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Resumo

O cancro da mama é o mais letal entre as mulheres. Estima-se que 520 mil mortes anuais sejam
causadas por esta doença. Por este motivo, programas de rastreio mamário foram implementados
em vários países, o que permitiu reduzir significativamente a taxa de mortalidade entre as mulheres
mais velhas, antecipando o diagnóstico. Contudo, o número de falsos negativos nestes programas
é ainda elevado.

Alguns autores sugeriram sistemas de diagnóstico assistido por computador (CAD) que, em
conjunto com os especialistas, permitem aumentar a precisão da decisão. Embora esteja demon-
strado que estes sistemas melhoram o diagnóstico, ainda são encontrados muitos falsos positivos.

O renovado interesse da comunidade científica em métodos de Deep Learning tem demon-
strado a sua eficácia em reconhecimento de imagens naturais. Relativamente a imagens médicas,
o estudo destes modelos é recente mas já demonstrou alguns bons resultados. Contudo, existem
diferenças significativas entre datasets de imagens naturais e médicas.

Neste trabalho, um sistema de detecção automática de lesões mamográficas é proposto no
contexto do cancro da mama. Para isso foram utilizadas redes convolucionais. Para lidar com
diferenças entre dados naturais e médicos três novas metodologias foram estudadas.

Primeiro foram testadas mudanças na arquitectura dos modelos, que reduzem o número de
parâmetros a optimizar, funcionando como uma estratégia de regularização. Estas alterações são
baseadas no conhecimento prévio de que lesões não têm orientação e é aplicada individualmente a
cada camada convolucional e a primeira camada densa dos modelos. Os ganhos em performance
obtidos são muito pequenos o que motiva um estudo mais detalhado deste método, em cenários
diferentes.

De seguida uma estratégia de Rank Learning é estudada como forma de aumentar o número
de dados disponível para treinar modelos convolucionais. Assim é imposta uma aprendizagem
baseada em diferenças entre casos positivos e negativos. Os resultados obtidos são semelhantes a
métodos de classificação convencionais, apesar de ser necessária mais memória durante o processo
de treino. Concluiu-se que esta estratégia pode ser utilizada como uma alternativa para datasets
onde existe desproporção entre o número de casos de cada classe.

Finalmente, uma estratégia Cascade é proposta. Neste caso são usados dois modelos, o
primeiro optimizado usando todos os casos de treino, enquanto o segundo apenas vê os casos
classificados como positivos pelo modelo anterior. Juntamente com o oversampling de casos pos-
itivos é possível desta forma criar modelos com um bias cada vez mais pequeno a favor da classe
minoritária. Esta estratégia revelou-se eficaz.

O sistema proposto tem uma performance ligeiramente inferior aos sistemas CAD tradicionais
(80% de lesões detectadas com 2 falsos positivos por imagem). Maior sensibilidade para lesões
malignas e pequeno custo computacional durante o teste são alguns aspectos positivos desta abor-
dagem ao problema. Formas de melhorar a performance do sistema são discutidas como trabalho
futuro.
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Abstract

Breast cancer is the most lethal form of cancer among women. It is estimated that 520 thousand
deaths are caused by this disease each year. Due to this, breast screening programs were put in
place. These have significantly reduced the mortality rate among older women, by early diagnosis.
However, the rate of false negative diagnosis is still high.

To help deal with this, some authors have suggested computer aided diagnosis systems, which
assist specialists increasing decision accuracy. Although these have been shown to improve diag-
nosis, these methods still deliver many false positives.

The recent surge of Deep Learning methods has shown how effective these can be in natural
image recognition tasks. The research in deep learning applied to medical image is recent and has
already yielded some positive results. However, several differences exist between natural images
datasets and medical ones.

In this work we propose a lesion detection scheme for mammographic images in the context
of breast cancer. We focus on the use of deep convolutional neural networks as detectors for
this problem. To deal with differences between natural and medical data we study three different
methodologies.

First, architectural changes are made to the model as a regularization strategy. For this, we use
the field knowledge that lesions do not have orientation, to design a version of the convolutional
layer with less parameters. We show that this technique can also be applied to the first dense layer
of the model. The gains from using this method are very small, motivating further experiments in
different settings to assess how well they are doing.

Second, a rank learning strategy is used to increase the amount of data available for training.
Conceptually, this works by forcing the model to learn differences between positive and negative
examples. The performance of this method was similar to conventional classification, although
it required more memory. This strategy can be seen as an alternative to train models in heavily
unbalanced data.

Third, a cascade approach was proposed. This learning strategy works by optimizing a se-
quence of two models, where the first learns with all initial data, while the second only sees true
positives and false positives from the previous model. By oversampling the minority class we
are able to create models sequentially less biased towards positives. This strategy proved very
effective.

The proposed scheme performed slightly worse than typical CAD systems (80% detection rate
at two false positives per image). Good aspects of the final model include increased sensitivity
towards malignant lesions and small computational cost when running for new images. We also
discuss future work that could be used to enhance system performance.

iii



iv



Agradecimentos

Este trabalho apenas foi possível com vários apoios, pelos quais estou eternamente grato.
À Universidade do Porto, à Faculdade de Engenharia e ao INESC TEC por me terem permitido

realizar este trabalho.
Aos meus orientadores Jaime dos Santos Cardoso e José Costa Pereira que foram fundamentais

para toda a aprendizagem conseguida ao longo do semestre.
Aos meus pais e irmãos, sempre presentes.
Aos meus amigos, António, Cafeses, Vítor, Vanessa e Jorge pelo apoio constante durante o

desenvolvimento deste trabalho.

Eduardo Meca Castro

v



vi



“It is not that the meaning cannot be explained. But there are certain meanings that are lost
forever the moment they are explained in words.”

Haruki Murakami, 1Q84
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Chapter 1

Introduction

1.1 Breast Cancer Worldwide

Breast cancer poses a massive health problem worldwide. Alone, it accounts for 15% of all cancer

deaths in females, being the most lethal in this group (Torre et al., 2015). It’s estimated that 1.7

million new cases and 520 thousand deaths happen every year. Less than one percent of cases are

developed by man (Breastcancer.org, 2017). The incidence of the disease is unevenly distributed

across countries of different development levels with westernized areas having an age-standardized

incidence rate of 74.1, more than two times superior to that of less developed areas. This disparity

is often attributed to lifestyle differences as women with less and later births and exposed to ex-

ogenous hormones (oral contraceptives and hormone replacement therapy) have a bigger risk of

developing breast cancer (Torre et al., 2015; Bray et al., 2004). Many countries in South Amer-

ica, Africa and Asia have seen an increase in incidence and mortality, often attributed to women

behavioral changes. This could indicate that the problem will become even more demanding as

developing countries transition culturally. In Portugal, breast cancer ranks second in terms of age-

standardized incidence, right after prostate cancer (men specific), with 85.6 and fourth in mortality

with 18.4. If we only account women, this is the most common and lethal form of cancer in our

country (World Health Organization, 2012).

In addition to its social impact among older women, there is also a big economic burden

associated with the disease. The mean allowed cost per patient in the United States is 80 715e,

for the year after diagnosis, and 20 822e for the second (Blumen et al., 2016). There are also

opportunity costs associated with loss of productivity, in the form of morbidity and mortality. In

fact, it is estimated that in the European Union, only 40% of cancer associated costs are related

with health-care. In the case of Portugal this number drops to nearly 25% with productivity loss

in the form of mortality taking more than half the total costs (Luengo-fernandez et al., 2008).

One of the forms of reducing the mortality of breast cancer is early diagnosis. The 5-year

survival rates for stage 0 or stage I detected cancers is nearly 100% . For stage II the number drops

to 93% (American Cancer Society, 2016). At these stages, the cancer is asymptomatic and so,

the only way to detect it is through screening the population with higher risk. For more advanced

1
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stages the survival rate is only 73% (III) and 22% (IV). This means that an early detection of the

disease could reduce its social impact among women and their families. In economic terms there

is also much to gain, as an early detection would decrease treatment and loss of productivity costs

(Blumen et al., 2016).

There is enough evidence today to say that screening mammography reduces the mortality rate

for women who are 40 years of age or older. Women in the 50 to 69 years age group, who are in

screening programs, had its mortality rate reduced 16% to 35%. For the group of 40 to 49 years

old, the reduction is between 15% and 20%. For younger women the benefit is much smaller, due

to lower incidence, faster tumor growth and harder diagnosis (Pisano et al., 2005). In the United

states, the cost of screening the Medicare Population is 1.08 billion, a little smaller than the total

cost of treatment of 1.36 billion. However, as argued previously, the gains of screening reduces the

costs of treatment and loss of productivity opportunity cost. More importantly, the social aspect

of reduced mortality, treatment years and quality of life is enough to justify the investment in

screening (Killelea et al., 2014).

In Portugal, mammography screening every 2 years is indicated for asymptomatic women with

more than 49 years. For women older than 69 years, this screening can alternatively be done every

3 years (Direção-Geral de Saúde, 2011).

1.2 Breast Cancer Physiology and X-ray Imaging

The breast is a very particular organ for three reasons: 1) its primary function is nutritional support

to the infant, 2) its structure changes in adulthood and 3) it has a cultural, social and personal

significance. These factors influence the diagnosis and treatment of breast diseases (Drake et al.,

2009). Anatomically the breast is constituted mostly by adipose tissue, with epithelial structures,

ducts and lobules, linked to the nutritional function.

Breast carcinomas are characterized by an excessive proliferation of epithelial cells confined

to the ducts and lobules. This proliferation, in most cases, creates lesions which are detectable

by mammography. Without this imaging technology, the chance of early detection is only 5%. In

some rare cases, cancer cells are detached from each other, thus they do not cause lesions and the

mammogram exam looks normal (Drake et al., 2009).

If not treated in an early stage, the disease often evolves into invasive carcinoma, by spreading

to nearby tissues. From this point on, the prognostic becomes worse, with the tumor size and

spreading radius being the main factors for prognostic.

Mammography is the most common screening method in asymptomatic woman. In this exam,

the patient’s breast is exposed to a short X-ray pulse which travels through the breast, and is then

captured by a detector. Then, an image is produced based on the energy absorbed by each section.

Adipose tissue is seen as dark (radio transparent) while epithelial tissue, including lesions, is

normally white. The common identifiable changes in breast structure are divided in three groups:

masses, microcalcifications and architectural distortions. All of these can be either benign or

malignant, depending on multiple factors (Hela et al., 2013).
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In the vast majority of cases, mammography exams consist of two views of the breast, one

craniocaudal (CC) and one mediolateral oblique (MLO) with vertical and lateral orientations, re-

spectively. Rarely, patients are screened using different views to cope with their characteristics

(Radswiki, 2016). Fig. 1.1 shows the same breast watched from MLO and CC views. The red

mark identifies the same mass.

(a) MLO view (b) CC view

Figure 1.1: Example of two views from the same exam, done to the left breast. Red regions denote
the same mass. Image taken from CBIS-DDSM dataset (Lee et al., 2016).

1.3 Improvement of Diagnosis using CAD Systems

The interpretation of exams by specialists is far from ideal. Using standard mammography, 6-20

false positives are diagnosed for each true positive (Svahn et al., 2015). Each false diagnose leaves

the patient anxious and requires further unnecessary exams (Brennan and Houssami, 2016). The

percentage of exams with a positive result, which are then confirmed with breast cancer by another

more precise method, is called recall. Systems with higher recalls would have an high social and

economic impact by reducing the number of exams healthy patients are submitted to.

Also, false negatives have nefarious implications for patients, by delaying diagnosis, which,

as seen, diminishes survival rates. Depending on the author, the estimation of cases can be very

different. HD et al. (2016) argued this number is around 1-1.5 per thousand exams. Dromain

et al. (2013) points to 10% to 15% of the cases. Either way, a screening system should be able to
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approximate this number as closer to zero as possible, even if leads to poorer recall rates. The rate

of breast cancers detected is called sensitivity.

To address these issues, the scientific community has proposed many algorithms that could,

in conjunction with specialists, improve diagnosis by increasing accuracy in interpretation (Hela

et al., 2013). Some of these computer-aided detection (CAD) methods currently being used, usu-

ally focus on finding microcalcifications and masses then analyzed by a specialist. It is still un-

known whether the use of CAD methods yields better results than traditional diagnosis (Azavedo

et al., 2012), as they return a high number of false positives, which diminishes specialists’ confi-

dence in the system.

The development of more robust algorithms, designed specifically to address the problem of

low recall rate, could have a huge impact by reducing the huge workload of screening, increasing

survival rates and decreasing health care costs.

1.4 Deep Learning

Deep learning is a group of algorithms that is able to model patterns directly from raw data.

This concept is different from many other machine learning methods, which require features to

be extracted first. As such, they can be used even in scenarios where we have very small field

knowledge about the problem.

Although some works already used these algorithms in the 1990s, in the last few years we

have seen very impressive results. Some authors point to the fact that, due to the existence of more

available data, as well as computational power, these methods have been able to achieve human or

super human performance in many fields. A recent well known example of this, is the Alpha Go

a computer program that bested Lee Sedol, one of the best Go players in the world (DeepMind,

2017).

One of the main arguments, that algorithms like this could perform so well on hard tasks is the

fact that, with enough computational power and data, these can receive much more training than

specialists can in their whole lives.

Authors have explored deep learning in the context of automatic diagnosis. However, several

problems arise when working with medical data. In most datasets, the amount of patients is too

small, due to legal and ethical restrictions. Another common problem is the fact that, in the case

of mammograms, images contain very subtle important details, which increase the difficulty of

recognition tasks.

Researchers have tried to address these issues, in order to create robust CAD systems, using

deep learning methods. If the results obtained in other fields could be replicated for medical

imaging, we would see immediate applications, that would improve our health care systems, while

reducing costs and specialists workload.
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1.5 Objectives

The main goal of this work is to develop an automatic system for breast lesions detection in mam-

mography images, based on a deep learning approach. For this, we focus on Convolutional Neural

Networks, a particular type of deep models, especially well suited to deal with image data. Deep

learning models have shown high performances in natural images. However, their application di-

rectly to medical datasets does not yield the same results, due to significant differences between

natural and medical data.

To address these issues, we propose and study the impact of architectural changes and alterna-

tive learning strategies. Specifically, we try to solve the unbalance between healthy and unhealthy

tissue in mammograms and the small number of medical images.

1.6 Contributions

In this work, we show Convolutional Neural Networks can be used to detect lesions in mammo-

grams, in the context of breast cancer. We propose a system for this problem based on relatively

small models, easy to train. These analyze a local region only, instead of the whole image, which

allows to keep some detail information. The system is able to detect 80% of lesions at 2 false pos-

itives per image. Important aspects of this method include a small running time for new images

and increased sensitivity towards malignant lesions.

Additionally, we study the impact of new methodologies to deal with the problems of low

amount of data and unbalance between healthy and unhealthy tissue. First, the introduction of

rotated filters in the network architecture as a regularization method is tested. This technique is

inspired by the field knowledge that lesions do not have orientation. It works by reducing the

number of optimizable parameters in a model. A very small gain in performance was obtained,

for some configurations, which motivates additional experiments in different settings.

Second, a rank learning strategy was tested to deal with the low number of unhealthy regions in

the dataset. This technique focuses on learning the difference between positive and negative cases.

Similar performance to standard classification was obtained, with the disadvantage of requiring

more GPU memory for optimization. We show the model fits training data better than validation

in a very early stage of optimization. Although this method was not helpful as a regularization, it

can serve as an alternative in unbalanced datasets.

Finally, a cascade approach was proposed. This consisted in learning two sequential models

where the first trains on the initial data and the second only "sees" the previously classified pos-

itives by the first model. Essentially, at each stage a big number of negatives is discarded, while

keeping as much positives as possible. This strategy was effective at increasing performance,

when compared to a single model system.

All this experimental work was tested in the recent publicly available CBIS-DDSM dataset,

and the results obtained can be used as a baseline performance for future methods tested in the

same data.



6 Introduction

1.7 Dissertation structure

This document is organized in the following way. The next chapter summarizes the past research

and current state-of-the-art in the fields of breast cancer CAD systems and deep learning. In chap-

ter 3 and 4, a formal description of Convolutional Neural Networks and other image processing

methods is presented. Chapter 5 gives a formal description of the main contributions of this work.

In chapter 6 the experiments performed are explained, results are presented and discussed. Finally,

we conclude the main ideas about the work.



Chapter 2

Previous work

In this chapter, important previous work is exposed, divided in three sections. First, an introduction

to conventional CAD systems is done. We do not attempt to do an exhaustive description of

the methodology, but to characterize the variety of strategies used and present some of the most

common. In the second section, we portray an historical perspective on Convolutional Neural

Networks, the deep models used in this work. This allows a more robust understanding of what

were the conditions that led to development of these algorithms and the challenges ahead. A more

formal description of the methods is shown on the next chapter. Finally, we review other authors’

work on deep learning methods applied to mammography.

2.1 Automatic Lesion Detection in Mammograms

Automatic image analysis of the mammograms started in the 1960s. One example is the work of

Winsberg et al. (1967). Authors utilized simple methods to compare images from both breasts,

with the objective of finding lesions. However, the minimal resources in terms of computational

power, data and imaging techniques, limited the chances of success. Later, in 1990s, more com-

plex approaches followed. Brzakovic et al. (1990) used detection methods, based on thresholding

and fuzzy pyramid linking, to identify high intensity homogeneous regions in mammograms, that

could be related to cancer. After this, Bayes classification was performed using area, shape and

edge features, to discriminate between benign, malignant and non lesions. What is important about

this early work is that the main steps of most CAD systems were already shown: 1) detection of

suspicious regions; 2) characterization of each region and 3) a classification stage, which predicts

for each region a probability of malignancy. Works like this paved the way for interesting de-

velopments in CAD systems, which is a globally increasing trend (Giger et al., 2008). In terms

of nomenclature, frameworks like this are refereed as CADx, while CADe is used to describe

algorithms which only perform detection.

