
Porting Wireless Mesh
Networks to the
Android System
Luís Miguel Salgueiro Barroso
Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos
Departamento de Ciências de Computadores
2016

Orientador
Rui Prior, Professor Auxiliar, FCUP

Coorientador
Pedro Brandão, FCUP

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143410129?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Todas as correções determinadas

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, ______/______/_________

Abstract

Wireless Mesh Networks (WMN) are now a part of IEEE 802.11 standard. Presented as an non-
infrastructured solution to deploy large scale networks, they are now on the focus of academical
and commercial interest. Mobile devices are simultaneously growing, implementing and providing
the state of the art wireless technologies available, but are still lacking native support for WMNs.
As of 2010, Cozybit created the open80211s project, which is now integrated in the Linux Kernel
and since then has not been maintained by Cozybit, leaving developers without a source of
documentation on how to accomplish WMN support in current devices and architectures. On
the course of this dissertation, we present the methodology associated with the whole process of
providing support for WMN in Android devices. More than the final result, we will provide every
single implementation step, to help towards the development of new solutions and hopefully
provide a starting point for future implementations. We will overview the android architecture
regarding wireless drivers, and present a step-by-step solution to natively create and integrate
WMN capabilities on an open-source CyanogenMod distribution, based on android, providing all
the details on the system build as well as presenting the result we obtained.

i

Resumo

As Wireless Mesh Networks (WMN) são agora parte integrante da norma IEEE 802.11 para as sem
fios. Inicialmente apresentadas como uma solução para a criação de redes não infra-estruturadas
para criar redes de proporção metropolitana, estão agora no foco da investigação da comunidade
académica e empresarial. Os dispositivos móveis têm também crescido de forma exponencial e
usufruindo da evolução tecnológica das redes, ao incluirem as novas tecnologias nos produtos
apresentados, apesar do suporte para WMN não estar ainda presente nos dispositivos de forma
nativa. Em 2010, a CozyBit criou o projecto open80211s, sendo este agora parte integrante do
kernel, e desde então não mais mantido pela Coxybit, deixando os futuros developers sem uma
fonte viável de documentação em como conseguir providenciar suporte para WMN nos dispositivos
e arquitecturas actuais. No decorrer desta dissertação, apresentamos a metodologia associada com
o processo de provicenciar suporte para WMN em dispositivos Android. Mais do que o resultado
final, providenciamos todos os detalhes de implementação de forma auxiliar o desenvolvimento
de novas soluções, e providenciar um ponto de partida para futuras implementações. Iremos
analisar a arquitectura de rede em android, especificamente os drivers wireless e apresentar
discritivamente uma solução para criar e integrar o suporte para WMN numa distribuição do
sistema aberto CyanogenMod baseado em Android, bem como apresentar todos os resultados
que obtivemos.

iii

Dedico o trabalho desenvolvido aos meus pais, Adelino Barroso e Maria José
Salgueiro. Sem eles, nunca tería conseguido ser a pessoa que sou hoje. Pelos

valores que me foram transmitidos na minha educação, por me ensinarem o valor
do trabalho, pelos sacrifícios feitos para que eu aqui chegasse, o meu muito

obrigado.

iv

Acknowledgements

I would like to thank my advisors, Rui Prior and Pedro Brandão, for all the guidance throughout
the development of this development. It is rare to find people willing to help you no matter what
or when. I will always carry the 5 minutes meetings that lasted for two hours in my memory. I
would also like to thank Eduardo Soares, for all the input in the research and implementation
steps.

I would also like to thank my colleagues, whose friendship and companionship made the long
days and nights of work bearable.

Finally, and most importantly, I would like to thank my parents Adelino Barroso and Maria
José Salgueiro, my brothers João and Ricardo, my sister Matilde, and my girlfriend Liliana, for
all the patience, for being my best friends, for helping me go through with my work, for all the
smiles, companionship, confidence votes, and for giving me the strength when I needed it the
most. I love you with all my heart.

v

Contents

Abstract i

Resumo iii

Contents ix

List of Tables xi

List of Figures xiii

Listings xv

Acronyms xvii

1 Introduction 1

2 Related Work 3

2.1 Wireless Mesh Networks . 3

2.1.1 Overview . 3

2.1.2 IEEE 802.11s . 5

2.2 Mobile Ad-Hoc Networks . 10

2.3 802.15.5 . 11

3 Technologies Used 15

3.1 Operating Systems . 15

3.1.1 Ubuntu . 15

vii

3.1.2 CyanogenMod . 15

3.2 Related Tools . 16

3.2.1 Android Studio . 16

3.2.2 Android SDK . 17

3.2.2.1 Android Debug Bridge . 17

3.2.3 Backports . 18

3.2.4 SELinux . 18

3.2.5 NDK Tools . 19

3.2.6 iw . 20

3.2.7 WPA_Supplicant . 21

4 System Overview 23

4.1 Wireless Driver Architecture . 23

5 Procedures 29

5.1 Rooting . 30

5.2 Setting the environment . 31

5.3 Kernel configuration and compilation . 33

5.4 OnBoot Load . 39

6 Results 43

6.1 Preliminary Results . 43

6.2 Mesh Application . 46

6.3 Secure Mesh with WPA_Supplicant . 47

6.4 CyanogenMod Rom . 48

6.4.1 Setting a MBSS . 50

6.4.2 Range test . 51

6.4.3 Running a service over Mesh . 53

6.5 Mesh Settings APK . 54

viii

7 Conclusion 55

7.1 Future Work . 55

7.2 Contribution . 55

7.3 B.A.T.M.A.N. Routing Protocol Integration . 56

Bibliography 57

ix

List of Tables

2.1 Terminology [41] . 5

xi

List of Figures

2.1 Mesh Basic Service Set . 6

2.2 Mesh Extended Service Set . 7

2.3 Distribution System Integration . 8

3.1 WPA_Supplicant operation method . 21

4.1 Wireless Driver operation method . 24

4.2 WCN36XX Softmac Driver . 26

4.3 Backported WCN36XX structure . 27

5.1 Backported WCN36XX structure . 35

6.1 About phone menu entry . 44

6.2 Wireless Scanning GUI . 45

6.3 About phone menu entry . 48

6.4 Mesh APK . 54

xiii

Listings

5.1 Driver compile steps . 37

5.2 Kernel Compilation Integration . 38

5.3 Service entry creation . 39

5.4 Init script configuration . 40

5.5 Device.mk configuration file . 40

5.6 Audit2Allow Debug . 41

5.7 Audit2Allow Output . 41

5.8 wcn36xx file_contexts entry . 41

5.9 iw Makefile configuration . 41

5.10 iw build process . 42

6.1 Remote file upload . 43

6.2 Wireless interface configuration . 46

6.3 iw mesh scan . 49

6.4 Mesh peering . 50

6.5 Ping output from emitting device . 50

6.6 Ping output from receiving device . 51

6.7 Interface link statistics . 52

6.8 SSH connection through Mesh link . 53

xv

Acronyms

IEEE Institute of Electrical and Electronics
Engineers

WMN Wireless Mesh Networks

CM Cyanogenmod

MAN Metropolitan Area Networks

AP Access Point

WDS Wireless Distribution System

DS Distribution System

IBSS Independent Basic Service Set

MANET Mobile Ad-hoc Networks

STA Mesh Station

QoS Quality-of-Service

MAC Media Access Control

ESS Extended Service Set

MP Mesh Point

TTL Time-to-live

HWMP Hybrid Wireless Mesh Protocol

LTS Long Term Support

IDE Integrated Development Environment

SDK System Development Kit

TCP Transmission Control Protocol

ADB Android Debugging Bridge

SELinux Security Enhanced Linux

MAC Mandatory Access Control

DAC Discretionary Access Control

ACL Access Control List

WEXT Wireless Extensions

NDK Native Development Kit

SAE Secure Authentication of Equals

API Application Programming Interface

HAL Hardware Abstraction Layer

MSM Mobile Station Modem

ARM Address Resolution Protocol

GUI Graphical User Interface

ARP Address Resolution Protocol

ADB Android Debug Bridge

BS Base Station

BSS Basic Service Set

IP Internet Protocol

xvii

Chapter 1

Introduction

The Wireless Mesh Networks (WMN) concept revolves around a catastrophe scenario. Initially
though to serve military purposes [34], WMNs are now the focus of the commercial and academical
community.

The main goal is to quickly deploy a self-healing, self-configuring and self-organizing network,
without the need of a central infrastructure. WMN are extremely versatile, as any intervening
device can employ several functions such as relay data, distribute internet access or interconnect
with non-Mesh networks.

Smartphones, and other capable devices are suitable targets to integrate a WMN, as long
as the support exists on the operating systems that manages them. Mobile devices users have
also been increasing meaning that there is a wide range of candidates that could resort to the
WMN technology. Android poses as the leading operating system among mobile users [30],
encompassing the advantage of being free, open, and with community driven alternatives freely
available.

The IEEE 802.11 added Mesh networking support to the standard in the 802.11s ammendment
[41], providing rules in order to standardize the operation modes and functions of WMN.

Some community WMN have been tested and deployed [29][5][26], proving that the concept
is viable and properly working on the creation of a wide coverage range community networks.

Although it is an emerging technology, WMN are not natively supported on the majority of
the aforementioned smart devices. Some of the reasons as why this happens are related with the
lack of native support, either from from the wireless network card driver or from the android
API itself.

Cozybit created the open80211s[10] project, which is now integrated in the Linux Kernel
and since then has not been maintained by Cozybit, leaving developers without a source of
documentation on how to accomplish WMN support in current devices and architectures.

Our goal is to port its features onto Android, with recent technology, providing the specific

1

2 Chapter 1. Introduction

documentation assuring that future developers can have a starting point to accomplish similar or
new goals. The final product of this implementation is a Cyanogenmod (CM) rom with native
WMN support, that relies on a Mesh compliant driver.

Chapter 2

Related Work

In this chapter we will go through some of the current technology regarding Wireless Mesh
Networks. We will also overview the functionalities of Mobile Ad-hoc Networks. Finally, we will
compare both, highlighting the main differences.

2.1 Wireless Mesh Networks

As previously mentioned, the Wireless Mesh Networks (WMN) concept was originally conceived
considering military or catastrophe scenarios. Now, some commercially interesting applications
such as community and neighborhood networks, intelligent transportation systems, Metropolitan
Area Networks (MAN) and spontaneous deployments are arising and the inherent technology is
being a great focus of the academic and commercial community. WMNs have a great echonomical
and pratical interest attached, as a WMN node can be either a device, a router, an Access
Point (AP) or all the aforementioned. Wireless Mesh Networks operate under 802.11s ready
devices, meaning that a Mesh capable wireless interface can be used as a Mesh Station (STA)
omitting the need for specially developed sensors in order to deploy a WMN. Moreover, WMNs
overcome the imposed limit on the range achieved by WLANs in the 2.4 and 5 GHZ unlicensed
bands, by implementing multi-hop communication, allowing for the deployment of wider wireless
coverage, as seen, for instance, in office/university campuses ow Community-driven Wireless
Networks [3][2][29][26][5]. Taking into account the exponential growth in smartphones and other
smart devices users, as well as the increase of manufacturers providing several levels of cost
for android enabled devices, a solution which resources to them seems a good approach for the
future, and that subject matter is the focus of the work presented.

2.1.1 Overview

The 802.11 Wireless Standard [41] came from the need to replace the existing ethernet cabled
network. The concept of WDS was defined by the 802.11 working group in 2003 as a mechanism

3

4 Chapter 2. Related Work

for wireless communication using a four address frame format ([41] def 3.170) and was not
further improved, even lacking a specification of the frame format for such a mechanism.

802.11 Wireless Networks provide a solution in terms of replacing an ethernet link with a
wireless link, but are restrained in terms of coverage and need of specific hardware (multiple AP
to provide a good coverage) although efficient when wishing to expand a wireless network to a
parking lot or a small public place. But if the need arises to expand to a college campus, or even
an metropolitan wide area network, it would imply a significant infrastructure cost. Moreover,
802.11 Wireless Networks always need to rely on a wired backbone, accessible from an AP in
order to communicate. In order to efficiently replace the wired backhaul, WMN were conceived
to achieve the following goals:

• Flexibility: Hardware restrictions regarding the switch ports available are now discarded as
wireless links are established between the intervening Mesh nodes. The routing capabilities
enable connection to a Distribution System (DS) via just one AP (through the backhaul)
even if located at a great distance;

• Self forming: If the routing protocol is able to determine the possible paths in the WMN,
expanding will be a question of adding new Mesh capable devices;

• Self-healing: Given the capability to automatically find a path from one device to the other,
the failure of one link is solvable by finding a different path to the target node, if it is still
within reach of other nodes;

The IEEE 802.11 standard [41] describes ad-hoc networking in the Independent Basic Service
Set (IBSS)) mode, where devices could connect to each other directly, without the need of an
infrastructure (AP). IBSS operate in a single-hop manner (we will see that Mobile Ad-hoc
Networks (MANET) resort to IBSS to implement multi-hop with additional protocols in section
2.2), meaning that the device could only communicate to devices within its reach. But it lacked
the access or connection to the DS [44]. The wireless Mesh concept was developed to overcome
such restrictions and combine both the IBSS and infrastructure mode integration in a new type
of multihop networks. WMN implement a two-tier network, composed by a backhaul tier (Mesh
node to Mesh node) and an access tier (Mesh node to client), enabling operation without an
wired backhaul.

