analysis . 30
3.2 End-pose planning performance across different lower-body datasets 32
3.3 Analysis of planning performance with different upper-body datasets 33

4.1 Average robustness of different lower-body datasets 43
4.2 End-pose planning benchmark results . 48
4.3 Average robustness of the benchmarking end-pose solutions 48

xiii

Chapter 1

Introduction

1.1 Context . 1
1.2 Motivation . 2
1.3 Goals . 3
1.4 Publications . 3
1.5 Document Structure . 3

This chapter provides the reader with an overview of this dissertation. It introduces the
context, motivation, and the goals of this project. Finally, it presents the overall structure
of this document.

1.1 Context

Robotics is a fascinating research subject. Most people think of robots for industrial
purposes only, but robotics has been applied to other subjects lately, such as autonomous
vehicles [PR12; Fig+09], human care and assistance [Pet+11], amongst others.

Humanoid robots are very complex systems created to fulfil tasks designed for people.
In order to simulate — Shafii et al. [SRR11] have compared two (2) of many humanoid
simulators — a human with high accuracy, robots are designed with many Degrees of
Freedom (DoF). However, programming these robots is no easy task due to all the conditions
that need to be taken into account, e.g. constant bipedal balance, safe human interaction,
redundant DoF, and adaptation to changes in complex environments.

It is not practical to manually teleoperate a humanoid robot. It is necessary to pursue
autonomy or semi-autonomy of complex behaviours on robots. Take National Aeronautics
and Space Administration (NASA) Valkyrie as an example: NASA’s ultimate goal is to
send multiple robots like Valkyrie to Mars, in order to prepare human settlements for future
manned missions. Space exploration demands robotic automation due to the delays and
limited data rates of interplanetary communication. But there are many other reasons to

1

Introduction

automate and push the boundaries of high dimensional humanoid robots: elderly care and
assistance, rescue missions, automation of services, construction, etc. Nonetheless, the goal
of creating autonomous robots leads to many challenges related to perception, localisation,
motion planning, amongst others.

This dissertation is part of the Open Humanoids Project [Tea], which is a collaboration
between the University of Edinburgh (UoE) and the Massachusetts Institute of Technology
(MIT) to develop the NASA Valkyrie and Atlas Humanoid Project. This research was
carried out at the Robotics facilities of the School of Informatics at the University of
Edinburgh.

1.2 Motivation

One of the automation challenges of humanoid robotics is the planning of whole-body
end-poses capable of reaching difficult grasping targets in realistic environments. Currently,
in most practical applications, the end-pose is provided manually by an operator because an
automated solution is not trivial, especially on uneven or inclined terrains. These end-poses
need to be quasi-static balanced, collision-free, and possible to transition to from the robot’s
initial stance location and configuration. Once a valid whole-body end-pose is found, it can
be used as a goal state for other planners, such as walking and motion planners.

Zacharias et al. [ZBH07] introduced the concept of Reachability Map (RM), which
stores the reachable workspace regions of a fixed-base robot. Afterwards, Vahrenkamp et al.
[VAD13] presented the idea of inverting the RM, which results in a new map that encodes
the feasible stances for a given grasping target. Burget and Bennewitz [BB15] extended
the Inverse Reachability Map (IRM) concept from [VAD13] to biped humanoids, taking
into account constraints like stability and kinematic loop closure. Yang et al. [Yan+16a]
addressed the lack of collision avoidance in the previous methods with their inverse Dynamic
Reachability Map (iDRM), enabling efficient collision-free whole-body end-pose selection in
complex and dynamic environments.

Despite all these advancements concerning the automation of whole-body end-pose
planning, the existing methods do not support obstacle avoidance in changing environments
for stances on uneven or inclined terrains. End-pose planning on such terrains is still very
complicated due to the curse of dimensionality and limited workspace coverage.

Research in this field is motivated by the possibility of one day having a fully fledged
suite to control, teleoperate, and coordinate groups of robots. Such suite would allow to do
optimal whole-body end-pose and motion planning in very short times. In turn, this would
enable researchers with higher level reasoning on more complex problems.

2

Introduction

1.3 Goals

By undertaking this research, we focus on solving the key issues of whole-body end-pose
planning in order to improve robot autonomy in complex environments. Furthermore, we
boost the quality of the results of existing methods and extend humanoid capabilities to
more constrained environments which require better and more accurate plans. In addition
to our proposed framework, we use existing methods that can already efficiently plan
footsteps and whole-body motion to demonstrate the practicality and full integration of
our planning methodology.

The main goals regarding the scope of this dissertation can be elaborated as follows:

G1. Extend previous work concerning end-pose planning to take into account flat supports
at different heights;

G2. Further extend the whole-body end-pose planning framework resultant from G1 in
order to support sloped terrains;

G3. Evaluate the methodologies proposed to achieve G1 and G2 with simulation benchmarks,
and conduct test trials in the laboratory’s test bed.

1.4 Publications

The work and ideas covered in this dissertation have been used in the writing of scientific
publications. Most of the material in Chapter 3 has been submitted and accepted to the
IEEE Robotics and Automation Letters (RA-L) journal [Yan+17]. Chapter 4 has been
submitted to the Portuguese Conference on Artificial Intelligence (EPIA) in the form of an
extended abstract [Fer+17].

• H. Ferrolho, V. Ivan, Y. Yang, W. Merkt, R. J. F. Rossetti, and S.Vijayakumar.
Whole-Body End-Pose Planning on Uneven and Inclined Surfaces (extended abstract).
In Portuguese Conference on Artificial Intelligence (EPIA), 2017. Under review.

• Y. Yang, W. Merkt, H. Ferrolho, V. Ivan, and S.Vijayakumar. Efficient Humanoid Mo-
tion Planning on Uneven Terrain Using Paired Forward-Inverse Dynamic Reachability
Maps. In IEEE Robotics and Automation Letters (RA-L), 2017. In Press.

1.5 Document Structure

The remainder of this document is structured as follows:

• Chapter 2, “Literature Review” (p. 5), provides a literature review covering topics
related to motion planning and end-pose planning in robotics. We conclude the
chapter by going through the challenges currently being tackled in these areas.

3

Introduction

• Chapter 3, “End-Pose Planning on Flat Surfaces at Different Heights” (p. 21), explains
in detail our approach to solve the problem of end-pose planning on flat surfaces at
different heights.

• Chapter 4, “Extending End-Pose Planning to Inclined Surfaces” (p. 37), addresses
our end-pose planning approach in order to consider inclined supports.

• Chapter 5, “Conclusion” (p. 51), concludes this dissertation with an overview of the
results accomplished resorting to the end-pose planning methods we propose. This
chapter also covers a review of the author’s contributions throughout the elaboration
of this dissertation. Furthermore, a suggestion of future work to improve and build
upon the contributions of our work is given at the very end of this chapter.

4

Chapter 2

Literature Review

2.1 Motion Planning . 5
2.2 End-Pose Planning . 10
2.3 Conclusion . 20

This chapter provides definitions and examples for the basic concepts and methods involved
in the problems of whole-body end-pose and motion planning. We explore the evolution
and improvements of the methods associated with end-pose planning during the last few
years. We also review the state of the art, i.e. the best approaches that currently exist.
Finally, we look for the problems with the existing methods and niches in the literature
that we intend to explore during this dissertation.

2.1 Motion Planning

The creation of autonomous robots1 raises many problems in the field of Robotics. People
usually tend to take for granted most of the motor skills that they have inherently acquired
over the years since they were born. In fact, humans are quite good at learning how to
abstract and control their limbs without consciously thinking about it since a very young
age, and maybe that is the reason why, at first, it seems simple to solve motion planning
problems with robots. Nonetheless, motion planning turns out to be an extremely difficult
task, making it one of the most important and difficult problems, as well as a fundamental
research area in Robotics.

Latombe [Lat12] loosely states the problem of motion planning as follows:

“How can a robot decide what motions to perform in order to achieve goal
arrangements of physical objects?”

1An autonomous robot is a robot that performs behaviours or tasks with a high degree of autonomy [Wika].

5

Literature Review

It is important to note that, contrary to popular belief, the problem of motion planning is
not just limited to some sort of collision checking or obstacle avoidance [CS12]. In addition,
it also takes into account the planning of collision-free motions in complex environments
where objects with irregular geometries can be moving, the coordination of multiple robots
that share the same workspace, etc. Temporal, geometrical and physical constraints are all
inherent to the problem of motion planning. Given the configuration of an arbitrary robot
pose and a desired end-pose, motion planning focuses ultimately on finding a plan and
executing the movements required to go from the first pose to the desired pose according
to that plan.

End-pose planning in humanoid robotics is the process of finding valid stance locations
and balancing collision-free reaching configurations. Once a valid end-pose has been
calculated, it can be used as a goal state for other planners, such as walking and motion
planners. However, finding a valid end-pose to pass as an input to a motion planning solver
is by itself another non-trivial problem. In fact, the more complex the environment, the
more difficult the problem of end-pose planning is. Given that motion planning requires a
valid end-pose as input, it is paramount to address the problem of end-pose planning. We
will cover this topic in the Section 2.2 (p. 10).

There have been various different methods to try to approach motion planning: Fuzzy
Logic Control [BC95], Genetic Algorithms [Ger99], Simulated Annealing [Mae+10], and
others. Nonetheless, all these approaches have their limitations and often fall into local
minima.

A different approach that has been more successful than the ones mentioned previously
is Sampling Based Planning (SBP). Elbanhawi and Simic did an extensive review on the
subject [ES14]. SBP is done by sampling the Configuration space (C-space), i.e. the space
of all the valid transformations that can be applied to a robot. This pseudorandom approach
provides very fast solutions even for difficult problems, in which the previously mentioned
methods often fail. The trade-off of this approach is that the solutions are non-optimal.
Notwithstanding, SBP has been extensively adopted [KL94; AW96; Kav+96; LaV98; KL00;
LK01]. The reason for this is that in most cases what truly matters is to complete a task as
fast as possible in terms of both planning- and execution-wise. Considering this, in many
practical scenarios, non-optimal or redundant motions of a SBP solution are irrelevant given
that the solutions are obtained much faster than using other methods, and that planning
and execution times put together are still faster than the time of the planning stage alone
from one of the other methods. This makes SBP extremely attractive for time-critical
industrial applications.

The main algorithms used for SBP are the so-called Probabilistic Roadmap (PRM)
and Rapidly-exploring Random Tree (RRT) [Kav+96; LaV98]. For the remainder of this
chapter, we will explain RRT, RRT-Connect, and PRM. But some concepts need to be
introduced beforehand.

6

Literature Review

2.1.1 Common Concepts

The C-space can be divided into two different regions: the free space, Cfree, and obstacle
space, Cobs. This notation prevents the need to explicitly define obstacles.

The robot is represented at any instance by a configuration q. This configuration is a
list with length equal to the dimensions of the C-space. Motion planners require as inputs
a start and goal configurations, qstart and qgoal, respectively.

Given two configurations qa and qb, a meaningful metric can be defined either as a value,
or as a cost function, that represents the effort required to transition from one configuration
to the next, i.e. from qa to qb.

A search algorithm known as Nearest Neighbour (NN) uses the previously mentioned
metric to find the closest node (from a set of nodes) to a given configuration.

2.1.2 RRT

A Rapidly-exploring Random Tree [LK01] is a probabilistically complete single-query
planner. The algorithm works as follows: (1) the search begins from an initial configuration,
qstart; (2) a random configuration, qnew, is selected from the C-space; (3) if this random
configuration belongs to Cobs, i.e. qnew ∈ Cobs, it means the sampled configuration is
in collision, and consequently it is discarded. Otherwise, a Nearest Neighbour search is
performed to find the closest sample to qnew, i.e. qnear; (4) these two nodes, qnew and qnear,
are then connected to each other using a local motion planner; qnew is discarded if it cannot
be reached; (5) a final step is performed to guarantee that the motion responsible for the
transitioning between qnew and qnear is collision free. If the motion is indeed collision free,
qnew is added to the exploration tree; otherwise, the sample is discarded.

RRT terminates once one of the following conditions is met: (i) the goal configuration,
qgoal, matches qnew, (ii) a specified number of iterations is exceeded, or (iii) a given time
period is exceeded.

2.1.3 RRT-Connect

RRT-Connect is based on RRT with a Connect heuristic for single-query path planning
problems in high-dimensional C-spaces [KL00]. The method works by incrementally building
two RRTs rooted at different configurations: one at the start configuration, qstart, and the
other at the goal configuration, qgoal. The trees each explore space around them and also
advance towards each other through the use of a simple greedy heuristic. This heuristic
allows rapid convergence to a solution. The combination of the greedy heuristic with the
rapid and uniform exploration properties of RRTs avoids the pitfalls of local minima.

7

Literature Review

Figure 2.1: RRT exploring an environment with one obstacle (left) and a free space (right)
after 500 iterations. The root of each tree is shown as a green bold circle in both cases —
on the top right corner (left) and centre (right). Reprinted from [ES14]. Copyright c© 2014
by the IEEE.

Figure 6: Growing two trees towards each other.

4 Analysis

Both the basic RRT and the RRT-Connect algo-
rithms are analyzed in this section. The key result is
that the distribution of the RRT vertices converges to-
ward the sampling distribution, which is usually uni-
form. Furthermore, the RRT-Connect algorithm is
probabilistically complete. Unfortunately, we do not
have a theoretical characterization of the rate of con-
vergence (which is observed to be very fast in prac-
tice).

Let Dk(q) denote a random variable whose value is
the distance of q to the closest vertex in G, in which
k is the number of vertices in an RRT. Let dk denote
the value of Dk. Let ε denote the incremental dis-
tance traveled in the EXTEND procedure (the RRT
step size).

Lemma 1 Suppose Cfree is a convex, bounded, open,
n-dimensional subset of an n-dimensional configura-
tion space. For any q ∈ Cfree and positive constant
ε > 0, lim

k→∞
P [dk(q) < ε] = 1.

Sketch of Proof: Let q be any point in Cfree, and
let q0 denote any initial RRT vertex. Let B(q) denote
a ball of radius ε, centered on q. Let B′(q) = B(q) ∩
Cfree. Note that µ(B′(q)) > 0, in which µ denotes
the volume (or measure) of a set. Initially, d1(q) =
ρ(q, q0). At each RRT iteration, the probability that
the randomly-chosen point will lie in B′(q) is strictly
positive. Therefore, if all RRT vertices lie outside of
B(q), then E[Dk]−E[Dk+1] > b for some positive real
number b > 0. This implies that lim

k→∞
P [dk(q) < ε] =

1. �

For the statements that follow, assume that Cfree

is a nonconvex, open set with a single connected com-
ponent.