As seen in the introduction, we are not sure about the extent to which false negatives are a

problem. However, when these cases are analyzed retrospectively, signs of malignancy can be

identified in the majority of missed cases. This has been attributed to many factors: 1) breast

7
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Figure 2.1: Main steps in mammography CAD systems.

complexity, 2) workload, 3) low probability of cancer and 4) subtleties in the image. All of these

indicate that a computer assisting radiologists could decrease the number of false negatives, due

to their consistent output for the same input and the ability to keep attention. Nowadays, the aim

of developing CAD software is to offer objective evidence and increase radiologists confidence in

the diagnosis (Giger et al., 2008).

In mammography, when it comes to digital image analysis there are two options: Screen-Film

and Full-Field Digital Mammography (FFDM). In the first case, images are physically obtained

from the X-ray machine, and need to be digitalized. This leads to lower signal-to-noise ratio,

hindering algorithms’ performance. Additionally, it is more costly and less practical, as results are

not immediately obtained. With the introduction of FFDM, CAD systems can perform better and

output a result immediately on the screen (Dromain et al., 2013).

There are many image analysis techniques used in mammography. However, most CAD sys-

tem usually carry out the same steps. These are preprocessing, detection, segmentation, character-

ization and classification. Fig. 2.1 shows a diagram which illustrates this. As such, in this section

we will individually address each of these.

2.1.1 Preprocessing

Preprocessing, aims at enhancing certain structures in images, to increase the chance of success

of following algorithms. Common tasks at this stage include a segmentation of the breast and

pectoral muscle, contrast enhancement or image denoising.

Breast segmentation is a simple task. Thresholding and morphological operations usually

perform well. This allows for the following algorithms to look for lesions only inside the breast.

It also helps to remove some label artifacts found on screen-film mammography (Pereira et al.,

2014; Armen Sahakyan, 2000). Morphological operations consist in non-linear filtering of image

regions and are explained in detail in chapter 4. Other methodologies exist with good results also

(Kus and Karagoz, 2012).

A harder task is to obtain the pectoral muscle region. Normally, this region in the breast has

a high intensity and so its boundary can easily be mistaken with lesions. Some works use this
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information to design intensity based approaches. Saltanat et al. (2010) first performs morpholog-

ical operations, to reduce image detail, and then maps pixel intensity into an exponential scale.

A threshold is selected using an iterative algorithm. After this, regions brighter than this param-

eter are considered pectoral muscle. The muscle’s boundary with the breast can be approximated

well by a straight line, and so, other authors, like Yam et al. (2001), base their approach on this.

Through linear filtering, they compute the image’s gradient. After this, a Hough transform is used.

This operation maps each point with coordinates x,y to a sinusoidal curve in the new space r,θ .

Sinusoids intercept at r,θ if the points that originated those curves, can be joined by a straight line

with distance r to the origin and slope perpendicular to θ . Therefore we can deduce the position of

straight lines, in the original image, by selecting local maximum values in the Hough space. Au-

thors used this to obtain the pectoral muscle boundary with the breast. Similar approaches were

followed by other authors as well (Kwok et al., 2004). Cardoso et al. (2010) also compute the

gradient to assist in the pectoral detection. However, instead of detecting a straight line, authors

start by mapping the image to polar coordinates. Then a graph is defined, where each pixel is

a node connected to its neighbors by arcs. Each arc has a weight based on the gradient in that

region. Segmentation is obtained by searching for the shortest path in that graph and transforming

the image back into cartesian coordinates. This segmentation task has been reviewed by Ganesan

et al. (2013). He concludes that no particular method seems to work perfectly for all datasets.

Contrast enhancement is also common, in the early stages of CAD systems. The idea is to

increase detail in the mammogram. Histogram equalization is a well known method for this.

The main idea is to map pixel intensities to a uniform distribution. As such, most frequent pixel

values will be spread out into a bigger range, effectively increasing contrast in those locations. An

extension of this method is CLAHE (Pizer et al., 1987), used very frequently in medical images.

Instead of adjusting pixel values globally, local histograms are computed in a square grid. For a

point, equalization is done similarly to the previous method, but interpolating between the four

closest histograms, instead of one global pixel distribution. Additionally, to avoid increasing noise

in relatively homogeneous regions, the algorithm establishes a maximum number of pixels that

can have the same intensity and redistributes those uniformly, for each local histogram.

For image denoising, some authors use linear or non-linear filtering operations. For instance,

Anitha et al. (2017) used a median filter of size 3×3 to remove digitalization noise from mammo-

grams. This works by screening all image pixels, and assigning each the median value in a 3×3

neighborhood. Another very common method for contrast enhancement and denoising in image

processing applications is the discrete wavelet transform. This method decomposes an input sig-

nal in two: 1) approximation, which keeps low frequency components and 2) detail, which keeps

the higher frequencies. To obtain these two signals, a wavelet function, with special properties,

is used. This allows following algorithms to perform operations on these components separately.

The input image can be reconstructed after processing the approximation and detail. Gorgel et al.

(2010) used this method to apply different enhancement algorithms to each sub image. For the

approximation coefficients, authors performed homomorphic filtering to emphasize low contrast

suspicious regions. For the detail, author modeled the noise statistically as a normal distribution,
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while important edges were considered to be distributed according to a Laplacian probability dis-

tribution. Using Bayes theorem, authors reduce the values of the coefficients, according to their

probability of being noise. After enhancement the image is reconstructed.

2.1.2 Detection and Segmentation

After image enhancement authors focus on detection and segmentation of lesions. Although, a

CADe system only needs to point lesion locations to the specialist, information about the con-

tour can be used to discard false positives or perform pre-classification. In the case of automatic

diagnosis systems, limiting the region of interest is vital for a good characterization.

Region growing strategies are used by some authors for this task. The main idea is to start

with a seed point that will grow to neighboring pixels, if these are sufficiently similar. When

growing stops, the final region is considered a mass. In the case of Yousuf and Mohammed (2013),

a specialist selects the seed in the center of a suspected lesion. Regions around this pixel are

aggregated, if they have similar intensity and local contrast. Although in this case a specialist is

required, some methods automatically detect these points. For instance, a difference of Gaussian

filter could be used to this end (Catarious et al., 2006). As the name says, the coefficients of this

operator are given by the subtraction of two Gaussian functions centered in the same point but

with different standard deviations. This filter highlights bright, circular regions and so, it can be

used to detect masses. One drawback is the fact that it has a fixed radius, while mammographic

lesions vary in size. This can be addressed by analyzing the image at different resolutions.

Another common strategy for segmentation in medical images is active contours. For instance,

Yuan et al. (2007) used this strategy to obtain lesion segmentation in mammograms. The proposed

model works, by minimizing an energy function, which measures the intensity and homogeneity

of inside and outside regions of an initial imperfect segmentation.

Some authors have proposed feature extraction followed by classification for lesion detection.

In this case, to determine if a region belongs to a lesion or not, a numerical characterization is done,

based on selected feature extractors, followed by a classifier. In some cases this methodology is

more robust, eliminating false positives. In (Karssemeijer and te Brake, 1996) authors utilize the

fact that malignant lesions often present spiculation patterns at their edges, to design two numerical

features. These are then combined using classifiers to obtain the "suspiciousness" level of each

point.

These are only some of the methods that could be used to this end. Authors usually focus on

particular geometrical, intensity or edge features to design algorithms able to capture that infor-

mation. After this, an heuristic algorithm is designed to translate that information to a detection

and segmentation, or, in some cases, classification is done using machine learning methods.

2.1.3 Feature extraction

With segmented regions, authors have explored a wide variety of feature descriptors to charac-

terize lesions. These consist in numerical values that quantify a certain property of an object or
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region in an image. Sometimes that property is too abstract to have a direct "meaning". The most

basic ones consist of area, perimeter and mean intensity. Some authors try to capture signs of

malignancy, designing handcrafted features that resemble the medical description of what is con-

sidered malignant. As seen before this is the case of Karssemeijer and te Brake (1996), who tried

to capture spiculation patterns. Contrast features also fall into this category, as often radiologists

mention a well separated lesion, from the rest of the tissue, is a sign of malignancy (Kooi et al.,

2017b). te Brake et al. (2000) used contrast and intensity features to capture this information.

These can be measured in a variety of ways, but commonly mean intensities are computed for

the inside and outside region. The contrast is given by subtracting these values. Geometrical and

edge features are also important. The ones proposed by Peura and Iivarinen (1997), which include

eccentricity and compactness are often used.

Another common approach is to use texture to capture information. This property of some

images implies variation at lower scales and repetition at higher. Although texture is generally

hard to describe by specialists, malignant and benign masses have different patterns. Further,

these methods work well in many applications, capturing a wide range of information. One of

the most used texture feature extraction methods is the gray-level co-occurrence matrix (GLCM).

Each element of the matrix is obtained by measuring the number of times elements separated by an

horizontal and vertical offset appear with fixed intensities. After this, features like mean, contrast,

energy and variance can be computed using matrix coefficients. This is effectively a statistical

approach to texture. Another common example are local binary patterns (LBP). Each of these

encode a specific intensity relation of a point and its neighbors. After counting, we can build an

histogram and use each bin as a numerical feature. Some works have compared multiple texture

methods in this particular application. (Arevalo et al., 2015; Kim et al., 2013)

2.1.4 Classification

After obtaining a good feature description of each region, machine learning methods are often

used to model what patterns in data are related to malignancy. Normally, this is done by using

classification algorithms, which work by optimizing one predefined criterion based on a training

algorithm and the available data. Here two of the most common will be explained, Support Vector

Machines (SVM) and Random Forests (RF).

The concept of feature space is important for the following paragraphs. This consists in a

multi dimentional space, where each numerical feature is an axis. As such, the characterization of

a lesion can now be considered a point in this space. Classifiers work by defining boundaries, that

separate samples from different classes, in this case malignant and benign. As such, after training

one of these models, we obtain two separate space regions. For a new lesion, we first characterize

it, using the methods above, and then verify in which region that data point lies.

The SVM (Boser et al., 1992; Cortes and Vapnik, 1995) is a very well known binary classifier.

It separates the feature space trough an hyperplane. This boundary is obtained by maximizing

the margin between the most difficult points of each class, the ones that lay near this border.

These points are called support vectors. The hyperplane is completely defined by a vector with
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(a) Linear SVM (b) RBF SVM (c) Decision Tree (d) Random Forest

Figure 2.2: Examples of classifiers and how they divide the feature space. Images were obtained
using sk-learn (scikit-learn.org, 2017).

its orientation and the distance to the origin. These parameters are optimized using quadratic

programming algorithms or by gradient descent based methods. One interesting property of SVMs

is that they can be applied to non-linear data by using the kernel trick. This yields more interesting

divisions of the feature space, increasing accuracy in non linearly separable datasets. Many works

have used SVM for mass classification (Fusco et al., 2016; Kim et al., 2013; Lesniak et al., 2011).

RF (Ho, 1998) is another classifier frequently used, based on simpler units called decision

trees. Each of these, divides the space iteratively with binary decisions based on one feature only.

To train these algorithms, binary decisions are learned one at a time by maximizing one criterion,

usually the gini index or information gain. The combination and averaging of many decision trees

constitutes a RF classifier, used commonly in literature (Vibha et al., 2006).

Representations of how these methods separate the feature space can be found in fig. 2.2.

2.2 Convolutional Neural Networks in Image Recognition

As previously seen, much of the progress done in automatic medical image analysis is based

on the development of feature extraction procedures, either by carefully designing algorithms

that resemble the way specialist diagnose, or by utilizing typical computer vision features, like

texture descriptors. An alternative way to design diagnosis systems is based on representation

learning, a field in machine learning which deals with raw data directly. The key idea is to learn a

feature representation that is useful to the task at hand, directly from data. This approach requires

significantly more training examples, but has two major advantages: solutions are not specific to an

application, and the algorithms are not biased by the “human way” of diagnosing. Deep learning

methods work by learning sequential representations of data, using neural networks. Essentially,

at the first level, inputs are mapped into a new feature description. The second level utilizes this

description to compute a new one. This process is repeated until the last level is reached. With

this, a sequence of functions is generated which can extract increasingly abstract features, and

maps data to output. These functions depend on parameters, and, due to this, we can find specific

values for these variables, that are good solutions for a particular problem (Lecun et al., 2015b).

The versatile nature of these methods allows them to model many different types of problems.

For instance, the same algorithm can be used to distinguish between malignant and benign masses
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(a) Diagram of Gradient Descent Algorithm (b) Examples of MNIST dataset

Figure 2.3

in mammography images or handwritten digits, depending on the raw data fed to it. Normally,

these functions are called layers which are stacked to form a deep learning model.

The process of discovering a good set of parameters is called training and is usually done

using gradient descent algorithms. Conceptually, this is a minimization problem, where we first

define a loss function based on the difference between the model’s output and the value we expect

it to predict. Then, for the training data we compute the gradient of that loss with respect to the

parameters, and update these in the opposite direction. This is done iteratively until a good solution

is obtained. Fig. 2.3a shows a diagram of how the parameters (θ ) and loss function (L(θ)) evolve

throughout this process.

One very important discovery for the development of multi-layer models was that the parame-

ters can be optimized using gradient descent, as long as each module is a relatively smooth function

of its inputs and parameters (Lecun et al., 2015b). Specifically, Rumelhart et al. (1986) showed

that gradients for each layer could be computed by backpropagation, a process based on the chain

rule of derivatives, later explained in chapter 3. Depending on the concrete algorithm, gradients

can be computed on the whole data, on subset of examples or on a single example (Lecun et al.,

1998b).

Generally, there are two types of learning, supervised and unsupervised. While, in the former,

data has associated labels, which the model is trained to output, in unsupervised learning only

unlabeled data is used. Broadly, while the first forces models to learn label discriminative features,

the second favors complete representations of the input data. Sometimes, unsupervised learning

is used to obtain a good set of initial values for parameters, then used at the start of supervised

learning. This process of using a defined, instead of random, initialization of parameters is called

fine-tunning.

Deep learning has achieved incredible success in many different tasks, such as, speech recog-

nition (Mikolov et al., 2011), image classification or language translation (Jean et al., 2014). As

pointed out by Lecun et al. (2015b), deep learning methods have thrived in traditionally difficult

problems for the artificial intelligence community. A particular type of these methods is Convolu-
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Figure 2.4: One of the first major architectures, AlexNet. Taken from Krizhevsky et al. (2012).

tional Neural Networks (ConvNets), which are commonly used for image and video recognition,

and explained in detail in section 3.

Briefly, these can be defined as computational neural networks with special constraints, such as

heavy parameter restrictions and organized spatial layers, which make models easier to optimize

and also increase their ability to generalize to new data. Importantly, these constraints do not

affect its representation ability, when learning compositional hierarchies, which are present in

many natural signals (Lecun et al., 2015b). Due to the above mentioned properties, the early

layers effectively compute convolutions between the input signal and a set of learned filters, and

thus, the name Convolutional Neural Networks.

2.2.1 Early Works

The early works that laid ground for ConvNets were inspired in the visual nervous system model

proposed by Hubel and Wiesel (1977). In particular, the neocognitron, designed by Fukushima

(1980), uses many biological concepts to explain the operations performed by this network. In this

work, the spatial organization properties of ConvNets were already being used. Notably, much of

our understanding and discussion in this field is still based on analogies with the human visual

system.

Although some authors like Zhang et al. (1994); Vaillant (1994) had already published re-

sults using these models before, the standard first reference to ConvNets is normally Lecun et al.

(1998a). In this paper, the LeNet-5 model is proposed in the context of handwritten digit recog-

nition on MNIST dataset (LeCun et al., 1998) (Fig.2.3b). Its deep learning architecture contained

two convolutional layers with a number of filters which, compared to today’s models, is extremely

small. Many of concepts discussed in this paper are still relevant today. In particular, Lecun et al.

(1998a) identified the high amount of data necessary for deep models, when compared to tradi-

tional algorithms. To address this, he introduced distortions in the training set, artificially creating

more data. Although the artificial examples are not ideal, in the sense that they are correlated

with the original, this data augmentation strategy proved efficient. The authors also point out the

advantages of these methods regarding their non-specificity and little field knowledge required.
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They obtained a final test-error of 0.7% by combining the prediction of 3 of these models, opti-

mized on different data, using a boosting strategy. This consisted in selecting which images to

use for training each model, depending on how well the previously optimized models performed

on them. Almost 20 years later, the current state-of-the-art on the same dataset is 0.21% achieved

with modern regularization algorithms and ConvNets with much more capacity (Lian et al., 2016).

2.2.2 Successful Approaches in the 2000s

During the first decade of the 21st century, ConvNets were still far away from the mainstream

position they occupy today in the computer vision community. Still, many important results were

obtained by adapting and applying these methods to specific problems. For instance, Garcia and

Delakis (2002) proposed a system for face detection based on a small sized ConvNet. They col-

lected 2146 highly variable face areas from multiple sources, on the Internet. Then, they performed

data augmentation, by rotating images within the range of [−30o,+30o], and by reducing contrast.

Note that, the type of distortions introduced should resemble the variations in unseen data. Other-

wise, training becomes more difficult, without increased generalization. After the learning process

was completed, new images were tested, to measure how well the model performed on unseen data.

To do this, they computed the output of all possible fixed size areas in an image, at multiple scales.

All zones classified as positive were considered final face locations. Importantly, they do this in an

efficient way, by computing the output of each layer for the whole image, instead of one location

at a time. This allowed their system to screen new images at a rate of 4 frames per second.

Another example of a successful application of ConvNets was proposed by Ning et al. (2005).

They employed a model with three convolutional layers, integrated in a bigger framework used for

segmentation of cells and nuclei of developing embryos, in microscopic videos. In this particular

problem, the development of a loss function related to segmentation accuracy, that could be easily

minimized was not trivial. Instead, they used the ConvNet for initial pixel-wise supervised classi-

fication, to distinguish between five categories: cell wall, cytoplasm, nucleus membrane, nucleus

and outside medium, based on the surrounding region. For a new image, the network is applied

to all possible regions, resulting in a label map, where each point is classified as one of the five

categories. Then, à priori knowledge of the spatial relation between cellular structures is used,

to refine that classification. Finally, this result is matched to an elastic model. The model took

18h to train in two CPUs, showing how computationally expensive these methods can be. One

of the important aspects of this work is the integration of deep learning algorithms with à priori

knowledge about the problem to enhance results.