For several years, proprietary solutions [40] arose to implement such networks, defining basic
intervening parts (Mesh routers, Mesh clients and Mesh gateways) and a routing protocol to
allow inter-working among them. But, being proprietary solutions, lacked coherency, and would
no work with other solutions.

The need for a standard was urgent, and IEEE 802.11 instantiated the task-force S in order
to define a standard for such networks, and in 2012 an amendment was published and the norm
802.11s created.

2.1. Wireless Mesh Networks 5

2.1.2 IEEE 802.11s

The IEEE 802.11 taskforce S was originally assigned in 2004, taking more than 7 years to come
to a final amendment for Mesh networking. In 2011 the amendment was approved and published
as 802.11s. 802.11s is now officially part of IEEE 802.11. In this section, we will do a brief
analysis of the device and network terminology, as well as the features presented by the 802.11s
amendment.

Table 2.1: Terminology [41]

Name Acronym Description

Mesh Station MSTA
An 802.11-standard-compliant MAC
and physical (PHY) layer implementation device

Mesh Basic Service Set MBSS
If two Mesh STAs connect to each other,
they form the most simple elementary 802.11 network,
called a Mesh Basic Service Set (MBSS)

Access Point AP
A Mesh STA can also provide integration service to other devices,
becoming an Access Point (AP)

Distribution System DS
Provides the services that are necessary to communicate
with devices outside the station’s own BSS

Extended Service Set ESS
When the DS allows multiple APs to unite
and roam from one BSS to another

Mesh Portal MP Provides integration of WLANs with non-802.11 networks
Mesh Gate GW Logical architectural component that integrates the MBSS with the DS

In order to understand how a WMN operates, some concepts need to be introduced. According
to [23], a “station” is a subset of functions for a device and not a physical device for itself. This
is an important definition to cover the versatility of Mesh devices. A Mesh-compliant android
cellphone can operate with Mesh station functions and at the same time operate as a AP, enabling
other 802.11 devices to associate. A Mesh STA is a versatile device, that can be a source, a
sink or a propagator of traffic [23]. Only Mesh STAs participate in Mesh functionalities such as
formation of the Mesh Basic Service Set (BSS), path selection, and forwarding, and it does not
connect with non-Mesh STA by standard.

Connection with non-Mesh - e.g. wired, other 802.11 devices - is accomplished through the
logical Mesh gate and Mesh portal functions. Inside a Mesh BSS, all STAs establish wireless
links with neighbour STAs for mutual message exchange, but connection to outside infrastructure
networks is done via the Mesh Distribution System (DS). The DS is a logical component that
handles address to destination mapping. It handles the frame distribution from interfaces,
enabling for instance, that data from a client on the 2.4 GHz radio can be transferred to a
the 5 GHz radio or to the wired network. This means that the DS is a logical entity, and not
necessarily a separate medium.

In order for a STA to access the DS, an AP is needed. The AP is a station that provides
access to the distribution services, via the wireless medium for associated stations. It enables
association from other STAs and operates as the central point of transit for its client stations

6 Chapter 2. Related Work

and responsible for delivering the frames sent by them. The function of an AP that performs this
translation between the wireless network and the wired network defined as the portal. Like the
STA, a portal is a function, and is defined as the logical point where wireless Mandatory Access
Control (MAC) service data unit (MSDU) are translated to and from a non-802.11 network ([41]
def 3.39, 3.110). When that translation occurs between a BSS and a non-Mesh 802.11 DS, this
function is called Mesh gate. Simply put, a portal is responsible for connection to non-802.11 DS
and a gateway is responsible for the frame translation to a non-Mesh 802.11 DS (wireless).

Figure 2.1: Mesh Basic Service Set

In Figure 2.1 we can state a MBSS formed by mobile Mesh capable devices. All the Mesh
STAs within the MBSS can communicate directly without the need of an infrastructure. Mesh
STA 4 can communicate with Mesh STA 1 and Mesh STA 3 through Mesh STA 2.

2.1. Wireless Mesh Networks 7

Figure 2.2: Mesh Extended Service Set

If a third Mesh STA, operating as an AP on an external BSS would join BSS 1, and was
providing access to devices within its native BSS, it would then expand both BSSs into an
Extended Service Set (ESS) as seen in Figure 2.2. That would enable all the intervening Mesh
STAs to directly interconnect seamlessly at the Medium Access Control (MAC) Layer. Through
the routing capabilities of 802.11s, Mesh STA 5 would be able to communicate with Mesh STA 1
as if they were right next to each other. It is important to notice that both Mesh STAs must be
operating as Mesh gateways, as they are both part of 802.11 networks (wireless or not).

The setup portrayed would only enable Mesh STAs to communicate with each other.
Expanding the ESS capability to - for instance - provide internet access to all the intervening
Mesh STAs would be easily accomplished if a device was available working as a Mesh Portal. If a
Mesh-compliant Router R1 was introduced and configured to operate as an AP and Mesh Portal,
and also connected to an 802.3 cabled network with internet connection, all the devices connected
in ESS 1 would be able to connect and provide connection to the internet. That scenario can is
portrayed in Figure 2.3, where R1 provides the logical entry point to the DS (802.3 Lan), by
operating as both an Mesh portal and a Mesh AP.

8 Chapter 2. Related Work

Figure 2.3: Distribution System Integration

In order to communicate Mesh nodes must choose an channel to operate. To accomplish that,
the Simple Channel Unification Protocol is used in order for the Mesh Point (MP) to perform
either a passive or an active scanning of possible Mesh neighbors [35]. If a neighbor is found,
the channel is set to match its neighbor, if not, the MP can establish itself as the initiator of a
Mesh network and the channel is calculated based on a channel precedence value (boot time of
the MP plus a random value) [35]. If two disjoint MPs, or networks, are discovered, the channel
is selected based on highest precedence value. After the channel is selected, the MP needs to
find the topology and establish a link with neighbor MPs. For that, a joining MP will perform a
neighbor discovery, scanning for beacons that contain at least one profile (Mesh ID, path selection
protocol identifier and link metric identifier). If the link is valid, the link can be established
through a secure protocol. When the MP is validated and connected to the WMN, data can
start to flow.

In terms of MAC enhancements, Mesh networks implement a new Mesh-supported 802.11
frame format, introducing a Mesh Header in the MAC frame structure. This header contains:

• Mesh flags – Bit 0 Address extension, bits 1-7 reserver for future use.

• Mesh Time To Live (Time-to-live (TTL)) - similar to TTL in common wireless frames, the
number of hops a Mesh frame can be transmitted, decremented by one at each hop and
discarded when zero is reached.

• Mesh Sequence Number – sequence number to discard duplicate received frames

• Mesh Address Extension (present in some configurations) – extension modulo to support
four-address, six-address or multi-hop frames.

2.1. Wireless Mesh Networks 9

In the next chapter, we will overview the Mobile Ad-hoc Networks concept. MANET are
improvements made to ad-hoc mode. In order to deploy a Mesh-like MANET, all the devices
must be configured, routing protocols must be added, and drivers adapted. In the case of 802.11s,
almost all drivers that support softmac via mac80211, will be able to natively implement a WMN
without further configuration. Currently, some drivers are surfacing, that have native Mesh
support. Atheros provides ATH9k and ATH10K that equip several portable devices (laptops,
smartphones, tablets), fixed devices (desktops, routers) and are also available in several USB
wireless cards.

Also, 802.11s is a standard by IEEE, and therefore all the devices will agree on the same
rules and operation mode predicted by the draft. We will briefly present some of the features of
WMN.

In order to accomplish data delivery, a routing (or path selection) protocol must be used.
802.11s [41] presents the Hybrid Wireless Mesh Protocol (Hybrid Wireless Mesh Protocol
(HWMP)). As WMNs implement a tree structure, with traffic flowing mainly from and to
gateway nodes, HWMP performs hierarchical routing to exploit such logical structure. Based
on AODV 1, it allows for on-demand and proactive routing. Being the standard, all MPs
must have HWMP implemented, although the 802.11s draft also defines and optional Radio
Aware-Optimized Link State Routing. It is also important to mention that WMNs provide a
Extensible path selection framework ([41] ch. 13.8.2) to ease implementations of flexible path
selection protocols and metrics. The link metric used by default is the Airtime Link Metric ([41]
ch13.9) but can be overridden by the extensible path selection framework.

Since communication is done through a wireless link, and nodes are mobile, there can be a
scenario where a device is operating as a bridge or portal to several devices which need that path.
In order to avoid data loss, Mesh networks implement congestion control mechanisms, providing
Quality-of-Service (QoS) and assurance regarding its communication ([41] ch 6.3.78).

Security is also defined within the standard. When connection is firstly established, the nodes
negotiate, and agree upon, a pairwise ciphersuite and a group cipher suite also establishing a
Mesh TKSA and Mesh GTKSA to be used with the pairwise cipher suite and group cipher suite,
respectively. ([41] ch 13.7). A WMN is said to be secure when it provides security authentication
protocols. When there is no authentication, it is said to be an open Mesh.

The 802.11s draft was first put to action within the open80211s [10] project. Open80211s,
is an open-source implementation of the IEEE 802.11s wireless Mesh standard, created to run
on any hardware supported by the Linux Kernel. The original idea behind open80211s was to
consolidate the multiple non-interoperable Mesh protocols into one, based on the IEEE 802.11s
draft.

1https://www.ietf.org/rfc/rfc3561.txt

10 Chapter 2. Related Work

2.2 Mobile Ad-Hoc Networks

Mobile Ad-hoc Networks (MANETs) emerged in the 1990s due to the, at the time, and were
popularized by recent technologies such as Bluetooth that enabled devices to directly communicate
without resourcing to an infrastructure and the appearance of new standards by IEEE 802.11.
Ad-hoc Networking [32] is not a new technology, and some original implementations date back
as early as 1972, with the DARPA Packet Radio Network (PRNet) which explored the packet
switching technology and store-and-forward routing among devices.This was one of the first
approaches regarding routing among devices communicating without an infrastructure. In 1932,
DARPA also developed Survivable Radio Networks (SURANs) as an improvement present in
PRENet regarding the network scalability, security, energy management and process capability.
The main target was to develop network algorithms to support scalable networks up to the tens of
thousands of nodes keeping in mind security, cost and power consumption. In the late 1980s, and
due to the growth of the internet structure, a high progress was noted. The U.S. Department of
Defense initiated the DARPA Global Mobile (GloMo) information system program in 1994 which
provided Ethernet-type multimedia connectivity anytime, anywhere, among wireless devices.

The aforementioned technologies, such as Bluetooth, in the 1990s attracted the community
and implementations outside of the military domain started to appear. As a result, several
applications have surfaced, namely within the academical, home and commercial domain. An
extensive historical overview can be found in [32]

MANETs can be interpreted as a subset of Mesh networks [39]. The inherent concept of
Mesh networks was originally derived from mobile ad-hoc networks and its capabilities. The
basic concept of MANETs was the rapid deployment of a network, that was self configured
and self-healing, as the nodes are mobile. A node should also be able to join and relay data
among other intervinients in the MANET. But MANETs lack some capabilities present in
Mesh networks. If a node, in a MANET, is operating in a given radio frequency, it cannot
communicate with other devices running on different radio frequencies. The WMN relies on
two-tier node implementation, where the routers maintain an active connection, working on a
stationary manner and enabling nodes to connect, hence, introducing an hierarchy in the network
architecture [39]. Also, Mesh nodes operate as Mesh routers, routing the information among
them, enable multiple functions within a single device. Integration of different IEEE networks is
not possible within ad-hoc nodes. The authors in [39] state

"Clients in ad hoc network operating with a particular radio technology cannot access
a client in a different radio technology network (for example a client in WiFi cannot
access a client in WiMax or other networks)"

Although we may define the main differences, MANETs have been highly developed by the
community. Several upgrades and implementations brought the MANET capacity to almost a
full Mesh capacity namely with the development of routing protocols and node behaviour that
enable such an abstraction. Nontheless, WMNs are defined by a standard and all the capabilities

2.3. 802.15.5 11

are present within it. MANETs can approach a WMN, but pre-configuration is needed among
the nodes. In terms of mobile implementations, both MANETs and WMNs are supported among
several devices. But in such devices, WMNs take an advantage in power-management. The
authors in [37] analize the power consumption and restrains within MANETs, also providing
techniques used to improve the default consumptions. Mobile devices are battery-powered
meaning that power-consumption must be taken into account seriously in order to keep providing
QoS to the final user, and WMNs have power saving options which enable three modes such as
Active, Light Sleep and Deep Sleep which can contribute to deployments in smartphones. Taking
into account the aforementioned reasons, we think WMNs are a more suitable implementation
taking into account that the target devices are smartphones and battery operated devices. Mobile
wireless-enabled devices now range from small devices such as smartwatches, up to cars and
home-security systems. Due to that range of different devices, we need to assure that devices
operating in different radio frequencies can communicate, that security is implemented, and
the deployment can be quick and effective. WMNs are a more suitable choice regarding these
concerns, as all the aforementioned problems are solved and available natively within the standard.
Also, new drivers are surfacing that have native Mesh support. Atheros provides ATH9k and
ATH10K that equip several portable devices (laptops, smartphones, tablets), stationary devices
devices (desktops, routers) and are also available in several USB wireless cards providing a great
versatility in possible participant devices.

