View metadata, citation and similar papers at core.ac.uk

I
brought to you by .{ CORE

provided by Repositério Aberto da Universidade do Porto

A Remote Demonstrator for Dynamic FPGA Reconfiguration

Hugo Marques
Faculdade de Engenharia
Universidade do Porto
ee06273 @fe.up.pt

Abstract

This paper presents a demonstrator for partial reconfig-
uration of FPGAs applied to image processing tasks. The
main goal of the project is to develop an environment which
allows users to assess some of the advantages of using dy-
namic reconfiguration. The demonstration platform is built
around a Xilinx Virtex-5 FPGA, which is used to implement
a chain of four reconfigurable filters for processing images.
Using a graphical interface, the user can choose which fil-
ter goes into which reconfigurable slot, submit images for
processing and visualize the outcome of the whole process.

1. Introduction

Partial dynamic reconfiguration consists in adapting
generic hardware in order to accelerate algorithms or por-
tions of algorithms. It is supported by a General-Purpose
Processor (GPP) and reconfigurable hardware logic [1].
The processor manages the tasks running in hardware and
the reconfiguration of sections of the FPGA. In addition, it
also handles the communication with external devices.

It is expected that this technology will be more and more
present in everyday devices. Therefore, it is important to
introduce reconfigurable computing to electronic and com-
puter engineering students. The goal of the project is to
build a tool to support teaching the fundamentals of dy-
namic reconfiguration, as a starting point for students to
experiment and be motivated to begin their on research on
this field. To emphasize the dynamic reconfiguration oper-
ations, a system capable of processing images was imple-
mented. In this way the user can easily visualize the results
of the whole process.

The basic hardware infrastructure contains a processing
chain with four filters working as reconfigurable partitions
of the system. In regular operation, images flow through
the four filters in sequence. To select the filters and to visu-
alize the results of the selected operation, a remote graph-
ical user interface was implemented in the Java program-
ming language. This interface allows the user to send re-
configuration orders to the board in which the system is
implemented. The user is able to visualize the original sub-
mitted image and the result after the process. As this appli-
cation emphasizes the advantage of using dynamic recon-
figuration, the remote user interface also shows some per-

ISBN: 978-972-8822-27-9

Jodo Canas Ferreira

INESC TEC and Faculdade de Engenharia

Universidade do Porto
jef@fe.up.pt

formance indicators. The system can be used in two differ-
ent ways: a basic use and an advanced use. In the first one,
the user only uses the graphical interface and the available
filter library. An advanced user can expand the system by
developing and implementing new filters following a guide
that describes the design flow and the rules for a successful
implementation.

The board chosen for the implementation of the system
was the Xilinx ML505, which has a Virtex-5 FPGA [2].
The on-board software to control the reconfiguration pro-
cess and the image processing tasks runs on a soft-core pro-
cessor (MicroBlaze) inside the FPGA. This software was
developed using the Embedded Development Kit (EDK)
tool by Xilinx. The graphical user interface (GUI) runs in
any environment that supports the Java language.

This document describes the approach used and the re-
sults obtained in the development of this project, which is
mainly focused on a teaching context.The next section talks
about work that has been developed in the scope dynamic
reconfiguration on demand and dynamic reconfiguration
systems with teaching purposes. The other sections of this
article describe an overall view of the system (Sect. 3),
the approach of hardware that was developed (Sect. 4), the
strategies that were used to implement image filters (Sect.
5), the software that was developed for the whole system
(Sect. 6), and the results (Sect. 7). Section 8 presents some
conclusions.

2. Related Work

The use of dynamic reconfiguration is directly con-
nected with its ability to speed up computing. It has al-
ready been proved that this kind of technology is capable
of producing significant performance improvements in nu-
merous applications. Also, the use of dynamic reconfigu-
ration enables the reduction of the number of application-
specific processors inside a single device, opening the way
to weight and power consumption reductions in many ar-
eas, like for example a car or a cell phone.

In the scope of reconfiguration-on-demand, a project
was developed in 2004, whose main objective was to incor-
porate many car functionalities in a single reconfigurable
device [3]. As there was no need to have all the function-
alities working at the same time, the main approach was
to have them multiplexed to save energy efficiently. Algo-
rithms were developed to do the exchange between tasks
according to the run-time needs and energy efficiency con-

REC 2013 15

https://core.ac.uk/display/143410171?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

siderations.

