
Detecting rings around 
exoplanets
Akinbowale Babatunde Akinsanmi
Mestrado em Astronomia
Departamento de Física e Astronomia
2017

Orientador 
Nuno C. Santos,
Professor Auxiliar, Faculdade de Ciências da Universidade do Porto.

Coorientador 
Mahmoudreza Oshagh
Investigador, Centro de Astrofísica, Universidade do Porto and
Institut für Astrophysik, Georg - August - Universität Göttingen. 

Susana C.C. Barros
Investigador, Centro de Astrofísica, Universidade do Porto. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143410104?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Todas  as  correções  determinadas 
pelo júri, e só essas, foram 
efetuadas.





Faculdade de Ciências da Universidade

do Porto

Departamento de Física e Astronomia

Detecting Rings Around Exoplanets

Master in Astronomy Dissertation

Author:

Akinbowale Babatunde AKINSANMI1,2

Supervisors:

Nuno C. SANTOS1,2

Mahmoudreza OSHAGH1,3

Susana C.C. BARROS1

Affiliations:

1 Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto,

Portugal.

2 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do

Porto, Rua do Campo Alegre, 4169-007 Porto,Portugal

3 Institut für Astrophysik, Georg - August - Universität Göttingen,

Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.





iii

Acknowledgements
My sincere gratitude goes to my supervisors for their support, advice and also com-

mitment towards my development. It was only by standing on their shoulders I was

able to see farther and complete the work for this thesis.

To my mother, thank you for your encouragement and consistent belief in me which

helped me through very challenging times and made me more resolute. My gratitude

goes also to my siblings and girlfriend for their patience and support in various ways.

I thank also my astronomy colleagues for the enlightening discussions and for mak-

ing my study in Portugal an interesting one. To my other friends in Porto, thank you

for being my family here and helping me settle in comfortably.

My appreciation extends to the Director of ESS NASRDA, and the Heads of my

department and team for opportunity granted me to pursue my Masters degree.

I express gratitude to the EXOEARTHS team and the entire CAUP for creating

an enabling environment that motivated me, helped increase my curiosity and brought

clarity to a lot of doubts.

Finally, I acknowledge the support of Fundação para a Ciência e a Tecnologia (FCT)

(project ref. PTDC/FIS-AST/1526/2014) through national funds and by FEDER

through COMPETE2020 (ref. POCI-01-0145-FEDER-016886), as well as through

grant UID/FIS/04434/2013 (POCI-01-0145-FEDER-007672).





v

Abstract
It is theoretically possible for rings to have formed around extrasolar planets like they

formed around the giant planets in our Solar system. However, no such rings have

been detected till date. Planetary transits offer very valuable information about the

properties of planets. Thus, the possibility of detecting rings around exoplanets can

be probed by investigating possible ring signatures in high-precision photometric and

spectroscopic transit signals. The transit signals of a ringed planet are expected to

show deviations from those of a spherical planet and these deviations can be used to

quantify the detectability of rings.

In this thesis, a numerical planet transit tool was modified to include the effects of

planetary rings. The new tool is tested, validated and employed to simulate the photo-

metric and spectroscopic transit of ringed planets. The tool is applied to measure ring

detectability based on amplitudes of the residuals between the ringed planet signal and

best fit of a ringless model. The detectability of rings is assessed for different possible

ring orientations. The work also investigates the precision required for ring detection

and the prospects of upcoming instruments like ESPRESSO@VLT and CHEOPS in

the detection of exoplanetary rings.

Keywords: technique: photometric, radial velocities - methods: Numerical, analyti-

cal -planets and satellites: rings
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Resumo
É teoricamente possível que os anéis se tenham formado em torno de planetas ex-

trasolares, como se formaram em torno dos planetas gigantes no nosso sistema solar.

No entanto, nenhum desses anéis foi detectado até a data. Os trânsitos planetários

oferecem informações muito valiosas sobre as propriedades dos planetas. Assim, a

possibilidade de detectar anéis em torno de exoplanetas pode ser avaliada investigando

possíveis assinaturas de anéis em sinais fotométricos e espectroscópicos de alta precisão

em trânsitos. Espera-se que os sinais de trânsito de um planeta com anéis mostrem

desvios quando comparado com os de um planeta esférico e esses desvios podem ser

usados para quantificar a detectabilidade dos anéis.

Nesta tese, uma ferramenta de trânsito do planeta numérico foi modificada para

incluir os efeitos de anéis planetários. A nova ferramenta é testada, validada e empre-

gada para simular o trânsito fotométrico e espectroscópico de planetas com anel. A

ferramenta é aplicada para medir a detectabilidade do anel com base na amplitude dos

resíduos entre o sinal do planeta com anéis e o modelo sem anel. A detectabilidade

dos anéis é avaliada para diferentes possíveis orientações do anel. O trabalho também

investiga a precisão necessária para a detecção de anéis e as perspectivas de instrumen-

tos futuros como ESPRESSO@VLT e CHEOPS na detecção de anéis exoplanetários.





ix

Contents

Acknowledgements iii

Abstract v

Resumo vii

1 Introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Dissertation structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Planetary Transits and Rings 7

2.1 Photometric transit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Deriving parameters from Light-curve observables . . . . . . . . 8

2.1.2 Limb Darkening . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Spectroscopic transit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Planetary rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Physical constraints on planetary rings . . . . . . . . . . . . . . 13

2.3.2 Rings around exoplanets . . . . . . . . . . . . . . . . . . . . . . 14

3 SOAP3.0 and ringed planet transit 17

3.1 SOAP3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Input parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.2 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.3 SOAP3.0 transit signals: Light-curve and RM signal . . . . . . . 19



x

3.2 Performance test of SOAP3.0 . . . . . . . . . . . . . . . . . . . . . . . 22

4 Detecting ring signatures 25

4.1 Ringed planet simulation and ringless fit . . . . . . . . . . . . . . . . . 25

4.2 Identifying favorable ring orientations for detection . . . . . . . . . . . 28

5 Discussion 33

5.1 Effect of ring-planet gap and ring area . . . . . . . . . . . . . . . . . . 33

5.2 Effect of limb darkening . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Effect of stellar rotation velocity . . . . . . . . . . . . . . . . . . . . . . 35

5.4 Effect of orbital inclination (impact parameter) . . . . . . . . . . . . . 36

5.5 Impact of time-sampling and instrument precision . . . . . . . . . . . . 39

6 Conclusions 45

Bibliography 47



xi

List of Figures

2.1 (A) Geometry of planetary transit showing the four contact points for

different impact parameter (b) transits. The produced light-curves are

shown at the bottom with the observables labeled (Seager and Mallén-

Ornelas, 2003). (B) Illustration of the orbit of a planet around limb

darkened star. The light-curve of Kepler-51 b (Endl et al., 2011) is

shown with arrows depicting flux measurement at different points in

planet orbit. A flux dimming is noticed during the transit of the planet

across the star. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Top: Transits of a planet across a rotating star with three different paths

(defined by angle λ between projected planet orbit and stellar spin axis).