Mesh Networks are now available within drivers that equip smartphones. There are some
projects that aim to provide Mesh support, such as the WCN36XX project, which provides a
Mesh solution for the driver of the Nexus 4 smartphone. This device was available for use and
research within the hardware range of the college.

Due to the aforementioned reasons, we chose to go through with adding Mesh support on the
Nexus 4.

2.3 802.15.5

802.15.5 [28] is a recommended practise for implementing low-rate Mesh networks resourcing to
802.15.4 [1] enabled devices as well as provide the architectural framework enabling (Wireless
Personal Area Networks) WPAN devices to promote interoperable, stable, and scalable wireless
Mesh topologies.

The 802.15.4 defines ultra low complexity, ultra low cost, ultra low power and low data rate
wireless connectivity among inexpensive devices. This is a common norm applied to Wireless
Sensor Networks, on which devices have a precision ranging capability that is accurate to one
meter. 802.15.4 operates in a star or peer-to-peer topology, creating a Personal Area Network
(PAN). To accomplish so, it nominates a PAN Coordinator, which is the primary controller of
the PAN and intervening devices. It is usually a powered device as it requires more processing
overhead, but generally, PAN devices are commonly small battery powered devices.

12 Chapter 2. Related Work

The peer-to-peer topology also has a PAN coordinator, however, intervening devices can
communicate with each other, as long as they are in the range of one another. This is the primary
topology chosen for the Mesh network topology. Each device is capable of communicating with
any other device within its radio communications range. The P2P PAN allows multi-hopping,
as data hops from intermediary devices to reach its target, but on a higher layer. The 802.15.4
norm does not describe multi-hopping among 802.15.4 devices. To accomplish a simple form of
Mesh topology, the 802.15.4 resources to the P2P topology in order to form a cluster tree.

The simplest form of a cluster tree network is a single cluster network, but larger networks
are possible by forming a Mesh of multiple neighboring clusters. 2

This kind of formation enables the creation of a Mesh-like topology, where devices are
interconnected and some multi-hopping communication can occur. As the multi-hop support
is not described in [1], the 802.15.5 recommended practise was submitted in order to enable a
full-Mesh operation mode. Namely, the 802.15.5 norm encompasses the following features (on
the LR-WPAN):

• unicast, multicast, and reliable broadcast Mesh data forwarding

• synchronous and asynchronous power saving for Mesh devices

• trace route function

• portability of end devices

To do so, it provides a new data frame format, incorporating Mesh functions. Association of
a new device works similarly to 802.11s, with devices associating to a participant, and becoming
a leaf node. Such association creates a tree, starting on the root device (first one). The tree is
not a logical-tree, as devices do not have addresses in an early stage. Devices have the autonomy
to determine the amount of devices that can join it (how many branches they can host connected
to itself). Then a bottom-up procedure is used to calculate the number of devices along each
branch. After the root receives the information from all the branches, it should begin to assign
addresses, this time using a top-down approach, where the root checks the number of devices and
assigns a block of consecutive addresses to the nodes below. After address assigning, a logical
tree is formed and each device has populated a neighbor list for tracking branches below it. In
case not enough addresses are available from its parent node, a device can either assign addresses
for the new nodes below, or require addresses from a predecessor.

In order to accomplish link state, devices broadcast an hello command frame, which enables
neighbour nodes to maintain its neighbour list. Devices can also broadcast neighbour information
request frames to refresh neighbour lists, enabling them to maintain a so called connectivity
matrix, that is refreshed with one-hop information from the hello command frame. Than enables
a recurrent method to map and determine devices, and how many "hops" they have from distance.

2[1]

2.3. 802.15.5 13

Path selection and data forwarding is then accomplished by consulting the neighbour list. If a
give device is one hop away, data is forward, if not, a next-hop algorithm is used to find the next
hop to forward data. If several neighbour devices are available for the next hop, a device may
randomly select one neighbour for load balancing purposes.

Chapter 3

Technologies Used

Every project relies on tools to accomplish goals. In this chapter we will overview which technology
was used on the course of this project, stating the reasons that lead to a specific choice.

3.1 Operating Systems

3.1.1 Ubuntu

Ubuntu is a Debian based Linux Operation system, maintained by Canonical Ltd. It is currently
one of the most used distributions worldwide. For the purpose of this Master Thesis, we chose
version 14.04 as it is a Long Term Support (LTS) version and it is highly stable with both the
hardware and software used in the spectrum of this thesis. We chose Ubuntu for some reasons,
mainly:

• It natively supports most of the needed drivers used in the development of this thesis;

• There is a big ammount of documentation related with Debian/Ubuntu based distributions;

• Ubuntu 14.04 is Long Term Support LTS, and by that we could assure that the needed
dependencies would still be available at implementation time;

• It is free of charge;

3.1.2 CyanogenMod

Cyanogenmod (CM) is an open source operating system distribution based on the Android mobile
operating system. It is developed as a free and open source software based on the official releases
of Android by Google, with added original and third-party code. [38] CM is developed mainly by
unpaid volunteers that form a strong community. Developers urge to share knowledge and provide

15

16 Chapter 3. Technologies Used

help, either via the CM forums, IRC channels and other communities such as XDA-developers 1.
They also provide specific[4] documentation for some devices, on how to compile, modify, tweak
and customize the final result.

The CM source code also comes with a set of development tools, in the form of shell scripts
that allow the developer to easily test new implementations as well as to compile source code
with the call of just one function. In the scope of this Master Thesis, we used mainly[6, 8, 9]:

• repo: Repo is a python script, that works as a repository management tool. It is built
based on Git and creates an easier to work environment for android development. In our
case, repo is mainly used to fetch the several git repositories needed and structure them in
our target folder;

• mm, mma: mma and mm are scripts that will build a module with dependencies and place
the target compiled files in the output directory;

• breakfast: breakfast will setup the device tree. If it is not available, it will fetch the
proper device and its depedencies from Cyanogenmod Github repository for officially
supported devices;

• brunch: brunch sets the build environment and starts the compilation process. Its final
binary output is placed in the output directory and a flasheable zip file is generated. Such
file can then be installed in the device through recovery;

CM provides the source code through the use of the "repo" command, wich gathers the
necessary components of the operating system from various sources. By doing so, all the source
code is divided into several modular components, then compiled with resource to the brunch
command which in terms calls all the Android Makefiles available in the source tree and hence
developing the final unnoficial Cyanogenmod flasheable zip file. [8]

3.2 Related Tools

3.2.1 Android Studio

Android Studio is the official Integrated Development Environment (IDE) for Android Devel-
opment. It is based in Intellij IDEA and provides further improvements and tools to Android
developers. The full feature list can be found in [42]. In the scope of this Master Thesis, we
mainly resourced to Android Studio as the chosen IDE to develop the Mesh Settings APK.

1See: http://forum.xda-developers.com/

3.2. Related Tools 17

3.2.2 Android SDK

A System Development Kit is a set of tools used to develop in a given programming language.
Google provides Android developers with the Android-SDK, which contains a wide set of software,
services and runnable scripts that a developer can use in order to ease the development process.
System Development Kit (SDK) tools are a stand-alone component of the Android SDK and
provide a set of development and debugging tools for the Android SDK.

In the scope of this Master Thesis, we used mainly to the Android Debug Bridge (adb).

3.2.2.1 Android Debug Bridge

Android Debug Bridge (ADB) is a command line tool that allows shell communication with an
emulator or an Android device. It works in a client-server approach, by creating a client, a server
and a daemon.

When ADB is started on the development machine, it checks for the adb-server processes,
and if it cannot find one, it will start the server process. This server runs as a background
process on the development machine and listens for commands sent from ADB clients. All the
communication is done via the Transmission Control Protocol (TCP) port 5037, and the server
is responsible for managing the communication between the client and the daemon running on
the device being debugged. In order to communicate, a device must be ADB enabled. Both
Android and CM provide ADB mode via USB connection through the hidden developer options
menu. Finally, by resorting to the operating system command line to invoke ADB, the client is
created and commands can then be sent through it.

Although ADB comes natively with Android Studio, we needed more control over the functions
it has. A detailed list of ADB commands can be found in [33].

For implementation purposes, we mainly used

• devices: to identify the devices connected to the development computer. This also assures
the daemon is running correctly on the target device;

• logcat: The logcat command enables for log data to be printed in real-time to the terminal.
We used it to track error logs ;

• pull and push: to download and upload files directly to the device, namely the compiled
flashable zip files;

• shell: to remotely start a shell in the target device;

• install: Calling adb install would enable us to remotely install APK files in the target
device;

18 Chapter 3. Technologies Used

ADB was extremely important during the implementation of this project. As the phone was
rooted, using ADB we were able to access, and debug most of the issues encountered, and try
solutions with root access without the need of recompiling. It allowed us to access logcat in real
time, modify, upload and download files on-the-spot, which led to an enormous time-saving as
we did not have to manually change, compile and upload every single file we defined.

3.2.3 Backports

Backports drivers is a tool that enables newer drivers to run in older Kernels. As the Linux
Kernel is continuously updated, new drivers are added for either new devices, or updates released
to current ones. The Backports drivers project was originally called compatwireless and then
compat-drivers[25]. Backports is widely used in current desktop Operating systems [18] as a way
to maintain stable drivers for older kernel versions.

Backports was a very important tool throughout the work developed as we are working with
Cyanogenmod Kernel version 3.4 and the wcn36xx driver is not present in that version. After
some investigation, we attempted to compile wcn36xx directly from backports python script, but
with no luck. We then used the compiled version provided by the Linux Foundation [19]. This
version was chosen as it allowed to be ran from a simple Makefile and using the correct flags we
were able to automatically assign the Kernel folder and backports automatically resolved the
target version and started the compilation process.

As of version 3.16, wcn36xx is available in the Linux Kernel, and hence, we needed to port
that driver from 3.16 to 3.4. The backporting process relies on a hierarchical compatibilization of
the drivers from the source version to the current version. A compat.ko file is then generated
with the appropriate compatibilization headers that allow for the driver to work propperly.

3.2.4 SELinux

Security Enhanced Linux (SELinux) is a mandatory access control Mandatory Access Control
(MAC) security mechanism implemented in the kernel. [20] [21] Prior to SELinux, the linux
Kernel worked in a Discretionary Access Control (DAC) i.e. the access permissions on a given
object are derived from a user or software access rights. By having access rights based on rules
specified by users, each file is accompanied by a list containing subjects and their rights to that
file, i.e., each file has an associated Access Control List (ACL).

A given user or software can, in fact, modify the permissions of a file they own and DAC
has in it a flaw. If a given user A provides B with a piece of software, and B trusts A, B will
trust the software, even though none of them is aware that the software may contain malicious
intents. That is one of the basic principals of computer virus and why peoples trust is exploited
(for instance, virus propagation among social networks). Another case is commonly known as
a Trojan Virus. A simple scenario would contemplate a given user S that has in its possession

3.2. Related Tools 19

desirable information on the form of an object O. An malicious user S’ could then create a file
O’, assign write permissions to S on O’, assign read permissions for itself on that file and copy
the O information to O’. If that piece of software manages to be ran with the proper permissions
(perhaps hidden as a videogame that the user S would run), O’ would receive the contents of O
and S’ would be able to collect such information. In some cases, a physical user is not needed in
order to violate security, as processes inherit users rights.