This project concluded that systems of this kind are vi-
able for the non-critical functionalities of a car, like air con-
ditioning, radio, and lights control. It was possible to have
four tasks working simultaneously in the FPGA and do ex-
changes with others as needed, without compromising the
purpose of any activity and saving power consumption and
space.

In the scope of demonstrating dynamic reconfiguration
of FPGAs for education proposes, a system was recently
developed whose main goal is to help students learn the
fundamentals of this technology, allowing them to do ex-
periments with a base system applied to video processing
[4]. This system consists of a video stream that runs from
a computer through a Virtex ML506 and back to the com-
puter. The bitstreams are loaded at start-up to the board’s
internal memory. There are two bitstreams available cor-
responding to two possible implementations for transcod-
ing the stream: up-scaling the stream to 256 x256 pixels or
broadcasting the input video stream to four lower quality
receivers.

The downloading of the bitstreams into FPGA mem-
ory is done through the ICAP. In this specific project, the
student experience has two phases: elaborating and imple-
menting a C application to run on the MicroBlaze with the
goal of transferring the bitstreams for the board, and re-
ceiving and executing reconfiguration orders. The second
phase is about the user controlling the function, that is be-
ing executed in the board, by sending reconfiguration re-
quests through a serial connection.

In the system that we developed, the user has a graphical
interface in which he can choose and send reconfiguration
requests to the board and visualize the results before and
after processing.

3. Base System Overview

The implementation of the whole system has three parts:
software developed for the remote interface, software de-
veloped for the soft-core processor and the hardware in-
frastructure compsed of the reconfigurable areas and the
support hardware (CPU, DMA controller, ICAP, memory
interfaces). Figure 1 represents the information flow and
the modules used in the system. The reconfigurable hard-
ware module is called Img_process. The communica-
tion between the interface and the board Virtex ML505 is
done using TCP/IP sockets.

The soft-core processor is the center and brain of the
system. It receives information and commands through the
Ethernet module and acts accordingly. Before being pro-
cessed, the image that the user sends, is stored on DDR2
RAM memory and then, when the image has been com-
pletely received, it is transferred to the processing module
Img_-process. This transfer is done with Direct Memory
Access (DMA) [5] module which, when the information is
processed, does the same operation in the reverse direction
as well.

The Img_process module is pipelined and has the
four partitions connected in series. This means that four

16 REC 2013

Xilinx Virtex5 ML505 Board

XC5VLX50T FPGA Device

I
3 ot [DDR2
Microblaze Ram
I Mem

Central
r Sysice HWICAP oA h_' «—
—i Flash Y
v Mem

bitstreams

L.

L i B R e———

Img_process

Figure 1. System overview.

Img_process.vhd

User_logic.v Interrupt_control.vhd

PLB46_slave_burst.vhd Soft_reset.vhd

Figure 2. Top module Img process.v

slots, each one with the correspondent filter selected by the
user, are working simultaneously over successive bands of
the image. When the DMA transfers a portion of the image,
the module immediately starts processing and puts all pro-
cessed bytes in a output memory for the DMA to transfer
back again do DDR2 memory. This procedure is repeated
until the image has been totally processed.

The partial bitstreams to reconfigure Img_process are
stored in a flash memory card. This card is read using the
SysAce module and the bitstream is sent to the Internal Ac-
cess Configuration Point (ICAP) [6] by the control program
running on the MicroBlaze processor. The ICAP is respon-
sible for writing to the FPGA memory reserved to partial
reconfiguration. All these modules are connected by the
Processor Local Bus (PLB) [7].

4. Image Processing Hardware

As figure 2 shows, the module Img_process has four
sub-modules. These are all generated by Xilinx Platform
Studio when building the base system. They are respon-
sible for the reset of the system, and the communication
with the PLB bus. The interrupt control is not used in this
version of the project, but it was maintained for future de-
velopments.