Bottom: The different RM signals produced by the three planet orbit

paths. The long dashed line shows the star’s RV without a transiting

planet. Solid and dotted curves show the RM signals with and without

limb darkening. From Gaudi and Winn (2007). . . . . . . . . . . . . . . 12

2.3 Schematic representation of the Hill and Roche radii around a planet.

Satellites break up to form satellites with Roche radius. . . . . . . . . . 14

3.1 Illustration of a planet with 9 different ring orientations defined by ir

and θ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 SOAP3.0 Light-curve (top) and RM signal (bottom) as a function of

orbital phase for a transiting planet without a ring (red) and with a ring

(blue) at face-on orientation (ir, θ = 0, 0). The ringed planet produces

a longer transit of 6.38 hrs compared to 5.85 hrs for the ringless planet. 20



xii

3.3 Effect of varying ring parameters on the light-curve and RM signals.

First column shows the how the light curve and RM signal varies for

different values of ir. Second column shows signal variation for different

values of θ when ir = 45. Third column shows the effect of varying the

gap between planet surface and ring area by varying Rin. . . . . . . . . 21

3.4 Comparisons of SOAP3.0 results with those from EXORINGS and Tusnski

and Valio (2011) [TV11]. Transit depth (left pane) and transit duration

(right pane) as a function of ir for θ = 0 computed using SOAP3.0 and

EXORINGS. Also comparison of SOAP3.0 with TV11 for ir, θ = 78, 20.

Green triangles are points from SOAP3.0 using solar limb darkening,

blue asterisks are points from SOAP3.0 without limb darkening and the

red circles are points from EXORINGS. Cyan squares and black crosses

are the points from TV11 and SOAP3.0 respectively for ir, θ = 78, 20. . 24

4.1 Ringless model fit to two ring orientations (face-on and edge-on) of the

ringed planet. Left pane shows the analytical ringless fit to the two

ringed planets light-curves and the respective residuals generated. Right

pane shows the numerical ringless fit to the two ringed planet RM signals

and the residuals. The black dashed line in residual plots show the

detection limit as mentioned in text. . . . . . . . . . . . . . . . . . . . 27

4.2 Contour plot from maximum absolute residual obtained from fit of 63

ring orientations. Top plot shows the contour plot for the light-curve fit

while bottom plot shows the contour plot for the RM fit. . . . . . . . . 29

4.3 Light curve and RM signal fit for ir, θ = 70o, 90o. . . . . . . . . . . . . 30

5.1 Left column: Effect of planet-ring gap on ring signature by increasing

Rin. Right column: Effect of ring area on ring signature by increasing

Rout. Top plots are the effects in flux and bottom plots are the effects

in RV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



xiii

5.2 Effect of fitting ringed planet signal with constant LDC and free LDC.

Left column: Fit of face-on ring with LDC kept constant at u1=0.29,

u2=0.34 for light-curve and RM signal fit. Right column: Fit with LDC

allowed to vary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 RM signal for different stellar rotation velocity fitted with a ringless

model and their computed residuals in m/s . . . . . . . . . . . . . . . . 36

5.4 Contour plot from maximum absolute residual gotten from fit of 63 ring

orientations at b = 0.7. Top plot shows the contour plot for the light-

curve fit while bottom plot shows the contour plot for the RV fit . . . . 37

5.5 Illustration of high impact parameter (b = 0.7) transit of a planet with

tilted ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.6 Asymmetric Light-curve and RM signal of ir, θ = 55, 45, the ringless fit

and residual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.7 Top pane: Amplitude of photometric ring signature for different time-

sampling. Black line indicates the detection limit of 100 ppm. Bot-

tom pane: Amplitude of spectroscopic ring signature for different time-

sampling. Black and Red dashed line indicate detection limit of HARPS

(1m/s) and ESPRESSO (0.1m/s). . . . . . . . . . . . . . . . . . . . . 41

5.8 Top:Light curve fit of the fiducial planet at 1AU with time sampling

of 15mins. Bottom: Residuals and the CHEOPS 39 ppm precision in

15mins is shown as black dotted lines. . . . . . . . . . . . . . . . . . . 42

5.9 Top:RM signal fit of the fiducial planet at 1AU with time sampling of

20mins. Bottom: Residuals and the ESPRESSO 0.1m/s precision is

shown as black dotted lines. . . . . . . . . . . . . . . . . . . . . . . . . 43





xv

List of Tables

3.1 Simulation Parameters selected to satisfy the ring constraints in 2.3.2 . 19

3.2 Comparison of SOAP3.0 with EXORINGS using Table 3.1 input. Also

comparison with quoted values of Tusnski and Valio (2011) using input

values from the paper. SOAP3.0(LD) corresponds to results when limb

darkening is used. Asterisk (∗) denotes orientations where the transit

duration of EXORINGS and SOAP3.0 differs. . . . . . . . . . . . . . . 23





1

Chapter 1

Introduction

1.1 Context

The discovery of the first planet orbiting a Sun-like star, 51 Pegasi, marked an impor-

tant milestone in Astronomy and our understanding of planetary systems. The planet

(51 Peg b) was announced to have a mass of 0.5MJup with an orbital period of only

4.23 days (Mayor and Queloz, 1995). This discovery of a gas giant planet so close to

its star challenged the Solar System model and showed that planetary systems can be

diverse. This fueled the detection of more exoplanets and since then, the number of

confirmed exoplanets has increased to over 30001.

Exoplanets are discovered using different observational techniques (Perryman, 2011),

the most successful of which are the radial velocity (RV) and transit techniques. The

transit technique searches for dips in the brightness of a star caused by the passage of a

planet across the disk of a star. It is especially useful in deducing the planet-star radius

ratio2. The RV technique measures the star’s line-of sight motion about the center of

mass due to the presence of an orbiting planet. The doppler shift of spectral lines

due to the star’s radial motion leads to a periodic signal whose amplitude is related to

the minimum mass of the planet relative to the stellar mass. For a rotating star, the

transit of a planet blocks stellar regions with different radial velocity (RV) components

thereby causing a RV anomaly called the Rossiter McLauglin (RM) effect.
1http://exoplanets.eu/
2If the stellar radius is known then the planet radius can be easily determined
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The detected exoplanets vary in mass, radius and orbital properties proving that

planetary systems are very diverse. There is therefore an ever growing need for de-

tailed characterisation of exoplanets by constraining and detecting new properties such

as planet’s composition and internal structure, atmospheric and cloud composition,

oblateness, day-night temperature difference, satellites e.t.c. A combination of tech-

niques can be used to constrain the properties of a planet e.g. for a planet observed

with the radial velocity and transit techniques, the planet’s density can be computed

and this provides useful constraint on its composition.

Planetary rings are unique features in our Solar System yet to be detected around

extrasolar planets. The giants planets in our Solar System all have rings with different

radial extents and particle size. Just as the planets in our Solar System motivated

the search for exoplanets, the rings of the giant planets have raised questions on the

existence of rings around exoplanets (Brown et al., 2001; Schlichting and Chang, 2011;

Kenworthy and Mamajek, 2015). There is no reason to exempt the formation of rings

around exoplanets especially beyond the ice line and so several studies are being con-

ducted in order to detect this elusive structure. An interesting discovery of a giant

ring-like structure extending up to 0.6Au around an unseen stellar companion J1407b

was reported by Mamajek et al. (2012) and Kenworthy and Mamajek (2015). However,

the ring-like structure could either be a circumstellar disk or circumplanetary disk de-

pending on true nature of J1407b, whether it is a brown dwarf or a giant planet.