Lemma 2 Suppose Cfree is a nonconvex, bounded,
open, n-dimensional connected component of an n-
dimensional configuration space. For any q ∈ Cfree

and positive real number ε > 0, lim
n→∞P [dn(q) < ε] =

1.

Sketch of Proof: Let q0 denote any initial RRT ver-
tex. If q0 and q are in the same connected component
of a bounded open set, then there exists a sequence,
q1, q2, . . ., qk, of configurations such that a sequence
of balls, B = B1(q1), . . ., Bk(qk), can be constructed
with Bi∩Bi+1 �= ∅ for each i ∈ {1, . . . , n−1}, q0 ∈ B1,
and q ∈ Bk. Let Ci = Bi ∩ Bi+1. Note that B can
be constructed so that each Ci is open, which implies
that µ(Ci) > 0. Lemma 1 can be applied inductively
to each Ci to conclude that lim

n→∞P [dn(qi) < ε] = 1 for
a point in qi ∈ Ci. In each case, ε can be selected to
guarantee that an RRT vertex lies in Ci. Eventually,
the probability approaches one that an RRT vertex
will fall into Bk. One final application of Lemma 1
implies that P [dn(q) < ε] = 1. �

Let X denote a vector-valued random variable that
represents the sampling process used to construct an
RRT. This reflects the distribution of samples that
are returned by the RANDOM CONFIG function in
the EXTEND algorithm. Usually, X is characterized
by a uniform probability density function over Cfree;
however, we will allow X to be characterized by any
smooth probability density function. Let Xk denote
a vector-valued random variable that represents the
distribution of the RRT vertices.

Theorem 1 Xk converges to X in probability.

Sketch of Proof: Consider the set Yk = {q ∈
Cfree | ρ(q, v) > ε ∀v ∈ Vk}, in which Vk is the
set of RRT vertices after iteration k. Intuitively, this
represents the “uncovered” portion of Cfree. From
Lemma 2, it follows that Yk+1 ⊆ Yk and µ(Yk) ap-
proaches zero as k approaches infinity. Recall that
the RRT construction algorithm adds a vertex to V if
the sample lies within ε of another vertex in V (ε is
the RRT step size). Each time this occurs, the new
RRT vertex follows the same probability density as
X. Because µ(Yk) approaches zero, the probability
density functions of X and Xk differ only on some set
Zk ⊆ Yk. Since µ(Yk) approaches zero as k approaches
infinity, µ(Zk) also approaches zero. Since µ(Zk) ap-
proaches zero and the probability density function of
X is smooth, Xk converges to X in probability. �

Corollary 1 The RRT-Connect algorithm is proba-
bilistically complete and vertices converge to a uniform
distribution over Cfree.

4

Figure 2.2: RRT-Connect growing two trees towards each other. Reprinted from [KL00].
Copyright c© 2000 by the IEEE.

8

Literature Review

2.1.4 PRM

Probabilistic Roadmap [KL94; AW96; Kav+96] is a probabilistically complete [Bar+97;
HLK06] multi-query planner comprised of two main procedures: a learning phase, and a
query phase.

Firstly, the C-space is sampled for a certain amount of time during the learning phase.
The samples in the free space, Cfree, are maintained, whereas the samples in the obstacle
space, Cobs, are discarded. Figure 2.3 shows an example of a roadmap built by PRM.

Figure 2.3: Roadmap built in the PRM learning phase. Reprinted from [ES14]. Copy-
right c© 2014 by the IEEE.

Afterwards, during the query phase, the start and goal configurations are defined and
connected to the roadmap.

Because PRM maintains the roadmap of the learning phase, and only connects the start
and goal configurations during the query phase, it is able to actually solve different queries
for the same environment. Planning time is invested in sampling and generating a roadmap
so that queries are solved quickly. For this reason, it is referred to as a multi-query planner.

The learning phase is described as follows: (1) a random node, qrand, is sampled from the
C-space; (2) if qrand belongs to Cobs it is discarded; otherwise, it is added to the roadmap;
(3) afterwards, an attempt to connect qrand to its neighbouring nodes — i.e. all the nodes
within a specific range to qrand — is carried out using a local planner. Each edge connecting
two nodes represents a motion plan to transition from one configuration to the other; (4)
each connection is then tested for a collision check, and edges associated to motions in
collision are disconnected. These steps are repeated until a specific number of nodes have
been sampled.

9

Literature Review

2.1.5 Humanoid Motion Planning

Kuffner et al. [Kuf+01] and Cognetti et al. [CMO15] have shown that humanoid whole-
body motion plans can be generated using custom planning algorithms. A different
approach consists of dissociating locomotion from upper-body manipulation [Yan+16a].
This separation makes whole-body motion tasks both more simple and practical for complex
humanoid robots such as NASA’s Valkyrie and Boston Dynamics’ Atlas. A complex
planning task can therefore be decomposed into three stages:

1. End-pose planning : find an appropriate pre-grasp stance location and grasping
configuration,

p∗,q∗ = EndPosePlan(ps,qs,y
∗)

2. Footstep planning and execution: plan and execute a sequence of footsteps to walk to
the pre-grasp stance location,

p[0:T] = FootstepPlan(ps,p
∗)

3. Motion planning and execution: plan and execute a full-body collision-free motion to
complete the task,

q[0:T] = MotionPlan(q∗)

. . . where ps and qs are the current stance location and robot configuration, and y∗ =

{y∗lhand ,y
∗
rhand} ∈ 2 × SE(3) are the desired poses for the left and right hands. An end-

pose contains the desired stance location p∗ = {p∗lfoot ,p
∗
rfoot} ∈ 2 × SE(3) and reaching

configuration q∗ ∈ RN , which can be used as a goal configuration in the motion planning
module.

2.2 End-Pose Planning

Addressing the problem of end-pose planning is not trivial, especially on humanoid robots
with many DoF. The task becomes even more difficult when complex environments such
as staircases or inclined terrains have to be taken into consideration. Traditional Inverse
Kinematics (IK) solvers take too long or fail to solve the constraints of such specific problems.
In addition, when inclined terrains are considered, the friction of the support surfaces have
to be considered, therefore changing the dynamics of the entire system.

The next sections present an in-depth review of the current progress concerning end-pose
planning.

2.2.1 Reachability Map

Humans have developed the ability to unconsciously estimate how far they can reach, and
in how many ways they can grasp differently shaped objects. Humanoid robots have arms

10

Literature Review

with very specific motion constraints: a robot arm can only bend in certain points, and
can only reach as far as its structure allows to. Therefore, it is desirable to know in what
ways a robot can interact with its workspace, i.e. which regions of its surroundings are
reachable and in how many different ways, very similarly to what humans do. In robotics,
this concept is called the capability map [ZBH07] or Reachability Map.

In 2007, Zacharias et al. proposed for the very first time the so-called capability map: a
representation of kinematic reachability and directional information for the whole Cartesian
workspace of a robot arm [ZBH07]. The motivation was to have a visualisation tool for
the directional preferences and existing structures in the redundant workspace of the arms
of their robot Justin [Ott+06]. In their paper, Zacharias et al. describe the capability
map approach by splitting it into the following processes: (i) discretisation, (ii) random
sampling, and (iii) analysis and optimisation.

The first step is the discretisation of the workspace of the robot arm. The workspace
can be encapsulated by a cube centred at the base of the arm. The size of the cube should
be the smallest possible, whilst containing all the possible reaching positions of the arm.
A cube that meets such requirements is one with side length of two (2) arm lengths. The
result is an overestimation of the maximum workspace of the arm. Afterwards, the cube is
subdivided into smaller cubes, also known as voxels (see Figure 2.4a). This discretisation
process enables the analysis of specific regions of the workspace of the robot in planning
tasks.

(a) The maximum workspace of the right arm
is overestimated by the enveloping cube which
is further subdivided into smaller cubes.

(b) Reachability spheres across the workspace.
The workspace representation was cut in half
for better visibility of the structure.

Figure 2.4: Visualisation of information concerning the capability map, as described by
Zacharias et al. Reprinted from [ZBH07]. Copyright c© 2007 by the IEEE.

After the workspace has been discretised, the C-space of the robot arm is randomly
sampled according to a uniform distribution. The position of the Tool Centre Point (TCP)
is then calculated using Forward Kinematics (FK) for each of the sampled configurations,
and mapped onto the corresponding voxel.

11

Literature Review

As the authors mention in their paper, one could use the number of random samples
mapped onto the same voxel as a measure of reachability for the region covered by that voxel.
But that would be misleading: when a configuration corresponds to a robot kinematic
singularity, even large changes in link joints result in very small motions in Cartesian
workspace. Therefore, a large amount of random samples in singularity might be mapped
onto the same voxels, invalidating this as a good measure for workspace reachability.

In order to measure the reachability of a given voxel, Zacharias et al. used what they
called reachability spheres. They inscribed a sphere in each of the voxels of the workspace,
and for each sphere they spawned N points equally distributed on its surface. Moreover,
they associated a TCP frame to each of the points, with the z-axis pointing towards the
centre of the sphere. Additionally, they rotated the TCP frame of each point around the
z-axis according to a fixed step size and, for each resulting frame, they used an IK solver
to look for a valid solution. If a solution is found for one of the rotations, they mark that
point of the sphere surface in the workspace map. In other words, the method scans the
discretised workspace and for each of the reachability spheres checks if it can be grasped
from different directions from at least one rotation.

The goal of these reachability spheres is to measure the reachability index of each voxel
in the workspace of the robot arm. The number of marked points of one of the spheres over
the total number of points N on the sphere surface gives the percentage of how reachable
the voxel containing that sphere is, i.e. the reachability index. Afterwards, colouring the
voxels of the workspace according to their reachability index provides a good overview of
the reachable regions of the arm of the robot (see Figure 2.4b, p. 11). The concept of RMs
introduced by Zacharias et al. was the very first method to actually encode the information
of what is the reachable space of a robot when its base is fixed.

(a) Entire Reachability Map. (b) Filtered Reachability Map, showing highly
manipulable areas.

Figure 2.5: Reachability Map of the left arm of a dual arm Husky robot. Copyright c© 2017
by Wolfgang Merkt.

12

https://www.linkedin.com/in/wolfgangmerkt/

Literature Review

Reachability Maps have some nuisances. To start with, they do not account for collisions
with surrounding obstacles. Moreover, the discretisation of the workspace will always have
an associated trade-off between resolution and memory: the higher the resolution, i.e. the
smaller the voxels used to discretise the workspace, the more memory will be required to
store the underlying data structure. Finally, the metric used to classify the reachability of
the voxels needs to be chosen carefully — the reachability index used by Zacharias et al. is
an example of a good metric.

After Zacharias et al. published their work, many other researchers have used similar
representations to compute the RMs for other robots (see Figure 2.5, p. 12). Furthermore,
others have even built other concepts and algorithms on top of RMs (see Figure 2.6). We
will take a closer look into some of them in the following sections.

(a) The reachability distribution of the right
Tool Centre Point of an ARMAR-III [Asf+06].
Reprinted from [VAD13]. Copyright c© 2013 by
the IEEE.

(b) Representation of reachable right hand loca-
tions from statically stable double support poses
of a NAO humanoid. Reprinted from [BB15].
Copyright c© 2015 by the IEEE.

Figure 2.6: Vahrenkamp et al. and Burget and Bennewitz used RMs as a starting point for
their work in [VAD13] and [BB15], respectively.

2.2.2 Inverse Reachability Map

As explained in the previous subsection, the RM is a very good method to construct a data
structure that encodes where and in what ways a fixed-base robot can reach its workspace.
Notice that RMs use the base of the robot as the frame of reference.

Vahrenkamp et al. [VAD13] extended the potential of RMs by introducing the so-called
IRM. They proposed to invert the transformation associated to each entry of the RM, from
base-to-TCP to TCP-to-base. This results in a data structure that encodes the opposite
information of RM, i.e. given a grasping target, where can the robot base be placed.

Zacharias et al. used the previously mentioned reachability index as a performance metric
for each of the poses contained in their RM. Besides reachability information, manipulability
information can also be used as a performance indicator.

13

Literature Review

Figure 2.7: The reachability inversion for a given grasp visualised on the ground plane. The
potential platform orientations are depicted by arrows which are coloured according to their
inverse reachability (red: high, blue: low). Reprinted from [VAD13]. Copyright c© 2013 by
the IEEE.

For their IRM, Vahrenkamp et al. used an extended manipulability measurement. This
measurement consisted of the classical manipulability index [Yos85; Tog86], and a penalty
for limited configurations due to the distance between body parts of the robot.

The process used to build the actual IRM can be described as follows: (i) a pass through
all the voxels vi of the RM occurs to build the tuples (ti, ei), where ti ∈ SE(3) is the
base-to-TCP transformation and ei is the corresponding voxel entry; and (ii) the first
element of each tuple is inverted from ti to t−1i , i.e. from a base-to-TCP to a TCP-to-base
transformation. The resulting tuples constitute the inverted RM.

The authors’ proposed IRM as a method to efficiently find suitable base positions for a
mobile base robot given a certain grasping target. Their method, however, did not support
bipedal robots.

Burget and Bennewitz [BB15] carried on Vahrenkamp et al. work by extending the IRM
to humanoid robots. Their approach takes into account kinematic loop closure and stability
constraints, characteristic of humanoid robots. They used a NAO robot to evaluate their
approach. In order to build a RM, they start by sampling the C-space of the robot. They
split the kinematic structure of the humanoid in two: upper body and lower body. For the
sampling they chose to iteratively step through the joint values with a certain increment:
0.3 rad for the upper body joints and 0.2 rad for the lower body joints. For the lower body,
they define one of the legs as the support leg, and the other as the swing leg. Then, they
take the chain configuration of the support leg and calculate the FK to get the pose of
the hip with respect to the support foot. Afterwards, given the hip pose and the support
foot pose, they use an IK solver to look for a valid configuration for the desired pose of
the swing leg. If a solution is found, they determine if the whole-body pose is statically

14

Literature Review

balanced and collision-free. If the pose is correct, it is added to the RM. If the pose is
not valid, or no IK solution is found, the algorithm tries to sample a new configuration,
thus restarting the whole process. Each of the sampled configurations are mapped onto
the voxel containing the spatial location of the end effector for that pose. Moreover, each
configuration is evaluated with a manipulability measure, according to the manoeuvrability
of the end effector in workspace. Finally, with the RM as input, they generate the IRM by
iterating through all the voxels and, for each of the configurations stored in them, inverting
the end-effector transformation.