Similar to Ning et al. (2005), Osadchy et al. (2007) adapt the problem of typical supervised

classification to their specific application. But instead of coupling it with other methods, authors

change the model and loss function to address face detection and incorporate it with pose estima-

tion. As previously seen, each layer maps an input to a new feature description. These descriptions

can be thought of as a point in a multidimensional space, where each axis is a feature. Follow-

ing this idea, they first define a feature space for pose, based on the pitch, yaw and row angles

of a persons, face in relation to the camera. For instance, the yaw can take values in the range
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[−90o,+90o]. Authors map these values into a 3 dimensional space, where valid yaws lie on a

semi circle. The combination of the three angles gives a 9 dimensional space, where valid poses

lie on a specific region. Then, through the use of a carefully designed loss function, they per-

form supervised classification, mapping images with faces to that space, in the specific point of

the respective pose. Images without a face are mapped to points, away from the region of valid

poses. Their results showed that the integration of pose and face information yielded better results

for the two tasks than supervised classification for each individually. Again, the computationally

expensive aspect of the algorithms is shown, by the 26h training process in one CPU. However,

after this, the model can run relatively quickly, at 5 frames per second.

Differently, Turaga et al. (2010) used convolutional neural networks for 3D images segmen-

tation in volumetric electron microscopy. Their model is used to compute affinity graphs, where

each node has an affinity value to each of its neighbors. This is done in a supervised manner, by

labelling affinity of 1 to adjacent pixels of the same region, and 0 for different regions. Similarly to

the previous work, the model does not output a label for each image. Instead, it outputs a set of 3D

affinity graphs, one for each dimension, x,y,z. These are then partitioned using other algorithms

to obtain a good segmentation. A particularly interesting aspect of this work was that the model

used is very unusual compared to the ones seen previously. First it did not contain any pooling

layers. These operations are used to reduce the spatial resolution of the feature maps from one

layer to next, which provide interesting properties to models. They also avoided using dense lay-

ers, so that the model kept its spatial structure. These concepts will be explained later, in chapter

3. Essentially, instead of learning only new parameters, to suit this particular problem, authors

introduced drastic changes in the layers organization, often called the architecture of the model.

Through these, the algorithm becomes more specific to the problem of segmentation, based on

local information only.

2.2.3 Advances in Optimization

Until now, all described models had a relatively small number of layers and took hours or even

days to train. This was an impediment to the application of these algorithms to new contexts,

which required bigger input images or had huge amounts of raw data available. In parallel, inter-

esting advances were being made in terms of better hardware and training algorithms. Particularly,

some studies at that time were developing new ways to compute machine learning optimization

methods, by taking advantage of the fact that computation could be parallelized using general

purpose graphical processing units (GPUs).

Steinkraus et al. (2005) introduced this concept by speeding up the training and inference pro-

cesses of a two layer neural network. Authors discuss that developing and using machine learning

specific hardware can be costly. Additionally, users could lack support for these processors and

they could become obsolete after a few years. They show that GPU can be a good solution when

training machine learning algorithms due to its parallelization capabilities. Further, these units

have become increasingly more potent and available in the market. In particular, neural networks
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are very well suited for GPU implementation due to low memory access requirements. The mem-

ory access still plays a huge role in today’s hardware. For ConvNets all parameters, data and

intermediate layer results for one training iteration, need to be stored in the GPU for fast imple-

mentations. As such, for bigger models, higher capacity processors are needed. In many cases,

authors need to make compromises in terms of model architecture to cope with hardware limita-

tions.

At the same time, better algorithms were developed to make the training process of deep

models more tractable. Hinton et al. (2006) proposed a greedy learning method for deep belief

networks, another type of deep model, which learns a probabilistic representation of the inputs.

Authors trained the model in an unsupervised way, one layer at a time. This was done by restricting

non-trained parameters to have the same value as the ones being trained. After one layer finished

trained, they froze its parameters and performed the same operation on the next layer. After

completing unsupervised training, they show the model could be used for classification, by training

a classifier on top, in a supervised way. They achieve an error of 1.25% on MNIST dataset. Bengio

et al. (2007) proposed another unsupervised learning strategy based on stacking auto-encoders.

Instead of tying up the parameters, authors train the first layer to map the input to a new feature

space and reconstruct it again. For the second the same is done, but using as input the first layer

representation. This is done iteratively, until the network is finished. This knowledge was extended

to convolutional models by Masci et al. (2011), which obtained better results with this strategy than

by training in a traditional supervised manner. On MNIST particularly, they were able to lower

the test-error to 0.71%.

One of the first fast GPU implementations of convolutional neural networks was done by

Cireşan et al. (2011). They trained a model in a purely supervised way, achieving the best results

obtained until date in three object recognition datasets. In particular they improved on MNIST

decreasing the error rate to 0.35%. This proved the high performance of deep ConvNets when

compared to hand crafted features, provided that enough data and computational power is avail-

able. Further, on this dataset, results showed that a better performance could be obtained using

bigger models both in the number of layers (deeper), and the number of parameters in each layer

(wider). Their training time was 10 to 60 times smaller on a GPU implementation when compared

to the CPU’s.

The base work that enabled the fast development of the last six years was done in 2011. From

this point on, the use of deep learning algorithms exploded, becoming a major topic of research

with many potential applications in the real world.

2.2.4 ImageNet Large Scale Visual Recognition Challenge

Perhaps the most well known dataset for benchmarking models in image recognition tasks, Ima-

geNet (Deng et al., 2009) played a huge role and still occupies a privileged position when it comes

to object classification and detection. Currently, it contains over 14 million images labelled in

more than 20 thousand classes, organized in a tree like structure. The huge labelling effort was

crucial to the revolution that took place in the deep learning field. Organized once a year, the



18 Previous work

Figure 2.5: ILSVRC challenge over the years. In blue we can see the test error of the best entry of
each year. At green are the number of entries using GPU implementations (no data for 2015 and
2016). (NVIDIA, 2015)

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (Russakovsky et al., 2015) was

the perfect stage for determining which architectures and training strategies performed best. In

Fig. 2.5 we can see the increasingly better results in the challenge, as well as the improvement

brought by the use of ConvNets. In the following paragraphs an overview of this development in

the context of ILSVRC is presented. Some of the concepts discussed here will be explained in

detail in chapter 3.

In 2012, Krizhevsky et al. (2012) proposed AlexNet, a deep convolutional neural network.

Their performance was astonishing, winning the competition by a large margin. This work made

deep learning methods a strong reference in the computer vision community, becoming one of if

not the most influential paper in the field. Although the proposed model’s architecture was rela-

tively simple when compared to modern state of the art large scale models, authors utilized many

important methods which are still relevant today. Specifically, they emphasize the use ReLU, a

non-linear function, that, when incorporated in the model’s architecture, increases training speed.

They also used dropout layers, with the objective of increasing the model’s generalization abil-

ity. The proposed architecture was unusual, as it had two separate streams of information, which

allowed the use of a fast implementation, based on two GPUs. Importantly, and although a high

number of examples is present in ImageNet, they augmented the dataset by cropping different im-

age regions and flipping them horizontally. In the context of the competition, each model predicts

five classes for each image, and if one of them is right, that classification is counted as correct. By

this metric, they achieve an error of 15.3%, about 10% lower than the competition.

In the following year, Zeiler and Fergus (2013) were the winners, using a very similar model,

with minor modifications. Specifically, they noticed AlexNet was discarding too much information

in the first layers, due to aggressive pooling operations. As seen previously, these operations

reduce the spatial resolution from one layer to the next. The factor of that reduction is given

by the stride parameter, which is predefined in the model architecture. Zeiler and Fergus (2013)
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reduced that value while also increasing the number of filters in each convolutional layer, making

the network wider. Their implementation used one GPU only and achieved a score of 11.2%.

In 2014, the first place was achieved by Szegedy et al. (2015), which proposed the Inception

model. This work introduced many new ideas in the deep learning field. The model contained

near a hundred layers stacked in an unusual way. Authors propose the inception module, which

divides the input in 4 parallel streams of information, each subjected to different operations, and

integrates them after. These units were stacked on top of each other, to reduce the top-5 error on

the competition to 6.7%.

Some key ideas to the success of this architecture were the emphasis on convolutional layers,

the introduction of 1× 1 filters to reduce computational requirements, and the introduction of

classifiers in the middle of the network to assist optimization. Although the Inception model was

extremely more complex than AlexNet, and required more memory, the number of optimizable

parameters was 12× smaller. This, as discussed later in this document, as to do with the adequate

use of convolutional layers, which have much less parameters than dense ones. Training took a

week using a few high-end GPUs.

Using some ideas of the previous year, ResNet (He et al., 2015) was the best model in 2015.

Similar to Szegedy et al. (2015), authors proposed a new module, the residual block, and stacked

many of these to form the model. Different to conventional architectures, where a feature repre-

sentation is used by the following layer, the residual block sums this representation to the input

of the layer. The key difference is that layers are no longer representing the input, but intro-

ducing a small change to it. Authors hypothesized that learning these functions was easier than

conventional feature representation. Each residual block is composed of two convolutional layers

separated by a non-linear ReLU function. The best performing architecture had 152 layers stacked

on top of each other, with no parallelization. The final test-error rate was 3.6% surpassing for the

first time the human level accuracy (around 5%). In 2016 the competition winners were CUImage,

which utilized a model based on ResNet. Although no publication is available, their good results

come from combining multiple models and utilizing context information for classification. They

obtained a final score of 3.0%.

2.2.5 Recent Influential Works

The rapid development of deep learning is normally attributed to three main factors. First, the

discovery of more efficient training methods was fundamental. In the case of convolutional neural

networks, ReLU layers, batch normalization and dropout increased training speed and perfor-

mance. Second, the availability of more processing power allowed bigger models to be optimized

efficiently, through the use of GPUs. Finally, the availability of high amounts of labeled data,

played a key role in this development. The history of the ILSVRC reflects just that.

In recent years, many works increased the versatility and understanding of deep convolutional

models. For example, the introduction of R-CNN (Girshick et al., 2013), Fast R-CNN (Girshick,

2015) and Faster R-CNN (Ren et al., 2015), are all based on the same idea of incorporating a region

selection scheme into a convolutional neural network. In the first work, authors use selective
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(a) Faster R-CNN (Ren et al., 2015) (b) Image to Text (Karpathy and Fei-Fei, 2017)

Figure 2.6: Impressive results using deep learning models

search method to propose regions, then analysed by a ConvNet that outputed a feature description

of each. A SVM classifier is trained on top. The whole method had the advantage of not only

classifying which objects were in the image but also to locate them. (Girshick, 2015) build again,

on top of this concept, to increase the speed of the overall process. The author integrated all

steps into the same ConvNet model, using two outputs, the first which learned to locate regions of

interest and the second which classified those regions. This was done by adapting the loss function

to have two terms, one for each task. (Ren et al., 2015) improved further, by using internal feature

maps to obtain regions of interest, instead of learning them as one output. This is done with

a smaller network, that will look to all points in this feature map and generate for each a set

of proposed regions along with their "objectiveness" score. After this, a RoI Warping Layer (Dai

et al., 2015) is used to extract that region, and feed it to a classifier. What is fascinating about these

works is the ability to incorporate attention in ConvNets, essentially integrating classification and

location in the same task.

The development of region proposal ConvNets allowed the innovative work of Karpathy and

Fei-Fei (2017). Authors, based on weakly labeled data, were able to generate text descriptions to

each region of an input image. The term weakly labeled data refers to the fact that, for training ex-

amples, information was incomplete. Authors only had access to a description of the whole image

and not for each specific region. They did this by mixing ConvNets and Recurrent Neural Net-

work, a different type of deep model, especially suited to deal with sequential inputs. Importantly,

authors were able to associate image and text data in the same feature space.

Another important work in this field was the use of generative adversarial networks (Good-

fellow et al., 2014), which work by training two models at the same time, the first generative and

the second discriminative. For this, a training dataset is required. The objective of the generative

model is to generate samples that look like original ones. The second model, learns whether a

sample is original or generated by the first model. This is effectively an unsupervised learning

strategy. By this interaction, we can obtain two models with different applications. For instance,
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the discriminative model can then be used for supervised classification, while the generative has

applications in terms of increasing image resolution or generating realistic images.

As seen, many ideas have been implemented with ConvNets and deep learning models in

general. Due to the complex nature of these networks, some research has referred to them as

black boxes. However, many works have shed light on how they operate. The work of (Zeiler

and Fergus, 2013) did precisely that. Authors focused on attentive analysis of the features learned

by the model using multiple tools. They propose many visualization techniques which greatly

contributed to the intuition we have of ConvNets. One example is the use of a DeconvNet model

to map feature representations back to the pixel space. This model computes an approximation

of the inverse function the model learns, showing what patterns each layer captures. Another

approach is to block some portions of the image during classification, to test what parts is the

model utilizing for discrimination. Additionally, they visually compare the parameter values of

their trained network against AlexNet, showing that smaller filter sizes and strides lead to more

distinctive features. This last experiment links to the results obtained by Simonyan and Zisserman

(2015) which surpassed the previous state-of-the-art models back in 2013 in ImageNet. They did

this by designing very deep and simple models. Following the idea of Zeiler and Fergus (2013)

their models are constituted by minimal filter sizes, increased number of layers and increasing

number of filters for later layers. These two papers were of major importance during the early

stages of the deep learning boom.

In summary, the high performance and potential applications of deep learning models was

supported by many early works. Labelling efforts, fast hardware and the development of bet-

ter algorithms were extremely important to this end. Many works achieved success by adapting

these models, based on field knowledge, for each particular application. The following section

talks about the use of deep learning in mammography image analysis and the strategies authors

suggested to increase the performance of these methods in different conditions.
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2.3 Convolutional Neural Networks in Mammography Image Anal-
ysis

In the 20th century, some authors had already used ConvNets for mammography image analysis.

In the case of Sahiner et al. (1996), authors use a model with a single convolutional layer, to

classify between masses and normal tissue in image patches, obtaining an AUC of 0.87. In their

work, authors compare different input sizes to the model, number of filters in the convolutional

layer and filter sizes. Curiously, they obtained better results by feeding the network texture images

as input. These are characterized by assigning each pixel with a texture feature of the surrounding

region. In the conclusion of their paper, authors identify the need to develop a fully automatic

diagnosis scheme. Zhang et al. (1994) used similar models applied to microcalcification detection,

obtaining an AUC of 0.91. They show the superiority of convolutional architectures for image

classification against conventional neural networks. At that time, the low computational power

was an impediment to the development of better models. These models were ignored for many

years for automatic breast cancer diagnosis. Renewed interest came a few years after the success

of AlexNet.

2.3.1 Transfer Learning

Medical images very often differ from natural images. However, as seen before, conventional

computer vision feature extraction methods have seen success. The same applies to ConvNets,

with some works suggesting these algorithms can improve over conventional techniques in medi-

cal image processing, including in mammography fields. Actually, some authors even use models

pre-trained on natural images to perform mammography related tasks, proving the adequability of

ConvNets for medical images.

This methodology, called transfer learning, is based on the idea that, to solve a particular prob-

lem one can extract information from similar tasks. It is particularly useful in scenarios where the

amount of data available is not enough to train a good representative model. For instance, Huynh

et al. (2016) used the ImageNet pre-trained AlexNet architecture to extract lower dimensional

representations of image patches centered in breast masses. Their objective was to distinguish

between malignant and benign masses, in a private dataset. They contrasted AlexNet represen-

tation with traditional approaches by using size, shape, intensity and margin features. For a fair

comparison, both approaches were used to train an SVM classifier achieving the same AUC value

of 0.81. Interestingly, the combination of the two methods improved results to 0.85, suggesting

that the representations did not hold exactly the same information. This phenomenon has been

observed by other authors (Kooi et al., 2017b).

Yosinski et al. (2014) discussed transfer learning in ConvNets, concluding that the first layers

of the network are often more general, while later layers are problem specific. Due to this, we

can derive multiple strategies for transfer learning, for instance, fine-tuning all layers, fine-tuning

later portions of the model or use the model as is to obtain feature representations, then fed to

a different classifier. In the case of Huynh et al. (2016), this last strategy was used. Authors
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verified that, for early and later stages of the pre-trained model, information is not useful for the

classification. In early layers, feature representations have high dimensionality and are similar to

the input data. As such, non representation learning algorithms perform worse. Further, the use

of high dimensional data requires more training time and labeled examples. For later layers, more

compact representations can be obtained, but, in the case of pre-trained models, this can already

be too specific to the original problem. As such, the best for classification was an intermediate

layer.

In a similar fashion, Carneiro et al. (2015) utilized ImageNet pre-trained model (Chatfield

et al., 2014) to distinguish mammograms with and without cancer. Differently to Huynh et al.

(2016), instead of using the network as is, authors fine-tuned the parameters to this dataset.

Carneiro et al. (2015) showed this methodology was more effective when compared to learning

“from scratch”. These results have been obtained by other researchers as well. However, their

method utilized ground truth locations for lesions, and so, cannot be considered fully automatic

diagnosis. By combining both views of each breast as well as mask images authors obtained an

AUC of 0.91 on INBreast database (Moreira et al., 2012) and 0.97 on the DDSM dataset. In the

context of discriminating mass lesions from normal tissue, Lévy and Jain (2016) reported much

better results when initializing AlexNet with pre-trained parameters, instead of randomly. Their

best result was obtained by a fine-tuned Inception model, with a validation accuracy of 0.929.

One disadvantage of fine-tuning ImageNet pre-trained models is the fact that natural images,

normally in the RGB color space, are composed of three color channels. For mammography im-

ages, authors usually stack the same image three times, to meet the input requirements of such

models. However, the model filters are still optimized to extract color features. Samala et al.