The user_logic.v module is where all the process-

ISBN: 978-972-8822-27-9

Bus2IP_Clk User_logic.v
Bus2IP_Reset IN & OUT Counters >
N é b
Performance

Bus2IP_Addr[0:31] / IP2Bus_Addrack

| >

. Parameters
Bus2IP_Cs[0:1] i IP2Bus_Data[0:31]
Bus2IP_RNW] o * * o
(=] © || IP2Bus_RdAck

Bus2IP_Data[0:31] o o

— E o ﬁ — E
Bus2IP_BE[0:4] s = N s Filter = 8 = IP2Bus_WrAck

=Pl E2|2 €] T P52 02 S
Bus2IP_RdCE[0:10] | < = o L Sequence $ Hg 2 IP2Bus_Error

> wv) a L >

Bus2IP_WrCE[0:10] ' '

—-— — IP2Bus_IntrEvent
Bus2IP_Burst a- a-

—t v ¢+ 7 -
Bus2IP_BurstLength
0:8
[0:8] — System Stop
BusZIP_RdReq

I
Bus2IP_WrReq

I

Figure 3. Implemented user logic block digram view.

ing logic is implemented. It is here that the four recon-
figurable partitions are instantiated as black-boxes. This
module receives collections of bytes with a rate which de-
pends on the performance of the DMA and MicroBlaze.
The transfer is done via PLB bus, hence with an input and
output of four bytes in parallel in every clock cycle.

The chain of filters receives one data byte at a time.
Therefore, it is necessary to convert the four bytes received
in parallel to a byte sequence (parallel-to-serial converter) .
There is also the need to aggregate the result information in
a 4-byte word to be sent to the DDR2 memory. Hence, se-
rialization and de-serialization modules were placed before
and after the filters chain respectively. Figure 3 shows a
more detailed view of the implemented user_logic.v.

In addition to the modules already mentioned, the
img_process module contains performance counters,
parameters, a stop process system, two FIFO memories,
a state machine and the sequence of reconfigurable filters.
The performance counters measure how many clock cycles
are needed to process the whole image. The parameters
block represents the registers used to store values intro-
duced by the user through the graphical interface. These
parameters are inputs of the user-designed filters and can
be used in many ways. For example, the input parameter
of one filter can be used as the threshold value. The two
FIFO memories are used to store received and processed
data. The finite state machine controls the whole opera-
tion: it has as inputs all the states of the other modules and
acts according to them. The stop module prevents the sys-
tem from losing data: when the Fi fo_OUT memory is full,
the system stops, or, when the Fifo_IN is empty and the
last byte has not yet been received, the system stops. The
system resumes processing when Fifo_OUT memory has

ISBN: 978-972-8822-27-9

space available for storing new results and Fi fo_IN mem-
ory has new bytes to be processed.

The filter chain consists in four filters connected in se-
quence by FIFO memory structures. In overall there are
eight FIFO memories, two behind each filter, as Figure 4
shows. In a given filter, the most current line of the image,
is passed directly to the next filter and, at the same time,
is updating the middle FIFO memory. Also, the bytes that
were previously in the middle FIFO are entering the upper
FIFO memory. In this way, every time a line is processed,
the upper FIFO memory has the older line (N-2), the mid-
dle FIFO has the second to last line (N-1) and the most re-
cent line (N) enters the filter directly. This arrangement en-
sures that the filter block receives successive columns of a
three-line memory band. This means, that point operations
based on a 3x3 neighborhood can be easily implemented
in each filter block.

5. Partial Reconfiguration

5.1. Filter Development

As Fig. 4 shows, the system devised for this work al-
lows the user to include new image filters based on point
and neighbourhood (3 x3) operations. Every filter devel-
oped for this infrastructure should have its inputs stored in
registers inside the filters. This will decrease the possibil-
ity of timing violations on place and route phase. Since the
filter has three inputs for bytes from three different image
lines, in order to perform local operations the filters should
register the incoming image byte, so that the three previous
bytes, from each line at a given moment, are stored.