With their extended approach, Burget and Bennewitz were able to apply IRM to
humanoid robots. However, their method does not take into account collisions with
obstacles in the surroundings of the robot. In addition, the lower body configurations are
very limited, with the feet positioned parallel relative to each other at all times. Finally,
the method assumed the robot was always standing on a flat surface, therefore lacking
support for uneven terrains.

2.2.3 iDRM: inverse Dynamic Reachability Map

Yang et al. [Yan+16a] carried on the existing work discussed in the previous sections,
further improving end-pose selection with their iDRM. iDRM can find valid end-poses
for humanoid robots in complex and dynamic environments2 by making use of a custom
robot-to-workspace occupation list and an online stage to efficiently update the maps and
filter end-poses in collision. After a valid end-pose is obtained with iDRM, it can be given
as input to footstep and motion planners. The system then generates a walking plan to
move the robot to the desired standing location. Finally, it generates a collision-free motion
to grasp the goal or goals with stationary feet.

iDRM consists of two main stages: an offline stage in which the iDRM is constructed,
and an online stage in which a valid end-pose is computed according to the environment.

Offline stage

During this stage, the workspace is discretised and represented by a data structure consisting
of a set of voxels. Each voxel stores: (i) a list of indices of the robot samples which feet
are placed in this very same voxel; and (ii) a so-called occupation list, which is a list
of indices of all the robot samples that intersect with this voxel in any way. Once this
data structure is set up and ready, the next step is to sample whole-body quasi-statically
balanced configurations.

q∗ = IK (qseed ,qnom ,C)

2By complex environments we mean cluttered environments, with obstacles lying around; and by
dynamic we mean scenarios where the obstacles and surroundings are prone to change and move around.

15

Literature Review

In order to do so, a seed pose, qseed , is required as an initial value for the first iteration
of a whole-body non-linear optimisation-based IK solver [TD]. This IK solver will then
attempt to satisfy all the constraints in the constrain set C by using a Sequential Quadratic
Programming (SQP) solver in the form of:

q∗ = arg min
q∈RN+6

‖q− qs‖2Qq

subject to bl ≤ q ≤ bu

ci(q) ≤ 0, ci ∈ C

(2.1)

. . . where Qq � 0 is the weighting matrix, bl and bu are the lower and upper joint bounds,
and C is the constraints set. If successful, it returns the resultant configuration q∗ that
satisfies all the specified constraints. The only postures stored in the dataset are the
returned poses which are in (i) quasi-static balance, (ii) self-collision-free, and (iii) that
reach a region of interest in the front of the robot. In order to entirely explore the robot’s
reaching capabilities, the authors used the method presented by Kuffner [Kuf04] to uniformly
constrain end-effector orientation with the IK solver. The sampling process is repeated
with random seed samples until the target number of samples in the dataset are generated.

Afterwards, inverting the end-effector frame results in the stance frame expressed in the
end-effector frame of reference:

T stance,eff
n =

(
T eff ,world
n

)−1
× T stance,world

n (2.2)

Once the offline process finishes, the C-space of the robot has been uniformly explored,
and each of the configurations stored in the map according to the voxel which contained the
location of that configuration’s end-effector, and the occupation lists updated accordingly,
as shown in Figure 2.8.

q1

q2

q3
EndEffector

Ii = {1,3}

Oi = {3}

Oi = {2}

Oi = {2,3}

Ii = {2}

Oi = {1}

q1

q2

q3
EndEffector

Ii = {1,3}

Oi = {3}

Oi = {2}

Oi = {2,3}

Ii = {2}

Oi = {1}
Obstacle

Figure 2.8: iDRM collision update illustration in 2D. The left and right figures show the
original iDRM in free space and the updated iDRM respectively. A key feature of iDRM
is that updating an occupation list O affects the reach list I. Reprinted from [Yan+16a].
Copyright c© 2016 by the IEEE.

16

Literature Review

The construction time of iDRM relies upon the chosen voxel resolution and the number of
samples to be generated. Nonetheless, the construction time is not very critical considering
in needs to be performed offline only once.

Online stage

The selection of valid end-poses occurs during the online stage. The offline stage needs to
be completed beforehand.

The first step is to find collision-free samples. In order to do this, iDRM needs to be
transformed to the desired end-effector pose in the world frame of reference. This process
involves transforming all the voxels, and thus it is indicated to scenarios where there are
more obstacles rather than voxels in the discretised workspace. On the contrary, if there are
less obstacles than there are voxels — which is usually the case — one can transform the
obstacles’ frame of reference into the iDRM’s frame instead of transforming all the voxels of
the workspace. Choosing the appropriate transformation according to the obstacles:voxels
ratio will speed up the online update process significantly.

Following, invalid samples, i.e. samples that are in collision, are removed. The obstacles
in the environment are matched to iDRM’s discretised set of voxels, and the samples
associated to the ids contained in occupation lists of voxels intercepting obstacles are
discarded — see Algorithm 1.

Algorithm 1 Collision update
Require: y∗, Env
Ensure: Qfree

1: if size(V) > size(Env) then
2: V̄ ← y∗ × V
3: Voccup ← CollisionCheck(V̄ ,Env)

4: else
5: Env ← (y∗)−1 × Env

6: Voccup ← CollisionCheck(V,Env)

7: for i ∈ Voccup do
8: for o ∈ Oi do
9: qo.valid ← false

10: Qfree ← ∅
11: for qn ∈ Q do
12: if qn.valid ← true then
13: Qfree ← Qfree ∪ n
14: return Qfree

After this collision update, the filtered iDRM map is a subset of the original, containing
only collision-free samples — as show in Figure 2.9 (p. 18). The voxels are coloured
according to the amount of collision-free states contained in these very same voxels’ reach

17

Literature Review

lists. Greener voxels contain more samples than red voxels. It is guaranteed that each
coloured voxel has at least one collision-free state. The figures located in the middle and at
the right show how obstacles affect the set of voxels occupied by obstacles.

Figure 2.9: Octant view of an iDRM collision update. The axis is the origin of the iDRM,
i.e. the end-effector pose. Reprinted from [Yan+16a]. Copyright c© 2016 by the IEEE.

Once the iDRM map is filtered and contains collision-free samples only, the next step is
to check whether those poses are actually feasible samples or not, i.e. whether they are
physically balanced. Here it is assumed the robot needs only to stand on flat ground with
horizontal feet orientation, i.e. roll and pitch of the feet transformation are zero.

Instead of iterating through all the samples which are still being considered as candidate
end-poses at this time, the authors discard all the samples whose feet fall into a voxel
that does not intersect the ground plane. Some small variations are tolerated in each axis,
since there may not exist samples with the exact horizontal feet orientation. These small
variations are corrected during a last step for minor posture adjustments. This entire
process is depicted in Figure 2.10. The axis widget in the figure represents the desired
end-effector pose in the world frame of reference.

(a) Original
iDRM

(b) Collision
update

(c) Feasibility
update

(d) Candidate
end-pose

(e) End-pose
adjustment

Figure 2.10: (a) – (d): iDRM end-pose planning example. The iDRM is transformed
into world frame, and the axis indicates desired end-effector pose in the world frame. (e)
highlights the final IK adjustment, where the shadowed posture is the candidate qn∗ and
the solid one is the final end-pose result q∗. Reprinted from [Yan+16a]. Copyright c© 2016
by the IEEE.

18

Literature Review

Moreover, a list of candidate end-poses is extracted from the samples still being consid-
ered — see Algorithm 2.

Algorithm 2 Feasibility update
Require: Qfree

Ensure: Qfeasible

1: Vground ← ∅
2: for vi ∈ V do
3: if vi intersects with ground then
4: Vground ← Vground ∪ i
5: Qfeasible ← ∅
6: for i ∈ Vground do
7: for n ∈ Ii do
8: if n ∈ Qfree then

9: T̄n ← y∗ × T feet
n

10: if z(T̄n) < εz AND roll(T̄n) < εroll

11: AND pitch(T̄n) < εpitch then
12: Qfeasible ← Qfeasible ∪ n
13: return Qfeasible

Finally, the last step is to choose one solution from the resultant list of candidate poses.
At this point, all the candidates in the list of feasible samples are valid. This is therefore a
matter of picking the best candidate sample. Yang et al. scored the samples according to a
Jacobian based measure to evaluate the end-effector’s manipulability — similarly to [BB15]:

gn =
√

det J(qn)J(qn)T , (2.3)

. . . where J(qn) is the Jacobian matrix of qn and all the scores are calculated by offline
sampling, thus being readily available here. The index of the best candidate pose can
therefore be found as:

n∗ = arg max
n∈QFeasible

wmgn − ‖qn − q0‖W , (2.4)

. . . where wm and W are constant weighting factors, and ‖qn − q0‖W is another cost term
introduced by the authors to penalise samples far away from their initial configuration.
Figure 2.10d (p. 18) shows all the feasible stance locations coloured based on the posture
manipulability scores. The visible whole-body robot configuration is the best sample for
that specific scenario.

As previously mentioned, the stance pose of the best configuration might not be perfectly
aligned with the ground. A whole-body IK solver is used to perform the necessary final
adjustments to the configuration. Most of the times these corrections will be very minor
changes, required due to the given tolerances on the previous step. In the unlikely event of

19

Literature Review

the best candidate pose being in collision after the IK adjustment, or becoming unstable,
the pose is discarded and the next best candidate will be selected until a valid solution is
found.

The authors implemented their planning framework within the EXtensible Optimization
Toolset (EXOTica) [Iva+], and used the Flexible Collision Library (FCL) [PCM12] to create
the occupation lists and online collision checking queries. Table 2.1 shows the computational
times of different components in humanoid motion planning and end-pose planning.

Table 2.1: Computational time of different components in humanoid motion planning (in
seconds). The overall time is the sum of end–pose planning (EP) and motion planning
(MP), while the footstep planning is not counted. Algorithms requiring no end-pose
planning (marked as –) have a zero EP planning time. The planning is a failure (marked as
×) if no solution is found within 100 seconds. Reprinted from [Yan+16a]. Copyright c© 2016
by the IEEE.

Algorithms Easy Task Medium Task Hard Task
EP MP EP MP Overall EP MP Overall EP MP Overall
– E–space RRT 0 × × 0 × × 0 × ×
– C–space RRT 0 × × 0 × × 0 × ×
– E–space RRT–Connect 0 12.0974 12.0974 0 15.8324 15.8324 0 88.7171 88.7171
RP

C–space RRT–Connect

0.1916

1.5010

1.6926 1.2322

1.8052

3.0374 2.2654

3.2857

5.5511
R-DRM 0.7521 2.2531 2.3273 4.1325 38.8050 42.0907
IRM 0.0440 1.5450 0.9560 2.7612 2.2910 5.5767
IDRM 0.0553 1.5563 0.0566 1.8618 0.0678 3.3535

2.3 Conclusion

Motion planning is still a very challenging area where problems like (a) multi-contact
motion planning with collision avoidance during pose transitioning and (b) kinodynamic
planning for transitioning between multi-contact poses, amongst many others, are yet to be
solved. However, and as we have stated previously, from this point forth our main focus
will be on end-pose planning. The goal of the review on motion planning presented here is
to contextualise the reader to the problem of end-pose planning.

With regard to end-pose planning, despite all the extensive work and research that has
been put into it during the last couple of years, there is still much room for improvement,
and many problems to be solved. Namely, end-pose planning on uneven terrains is still
very complicated due to the curse of dimensionality and limited workspace coverage. We
will be addressing this in Chapter 3 (p. 21) and Chapter 4 (p. 37).

20

Chapter 3

End-Pose Planning on Flat Surfaces
at Different Heights

3.1 Dynamic Reachability Maps . 21
3.2 Whole-Body Kinematic Split . 24
3.3 End-Pose Planning for Bi-manual Tasks on Uneven Terrain . . 25
3.4 Evaluation . 29
3.5 Summary . 35

In this chapter we present a Paired Forward-Inverse Dynamic Reachability Maps approach
that extends the iDRM by integrating it with forward reachability maps according to
the inherent kinematic structure of the robot. By exploiting the combinatorics of this
modularity, greater coverage in each map can be achieved while keeping a low number of
stored samples. This enables us to draw samples from a much richer dataset to effectively
plan end-poses for single-handed as well as bimanual tasks on uneven terrain.

We demonstrated the method on the 38-DoF NASA Valkyrie humanoid using the whole
body to exploit redundancy for accomplishing manipulation tasks on uneven terrain while
avoiding obstacles (see Figure 3.1, p. 22).

3.1 Dynamic Reachability Maps

The forward and inverse dynamic reachability maps, i.e. Dynamic Reachability Map (DRM)
and iDRM, are the mappings from robot C-space to workspace with an efficient indexing
technique that updates the collision status of millions of configurations in real-time. DRM
and iDRM are defined with respect to the base frame and the end-effector frame respectively.
In other words, DRM encodes information of when fixing the base, what is the reachable
space of the end-effector, whereas iDRM encodes to reach a desired pose, where to best place

21

End-Pose Planning on Flat Surfaces at Different Heights

Figure 3.1: Motion planning during a grasping exercise on uneven terrain. The robot
automatically chooses appropriate standing locations and grasping configurations on uneven
terrains.

the base. However, from an algorithmic perspective, DRM and iDRM are very similar, and
both of them have two stages: offline pre-processing and online planning.

3.1.1 Offline Pre-Processing

The offline pre-processing phase contains four major steps for both DRM and iDRM, as
highlighted in Figure 3.2 (p. 23). First, the workspace is discretised into a bounded 3D
voxel grid V. The grid of DRM is defined with respect to the base frame while the grid of
iDRM has its origin in the end-effector frame. Throughout this dissertation, we use root
link to refer to the reference link, i.e. the base link for DRM and the end-effector link for
iDRM. Also, we use tip link to refer to the end-effector link for DRM and the base link for
iDRM. Both DRM and iDRM can only have one root link but multiple tip links. Next,
we generate N number of valid samples1, which are then transformed to the origin of the
corresponding map. The last step generates the reach list Rv and occupation list Ov for
each grid voxel v ∈ V. The reach list Rv stores the indices of samples whose tip link falls
into this voxel v. For a robot with K tip links, the reach list stores a list of paired values
specifying both sample and tip indices, i.e. Rv = {(n, k) . . . }, where n ∈ N is the sample
index and k ∈ K is the tip index. Note that in Figure 3.2 (p. 23), we use a robot model
with only one tip link for clarity. Finally, the occupation list Ov is generated storing the
list of samples that intersect with voxel v.