To avoid that kind of security issues, the MAC policy was implemented. In MAC, permissions
are not assigned to each file, nor the user can modify permissions that easily. Instead, access
rights are based on the regulation by a central authority, that is, the security policies belong to
an organization rather than individual members.

SELinux falls under the MAC category, by following strict enforcing settings, everything is
denied and exception policies are written to give the proper permissions or access to an element
of the system (either a user, a program, etc). When a program requires something that it has no
need for, i.e., there is no rule defined by the developer in the security policy, it gets denied and a
flag is registered in an pre-defined log entry.

SELinux has three modes of operation:

• Enforcing: The default mode where the SELinux security policy is active;

• Permissive: SELinux is active, it only issues warnings and writes to logs regarding policies
violations;

• Disabled: SELinux is not running;

As previously stated, SELinux follows a least-privilege model, meaning that by default
everything is denied unless an specific policy is associated with an element of the system.
Implementing such a strict policy in a big system would lead to a great amount of work by the
system administrator, in order to get every single process to be validated in a proper policy.
To ease that process, SELinux allows different policies to be written that are interchangeable.
Usually, the targeted policy is the default and covers selected system processes such as httpd,
dhcpd, etc. The remaining system processes and remaining userpace programs, run in an
unconfined domain, which is not covered by the SELinux protection model. The main goal was
to restrict boot-running processes to a confined domain [21].

CM follows the SELinux security policy as of version 12.1.

3.2.5 NDK Tools

The Android Native Development Kit (Native Development Kit (NDK)) is a development kit
that allows integration of native C and C++ code within the Android Framework.

20 Chapter 3. Technologies Used

Some applications may need to overcome java limitations such as memory management or
performance, and hence, Android provides Native Development Kit to support native development
in C/C++. NDK contains all the necessary tools to accomplish native code integration within
the Android Java code such as compilers, libraries and header files. [22]

Also, NDK can be called from the command line, and provides the means to compile native
code to be ran directly under the Android device Shell, by compiling into a binary executable
file.

During the implementation stage of this project, NDK was used to port iw 3.2.6 with
compatibility to the Nexus 4 ARM CPU as well as to compile native C applications present
within the CM source code, such as WPA_Supplicant.

3.2.6 iw

iw [11] is the replacement for the deprecated iwconfig. It is the new nl80211 based Command
Line Interface (CLI) configuration utility for wireless devices. As mentioned previously, nl80211
provides the means to create a Netlink communication to interact directly with cfg80211 within
the Kernel. iw supports all the current drivers supported by the Linux kernel resources to
nl80211 instead of the deprecated Wireless Extensions (Wireless Extensions (WEXT)) although
it still provides support.

iw enables the developer to interact directly with the intended interface and was highly used
during the implementation stage of this master thesis. Namely, iw was used to:

• Change the network card properties, namely the device type to Mesh Point as well as
frequency modes and further setup alongside the ifconfig command;

• Create an open Mesh, via the included Mesh controls;

• Join an open Mesh;

• Find which connections are established with the node issuing the command;

• Gather information regarding the wireless network interfaces;

• Create a virtual device associated with the physical device;

• Set power management modes;

• Create an Mesh Portal alongside with hostapd 2;
2https://wireless.wiki.kernel.org/en/users/documentation/hostapd

3.2. Related Tools 21

3.2.7 WPA_Supplicant

WPA_Supplicant [14] is a program designed to run as a daemon within the system that acts
as the backed component controlling the wireless connection. It is the IEEE 802.1X/WPA
component used in the client stations, and is responsible for implementing key negotiation and
control the authentication/association of the WLAN driver. It is, therefore, responsible for
maintaining the active connection, namely secure connections. It contains several cryptographic
support libraries to establish connections as needed. The open80211s project requires Secure
Authentication of Equals (SAE) and WPA_PSK in order to establish a connection to the desired
node, and the WPA_Supplicant version 8 has the needed native support.

Figure 3.1: WPA_Supplicant operation method

Android and CM use WPA_Supplicant to manage the connections. The android Application
Programming Interface (API) provides high level Java functions that enable a piece of software to
manage its network connections as long as the permissions are correct such as the android.net.wifi
[15]. Ultimately, this API will rely on the WifiNative [16] class to interact to WPA_Supplicant.
Furthermore, the Android API will receive communications from the WifiMonitor class.

During the implementation stage, WPA_Supplicant was the tool used to try and create a

22 Chapter 3. Technologies Used

secure persistent Mesh network without the need of specific manual configuration by iw, since
configuration can be loaded from a configuration file and WPA_Supplicant would be able to
setup all the parameters needed to instantiate the secure Mesh. Also, by running as a daemon,
WPA_Supplicant will run in the background and is not affected by power saving routines coded
in Android.

Chapter 4

System Overview

In this chapter, we will analyze how the different components interact and interconnect in the
Android operating system, and do a close analysis regarding the Google Nexus 4 target device.
Our main focus will rely on the Wireless architecture of Android devices.

4.1 Wireless Driver Architecture

In Android, as in Linux, the user space and kernel space are divided for security. That will
prevent user applications to run kernel applications or commands at the kernel level and harm
the system itself or gain unauthorized access to hardware. On the other hand, the kernel layer is
the only one that can communicate with the hardware layer, once again, as a security measure.
But some software needs to interact between layers, and that connection is usually assured by
communication sockets. In our case, we must be able to communicate with the wireless card
firmware embedded in the chipset from the user space level.

23

24 Chapter 4. System Overview

Figure 4.1: Wireless Driver operation method

When there is a need to communicate wirelessly, usually that means that there is an action
being requested from the application layer. For instance, if a given user implements an "app"
that relies on the Wifi API (Android.net.wifi)1, that means that an instance of the wifi class is
requesting information or issuing commands to the device supplicant.

WPA_Supplicant is present in both Linux and Android-based operating systems like
Cyanogenmod (CM), and when there is the need to interact with the network interface, it is done
through it. It resides in the Hardware Abstraction Layer (HAL) and when WPA_Supplicant
receives a request, it must pass the instructions downward in the hierarchy. To accomplish
that, it needs to communicate with the kernel space. To do so, a socket is needed to provide
communication between the userspace and the kernel. NL80211 provides a netlink between the
user space and the kernel space resourcing to the libnl library (netlink protocol).

But the commands need to be interpreted and passed to the drive and that is accomplished
with CFG80211. CFG80211 is the new Linux 802.11 configuration Application Programming

1https://developer.Android.com/reference/Android/net/wifi/package-summary.html

4.1. Wireless Driver Architecture 25

Interface (API).CFG80211 is fairly new, and sometimes the legacy Wireless Extensions (Wireless
Extensions (WEXT)) is still in use. It enables the userspace to control the driver with help from
the nl80211 netlink. As stated in [27]:

The term SoftMAC refers to a wireless network interface device (WNIC) which does
not implement the Mandatory Access Control (MAC) layer in hardware, rather it
expects the drivers to implement the MAC layer. 2

If the driver is a softmac driver, it implements the MAC layer in software. This means that
the necessary frame management is done through software rather than hardware. Figure 4.1
states the difference between an SoftMac and a FullMac driver. The full MAC drivers do all
the frame management directly on the device chipset. It is also important to acknowledge that
SoftMac and FullMac drivers can operate simultaneously.

SoftMac approaches bring some advantages:

• Potencially lower hardware costs - As the mac layer processing is done via software, allowing
for the hardware to process less as tasks are delegated;

• If new standards are released, the device can maintain support as only the driver needs to
be updated;

• If the MAC layer has any faults, it can be fixed easily again through driver update;

To do so, the MAC80211 module must be present within the system. The MAC80211
is a framework for driver development and represents a subsystem to the linux kernel that
implements shared code for softMAC wireless devices. SoftMac drivers communicate to and
from the MAC80211 module. Finally, using the headers provided by the MAC80211 framework,
communication can be established to the device chipset and data be exchanged. If the used
driver is a fullMac driver, MAC80211 wont be used as the MAC layer is directly implemented
in the device chipset. The target device for our implementation is the Google Nexus 4 by LG.
The wireless chipset is the Qualcomm atheros WCN3660 managed by the Qualcomm Atheros
Prima WLAN driver. This is a fullMac driver, that does not have native Mesh support needed.
WCN36XX [13] is a MAC80211 driver developed for the wcn3660 and wcn3680 chips which
contains, in its features, Mesh support. Also, wcn36xx only compiles with Mobile Station Modem
(Mobile Station Modem (MSM)) kernels, and Nexus 4 kernel is MSM based.

2http://stackoverflow.com/questions/28343384/do-access-points-use-softmac-or-hardmac

26 Chapter 4. System Overview

Figure 4.2: WCN36XX Softmac Driver

Taking into account the available hardware and driver, we dcided to chose WCN36XX as the
driver to be installed on the Nexus 4 smartphone. We have now identified the SoftMac driver to
be used in our implementation. WCN36XX will be implemented as the devices driver, linked to
the WCN3660 Chipset.

To further implement, we need to identify the target Kernel for our implementation. The
Cyanogenmod version 12.1 contains the Linux 3.4 Kernel Version. Version 3.4 does not contain
the WCN36XX driver and, as seen in 4.2, the driver must operate within the Kernel.

WCN36XX is natively available in the Linux Kernel as of version 3.16. To accomplish our
expected results, we had to compile the wcn36xx driver in order to allow for it to operate under
the Linux 3.4 Kernel present in our CM distribution. To do so, the driver needed to be ported
from a newer kernel to our kernel version. The backports project was created to accomplish
just that. By compiling the WCN36XX driver according to the Nexus 4 ARM architecture and
generating compatibility headers that compatibilize the driver onto an earlier kernel version, we
can then use the WCN36XX driver within our target device.

Backports generates the appropriate kernel modules and dependencies needed to include the
WCN36XX driver in the CM distribution, as well as depedencies namely mac80211, cfg80211,
the compat module, and wcn36xx itself. The driver will also need the wcn36xx_msm module
which is responsible for establishing a connection from the chipset firmware to the driver.

4.1. Wireless Driver Architecture 27

Figure 4.3: Backported WCN36XX structure

The netlink module, nl80211, is available within the 3.4 Kernel Version and will be generated
once the Kernel is compiled with the CM Build. The compiled kernel modules must now integrate
the CM distribution on the Nexus 4 cellphone.

We now have the grounds to port the new driver onto the target device. In the next chapter
we will describe thoroughly how to compile the chosen driver, as well as how to create the needed
described components needed for correct operation.

Chapter 5

Procedures

This chapter will describe the whole development process associated with the proposed solution.
In order to accomplish the final result expected, we first must define the steps needed to succeed.

Firstly, we will be choosing the hardware and installing the require software to compile and
develop. After that, we will define which parts need to be configured and when to apply such
changes.

For this implementation, CM was the chosen operating system. As previously mentioned,
CM is an open-source, community driven operating system based on Android. The open-source
code is provided via repositories, and documentation is widely and freely available.

At the development stage (and in the beginning of our implementation), CM was releasing
its 13.0 version. Therefore, we primarily opt by this version. However, because it was a fairly
new release, we encountered several issues within the first compilation attempt. The CM 13
compilation process was accomplished successfully, but the final installable file was not running
correctly on the target device. Therefore, we chose Cyanogenmod (CM) 12.1 (the immediate
previous release) since it was already bug-tested and running stable in the target devices. We will
provide all the sources followed, as well as all the new implementation work needed to successfully
obtain support in the Nexus 4 device, by altering the source code for CM. All the solutions
proposed should work properly within CM 13 as the main changes made in the previous version
are compatible with the system architecture for it.

The final product is highly customized. In order to change the device driver, we must take
into account other inherent changes that need to be made. The kernel will need to provide
support for the new driver, as well as to disable the original one. We will have to integrate the
driver in the CM source code for it to be available after compilation, add the means to interact
with the driver, test and verify. Security policies within Security Enhanced Linux (SELinux) will
have to be compliant and finally, the user must be able to easily deploy the new driver and its
capabilities.

Since we need to interact with low level processes, we need to have special permissions. On

29

30 Chapter 5. Procedures

Android, that is accomplished by granting root privileges. To do so, we need to root the device.

Before starting, we had to identify which components must be changed and in which order.

1. Root the device

2. Make the first CM build to assure integrity and generate the output directory.

3. Give Mesh and driver support within the kernel, by enabling the necessary modules and
disabling the standard driver.

4. Build the driver with backports against our serialized (specific) kernel version, integrating
in the build process.

5. Enable the modules load on boot.

6. Modify the security policy to consequently enable external module loading on boot.

7. Port and integrate the necessary binary tools, namely iw.

8. Test and configure WPA_Supplicant.

9. Develop an user-friendly graphic tool to easily setup an open Wireless Mesh Networks
(WMN).

In the next sections, we will thoroughly describe the implementation steps taken.