Data must pass through the filters at the same rate as

REC 2013 17

wl

Filter Module

w2 w3

6. Communication and Control Software

To allow the user to control the operations done on the
board, a remote graphical interface was developed. The
communication between the board and the interface is done
with the help of a TCP/IP-based protocol implemented on
both sides. The protocol implemented starts out with the
interface sending a configuration frame. This frame has all

Source
r———-> WI[] —|in
1 Upper FIFO
(N=2) tm—m———— FER
N=1) e
- ———— [
N\ Middle FIFO
\
\
_____.__ .
= |in3
Figure 4. Single filter image process mechanism.
3 ” generated.
ShiftRega ShiftReg3 HiftReg3
[2) _“hmll.l 4 — _[0!
gl clpck b g
1) 4 1 ? 1
shiftreg2 shiftregz shiftReg2
e £ o e B
1) 4 1 1 J
§F\|fll{(-gl E:Fnhlh'gl -E:hlftR(.‘gl

Figure 5. RTL schematic of a 3x3 operation window.

they enter the pipeline. Therefore, output calculations on a
3x3 window must also be done in a pipelined fashion, so
as to not stall the filter pipeline: in each cycle a new output
result must be produced. Hence, the operation is divided
in sequential parts with registers between them. This will
cause an initial delay at the output, but will not affect the
overall frequency of the system. Instead, it will enable the
utilization of higher frequencies and decrease timing viola-
tions such as hold and setup times.

To implement a 3 x3 window like the one shown in Fig.
4, it is necessary to have nine bytes available at a given
clock cycle. Hence, nine registers grouped in three shift
chains are needed. Figure 5 shows how this arrangement
is translated into an RTL schematic. At each cycle, the
data for calculations related to the middle pixel (w5) are
available. If these operations take longer than the cycle
time, they too must be pipelined.

5.2. Floorplanning

The floorplanning [8] [9] phase is done using the Xilinx
Planahed tool. Here, the netlists of the filters developed are
added to the partitions defined as reconfigurable and then a
placement and routing of all the system logic is performed.
Finally, the partial and global bitstreams of the system are

the information about the selected filters, the image size,
the parameters for each filter and if it’s a hard or soft pro-
cessing request.

If the user chooses to run the process in hardware, the
processing is done by the Img_process module. If the
user chooses the software version, the image processing is
done in the soft-core with the implemented software filters.
After user approval, the graphical interface sends the whole
image and then waits while the board is processing. When
the board finishes, the image is sent back to the graphical
interface and a new window pops out showing the outcome
image.

On the board side, the protocol was implemented us-
ing MicroBlaze soft-core and the 1wiplibrary provided by
Xilinx. When the image is received, a state machine starts
sending and retrieving portions of the image to/from the
Img_process module. In the case of software process-
ing, the soft-core itself begins processing the image using
filters implemented in the C language and compiled with
gcc (-02 optimization level).

Using the graphical user interface it is possible for the
user to configure the connection settings, send an image to
process, choose the filters he wants to use and see the im-
age that results from the whole process. Besides the visual
result, the user is also able to see the measured time that
was needed to process the image. In this way, it is possible
to do comparisons between software and hardware runs.

The user is allowed to perform any number of execution
runs. Every time the user selects a different set of filters,
the filter slots that change are reconfigured with the bit-
stream corresponding to the user’s choice. Unused slots
are configured with a pass-through (“empty”) filter that the
user chooses in the graphical interface. Figure 6 shows the

18 REC 2013 ISBN: 978-972-8822-27-9

Server: 192166102121 Connect

_ - (B

Messages Log:

Figure 6. GUI with original and processed image.

[T CE

11111

Figure 7. Graphical user interface.

interface with one image and the resulting image after pro-
cessing, and Fig. 7 shows a snapshot of the interface devel-
oped;

7. Results

The soft-core (MicroBlaze) and the Img_process
core are running at 125 MHz. To measure the performance
of the implemented system, some operations with different
image sizes were performed and the results were compared
to the same chain of processing in Matlab, running on a
Intel(R) Core(TM)2 Duo CPU E4500 at 2.2 GHz. Table 1
shows the processing time per pixel for different images.

There are two indicators for the hardware operation
(Img_process”): total time and effective time. To-
tal time is time taken by the whole operation, including
the time that DMA spends transferring portions of the
image. Effective time accounts only for the time when
Img_process is actually processing image data.

ISBN: 978-972-8822-27-9

Table 1. Performance indicators.