The detection of exoplanetary rings would have tremendous astronomical implica-

tions and could usher a paradigm shift in our understanding of planetary formation

and evolution. For instance, detecting rings around short-period giant planets, simi-

lar or dissimilar to those in our solar system, would require novel explanations as to

how/where the planet and ring formed (in-situ or by migration). Depending on the

distance from the star where a ringed planet forms, the composition of its rings would

differ. The detection of a close-in ringed planet would imply it probably formed close
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to that location since the icy rings of an initially long-period ringed planet would have

sublimed if it migrated inwards.

Detection of planetary rings could also offer a way to detect the planetary spin axis

of exoplanets if we assume that the ring axis is aligned with the planetary spin as we

have in our Solar System. Additionally, if rings are found around several exoplanets,

ensemble studies can be used to gain insight into their formation/lifetime by comparing

frequency of rings with stellar age (Barnes and Fortney, 2004). If rings are found to be

independent of stellar age, it could imply that they are long lived, constantly replen-

ished or easily formed at any epoch. It could also imply that they are formed during

planet formation and persist for a long time. However, if they are only found around

planets orbiting old stars it implies that they are formed by later events. Conversely,

if found only around planets orbiting young stars, it would imply that ring structures

decay with time and are not replenished. This is of course dependent on how precisely

we can measure stellar ages (Soderblom, 2010).

The rings of both Uranus and Neptune were detected as the planets occulted back-

ground stars (Elliot et al., 1978; Hubbard et al., 1985). The technique of stellar oc-

cultation can also be used to detect rings around exoplanets by monitoring changes

in the stellar brightness as the planet transits its host star. Schneider (1999) was the

first to propose that the transit of a planet with significantly opaque rings would cause

distortions to the transit light-curve observed relative to that of a spherical planet by

causing dips in the light curve before and after the planet transits. These distortions

will also be observed in the RM signal for spectroscopic transit measurements (Ohta

et al., 2009).

Barnes and Fortney (2004) showed that photometric precision of 100−300 ppm with

15 minute time resolution would suffice for the detection of Saturn-like rings around a

transiting exoplanet. Zuluaga et al. (2015) presented a large-scale photometric transit

survey method to identify ringed planet candidates. The method uses the anomalously
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large transit depth and anomalous estimation of transit derived stellar density to probe

the presence of a ring. In addition, the photometric search for rings using real data

has also been performed. Heising et al. (2015) searched for ringed planets around 21

short-period planets in Kepler photometry and found no evidence for rings. Aizawa

et al. (2017) also searched for rings in Kepler photometry around 89 long-period planet

candidates that exhibit transit-like signals. They found a planet candidate with orbital

period of 450 years whose transit signal could be explained by one of three scenarios:

the presence of a planetary ring, a circumstellar disk or a hierarchical triple. Lecavelier

des Etangs et al. (2017) searched for transit signature of satellites and rings around

the long-period planet CoRoT-9b and excluded the presence of both bodies around the

planet.

In addition to the photometric techniques to detect rings, Ohta et al. (2009) studied

complementary spectroscopic detection using the RM effect. They concluded that rings

could be detected with radial velocity precision of 1m/s if not viewed close to edge-on.

1.2 Objectives

The objective of this thesis was to contribute to the understanding of how planetary

rings can be detected around exoplanets. In particular, it is to investigate the de-

tectability of different ring orientations in high-precision transit photometry and radial

velocity and to assess the prospect of upcoming observing instruments for ring detec-

tion.

The work involved contributing to the development of a ringed planet transit tool

by modifying the existing planet transit tool SOAP2.0-T (Oshagh et al., 2016). The

new tool (SOAP3.0) is used to simulate the photometric and spectroscopic transit of a

ringed planet and is capable of delivering the expected light-curve and RM signal for

ringed planet transits.
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1.3 Dissertation structure

Chapter 2 describes the theory of planetary transits and how the useful parameters

extracted from their analyses are employed in the detection and characterisation of

exoplanets. It also gives a brief theoretical background of ring systems and the con-

straints for rings around exoplanets. Chapter 3 describes the developments that lead

to the numerical tool (SOAP3.0) used in simulating ringed planet transits. The input

and output parameters of the tool are explained and the tool is validated by compar-

ing its results with those in literature. In Chapter 4, the tool is applied to investigate

the detectability of different ring orientations in high-precision transit photometry and

radial velocity. Chapter 5 discusses the factors that can influence the transit signal of

a ringed planet and also the ring signature. It also discusses the prospects of upcoming

state-of-the-art instruments for detecting rings. Finally, in Chapter 6 some conclusions

are drawn based on the results achieved and possible future work is mentioned.
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Chapter 2

Planetary Transits and Rings

The planetary transit method for the detection and characterisation of exoplanets of-

fers a wealth of information about planets which are not accessible through the other

planet detection techniques. These details are obtained from intricate observations of

the combined light from the star and planet. Two observational techniques are em-

ployed to extract valuable information from transits: Photometry and spectroscopy.

The photometric and spectroscopic transit techniques allow for the characterisation

of properties such as planetary radius, orbital inclination and velocity of stellar rota-

tion amongst others. These transit techniques have been applied in the detection of

multi-planetary systems (Gillon et al., 2017), study of planet oblateness (Carter and

Winn, 2010a; Carter and Winn, 2010b; Zhu et al., 2014), investigation of exoplane-

tary atmospheres using transmission and occultation spectroscopy (Charbonneau et

al., 2002; Deming et al., 2005; Madhusudhan et al., 2014) and also in the measurement

of spin-orbit misalignment (Sanchis-Ojeda and Winn, 2011; Addison et al., 2016).

2.1 Photometric transit

Photometry is used to measure the amount of light coming from astronomical bodies.

The photometric transit technique has been used to detect a large number of the

exoplanets known today. The transit of a planet across its host star causes a dimming

of the stellar flux as part of it is blocked out by the planet. A light-curve is produced

from the measurement of the flux as a function of time as depicted in Figure 2.1a. The



8 Chapter 2. Planetary Transits and Rings

(a) (b)

Figure 2.1: (A) Geometry of planetary transit showing the four contact
points for different impact parameter (b) transits. The produced light-
curves are shown at the bottom with the observables labeled (Seager and
Mallén-Ornelas, 2003). (B) Illustration of the orbit of a planet around
limb darkened star. The light-curve of Kepler-51 b (Endl et al., 2011)
is shown with arrows depicting flux measurement at different points in
planet orbit. A flux dimming is noticed during the transit of the planet

across the star.

observables from a transit light curve are: The depth of transit ∆F , the total transit

duration tT (contacts 1 to 4) and duration of complete transit tF (contacts 2 to 3).

If more than one transit is observed, the orbital period P of the planet can also be

determined. With these, it is possible to infer and derive several parameters of the

system.