1A valid sample has to satisfy a combination of robot’s kinematic joint limits, be self-collision-free,
balanced, etc.

22

End-Pose Planning on Flat Surfaces at Different Heights

Reach = {1}

Reach = {2}

Occup = {2}

Occup = {1, 2}

Occup = {1}Base

𝒒1 𝒒2

(1) (2) (3) (4)

(a) Forward Dynamic Reachability Map (DRM)

Reach = {1}

Reach = {2}

Occup = {2}

Occup = {1, 2}

Occup = {1}End-Effector

𝒒1 𝒒2

(1) (2) (3) (4)

(b) Inverse Dynamic Reachability Map (iDRM)

Figure 3.2: Examples of DRM and iDRM offline map construction. From left to right: (1)
discretised space, (2) generate valid samples, (3) transform samples to map origin, and (4)
generate reach and occupation lists.

𝒑𝑟𝑜𝑜𝑡
∗

Obstacle

𝑪𝒕𝒊𝒑

𝒒 Status

1 Valid

2 Invalid

… …

𝑶𝒊 {2}
output: {𝟏}

𝒑𝑟𝑜𝑜𝑡
∗

(1) (2) (3) (4)

(a) Forward Dynamic Reachability Map (DRM)

Obstacle

𝒑𝑟𝑜𝑜𝑡
∗

𝑪𝒕𝒊𝒑

𝒑𝑟𝑜𝑜𝑡
∗

𝒒 Status

1 Invalid

2 Valid

… …

𝑶𝒊 {1}

output: {𝟐}

(1) (2) (3) (4)

(b) Inverse Dynamic Reachability Map (iDRM)

Figure 3.3: Examples of DRM and iDRM online updates. From left to right: 1) problem
setup; 2) transform map to root pose; 3) validate collision status; and 4) check tip pose
constraints and find valid samples.

23

End-Pose Planning on Flat Surfaces at Different Heights

3.1.2 Online Update

During the online update phase, our goal is to find samples that are collision-free and satisfy
tip link constraints Ctip given the root pose p∗root , as highlighted in Figure 3.3 (p. 23). Ctip

defines valid position and orientation regions for different tip links. Firstly, the DRM/iDRM
map is transformed to p∗root . Conventional collision checking is then deployed to identify the
colliding voxels, then iteratively invalidate samples in the occupation list Ov of all colliding
voxels. Finally, we check the reach lists of candidate voxels to find valid samples that
satisfy collision-free and Ctip so the output samples are guaranteed to be collision-free. For
example, in Figure 3.3 (p. 23), two samples from the DRM satisfy the tip pose constraint,
but only sample 1 was selected since the other sample was invalidated during the collision
update step. In the iDRM case, sample 1 was excluded from the result as it was in collision
and violated the tip pose constraint.

3.2 Whole-Body Kinematic Split

The iDRM can be used directly for humanoid end-pose planning with the constrained
positions of two feet [Yan+16a], which is limited to flat ground only. As the iDRM can
have multiple tip links, a direct and naïve approach is to create an iDRM with one root
link and three tip links, where one hand is selected as the root and the rest three limbs are
treated as tip links. However, this significantly increases the dimensionality of the problem,
i.e. the number of samples has to increase exponentially with each tip link to cover the
high dimensional space (see Section 3.4). Consequently, the required memory size is so
large that it becomes infeasible to run on any commodity hardware.

To plan end-poses on uneven terrain while keeping a manageable number of samples
and memory size, we take advantage of the robot’s inherent structure to treat upper-body
and lower-body separately. We separate the robot at the torso pelvis joint, as illustrated in
Figure 3.4 (p. 25). We create an iDRM for the upper-body and a DRM for the lower-body.
We choose one hand as the root of the upper-body iDRM, and the other will become a tip
link. We could further split the kinematic structure to obtain more but smaller components,
i.e. further split the upper-body into left and right arms. However, as we will show later
in 3.4.3, the proposed splitting approach is more efficient considering the trade-off between
success rate and planning time. In the rest of this section, we will discuss how to create the
two maps, and combine them to plan end-poses on uneven terrains.

24

End-Pose Planning on Flat Surfaces at Different Heights

Tip 1 of upper-body iDRM

Root of lower-body DRM

Right Foot
Tip 1 of lower-body DRM

Left Foot
Tip 2 of lower-body DRM

Pelvis

Left Hand
Root of upper-body iDRM

20 DoF Upper-body iDRM

12 DoF Lower-body DRM

Tip 2 of upper-body iDRM

Right Hand

Figure 3.4: Kinematic split of NASA’s Valkyrie 38-DoF humanoid robot. Concerning the
DoF of the individual body parts, each leg has six (6), each arm has seven (7), the robot
torso has three (3), and the neck has three (3). The pelvis represents an extra 6-DoF virtual
joint that connects the robot to the world.

3.3 End-Pose Planning for Bi-manual Tasks on Uneven Ter-
rain

3.3.1 Constructions of DRM/iDRM for Humanoids

Upper-Body iDRM

In this case study, the left hand is selected as the root link of the upper-body iDRM, and
the right hand and pelvis are treated as two tip links. Several iDRM datasets with different
number of samples (all with 10cm workspace voxel resolution) are generated for the 20-DoF
upper-body of Valkyrie. Traditionally, samples of an inverse reachability should cover the
whole C-space, i.e. for the case of a humanoid, samples of the map should reach behind
the robot. However, since the robot’s sensor are predominantly facing forward, we want to
express a preference for stable stance locations that give us reasonable manipulability. We
adopt a heuristic in our method, where we only store samples with both hands reaching
comfortable manipulation poses in front of the robot, as shown in Fig. 3.5. Note that
the robot can still manipulate objects that are currently far away or behind the robot by
walking to an appropriate pre-action stance location, which is the key point of end-pose
planning.

25

End-Pose Planning on Flat Surfaces at Different Heights

Figure 3.5: Left: the upper-body’s full Reachability Map; right: the Reachability Map
constrained to the front of the robot. All coloured voxels are reachable by the robot and
greener voxels are regions with high reachability scores. Only part of the map is plotted for
clarity (the shape of the whole map is similar to the one of a sphere).

Lower-Body DRM

The lower-body of Valkyrie has 12-DoF (6-DoF per leg). Though the legs have a large
range of motion, the manifold of balanced configurations is much smaller even on uneven
terrain. Therefore, we have reduced the “reachability” map for the lower-body so that the
legs have the range to adapt to the uneven terrain but they won’t reach most unnatural
poses2. To this end, we generate lower-body configurations with two feet placed in a region
below the pelvis (0.8 − 1.1 meter for Valkyrie), as shown in Fig. 3.6. This ensures that
the lower-body DRM has sufficient samples to adapt to uneven terrain without demanding
extra memory for storing poses that can’t provide support for the robot, e.g. poses where
the feet reach above the pelvis.

3.3.2 End-Pose Planning

Let Mupper be the upper-body iDRM and Mlower be the lower-body DRM. Given a task
y∗ = (y∗lhand ,y

∗
rhand), start states ps,qs and the environment Env, the end-pose planner

needs to find an end-pose that contains p∗ = (p∗lfoot ,p
∗
rfoot) and q∗. Firstly, we create two tip

pose constraints C = {Cpelvis , Crhand} for the upper-body iDRM, where Cpelvis constrains
the pelvis link to be inside a feasible height region and approximately perpendicular to the
ground (i.e. upright), and Crhand constrains the right hand to be near y∗rhand . Algorithm 3
highlights our proposed end-pose planning method for bimanual tasks on uneven terrain,
where in lines 1-7 Mupper is used to find collision-free upper-body configurations that satisfy
the constraints C, such that two hands can reach the goal y∗ with the pelvis pose Tpelvis .

2Though a metric of being “unnatural” appears to be subjective, it has meaningful implications for
achieving such poses on a real robot in terms of joint range and sustainable power. In our work, we define
the terms natural and comfortable as the distance in the C-space from a chosen nominal configuration
derived from the posture shown in Fig. 3.4.

26

End-Pose Planning on Flat Surfaces at Different Heights

Figure 3.6: Left: the lower-body’s unconstrained Reachability Map; right: the Reachability
Map constrained to feet placed below the pelvis. Only part of the map is plotted for clarity.

Algorithm 3 Humanoid End-Pose Planning
Require: y∗lhand , C
Ensure: p∗lfoot , p

∗
rfoot , q

∗

1: y∗root ← y∗lhand

2: Transform Mupper to y∗root // Fig. 3.3b(2)
3: CollisionUpdate(Mupper) // Fig. 3.3b(2-3)
4: Q← ∅
5: for ∀qn ∈ collision-free subset of Mupper do
6: Tpelvis , Trhand ← TipGlobalPoses(qn,y

∗
root)

7: if SatisfyConstraint(Tpelvis , Trhand , C) then // Fig. 3.3b(4)
8: Transform Mlower to Tpelvis // Fig. 3.3a(2)
9: CollisionUpdate(Mlower) // Fig. 3.3a(2-3)
10: for ∀qm ∈ collision-free subset of Mlower do
11: plfoot , prfoot ← TipPoses (Tpelvis(qn),qm)

12: if ValidTerrainContact(plfoot ,prfoot) then // Fig. 3.3a(4)
13: q← {qn,qm}
14: if q is balanced then
15: Q← Q ∪ (plfoot ,prfoot ,q, f(q))

16: p∗lfoot ,p
∗
rfoot ,q

∗ ← LowestCost (Q)

17: return p∗lfoot ,p
∗
rfoot ,q

∗

27

End-Pose Planning on Flat Surfaces at Different Heights

It is worth emphasising that, given an upper-body configuration qn, the global pose of
a link can be calculated by FK, but it is not necessary since we can retrieve these poses
directly from iDRM. For each tip link, i.e. pelvis and right hand, the iDRM reach pose
is referenced in the root (left hand) frame. Given the desired root pose y∗lhand , the global
pose of a tip link is

T tip,world
n = y∗ × T tip,root

n (3.1)

. . . where T tip,world
n and T tip,root

n represent the tip pose of sample n in global and root frames
accordingly. Here T tip,root

n is pre-computed for each sample during offline processing and y∗

is given for each task. Hence, computing the global poses of the pelvis and the right hand
is very efficient in our approach.

After retrieving the global poses, we can then check if the configurations satisfy the pelvis
and right hand constraints. For a candidate upper-body configuration qn, we transform
Mlower to Tpelvis and find valid lower-body configurations, i.e. collision-free and valid
contacts with the terrain, as shown in lines 8-12 of Algorithm 3. To check foot contacts, we
first extract the step regions from the environment. Similar to Eq. 3.1 with Tpelvis as the
y∗, we can obtain the tip (foot) poses in the global frame and check if the foot is within
the step regions. If the lower-body configuration has valid contacts, we then combine the
candidate upper and lower body configurations to acquire the whole-body configuration.
Since multiple valid end-poses may exist, we iterate though Mupper and Mlower to find the
best candidate based on the cost function f(q). Different cost functions can be defined for
different tasks and environments. In general, for humanoid robots, it is desirable to have an
end-pose with minimum travelling distance that is close to the start/nominal configuration.
The following cost function is used in our implementation,

f(q) = ‖Tpelvis(q)− Tpelvis(qs)‖W1 + ‖q− qs‖W2 , (3.2)

where W1,W2 are weights.
After end-pose planning, the last step is to refine the output and ensure all necessary

constraints are satisfied, e.g. the hand(s) need to precisely reach the target, the feet need
to be perfectly in contact with the terrain, and the pose needs to be statically balanced. A
non-linear optimisation-based solver [TD] is used to adjust the candidate end-pose with
respect to these constraints by applying a SQP solver in the same form of Equation 2.1. If
the solver fails or the solution is in collision, the optimisation is repeated with the next
best candidate end-pose3.

3Please keep this in mind as it will be relevant to explain an important detail of our implementation in
one of the following sections of this chapter — cf. 3.4.3.

28

End-Pose Planning on Flat Surfaces at Different Heights

Figure 3.7: The first figure highlights the upper-body iDRM and lower-body DRM samples,
followed by two examples of selected end-poses in different scenarios.

3.3.3 Footstep and Motion Planning

After finding the end-pose, a footstep planner is invoked to plan a set of footsteps to
enable walking from current stance location ps to pre-grasp stance location p∗, followed
by a motion planner to generate a valid whole-body trajectory to realise the end-pose
q∗. Footstep and motion planning are not the main focus of this work, and any suitable
algorithms could be used. The footstep planner from [DT14] and the whole-body motion
planner from [Yan+16b] are implemented here.

3.4 Evaluation

3.4.1 Construction of Dynamic Reachability Maps

We have generated maps with different root/tip links and number of samples to analyse
how different splitting of the map affects the performance:

• Φ1: An upper-body iDRM with the left hand as the root, pelvis and right hand as the
tips. Three datasets are generated with different number of samples: 100, 000(Φ1a),
1, 000, 000(Φ1b) and 4, 000, 000(Φ1c).

• Φ2: An upper-body iDRM with the left hand as the root, pelvis and right shoulder as
the tips. Three datasets are generated with different number of samples: 10, 000(Φ2a),
100, 000(Φ2b) and 1, 000, 000(Φ2c).

• Φ3: A right arm DRM with right shoulder as the root and right hand as the tip. Three
datasets are generated with different number of samples: 10, 000(Φ3a), 100, 000(Φ3b)

and 1, 000, 000(Φ3c).

29

End-Pose Planning on Flat Surfaces at Different Heights

• Φ4: A lower-body DRM with the pelvis as the root, left and right feet as the tips. Four
datasets are generated with different number of samples : 1, 680(Φ4a), 44, 400(Φ4b),
227, 400(Φ4c) and 742, 560(Φ4d).

Table 3.1: Map construction analysis.