(2016) utilized a transfer learning strategy for false positive reduction in digital breast tomosyn-

thesis, but using mammography images for pre-training. These two imaging technologies are

similar in the sense that X-rays are used. However, a 3D representation of the breast is obtained in

tomosynthesis. Authors collected and used a mammography dataset to train a ConvNet, later fine-

tuned to the main task. In this case, there is a high affinity between the classification tasks where

knowledge is being transfered, with both images having the same number of classes, number of

input channels and purpose. This is shown by the obtained validation AUC of 0.80 in tomosynthe-

sis patches using only the pre-trained model. After fine-tuning a final AUC of 0.92 was obtained.

Likewise, the work of Kooi et al. (2017c) utilized two mammography datasets. The first was used

to train an ensemble of simple classifiers that will generate true and false positive regions. Then, a

ConvNet is trained in these examples, in a supervised way. The model is used as a feature extrac-

tion method for the second dataset, obtaining an AUC of 0.786, when discriminating benign cysts

from masses.

The performance of pre-trained models for feature representation versus fine-tunning is heav-

ily dependent on the problem and available data. As a rule of thumb, Yosinski et al. (2014)

discussed that the first should be preferred in scenarios where there is less data available or the

pre-learning and final problems are very distinct. The fact that knowledge from natural scenes can

be used in much different problems, like X-ray images, suggests that there should be at least a
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small degree of similarity between ConvNets trained for very different problems. In fact, as noted

by Yosinski et al. (2014), the first layer filters of a ConvNet, after training, tend to resemble either

Gabor features or color blobs. Additionally, ImageNet trained models, used in most studies, learn

to discriminate between a high number of very different classes and thus have a very rich feature

representation, applicable in most scenarios.

2.3.2 Breast Lesions Classification

In opposition to transfer learning, some authors train ConvNets from “scratch” in mammography

datasets. However there are several considerations that need to be accounted for. These come from

three significant differences between big image recognition datasets, like ImageNet or MNIST, and

medical ones: 1) normally, much less medical data is available, 2) image resolution is significantly

higher and 3) much of the information required for diagnosis is in details. Due to this, a brute force

approach could fail for lack of data and computational power, while simple rescaling the image to

lower sizes can remove too much relevant information.

Many authors have tested the performance of ConvNets in classification related to breast can-

cer diagnosis. To this end, normally, only a relevant part of the image is considered. Using expert

knowledge to select regions of interest, authors crop image patches centered in relevant portions

of the exam. With this, detail information is kept, while significantly reducing the image size.

This is the case of Lévy and Jain (2016), Arevalo et al. (2015) and Dhungel et al. (2017) where

models are trained in a supervised manner, with the objective of distinguishing malignant and be-

nign masses. In the first case a poor accuracy (0.66) was obtained, when training from scratch an

AlexNet inspired model. However, an important finding was that healthy tissue around lesions is

relevant for accurate diagnosis. The dataset contained 1820 mammograms, from which images

from masses and normal tissue were cropped. In the second case, authors attempt the same task

with 736 film mammograms of the BCDR dataset (López et al., 2012) and a custom architecture.

Image contrast was normalized globally and locally. After training the network is used as a feature

extraction method to train an SVM classifier. They obtained an AUC of 0.860. Additionally, the

ConvNet outperformed other feature extraction methods like HOG descriptors and handcrafted

features. Dhungel et al. (2017) also reported better results when using a ConvNet when compared

to handcrafted methods. The model was trained in a supervised way and the last layer used to train

a Random Forest classifier. Their obtained accuracy was 0.82 on the INBreast database. An orig-

inal strategy was used for regularizing the ConvNet. Authors initialized the model randomly and

trained it for regression, a task where the model learns to predict continuous values instead of a

set of classes. With this method, the ConvNet is trained to output handcrafted features, often used

in mammography image analysis. Finally, the model is fine-tuned for classification, improving

considerably. In fact, regularization plays a big role, when the amount of data available is smaller.

The aim of these methods is to increase generalization, which is hard when we have a small num-

ber of training examples. Dropout is probably the most common technique and was used by many

works, including Geras et al. (2017), Dhungel et al. (2017) and Arevalo et al. (2015). This method
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is explained in detail in chapter 3. Additionally, Arevalo et al. (2015) also uses max-norm regular-

ization. This consists in setting an absolute upper bound to the values of parameters of each unit

in the neural network, and has been shown to have a positive effect in model generalization.

Artificial data augmentation is also seen as a regularization strategy. For instance, some au-

thors randomly crop the image around a lesion center, which can increase substantially the number

of samples. Samala et al. (2016) use jittering, which consists of selecting randomly, as a central

pixel of the patch, one of the points near the lesion’s center, at each iteration. Similarly, Lévy and

Jain (2016) use cropping to increase the dataset size by a factor of five. Again, Geras et al. (2017)

use random crops, which include almost the whole breast in the same manner. Additionally, au-

thors also use this at test time, to make predictions more stable. For this, ten inputs are fed to the

model and their prediction is averaged.

Different to ImageNet, a mass can appear in any orientation. As such, additional types of

distortions can be added. For instance, Sun et al. (2016) increased the number of examples by

rotating them by 90o× k, with equal probability for k ∈ {0,1,2,3}, and horizontally mirroring.

The same strategy was used by Arevalo et al. (2015) and Samala et al. (2016). By these two

operations, one can increase the dataset by a factor of 8, with a very simple implementation.

Also, no additional RAM memory is necessary, as these operations can be done online, during

the training phase. In the case of Lévy and Jain (2016) five rotations were taken from each mass,

requiring interpolation.

One common problem to all these strategies is that the new data is highly correlated with the

original one. Ideally, one would want as much "real" data as possible. Sun et al. (2016) proposed

the use of unlabeled data to this end, in a semi-supervised learning strategy. They extracted,

from a private dataset, 2400 examples from which 100 were labeled. They first computed 21

shape, intensity, texture and global features from each patch and applied dimensionally reduction

methods. After this, they trained ten classifiers, each with different feature sets, that will classify

data. An unlabeled example is assigned a class if a minimum number of classifiers agree. This

way, a majority of the data will be labeled, and a few difficult examples will remain unassigned.

Using the labeled examples, a ConvNet is trained in a supervised way and then used to label all

data. Their final AUC is 0.8818, significantly more than a model trained on only 100 examples

(0.8236). In this way they show that it is possible to rely on unlabeled examples to increase the

amount of data available. Another unusual approach to the data-bottleneck was proposed by Kooi

et al. (2017c). In this paper, authors propose to add patches of normal tissue to malignant masses

or solitary cysts. The summing operation is done pixel-wise, in the log space, so that physically

plausible patches are obtained. As seen previously, when augmenting the dataset, it is important

that the variation we are introducing is already present in the distribution from where we are

sampling the data. Results show a small improvement but not statistically significant.
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2.3.3 Automatic Detection of Breast Cancer

Many of the works described are based on the classification of masses against either benign lesions

or normal tissue. For a real world application this would require a specialist to select which

regions need to be tested, limiting the potential of these methods. Some authors rely on detection

systems using conventional approaches. This is the case of Kooi et al. (2017b), which use for

initial mass detection an algorithm similar to (Karssemeijer and te Brake, 1996). It works by

computing 5 features based on first and second order Gaussian kernels, which are correlated with

malignancy patterns. The ConvNet is then applied to the top 10 suspicions regions of an image.

More rarely, some works focus on the use of deep leaning methods for detection. Although not

related to mammography, the work of Ciresan et al. (2013) is worth mentioning. In 2012 they

were the winners of ICPR mitosis detection competition. Their dataset consisted on 50 high-

power fields in H&E stained biopsy slides, which contained many nuclei, but only a few mitosis

(positives). To construct a labeled dataset for training, they sampled all pixels near a mitosis center

as positives, and grid sampled other regions to obtain negatives. This yielded a heavily imbalanced

dataset, where the majority of samples were obvious false positives, while some examples, which

contained nuclei, were more difficult. To counter this problem, authors first created an auxiliary

ConvNet, trained on this dataset. Then, they selected only the incorrectly classified as positive

patches, to be used as negatives in the main classifier. At test time each image was screened for all

possible patches, to obtain a probability map. Additionally, the image was rotated and mirrored,

and the same operation was performed. The resulting maps are aligned and averaged to obtain

a final prediction. Authors argue that, because these models have large variance and low bias,

this combination significantly improve the results. Additional techniques were used to improve

performance which include the use of multiple models and smoothing of the probability maps,

through linear filtering.

The system proposed by Dhungel et al. (2017) consists in the use of multiple models to de-

tect, segment and classify individual mammography images, with minimal user intervention. For

detection authors use a cascade of simple to complex classifiers, where the next module will only

classify the previous cases assigned as positives. Due to the fact that, for each positive we have

many negative examples, this framework works by, at each point, discarding the most obvious

negative samples while keeping as much true positives as possible. First a sequence of three DBN

models are trained, as explained in section, to classify pixels as positive (if they belong to a mass)

or negative, based on a local information. The first takes as input positive and negative pixels at

a coarser resolution, while the next ones only take inputs previously classified as positive at an

increasingly finer resolution. The resulting positive pixels are combined by union with a Gaussian

Mixture Model trained only at the finer resolution. After this, connected pixels are considered

as possible lesions and pass on to the next stage. These examples are then processed by two se-

quential ConvNet models, where, by the same logic, the second only sees previously classified as

positive examples. A third stage follows with two sequential Random Forest classifiers trained on

a set of handcrafted features. At this point, their system requires a user to reject false positives.
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Although complex, the framework proposed has two main advantages. First, simpler models are

used to discard false positives, while more complex models are used only on the difficult cases,

allowing the whole system to be more computationally efficient. Second, due to the multiple

stages filtering out many negatives, while keeping a big portion of the positives, the data becomes

increasingly more balanced.

As an alternative, some authors have proposed systems that feed a whole mammography exam

to the model. This has the advantage of allowing the combination of both CC and MLO views.

However, to keep the needed detail for diagnosis, a big model is necessary, which requires more

computational examples to train and can overfit more easily if the amount of data is not enough.

The system proposed by Carneiro et al. (2015), obtained good results while resizing images to

264×264. Their deep model received as input 6 images, one mammogram and two binary images

with lesion segmentation per view, and integrated the information at a later layer in the network.

As discussed previously, this required ground truth information about lesion location and, as such,

cannot be realistically implemented in practice. The work by Kooi et al. (2017a) uses a similar

approach to combine information of both breasts, requiring only mammograms for classification.

Very different from most deep learning models applied on mammography, they used image sizes

of 2600× 2000. To do this, author collected data from almost 18000 patients during two years.

Additionally, some architectural and learning strategies compromises were done to cope with the

computational cost of training the model. The batch size, used for gradient descent, was reduced

to 4 and early layers had big stride values, so that internal feature maps resolution would decrease

quickly. They applied the model to distinguishing between BIRADS 0, 1, 2 obtaining an average

AUC of 0.685 when testing one class vs all others. Experiments show that reducing image size

or number of training examples lowered performance. Authors predict that, if more data was

collected, results would be better.

Another important part of Geras et al. (2017) work, is the interpretability of the results. Instead

of only returning a number with the probability of cancer, authors propose a visualization method

to measure which pixels were important for that classification. They do this by introducing a

perturbation in each input pixel and measuring the change in entropy between the three BI-RADS

class probabilities. Lévy and Jain (2016) used a similar visualization technique, based on the same

principle, to study what the deep model was paying attention to when making a decision. In their

case, they use saliency maps (Simonyan et al., 2013), which consist of the image pixels’ gradient

with respect to the final class scores. Results showed the model was sensible to pixels at the edge

of lesions.
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2.4 Summary

In this chapter, previous work was presented both in the field of CAD systems and Convolutional

Neural Networks. Conventional approaches to mammography image analysis often consist of

four basic steps: 1) preprocessing; 2) detection and segmentation; 3) Characterization; 4) Clas-

sification. Authors have proposed many different approaches to each of these tasks. In terms of

Convolutional Neural Networks, the review focused on an historical perspective as well. Over

the last 20 years important work has been done that culminated in the design of very efficient

deep models. With these, researchers have been able to solve specific tasks with incredible re-

sults. Additionally, original ideas are being incorporated into ConvNets, to increase its versatility

and performance. The exploration of deep learning in mammography is still recent, but already

achieved some good results. The application of these methods in CAD systems requires adapta-

tion, to deal with unbalanced datasets, low amounts of data and importance of detail information.



Chapter 3

Convolutional Neural Networks

3.1 Notation

Before proceeding, here is presented the notation used for the rest of the document. There are

some exceptions, but explained in the text.

3.1.1 n-Dimensional Arrays

First, in formulas, we use n-dimensional arrays. These are a finite collection of numbers that

extend in n dimensions. We call n rank. Importantly, they have fixed sizes for each dimension.

A rank 0 array is a scalar and noted by a lower-case letter: a

A rank 1 array is a vector and noted by a bold lower-case letter: a
Arrays with rank > 1 are noted with an upper-case letter: A

To note elements that belong to the n-dimensional array A we use the same letter, lower-case with

the index in subscript, e.g.: a1,1.

3.1.2 Operations

In terms of operations there are two that need clarification:

Concatenation between arrays: (A1,A2, ...,An)

2D strided convolution: A~s B

The 2D strided convolution is just an extension of the normal convolution operator. The dif-

ference is that this operation is performed in two dimensions and we take steps of size S:

(A~s B)m,n =
K1/S

∑
k1=0

K2/S

∑
k2=0

(ak1,k2bm−Sk1,n−Sk2) (3.1)

29
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3.2 Artificial Neural Networks

Artificial Neural Networks (ANN) are models with applications in many research fields including

machine learning. An ANN is composed of simple units, called neurons, organized in a complex

system. Each neuron computes an output (activation), based on its inputs, which can be other

neurons’ activations or data.

The most common type of ANN is the fully-connected feed forward neural network. These

networks have inputs, where data is fed, and outputs. Normally, the objective is to use this model

to solve a regression or classification task, by approximating the output activation with a target

value, for each input data. It is organized in sequential layers (feed forward), where a unit of layer

k receives as inputs all neurons of layer k−1 (fully-connected), computes a linear combination of

these values and passes it through a non-linear function:

ok,i = actv(wT
k,i · lk−1 +bk,i) (3.2)

Where ok,i is the ith unit of layer k and lk−1 is the vector with all activations of layer k− 1.

The vector wk,i and scalar bk,i are parameters, often called weights, and are learned for a specific

task. The non-linear activation function actv can take many forms, and is later explored in section

3.3.1.3. The universal approximation theorem (Cybenko, 1989) states that, a model with a single

hidden layer (all except input and output), with a finite amount of units can approximate any

bounded continuous function to an arbitrary error, if the adequate parameters are given. This

however, does not give us any information on the possibility of learning those weights.

3.3 Convolutional Neural Networks

Here we discuss ConvNets, a type of ANN, in the particular case of image inputs. Some concepts

do not apply directly to other types of input data, but can be easily generalized.

These models can be divided in two parts, convolutional and fully-connected. The first can

be thought of as a spatial feature extractor while the second is essentially a fully-connected feed

forward neural network.

In the convolutional part, each layer is organized as a 3D volume, with width, height and depth.

Each neuron receives as input the previous layer’s neurons within a specific interval of width and

height, to which we call receptive field. Further, all neurons in the same layer at the same depth

have the same parameters. Due to this, the output of a neuron is independent of its horizontal and

vertical position, hence the name of shift invariant networks in Zhang et al. (1994). As such, what

we are effectively doing is applying a series spatial filters to the previous layer. The number of

filters is the same as the depth.

Each layer has a stride parameter which controls the step size, when filtering the image. As

such, if we have a stride of s, the height of this layer will be 1/s, when compared to the previous.

The same goes for width. Technically we can have different strides for each orientation, but that is

practically never used. Normally, this operation, used to reduce the spatial resolution, is achieved
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Figure 3.1: Diagram of a Convolutional Neural Network Architecture.

using pooling layers, as discussed next. This property is important, as it allows following neurons

to "see" a feature representation of a bigger portion of the input.

In a ConvNet, later layers are trained on feature representations computed by earlier ones. Due

to this, these models are well suited to learn from signals that can be described by a hierarchy of

features (Lecun et al., 2015a), where lower level components are used to compose higher level

components. Many natural signals can be well described this way.

The fully connected part of the network has the same structure of a fully-connected feed for-

ward neural network. Ultimately, this is just a portion of the model that does not have the same spa-

tial and parameter restrictions imposed on the convolutional part. Due to this, the fully-connected

part is simply a generalization, and one can convert these layers in convolutional ones, as ex-

plained in section 3.3.1.5. Some authors have proposed fully convolutional models(Shelhamer

et al., 2016).

Fig 3.1 shows a diagram of a ConvNet architecture.

3.3.1 Layers

As seen previously, ConvNets are feed-forward models composed of many layers. Most of these

have parameter and spatial restrictions, as described next. However, they differ in the transfor-

mations they apply to its input. Here we describe all layers utilized in this work. Note that the

same architecture can learn to solve very different problems, as long as the parameters are well

optimized for each of them.

3.3.1.1 Input

The input layer is just a representation of the raw data that is fed to the model, which needs to have

a fixed input shape. In the most common case, an image is converted in a 3-dimensional array, with

shape [w,h,3], where w and h are the width and height. The last dimension is often 3 due to the use

of RGB colored images. In this work, X-ray images only have an intensity channel. When using
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pre-trained models authors stack the same X-ray image three times, while, when training them

from scratch an input of [w,h,1] is used. In this work, all networks were trained from scratch.

3.3.1.2 Convolutional

These models get their names from convolutional layers. For this layer, we have [w,h, f ] neurons,

where f is the depth. Each of these is connected to a region of the previous layer, depending on

the size of the convolutional filters. For clarity, if we have a filter with size (3,3), the neuron

in position [x,y,z] is connected to all neurons of the previous layer, with horizontal and vertical

positions in the interval [x−1 : x+1], [y−1 : y+1]. We call this region the receptive field. Note

that, this includes all depths of the previous layer. This is the spatial arrangement of the network,

a special property of ConvNets.

(a) Receptive fields for neurons
of Layer 2 shown in Layer 1 by
the same color.