2.1.1 Deriving parameters from Light-curve observables

The depth of the transit is related to the area of stellar disc covered by the planet

allowing us to obtain the planet-star radius ratio. In the simple case of a planet on

circular orbit around a uniform intensity star, the transit depth is given by

∆F '
R2
p

R2
∗

, (2.1)
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where Rp and R∗ are the radii of the planet and star respectively. Therefore, it will

be easier to detect a planet with large radius or around smaller star since a greater

flux dimming would be produced. As seen in Figure 2.1a, the duration of transit is

affected by the impact parameter b defined as the sky-projected distance between the

centers of the planet and stellar disc at midtransit. The value of b and scaled semi-

major axis a/R∗ can be derived from the transit observables as shown in Seager and

Mallén-Ornelas (2003) for a circular orbit as

b =
a

R∗
cos ip =

(1−
√

∆F )2 − sin2(tF π/P )

sin2(tT π/P )
(1 +

√
∆F )2

[1− sin2(tFπ/P )/ sin2(tTπ/P )]


1/2

, (2.2)

where ip is the inclination of the planet’s orbit and can be calculated since the ratio of

a/R∗ is derived as

a

R∗
=

{
(1 +

√
∆F )2 − b2[1− sin2(tTπ/P )]

sin2(tTπ/P )

}1/2

. (2.3)

Kepler’s third law for a circular orbit is

P 2 =
4π2a3

G(M∗ +Mp)
, (2.4)

where G is the gravitational constant. With the reasonable approximation that the

planet mass Mp is very small compared to the stellar mass M∗, equations 2.2 - 2.4 can

be combined to derive the stellar density as

ρ∗ ≡
M∗

R3
∗

=

[
4π2

P 2G

]{
a

R∗

}3

. (2.5)

It is evident that a lot can be inferred from a transit light-curve. However, transits

are only observable for certain impact parameters. For a transit to occur, b must

satisfy |b| < 1±Rp/R∗. The geometric probability that a randomly oriented planet
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will transit its host star is given (e.g by Perryman 2011) as

Probtr =

(
R∗ ±Rp

a

)(
1

1− e2

)
(2.6)

where e is the eccentricity of the orbit and is equal to zero for the simple circular

orbit considered in our formulation. The "+" or "-" sign allows for grazing transits or

excludes them. Therefore, it will be more likely to observe transits for close-in planets

or planets with eccentric orbits.

2.1.2 Limb Darkening

In reality stars do not have a uniform intensity, their discs are brighter at the center

and darker towards the limb. This is intuitively referred to as limb darkening and is as

a result of variations in the stellar atmospheric density and temperature with altitude.

The line of sight to the limb is more oblique than it is towards the center causing

an optical depth of unity to be attained at high stellar altitude where the density,

temperature and intensity are lower.

Limb darkening causes a greater transit depth at the center than regions towards

the stellar limb therefore the bottom of the light-curve will not appear flat as shown

in Fig. 2.1a. The transit across a limb darkened star is illustrated in Fig. 2.1b where

a more rounded light-curve is observed. To account for limb darkening effects in light-

curves, several limb darkening models have been proposed, one of which is the widely

adopted quadratic limb darkening model which allows for good transit computations

(Mandel and Agol, 2002). The model is defined by two limb darkening coefficients

u1 and u2 such that the normalized stellar intensity is a function of normalized radial

distance r from the center of the disc and given by

I(r) = 1− u1(1− µ)− u2(1− µ)2, u1 + u2 ≤ 1 (2.7)

and r =
√

x2+y2

R2
∗
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where x and y represent co-ordinates centered on the stellar disk in sky plane XY.

Thus, we must have r = 0 at center of stellar disk and r = 1 on the stellar limb. µ is

the directional cosine defined by the angle θ between line of sight of observer and the

normal to stellar surface and it is given by: µ = cos θ =
√

1− r2. The specific intensity

I(r) at the center of star is I(0) = 1 and reduces towards the stellar limb.

2.2 Spectroscopic transit

In addition to the photometric signal of a transiting planet, a spectroscopic transit

signal can be obtained from the measurement of the star’s radial velocity shift during

planetary transit. When a star is rotating, half of the stellar disc rotates towards the

observer while the other half rotates away from the observer. Due to Doppler effect,

light from the approaching half will appear blue-shifted while light from the receding

half will appear red-shifted (see Fig. 2.2). Outside of transit, the rotation causes the

spectral lines to be broadened but this does not lead to an overall doppler shift since the

effect from both halves of stellar disc will average out when integrated. However, when

a planet transits the star, it blocks part of the blueshifted half causing the integrated

stellar light to be slightly redshifted. The same happens when it blocks part of the

redshifted half leading to a slightly blueshifted integrated stellar light.

As the planet transits across the stellar disc, it covers different regions with varying

radial velocity components thereby causing a RV anomaly referred to as the Rossiter-

McLaughlin (RM) effect (Rossiter, 1924; McLaughlin, 1924). Fig. 2.2 illustrates the

RM signals for a planet with same parameters but following different paths across the

star. The three paths would produce the same light-curve but different RM signals.

The RM effect is useful in the measurement of the spin-orbit misalignment angle λ and

projected stellar rotational velocity ν sin i∗. As seen, the RM signal of the well-aligned

planet (λ=0o) is anti-symmetric about the midtransit time whereas that of the mis-

aligned planets will either be asymmetric (λ=30o) or produce the anomaly from only
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- x +x -x +x -x +x

Figure 2.2: Top: Transits of a planet across a rotating star with three
different paths (defined by angle λ between projected planet orbit and
stellar spin axis). Bottom: The different RM signals produced by the
three planet orbit paths. The long dashed line shows the star’s RV
without a transiting planet. Solid and dotted curves show the RM signals

with and without limb darkening. From Gaudi and Winn (2007).

one of the hemispheres (λ=60o).

The radial velocity anomaly due to the RM effect ∆νRM is given (for instance by

Ohta et al. 2005) as

∆νRM = −ν sin i∗

∫ ∫
x I(r) dx dy∫ ∫
I(r) dx dy

, r(x, y) (2.8)

This shows that the RM effect depends on the position on the x axis. The star is

centered at x=0, so for the negative x values corresponding to the blueshifted part of

the star, a positive radial velocity anomaly (RM) will be observed and vice-versa. The

RM effect is also proportional to the projected stellar rotational velocity ν sin i∗ so for

a fast rotating star, the RM effect is greater.

2.3 Planetary rings

Planetary rings are composed of a vast number of tiny particles believed to either have

been left over during the formation of the planet or formed as a result of tidal break up
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of moons (Miner et al., 2007). All the giant planets in our Solar System have planetary

rings with varying sizes, albedo, optical depth and composition. The rings are very

thin compared to their radial extents. Saturn having the largest and brightest rings has

been subjected to a variety of ring studies in quests to explain the formation, dynamics

and composition of its rings (Charnoz et al., 2009; Estrada and Cuzzi, 1996; Hahn

and Spitale, 2013). Saturn’s rings consist mostly of water ice making it very bright

(Nicholson et al., 2008), Uranus and Neptune have thin dark rings separated by large

gaps while Jupiter’s rings are faint and believed to have formed from impact ejecta

from small moons (Lissauer and de Pater, 2013).

2.3.1 Physical constraints on planetary rings

Any satellite around a planet has to be located within a distance from the planet where

the gravitational influence of the planet dominates over external forces from the host

star. This is referred to as the Hill radius RH of the planet and it is given for a circular

orbit as

RH = a

(
Mp

3M∗

)1/3

= Rp

(
GP 2ρp

9π

)1/3

, (2.9)

where ρp is the density of the planet. This implies that the Hill radius is the maximum

distance at which a satellite can orbit a planet.