Img_process time Matlab

Image Size Total Effective Total Time
512x 512 124.86ns 8.13ns 54.55ns

875x700 127.80ns 8.10ns 102.69 ns
1024 x 1024 129.03ns 8.06ns 189.40 ns

Examining Tab. 1 it is possible to conclude that as the
image size grows, the processing time per pixel in Matlab
increases significantly, but stays approximately constant for
the hardware implementation. This can be explained by
the pipelined architecture, which processes the image with
the four filters working simultaneously. It is also possi-
ble to conclude that, as the image size grows, the effective
time tends to 8 ns, which is the period that corresponds to
the 125 MHz clock frequency. This is also a consequence
of the pipelined architecture, which introduces some initial
delays, but does not affect the overall frequency. So, as the
image gets bigger these delays become more insignificant.
The use of other type of filters only affects the initial delay
of the pipeline (depending on the hardware complexity of
the filter), but does not affect the performance of the whole
operation.

Knowing that the system was implemented in a Xilinx
XC5VLXS50T FPGA device, the resources that were occu-
pied were: 33% of registers, 32% of LUTs, 63% of slices,
48% of 10Bs and 66% of BlockRAMs. This means that
there is room for future developments and improvements.

REC 2013 19

8. Conclusion

The implementation meets the initial objectives and is
completely functional. The user is capable of submitting
an image, choosing the filters and parameters he wants to
use, run the process and visualize the processed image and
performance indicators.

It is possible to enlarge the window for local image op-
eration. For that to be accomplished it is necessary to add
some more memory FIFOs before each filter. Given the
number of BRAM blocks available after implementation, it
would be feasible to use an 8 x 8 window for image process-
ing. Adding a new filter to the chain will not degrade the
overall performance of the system. However, FPGA rout-
ing will be more congested and could lead to a reduction in
operating frequency.

In order to enhance and improve the demonstration of
the FPGA dynamic reconfiguration capabilities, we aim
for future developments in the graphical interface, such as
adding animations which can provide a quick understand-
ing of what’s happening in the FPGA during the reconfigu-
ration process. Also, to simplify the development and addi-
tion of user-customized filters, a mechanism, provided by
the graphical interface as well, could be developed to au-
tomatically do the integration, in the design, of a Verilog
description filter done by the user; a filter would be then
immediately available for further usage. As a result, we
would have an automated process able to read a Verilog
module description of a filter, synthesize it, implement it in
the design’s floorplan and generate a partial bitstream of it.
In this way the user would have an easier understanding of
the reconfiguration and would be able to have available his
own filters to use in the implemented design just by writing
a Verilog description of it.

Acknowledgments This work was partially funded by the
European Regional Development Fund through the COMPETE
Programme (Operational Programme for Competitiveness) and
by national funds from the FCT-Fundagdo para a Ciéncia e a
Tecnologia (Portuguese Foundation for Science and Technology)
within project FCOMP-01-0124-FEDER-022701.

References

[1] Pao-Ann Hsiung, Marco D. Santambrogio, and Chun-Hsian
Huang. Reconfigurable System Design and Verification. CRC
Press, February 2009.

[2] Xilinx Inc. Virtex-5 Family Overview, October 2011.

[3] Michael Ullmann, Michael Hubner, Bjorn Grimm, and Jur-
gen Becker. An FPGA run-time system for dynamical on-
demand reconfiguration. In Proceedings of the 18th In-
ternational Parallel and Distributed Processing Symposium
(IPDPS’04), 2004.

[4] Pierre Leray, Amor Nafkha, and Christophe Moy. Implemen-
tation scenario for teaching partial reconfiguration of FPGA.
In Proc. 6th International Workshop on Reconfigurable Com-
munication Centric Systems-on-Chip (ReCoSoC), Montpel-
lier, France, June 2011.

[5] Xilinx Inc. LogiCORE IP XPS Central DMA Controller
(v2.03a), December 2010.

(6]
(7]

(8]
(9]

20 REC 2013

Xilinx Inc. LogiCORE IP XPS HWICAP (v5.01a), July 2011.
Xilinx Inc. LogiCORE IP Processor Local Bus (PLB) v4.6
(vi.05a), September 2010.

Xilinx. PLanahead Software Tutorial, Design Analysis And
Floorplanning for Performance. Xilinx Inc, September 2010.
P. Banerjee, S. Sur-Kolay, and A. Bishnu. Floorplanning in
modern FPGAs. In 20th International Conference on VLSI
Design, 2007., pages 893 —898, January 2007.

ISBN: 978-972-8822-27-9