5.1 Rooting

Rooting refers to the capability of obtain privileged access and permissions within the operating
system. In Linux, the su command provides root access to the system. Similarly in Android or
Android subsystems, “Rooting” means obtaining Linux like “superuser” rights and permissions.
With these elevated user privileges, a wide range of functionalities are made available, such as
writing permissions. Rooting is a critical part of installing a custom operating system within an
Android device. Without root access, we would not be able to flash the required partitions to
install our CM distribution.

To attain root privileges, we resourced to the Nexus Root Toolkit software. This software
will automatically provide root access and flash a new recovery partition, with a wider range
of options. The recovery partition will then be managed by the TWRP [43] software, which
provides an intuitive graphical user interface (Graphical User Interface (GUI)) with the available
options.

5.2. Setting the environment 31

5.2 Setting the environment

The development environment will be defined in two separate parts, hardware and software. In
terms of hardware, a development machine running Ubuntu 14.04 Long Term Support (LTS),
and a an Android development device capable of running CM - the Nexus 4 were used. As for
software, we needed several software components and dependencies in order to successfully go
through the compilation process. The first step, once the development machine is running on the
required operating system, is to install the proper dependencies.

sudo apt-get install bison build-essential curl flex git gnupg

gperf libesd0-dev liblz4-tool libncurses5-dev libsdl1.2-dev

libwxgtk2.8-dev libxml2 libxml2-utils lzop maven openjdk-7-jdk

openjdk-7-jre pngcrush schedtool squashfs-tools

xsltproc zip zlib1g-dev

Next, create the development folder and move there.

mkdir Android/system

cd Android/system

Cyanogenmod provides its code via the repo command. repo is a script, based on Git, that
collects code from various repositories and gathers it in a correct and orderly manner, necessary
for the compilation process to work. CM is an operating system, meaning that it is composed
by several independent pieces of software, such as kernel, drivers, applications, etc. The repo
command will fetch all the necessary components and gather them in the "system" folder, having
a manifest file as an input. This manifest file will provide repo with all the urls needed to
download the several components. After that, repo will prompt for git information (name and
e-mail). Finally it will be available for use.

1. repo init -u https://github.com/CyanogenMod/Android.git -b cm-12.1

2. repo sync -j 8

In the first command, we are providing repo with the necessary repository, as well as defining
the branch we wish to download. In our case, we are pointing to CM github repository, where
repo will download the base code as well as the Manifest file that will provide the source of all
the repositories needed by the CM 12 branch. After that, we are instructing repo to start the
synchronization process. This process consists on downloading and synchronizing information
with the source repository. Since the development machine has an I7 Quad-core CPU, we are
speeding the process by telling repo to launch 8 threads and do the synchronization in a parallel
manner. Although 8 threads are operating simultaneously, this process can take several hours.

32 Chapter 5. Procedures

In our case, it took around 3 hours to finish.

Once finished, we had the CM source code available in the system folder, and ready to start
the build process. We start by enabling some of the functions needed. For that purpose, we will
rely on build/envsetup.sh script provided. The envsetup.sh script will add several functions to
our build environment that can ease the development process [9]. The first command that needs
to be issued is the breakfast command. Breakfast is used to prepare the build environment
for a specific device, meaning that it will fetch the device tree and dependencies needed for the
target device. In this case, we issue:

breakfast mako

"Mako" is the development branch name for the Nexus 4 device. By doing so, the device
tree and its dependencies are fetched from CM GitHub repository. The Nexus 4 is an officially
supported CM device and so the Mako branch is available. After that, there is a need to extract
the "proprietary blobs", i.e., proprietary files specific to the nexus 4. There are hardware-specific
files that are needed in order to set, for instance, CPU frequencies. That can be done by invoking
the "extract-files.sh" script within the device/lge/mako folder.

Now that the environment is specifically built for the target device, we can start the first
build. To accomplish that, we resource to other script provided by envsetup.sh.

brunch mako

As stated in [9], brunch sets up your build environment for a device and commences the build
process of a full CM (unofficial) release that can be installed through recovery. After executing
brunch, a new folder named out was created and the compiled final files were available. The out
directory is where the final, uncompressed files are. When the build process is completed, the files
residing in the out directory are compressed to form the different partitions. They are compressed
yet again to create the flashable unnoficial CM file that will be flashed onto the device through
recovery. Once created, the flashable zip file will be available in /out/target/product/mako
and can be flashed into the device. Once stated that the zip file was working properly, we
proceeded with the modifications.

To install our compiled zip file, we booted the device in recovery mode. To do so, we issued:

luis@static:$̃ adb reboot recovery

The phone reboots and boots into recovery mode, showing the TWRP interface. We then
had to:

• Wipe data partition

• Install from zip file

• Select the compiled zip file

• Clean Dalvik cache

5.3. Kernel configuration and compilation 33

Now that we assured that our source code is working properly, we are able to start the
modifications needed.

5.3 Kernel configuration and compilation

Unlike a Linux kernel targeted for a computer, the Android kernel has its drivers statically linked
into the kernel at compile time, in order to save space. That means that it is not possible to
compile standalone modules and load them onto an existing Android devices. More specifically,
whenever a new driver or module is developed, it must be linked to the specific serialized version
of the Android kernel being used in the target device, otherwise, it will not work. In our
implementation, we need to modify the network driver to support Mesh and work natively within
the CM version compiled.

If we compiled a CM 12 version and used the kernel sources to generate a compatible driver
and then we uploaded it to the target device, we would be able to run it after some configurations.
But our goal is to provide an ready to use CM rom with native Mesh support. Therefore, we
integrated the module compilation directly onto the CM build process, so it would be assured
it would match and run with the target kernel. Also, the integration allows the creation of a
ready-to-use flashable zip file that has immediate Mesh support through its driver.

In order to accomplish the correct driver compilation and generate the appropriate depend-
encies, we must configure the target kernel. The Android Kernel, as the Linux Kernel, can be
customizable. We can compile a standalone driver within our development environment if we
define the appropriate compilation flags, environment variables and assign the compiler for the
source code. The CM repository provides the appropriate cross compiler for the kernel to be
compiled onto a different architecture. This cross compiler enables the compilation of the needed
kernel files with the defined specifications (flags), and customize what is linked with the kernel
via a GUI.

The authors in [10] advise the use of environment variables, i.e., a set of defined values present
within the system and to which the software can resort. In this case, we will export the device
name as well as the source code directory (build directory). Such variables define constant values
that are used throughout the compilation process. This will be useful since the defined values
will be used throughout the implementation process. The command ran to access the graphical
configuration is:

34 Chapter 5. Procedures

export CM_ROOT= /Android/system

export CM_BUILD=mako

make -C kernel/google/msm/

O=$CM_ROOT/out/target/product/$CM_BUILD/obj/KERNEL_OBJ

INSTALL_MOD_PATH=../../system

ARCH=arm

CROSS_COMPILE=\$CM_ROOT/prebuilts/gcc/linux-x86/arm/arm-eabi-4.8/bin/

arm-eabi- menuconfig

The command is composed by the make instruction, which will invoke a Makefile. Some
arguments are passed, such as the directory in which the source is present (C), the output
directory (O), the module installation path (INSTALL_MOD_PATH), the target architecture
(ARCH) and the pointer to the desired cross compiler. Finally, menuconfig is the argument that
will instantiate the graphical environment.

5.3. Kernel configuration and compilation 35

Figure 5.1: Backported WCN36XX structure

We must then make the following changes.

• Enable loadable module support and all sub-menu entries [*];

• Enable CCM support under Cryptographic (AS MODULE [M]);

• Disable cfg80211 - wireless configuration under Networking support /Wireless;

• Disable PRIMA-WLAN under Device drivers / Staging drivers / Qualcomm Atheros Prima
WLAN module;

The first option will enable the use of external modules, as is the case of our driver, alongside
the kernel and enabling the module linking. Crypto CCM is the cryptographic module used in

36 Chapter 5. Procedures

WPA-PSK and Secure authentication of equals Secure Authentication of Equals (SAE) protocol,
providing the necessary functions to assure secure connection. Hence, it must be loaded.

Cfg80211 will be provided by the driver compilation since it is associated with wcn36xx.
Finally, the default driver must be disabled as it will be replaced by wcn36xx.

When the menuconfig finishes, it generates a configuration file where the compilation flags for
the kernel are properly defined. This configuration file will be placed in the previously defined
output directory ("O" flag). It is possible to compile only the kernel and place it on the target
folder, but in order to automatize the process, we must place the configuration file in the correct
location in the source directory. That will enable that each time the source is compiled, the
default configuration will be the one we defined.

The source documentation did not produce the desired output, as the kernel would remain
unchanged. We found that the kernel configuration file was defined within the device/lge/-
mako/BoardConfig.mk file and noticed that the default configuration file was set for TAR-
GET_KERNEL_CONFIG to be cyanogen_mako_defconfig as opposed to the source, which
stated that we should copy the modified configuration file with the name "mako_defconfig".

After that change was done, the source compiled successfully and a flashable zip file was
produced with the desired kernel.

The following step was to compile the wcn36xx driver and link it to the kernel. Backports was
the chosen tool to compile the new driver. This receives as an input the folder that contains the
zImage file, which is a compressed version of the kernel image that is self-extracting. Backports
will then, gather information regarding the specific kernel and automatically matches the driver
to it. According to the provided documentation, we will also need a specific wcn36x_msm
module. The backports version we used was the official 3.16 version, as it already provides
wcn36xx support, but it did now provide the wcn36xx_msm driver. After some research, we
found a version of wcn36xx source that produced the proper wcn36xx_msm module from [31].

The used sources [10][13] only provided a solution that would enable the final user to compile
the driver and then manually upload it to the target device. As it was previously mentioned,
kernel drivers and modules are statically linked with the kernel. That means that a given module
or driver must be compiled to match the specific driver compilation made. Consequently, even if
we use the same kernel version used for the final device, a driver would not work in it as it must
be built for the specific kernel running on that specific device. Our solution integrates the driver
compilation process within the CM build process, and automatically places the compiled files in
the correct folder in the output directory so they can then be compressed and used in the target
device.

As mentioned in 3.2.3, the CM build process relies on a hierarchical tree of Makefiles. When
the brunch command is issued, the build/core/main.mk file is called. Main.mk will then call
other makefiles and so on.

5.3. Kernel configuration and compilation 37

Our first approach was to create a local folder and a Makefile that would be called by the
CM build process. But creating a makefile to be integrated within an complex build process as
cyanogenmods is very laborous. Since our final result is a specific CM version with Mesh support,
we hard coded the backports build within the compilation process. To do so, we analyzed the
output of the build process and we found a “Building Kernel” string. We then searched for files
containing such string:

grep -r "Building Kernel"

build/core/tasks/kernel.mk:@echo e ${CL_GRN}” Building Kernel ”${CL_RST}

Makefiles define several values like temporary environment variables and rules. Since Backports
will rely on the zImage file, and we know that the zImage file is produced in the output directory
for the kernel, we opted to search for the zImage string, and found :� �

TARGET_PREBUILT_INT_KERNEL_TYPE := zImage� �
After that, we searched for the TARGET_PREBUILT_INT_KERNEL_TYPE variable,

and found

$(MAKE) $(MAKE_FLAGS) -C $(KERNEL_SRC) O=$(KERNEL_OUT)

ARCH=$(KERNEL_ARCH)

$(KERNEL_CROSS_COMPILE) $(TARGET_PREBUILT_INT_KERNEL_TYPE)

Which is the same command we previously found for compiling the kernel and hence, the
line that will effectively call the kernel compilation process. So we uploaded the backports
and wcn36xx_msm to the "external" folder in a new folder called "wcn36xx". Backports will
need to be configured prior to the compilation. Since the build process will automatically call
the backports makefile, we can setup the configuration file prior to compilation hence leaving
backports ready to be ran. In the "external/wcn36xx/backports" folder run:

� �
make wcn36xx-defconfig

make menuconfig� �
Listing 5.1: Driver compile steps

Enable pre-80211s support under network / wireless [*].

make KLIB=$CM_ROOT/out/target/product/$CM_BUILD/obj/KERNEL_OBJ

KLIB_BUILD=$CM_ROOT/out/target/product/$CM_BUILD/obj/KERNEL_OBJ

ARCH=arm

CROSS_COMPILE=$CM_ROOT/prebuilts/gcc/linux-x86/arm/arm-eabi-4.8/

38 Chapter 5. Procedures

bin/arm-eabi

The KLIB and KLIB_BUILD parameters point to the compiled kernel source directory,
where the zImage relies. When we save the changes made, a ".config" file will be generated in the
backports folder. When "make" is called further in the compilation process, it will resource to
the .config file defined.