Within a distance referred to as the Roche radius of the planet, a large satellite of

density ρs will disintegrate due to the tidal forces of the planet exceeding the gravita-

tional self-attraction of the satellite. The Roche radius RR of a planet with density ρp

is given as

RR = 2.45Rp

(
ρp
ρs

)1/3

, (2.10)

it depends on the density (thus internal material strength) of the satellite. Rings

would be expected to form within the Roche radius from the disintegrated satellite

which spread out from the point of break-up. Conversely, any material beyond the
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Hill radius

Roche
radius

Planet

Satellite destroyed
(Rings forming)

Satellite

Figure 2.3: Schematic representation of the Hill and Roche radii
around a planet. Satellites break up to form satellites with Roche radius.

Roche radius but still within the Hill Radius will again coalesce to form large satellites

(moons). Illustration of the Hill and Roche radii around a planet is shown in Fig.

2.3. RH is expected to be larger than RR for satellites and for stable rings. The main

rings of all the Solar System giant planets are within the respective Roche limits of the

planets (Miner et al., 2007). An exception to this are the extended G and E rings of

Saturn which lie outside the Roche radius thereby rendering the explanation of their

formation from satellite break up implausible. The E rings are believed to be formed

from materials being ejected from Saturn’s moon Enceladus (Miner et al., 2007).

2.3.2 Rings around exoplanets

Rings around exoplanets will have to obey the same dynamical arguments previously

mentioned. They have to be within the Hill radius and Roche Radius. The Hill sphere
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is however considered to be unstable in its outer regions (Hamilton and Burns, 1991;

Neto and Winter, 2001). Therefore, rings can only form when the Roche radius is

within the stability region of the Hill sphere so we must have RR � RH as we have in

the Solar System. Close-in exoplanets can have RR ∼ RH which will preclude forma-

tion of rings due to the lack of bound states in outer regions of Hill sphere (Schlichting

and Chang, 2011). Therefore, a search for rings around close-in exoplanet should be

only for those planets which have RR � RH .

For icy rings similar to that of the main rings of Saturn to exist around a planet,

Gaudi et al. (2003) showed that the planet must have a semi-major axis greater than

a '
(

L∗

16πσT 4
sub

)1/2

= 2.7AU

(
L∗

L�

)1/2

, (2.11)

where Tsub = 170K is the ice sublimation temperature and L∗ is the luminosity of the

star. This implies that close-in planets cannot have rings composed of ice. However,

Schlichting and Chang (2011) investigated the nature of the rings around close-in plan-

ets and proposed the possibility of rock-like rings instead of the icy rings around our

Solar System planets. They also emphasized the possibility of detecting these rings at

semi-major axes larger than 0.1 AU.

For close-in ringed exoplanets, the action of forces like Poynting Robertson drag

and viscous friction from planet exosphere can act to remove ring particles from the

system (Goldreich and Tremaine, 1982). These forces cause the ring particles to lose

angular momentum and spiral into the planet. Schlichting and Chang (2011) showed

that if rings are optically thick, they can have a longer life time of up to 109 years

based on the action of the Poynting-Robertson drag whose effect supercedes other ring

disrupting forces.
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Chapter 3

SOAP3.0 and ringed planet transit

3.1 SOAP3.0

SOAP3.0 is a numerical tool developed as a modification to the planet transit tool

SOAP2.0-T by Oshagh et al. (2016). SOAP2.0-T is an adaptation of SOAP (Boisse et

al., 2012) and SOAP2.0 (Dumusque et al., 2014) in order to simulate the photometric

and radial velocity variations of a planet transiting a rotating spotted star. It generates

transit light-curve and Rossiter McLauglin (RM) signal due to the transiting planet.

Detailed description of these tools can be found in Boisse et al. (2012), Oshagh et al.

(2013), and Dumusque et al. (2014).

SOAP3.0 is developed to simulate the transit light-curve, RM signal and the induced

anomalies in these signals due to the transit of the ringed planet. This tool is also

capable of generating the signal variations due to occultation of stellar active regions

by the ringed planet but this functionality is not used here as it is not the the focus of

this thesis.

To add the effect of rings to the computation, I assumed that rings are circular,

geometrically thin and completely opaque. The rings lie beyond the planet’s radius

and blocks stellar light in the same way as the planet but only between inner and

outer radii defined by Rin and Rout. The ring orientation is defined by two angles: ir,

the inclination of the ring plane with respect to the sky plane (0o and 90o for face-on

and edge-on projections respectively) and θ, the tilt of the ring plane to the planet’s

orbital plane (0o and 90o for ring projection parallel and perpendicular to orbital plane
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(face-on):    ir = 0, = 90 ir = 45, = 90 (edge-on):    ir = 90, = 90

(face-on):    ir = 0, = 45 ir = 45, = 45 (edge-on):    ir = 90, = 45

(face-on):    ir = 0, = 0 ir = 45, = 0 (edge-on):    ir = 90, = 0

Figure 3.1: Illustration of a planet with 9 different ring orientations
defined by ir and θ.

respectively). Fig. 3.1 illustrates different ring orientations for a planet. It is assumed

that the ring maintains the same orientation throughout the transit phase1.

For the computation, a square grid of N × N cells is defined to cover the entire

stellar disk. The flux and RV contribution from each cell is calculated during the

transit of planet+ring.

3.1.1 Input parameters

SOAP3.0, as with the predecessor tools, is supplied with input parameters through

a configuration file "config.cfg". Inputs are as defined in Oshagh et al. (2013). The

description of the relevant input parameters for ringed planet transit is provided below.

For a spherical ringless planet transit, the input parameters are: the radius of the

planet Rp (in units of stellar radii R∗), the semi-major axis a (in units of stellar radii),

planet orbital inclination ip, and the planet’s orbital period P (in days) calculated from

a and stellar mass using Kepler’s third law (eqn. 2.4). The impact parameter b can
1Transit duration is much shorter than the orbital period, which is the case for most exoplanets,

so change in ring orientation during transit is negligible.
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Table 3.1: Simulation Parameters selected to satisfy the ring con-
straints in 2.3.2

Parameter Value Description
R∗ [R�] 1.0 Stellar radius
u1, u2 0.29, 0.34 Limb darkening coefficients
ν sin i∗ [km/s] 2 Stellar rotation velocity
a [R∗] 36.08 Semi-major axis
P [days] 25 Orbital period
ip [o] 90 (b = 0) Orbital inclination
Rp [R∗] 0.1 Planetary radius
λ [o] 0 Spin-orbit misalignment angle
Rin [Rp] 1.5 Ring inner radius
Rout [Rp] 2.0 Ring outer radius
ir [o] [0,90] Ring inclination
θ [o] [0,90] Ring tilt

be calculated using b = a cos ip. Additional inputs include: periastron passage time t0,

eccentricity e, argument of periastron ω and the planet’s initial phase ψ0.

For the ring, the input parameters to the code are: inner ring radius Rin and outer

ring radius Rout both in units of planet radii (Rp). Also the two orientation angles:

inclination ir and tilt θ both in degrees.

3.1.2 Outputs

The output of the code gives the Flux, RV, BIS (bisector span), and FWHM2 variations

and can be plotted as a function of stellar rotation phase, orbital phase or time. Details

of how these variations are computed can be seen in Boisse et al. (2012), Oshagh et al.

(2013), and Dumusque et al. (2014).