Map No. samples Construction time (min) File size (MB)

Upper-body
two arms

Φ1a 105 28.8 108
Φ1b 106 289.7 1,082
Φ1c 4× 106 1090.8 4,352

Upper-body
left arm

Φ2a 104 0.25 9
Φ2b 105 2.61 91
Φ2c 106 25.0 879

Right arm
Φ3a 104 0.05 2
Φ3b 105 0.58 22
Φ3c 106 6.19 217

Lower-body
two legs

Φ4a 1, 680 0.24 1
Φ4b 44, 400 6.15 33
Φ4c 227, 400 30.0 160
Φ4d 742, 560 103.5 535

All datasets are created with 10cm workspace grid resolution. The construction time
and file size are highlighted in Table 3.1. The construction time of Φ1 maps are relatively
longer because many of the samples are discarded and only these with both hands fall
into the region of interest are kept. The Φ1 maps are also expensive to store since the
kinematic structure includes the entire upper-body with two arms. It is worth emphasising
that the file size of Φ1 is similar to Φ2 and Φ3 combined with same number of samples, e.g.
Φ1b ≈ Φ2c + Φ3c.

The proposed end-pose planning method can be obtained by combining Φ1 and Φ4, for
example, combining Φ1a and Φ4a gives a dataset with a theoretical 105×1680 = 168 million
whole-body configurations; combining Φ1c and Φ4c gives a dataset with a theoretical 909.6

trillion whole-body configurations. A further split method can be obtained by combining
Φ2, Φ3 and Φ4, for example, combining Φ2c, Φ3c and Φ4c gives a dataset with a theoretical
2.274× 1017 whole-body configurations. It is clear that the total number of whole-body
configurations increases exponentially with the number of components. However, combining
these maps significantly slows down the on-line planning (see Section 3.4.3).

3.4.2 End-Pose Planning Benchmarking Setup

We have crated a set of benchmark problems by passing random hands and feet pose
constraints, as well as quasi-static balance constraint, into the whole-body IK solver to

30

End-Pose Planning on Flat Surfaces at Different Heights

obtain a random but balanced configuration. The configurations are filtered for self-collisions.
We then populate spherical obstacles into the free environment randomly but not colliding
with the robot until a required number of obstacles is reached. Finally, we can extract the
height and position of each foot from the generated configuration and create terrain areas
accordingly. A valid end-pose planning problem is thereby generated. We also store the
desired poses for both hands, collision environments and terrain areas. Note that the robot
configurations are generated to ensure the problem is solvable with at least one solution.
The configuration is not known to the candidate algorithm, and the algorithm is allowed
to find a different but valid solutions if multiple solutions exist. In our benchmarking, we
created 1000 random problems, each of which contains 20 spherical obstacles with 15-20cm
radius.

3.4.3 Simulation Benchmarking

Reducing the Candidate Set

Our first approach to select the final end-pose from the candidate set was to traverse the
list in a linear fashion. However, this is a very time-consuming process due to the large
number of whole-body samples it contains for the majority of the planning requests.

In a first attempt to reduce the time spent in this process, we changed our implementation
to select only the first K samples from the candidate set. In our implementation, we chose
to make K = 20, but this is a program variable which can be easily reconfigured, and should
reflect the trade-off between the time and the amount of samples we allow the planning
request to explore before quitting. We soon discovered that this technique was not the best
match for our approach when we benchmarked it, as it did not produce very good success
rates. Indeed, when we create a subset of the entire set of candidates, Q, by selecting the
first K samples in a linear fashion, we are selecting neighbouring samples – very similar
whole-body configurations – which lead to the same IK collision result. Now, if the first
candidate sample of the subset does not satisfy all the problem constraints during the final
collision check, it is very likely that its neighbours will also fail to meet those constraints.
Filtering the candidates list in this manner might discard poses with relatively high cost –
which are further away from the head of the candidate list – but valid nonetheless.

In an effort to improve the success rate results of our planning approach, we changed
the method used to create the subset of the entire list of candidates: instead of selecting
the first K samples of the list, we select K equally spaced candidates across the whole
candidate set, e.g. for a set containing 20 samples and for K = 4, the subset would contain
the 1st, 5th, 10th, and 15th samples, therefore prioritising the exploration of the list of
candidates in its entirety. This technique results in much better planning success rates,
which we will be presenting in the following sections.

31

End-Pose Planning on Flat Surfaces at Different Heights

Different Lower-Body Datasets

As we have mentioned, the lower-body is used for maintaining balance rather than for
maximum reachability. Thus, we should use a dataset that contains enough samples which
is sufficient for finding balanced configurations rather than having a dataset with millions of
samples that consumes huge amount of memory and slows down on-line computation. We
combine Φ1b with different Φ4 maps to analysis the affects different lower-body maps might
introduce and therefore select the suitable one for other experiments. We also evaluated the
performance by directly applying the non-linear IK without using DRM/iDRM. Table 3.2
shows the success rate and average planning time using different methods. The map success
rate is the rate of DRM/iDRM reports finding valid candidate end-poses, which is then
passed to the IK adjustment function. The IK success rate is the rate of non-linear IK
successfully adjusted the candidate poses and satisfy all constraints. The pose is then
passed to a collision checking function, a final success is reported if the pose is collision-free.

Table 3.2: End-pose planning performance across different lower-body datasets and using
the non-linear full-body IK.

Method Map success rate IK success rate Final success rate Avg. time(s)
Φ1b + Φ4a 72.7% 71.8% 71.4% 0.08± 0.02

Φ1b + Φ4b 73.7% 72.8% 72.5% 0.09± 0.03

Φ1b + Φ4c 80.7% 79.0% 78.7% 0.13± 0.10

Φ1b + Φ4d 86.3% 84.8% 84.2% 0.23± 0.33

Non-Linear IK - 99.8% 59.3% 0.03± 0.01

We notice that these methods can not achieve 100% success rate, which is caused by
several factors: firstly, although we have created each map with millions of configurations,
it is still inefficient to cover the high dimensional whole-body C-space (38 dimension for
Valkyrie); secondly, and in the interest of time, we only allow the method to try 20 different
poses from the set of candidates, Q, due to the reasons we mentioned in 3.4.3; lastly, some
valid poses which are not in collision may get invalidated due to aliasing of the occupancy
grid. Such artefacts can be reduced by using a finer workspace grid, but they can’t be
completely eliminated. This is a common issue with all grid-based methods.

It is interesting that the final success rate is very close to the initial map success rate,
which means that once the DRM/iDRM maps find candidate end-poses, those poses are
very likely to be valid. On the other hand, the direct non-linear IK method reports a 99.8%

success rate, but only 59.3% is finally valid, e.g. collision-free. The result suggests that
using only the non-linear IK is inefficient in cluttered environments, and the proposed
method is indeed improving the success rate.

The benchmarking was done in randomised and complex environments designed to
fully evaluate different approaches. Although the methods do not achieve 100% success
rate in the benchmarking, as we will show later in Section 3.4.4, they are sufficient for

32

End-Pose Planning on Flat Surfaces at Different Heights

solving practical problems. Based on the result we conclude that the success rate as well as
planning time increase with the number of lower-body samples. We use the lower-body
dataset Φ4c for the rest of the experiments. However, other datasets with more samples
might be used depending on the different demands between success rate and planning time.

Different Map Combinatorics

Table 3.3: Analysis of end-pose planning performance with different upper-body datasets
and the same lower-body dataset. Considering the trade-off between success rate and
planning time, the method Φ1c + Φ4c is used for hardware experiments.

Method Total No. samples Map success rate IK success rate Final success rate Avg. time (s)
Φ1a + Φ4c 2.274× 1010 57.9% 57.1% 56.8% 0.04± 0.01

Φ1b + Φ4c 2.274× 1011 80.7% 79.0% 78.7% 0.13± 0.10

Φ1c + Φ4c 9.096× 1011 88.6% 85.7% 85.1% 0.40± 0.37

Φ2a + Φ3a + Φ4c 2.274× 1013 70.0% 65.1% 63.7% 0.10± 0.05

Φ2b + Φ3b + Φ4c 2.274× 1015 91.3% 83.5% 80.4% 0.56± 0.39

Φ2c + Φ3c + Φ4c 2.274× 1017 96.9% 85.0% 81.2% 8.08± 4.68

We choose to split the humanoid robot into two parts at pelvis. However, one can
further split the upper-body into smaller parts, e.g. left body part (Φ2) and right arm
(Φ3). Table 3.3 shows the end-pose planning result of using different upper-body maps,
where the success rate and planning time increases with the number of samples as expected.
However, the further splitting (Φ2 + Φ3 + Φ4) leads to a much longer planning time while
the success rate is not significantly improved comparing to the proposed splitting (Φ1 + Φ4).
Furthermore, in the case of using further split method with maps Φ2c + Φ3c + Φ4c, the final
success rate is lower than using proposed split method with maps Φ1c + Φ4c. Note that
the map reports a 96.9% success rate, but dropped to 85.0% after IK adjustment, most of
which were caused by failure to satisfy balance constraint. This means further splitting the
body leads to higher chance of violating the balance constraint of the whole-body. Splitting
the upper- and lower-body at the pelvis link is thereby proved to be the most practical
approach considering the trade-off between coverage, planning success rate, and algorithm
runtime. We use the proposed split method with datasets Φ1c for upper-body and Φ4c for
lower-body for the following experiments on robot hardware.

3.4.4 Hardware Experiments

To demonstrate the capability of end-pose planning on uneven terrain, we created three
bimanual box-picking tasks with different terrain types. In the first scenario B1 (Fig. 3.8a),
the robot has to walk onto a higher floor, which in theory can be found by classic iDRM as
well; in the second case B2 (Fig. 3.8b), the robot has to stand on surfaces at two different
heights; in the last scenario B3 (Fig. 3.8c), the robot needs to avoid a collision between its
right leg and a large obstacle during the picking task. Our method is capable of finding
different collision-free end-poses in these environments. We found that the possible pelvis

33

End-Pose Planning on Flat Surfaces at Different Heights

poses are quite limited in practice for bimanual tasks, i.e. the robot has to stand directly in
front facing the box in order to pick it up with two hands. Nevertheless, our DRM/iDRM
hybrid method provides a valid solution for the robot to perform bimanual picking tasks in
presence of uneven terrain.

(a) B1: Pick up a box from a higher terrain.

(b) B2: Pick up a box by placing the right on a higher terrain.

(c) B3: Pick up a box while the right leg position is restricted by a large obstacle.

Figure 3.8: Bimanual box-picking tasks on terrains at different heights. The robot is able
to automatically find appropriate standing locations and whole-body configurations.

We further validated two single-arm grasping tasks where the target was placed at
different locations, as shown in Fig. 3.9. An upper-body iDRM is created with the left hand
as root link and pelvis as tip link. The right arm joints are set to a pre-defined nominal
configuration for all samples, as shown in Fig. 3.7. The constrain set C then contains pose
constraints only for the pelvis but not for the right hand. In the first scenario S1 (Fig. 3.9a),
the target was placed at the edge of the table, where the robot could easily grasp without
being too close. So, the robot could stay away from the high surface, while keeping the
target at a reachable distance. Whereas in the second task S2 (Fig. 3.9b), the target was
placed further away from the edge of the table and enclosed by the obstacle. The end-pose
planner found a feasible configuration to place two feet on different surfaces so the robot
was close enough for grasping the target.

We would like to highlight that with the modular and combined forward inverse dynamic
reachability maps presented in this work, we are able to find end poses which include lunging
body or taking a sidestep (in scenarios B3 and S1) for increasing the reachable workspace by
leveraging the advantage of the legged system. This is in contrast with the prior work [BB15;
Yan+16a] which limited the foot poses to a constant distance and planning for the mid-feet
point. A supplementary video can be found at https://youtu.be/o-05EHf-gg8.

34

https://youtu.be/o-05EHf-gg8

End-Pose Planning on Flat Surfaces at Different Heights

(a) S1 : Grasp a target placed at the edge of the table.

(b) S2 : Grasp a target placed deeper on the table.

Figure 3.9: Single-handed grasping tasks on terrains at different heights. Case I: the target
is easily reachable, so the robot does not need to be too close to the table; Case II, the
robot needs to be closer to the table by placing the right foot on the uneven terrain.

3.5 Summary

We presented a novel end-pose planning algorithm that combines the DRM and iDRM,
which allows humanoid robots to automatically find appropriate end-poses in presence
of uneven terrain. Using NASA’s Valkyrie humanoid as a test bed, we demonstrated
the effectiveness of the proposed method in planning end-poses for both single-arm and
bimanual tasks on uneven terrains.

35

End-Pose Planning on Flat Surfaces at Different Heights

36

Chapter 4

Extending End-Pose Planning to
Inclined Surfaces

4.1 Robust Static Equilibrium . 38
4.2 Lower-Body DRM Construction 42
4.3 End-Pose Planning on Inclined Terrain 44
4.4 Evaluation . 47
4.5 Summary . 49

In this chapter we suggest an extension to our previous work concerning end-pose planning
from flat supports at different heights (Chapter 3) to inclined supports. Our hypothesis is
that end-pose planning on inclined terrains can be achieved by:

(a) integrating into the pipeline a method to compute the quasi-static balance of kinematic
structures for arbitrary contact geometries. Namely, one that takes into account the
static friction between the robot contact points and the environment, and;

(b) adjusting the sampling method of the lower body, to one that explores the C-space of
the robot’s lower body support limbs.

Ultimately, the goal of this chapter is to enable efficient planning of collision-free
balanced whole-body robot end-poses, provided (i) a set of support regions, (ii) a list of the
obstacles present in the robot’s surroundings, and (iii) a single- or multi-handed grasping
target(s). Fig. 4.1 exemplifies an obstacle-free scenario populated with multiple inclined
green tiles — which serve as support regions for the robot — and a feasible whole-body
posture which satisfies two given grasping goals (the small red and green cubes).

37

Extending End-Pose Planning to Inclined Surfaces

Figure 4.1: End-pose planning taking into account the inclination of support regions.

4.1 Robust Static Equilibrium

A system in contact with a flat ground is said to be in static equilibrium if and only if the
vertical projection of its Centre of Mass (CoM) lies within the convex hull of the support
polygon — a shrunk area of the contact polygon:

cxy ∈ Hull({pxyi }), (4.1)

. . . where cxy is the CoM projection, and Hull({pxyi }) is the convex hull of the contact points
on the ground, that is a convex 2D polygon.

Figure 4.2: Centre of pressure and support polygon. Reprinted from [Di +12]. Copy-
right c© 2012 by the IJIDeM.

38

Extending End-Pose Planning to Inclined Surfaces

The support polygon of a biped humanoid robot standing on its left foot only (left) and
on both its feet (right) is illustrated in Fig. 4.2. The system is in static equilibrium as long
as the CoM — the bold black circle — lies within the coloured area of the support polygon.
Furthermore, this condition still holds true for flat sloped grounds, as long as the friction
at the contact points is large enough not to cause the system to slip. Should this happen,
checking whether a system is in static equilibrium is not so straightforward.