(b) Parameter sharing property. Same
colors represent the same weight.

Figure 3.2: Illustration of the spatial properties of convolutional layers

Using the same example, the neuron in position [x,y,z] will be connected to 3×3× f−1 inputs,

where f−1 symbolizes the number of filters in the previous layer. Each of these connections has a

parameter associated with it, to which we call weight. Additionally, this neuron has a bias term.

The activation of this unit is computed by multiplying the output of each neuron in the receptive

field, by the weight corresponding to their connection, and summing all these values together with

the bias. The parameter restriction of the ConvNet, has to do with these weights. Neurons in the

same layer, at the same depth share the weights and biases. However, due to the fact that they have

different x,y positions, they will have different receptive fields, and so different activations. As

such, each neuron computes a linear combination of its receptive field. This operation is shifted

throughout the whole width and height of the layer. This is effectively a 2D convolution for each

value of z. Formally:

Rz =
f−

∑
c=1

(Lc ~s Fz,c)+bz (3.3)

R = (R1,R2...,R f ) (3.4)
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R, is the result of propagating input feature map L, with f− filters, by a convolutional layer

with f filters, weights F , and bias b.

The result of the convolution operation shrinks the output, relative to the input. To account for

this it is common to pad the image with (m−1)/2,(m−1)/2 zeros on each side, where m is the

filter size, which is the same for horizontal and vertical directions, for convenience. To the same

end, one can also use symmetric or constant padding.

In most typical architectures f grows as spatial resolution decreases. This can intuitively

be explained by the fact that, while on earlier layers we have more general features, on later

layers, with smaller resolutions, we have more specific, higher level features, requiring an higher

dimensional space. Additionally, at early stages feature maps have bigger resolution, requiring

more memory and thus penalizing high values of f .

(m,m) is normally small, e.g. (3,3). Note that by stacking two (3,3) layers, our effective

receptive filter becomes (5,5). Additionally, this has the advantage of diminishing the number of

weights to optimize (2× 3× 3× f vs 5× 5× f ). As noted by Simonyan and Zisserman (2015),

this also allows us to introduce a non-linear function in between, which makes the function more

discriminative. This however has the disadvantage of requiring more memory to represent inter-

mediate feature maps.

Szegedy et al. (2015) utilized 1×1 filter sizes to reduce the depth of the previous layers, de-

creasing computational cost and memory consumption. This, however, is not a common practice.

One important thing to note is that the resulting feature map has f filters, independently of the

number filters in the input.

As for the stride, s, the most common value is one. Some authors, utilize higher strides,

mainly at the first stages, to reduce the spatial resolution quickly, due to memory limitations. This

approach can lose information, but is useful to allow bigger inputs to the network.

3.3.1.3 Activation

Activation functions introduce non-linearities in the model, making the model function more dis-

criminative. This is important because, otherwise, the computation of the output would be a simple

linear combination of the inputs, and so could be reduced to a single layer. They perform a simple

element-wise operation in the model, conserving layer size, without needing any learned parame-

ters.

The ReLU function is the most commonly used as it facilitates training. Other examples

include the sigmoid and hyperbolic tangent. However, these contain regions where the derivative

is very small, and, as explained in section 3.4.1, this can impair learning.

ReLU: rm,n,c = max{0, lx,y,z} (3.5)

sigm: rm,n,c =
1

1+ e−lm,n,c
(3.6)
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(a) ReLU activation function (b) Sigmoid activation function

One of the problems with ReLU is that the derivative for an input rk,i, j < 0, is 0. If, for

some reason, during learning a unit always receives negative values, it will never be activated, a

phenomenon called dying out. This is not a big problem, particularly if a careful initialization

of the weights is done and adequate learning rates are used. A leaky ReLU has been proposed

to address this issue, which returns max(α × lk,i, j,rk,i, j) with the α parameter assigned to a low

value.

In this work, for the activation layers, we selected ReLU, as it is the most commonly used, and

allows faster learning.

3.3.1.4 Pooling

In ConvNets architectures, it is common to periodically insert pooling layers. There are some

exceptions to this (He et al., 2015). These have different functions in different architectures.

Most commonly, they are used to reduce the spatial size of the network, provide some translation

invariance and reduce overfitting. In the case of Szegedy et al. (2015), some pooling layers act as

any other filter.

This operation is done individually to each depth, just like activation layers. The max pooling

function is the most used. Each neuron outputs the maximum for a small region of the input,

depending on the filter size. Due to this, for a slightly shifted input feature map, the pooling layer

will output the same result, thus providing some translation invariance to the model. Additionally,

when computing the maximum, we are discarding some information, depending on the filter size,

which is an interesting property to avoid overfitting.

Pooling layers usually have a stride bigger than one. This is important as it reduces the com-

putational power required, memory and number of parameters that need to be learned, in the

Figure 3.4: Max-pool operation on a small 2-dimensional array. In this case, m = 2 and s = 2
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following layers. This spatial reduction also allows the units of later layers to be influenced by a

bigger region of the original image. This is vital to ensure the property that convolutional neural

networks excel at modeling compositional hierarchies.

rx,y,z = max(li, j,z), with i ∈ [s× x,s× x+m[ , j ∈ [s× y,s× y+m[ (3.7)

Some authors have also utilized average pooling, which works in the same way, but computing

the average value, instead of the maximum. An important difference between these is that, while

the first outputs the same value if a feature exists in the receptive field, average pooling com-

putes the mean strength of that feature in that region. Additionally, max-pooling is a non-linear

operation. An example of this operation is shown in fig. 3.4.

3.3.1.5 Dense

Dense layers work similarly to the hidden layer in the fully-connected feed forward neural net-

work. They do not preserve spatial structure of the input. If the previous layer’s output has a

spatial structure, a flattening operation is performed, reshaping the rank 3 tensor with size [w,h,d]

to a rank 1 of size [w×h×d], before computing the output. The number of weights in this layer is

given by nl× (nl−1 +1), where nl is the number of units in layer l. The additional weight per neu-

ron refers to the bias parameter. For consistency, because in this description of convolutional neu-

ral networks we considered convolutional and activation layers separately, for the fully-connected

we assume that only the linear part of the operation is performed and that an activation layer is

stacked on top.

As described, this layer performs the following operation:

oi = wT
i .lk−1 +bk,i (3.8)

o = (o1,o2, ...,od) (3.9)

The result is a vector of d linear combinations of all the inputs. If we have a convolutional

layer with the same filter size as its input, filters will only be applied in one position, the one where

they completely fit the input feature map. Due to this and to the fact that parameters are not shared

for different depths, the layer is effectively computing a linear combination. No weight is used

twice. As such, dense layers can be transformed into convolutional ones, just by reshaping the

weights to the input size.

3.3.1.6 Output layer

The output layer is normally a linear combination of the inputs, coupled with a non-linear function,

between the last fully-connected layer and the output neurons. For classification settings, the case

of this work, the output of the model is a set of values, each one representing the probability of the

input belonging to a specific class. For problems with a number of classes, K, greater than two,
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Figure 3.5: Dropout Layer, σ = 0.5

we have K output neurons, each computing the probability with the softmax function:

P(C j) =
ei

j

∑
K
k=1 ek

(3.10)

In the case of two class classification we can use the softmax function with two outputs or, instead,

use one neuron and compute the sigmoid function. For the two classes the probability is given by:

P(1) =
1

1+ e−i (3.11)

P(0) = 1−P(1) (3.12)

We opted for the latter.

3.3.1.7 Dropout

Dropout is a very common technique for regularizing ANN, including deep learning models. Ini-

tially proposed by Srivastava et al. (2014), the idea is to build more robust features by preventing

neurons from co-adapting. Its implementation is simple, and only requires stacking additional

layers in the network, usually after activation functions. This module randomly sets some points

of the input feature map to zero. Formally, each of these has an independent probability σ of being

kept and, if this happens, it is scaled by 1/σ . Points not kept are set to zero.

As we can see, this layer only has one parameter, σ , which will be in the interval ]0,1[ for

training, and set to 1 for testing. Intuitively, this process can be thought of as removing some neu-

rons from the network, temporarily, along with its input and output connections. As such, in each

iteration a slightly different network architecture is effectively being trained. This relates to the

idea that averaging the combination of multiple models increases performance, which is generally

true, but computationally expensive. At test time no unit is dropped, effectively combining the

prediction of all trained neurons. The scaling operation is done so that each layer, during test is

approximating the average of all trained networks, instead of the sum.
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Another good intuition for why this works is to think that the dropping mechanism penalizes

neurons which rely on fewer input connections. This happens because a drop in a subset of inputs

will be more significant when compared to a neuron which relies on many inputs. And, in this

manner, more general features are privileged.

3.3.1.8 Batch Normalization

Batch normalization is a recent but very efficient technique. While training deep models, weights

are updated at every iteration. A side effect of this is that, in each layer, the input distributions

will change, a phenomenon called internal covariate shift. Ioffe and Szegedy (2015) identified

this slows down training, requires a more careful weight initialization and hinders optimization of

models with saturating nonlinearities, such as sigmoid or hyperbolic tangents. Additionally, they

propose the batch normalization method to address it.

Similar to dropout batch normalization is implemented as a layer in the network with different

behaviors during training and inference. To address the problem of internal covariance shift, for

each training batch (see section 3.4), this layer normalizes its input by subtracting the mean and

dividing by the standard deviation, of all neurons at the same depth. The mean and standard

deviation are referred to as mini-batch statistics. Additionally, a running average of these is kept

to be used during inference. Otherwise, the output of the model for a new example would depend

on mini-batch statistics, which are affected by other inputs running in parallel. To guaranty that

the model, at that stage, can represent the exact same function with or without batch normalization

two new trainable weights are added, γ and β , which scale and offset the output. The output is

therefore given by:

Ic = γ
Ic−mean(Ic)

std(Ic)
+β , during training (3.13)

Ic = γ
Ic−uc

vc
+β , during in f erence (3.14)

Where uc and uv are running averages of the mean(Ic) and std(Ic).

It has been demonstrated that, batch normalization allows higher learning rates and makes the

model converge in fewer iterations. Authors also demonstrated that this method has a regulariza-

tion effect, and recommended higher σ values in dropout layers or even removing them entirely.

Although in their paper, batch normalization layers are used between linear and activation

layers, some authors have argued that their benefits are more notorious when used after activation

layers. Mishkin et al. (2016) achieved a significantly better accuracy this way.
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3.4 Optimization

The optimization problem can be formulated as follows. Suppose we have a dataset, D, with

images I ∈ R2. These images can either be a lesion or not, and so, have a label associated with

it y ∈ {1,0}. In our case we want to build a model that, given an input image Ii, produces a

probability p(Ii), that approximates as close as possible the label associated with that image, yi.

Although there are other alternatives to optimize neural networks, like genetic algorithms, the

minimization of a loss function by gradient descent is by far the most common. In the case of

classification, cross entropy is commonly used as this loss function. It measures how well one

distribution of probabilities approximates another, given a set of events, in our case, I. We want to

measure how well p(Ii) can approximate the label yi. This is given by:

L =− 1
|D|

|D|

∑
i
(yi log(p(Ii))+(1− yi) log(1− p(Ii))) (3.15)

As previously seen, assuming an architecture for our model, the probability for an input de-

pends only on its weights, θ , and can be noted as p(I,θ). Given θ we can compute L(θ) by first

running the model on the dataset and then computing the cross entropy.

3.4.1 Backpropagation

As explained next, the computation of the gradients of the loss function with respect to the weights,

∇θ L(θ), is necessary during training. This is done by a process called backpropagation, in which

we first propagate the input through the network, compute L(θ) and then backpropagate this loss

through all the weights in the network. More specifically, the gradient with respect to the output

is given by:

∂L
∂ p

=
∂ (−(y log(p)+(1− y) log(1− p)))

∂ p
= (3.16)

− y
p
− 1− y

1− p
=
−(1− p)y+ p(1− y)

p(1− p)
=

p− y
p(1− p)

(3.17)

The derivative of the sigmoid with respect to its input, i, is given by:

∂ sigm(i)
∂ i

= sigm(i)(1− sigm(i)) (3.18)

Thus, we can compute derivative of L with respect to i, using the chain rule of derivatives:

∂L
∂ i

=
∂L
∂ p

∂ p
∂ i

= (p− y) (3.19)

Now, if we want to compute the gradients of the loss function with respect to the weights of the

last fully-connected layer, we can apply the same principle again. Because this layer computes a

linear combination of its inputs, a, the derivative of i with respect to the weights, w, is simply the
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vector a:

∂L
∂w

=
∂L
∂ p

∂ p
∂ i

∂ i
∂w

= (p− y)a (3.20)

This though can be easily extended to the previous layers and thus, we can compute ∇θ L(θ) in an

efficient manner.

3.4.2 Gradient Descent

To simplify, an explanation with one variable only is presented. In this case, we have a differen-

tiable function, f (x), and we want to find x, so that f (x) is a local minimum. For this, we can

compute the derivative ∂ f
∂x , which tells us in which direction the function is growing. As such, we

can update x, so that it approximates a local minimum, by advancing in the opposite direction of
∂ f
∂x . We can do this iteratively, until we become close enough to a solution. One thing to note is

that the steps taken into this direction need to be small, to avoid jumping over the solution.

Gradients are multi-variable derivatives, and gradient descent works in a similar way. In this

case we want to minimize L(θ), by iteratively changing θ in the opposite direction of the gradient.

To do this, we first initialize θ0 with random values. The subscript denotes the iteration. Then, for

each iteration, we compute the gradient of L with respect to the weights, ∇θ L(θ). Finally, we set

the next iteration weights, θt+1 = θt−η∇θ L(θ), with η denoting the learning rate. It is important

to select an adequate learning rate, as small learning rates slow the training process, while high

learning rates might make updates to θ too large, impeding convergence. Note that, by using

this method we do not guaranty the best possible solution, but only local minimum. However, as

pointed out by Lecun et al. (2015a), in most cases this is not a big problem, as good local minimum

are quite frequent.

Several variations of this method exist. In deep learning models, the gradient is not computed

for the whole dataset, but rather for a small subset to which we call batch. As such, during training,

and for each iteration, we extract a batch from the D, which is used as an approximation of the

gradient of the whole dataset. With bigger batches, a better estimation of the gradient is obtained

and so, higher learning rates should be used. This has been confirmed by experimental data in

some works (Mishkin et al., 2016). Normally, this batch approach is called mini-batch gradient

descent. If the batch size is one, then we have stochastic gradient descent.

In many works, a dynamic learning rate is used, allowing it to be decreased according to some

rules. This has the benefit of smaller training times in the beginning while allowing for more

careful optimization at later stages, when θ is close to local minima. The most common strategies

are an exponentially decaying learning rate or abruptly changing it to a smaller value every k

iterations.
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3.4.3 Adam

Some authors proposed variations of basic gradient descent, which have been shown to converge

faster and, in some cases, achieve better final solutions. For instance, a common practice is to

incorporate momentum in the update rule. In this case, we change the update rule to:

vt = γvt−1 +η∇θ L(θ) (3.21)

θt+1 = θ − vt (3.22)

This way, if, for a weight θi, frequent updates in the same direction are done, increasingly

bigger steps are taken in that direction. Contrarily, weights that have been oscillating are changed

more slowly. This concept is easier to visualize if we assume L(θ) is a 2D surface, where each

point is a set of values for θ and the height in that point is the value of L(θ). With simple gradient

descent, when we enter a valley, we will go down at a constant speed for many iterations. With

momentum, we will gain speed in that direction, reaching a terminal velocity.

The Adaptive Moment Estimation, or Adam, is a method which increases convergence speed

using this idea. Similar to momentum, a running average of the past gradients is kept. Additionally,

it incorporates the idea, present in algorithms like Adadelta and RMSprop, of favoring the update

of weights that have not been frequently updated. For this, a running average of the squared

gradients is kept. Formally, for one parameter θi, if we consider the gradient at time t, gi,t =

∇θ L(θi) we have:

mi,t = β1mi,t−1 +(1−β1)gi,t (3.23)

vi,t = β2vi,t−1 +(1−β2)g2
i,t (3.24)

Where mi,t and vi,t are the estimated values for the gradients and squared gradients, respec-

tively, and β1 and β2 are selected parameters. Because mi,1 and vi,1 are set to be zero, at the

beginning, authors do the following correction:

mi,t =
mi,t

1−β1
(3.25)

vi,t =
vi,t

1−β2
(3.26)

And the update rule for each weight is given by:

θi,t+1 = θi,t −
η√

vi,t + ε
mi,t (3.27)

This method was utilized during experiments. After the first few, it was possible to observe that

Adam optimization, generally, reached better solutions, and took fewer iterations than mini-batch
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gradient descent. However, each individual iteration took more time.

3.4.4 L2 Regularization

One very common method of improving the generalization ability of a model is L2 regularization.

Using this method, high weights are penalized in the loss function thus forcing predictions to be

based in many features instead of a small subset. To this end, we simply add a term to the loss

function:

L′(θ) = L(θ)+λθ
2 (3.28)

λ is a constant to define how aggressive the L2 regularization is. Note that, when we compute

the derivative we get 2λθ . When most implementations the 2 is ignored. Effectively what we are

introducing is a term that, at each iteration is decreasing the weights by a fraction of their current

value, or, in other words, we are exponentially decaying weights. Because of this, the λ constant is

also called weight decay. Some authors have reported that introducing this penalization increases

not only generalization but also training accuracy as well (Krizhevsky et al., 2012).

3.5 Detection as a Classification Task

By building a detector, we can work locally in the image. This has the major advantage of reducing

the input size of the model, while keeping some detail.

So far, supervised learning for classification tasks was explored. Here we extend this formula-

tion in the context of detection. For this, we simply create a dataset composed of selected regions

from whole mammography images. Then, we use this dataset to train a model that is able to dis-

tinguish between regions centred in a lesion and normal regions. Finally, we apply this model to

new unseen images in all possible regions. The formulation is as follows.