� �
echo "Kernel Modules not enabled" ; \

fi ;

@echo -e \${CL_GRN}"Building wcn36xx kernel objects matching against

"${CL_RST}

$(MAKE) -C $(Android_BUILD_TOP)/external/wcn36xx/backports

KLIB=$(KERNEL_OUT) KLIB_BUILD=$(KERNEL_OUT) ARCH=$(KERNEL_ARCH)

$(KERNEL_CROSS_COMPILE)

$(MAKE) -C $(Android_BUILD_TOP)/external/wcn36xx/wcn36xx-master/wcn36xx_msm

KLIB=$(KERNEL_OUT) KLIB_BUILD=$(KERNEL_OUT) ARCH=$(KERNEL_ARCH)

$(KERNEL_CROSS_COMPILE)

cp $(Android_BUILD_TOP)/external/wcn36xx/wcn36xx-master/

wcn36xx_msm/wcn36xx_msm.ko $(OUT)/system/lib/ modules/wcn36xx_msm.ko

cp $(Android_BUILD_TOP)/external/wcn36xx/backports/compat/compat.ko

\textpf{$(OUT)}/system/lib/modules/

cp $(Android_BUILD_TOP)/external/wcn36xx/backports/net/wireless/cfg80211.ko

$(OUT)/system/lib/modules/

cp $(Android_BUILD_TOP)/external/wcn36xx/backports/net/mac80211/mac80211.ko

$(OUT)/system/lib/modules/

cp $(Android_BUILD_TOP)/external/wcn36xx/backports/drivers/net/wireless/

ath/wcn36xx/wcn36xx.ko $(OUT)/system/lib/modules/� �
Listing 5.2: Kernel Compilation Integration

With this we are forcing the kernel to generate the new modules, install them onto the proper
location and then commencing the wcn36xx build process. Then, we compile the wcn36xx driver,
the wcn36xx_msm module, and then copy the files onto the output directory, in the proper
folder to be later loaded.

We implemented a solution that automatically runs backports immediately after the kernel is
compiled. By integrating the backports compilation process directly onto the CM build, we can
assure that the kernel will be compiled first, and immediately after it, the driver.

5.4. OnBoot Load 39

5.4 OnBoot Load

Once the driver is correctly compiled and working alongside the kernel, we implemented a solution
to enable the driver loading in the boot process of CM itself. As Linux, CM has init files that
are ran on boot, where configurations and procedures can be implemented. Usually, we would
find the init.rc file in Linux. In our case, CM provides the init.rc and init.rako.rc files.

The init.rc file has its own language, the init language. The init language is used in plaintext
files that take the .rc file extension. As stated in [17], init.rc is the primary .rc file and is loaded
by the init executable at the beginning of the boot process. It is responsible for the initial set up
of the system.

The init language allows for the creation of services or actions.

"Services are programs which init launches and (optionally) restarts when they exit.1"

So we need to define a service, which will load our drivers and modules on boot.

"All services whose binaries reside on the system, vendor, or odm partitions should
have their service entries placed into a corresponding init .rc file, located in the
/etc/init/ directory of the partition where they reside.2"

A driver or module can be manually loaded in Linux based operating systems via the use of
the insmod command. So, we defined a service which would call a shell script. That shell script
would resource to insmod to load all the necessary drivers.

� �
service wcn36xx /system/bin/sh /system/etc/init.mako.wcn36xx.sh

class main

user root

oneshot� �
Listing 5.3: Service entry creation

and the init.mako.wcn36xx.sh script

we also added a new line in device.mk for the new shell script to be copied to the proper
location on the target system upon build

We flashed the device, and tested the implementation. What we found out was that the
modules were not beeing loaded at all. The script was in fact, being ran, but the instructions
within it were not working properly. If the script was manually ran, it would succeed, but on

1https://Android.googlesource.com/platform/system/core/+/Android-5.0.0r2/init/readme.txt
2https://Android.googlesource.com/platform/system/core/+/Android-5.0.0r2/init/readme.txt

40 Chapter 5. Procedures

� �
!/system/bin/sh

/system/bin/insmod /system/lib/modules/wcn36xx_msm.ko

/system/bin/insmod /system/lib/modules/compat.ko

/system/bin/insmod /system/lib/modules/cfg80211.ko

/system/bin/insmod /system/lib/modules/mac80211.ko

/system/bin/insmod /system/lib/modules/wcn36xx.ko� �
Listing 5.4: Init script configuration

� �
PRODUCT_COPY_FILES += \

device/lge/mako/init.mako.bt.sh:system/etc/init.mako.bt.sh \

device/lge/mako/init.mako.wcn36xx.sh:system/etc/init.mako.wcn36xx.sh� �
Listing 5.5: Device.mk configuration file

boot it would fail. After several debug attempts, we found log entries denying the sys_module
capability.

After research, we found that there was a security block affecting our script, more properly,
the block was being done to the insmod command by SELinux. Basically, when the cellphone
boots, it does not operate in the user space. Only after the boot process is completed, the
concept switch to user space is done. So the init_shell process was being denied the sys_module
capability, and was not being able to insert the kernel modules.

Our script was developed to run on boot, so it would be ran in by a different user, in this
case the init_shell process.

We tested two different approaches. One was to disable SELinux, by setting it to work
in a permissive manner, where logs are written but security policies are not enforced. That
could be done by adding BOARD_KERNEL_CMDLINE += Androidboot.selinux=permissive
in device/lge/mako/BoardConfig.mk. But disabling the SELinux secure policy is not a good
approach as it disables all the security levels implemented and enables malicious code to operate
on boot, if the user gets infected.

The proper way was to define a specific policy to our needs, that would not require more
than the operations required to enable wcn36xx to function correctly. In order to help defining
the rules needed to be written, we resourced to the audit2allow tool. audit2allow scans the logs
and traces SELinux denied log entries. It then produces the appropriate rule to be added to the
SELinux policy.

So we ran and it produced

so within the device/lge/mako/sepolicy folder, we created the wcn36xx.se file and added the
content provided by audit2allow.

5.4. OnBoot Load 41

� �
adb shell su root dmesg | audit2allow -p out/target/product/mako/root/sepolicy� �

Listing 5.6: Audit2Allow Debug

� �
allow init_shell self:capability sys_module;� �

Listing 5.7: Audit2Allow Output

and added the following to file_contexts� �
/system/etc/init\.mako\.wcn36xx\.sh u:object_r:wcn36xx_exec:s0� �

Listing 5.8: wcn36xx file_contexts entry

The graphical menus in CM are not prepared to work with WMN, hence, it was impossible
to test our implementation using the standard GUI. Throughout the process of compiling and
uploading the drivers, iw was the chosen piece of software to manage interfaces and attempt
the creation of a Mesh network. Although present in most of the Linux distributions, it is not
present natively in Android or CM. So we needed to port iw to the Android system. Binary
executable files can be ported to Android with help from NDK tools. iw runs on the linux
command line. Since we are using Android Debug Bridge (ADB), and the local shell within the
device, iw suits properly within what we needed.

To port iw onto Android, we resourced to [24]. We actually found that this source code is
not able to compile as the documentation states. When NDK is called, it will read instructions
from tool_chain/jni/Application.mk file, namely the target architecture. The target architecture
is, by default, set to "all", and is defined in the APP_ABI flag. In order to go through the
compilation process without error, we needed to change the APP_ABI flag to

� �
APP_ABI := armeabi� �

Listing 5.9: iw Makefile configuration

So, in order to successfully compile iw, we had to do some changes to the recipe.

We then finally have an Android-ARM compiled iw binary. Since iw relies in on the netlink
protocol library, it also produces the necessary headers in the form of shared objects (.so files).
The CM build was also updated with iw, we uploaded the shared objects to system/lib/modules
in the output directory, and the iw binary executable file to system/bin. That assures that iw
will be compressed in the target flashable zip file.

After that, the device is now capable of creating and joining Mesh networks.

42 Chapter 5. Procedures

� �
git clone https://github.com/imlinhao/Android-iw-libnl3.git

cd Android-iw-libnl3/

sh .autogen.sh

cd Android_toolchain/

*/apply the previously mentioned changes */

ndk-build� �
Listing 5.10: iw build process

Chapter 6

Results

In this chapter we will describe the results obtained by the aforementioned development and
investigation steps. We will start by briefly explaining how to upload and install the custom ROM
and will, hence, describe the features enabled by the implementation of the mesh capabilities. We
will describe such features in terms of GUI capabilities available for the user as well as embedded
capabilities now available within the system itself.

We then describe procedures that will enable access/guide researchers and developers towards
the IEEE 802.11s properties by resourcing to low level tools such as iw.

After, we will access the results in terms of the final developed ROM, as well as briefly
describe the concept mesh APK developed to enhance the IEEE 802.11s protocol at a higher,
GUI, level.

Finally, we will describe some results obtained by implementing test mesh networks and and
gathering results, such as distance obtained, relay node to amplify range, and running services
resourcing to a IEEE 802.11s active connection.

6.1 Preliminary Results

As a result of all the previously described development steps, we were able to do a preliminary
testing of the Mesh capabilities in the Nexus 4 cellphone. To do so, we uploaded the compiled
flashable zip file from the output directory to the device using adb push function.

� �
adb push $OUT/cm_12_final.zip /sdcard

adb reboot recovery� �
Listing 6.1: Remote file upload

Once recovery booted into TWRP, we formated the data, cache and system partitions, and
selected "install from zip file" option. After selecting our zip file, the installation process went

43

44 Chapter 6. Results

through. Once finished, we wiped the dalvik cache and rebooted the phone.

Figure 6.1: About phone menu entry

Figure 6.1 shows the settings menu from the compiled rom, where we can state the kernel
version, compiled by us, as well as the Security Enhanced Linux (SELinux) status defined to
enforcing. CM booted normally, available wireless Access Point (AP)s and at first we could
not connect to secure networks as there was authentication problems associated with the AP
association process.

6.1. Preliminary Results 45

Figure 6.2: Wireless Scanning GUI

The authentication problem ended up being traced to the lack of cryptographic support. The
problem was resolved by forcing the kernel to compile the ccm module as an external module
and load it on boot as well.

We then proceeded to the Mesh creation, via iw. To do so, we enabled the hidden Developer
Options menu by tapping "Build Number" under Settings / About phone, and the Android
Debugging under the Developer Options menu. The phone is then available via terminal due to
the adb shell.

Once inside the local shell, we needed to do some configuration. Firstly, we need to set the
interface type to Mesh Point (MP). By default, the interface will operate as managed meaning
that it is beeing managed by a process or daemon, in this case, WPA_Supplicant is managing the
interface. At this point, WPA_Supplicant did not have native support for Mesh networks, hence,
the interface could not be operating as managed as it would invalidate the Mesh capabilities.
In order to avoid WPA_Supplicant managing the interface, we disabled wireless in the phone
(Turn Wifi off option under Settings). We manually setup the interface configurations, creating
the Mesh point, and enabling the interface to operate in accordance with the Mesh network
requirements. To do so, we had to first disable the interface, then manually assign the Mesh type
and a corresponding Internet Protocol (IP). For testing purposes, we also manually assigned a
Mesh id, creating an open Mesh network.

46 Chapter 6. Results

� �
ifconfig wlan0 down

iw dev wlan0 set type mp

iw dev set meshid mesh

ifconfig wlan0 192.168.1.10 up� �
Listing 6.2: Wireless interface configuration

This will configure the interface to operate as a Mesh point, with all the configurations. Also,
an open Mesh (unprotected) is created with the Mesh id "mesh". The second Nexus 4 used to
perform tests was also configured to operate as a Mesh point, and assigned an IP in the same
sub-net. We stated that it was possible to scan the Mesh network within the Graphical User
Interface (GUI).

Connection will not be possible via the GUI at this point. We suspect that the main reason
is related with the lack of native support for Mesh operations within the Android framework and
the provided classes.

Although not possible via GUI, it is possible to manually join the second device with the
first one, and it can be done with one of two methods:

1. Setting the meshid parameter to match the open mesh created.

2. Explicitly joining the device via iw dev <devname> mesh join <mesh ID>

In the first method, the mesh_id parameter is matched with the existing Mesh network. If
they match, and since the Mesh network is open, it will automatically peer with one device and
authenticate in the network. Normally, when a device joins, it should announce its membership.
Apparently, this is not case in our implementation, but if we force communication by pinging
one device, it will automatically update the Address Resolution Protocol (ARP) table, and the
device will show his peer links.

6.2 Mesh Application

Due to the lack of support from higher level classes that manage the network connection, the GUI
was unable to setup a Mesh network in an user-friendly manner. The manual process described
in the previous chapters does not match the main purpose of ou implementation as it will require
special knowledge from the user and deployment will be time-consuming.