Figure 4.3: Close-up photo of the feet of NASA’s Valkyrie. From NASA – Past and Present
Dreams of the Future. Copyright c© 2016 by Benedict Redgrove.

Many robustness measures to test for static equilibrium have already been proposed.
Caron et al. [CPN15] suggested to check for the capacity of a system to generate x− y CoM
accelerations within a polytope while maintaining the derivative of the angular momentum
null. Barthélemy and Bidaud [BB08], [Qiu+11] proposed a robustness measure based on
the radius of the largest hypersphere centred at the Gravito-Inertial Wrench (GIW) and
fully contained inside the GIW cone. Del Prete and Mansard [DM15] studied the control
of legged robots with focus on the robustness to torque-tracking errors — an uncertainty
source that affects the contact-force tracking.

Later on, Del Prete et al. [DTM16] proposed to account for robustness to errors in
the contact-force tracking, i.e. to prevent the forces necessary to maintain equilibrium
from being too close to the boundaries of the friction cones. The authors presented two
algorithms to test equilibrium that are faster than previous approaches, and proposed a
method to test robust equilibrium that allows the robot not to lose contact in case of
bounded force-tracking errors. In their tests, the authors solved the Linear Programming
(LP) problems with qpOases [Fer+14] — a C++ parametric active-set solver for Quadratic
Programming (QP) that also supports LP. For the polytope projection they used the
C++ cdd library [FP96]. Subsequently, the authors wrote a C++ implementation of the

39

http://benedictredgrove.com/nasa-past-and-present-dreams-of-the-future/
http://benedictredgrove.com/nasa-past-and-present-dreams-of-the-future/
http://benedictredgrove.com/

Extending End-Pose Planning to Inclined Surfaces

algorithms they presented in [DTM16] to check the robust equilibrium of a system. In the
next subsection we will explain how we integrated this library into our codebase and into
our framework for whole-body end-pose planning.

4.1.1 Robust Static Equilibrium Applied to Whole-Body End-Poses

The utility classes implemented by Del Prete et al. to compute the robust static equilibrium
of a system require the following inputs:

• A list of contact points

• A list of contact normals

• The contact friction coefficient

• The number of generators used for the linear approximations of the friction cones

• The mass of the system

• The CoM position of the system

In our implementation, each foot of the robot has four contact points associated to it.
In turn, each of those contact points is coupled to a contact normal whenever a support
region and a foot’s centre of pressure frame touch each other. Furthermore, we assume the
contact friction coefficient to be 0.3, which is comparable to the friction between polystyrene
and steel on clean and dry surfaces. This is an under-approximation of what we believe
to be the true friction coefficient between the robot’s foot sole material and the material
on which it will be operating most of the times1. We use four generators for the linear
approximations of the friction cones. Finally, the mass of NASA’s Valkyrie is approximately
135.906 kg, 77.976 kg of the upper-body and 57.93 kg of the lower-body, according to the
kinematic split described in Section 3.2 (p. 24).

After having integrated the aforementioned utility classes, we are now able to compute
the robustness of the equilibrium of any given whole-body configuration — one needs only
to extract the CoM, and the list of contact points and their respective normals from the
whole-body pose, in order to pass them as inputs to the library. The implementation
returns a quantitative measure of the robustness of the system’s equilibrium. Negative
values mean the system can not be in equilibrium. Positive values mean the system is
in equilibrium, and the greater the returned value is, the more robust is the state of the
system’s equilibrium. Fig. 4.4 contains two examples of whole-body end-poses. The image
on the left is an example of a system standing in a feasible upright fashion. The image on
the right is an example of the robot leaning over such that it would not be able to be in
quasi-static balance. The red arrows located at the vertices of the sole of each foot are

1The kinetic or sliding frictional coefficient — applicable only when there is a relative motion between
the surfaces — between rubber and dry concrete is in the range from 0.6–0.851, and between rubber and
wet concrete is in the range from 0.45–0.75. Without motion the values are somewhat higher. [Too]

40

Extending End-Pose Planning to Inclined Surfaces

visual markers representing the contact normals between the feet and the green support
regions. The contact points are located at the root of the arrows.

Figure 4.4: A robust (left) and a non-robust (right) whole-body end-poses.

4.1.2 Computing the Robustness of Lower-Body Samples

Heretofore, we have a method to compute the robustness of whole-body configurations.
Nevertheless, we have yet to generate an extended and improved lower-body dataset
containing lower-body samples which enable planning of stances on inclined terrains. To
that end, it is desirable to be able to compute the robustness of stand-alone lower-body
samples. Using a similar approach to what we discussed previously, we can use the
same library to compute the robustness of a given lower-body sample by supplying the
CoM position and the mass of the lower-body alone. This is indeed a valid approach.
Notwithstanding, the robustness evaluation of a system consisting only of the lower-body
will carry very different results of that very same lower-body sample combined with an
upper-body sample.

A better alternative, which we have decided to use in our implementation, is to simulate
a dummy mass, just above the pelvis link2, with the same mass as the upper-body of the
robot’s kinematic structure. This is a rough approximation, after all, depending on the
upper-body configuration, its CoM will be positioned somewhere else other than at 30 cm

above the pelvis link. However, do note that this approximation results in a more accurate
robustness estimation rather than not considering an upper-body sample at all.

At this stage we have a way to compute the robustness of individual lower-body samples
by approximating the upper-body with the usage of a dummy mass. While analysing

2More specifically, 30 cm above the pelvis link in our implementation.

41

Extending End-Pose Planning to Inclined Surfaces

this approach, we noticed that occasionally some configurations would be classified as
having a robustness of two, and sometimes three, orders of magnitude greater than all the
other samples. Henceforth, we will denote these abnormal samples as extremely robust
configurations. Fig. 4.5 shows the visual representation of two lower-body samples for which
the library returns an unexpectedly high robustness measurement.

Figure 4.5: Two lower-body samples evaluated as extremely robust. Both samples are
unfeasible and would cause the system to collapse. Thus, we discard such samples and
consider them as outliers. The red arrows are visual markers representing the contact
normals between the feet and fictitious support regions coplanar to the sole of each foot.

These outliers are evaluated as having a robustness orders of magnitude above the
expected results, but it can be easily seen that they do not represent valid balanced
configurations. We did not investigate this issue further. To account for these outliers, we
discard samples evaluated with a robustness above 500.

4.2 Lower-Body DRM Construction

Previously, in 3.3.1 (p. 26) we generated lower-body configurations with the two feet placed
below the pelvis and with neither roll nor pitch. This was based on the assumption that
the terrains would always be flat, even though they could be positioned at different heights.
For more complex terrains, namely sloped surfaces, this no longer holds true, and as a
consequence the need of a new method to generate a lower-body DRM arises.

We used two different lower-body sampling methods: (a) random sampling, and (b)
selective sampling. For each method, we generated three datasets of different sizes — 1000,
5000, and 10000 samples. Following, we explain these new datasets in more detail.

4.2.1 Sampling Methodology

Random Sampling

We generated three random lower-body datasets, without discarding any of the generated
samples. Each dataset contains 1000, 5000, and 10000 lower-body samples.

42

Extending End-Pose Planning to Inclined Surfaces

Selective Sampling

This method samples random configurations, just like the previous method. However, in
order for a generated sample to be kept in the dataset, it must meet the following criteria:
(i) the angle between the normal of the foot and the z-axis must not exceed 30◦; (ii) the
horizontal distance between the feet must not be greater than 0.5 m; (iii) the z-distance
between the feet must not be greater than 0.2 m; (iv) the angle between the headings of
each foot must not exceed 60◦; (v) the robustness evaluation must be greater than or equal
to 10. The sampling process ends when the target number of samples to be generated is
reached.

The constraints (i) – (iv) are set due to inherent hardware limitations of the robot,
namely joint and torque limits. Constraint (v) is set as a robustness threshold to ensure
that only balanced configurations are kept in the dataset3.

4.2.2 Lower-Body Datasets Robustness

In order to compare the different sampling methods described in 4.2.1 in terms of equilibrium
robustness, we used the method from 4.1.2 (p. 41) to calculate the robustness of each
sample of every dataset, and for each dataset we calculated the average robustness of its
samples. Table 4.1 shows the average robustness for each of the generated datasets.

Table 4.1: Average robustness of the samples contained in each of the generated lower-body
datasets.

Method No. samples Avg. robustness

Random
1000 -109.99
5000 -111.44
10000 -42.01

Constrained
1000 16.82
5000 17.19
10000 11.99

In order to better understand the content of each dataset in terms of equilibrium
robustness, we have also plotted histograms of the frequency of each robustness measurement
for each of the datasets. Fig. 4.6 contains those histograms. The three histograms on the
top row correspond to the randomly sampled datasets. The other three histograms on the
bottom row correspond to the datasets generated using the selective sampling methodology.
Balanced samples — values greater than or equal to 0 — are represented in blue bins.
Non-robust samples — negative values — are represented in red bins.

A quick analysis of the histograms on the top row clearly shows that the majority of
the samples stored in the datasets are not balanced, and therefore are useless. Furthermore,

3In fact, a threshold of greater than or equal to 0 would have been enough to ensure this. However,
increasing the threshold to 10 further improves the robustness quality of the overall dataset.

43

Extending End-Pose Planning to Inclined Surfaces

300 200 100 0 100
Robustness

0

10

20

30

40

50

60

Fr
eq

ue
nc

y

1000 random samples

300 200 100 0 100
Robustness

0

50

100

150

200

250

300

Fr
eq

ue
nc

y

5000 random samples

300 200 100 0 100
Robustness

0

200

400

600

800

1000

1200

1400

Fr
eq

ue
nc

y

10000 random samples

10 20 30 40
Robustness

0

20

40

60

80

100

120

Fr
eq

ue
nc

y

1000 constrained samples

10 20 30 40
Robustness

0

100

200

300

400

500
Fr

eq
ue

nc
y

5000 constrained samples

10 20 30 40
Robustness

0

500

1000

1500

2000

2500

3000

3500

Fr
eq

ue
nc

y

10000 constrained samples

Figure 4.6: Robustness histograms of the benchmarked lower-body datasets. Negative
robustness means the system can not be in equilibrium (red bins).

as the number of samples contained in the dataset increases, the more the curve of the
histogram resembles a bell curve, i.e. a graph of a normal (Gaussian) distribution, which
is expected. On the other hand, the histograms of the bottom row only contain balanced
samples whose robustness is greater than or equal to 10. This is due to constrain (v),
defined in the selective sampling method. The shape of the curve of these histograms
appears to look like the right end of a normal distribution.

As anticipated, the selective sampling methodology is better than a random sampling,
producing datasets comprised only of balanced configurations.

4.3 End-Pose Planning on Inclined Terrain

Figure 4.7: Pipeline overview of the proposed planning framework. The numbered blocks
with a gear represent the key stages along the pipeline.

44

Extending End-Pose Planning to Inclined Surfaces

First of all, the pipeline of our existing planning framework requires two datasets
generated offline: one containing upper-body samples and another containing lower-body
samples. After having generated new lower-body datasets which contain samples for inclined
supports, our goal is now to be able to actually do whole-body end-pose planning on inclined
terrains. Ideally, we would like to have an environment like the one shown in Fig. 4.8 and
be capable of finding a valid solution when a grasping task is requested. For that purpose,
we need to adapt the current pipeline of our planning framework. A flowchart of the new
adapted version is shown in Fig. 4.7 (p. 44).

Figure 4.8: Test environment generated with our custom terrain parser4.

When the system receives a request, such as a grasping target, the environment in-
formation is supplied to the algorithm pipeline — including scene obstacles and support
regions. At the first stage — denoted by the blue rectangle with a gear, and labeled with
a (1) on the top left corner in the flowchart of the framework — a combination of an
upper-body iDRM and a lower-body DRM is used to find a list of whole-body samples
that are collision-free and satisfy the task and the problem constraints. The sample at the
head of the list proceeds in the pipeline, while the remainder of the list is kept in memory.
Subsequently, the selected sample q is adjusted during stage two (2) using a non-linear
optimisation-based IK solver [TD], resulting in sample q′. This adjustment is required to
position the tip links exactly where they should be, i.e. the hands at the desired grasping

4We developed a very simple custom terrain parser during this part of the project in order to test our
approach in multiple different inclined terrain scenarios with ease.

45

Extending End-Pose Planning to Inclined Surfaces

pose, and the feet perfectly aligned with the support regions. The initial and final states of
an example of such a correction are shown in Fig. 4.9.

Figure 4.9: End-pose planning candidate solution before the final IK adjustment(left) and
the resultant final solution after the IK corrections (right). Notice the correction of the
position of the feet.

Finally, the static equilibrium robustness of the adjusted whole-body configuration q′

is computed during stage three (3). This final robustness check is required due to the
combinatorial nature of our planning approach, i.e. even though the lower-body sample of
the solution is guaranteed to be balanced (otherwise it would have not been kept in the
dataset during the selective sampling method described in 4.2.1, p. 43), the whole-body
posture itself might not be in static equilibrium once the upper-body is combined with the
lower-body sample. Once stage three (3) is finished and the whole-body configuration is
confirmed to be in robust static equilibrium, the framework returns this configuration as
the result to the given end-pose planning problem.

Sporadically, the IK solver may fail to perform the necessary adjustments to correct
the sample q into q′, whether due to unfeasible linear constraints or due to an unbounded
problem objective, for example. In such cases, the sample is discarded and the flow goes
back in the pipeline to immediately after stage (1), where the next sample of the previously
saved list is popped out and then passed onto the pipeline. The same procedure occurs
if q′ is found out not to be in equilibrium at stage three (3) — the flow goes back in the
pipeline and the next candidate pose in the list of candidates is passed on to the remainder
of the pipeline.

46

Extending End-Pose Planning to Inclined Surfaces

4.4 Evaluation

4.4.1 End-Pose Planning Benchmarking Setup

Like we have previously described in 3.4.2 (p. 30), we wrote an auxiliary problem generator
in order to effortlessly benchmark our method. The generator creates a set of problems
with a grasping goal for each end-effector, feasible support regions for each leg, and multiple
spherical obstacles. The problem generator takes in three arguments: (1) the number of
problems to be generated, (2) the number of obstacles to be spawned, and (3) the minimum
distance from the robot’s kinematic structure at which the obstacles are allowed to be
spawned.

Figure 4.10: Example of two generated end-pose planning problems. Notice the increased
number of obstacles of the problem on the left, which poses a greater planning challenge.