Suppose we have a set of mammography images D. Each image Ii has an associated binary

mask, Bi, which specifies which pixels belong to a lesion. To each image, Ii ∈ D we apply two

sampling algorithms, Sp and Sn, which will return smaller regions to which we call patches. Sp

returns a patch centred in the middle of every lesion, while Sn returns many patches that do not

include any point p so that B(p) = 1. Details about the sampling algorithms are described in

section 6.5.3. Following this idea we can build two datasets:

Dp = {Sp(Ii,Bi)|Ii ∈ D} (3.29)

Dn = {Sn(Ii,Bi)|Ii ∈ D} (3.30)

Now, for training model M, in each iteration, we select n samples from each dataset Dp and

Dn. M is optimized in a supervised way, as for classification, as specified in previous sections. For

inference, we build a detector model, MD, based on the weights learned by M. MD takes an input
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image I and outputs a probability map, P, where, for each point, we have the probability of that

point being a lesion center.

A common approach to building MD is to sample a patch in each point, q, feed it to M, and

assign P(q) to that value. Instead of this, we followed a computationally less expensive approach

with the same numerical results, explained in section 5.1.



Chapter 4

Image Analysis

Although the bulk of this work is centered in machine learning techniques, image processing

methods used are briefly explained in this chapter.

4.1 Preprocessing techniques

Preprocessing techniques allow the standardization of image conditions before further processing.

These are important to increase robustness of the following algorithms. In this case histogram

stretching was used as a global contrast equalization technique. This technique is simply a rescal-

ing of the pixels according to the following rule:

Ic =
Ic−min(Ic)

max(Ic)−min(Ic)
(4.1)

After this, we are certain that all pixel intensities in the image are in a controlled interval.

Images were resized, so that small sized patches could contain a complete view of objects like

lesions. This is important due to memory limitations and overfitting concerns, in the convolutional

models. For this, bilinear interpolation was used.

In terms of ground truth information, we have access to binary images where all pixels with

value "True" correspond to a lesion. In this case, the resizing operation was performed using

nearest neighbor interpolation.

4.2 Morphological operations

Morphological operations are a set of methods which transform an input image based on a struc-

turing element. They are classified as non-linear filters. Usually, these are used in binary images,

but they can be extended to work with pixel intensity. Here we will describe the operations used,

first for binary images and then extend it to with intensity images.

If we have a binary image, I, so that the value in point p, is either 1 or 0 we can define the

set I = p|I(p) = 1. We do the same for the structuring element S, S = p|S(p) = 1. Although the
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same letter is attributed to the image and the set, they are simply different notations of the same

information. This facilitates notation of the following operations.

4.2.1 Morphological Dilation and Erosion

A binary dilation between I and S is noted as I⊕S and its result is given by:

I⊕S = {(p+q)|p ∈ I,q ∈ S} (4.2)

Effectively, this defines the dilation operation as all points which can be obtained by translating

a point in the image, p by a point in the structuring element q. Alternatively we can think of this

as all points in which the structuring element touches, if we make it slide through all points of

the image. As we can easily see, the result of the operation will at least be the same number of

positive pixels, as the image.

The inverse operation is erosion, noted as I	S:

I	S = {p|(p+q) ∈ I, f or all q ∈ S} (4.3)

In this case, what happens is that we only keep a point if all possible translations of that point

by all the points in the structuring element belongs to the image. Again, we can think of it as

sliding the structuring element through all the points in the input image. If, for a point, the whole

structuring element is covered by the image, that point is kept. Contrary to dilation, these operation

keeps at most, the same number of pixels as the input image.

Generalizing for the case of intensity images, we can no longer work with sets, due to the fact

that each pixel has an intensity value. As previously seen, these operations can be computed by

shifting the structuring element through all points of the binary image. In this case we shift the

structuring element through all the pixels in the image. If we have an image, I(x,y) and the binary

structuring element, S, the dilation and erosion operations are given by:

I⊕S(x,y) = max[u,v]∈S{I(x−u,y− v)} (4.4)

I	S(x,y) = min[u,v]∈S{I(x−u,y− v)} (4.5)

In some cases the structuring element have real values. Although not used in this work, the

definitions seen before can be easily extended the following way:

I⊕S(x,y) = max[u,v]∈S{I(x−u,y− v)+S(u,v)} (4.6)

I	S(x,y) = min[u,v]∈S{I(x−u,y− v)−S(u,v)} (4.7)
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Figure 4.1: Binary Erosion and Dilation illustrated.

4.2.2 Morphological Opening, Closing and White Top Hat

The operations presented next, are obtained by composition of dilation and erosion and thus, they

have the same formulation in binary and intensity images.

The opening operation is normally used to remove small white regions in binary images. In

opposition, the closing operation removes small black regions. The size and shape of the struc-

turing element influences what regions will be filtered and which will be kept. They are defined

as:

I ◦S = (I	S)⊕S (4.8)

I •S = (I⊕S)	S (4.9)

In this work, a white top hat was used as part of an algorithm for artifact removal. This

operation is defined as:

Tw(I,S) = I− I ◦S (4.10)

If we analyze this operation, considering white objects as elements, we can see that, first we

compute the opening operation, which will remove small elements. After this, we subtract this

image to the original. By doing this we are removing all elements that were not filtered by the

opening operation. In theory, the final result will keep only small white objects. The size of those

elements can be adjusted by defining an adequate structuring element.
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Chapter 5

Contributions

In this chapter we expose the contributions of this work. These consist of architectural changes

to the models and learning strategies. Each of the following methods were investigated with the

aim of solving some problems that come from the application of ConvNets to medical datasets. In

particular, we address the positive negative unbalance and the low amount of data.

5.1 Image Screening with Convolutional Neural Network Detector

Normally, after training the model as seen in chapter 3, to detect lesions in a new image, all

possible regions are tested individually. Here we show a much more efficient way to do this,

changing the architecture of the model. If we have a squared sized patch, with side length l, one

convolutional layer will perform O(l2) operations, in that patch. Now, for a squared sized image

of side length w, we would extract O(w2) possible patches. The total number of operations would

be proportional to O(l2×w2). This method is inefficient due to the fact that we are computing the

convolution for the same region multiple times. This happens because patches overlap by l− 1,

when we extract all possible image regions.

We could compute the same numerical result by performing the convolution on the whole

image, with the same weights. Then, the number of operations would be limited by O(w2). In

theory, this approach can be significantly faster. For instance, if l = 10 we are performing l× l =

1/100 of the operations with this method. This way we effectively avoid redundant computations.

We can apply this to all layers with spatial structure with some restrictions:

1. The layer should not pad the input. Otherwise, with the sampling approach, some zeros

are used to compute the output result. These zeros cannot be inserted in the middle of the

image for every possible patch to perform the convolution over the whole image. As such,

the numerical result will not be the same.

2. All filters should have stride of 1. Let’s consider the example of having a stride of two in

one dimension for simplification. In this case for the first region the model would place the

filters in positions [1,3,5, ...]. For the second region the model would run for the positions
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[2,4,6, ...]. There is an offset and so, if we use a stride of two for the whole image, we will

not have the same numerical results.

For the first restriction we settled with using layers with no padding for all models intended

to screen the image. For the second, we can apply the filter without and with the offset and save

both results. Then, computations continue for the next layers in the two outputs. For the case of

images we generalize as follows. Suppose we have a feature map R, which is a 3-dimensional

array. Before passing it through a layer with stride, s, we create a set of copies with small offsets,

G. The operation we want to perform is then applied to all of these copies, individually.

G = {translate(R,sx,sy)|sx ∈ {0, ...,s},sy ∈ {0, ...,s}}

Where translate(R,sx,sy) denotes a copy of feature map R translated sx pixels to the right and

sy to the bottom.

In the case of dense layers, we need to transform them so that they preserve spatial structure.

As seen previously, after the convolutional part of the network all units are flattened into a vector.

So, for the first dense layer, we can transform it into a convolutional layer by reshaping its weights

in the opposite way. As such, the transformed version will have an input shape of [w,h,c], a filter

size of w×h and the same number of filters as before. For the following layers we perform 1×1

convolutions with the same number of filters, as previously seen.

5.2 Convolutional Layer with Rotated Filters

As seen previously, in mammograms, lesions do not have a particular orientation. Motivated

by this, we explore a custom version of convolutional layer, using rotated filters. In convolutional

layers, weights are shared only across width and height. Using this variation, the parameter sharing

property is partially extended to filters with different depths. This is done by rotating each set of

weights by k×90 degrees with k ∈ {0,1,2,3} to obtain a different feature map.

For instance, if we had 32 filters in a convolutional layer with size 3×3 and an input map of

size 16 we would have 32× (3×3×16+1) parameters to optimize. With rotated filters, we can

obtain the same number of internal feature maps, reducing the number of weights by a factor of 4.

Formally, using the previous convolutional layer definition:

Ri,k =
C

∑
c=1

(Ic ~s rot90(Fi,c,k))+bi (5.1)

Ri = (Ri,0,Ri,1,Ri,2,Ri,3) (5.2)

R = (R1,R2...,Rd/4) (5.3)
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This method can be seen as a regularization strategy. Effectively, we are using field knowledge

to reduce the number of parameters to optimize. Note however, that rotational invariance is not

achieved, but only filter symmetry. Intuitively, due to the fact that a mass can have any particular

orientation, the rotated version of a discriminant feature, should also be discriminant.

During learning, it is common for all the training data to be correctly classified. In this case, the

model has captured patterns, that are only present in this subset, and do not generalize to unseen

data. This version of the convolutional layer, forces the model to learn filters in four directions.

As such, it is unlikely that patterns specific to the training data appear in all four directions. Due

to this, the rotated filters might hinder the models ability to learn non generalizable features.

Optimization is not changed. When we compute the gradients for each parameter in a con-

volutional filter, using backpropagation, we take in consideration the whole feature map. For this

version, we do the same, taking in consideration four feature maps per parameter.

In terms of implementation, filters are rotated before performing the convolution. This leads to

a small computational penalty. The time per training iteration increased by a factor always smaller

than two. In principle, this technique could be generalized for more directions, but in the context

of this work that was not attempted.

5.2.1 First Dense Layer with Rotated Filters

The same principle can be applied to the first dense layer as well, if we consider the transformation

shown in subsection 3.3.1.5. As seen, this layer is equivalent to a convolutional one, where the

filter size is the same as the previous layer’s feature map size. After this conversion we apply

exactly the same rotated filters modification.

Effectively, this restriction on the model’s architecture forces the dense layer to extract the

same features in four orientations. One interesting aspect of this approach is that the first dense

layer often has many parameters when compared to the rest of the network. As such, the impact

of rotated filters in this layer should be more significant than in the case of convolutional ones.

One possible disadvantage of this method is the introduction of redundant features. For in-

stance, if one filter is capturing round objects well centered in the input, the introduction of rotated

filters will quadruple the number of features encoding that information, removing space for other

features and increasing the computational cost with no benefit. This happens due to the fact that,

in this case, by rotating the filter we obtain the same result. In fact, this effect can happen to all

layers with rotated filters.

5.3 Rank Learning

In some machine learning problems, we want to build a model that is able to tell which of two

examples has a higher value for some property. For instance, for a recommendation system, we

want to distinguish between a set of documents, in which one is more relevant than the others. In

the context of this work, rank learning is used to artificially augment data and robustly address the
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unbalance problem. Due to the much smaller number of lesion regions, compared to normal tissue,

we create a model that learns to distinguish between the two classes, by learning the difference.

This way instead of Np and Nn positive and negative cases, we have a set constituted of Np×Nn

examples.

To this end, we create, during training, randomly ordered tuples of positive and negative ex-

amples. If the first case is positive, we assign it the label 1, and, otherwise, we label it as 0.

Three setups were considered: 1) A ConvNet, specially designed to this strategy, is trained from

scratch; 2) a ConvNet is fine-tuned after conventional supervised optimization and 3) The fea-

tures extracted from a previously trained ConvNet are used to train a linear classifier using this

approach.

5.3.1 Convolutional Neural Network for Rank Learning

Fig. 5.1 shows a representation of the proposed setup. Essentially, we have two identical models

which share weights during training. Each computes a feature vector representation of its input.

Then, the information of both is combined by subtracting these vectors at layer 	. A linear

classifier computes the probability of the first input being a positive, based on the feature vectors

difference. This setup is trained with gradient descent.

After training, we want to extract the probability of an input being a lesion. For this, one

model is used to extract the feature vector and fed to the classifier. Because the classifier divides

the space linearly, by training we are effectively discovering the direction that best separates the

two classes, in the training data. Additionally, because positive and negative samples take turns

in each input, the best plane that divides the feature space intercepts the origin. As such, the final

model is completely defined using this training strategy.

Compared to normal supervised classification this method has the disadvantage of requiring

more time and memory to train. This happens because each training sample is composed of two

images, instead of one, which are propagated through the models, requiring intermediate layers

results to be kept in memory for the backward pass. However, it is less probable that the model

overfits training data, due to the huge amount of combinations between negative and positive

samples.

5.3.2 Linear classifier

In the proposed second methodology, we use the same principle but instead of training a model,

end to end, we use the representation learned from a previous experiment. The output probability

for a new differences feature vector, x is given by:

p(x) = sigm(wT x) (5.4)

W are trainable weights, optimized by mini-batch gradient descend, on the cross entropy loss

function. In this case, the bias parameter is not necessary. Similar to the previous method, the
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Figure 5.1: Rank learning applied to ConvNets. Models share parameters. Positive and negative
samples alternate between inputs.

hyperplane that separates the classes should pass by zero, due to the fact that images can be fed to

each input with the same probability.

For inference, we feed a feature representation of an image, computed with the same model

used to obtain the difference feature vector, x.

This method has the advantage that it requires very small computational power for the training

phase, once the initial model has been trained.

5.4 Cascade approach

As seen previously, the number of lesions is much smaller than the number of normal regions. Due

to this, when we create a patch dataset to train a detector, it is heavily unbalanced. Naively training

a model can yield high performances by simply attributing probability of 0 to all patches. Common

approaches to deal with this problem include oversampling the positive cases or selecting only a

few negative samples. As a side effect of these strategies, after optimization, the model becomes

biased towards the minority class.

To solve this problem we explore a Cascade approach, by training multiple models used in

succession. For this, the first model uses the initial dataset, oversampling the positive cases. This

detector is then run on the training data, to create new patch dataset. All regions classified as

positive are extracted. If they correspond to a lesion they are labeled as positive, otherwise they

Figure 5.2: Illustration of data points in the original feature and the dataset created by taking the
differences.
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(a) (b)

are negative. Ideally, following this strategy, each model will reduce significantly the number of

normal regions in the data, while keeping as much lesions as possible.

Conceptually, we speculate that some features, which might be optimal to discard obvious

false positives, can work against the model to discriminate more difficult cases. For instance,

image regions with high intensity are relatively rare and can occur due to lesions, the pectoral

muscle boundary or epithelial tissue. As such, simple intensity features, which help the model

to discriminate lesions from most of the normal regions, can have an undesirable effect in these

few examples. The second model however, does not need to learn this difference, as it only

receives data previously classified as positive. This can facilitate learning. For instance, in the

same example, the second model does not need to learn intensity features to discriminate more

obvious negatives and so, it might be trained to learn other patterns like shape or texture, which

help discriminate between epithelial tissue and lesions. Due to this, the learning problem might be

simplified by breaking down classification this way.

This simple explanation helps to understand intuitively why a cascade approach might work in

this case. More formally, if we think about the distribution of unbalanced data in the feature space,

harder negative examples should be close to many positive cases, while easier ones should be far.

Additionally, the majority of negative examples should be easy. The cascade approach works by

first, learning a boundary that separates easy negatives from positives and harder negatives, and

then, learning a second boundary, to distinguish between these last two. What we are saying is

that, learning the second boundary becomes easier if we do not pay attention to the easy negative

samples. This process is illustrated on fig. 5.3a.

An obvious advantage from this approach is that we can train models with artificially balanced

data, by oversampling positive cases, while reducing the bias towards the minority class.

Additionally, although not used in this work, this also allows us to use lower capacity models

to discard obvious false positives, which are faster, and run more complex models only on difficult

examples. This can significantly reduce the time required to screen new images, at test time.

A schematic view of this method is shown in fig. 5.3b.
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Experimental Work

In this section, the carried out experimental work is presented. First, an overview of the data

used in the experiments is shown, followed by implementation details and performance assess-

ment methods. From that point on, experimental results are shown and discussed, for each of the

proposed methodologies. The final performance of the breast lesion detection system is discussed

in the last section.

6.1 CBIS-DDSM Dataset

To develop, train and benchmark the performance of proposed methods, data in the form of mam-

mography images must be used. As seen, much research on this field utilizes unpublished data,

which impairs fair comparison of methods as well as reproducibility. To avoid this, the publicly

available Curated Breast Imaging Subset of DDSM (CBIS-DDSM) (Lee et al., 2016) was used.

This is an updated and standardized version of the Digital Database for Screening Mammogra-

phy (DDSM) (Heath et al., 1998), created recently. DDSM contains thousands of scanned film

of mammography studies. Some of these were used to build the CBIS version, which introduced

some key modifications to facilitate the use of data:

1. Images with annotations of lesions that could not be seen by a trained mammographer were

removed from the dataset.

2. Images, previously in lossless JPEG format, were decompressed and saved in the DICOM

format, the standard in medical imaging.

3. Manual segmentation of lesions was refined.

Currently, this dataset is integrated in The Cancer Imaging Archive (TCIA) (Clark et al., 2013),

a large collection of images of many cancer types and imaging techniques, aimed at facilitating

research.

It is divided in two parts, one with masses and the other with microcalcifications. In this work,

only the first was used. To our knowledge there are no published works on using CBIS-DDSM. A

total of 691 patients, 1231 images and 1318 lesions were available and used.
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(a) Pathology (b) BIRADS (c) Subtlety

Figure 6.1: Distribution of lesions in the dataset according to ground truth information. BIRADS
0 stands for incomplete assessment. The subtlety level of zero is the harder to classify, while 5 is
the easiest. These levels were grouped in hard [0−3], average [4] and easy [5].