3.1.3 SOAP3.0 transit signals: Light-curve and RM signal

To illustrate the output of SOAP3.0, simulation of the transit of a short-period planet

is done with ∼200 s (3.5mins) time-sampling using fiducial values in Table 3.1. The

planet is a Jovian-like planet with a semi-major axis of 0.16AU (36.08R∗) assumed to

follow a circular orbit around a Solar-like star with Teff=5778K. The stellar rotation
2Full Width at Half Maximum of cross correlation function
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Figure 3.2: SOAP3.0 Light-curve (top) and RM signal (bottom) as a
function of orbital phase for a transiting planet without a ring (red) and
with a ring (blue) at face-on orientation (ir, θ = 0, 0). The ringed planet
produces a longer transit of 6.38 hrs compared to 5.85 hrs for the ringless

planet.

axis is assumed to be parallel to the sky plane XY. Stellar quadratic limb darkening

coefficients given by Claret and Bloemen (2011) are used for the star described.

Fig. 3.2 shows the transit light-curve and RM signal for a spherical ringless planet

and for the same planet having the ring parameters in Table 3.1. The ring orientation

is face-on (i.e. ir = 0). It is seen that the ringed planet produces a deeper photometric

transit and greater RM amplitude than the ringless planet. This is due to the additional

stellar disk area covered by the ring. Also since the ring increases the projected radial

extent of the planet, it causes a longer transit duration (6.38 hrs). This light-curve and

RM signal can however be easily produced by a planet with a larger radius.

A feature more indicative of the presence of ring is the anomaly seen when the

ring’s outer edge, inner edge and planet edge contact the stellar disk at ingress/egress

phases. These anomalies manifest as wiggles in the transit light-curve and RM signal
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Figure 3.3: Effect of varying ring parameters on the light-curve and
RM signals. First column shows the how the light curve and RM signal
varies for different values of ir. Second column shows signal variation
for different values of θ when ir = 45. Third column shows the effect of
varying the gap between planet surface and ring area by varying Rin.

during ingress and egress as seen in Fig. 3.2. Therefore, the detection/identification of

exoplanetary rings depend on the ability to detect and measure these wiggles as will

be seen in Chapter 4.

For the same planet, the transit signals vary as the parameters of the ring changes.

Fig. 3.3 illustrates the effect of ring parameter changes on transit light-curve and RM

signal. As seen in its first column, varying ir from face-on (ir = 0o) up to edge-on

(ir = 90o) causes the transit signals to decrease in amplitude due to the reduction in

ring projected area with ir. At edge on, the light-curve and RM signal of the ringed

planet appears indistinguishable from that of the ringless planet since the thickness

of ring is negligible and does not block any stellar flux. The second column shows

the signals when ir is kept at 45o and θ is varied from 0o to 90o. It is seen that

the signals do not vary very much with θ, its most visible effect is to slightly reduce

the transit duration as it approaches 90o. The third column of Fig. 3.3 shows the

effect of changing the inner radius of the ring while the outer radius remains at the

constant value in Table 3.1. The value of Rin determines the size of the gap between
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planet surface and ring and it is seen that as the gap size reduces the signal amplitude

increases due to increasing ring area.

The plots in Fig. 3.3 has shown that varying ring parameters mostly affects the

amplitude and to a much lesser extent the duration of the transit signals. More subtle

variations can be noticed in the prominence of the wiggles at ingress/egress as the

ring parameters change. The variation in the prominence of the wiggles with ring

parameters can be used to detect and characterise the signature of the ring.

3.2 Performance test of SOAP3.0

SOAP3.0 is capable of producing precise transit light-curves and RM signals for spher-

ical planet transit as shown by Oshagh et al. (2013). For this thesis, it was important

to debug, test and validate that our inclusion of rings provide the expected output.

After the necessary tests and modifications were performed to ensure proper com-

putation, the ringed planet photometric results of SOAP3.0 was compared with those

from EXORINGS (Zuluaga et al., 2015) and Tusnski and Valio (2011). Table 3.1 was

used to generate mock transits of a ringed planet with both SOAP3.0 and EXORINGS

and their results were compared. Also, comparison with transit result shown in Tusnski

and Valio (2011) was done using same input parameters as the paper. The results of

these comparisons are summarised in Table 3.2 and Fig. 3.4. EXORINGS does not

consider limb darkening whereas SOAP3.0 uses a quadratic limb darkening law (more

realistic case) causing their results to be different. However, when limb darkening was

also ignored in SOAP3.0, both tools show excellent agreement. For some orientations,

especially at edge-on (ir=90o) where the ring should have no contribution to transit du-

ration and depth (since they are assumed to be infinitely thin), EXORINGS calculates

the transit duration incorrectly.

Comparison with Tusnski and Valio (2011) (TV11 in table 3.2) shows similar results

for transit duration but not with transit depth. This is because SOAP3.0 assumes

completely opaque rings while Tusnski and Valio (2011) model uses opacity τ=0.5
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Table 3.2: Comparison of SOAP3.0 with EXORINGS using Table 3.1
input. Also comparison with quoted values of Tusnski and Valio (2011)
using input values from the paper. SOAP3.0(LD) corresponds to results
when limb darkening is used. Asterisk (∗) denotes orientations where

the transit duration of EXORINGS and SOAP3.0 differs.

Ring angles Transit depth (ppm) Transit duration (hours)

ir θ EXORINGS SOAP3.0 SOAP3.0(LD) EXORINGS SOAP3.0

0 0 27500 27515 32387 6.380 6.383

20 0 26444 26450 31144 6.380 6.383

45 0 22374 22387 26364 6.380 6.383

70 0 14047 14052 16567 6.380 6.383
∗90 0 10000 10000 11792 6.380 5.850
∗0 45 27500 27515 32387 6.026 6.383
∗90 45 10000 10000 11844 6.024 6.350

[TV11 ] input:Rp = 0.084R∗, Rin = 1.11, Rout=2.32, ip=88o, τ = 0.5, (u1, u2)=(0.2925,0.3475)

ir θ TV11 SOAP3.0 SOAP3.0(LD) TV11 SOAP3.0

78 20 10500 10800 12374 3.40 3.41

(τ = [0, 1]). However, it is noted that since the opacity and ring area are degenerate

parameters, one can compensate for the opacity by reducing the area of the ring. For

instance, a ring with τ = 0.5 can be mimicked by an opaque ring with half the area.

Indeed when this is done, the transit depth obtained is similar to Tusnski and Valio

(2011). It is emphasized here that this comparison was done based on visual inspection

of the light-curve in the paper since there was no access to the code used.

Comparison of SOAP3.0 ringed planet RM signal with that of Ohta et al. (2009)

was not done due to difference in RV measurement technique employed in the models

(Boué et al., 2013). Ohta et al. (2009) computes weighted mean velocity along stellar

line of sight whereas SOAP3.0 performs a gaussian fit to a cross-correlation function

(Boisse et al., 2012) as is done on stabilized spectrographs. Inspite of this, visual

comparison of the paper result with that of SOAP3.0 shows that the shape of the RM

signal and wiggles are very identical. It should be noted that a ringed planet RM signal

would be different from that of a spherical planet irrespective of the RV measurement

technique used as long as one is consistent with the technique used in both ringed and
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ringless cases.
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Figure 3.4: Comparisons of SOAP3.0 results with those from EXOR-
INGS and Tusnski and Valio (2011) [TV11]. Transit depth (left pane)
and transit duration (right pane) as a function of ir for θ = 0 computed
using SOAP3.0 and EXORINGS. Also comparison of SOAP3.0 with
TV11 for ir, θ = 78, 20. Green triangles are points from SOAP3.0 using
solar limb darkening, blue asterisks are points from SOAP3.0 without
limb darkening and the red circles are points from EXORINGS. Cyan
squares and black crosses are the points from TV11 and SOAP3.0 re-

spectively for ir, θ = 78, 20.
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Chapter 4

Detecting ring signatures

It is imperative to be able to discern the signature of potential rings in light-curves and

RM signals. Therefore, this chapter describes the method employed in detecting ring

signatures. The ring signature in a transit signal would be the residual between the

ringed planet signal and the best-fit ringless planet model (Barnes and Fortney, 2004).