4.4.2 Simulation Benchmarking

To evaluate the performance of our end-pose planning framework on uneven and inclined
terrains, we used the aforementioned problem generator to create six sets of problems, each
set containing 1000 problem scenarios. The six problems fall into one of two categories:
(a) problems where the obstacles are guaranteed to be at least 10 cm away from the robot
kinematic structure used to generate that problem, and (b) problems where the obstacles
are guaranteed to be at least 5 cm away from the robot. Category (b) is more challenging
than (a), given that the solution’s C-space is more constrained. Furthermore, for each
category there exist 3 different problem sets: one containing problems with 5 spawned
obstacles, another containing problems with 10 obstacles, and yet another consisting of
problems with 20 obstacles.

Table 4.2 shows the success rate and the average planning time of each stage along
the pipeline for each of the problem sets. The benchmarking was carried out using an
upper-body dataset containing one million samples and a lower-body dataset containing
ten thousand samples. The upper-body dataset was generated in the same manner as for

47

Extending End-Pose Planning to Inclined Surfaces

Chapter 3. The lower-body dataset was generated using the selective sampling approach
described earlier in this chapter. The subset of the candidate list was created by selecting
the first K samples of the set. Due to time constraints we did not have the chance to try
the technique which improved the results of the former chapter as described in 3.4.3 (p. 31).
The results are very poor when compared to the success rates obtained in that chapter.

Table 4.2: End-pose planning performance across different benchmark trials.

Min. distance to robot No. obstacles Success rate Avg. iDRM time Avg. IK time Avg. REL time

10 cm

5 30.2 % 0.1270 s 7.0083 ms 0.8614 ms

10 23.5 % 0.1953 s 6.5170 ms 0.8537 ms

20 17.5 % 0.3114 s 6.6180 ms 0.8757 ms

5 cm

5 27.1 % 0.1246 s 6.9481 ms 0.8863 ms

10 18.1 % 0.2028 s 6.7264 ms 0.8700 ms

20 7.4 % 0.2661 s 6.6694 ms 0.8732 ms

As expected, we can see that the planning success rate decreases as the number of
obstacles in the problem increases. Furthermore, by analysing the problems with the
same number of obstacles but different minimum distance allowed between the robot and
the obstacles during the problem generation, we can conclude that the success rate is
always lower when the obstacles are allowed to be spawned closer during environment setup.
Both these correlations are expected. After all, spawning more obstacles and allowing
those obstacles to be closer to the configuration used to generate the problem, will further
constraint the feasible regions of the solution to that problem.

Concerning the times of the different components, we can conclude that the iDRM
runtime is the main bottleneck of the total planning time. Furthermore, the time spent by
iDRM increases along with the number of obstacles in scene. The times required by both
the IK solver and the robust equilibrium library (REL) — the method described in 4.1.1 —
are reasonably consistent: the IK takes approximately 7 ms and the robustness evaluation
of the whole-body poses 0.9 ms .

Table 4.3: Average robustness of the whole-body end-pose solutions to the benchmarking
trials.

Min. distance to robot No. obstacles Avg. robustness

10 cm

5 20.73
10 19.21
20 19.84

5 cm

5 20.30
10 19.47
20 19.88

We have also collected information with regard to the robustness of the valid solutions
returned by our planner. We can conclude that the average robustness does not vary

48

Extending End-Pose Planning to Inclined Surfaces

much depending on the problem settings. However, the results seem to indicate that the
robustness of the selected candidate decreases slightly as the number of obstacles increases.

4.5 Summary

In this chapter we proposed an extension to our existing end-pose planning framework in
order to not only support horizontal terrains at different heights, but also support inclined
surfaces. In order to account for the additional circumstances characteristic of sloped
surfaces, we generated a new lower-body dataset containing samples necessary to plan
stances on inclined supports. Furthermore, we integrated utility classes into our framework
to compute the static equilibrium robustness of whole-body end-poses on inclined contact
geometries, given that this is substantially different from computing the quasi-static balance
of stances on flat grounds.

49

Extending End-Pose Planning to Inclined Surfaces

50

Chapter 5

Conclusion

5.1 Overview . 51
5.2 Contributions . 52
5.3 Future Work . 52

This chapter presents the conclusions of this research: we overview the work covered in this
dissertation, followed by the list of the contributions resultant of this work, and finally, we
review problems and issues yet to be solved, as well as some guidelines on how to tackle
them.

5.1 Overview

In this dissertation we first reviewed the current state of the art in motion planning and
end-pose planning. We then tried to approach the goals initially defined in chapter 1.3.

G1. Extend previous work concerning end-pose planning to take into account
flat supports at different heights.

In Chapter 3 we proposed a whole-body kinematic split at the pelvis link in order
to have a paired forward-inverse dynamic reachability map. The strength of both
DRM and iDRM enabled us to explore the combinatorics of the modularity resultant
from the kinematic split. By exploiting the combinatorics of this modularity the
coverage of the whole-body C-space increased. As a result, it enabled us to effectively
plan end-poses for grasping tasks on environments with support regions at different
heights.

G2. Further extend the whole-body end-pose planning framework resultant
from G1 in order to support sloped terrains.

In Chapter 4 we integrated utility classes to compute the static equilibrium robustness
of whole-body configurations. This integration was necessary because the method

51

Conclusion

used to check for quasi-static balance of whole-body end-poses on a flat ground is
substantially different from the method used to calculate the same on inclined contact
geometries. As a result, we were able to generate a new and improved lower-body
dataset, by biasing the sampling process with the new robustness metric. In turn,
and in addition to our framework’s previous capabilities, the extended lower-body
dataset enabled us to find whole-body balanced configurations on sloped surfaces.

G3. Evaluate the methodologies proposed to achieve G1 and G2 with simulation
benchmarks, and conduct test trials in the laboratory’s test bed.

We developed a custom terrain parser and a problem generator in order to run
extensive benchmarks and simulations to test the methods we proposed. We proved
that we can indeed do end-pose planning on terrains at different heights, and on
sloped surfaces. We conducted hardware experiments to prove the practicality of our
approach using the 38-DoF NASA’s Valkyrie in our test bed.

5.2 Contributions

The main contributions of this research include:

• A review of (i) the main SBP algorithms for motion planning, (ii) the theoretical
concepts of RM, IRM and their respective dynamic versions, DRM and iDRM, and
(iii) the state-of-the-art iDRM end-pose planning algorithm for complex and cluttered
environments;

• An extension of iDRM, by combining RM for the lower-body with IRM for the upper-
body, which allows the robot to select stance locations and whole-body configurations
in complex and cluttered environments, namely with uneven flat terrains, in real time;

• Yet another extension to the iDRM end-pose planning algorithm, by improving the
generation of lower-body samples and integrating a new technique to compute the
static equilibrium robustness of whole-body poses on arbitrary contact geometries,
which further extends the capability of the robot to plan end-poses on sloped terrains.

5.3 Future Work

5.3.1 Parallelisation

Since we decompose the kinematic structure of the humanoid into upper- and lower-body
parts, the planner needs to combinatorially check each candidate pelvis pose with the
lower-body DRM, which is time consuming and grows exponentially with the dataset size.
Hence our future work involves using highly-parallelised architectures such as GPUs or
other customised hardware to parallelise the combinatorial component in order to further
reduce online planning time.

52

Conclusion

5.3.2 Compression

A current limitation of our method is the amount of memory required for storing the
maps, e.g. 4.5GB for Valkyrie using the datasets Φ1c and Φ4c, considering the methodology
presented in Chapter 3 (p. 21). Our future work involves investigating new methods of
encoding the configuration-to-workspace mapping for better memory efficiency. This will
allow us to increase the resolution of the voxel grid and improve the success rate of our
method.

5.3.3 Selective Sampling Threshold

Regarding the static equilibrium robustness metric of the selective sampling described in
4.2.1, we chose to only keep samples in the dataset above a certain threshold — in our
implementation we used 10 as threshold. Further work should be carried out to examine
whether this is necessary or not. Moreover, if a threshold is required, a search for the
optimum value for this threshold should be investigated.

5.3.4 "Extremely Robust" Lower-Body Samples

Concerning the abnormal equilibrium robustness classification of some lower-body samples
discussed in Chapter 4 (p. 37), an investigation should be carried out in order to understand
why those samples are being evaluated with such a high robustness measurement.

53

Conclusion

54

Acronyms

C-space Configuration space. 6, 7, 9, 11, 14, 16, 21, 25, 26, 32, 37, 47, 51, 54

CoM Centre of Mass. 38–41, 54, 57

DoF Degree of Freedom. 1, 10, 21, 25, 26, 52, 54, Glossary: degree of freedom

DRC DARPA Robotics Challenge. 54

DRM Dynamic Reachability Map. 21–24, 26, 29, 30, 32, 34, 35, 42, 45, 51, 52, 54

E-space End-effector space. 54

EPIA Portuguese Conference on Artificial Intelligence. 3, 54

EXOTica EXtensible Optimization Toolset. 20, 54

FCL Flexible Collision Library. 20, 54

FEUP Faculdade de Engenharia da Universidade do Porto. 54

FK Forward Kinematics. 11, 14, 28, 54

GIW Gravito-Inertial Wrench. 39, 54

iDRM inverse Dynamic Reachability Map. 2, 15–18, 21–26, 28, 29, 32–35, 45, 48, 51, 52,
54

IK Inverse Kinematics. 10, 12, 16, 19, 20, 31, 45, 46, 48, 54

IRM Inverse Reachability Map. 2, 13–15, 52, 54

LP Linear Programming. 39, 54

MATLAB MATrix LABoratory. 54

MIQCQP Mixed-Integer Quadratically-Constrained Quadratic Program. 54

MIT Massachusetts Institute of Technology. 2, 54

NASA National Aeronautics and Space Administration. 1, 2, 10, 21, 25, 35, 39, 40, 52, 54

55

Acronyms

NN Nearest Neighbour. 7, 54

PRM Probabilistic Roadmap. 6, 9, 54

QP Quadratic Programming. 39, 54

RA-L IEEE Robotics and Automation Letters. 3, 54

RM Reachability Map. 2, 11–15, 26, 27, 52, 54

ROS Robot Operating System. 54

RRT Rapidly-exploring Random Tree. 6–8, 54

SBP Sampling Based Planning. 6, 52, 54

SDP Semidefinite Programming. 54

SQP Sequential Quadratic Programming. 16, 28, 54

TCP Tool Centre Point. 11–14, 54

UoE University of Edinburgh. 2, 54

56

Glossary

curse of dimensionality The various phenomena that arise when analysing and organis-
ing data in high-dimensional spaces (often with hundreds or thousands of dimensions)
that do not occur in low-dimensional settings such as the three-dimensional physical
space of everyday experience [Wikb]. 2, 20, 54

degree of freedom The number of independent parameters that determine the state of a
physical system [Wikc]. 1, 54

end effector The device at the end of a robotic arm, designed to interact with the
environment. The exact nature of this device depends on the application of the
robot [Wikd]. 15–18, 54, 57

jacobian The matrix relating joint velocities to end effector velocities. 19, 54, 57

kinematic singularity A point within the robot’s workspace where the robot’s jacobian
matrix loses rank — in practice it is a point in the workspace where the robot loses its
ability to move the end effector in some direction no matter how it moves its joints. It
typically occurs when two of the robot’s joints line up, making them redundant [HQ].
12, 54

pose The combination of a position and orientation. 6, 14–16, 18, 54

quasi-static balance A robot standing on flat ground is quasi-statically balanced if its
CoM projection lies within the support polygon with no velocity and acceleration
along any axis. 16, 40, 49, 54

SE(2) 2D rigid transformations represented by a linear transformation on homogeneous
3-vectors. 54

SE(3) 3D rigid transformations represented by a linear transformation on homogeneous
4-vectors. 10, 14, 54

SO(2) 2D rotations represented by a 2D rotation matrix. 54

SO(3) 3D rotations represented by a 3D rotation matrix. 54

57

Glossary

support polygon The convex hull of the set of contact points of a robot configuration.
54, 57

58

References

[Asf+06] Tamim Asfour, Kristian Regenstein, Pedram Azad, J Schroder, Alexander
Bierbaum, Nikolaus Vahrenkamp, and Rüdiger Dillmann. ARMAR-III: An
integrated humanoid platform for sensory-motor control. In Humanoid robots,
2006 6th ieee-ras international conference on. IEEE, 2006, pages 169–175
(Cited on p. 13).

[AW96] Nancy M Amato and Yan Wu. A randomized roadmap method for path and
manipulation planning. In Robotics and automation, 1996. proceedings., 1996
ieee international conference on. Volume 1. IEEE, 1996, pages 113–120 (Cited
on pp. 6, 9).

[Bar+97] Jérôme Barraquand, Lydia Kavraki, Jean-Claude Latombe, Rajeev Motwani,
Tsai-Yen Li, and Prabhakar Raghavan. A random sampling scheme for path
planning. The international journal of robotics research, 16(6):759–774, 1997
(Cited on p. 9).

[BB08] Sébastien Barthélemy and Philippe Bidaud. Stability measure of postural
dynamic equilibrium based on residual radius. Advances in robot kinematics:
analysis and design:399–407, 2008 (Cited on p. 39).

[BB15] Felix Burget and Maren Bennewitz. Stance selection for humanoid grasping
tasks by inverse reachability maps. In Proceedings of IEEE ICRA, 2015,
pages 5669–5674 (Cited on pp. 2, 13–15, 19, 34).

[BC95] Hee Rak Beom and Hyung Suck Cho. A sensor-based navigation for a mobile
robot using fuzzy logic and reinforcement learning. Ieee transactions on systems,
man, and cybernetics, 25(3):464–477, 1995 (Cited on p. 6).

[CMO15] Marco Cognetti, Pouya Mohammadi, and Giuseppe Oriolo. Whole-body motion
planning for humanoids based on CoM movement primitives. In Humanoid
robots (humanoids), 2015 ieee-ras 15th international conference on. IEEE,
2015, pages 1090–1095 (Cited on p. 10).

[CPN15] Stéphane Caron, Quang-Cuong Pham, and Yoshihiko Nakamura. Leveraging
Cone Double Description for Multi-contact Stability of Humanoids with Ap-
plications to Statics and Dynamics. In Robotics: science and systems, 2015
(Cited on p. 39).

[CS12] SAM Coenen and M Maarten Steinbuch. Motion planning for mobile robots
– A guide. PhD thesis. Master Thesis, Mechanical Engineering, Eindhoven
University of Technology, Eindhoven, 2012 (Cited on p. 6).