Each lesion had an associated detailed segmentation, shape and margins descriptions and a

BIRADS score, which quantifies the suspicion level of that lesion. Additionally, a subtlety level

and pathology assessment were present. The distribution among these categories is shown in fig.

6.1.

6.2 Implementation

All software was implemented in the python programming language (Rossum, 1995). This is

the preferred tool when it comes to deep learning development for research. Python has some

important features that facilitate development, which include the easy installation and use of well

documented open source packages.

For image processing methods, we used numpy (van der Walt et al., 2011) and scikit-image

(van der Walt et al., 2014) packages, which are standard for these applications. Implementation

of deep learning models was done in tensorflow (Abadi et al., 2015). This package, initially

developed at Google for research, is a flexible tool with many built-in functions for implementing

machine learning methods, including convolutional neural networks. Additionally, it provides

integration with two NVIDIA libraries, CUDA (Nickolls et al., 2008) and cuDNN (Chetlur et al.,

2014). These are highly efficient software libraries for parallel numerical computation, using

GPUs. As seen previously, nowadays this is a necessity in this field of research.

Experiments were carried out in an Ubuntu machine with an Intel quad core i7 processor @

4.00 GHz, and an NVIDIA GTX 750 Ti with 2Gb memory GPU.

6.3 Evaluation metrics

In the context of this experimental work, datasets only contained two classes: positives (malignant

and benign lesions) and negatives (normal tissue). After running a model for new examples we get

a value for each, that expresses the probability of that region being a lesion. Based on this we can

create a ROC curve. Each point on this curve is defined by the sensitivity and false positive rate

obtained, by assigning all examples with predictions above a threshold to positive and the others

to negative. They can be computed as follows:



6.4 Preprocessing and Region of Interest Segmentation 55

sensitivity =
T P

T P+FN
(6.1)

FPR =
FP

FP+FN
(6.2)

Where T P and FN are positive correctly and incorrectly classified, respectively, and FP are

incorrectly classified negatives. A very common metric to compare algorithms is the area under

the ROC curve (AUC). This is illustrated in fig. 6.2. Throughout experiments, this metric was

used for comparison between methods. Additionally, in the last section, we compare results using

the FROC curve. The same principle applies, but instead of the false positive rate in the horizontal

axis, the average number of false positives per image is used.

Figure 6.2: Diagram of a ROC curve. The are under the curve is shown in gray.

6.4 Preprocessing and Region of Interest Segmentation

The first module of the system is used to select a region where lesions might occur, removing the

black portions around the breast. This is useful as it discards many obvious false positives. When

using a learning strategy, like the one proposed, we need to avoid spending training resources on

samples we could have easily discarded.

Additionally, this module also removes artifacts, characterized by high intensities values,

which could be mistaken for lesions. These artifacts appear outside the breast boundaries, and

so, are easy to discard with a global view of the image, but hard with just local information.

The used algorithm is similar to Pereira et al. (2014) with some minor modifications. First, for

a new image, histogram stretching is performed, mapping pixel intensities to the interval [0,255].

After this, the image is resized and padded with zeros. Depending on the experiment, different

resize factors were used. The padding operation ensures the whole image, including the edges,

can be filtered by a structuring element using morphology operations.

After padding, a white top hat operation is performed, with a disk shaped structuring element.

The result, containing only non important regions, is subtracted to the original image. This image

is then thresholded to obtain a binary mask. If this mask contains more than one object, the biggest
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is selected. The radius used for the structuring element was 240r pixels, with r the resize factor.

This size was empirically found and provided good results for a random subset of images.

The intermediate results of these operations are shown in fig. 6.3. As we can see, the seg-

mented region is well adjusted to the breast boundary and avoids well the artifacts on the CBIS-

DDSM dataset. Segmentation boundaries in the edge of the image look round, due to the combi-

nation of morphological filtering with the zero padding operation. This could be avoided by using

reflective padding, but it does not influence further methods, due to the absence of lesions in those

regions.

(a) Initial image (b) Top-hat filtering (c) subtracion: a-b (d) Mask (e) Final result

Figure 6.3: Results of breast segmentation for two examples using the proposed method.

6.5 Preliminary experiments

Initially, we tested common machine learning methods applied using the classification problem

formulation in chapter 3. As such, we evaluated the impact on performance of data augmenta-

tion, dropout, batch normalization and different input sizes. In the following sections we look to

improve on this performance, by using the proposed methods.

6.5.1 Dataset Construction

For training, small image patches were taken from images according to two rules, one for negative

examples and one for positive ones. First, patients are split evenly between 5 folds, each with
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approximately 138. Then, we follow the methodology described in the previous section, with

each image being scaled to 1/24 of the original size. The same scale factor was used for all

images due to the lack of information about the resolution of each exam. Negative patches were

obtained by grid sampling the images and taking all patches completely inside the breast, without

any pixel belonging to a lesion. Positives were obtained by taking one centered patch per lesion

only. This choice was made because the ideal result would be a maximum response in the center

of each lesion with all other pixels being zero.

In fig. 6.5 we can see the distribution of bounding box size for all the lesions in the dataset.

Based on this we selected patch dimensions. The (25,25) input contains completely the majority

of lesions. The (35,35) input also catches some surrounding tissue. Fig. 6.4 shows examples

of positive patches with these two input sizes. Sizes, were selected odd, so that the central pixel

could be the center of a lesion.

We then create five data splits, by selecting three folds for training, one for validation and one

for testing. We guarantied that each fold was used the same number of times in each of these tasks.

This procedure was done twice, one time for (25,25) inputs and another for (35,35). The final

datasets contained almost 1000 negative examples per positive for the first input size and 300 for

the second.

Figure 6.4: Examples of patches in the datasets. On top (25,25), and on bottom (35,35).

6.5.2 Model design

When it comes to designing a model, in deep learning, authors usually can follow three strategies:

utilizing other authors proposed architectures, designing a custom model based on intuition of

what might work and testing multiple models. Due to the computational requirements of training

and benchmarking performance of multiple models, the last option was discarded. This allowed

more time to perform experimentation with different methods. The strategy in this work was to

make custom networks based on the proposed VGG models (Simonyan and Zisserman, 2015)

and intuition. These, are simple, easy to implement and follow the conventional architecture of

ConvNets.
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Figure 6.5: Side size of the masses bounding boxes in CBIS-DDSM

There are more recent and better performing models in the literature. However, most of them

are usually tested in big natural images, very different from the data used here. Additionally,

some architectures, like Inception and ResNet require input padding in convolutional layers, which

would disallow testing whole images through the method described in section 5.1.

The final architecture of the model is depicted in table 6.1. As seen, all convolutional filters

have size (3,3), and they are stacked on top of each other to obtain (5,5) receptive fields, ef-

fectively reducing the number of weights, and allowing the introduction of an activation layer in

between. Due to the considerably smaller input size used in experiments, we have fewer pooling

operations. Compared to the VGG model, the first convolutional layers have fewer filters. As we

are dealing with single channel images, there are less possible patterns for the first layer to detect

and so, only 32 filters were used. For the fully connected layers the proposed model only has 512

neurons, compared to 4096. VGG was trained on ImageNet, to distinguish between 1000 classes,

probably requiring a bigger feature space to encode that information, when compared to our two

class detection problem. The total amount of parameters depends on the input patch size. Two

possibilities were evaluated (25,25) and (35,35). In these cases the total number of parameters

optimized is around 2 and 4 million, respectively.

6.5.3 Training the model

For each input size, 5 versions of each model were trained to study the impact of common regu-

larization methods used in deep learning:

1. The model as described in table 6.1.

2. Added dropout after ReLU activation in dense layers with a keeping probability of σ = 0.5.
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Table 6.1: Description of the model architecture used for the first experiments. All Convolutional
and Dense layers are followed by a ReLU activation, here omitted for simplicity. The first Dense
layer is described as having a filter size bigger than one. This is done for consistency in parameter
calculation, and also to emphasize the idea that these layers are in essence convolutional layers
with output size of 1×1. The output layer has a sigmoid activation function.

Layer Side Size no Filters Filter Size Parameters
1. Input 25 / 35 1 1 -
2. Convolutional 23 / 33 32 3 320
3. Convolutional 21 / 31 32 3 9k
4. Max-Pooling 10 / 15 32 1 -
5. Convolutional 8 / 13 256 3 74k
6. Convolutional 6 / 11 256 3 590k
7. Max-Pooling 3 / 5 256 1 -
8. Dense 1 512 3 / 5 1.2m | 3.3m
9. Dense 1 512 1 262k
10. Output 1 1 1 513

3. Added batch normalization after every convolutional and dense layer. The use of batch nor-

malization after activation layers was tested, in an initial phase, and no significant difference

was found. We stick with the recommendation in the original paper.

4. Combination of dropout and batch normalization with σ = 0.5

5. Combination of dropout and batch normalization with σ = 0.8. Ioffe and Szegedy (2015)

claim that better results are obtained with batch normalization by choosing a high value of

σ , or even disregarding dropout completely.

Additionally, we perform the same experiments with data augmentation. For this, every patch

at training time has an equal probability of being rotated by 90k degrees, with k ∈ {0,1,2,3}, and

horizontally mirrored. Also, patches were normalized by subtracting the mean and dividing by the

standard deviation of the training dataset. This is a common practice in many machine learning

applications, including deep learning models.

In initial experiments, it was noted that, by using Adam optimization algorithm, the model took

much fewer iterations to train until it converged, when compared to standard mini-batch gradient

descent. Additionally, the final solution was better. Due to this Adam was used in all experiments,

with constants β1 and β2 set to 0.9 and 0.999, respectively. The learning rate was set to 0.001 and

dropped by a factor of 10 at the midpoint of the training process. Weight decay was set to 0.0001.

Models were trained for 80 epochs, each corresponding to 200 balanced batches of 32 positive

and 32 negative samples. Normally, an epoch is the number of iterations necessary for the model

to see all data in the training set. In our experiments, this was only the case when using data aug-

mentation, where 8 times more data was available. In the case of models with batch normalization,

the optimization was much faster. To adjust for this, in each epoch these models only trained for

1/5 of the iterations. When not using data augmentation each epoch corresponds to approximately

8 passages through data. After each pass, the model loss is evaluated in a validation set, with all
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Table 6.2: AUC values for validation and test sets in CBIS-DDSM using 5-fold cross validation
average±2× std

25 x 25 35 x 35
Data aug Model Val Test Val Test

False

Simple 0.958 ± 0.023 0.958 ± 0.029 0.982 ± 0.009 0.981 ± 0.012
Dropout 0.5 0.963 ± 0.010 0.959 ± 0.016 0.977 ± 0.025 0.979 ± 0.015
BN Simple 0.971 ± 0.017 0.966 ± 0.018 0.985 ± 0.008 0.981 ± 0.016
BN Drop 0.8 0.973 ± 0.019 0.967 ± 0.032 0.985 ± 0.009 0.980 ± 0.012
BN Drop 0.5 0.975 ± 0.021 0.969 ± 0.018 0.987 ± 0.011 0.984 ± 0.011

True

Simple 0.979 ± 0.008 0.975 ± 0.013 0.987 ± 0.010 0.985 ± 0.012
Dropout 0.5 0.977 ± 0.015 0.975 ± 0.013 0.988 ± 0.008 0.984 ± 0.008
BN Simple 0.974 ± 0.020 0.976 ± 0.012 0.991 ± 0.006 0.989 ± 0.013
BN Drop 0.8 0.976 ± 0.015 0.977 ± 0.009 0.990 ± 0.008 0.987 ± 0.006
BN Drop 0.5 0.977 ± 0.021 0.976 ± 0.010 0.990 ± 0.006 0.986 ± 0.023

positive and 10000 negative examples, and saved. The whole validation set was not used, to avoid

spending too much time testing. After training, the model with lower validation loss is selected

for further evaluation.

6.5.4 Results and Discussion

Each individual training procedure took around 20-40 minutes to complete, depending on the size

of the input and number of iterations per epoch. In total these experiments run for a little more

than a day. Results are shown in table 6.2.

Globally, high AUCs were obtained, in part due to the high number of "easy" negatives in this

first dataset. Although only portions of the breast were considered, some of these regions have

low intensity and contrast, making them more obvious.

Additionally, high standard deviations were obtained, which are in part related to the difference

of difficulty between folds. Some patients are harder to diagnose due to characteristics like breast

density, while others present more obvious lesions. Because each split contains 138 patients,

these differences can affect results. If we look at fig. 6.9, which presents results from another

experience, we see that, performance varies more across splits, than between different models.

When we compare the obtained AUCs, we can see that, for all experiments the (35,35) models

perform better. This result, suggests that surrounding context of a lesion is important for its correct

classification. This is consistent with results presented by Lévy and Jain (2016). Bigger input

sides were briefly tested and did not seem to improve performance, while requiring higher training

times.

Data augmentation, as expected, also improved consistently the performance of the models.

This is common in deep learning, due to the high number of examples required to train these

models. In terms of dropout no improvements were found, which is uncommon. One plausible

justification for this is that because we are working with small models, the problem of overfitting

might not be as relevant, and so the effect of dropout is minimal. Batch normalization had a
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Figure 6.6: Effect of batch normalization. After one epoch a higher validation accuracy is obtained
than the baseline after two epochs. Note that, for the batch normalization model each epoch had
1/5 of the data. Additionally, maximum accuracy is obtained very soon.

positive impact in most experiments. Additionally, as seen in fig. 6.6, this technique increases

training speed significantly. In future experiments, batch normalization was included whenever

possible.

One interesting aspect found in these preliminary experiments is that the model only overfits

the positive cases. This is shown in fig. 6.7. The training loss is decreasing for both classes, while

the validation loss is only decreasing for negatives. Additionally, the training loss for positives

decreases more rapidly than for negatives.

The reason for this is that models are seeing positive examples multiple times, whereas the

number of negatives is enough for many epochs. This could motivate the development of strategies

to regularize learning for one class only.
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Figure 6.7: Train and validation loss for positive and negative samples. The model is overfitting
to the positive data.

6.6 Convolutions with Rotated Filters

To evaluate the effect of rotated filters as a regularization method three experiments were consid-

ered. We address each individually.

For the first experiment we used the BN Drop model with σ = 0.5 as a baseline. The (35,35)

input size was used. As seen in section 5.2, the rotated filters version can substitute convolutional

layers and the first dense layer of a model. Due to the fact that this version has a fewer weights, it

works as a regularization technique. In principle, we impose restrictions in the model to increase

the universality of the features learned. This is based on the field knowledge that lesions do not

have orientation, and so, can appear with any rotation in the mammograms. Due to this, individual

features should also appear in any orientation.

In this experiment, four models were designed by changing conventional layers to this new

version, and are presented in table 6.3.

Table 6.3: Models considered for the first Convolution with Rotated Filters experiment

Model Layers changed Removed parameters % of parameters removed
Rot1 [2] 240 0.0%
Rot2 [2,3] 7k 0.2%
Rot3 [2,3,5] 62.5k 1.5%
Rot4 [2,3,5,6] 504.8k 11.9%

The same exact data and training methodology, described in section 6.5, was used for this

experiment. Also, batch normalization and dropout were used.

Training and inference processes were significantly slower than the baseline model in each

iteration. The reason behind this is related to implementation. In each forward pass through the
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Table 6.4: AUCs obtained for models with rotated filters. Results are presented as average±2×
std over 5-fold cross validation.

Normal data Augmented data
Model Val Test Val Test
Baseline 0.987 ± 0.011 0.984 ± 0.011 0.990 ± 0.006 0.986 ± 0.023

1 rot layer 0.982 ± 0.019 0.983 ± 0.015 0.992 ± 0.004 0.992 ± 0.005
2 rot layer 0.985 ± 0.014 0.986 ± 0.008 0.988 ± 0.009 0.988 ± 0.012
3 rot layer 0.982 ± 0.014 0.980 ± 0.014 0.988 ± 0.006 0.989 ± 0.002
4 rot layer 0.985 ± 0.010 0.983 ± 0.008 0.988 ± 0.008 0.992 ± 0.007

model, filters were rotated, which took a small amount of time. In the worst case, for model Rot4,

each training iteration took approximately 50% more time.

The validation and test AUCs are shown in table 6.4. The performance of these models in-

creases with data augmentation. As explained before, layers with rotated filters provide feature

extraction symmetry not rotation invariance, and so, this behavior is expected. The obtained AUCs

are very close to the baseline model and did not provide any clear advantage. Several hypothesis

can justify this:

1. The number of parameters removed is small compared to the 4 million in the base line

model. At best, approximately 11.9% were removed in Rot4.

2. The amount of data available was sufficient to learn filter symmetry, and so, the effect of this

regularization technique is minimal. Additionally the AUCs are very close to 1.0 making a

significant increase in performance harder to obtain.

3. The imposed restrictions make the model harder to optimize. The fact that the gradient of

a parameter is computed using four filters, instead of just one could decrease the ability of

the model to converge to a good solution.

4. This regularization technique is ineffective. The main justification for this is that, some

features extracted from the network might have no orientation. For instance, one filter could

be capturing round objects and, in this case, the rotated convolutions version will replicate

that feature four times, with no gain. Further, the introduction of redundant filters in the

network might remove space for other relevant features.

5. L2 and dropout regularizations are already "strong" enough. This is less likely but possible.

Although dropout and L2 have different effects than the proposed method they might be

limiting the ability of the baseline model to overfit the training data. Batch normalization

also promotes regularization.

Due to the previous results being inconclusive, two additional experiments were designed,

using datasets created for the purpose of Cascade evaluation, explained in section 6.8.4. Two

input sizes were considered (72,72) and (36,36).
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Table 6.5: Convolutional Neural Network architecture for the second experiment of rotated filters.

Layer Side Size No Filters Filter Size Parameters
1. Input 72 1 1 -
2. Convolutional 68 16 5 416
3. Max-Pooling 34 16 1 -
4. Convolutional 32 64 3 9.2k
5. Max-Pooling 16 64 1 -
6. Convolutional 10 128 7 402k
7. Max-Pooling 5 128 1 -
9. Dense 1 256 5 819k
10. Dense 1 256 1 66k
11. Output 1 1 1 257

In terms of architecture, the smaller input sized model is described in subsection 6.8.2, and

the larger is depicted in table 6.5. In this model, filters bigger than (3,3) were used to increase

the number of parameters in the convolutional layers and reduce the computational cost of the

experiment. Dropout was disregarded. Differently to the previous section, the best model was

chosen based on validation AUC instead of loss.