As previously mentioned, to operate in Mesh mode, we need to interact directly with the
network interface. That requires root privileges, and we are operating at user level. To gain root
operation access we resourced to the chainfire SuperSU library for Android. That enabled us to
run shell commands within our application an properly configure the network interface. The
APK was designed to be easily usable in testing and creating open WMN.

6.3. Secure Mesh with WPA_Supplicant 47

We could then create an open Mesh, with the click of a button.

6.3 Secure Mesh with WPA_Supplicant

The author in [10] propose the creation of Mesh networks resourcing to authsae. Authsae [36] is
an application defined to handle the key derivation and cipher negotiation within Mesh devices.
Authsae would have to be manually compiled and added to the rom. Moreover, to accomplish
secure Mesh, the authors rely on a specific WPA_supplicant development branch created for
Mesh networks.

We decided not to take the authors approach. When the open80211s with wcn36xx project
was abandoned, the WPA_Supplicant implementation was still in an experimental stage. We
discovered that the most recent WPA_Supplicant version available for CM13 within the CM
data repository, at the time of this implementation, was already Mesh compliant and that the
CM source already had native support for the Secure Authentication of Equals (SAE) protocol.

Our solution was then to integrate WPA_Supplicant latest version available for Cyanogenmod
(CM) 13 in our CM 12.1 implementation.

In order to do so, we replaced the WPA_Supplicant_8 folder content in the "external" folder,
taking advantage of the fact that the folder name was the same in both versions of CM and that
the build process was going to run the makefile in that folder.

The new version of WPA_Supplicant is no longer relying on OpenSSL [12], running on the
new BoringSSL [7] cryptographic library. We compiled the new version of WPA_Supplicant
in order to resource to OpenSSL instead of BoringSSL. To do so, we had to change the
WPA_Supplicant makefile, adding INCLUDES += external/openssl/include and forcing the
value of CONFIG_FIPS = y in order to force the makefile to compile with OpenSSL. Also, we
added the CONFIG_MESH=y in both wpa_supplicant and hostapd Android.mk

When WPA_Supplicant successfully compiled, we were able to create open Mesh and
secure Mesh with a custom WPA_Supplicant file, but only in an temporary manner. Since we
adapted the WPA_Supplicant to support OpenSSL, but it was originally conceived to work with
BoringSSL, we came accross a scenario, where a Mesh network would be created, would operate
normally for a few seconds and then an Segmentation Fault would occur (SIGSEGV 11). We
traced the segmentation fault to the cryptographic Application Programming Interface (API) in
use.

With the work developed, we produced two major results.

Firstly, we ported a dropped 2010 project and ported its implementation to current technology.
We made it all automatizing the most within the rom compilation process itself, assuring that
future developers can download our work and improve it. We produced an working CM 12.1
rom, for nexus 4 devices, capable of creating, joining and communicating with other devices in a

48 Chapter 6. Results

more seamlessly and less time consuming manner.

Secondly, we released every implementation step that we did, duly commented, to developers
that are working with CM driver integration, CM customization. By releasing the full project in
the form of a webpage, as well as all the source code in an data repository, we provide users with
a source on which they can rely to either replicate or adapt to other devices, to reproduce the
same outcome we managed to obtain with the work done.

6.4 CyanogenMod Rom

The CM rom does not suffer any change in terms of usability. All the functionalities that are
available in the official CM 12.1 release are still available to the target user. But now it provides
open Mesh support, enabling the user to connect seamlessly into an established WMN if available,
or deploy a Mesh network of its own.

The technology integration enabled the GUI to operate in Mesh compliance. The main proof
relies on the fact that the Wifi graphical interface can now list available Mesh networks. Although
connection is not yet possible through this menu, it shows that the driver is interacting with
higher-layer applications and collecting 802.11s packets, partially parsing their content.

Figure 6.3: About phone menu entry

Although managed by WPA_Supplicant, the interface is also working accordingly. By

6.4. CyanogenMod Rom 49

explicitly issuing a scan command, the interface is able to pick up the MESH ID field in the
packets received and display them to the user.

� �
237|root@mako:/ iw scan | grep -i id

SSID:

MESH ID: mesh

* Active Path Selection Protocol ID: 1

* Active Path Selection Metric ID: 1

* Congestion Control Mode ID: 0

* Synchronization Method ID: 1

* Authentication Protocol ID: 0

}� �
Listing 6.3: iw mesh scan

It is now possible to define the interface type as a Mesh point, and set Mesh parametres such
as Mesh id and issue commands such as Mesh join.

50 Chapter 6. Results

� �
237|root@mako:/ iw dev wlan0 info

Interface wlan0

ifindex 22

wdev 0x1

addr 00:0a:f5:dd:58:c0

type mesh point

wiphy 0

channel 1 (2412 MHz), width: 20 MHz (no HT), center1: 2412 MHz� �
Listing 6.4: Mesh peering

6.4.1 Setting a MBSS

The devices are able to establish links and communicate with each other. We tested communication
between two nexus 4 devices. The first device was assigned the IP 192.168.1.10 and a Mesh
network was created with the Mesh id "mesh". We ran tcpdump -i wlan0, waiting for recieving
packages. The second device was assigned the ip 192.168.1.20 and the mesh join command was
issued. After that, a small communication was established by having once device ping the other.

� �
root@mako:/ ping 192.168.1.10

PING 192.168.1.10 (192.168.1.10) 56(84) bytes of data.

64 bytes from 192.168.1.10: icmp_seq=1 ttl=64 time=4.60 ms

64 bytes from 192.168.1.10: icmp_seq=2 ttl=64 time=1.92 ms

64 bytes from 192.168.1.10: icmp_seq=3 ttl=64 time=1.92 ms

64 bytes from 192.168.1.10: icmp_seq=4 ttl=64 time=1.89 ms

64 bytes from 192.168.1.10: icmp_seq=5 ttl=64 time=1.92 ms

64 bytes from 192.168.1.10: icmp_seq=6 ttl=64 time=5.95 ms

64 bytes from 192.168.1.10: icmp_seq=7 ttl=64 time=1.95 ms

64 bytes from 192.168.1.10: icmp_seq=8 ttl=64 time=2.28 ms

64 bytes from 192.168.1.10: icmp_seq=9 ttl=64 time=2.31 ms

--- 192.168.1.10 ping statistics ---

9 packets transmitted, 9 received, 0\% packet loss, time 8011ms

rtt min/avg/max/mdev = 1.892/2.753/5.951/1.395 ms� �
Listing 6.5: Ping output from emitting device

6.4. CyanogenMod Rom 51

Data received in the first device.� �
23:18:50.917318 IP 192.168.1.20 > 192.168.1.10: ICMP echo request, id 5, seq 1,

length 64

23:18:50.917714 IP 192.168.1.10 > 192.168.1.20: ICMP echo reply, id 5, seq 1,

length 64

23:18:51.916127 IP 192.168.1.20 > 192.168.1.10: ICMP echo request, id 5, seq 2,

length 64

23:18:51.916341 IP 192.168.1.10 > 192.168.1.20: ICMP echo reply, id 5, seq 2,

length 64

23:18:52.917562 IP 192.168.1.20 > 192.168.1.10: ICMP echo request, id 5, seq 3,

length 64

23:18:52.917775 IP 192.168.1.10 > 192.168.1.20: ICMP echo reply, id 5, seq 3,

length 64

23:18:53.918965 IP 192.168.1.20 > 192.168.1.10: ICMP echo request, id 5, seq 4,

length 64

23:18:53.919179 IP 192.168.1.10 > 192.168.1.20: ICMP echo reply, id 5, seq 4,

length 64

23:18:54.920369 IP 192.168.1.20 > 192.168.1.10: ICMP echo request, id 5, seq 5,

length 64

23:18:54.920583 IP 192.168.1.10 > 192.168.1.20: ICMP echo reply, id 5, seq 5,

length 64

23:18:55.920583 ARP, Request who-has 192.168.1.20 tell 192.168.1.10, length 28

23:18:55.924886 IP 192.168.1.20 > 192.168.1.10: ICMP echo request, id 5, seq 6,

length 64

}� �
Listing 6.6: Ping output from receiving device

We can also see an Address Resolution Protocol (ARP) request being sent proving that the
network protocol is operating.

Once the devices join the same Mesh network, we can verify that the link was created and
gather statistics.

6.4.2 Range test

We also conducted a small test to assess the distance capabilities of the WMN created, as well
as the interoperability between different devices, using different wireless drivers. In order to
accomplish a wider WMN, we resourced to:

• Two Nexus 4 cellphones with the custom rom

• An asus EEE-pc using a TP-Link TL-WN722N usb wireless card with the atk9k driver

The first test consisted of an indoor test, in the computer science department of the faculty
of sciences of university of Porto. We set up an WMN, connecting the computer and one of

52 Chapter 6. Results

� �
iw dev wlan0 station dump \\

Station 00:0a:f5:0a:39:6f (on wlan0)\\

inactive time: 520 ms \\

rx bytes: 15865 \\

rx packets: 393 \\

tx bytes: 704

tx packets: 8

tx retries: 0

tx failed: 0

signal: -33 dBm

signal avg: -33 dBm

Toffset: 194560390 us

tx bitrate: 1.0 MBit/s

rx bitrate: 2.0 MBit/s

mesh llid: 1354

mesh plid: 1548

mesh plink: ESTAB

mesh local PS mode: ACTIVE

mesh peer PS mode: ACTIVE

mesh non-peer PS mode: ACTIVE

authorized: yes

authenticated: yes

preamble: long

WMM/WME: yes

MFP: no

TDLS peer: no� �
Listing 6.7: Interface link statistics

the Nexus cellphones. The computer was left running tcp dump and the cellphone was pinging
the computer. We then proceeded to move the cellphone trough a hall, which contained several
rooms full of computers, wireless APs, people walking, cellphone devices operating and a partially
open wooden door. We managed to maintain connection for approximately 35 meters, without
data loss. We registered that location and added the second nexus 4 cellphone to the mesh
network. That node automatically established a link between the two intervinients and data
started to flow, automatically relaying the packets between them. We managed to communicate
for more 42 meters (approximately). Between the relay node and the transmitting node, we had
another hall, with other networks operating, researchers labs and an anti-fire steel door.

The second test was an outside, straight-line point-of-view test. Again, the Asus EEE-pc was
registering received packets and one nexus cellphone was registering. We managed to maintain
connection for around 110 meters until we reached an rock wall. We managed to maintain
connection even further, but the rock wall was placing an interference, invalidating our test.

6.4. CyanogenMod Rom 53

6.4.3 Running a service over Mesh

We tested the ability to run a service using our Mesh link and maintain an active connection. In
this case, we successfully established a SSH connection to a computer, using one of the intervening
Nexus 4.� �

root@mako:/ ssh 192.168.10.3

The authenticity of host 192.168.10.3 (192.168.10.3) cant be established.

ECDSA key fingerprint is 42:7c:e5:21:29:91:13:14:3e:d1:d3:a1:f1:51:90:6c.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added ’192.168.10.3’ (ECDSA) to the list of known hosts.

root@192.168.10.3’s password:

root@mako:/ ssh 192.168.10.3

root@192.168.10.3’s password:

Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 4.2.0-42-generic x86_64)

* Documentation: https://help.ubuntu.com/

58 packages can be updated.

32 updates are security updates.

WARNING: Security updates for your current Hardware Enablement

Stack ended on 2016-08-04:

* http://wiki.ubuntu.com/1404_HWE_EOL

There is a graphics stack installed on this system. An upgrade to a

configuration supported for the full lifetime of the LTS will become

available on 2016-07-21 and can be installed by running ’update-manager’

in the Dash.

Last login: Mon Aug 15 21:11:02 2016 from 192.168.10.20

root@pc:~� �
Listing 6.8: SSH connection through Mesh link

54 Chapter 6. Results

6.5 Mesh Settings APK

The Mesh settings APK is a small application developed to ease the creation of a WMN. It
provides a simple interface, with text boxes for IP, Mac Address and Mesh Id. This input will
then be used in issuing commands within the SuperSU library. Interface management is done
using the switch button, that will change the interface type. By using the SuperSU library, we
provide input parameters to iw to create or join an open Mesh.

Figure 6.4: Mesh APK

Since SuperSU is being used, the application will need to require root privileges in order to
perform the needed instructions.

Chapter 7

Conclusion

The results show that it is possible to implement Wireless Mesh Networks (WMN) in Android
devices. The driver overall behaviour was satisfactory in terms of establishing links an relaying
data. We were able to observe some behaviour like dynamic path creation and path selection.
In addition, we were able to assert reliability in coverage provided. We hope these results and
documentation provided will help future developers to continue the work in this field, as potential
implementations using mobile devices as intervinients can lead to massive scale networks. We
also showed that with some more work, it will be possible to create a finished product that will
enable the use of all the features of Cyanogenmod (CM) associated with WMN capabilites.