59

REFERENCES

[Di +12] Giuseppe Di Gironimo, Luigi Pelliccia, Bruno Siciliano, and Andrea Tarallo.
Biomechanically-based motion control for a digital human. International Jour-
nal on Interactive Design and Manufacturing (IJIDeM), 6(1):1–13, 2012 (Cited
on p. 38).

[DM15] Andrea Del Prete and Nicolas Mansard. Addressing constraint robustness to
torque errors in task-space inverse dynamics. In Robotics, sciences and systems
2015, 2015 (Cited on p. 39).

[DT14] Robin Deits and Russ Tedrake. Footstep planning on uneven terrain with
mixed-integer convex optimization. In Humanoid robots (humanoids), 2014
14th ieee-ras international conference on. IEEE, 2014, pages 279–286 (Cited
on p. 29).

[DTM16] Andrea Del Prete, Steve Tonneau, and Nicolas Mansard. Fast algorithms to
test robust static equilibrium for legged robots. In Proceedings of IEEE ICRA,
2016, pages 1601–1607 (Cited on pp. 39, 40).

[ES14] Mohamed Elbanhawi and Milan Simic. Sampling-based robot motion planning:
A review. Ieee access, 2:56–77, 2014 (Cited on pp. 6, 8, 9).

[Fer+14] Hans Joachim Ferreau, Christian Kirches, Andreas Potschka, Hans Georg Bock,
and Moritz Diehl. qpOASES: A parametric active-set algorithm for quadratic
programming. Mathematical programming computation, 6(4):327–363, 2014
(Cited on p. 39).

[Fer+17] Henrique Ferrolho, Vladimir Ivan, Yiming Yang, Wolfgang Merkt, Rosaldo
J. F. Rossetti, and Sethu Vijayakumar. Whole-Body End-Pose Planning on
Uneven and Inclined Surfaces (extended abstract). In Portuguese Conference
on Artificial Intelligence (EPIA) (under review), 2017 (Cited on p. 3).

[Fig+09] Miguel C Figueiredo, Rosaldo JF Rossetti, Rodrigo AM Braga, and Luis Paulo
Reis. An approach to simulate autonomous vehicles in urban traffic scenarios.
In Intelligent transportation systems, 2009. itsc’09. 12th international ieee
conference on. IEEE, 2009, pages 1–6 (Cited on p. 1).

[FP96] Komei Fukuda and Alain Prodon. Double description method revisited. Com-
binatorics and computer science:91–111, 1996 (Cited on p. 39).

[Ger99] Michael Gerke. Genetic path planning for mobile robots. In American control
conference, 1999. proceedings of the 1999. Volume 4. IEEE, 1999, pages 2424–
2429 (Cited on p. 6).

[HLK06] David Hsu, Jean-Claude Latombe, and Hanna Kurniawati. On the probabilistic
foundations of probabilistic roadmap planning. The international journal of
robotics research, 25(7):627–643, 2006 (Cited on p. 9).

[HQ] Carl Henshaw and Quora. Robotics: What is meant by kinematic singularity?
— Quora. [Online; accessed 04-July-2017]. url: https://www.quora.com/
Robotics-What-is- meant-by-kinematic-singularity/answer/
Carl-Henshaw (Cited on p. 57).

[Iva+] Vladimir Ivan, Yiming Yang, Michael Camilleri, Wolfgang Merkt, and Sethu
Vijayakumar. EXOTica: an extensible optimization toolset for motion planning
and control prototyping and benchmarking. [Online; accessed 15-June-2017].
url: https://github.com/openhumanoids/exotica (Cited on p. 20).

60

https://www.quora.com/Robotics-What-is-meant-by-kinematic-singularity/answer/Carl-Henshaw
https://www.quora.com/Robotics-What-is-meant-by-kinematic-singularity/answer/Carl-Henshaw
https://www.quora.com/Robotics-What-is-meant-by-kinematic-singularity/answer/Carl-Henshaw
https://github.com/openhumanoids/exotica

REFERENCES

[Kav+96] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration spaces.
Ieee transactions on robotics and automation, 12(4):566–580, 1996 (Cited on
pp. 6, 9).

[KL00] James J Kuffner and Steven M LaValle. RRT-connect: An efficient approach
to single-query path planning. In Robotics and automation, 2000. proceedings.
icra’00. ieee international conference on. Volume 2. IEEE, 2000, pages 995–1001
(Cited on pp. 6–8).

[KL94] Lydia Kavraki and J-C Latombe. Randomized preprocessing of configuration
for fast path planning. In Robotics and automation, 1994. proceedings., 1994
ieee international conference on. IEEE, 1994, pages 2138–2145 (Cited on pp. 6,
9).

[Kuf+01] James Kuffner, Koichi Nishiwaki, Satoshi Kagami, Masayuki Inaba, and Hi-
rochika Inoue. Motion planning for humanoid robots under obstacle and
dynamic balance constraints. In Robotics and automation, 2001. proceedings
2001 icra. ieee international conference on. Volume 1. IEEE, 2001, pages 692–
698 (Cited on p. 10).

[Kuf04] James J Kuffner. Effective sampling and distance metrics for 3D rigid body
path planning. In Robotics and Automation, 2004. Proceedings. ICRA’04. 2004
IEEE International Conference on. Volume 4. IEEE, 2004, pages 3993–3998
(Cited on p. 16).

[Lat12] Jean-Claude Latombe. Robot motion planning. Volume 124. Springer Science
& Business Media, 2012 (Cited on p. 5).

[LaV98] Steven M LaValle. Rapidly-exploring random trees: A new tool for path
planning, 1998 (Cited on p. 6).

[LK01] Steven M LaValle and James J Kuffner Jr. Randomized kinodynamic planning.
The international journal of robotics research, 20(5):378–400, 2001 (Cited on
pp. 6, 7).

[Mae+10] Takashi Maekawa, Tetsuya Noda, Shigefumi Tamura, Tomonori Ozaki, and
Ken-ichiro Machida. Curvature continuous path generation for autonomous
vehicle using B-spline curves. Computer-aided design, 42(4):350–359, 2010
(Cited on p. 6).

[Ott+06] Ch Ott, Oliver Eiberger, Werner Friedl, B Bauml, Ulrich Hillenbrand, Ch
Borst, Alin Albu-Schaffer, Bernhard Brunner, H Hirschmuller, S Kielhofer,
et al. A humanoid two-arm system for dexterous manipulation. In Humanoid
robots, 2006 6th ieee-ras international conference on. IEEE, 2006, pages 276–
283 (Cited on p. 11).

[PCM12] Jia Pan, Sachin Chitta, and Dinesh Manocha. FCL: a general purpose library
for collision and proximity queries. In Robotics and automation (icra), 2012
ieee international conference on. IEEE, 2012, pages 3859–3866 (Cited on p. 20).

[Pet+11] Marcelo Petry, Antonio Paulo Moreira, Luis Paulo Reis, and Rosaldo Rossetti.
Intelligent wheelchair simulation: Requirements and architectural issues. In
11th international conference on mobile robotics and competitions, lisbon, 2011,
pages 102–107 (Cited on p. 1).

61

REFERENCES

[PR12] José LF Pereira and Rosaldo JF Rossetti. An integrated architecture for au-
tonomous vehicles simulation. In Proceedings of the 27th annual acm symposium
on applied computing. ACM, 2012, pages 286–292 (Cited on p. 1).

[Qiu+11] Zhapeng Qiu, Adrien Escande, Alain Micaelli, and Thomas Robert. Human
motions analysis and simulation based on a general criterion of stability. In
International symposium on digital human modeling, 2011, pages 1–8 (Cited
on p. 39).

[SRR11] Nima Shafii, Luis Paulo Reis, and Rosaldo JF Rossetti. Two humanoid sim-
ulators: Comparison and synthesis. In Information systems and technologies
(cisti), 2011 6th iberian conference on. IEEE, 2011, pages 1–6 (Cited on p. 1).

[TD] Russ Tedrake and the Drake Development Team. Drake: A planning, control,
and analysis toolbox for nonlinear dynamical systems. [Online; accessed 15-
June-2017]. url: http://drake.mit.edu/ (Cited on pp. 16, 28, 45).

[Tea] Open Humanoids Project Development Team. Open Humanoids Project: Uni-
versity of Edinburgh and MIT’s Valkyrie and Atlas Humanoid Project. [Online;
accessed 15-June-2017]. url: https://github.com/openhumanoids/
(Cited on p. 2).

[Tog86] Masaki Togai. An application of the singular value decomposition to manipu-
lability and sensitivity of industrial robots. Siam journal on algebraic discrete
methods, 7(2):315–320, 1986 (Cited on p. 14).

[Too] The Engineering ToolBox. Friction and Friction Coefficients. [Online; accessed
26-June-2017]. url: http://www.engineeringtoolbox.com/friction-
coefficients-d_778.html (Cited on p. 40).

[VAD13] Nikolaus Vahrenkamp, Tamim Asfour, and Rüdiger Dillmann. Robot placement
based on reachability inversion. In Robotics and automation (icra), 2013 ieee
international conference on. IEEE, 2013, pages 1970–1975 (Cited on pp. 2, 13,
14).

[Wika] Wikipedia. Autonomous robot — Wikipedia, The Free Encyclopedia. [On-
line; accessed 04-July-2017]. url: https://en.wikipedia.org/wiki/
Autonomous_robot (Cited on p. 5).

[Wikb] Wikipedia. Curse of dimensionality — Wikipedia, The Free Encyclopedia.
[Online; accessed 04-July-2017]. url: https://en.wikipedia.org/wiki/
Curse_of_dimensionality (Cited on p. 57).

[Wikc] Wikipedia. Degrees of freedom (mechanics) — Wikipedia, The Free Encyclo-
pedia. [Online; accessed 04-July-2017]. url: https://en.wikipedia.org/
wiki/Degrees_of_freedom_(mechanics) (Cited on p. 57).

[Wikd] Wikipedia. Robot end effector — Wikipedia, The Free Encyclopedia. [Online;
accessed 04-July-2017]. url: https://en.wikipedia.org/wiki/Robot_
end_effector (Cited on p. 57).

[Yan+16a] Yiming Yang, Vladimir Ivan, Zhibin Li, Maurice Fallon, and Sethu Vijayaku-
mar. iDRM: Humanoid motion planning with realtime end-pose selection in
complex environments. In Proceedings of IEEE-RAS International Conference
on Humanoid Robots (Humanoids), 2016, pages 271–278 (Cited on pp. 2, 10,
15, 16, 18–20, 24, 34).

62

http://drake.mit.edu/
https://github.com/openhumanoids/
http://www.engineeringtoolbox.com/friction-coefficients-d_778.html
http://www.engineeringtoolbox.com/friction-coefficients-d_778.html
https://en.wikipedia.org/wiki/Autonomous_robot
https://en.wikipedia.org/wiki/Autonomous_robot
https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://en.wikipedia.org/wiki/Degrees_of_freedom_(mechanics)
https://en.wikipedia.org/wiki/Degrees_of_freedom_(mechanics)
https://en.wikipedia.org/wiki/Robot_end_effector
https://en.wikipedia.org/wiki/Robot_end_effector

REFERENCES

[Yan+16b] Yiming Yang, Vladimir Ivan, Wolfgang Merkt, and Sethu Vijayakumar. Scal-
ing Sampling-based Motion Planning to Humanoid Robots. Arxiv preprint
arxiv:1607.07470, 2016 (Cited on p. 29).

[Yan+17] Yiming Yang, Wolfgang Merkt, Henrique Ferrolho, Vladimir Ivan, and Sethu
Vijayakumar. Efficient Humanoid Motion Planning on Uneven Terrain Using
Paired Forward-Inverse Dynamic Reachability Maps. In IEEE Robotics and
Automation Letters (in press), 2017 (Cited on p. 3).

[Yos85] Tsuneo Yoshikawa. Manipulability of robotic mechanisms. The international
journal of robotics research, 4(2):3–9, 1985 (Cited on p. 14).

[ZBH07] Franziska Zacharias, Christoph Borst, and Gerd Hirzinger. Capturing robot
workspace structure: representing robot capabilities. In Proceedings of IEEE
IROS, 2007, pages 3229–3236 (Cited on pp. 2, 11–13).

63

	Front Page
	Abstract
	Acknowledgements
	Agradecimentos
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Goals
	1.4 Publications
	1.5 Document Structure

	2 Literature Review
	2.1 Motion Planning
	2.1.1 Common Concepts
	2.1.2 RRT
	2.1.3 RRT-Connect
	2.1.4 PRM
	2.1.5 Humanoid Motion Planning

	2.2 End-Pose Planning
	2.2.1 Reachability Map
	2.2.2 Inverse Reachability Map
	2.2.3 iDRM: inverse Dynamic Reachability Map

	2.3 Conclusion

	3 End-Pose Planning on Flat Surfaces at Different Heights
	3.1 Dynamic Reachability Maps
	3.1.1 Offline Pre-Processing
	3.1.2 Online Update

	3.2 Whole-Body Kinematic Split
	3.3 End-Pose Planning for Bi-manual Tasks on Uneven Terrain
	3.3.1 Constructions of DRM/iDRM for Humanoids
	3.3.2 End-Pose Planning
	3.3.3 Footstep and Motion Planning

	3.4 Evaluation
	3.4.1 Construction of Dynamic Reachability Maps
	3.4.2 End-Pose Planning Benchmarking Setup
	3.4.3 Simulation Benchmarking
	3.4.4 Hardware Experiments

	3.5 Summary

	4 Extending End-Pose Planning to Inclined Surfaces
	4.1 Robust Static Equilibrium
	4.1.1 Robust Static Equilibrium Applied to Whole-Body End-Poses
	4.1.2 Computing the Robustness of Lower-Body Samples

	4.2 Lower-Body DRM Construction
	4.2.1 Sampling Methodology
	4.2.2 Lower-Body Datasets Robustness

	4.3 End-Pose Planning on Inclined Terrain
	4.4 Evaluation
	4.4.1 End-Pose Planning Benchmarking Setup
	4.4.2 Simulation Benchmarking

	4.5 Summary

	5 Conclusion
	5.1 Overview
	5.2 Contributions
	5.3 Future Work
	5.3.1 Parallelisation
	5.3.2 Compression
	5.3.3 Selective Sampling Threshold
	5.3.4 "Extremely Robust" Lower-Body Samples

	Acronyms
	Glossary
	References