The first experiment, with (72,72) inputs was performed only on one split due to the compu-

tational cost. The model was not optimized until it fitted perfectly the training data due to the time

taken for each training iteration. Also, the validation AUC started decreasing for the later stages

of the training process. We considered four scenarios: 1) baseline model, 2) introducing rotated

filters in all convolutional layers (Conv All), 3) introducing rotated filters only on the first dense

layer (Dense) and 4) combining the second and the third scenarios (Conv+Dense).

In fig. 6.8 we show the maximum AUC obtained in training and validation data. Again, the

differences between results are very small. All models with rotated filters perform worse on the

training data, which is to be expected, due to the restrictions imposed in the network. The Dense 1

model exhibits a typical behavior for regularization methods. Although its performance is smaller

for training examples, the validation AUC is better. This could be the result of learning more

general features. The same happens, at a lower scale, with the ConvAll model. The Conv+Dense

model seems to perform worse in both sets.

Although the difference is really small, these results suggests models with rotated filters are

harder fit to the training data. However, this increase in difficulty does not always translate to more

generic features. For a better assessment on the effects of rotated filters in the performance of the

network, the method should be tested in different settings that enhance the effects of regularization.

For instance, one could try the application of this method on smaller datasets, with higher capacity

models.

For the third experiment, rotated filters were only applied to the first dense layer. The obtained

results, shown in fig. 6.9, were similar to the ones seen previously in three of the five splits. In

the other two, the model performed equally well in one split and worse in the other, in terms of

validation AUC. In terms of training data, the model performed always worse.
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Figure 6.8: Train and Validation AUCs for (76,76) sized data for multiple models with rotated
filters.

The combination of all these experiments suggest a very small gain when using rotated filters

on the first dense layer. Note that, this variation reduces the number of parameters by approxi-

mately 21% for the (36,36) model and 17% for the (72,72) model. As such, the hypothesis that

the reduction of weights was insignificant should be discarded. Also, dropout was removed, which

reduces the generalization capacity of the baseline model.

In the end, these results suggest that, either this method is ineffective in regularizing Con-

volutional Neural Networks or for this particular problem the amount of data available and low

capacity of the models diminish the need for regularization methods.

As argued previously, further experiments using different data and higher capacity models

could be interesting to determine the effects of rotated filters in the model. From our results, when

applied to the first dense layer, this method increased results only slightly.

The fact that some features learned by the network might have no orientation, can lead to the

model learning redundant information. To test this hypothesis, one possible experiment would be

to utilize this version on a fraction of the filters only.

Figure 6.9: AUCs for multiple splits in (36,36) sized data using the Baseline and Dense1 models.
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6.7 Rank learning

To evaluate the effect of rank learning applied to Convolutional Neural Networks, the (36,36)

dataset, described in 6.8.1 was used. The baseline model is the one described in 6.8.2 without

batch normalization. In early experiments we verified that this technique impeded optimization

for rank learning architectures. Batch normalization works by adjusting the output’s distribution

of one layer for each mini-batch during optimization. Because in the case of rank learning we

have two streams of information, the normalization performed is different for each. We also tried

to apply the test version of batch normalization on one stream, during training, while performing

normal batch normalization on the other. The same effect was observed. Based on this, we decided

to remove it completely.

We compared three approaches to the baseline model. First, the rank learning architecture,

described in 5.3.1 is trained from scratch. Second, the same model is used, but parameter initial-

ization is done with the weights learned by the baseline model. Parameters after the subtraction

layer are learned from scratch, as these were not present in the original architecture. Third, a linear

classifier is optimized in a rank learning setting, based on the last dense layer’s activations of the

baseline model as described in 5.3.2.

In early experiments, it was noted that the rank learning architecture required smaller learning

rates. As such, this parameter was halved, and the number of batches increased to 400. Apart

from this, all other parameters were equal to section’s 6.8 experiments. Data augmentation was

performed. Table 6.6 shows the obtained AUCs over 5 split cross validation.

Table 6.6: AUCs obtained for rank learning experiments. Results are presented as average±2×
std over 5-fold cross validation.

Model Val Test
Baseline 0,982±0.010 0,983±0.005
Sctratch 0,981±0.008 0,980±0.009
Initialized 0,982±0.010 0,981±0.009
Linear Class. 0,982±0.008 0,982±0.008

As seen, the followed rank learning approaches perform equally to the baseline model. For

the linear classifier approach this was expected. As seen in previous architectures, the number of

parameters in the output layer is only a very small fraction of the number present in the model. As

such, adding a classifier on top of a feature representation and training on the same data should

not increase results significantly.

For the other methodologies results show there is no significant improvement over the baseline.

The hypothesis that we could increase the number of examples, by feeding tuples of data to the

network, as a data augmentation scheme does not hold. Additionally, these methodologies require

significantly more time to train, with the exception of the linear classifier which runs in a few

seconds. The fact that, during optimization we have two equal models stored in the GPU memory

doubles the amount of this resource needed.
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Figure 6.10: Losses for the rank learning approach trained from scratch on the first 20 iterations.

These results can be explained by the fact that the rank learning methodology was not able

to increase generalization. In particular, the model is fitting better to the training data than to the

validation, when running individual examples. This can be seen in fig. 6.10, which shows the

loss for training tuples as well as for train and validation single inputs, for the first 20 epochs.

We can see that the model is quickly minimizing the loss for training tuples. However, for single

training and validation inputs, the loss decreases much slower. Additionally, we can see that after

just 10 epochs, the model is already fitting training data better than validation. This happens

with both the training from scratch and pre-initialized models. Even though, in each batch we

are feeding different combinations of examples in the form of tuples, the network can still learn

features specific to the training data.

In the end, rank learning in Convolutional Neural Networks does not seem to be an effective

strategy to avoid overfitting. From these results we showed it performed equally, while taking more

computational resources to optimize. It can still be an alternative strategy in cases of unbalanced

data, similarly to oversampling the minority class.

6.8 Cascade learning

As previously seen, the cascade approach consists of sequential models that will eliminate the

most obvious normal regions, while keeping as much true lesions as possible. In the following

subsections we will describe the followed training methodology and report the obtained results

for each model. In the end, results for the proposed mammography lesion detection system are

presented.

6.8.1 First Dataset Construction

For the first dataset, the steps described in 6.5.1 were followed with small differences. First,

patches were taken from all regions centered in the breast tissue instead of completely contained

in it. Because we will be using the model to screen the image, regions close to the breast boundary

can potential present lesions. Another key difference was the selected patch size of (36,36). This
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was done to avoid odd numbers before max-pooling layers. Otherwise, the numerical results

of screening the whole image would be different than individual patch evaluation, due to the

max-pooling layers, similarly to convolutional ones, disregarding edge neurons when the filter is

not completely contained in the previous feature map. The ratio between negatives and positive

examples was approximately 300 for this dataset.

6.8.2 First Cascade Architecture and Training

The first model used is very similar to the one presented on table 6.5.3. The main difference is in

the number of filters in layers 5 and 6, which was 128, and layers 8 and 9, which was 256. We

verified no significant drop in performance by reducing these parameters. Additionally, it slightly

reduced training times. Due to the fact that we are using (36,36) sized inputs, the filter size of the

first dense layer is 6, instead of 5.

Training was performed similarly, but reducing the number of iterations to 40 and increasing

the number of batches per iteration to 200. This modification reduces the time spent testing on the

validation set and increases time spent training. Dropout was disregarded and batch normalization

was used.

6.8.3 Results and Discussion

The AUC obtained for the first model in the validation data was 0,987± 0,006. This value is

very similar to the ones achieved in the early experiments. After this, the model was used to

screen whole images in the test set, yielding a probability map. This operation took less than

on second per image. Instead of using the method explained in section 5.1, an adaptation was

done, to decrease the amount of memory needed. As previously explained, the network can be

transformed to run the whole image, instead of fixed sized patches. This requires more GPU

memory, which was not available. To solve this problem, a region of (100,100) is run each

time and outputs concatenated to obtain a final result. This compromise significantly reduces the

amount of redundant computations, while requiring small amounts of memory. Examples of these

probability maps are shown in figure 6.12. From each map, detections are obtained iteratively, by

first taking the coordinates of the maximum point, and then assigning a small region around the

detection to zero.

The results obtained for whole images is depicted in fig. 6.11. As we can see, for both views,

a sensitivity of 80% is only achieved with 8 false positives per image. This should be expected

due to the fact that, by oversampling the positive cases during the training, we are effectively

biasing the model towards this class. When we look at results for different subtleties, we can

see a very significant decrease in terms of model performance for harder to detect lesions. This

behavior is undesirable because these lesions are also the ones specialist can easily oversee. In

terms of malignancy, this framework is able to detect 80% of positive cases with only 4 false

positives per image. Although malignant masses are the most well represented in the dataset, the

difference between malignant and benign masses is small. This suggests that malignant lesions are
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easier to spot, with Convolutional Neural Networks, than benign ones. This behavior is extremely

interesting to CAD systems. A justification for this is the fact that malignant lesions are often

bigger in size and contrast more with the surrounding tissue. Between MLO and CC views the

performance is very similar with no view presenting a clear advantage for lesion detection using

this methodology.

(a) View

(b) Subtlety

(c) Malignancy

Figure 6.11: Detection results obtained by the first cascade model.
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6.8.4 Second Dataset Construction and Training

The second model is trained only on data misclassified by the first one. For this, utilizing the

previously obtained detections, a new dataset is constructed. As seen before the images were

scaled by a factor of 1/24. In this experiment, a resize factor of 1/12 was also tried. To obtain the

detections for these images, the probability map was scaled by 2 by using bilinear interpolation.

We took at most 100 patches, centered in the strongest detections, of sizes (36,36) and (74,74)

depending on the resize factor. This yielded a dataset with approximately 8 negative examples

per positive. Note that some detections fall on the same mass. Additionally, detections with

probability smaller than 0.5 were not considered.

For the second cascade model two architectures were tested depending on the patch size. For

(36,36) inputs, training was done exactly the same as the previous model. For (74,74), the ar-

chitecture depicted at table 6.7 was used. Additionally, dropout was added after dense layers with

σ = 0.8. Due to the model having a higher capacity to overfit the training data, more regulariza-

tion should be added. For each iteration, the (74,74) model trained on 1000 mini-batches, with

size 32. This reduction was done to decrease the GPU memory requirements of the model. All

remaining parameters were kept the same.

Table 6.7: (76,76) input sized model for the Cascade 2 experiments.

Layer Side Size No Filters Filter Size Parameters
1. Input 74 1 1 -
2. Convolutional 72 16 3 160
3. Max-Pooling 36 16 1 -
4. Convolutional 34 64 3 9280
5. Convolutional 32 64 3 36928
6. Max-Pooling 16 64 1 -
7. Convolutional 14 128 3 73856
8. Convolutional 12 128 3 147584
9. Convolutional 10 128 3 147584
10 Max-Pooling 5 128 1 -
11. Dense 1 256 5 819456
12. Dense 1 256 1 65792
13. Output 1 1 1 257

6.8.5 Results and Discussion of Cascade Approach

The maximum validation AUC obtained during training was 0,918±0,013 and 0,916±0,025 for

input sizes of (36,36) and (74,74), respectively. This is significantly lower than the one obtained

in previous experiments. Considering the second dataset only uses false positives of the first model

as negative samples, this classification task should in principle be more difficult. Additionally,

there is significantly less data in this second dataset. Another problem with this methodology is

that, when sampling the training set, we are using a model trained on that data. As such, the

sampling distribution could be different from the test data. For instance, a model that overfit the
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(a) Cascade 1
example 1

(b) Cascade 2
example 1

(c) Cascade 1
example 2

(d) Cascade 2
example 2

Figure 6.12: Probability maps obtained by screening example images with the each cascade mod-
els.

positive cases, can in the training data frequently predict a maximum in the center of lesions, while

on the validation set presenting deviations from this position. Due to this, for the second model,

training data might be slightly different from validation.

When we compare the two input sizes, AUCs are very similar. In theory, the second model

receives more detail information, that should be useful for classification. Several factors can con-

tribute to this result:

1. The amount of data available is not enough to train a model with more capacity. Due to the

sampling method of building the second dataset, the amount of negative samples is much

smaller than in the initial dataset. If this is the case, better regularization methods would

enhance results.

2. Additional detail information might not contribute to the task of discriminating lesions from

normal tissue. Although in mammography images detail is important to distinguish between

malignant and benign masses, for problem of detection this information might not be so

relevant.

3. The classification task is very hard with no significant differences between some false and

true positives. This is unlikely, but in a task like this an irreducible error rate should be

present. If this is the case, the best way to increase performance would be to feed more

information to the model, in the form of location, view or surrounding context.

We used the (76,76) model to evaluate detection performance. For this, a new image is fed to

the first classifier, yielding a probability map. This map is binarized using a fixed thresholded of

0.50. The second model is run on the whole image, at a different scale. The resulting probability

map is multiplied by the previously obtained binary image. The same procedure explained in

6.8.3 is used to obtain detections. The results are depicted in fig. 6.13. As we can see, there

is a significant increase in performance, when compared to using only one model. At two false

positives per image the system is able to detect 80% of the lesions. This number rises to 85% if we
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only consider the malignant cases. In terms of subtlety, the second model considerably increases

performance on hard cases. As with the previous experiments the difference between MLO and

CC for lesion detection is very small.

To our knowledge there is no work in the bibliography using the CBIS-DDSM dataset to

compare this results to. As mentioned by Dromain et al. (2013), specialists have a false negative

interpretation of 10−15% for malignant cases. The proposed system is able to achieve comparable

sensitivity at at 2-3 false positives per image. Additionally, in this framework, mammographic

images are analyzed individually. Although not trivial the integration of both views could be used

to enhance results. The same author explains that typically, the sensitivity of a CAD system to

masses varies from 83% to 90% with a 0.72-1.82 false positive detections per image. The obtained

detection results are slightly under mark with 80% detections at two false positives per image.
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(a) View

(b) Subtlety

(c) Malignancy

Figure 6.13: Detection results obtained by the second cascade model.
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Chapter 7

Final Remarks

7.1 Future Work

The proposed system for lesion detection is able to detect 80% of lesions at 2 false positives per

image. Importantly, it has an increased sensitivity towards malignant cases and the time taken for

a new image is only a few seconds. Future work should focus on increasing sensitivity at low

false positives per image. There are several complementary strategies that could be followed to

improve on this. We divide them in three groups: resources, deep learning methodologies and

image processing in mammograms.

As always in the deep learning field, more data and computational power should contribute

significantly to better results. Although ideal, this would require significant efforts in terms of

collecting and labeling data. Additionally, the methods proposed here should be applied to other

datasets, particularly in full field digital mammography images. As seen before, this modality has

no digitalization artifacts and a higher signal-to-noise ratio, which could facilitate the detection

process.

In parallel, the study of better regularization strategies to diminish the amount of mammograms

required for the optimization of deep models should be pursued. In terms of data augmentation,

in this work only rotation and mirroring transformations were applied. Perhaps the use of trans-

lation, scaling and more rotations could provide more robust models. Additionally, sophisticated

approaches could be followed, for instance elastic distortions or normal tissue addition to lesions.

The combination of all these methods could yield datasets up to one or two orders of magnitude

superior to the ones used here. The rotated filters approach should be further explored to determine

weather it is an effective regularization strategy or not. Additionally, instead of only using filter

symmetry, approaches to achieve rotation invariance in the models could be explored, decreasing

the number of optimizable parameters even further. The cascade approach was useful and could

be extended by adding more models on top. Additionally, several techniques have been proposed

in previous works to stabilize predictions, which were shown to have a positive impact in final

result. These include running the model for an image at multiple rotations or filtering the output

probability map to decrease noise.
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76 Final Remarks

As seen in the experimental work, the model is less sensitive to more subtle lesions. To

address this problem preprocessing methods should be used to enhance these regions and facilitate

posterior detection. Additionally, the model only sees a small portion of the image. The use of

global image information to facilitate learning could be interesting to test. This could include

location in the breast, pectoral muscle segmentation or epithelial tissue segmentation.

Future work should focus on integrating all these areas, to create more robust systems, able to

surpass current state-of-the-art CAD systems. To increase performance deep learning should be

used as a tool for the development of CAD rather than directly applied.

7.2 Conclusions

Nowadays, breast cancer is still a heavy burden in our society. The fact that early detection greatly

improves patient outcome, motivates the development of new technologies to assist in this process.

CAD systems have been shown to increase sensitivity in some studies. However, they still lack the

desirable performance. The integration of modern deep learning methods in these systems could

improve on this. Due to the nature of medical image data, the use of deep models requires some

adjustments. In this work we focused on adapting Convolutional Neural Networks to the problem

of breast lesion detection in mammography images.

For this, a region based approach was followed by training deep models to distinguish between

normal breast tissue and lesions at a local level. These were then used to analyze whole mammo-

grams to obtain detections. To deal with the small amount of data and the unbalance between

healthy and lesion tissue three methods were studied.

First, rotated filters were incorporated in the model architecture to reduce the number of opti-

mizable parameters. This technique produced only very small gains in certain conditions. Further

research is necessary to better understand the benefits of this strategy.

Second, a rank learning approach was used to artificially increase the amount of data available.

The performance was similar to conventional training, and proved inefficient in terms of compu-

tational resources. Additionally, we show that this strategy also leads to overfitting. It can still be

used as an alternative to oversampling.

Third, a cascade approach was used to deal with unbalanced data. This strategy worked by

training sequential biased models that, when used together, can discard many normal regions while

keeping lesions.

The proposed detection system uses the cascade approach, and is able to detected 80% of

lesions with only 2 false positives per image. This number rises to 85% , if we only consider

malignant lesions. An important property of the proposed method is that it only takes a few

seconds to process each image.
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