The maximum residuals indicating the ring signature should therefore be positioned

around ingress and egress.

4.1 Ringed planet simulation and ringless fit

A combination of 9 different ring inclinations (ir) and 7 different ring tilt angles (θ)

were simulated to cover the range of all possible ring orientations. Therefore a total

of 63 ringed planet transits having different ir, θ combinations were simulated with

SOAP3.0 using fiducial values in Table 3.1.

Using theoretical model of Mandel and Agol (2002), the simulated ringed planet

transit light-curves were fitted with a ringless planet model. Rp, a and ip were allowed

to vary as free parameters while the limb darkening coefficients (LDCs) u1 and u2 were

fixed by assuming they are known a priori (e.g. from Claret and Bloemen 2011 or

Sing 2010). The impact of not fixing the LDCs will be probed in chapter 5. For each

light-curve fit, the residuals were computed and the maximum absolute residual (which

should be at ingress/ingress) was calculated.
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Using the numerical tool SOAP2.0-T which does not account for the ring, fitting

of the 63 simulated ringed planet RM signals was performed with a ringless planet

model.1 Initially, the fitting was done with ν sin i∗, λ, Rp and ip as free parameters

while the other parameters were fixed to values in Table 3.1. This was done to inves-

tigate whether the presence of rings around an exoplanet could make a planet seem

misaligned or cause an inaccurate estimation of ν sin i∗. The values of ν sin i∗ and λ

were found not to change and because performing a numerical fit is computationally

intensive, the free parameters were reduced to Rp and ip. The residuals of each RM

signal fit were obtained and the maximum absolute residual calculated.

Fig. 4.1 shows the fits to the light-curves and RM signals of the simulated face-on

and edge-on ringed planet transits. The plots also show the residuals with maximum

amplitudes at ingress and egress. As expected, the edge-on ringed planet signals show

no ring signature in the residuals. On the other hand, fits to the light-curve and

RM signal of the face-on ring planet produces large residuals (3.15m/s for RM and

455 ppm for flux) at ingress/egress with a duration of 70mins. The light-curve residual

plot shows symmetry about mid transit phase (0.25) while the RM residual plot shows

anti-symmetry. In order to accurately detect the ring signature, a photometric noise

level ≤100 ppm and RV precision of 1m/s is required for each exposure. Therefore,

we set 100 ppm and 1m/s as the photometric and RV detection limits. These are

reasonable limits based on the precisions of current and near-future instruments. These

limits are shown as dashed lines in the residual plots. The impact of these limits is

explored in Chapter 5.

As seen in Fig. 4.1, the Rp derived from the face-on ringed planet fit is greater

than the actual planet radius used in Table 3.1. This greater radius would lead to an

underestimation of planetary density if planet mass were known. Perhaps the large
1Other analytical tools such as ARoME (Boué et al., 2013) could have been used for fitting the

RM signals. However, this was not used because we are concerned only with the impact of the rings
and do not want to be affected by the slight difference between the RM signals from ARoME and
SOAP3.0. This difference arises from approximations used in the analytical tool (Boué et al., 2013;
Oshagh et al., 2016).
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Figure 4.1: Ringless model fit to two ring orientations (face-on and
edge-on) of the ringed planet. Left pane shows the analytical ringless
fit to the two ringed planets light-curves and the respective residuals
generated. Right pane shows the numerical ringless fit to the two ringed
planet RM signals and the residuals. The black dashed line in residual

plots show the detection limit as mentioned in text.

radii and low densities of highly inflated hot Jupiters (Anderson et al., 2010; Hartman

et al., 2012) can be explained by the presence of rings if it is at all possible for the

rings to form at these short distances (a<0.1AU) from the star.

As shown in Zuluaga et al. (2015) for the photometric transit, the a and ip derived

for most orientations of the ring will be underestimated (compare light-curve fit values

in Fig. 4.1 to values in Table 3.1). In-turn, the transit-derived stellar density (eqn. 2.5)

would be underestimated when compared to asteroseismology derived stellar density

(Santos et al., 2015). Perhaps, the discrepancies between both methods for derivation

of stellar density (Huber et al., 2013) could be explained by the presence of planetary
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rings amongst other explanations (Kipping, 2014).

The light-curve residuals of the edge-on ring produces some high-frequency irreg-

ularities around mid-transit phases with maximum absolute residual of 11 ppm. This

is due to numerical noise in SOAP3.0 light-curve computation (see also Fig. 3 of Os-

hagh et al. 2013) but these irregularities are far below the detection limit considered.

These mid-transit irregularities from the code are also present for the face-on ring and

an additional non-linear trend is noticed in this region. This trend arises from the

non-linear limb darkening law whose coefficients cannot compensate for the different

inclination (ip) derived from the fit (Barnes and Fortney, 2004). But since ring signa-

tures are localized to ingress/egress phases, the trend around mid-transit phases (which

is smaller than detection limit) do not interfere with the accuracy in measuring the

ring signatures.

4.2 Identifying favorable ring orientations for detec-

tion

It is important to identify the possible ring orientations that will favour detection. To

do this, the light-curve and RM fit for all 63 ring orientations was performed taking

note of the maximum absolute residual (ring signature) in each case.

Fig. 4.2 shows contour plots generated using the maximum absolute residuals of

each ring orientation with the overplotted asterisks indicating the orientations from

which the residuals were obtained. It is seen for the light-curve and RM residuals that

several of the ring orientations favor easy detection using the detection limits we set.

For all θ values within ir ≤ 30o (at and around face-on), the ring signatures are

very prominent both for the light-curve and RM signal due to large stellar area covered

by the ring. However, as ir increases up to 70o for the RM and 80o for light-curve,

good detectability gradually shifts to only values of θ ≤ 30o. A blue band of low or
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Figure 4.2: Contour plot from maximum absolute residual obtained
from fit of 63 ring orientations. Top plot shows the contour plot for the
light-curve fit while bottom plot shows the contour plot for the RM fit.

undetectable ring signature for light-curve and RM signal is noticed for points inside

about ir > 40o and θ > 40o up to all edge-on (ir ' 90o) orientations. This indicates that

transit signal with ring orientation within this blue region can nearly be approximated

by a ringless transit model.

A separate region with high ring signature is evident in the residual of the light-

curve fit centered around ir, θ = 70o, 90o. Around this orientation, the high ir causes

only a small projected ring area whereas θ = 90o makes the ring perpendicular to the

orbital plane. This causes the transit duration to be the same as that of a ringless
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Figure 4.3: Light curve and RM signal fit for ir, θ = 70o, 90o.

planet but there would be an increased transit depth. A ringless fit is unable to per-

fectly reconcile the transit duration with the depth thereby causing an overestimation

of the duration which leads to a high residual at ingress/egress. This is also observed

for the RM residual in this region although not nearly as significant as that of the

light-curve. The plot of this orientation is shown in Fig. 4.3.