7.1 Future Work

Regarding the CM source code, we would like to see the Mesh settings APK integrated directly
within the settings APK of the CM user interface. We think that it would provide the user
with a more familiar experience as well as more intuitive. Also, with some work it would be
possible to create or manipulate the existing wifi Application Programming Interface (API)
to correctly parse and use Mesh commands directly, instead of resourcing to the iw tools or
requiring previledge access as root user.

Regarding the driver integration, we think that creating an solution that relies on a native
SoftMac driver would be of great value. We have to bare in mind that the WCN36XX project
was dropped, and that it does not cover a great deal of current devices since newer chipsets are
already available.

7.2 Contribution

All the documentation related with the project, as well as all the source code will be released at
www.static.pt/androidmesh and https://github.com/androidmesh. The information will also

55

www.static.pt/androidmesh
https://github.com/androidmesh

56 Chapter 7. Conclusion

be propagated among the several community forums such as the CM community and XDA
Developers on the form of tutorial posts. We hope that fresh documentation, with effective
results will work as a catapult for future developers to try and create more solutions.

7.3 B.A.T.M.A.N. Routing Protocol Integration

On the course of the Battle of the Wireless Battle of the Mesh V9 conference, we talked to the
B.A.T.M.A.N. protocol representative, Simon Wunderlich 1. Our work was of great interest to
them as they are receiving several pull requests for a mobile solution to implement their protocol.
Since 802.11s can be used to create a backbone among wireless devices, can provide Layer 2
routing and connection and was previously mentioned that the protocol API is able to customize
and run other protocols, we decided that the full source code of this implementation, as well as
the documentation created would be provided as a contribution to the B.A.T.M.A.N. routing
protocol project.

1https://www.open-mesh.org/users/16

Bibliography

[1] IEEE Standard for Information Technology- Telecommunications and Information Exchange
Between Systems- Local and Metropolitan Area Networks- Specific Requirements Part
15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications
for Low-Rate Wireless Personal Area Networks (WPANs). Technical report, 2006.
doi:10.1109/ieeestd.2006.232110.

[2] Sown - the southampton open wireless network. http://redhookwifi.org/, 2007.

[3] Sown - the southampton open wireless network. http://sown.org.uk/, 2007.

[4] How to build cyanogenmod for google nexus 4 ("mako"). https://wiki.cyanogenmod.org/w/
Build_for_mako, 2012.

[5] Nycwireless. https://nycwireless.net/, 2013.

[6] Developing | android open source project. https://source.android.com/source/developing.
html, 2015.

[7] Boringssl. https://boringssl.googlesource.com/boringssl/, urldate = 2015-11-09, 2015.

[8] Doc: Building basics. https://wiki.cyanogenmod.org/w/Doc:_Building_Basics, 2015.

[9] Envsetup help. https://wiki.cyanogenmod.org/w/Envsetup_help, urldate = 2015-11-09,
2015.

[10] Howto - o11s/open80211s wiki. https://github.com/o11s/open80211s/wiki/HOWTO, 2015.

[11] en:users:documentation:iw [linux wireless]. https://wireless.wiki.kernel.org/en/users/
documentation/iw, 2015.

[12] Os. https://www.openssl.org/, urldate = 2015-11-09, 2015.

[13] en:users:drivers:wcn36xx [linux wireless]. https://wireless.wiki.kernel.org/en/users/drivers/
wcn36xx, 2015.

[14] W1.fi. https://w1.fi/wpa_supplicant/, 2016.

[15] Developer.android.com. https://developer.android.com/reference/android/net/wifi/
package-summary.html, 2016.

57

http://dx.doi.org/10.1109/ieeestd.2006.232110
http://dx.doi.org/10.1109/ieeestd.2006.232110
http://dx.doi.org/10.1109/ieeestd.2006.232110
http://dx.doi.org/10.1109/ieeestd.2006.232110
http://redhookwifi.org/
http://sown.org.uk/
https://wiki.cyanogenmod.org/w/Build_for_mako
https://wiki.cyanogenmod.org/w/Build_for_mako
https://nycwireless.net/
https://source.android.com/source/developing.html
https://source.android.com/source/developing.html
https://boringssl.googlesource.com/boringssl/
https://wiki.cyanogenmod.org/w/Doc:_Building_Basics
https://wiki.cyanogenmod.org/w/Envsetup_help
https://github.com/o11s/open80211s/wiki/HOWTO
https://wireless.wiki.kernel.org/en/users/documentation/iw
https://wireless.wiki.kernel.org/en/users/documentation/iw
https://www.openssl.org/
https://wireless.wiki.kernel.org/en/users/drivers/wcn36xx
https://wireless.wiki.kernel.org/en/users/drivers/wcn36xx
https://w1.fi/wpa_supplicant/
https://developer.android.com/reference/android/net/wifi/package-summary.html
https://developer.android.com/reference/android/net/wifi/package-summary.html

58 Bibliography

[16] Android.googlesource.com. https://android.googlesource.com/platform/frameworks/base/
+/618455f/wifi/java/android/net/wifi/WifiNative.java, 2016.

[17] Android.googlesource.com. https://android.googlesource.com/platform/system/core/+/
master/init/readme.txt, 2016.

[18] Help.ubuntu.com. https://help.ubuntu.com/community/UbuntuBackports, 2016.

[19] Drvbp1.linux-foundation.org. http://drvbp1.linux-foundation.org/~mcgrof/rel-html/
backports/, 2016.

[20] Cs.cornell.edu. http://www.cs.cornell.edu/courses/cs5430/2011sp/NL.accessControl.html,
2016.

[21] Wiki.centos.org. https://wiki.centos.org/HowTos/SELinux, 2016.

[22] Ntu.edu.sg. https://www.ntu.edu.sg/home/ehchua/programming/android/Android_NDK.
html, 2016.

[23] Cwnp - certified wireless network professional. https://www.cwnp.com/uploads/802-11s_
mesh_networking_v1-0.pdf, 2016.

[24] Porting iw on android. https://github.com/imlinhao/android-iw-libnl3, 2016.

[25] Backports.wiki.kernel.org. https://backports.wiki.kernel.org/index.php/Main_Page, 2016.

[26] Gowasabi.net. http://gowasabi.net/, 2016.

[27] Do access points use softmac or hardmac? http://stackoverflow.com/questions/28343384/
do-access-points-use-softmac-or-hardmac, 2016.

[28] 2016. [link].

[29] Meta mesh | wireless networking for all. http://www.metamesh.org/, 2016.

[30] Statista. https://www.statista.com/statistics/232786/forecast-of-andrioid-users-in-the-us/,
2016.

[31] Krasnikoveugene/wcn36xx. https://github.com/KrasnikovEugene/wcn36xx, 2016.

[32] S. Basagni, M. Conti, S. Giordano, and I. Stojmenovic. Mobile Ad Hoc Networking. Wiley,
2004. ISBN: 9780471656883.

[33] Android Bridge. Android debug bridge | android studio. https://developer.android.com/
studio/command-line/adb.html, 2016.

[34] Raffaele Bruno, Marco Conti, and Enrico Gregori. Mesh networks: commodity multihop ad
hoc networks. IEEE Communications Magazine, 43(3):123–131, 2005.

[35] Joseph D Camp and Edward W Knightly. The ieee 802.11 s extended service set mesh
networking standard. IEEE Communications Magazine, 46(8):120–126, 2008.

https://android.googlesource.com/platform/frameworks/base/+/618455f/wifi/java/android/net/wifi/WifiNative.java
https://android.googlesource.com/platform/frameworks/base/+/618455f/wifi/java/android/net/wifi/WifiNative.java
https://android.googlesource.com/platform/system/core/+/master/init/readme.txt
https://android.googlesource.com/platform/system/core/+/master/init/readme.txt
https://help.ubuntu.com/community/UbuntuBackports
http://drvbp1.linux-foundation.org/~mcgrof/rel-html/backports/
http://drvbp1.linux-foundation.org/~mcgrof/rel-html/backports/
http://www.cs.cornell.edu/courses/cs5430/2011sp/NL.accessControl.html
https://wiki.centos.org/HowTos/SELinux
https://www.ntu.edu.sg/home/ehchua/programming/android/Android_NDK.html
https://www.ntu.edu.sg/home/ehchua/programming/android/Android_NDK.html
https://www.cwnp.com/uploads/802-11s_mesh_networking_v1-0.pdf
https://www.cwnp.com/uploads/802-11s_mesh_networking_v1-0.pdf
https://github.com/imlinhao/android-iw-libnl3
https://backports.wiki.kernel.org/index.php/Main_Page
http://gowasabi.net/
http://stackoverflow.com/questions/28343384/do-access-points-use-softmac-or-hardmac
http://stackoverflow.com/questions/28343384/do-access-points-use-softmac-or-hardmac
http://standards.ieee.org/getieee802/download/802.15.5-2009.pdf
http://www.metamesh.org/
https://www.statista.com/statistics/232786/forecast-of-andrioid-users-in-the-us/
https://github.com/KrasnikovEugene/wcn36xx
https://books.google.pt/books?id=GnkcHEsxAigC
https://developer.android.com/studio/command-line/adb.html
https://developer.android.com/studio/command-line/adb.html

Bibliography 59

[36] COZYBIT. Cozybit - authsae. = https://twrp.me/, 2016.

[37] Daniel de O Cunha, Luís Henrique MK Costa, and Otto Carlos MB Duarte. Analyzing the
energy consumption of ieee 802.11 ad hoc networks. In Mobile and Wireless Communication
Networks, pages 473–484. Springer, 2005.

[38] CyanogenMod. About cyanogenmod. = https://wiki.cyanogenmod.org/w/About, 2015.

[39] Sahibzada Ali Mahmud, Shahbaz Khan, Shoaib Khan, and Hamed Al-Raweshidy. A
comparison of manets and wmns: commercial feasibility of community wireless networks
and manets. In Proceedings of the 1st international conference on Access networks, page 18.
ACM, 2006.

[40] MIT. Nortel’s wireless mesh networks. = https://www.media.mit.edu/sponsorship/getting-
value/collaborations/nortel, 2001.

[41] IEEE Org. 802.11-2012 - IEEE Standard for Information technology–Telecommunications
and information exchange between systems Local and metropolitan area networks–Specific
requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications. (IEEE Std 802.11TM-2012).

[42] Meet Studio. Meet android studio | android studio. https://developer.android.com/studio/
intro/index.html, 2016.

[43] TWRP. Teamwin - twrp. = https://github.com/cozybit/authsae, 2016.

[44] Xudong Wang and Azman O Lim. Ieee 802.11 s wireless mesh networks: Framework and
challenges. Ad Hoc Networks, 6(6):970–984, 2008.

=
=
=
http://ieeexplore.ieee.org/servlet/opac?punumber=6178209
http://ieeexplore.ieee.org/servlet/opac?punumber=6178209
http://ieeexplore.ieee.org/servlet/opac?punumber=6178209
http://ieeexplore.ieee.org/servlet/opac?punumber=6178209
https://developer.android.com/studio/intro/index.html
https://developer.android.com/studio/intro/index.html
=

	Abstract
	Resumo
	Contents
	List of Tables
	List of Figures
	Listings
	Acronyms
	1 Introduction
	2 Related Work
	2.1 Wireless Mesh Networks
	2.1.1 Overview
	2.1.2 IEEE 802.11s

	2.2 Mobile Ad-Hoc Networks
	2.3 802.15.5

	3 Technologies Used
	3.1 Operating Systems
	3.1.1 Ubuntu
	3.1.2 CyanogenMod

	3.2 Related Tools
	3.2.1 Android Studio
	3.2.2 Android SDK
	3.2.2.1 Android Debug Bridge

	3.2.3 Backports
	3.2.4 SELinux
	3.2.5 NDK Tools
	3.2.6 iw
	3.2.7 WPA_Supplicant

	4 System Overview
	4.1 Wireless Driver Architecture

	5 Procedures
	5.1 Rooting
	5.2 Setting the environment
	5.3 Kernel configuration and compilation
	5.4 OnBoot Load

	6 Results
	6.1 Preliminary Results
	6.2 Mesh Application
	6.3 Secure Mesh with WPA_Supplicant
	6.4 CyanogenMod Rom
	6.4.1 Setting a MBSS
	6.4.2 Range test
	6.4.3 Running a service over Mesh

	6.5 Mesh Settings APK

	7 Conclusion
	7.1 Future Work
	7.2 Contribution
	7.3 B.A.T.M.A.N. Routing Protocol Integration

	Bibliography