It is therefore seen that a lot of the ring orientations favor detection although most

of them are close to face-on where a greater stellar area is covered by the ring. However,

for close-in ringed planets, the inclination ir is expected to have been damped towards

edge-on due to tidal forces from the star making ring detection difficult (Schlichting
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and Chang, 2011; Heising et al., 2015). Schlichting and Chang (2011) also showed that

exoplanets with a > 0.1 AU can have ir values that favor detection. If we take ir ≥ 45o

to represent feasible exoplanetary ring inclinations for this close-in planet then we have

quite a number of orientations in Fig. 4.2 with high ring signatures interesting for the

search for exoplanetary rings. We will explore how the ring signatures change with

impact parameter in Chapter 5.
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Chapter 5

Discussion

In this section we discuss the impact of some assumptions and other effects that may

come into play in the detection of exoplanetary rings.

5.1 Effect of ring-planet gap and ring area

As seen in the third column of Fig. 3.3, the gap between ring and the planet’s surface

and also the variation of the ring area changes the ringed planet’s signal. We assess

here how these changes impact the ring signature. To assess the gap impact, the face-

on ring orientation is again selected with the value of Rin varied from 1Rp up to 1.5Rp

while maintaining a constant ring area. The amplitude of ring signature is extracted

from the fit. The left column of Fig. 5.1 shows that as the planet-ring gap increases,

the ring signature also increases both for the flux and RM. When ring is in contact

with planet surface at face-on, the ringed planet signal is the same as that of a ringless

planet with a larger radius since the ring here is optically thick. However, if the ring is

only nearly face-on, the transit light-curve would be identical to that of a very oblate

planet (Barnes and Fortney, 2003).

The impact of ring area is assessed by keeping Rin = 1.5Rp while increasing the

value of Rout from 2Rp up to 3Rp. The right column of Fig. 5.1 shows that the ring

signature also increases with ring area in the flux and RM. As ring area increases, the

transit signal of the ringed planet gets increasingly similar to the grazing eclipse of a

binary star having a V-shaped light-curve.
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Figure 5.1: Left column: Effect of planet-ring gap on ring signature
by increasing Rin. Right column: Effect of ring area on ring signature
by increasing Rout. Top plots are the effects in flux and bottom plots

are the effects in RV

Thus the finding suggests that it is easier to detect rings with larger planet-ring

gap and larger ring area.

5.2 Effect of limb darkening

For most fitting procedures, if the limb darkening coefficients (LDCs) are known a pri-

ori they are fixed during the fitting as was done in Chapter 4. This reduces the amount

of free parameters thereby increasing accuracy of the results and could eliminate some

degeneracy in the fitting process. However, limb darkening affects transit signals at

ingress, egress and signal amplitude and so can compete with ring signature. The im-

pact of inaccurate estimation of LDCs (u1,u2) on the detection of the ring signature

both in the light-curve and RM signal can be assessed by fitting them as free parame-

ters. The face-on ring orientation is used for this test and the result is shown in Fig. 5.2.

It is seen that fitting the LDCs give rise to an inaccurate estimation of the LDCs.

Comparing the free-LDC fit residual to the fixed-LDC fit residual shows that the in-

accurate estimation leads to damping of the ring signature at ingress and egress. For
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Figure 5.2: Effect of fitting ringed planet signal with constant LDC
and free LDC. Left column: Fit of face-on ring with LDC kept constant
at u1=0.29, u2=0.34 for light-curve and RM signal fit. Right column:

Fit with LDC allowed to vary.

the light-curve fit, the estimated LDCs are different from the values used for the simu-

lated ringed planet but the residual ring signature is damped only by a small amount.

For the RM signal fit, the estimated LDCs are close to that of the ringed planet yet

there is a significant damping of the ring signature below the detectable limit of 1m/s.

Therefore, inaccurately estimating limb darkening parameters has greater effect in RV

and can render ring signatures undetectable.

It has been shown that fitting LDCs in transit analysis can lead to LDCs different

from the theoretical LDCs calculated from stellar evolution models (see Barros et al.

2012; Neilson et al. 2017). Therefore, for very high precision transits a very care-

ful modeling of the LDCs needs to be performed so that they don’t bias the results

(Csizmadia, Sz. et al., 2013).

5.3 Effect of stellar rotation velocity

As shown in equation 2.8, the RM effect is proportional to the projected stellar ro-

tational velocity ν sin i∗. It is necessary to assess how ν sin i∗ affects the RM ring
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Figure 5.3: RM signal for different stellar rotation velocity fitted with
a ringless model and their computed residuals in m/s

signature. Using the face-on ring orientation with stellar rotations of 2, 5 and 10 km/s,

fits to the generated ringed planet signals was performed and the residuals computed.

Fig. 5.3 shows that not only does the RM signal increase with ν sin i∗ but so does the

ring signature. Therefore, it can be easier to detect rings around planets transiting fast

rotating stars. However, a fast stellar rotation velocity causes broadening of spectral

lines which will degrade the RV precision so a compromise has to be made between

stellar rotation velocity and needed RV precision.

5.4 Effect of orbital inclination (impact parameter)

The results in Chapter 4 were obtained for a planet with orbital inclination ip=90o

translating to impact parameter b=0. Here we investigate the ring signatures at impact

parameter of 0.7 (ip=88.89o) by making same contour plot for b=0.7 as was done for

b=0 in Fig. 4.2. The contour plot for b=0.7 is shown in Fig. 5.4. It is seen that

ring signatures are high even so close to edge-on at ir = 80o for flux and ir = 70o for
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Figure 5.4: Contour plot from maximum absolute residual gotten from
fit of 63 ring orientations at b = 0.7. Top plot shows the contour plot
for the light-curve fit while bottom plot shows the contour plot for the

RV fit

RM. It is seen in the flux residual from light-curve fit that ring signature is highest at

ir, θ = 55o, 45o and reduces radially from that orientation but goes to zero at edge-on

orientations. The high residual at ir, θ = 55o, 45o is due to asymmetry in the light-curve

caused by the ring tilt, high impact parameter, and stellar limb darkening. The light

curve is asymmetric because the upper (leading) part of the ring blocks brighter stellar

regions during ingress while the lower (trailing) part of the ring blocks a relatively

darker region as the ringed planet exits the stellar disc (illustrated in Fig. 5.5). This

asymmetry is responsible for high residuals around points where θ 6= 0o or 90o.
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Figure 5.5: Illustration of high impact parameter (b = 0.7) transit of
a planet with tilted ring

The residual from RM signal is highest at and around face-on orientations and

reduces gradually to zero towards edge-on orientations. There is also asymmetry in

the RM signal for the same reason as above (different parts of the ring blocking stellar

regions with different intensities and RV components). The asymmetry is prominent

especially around θ = 45o causing a higher residual at 30o ≤ θ ≤ 60o than other θ at

same ir. The light-curve and RM signal for the ir, θ = 55o, 45o orientation is plotted

in Fig. 5.6.
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Figure 5.6: Asymmetric Light-curve and RM signal of ir, θ = 55, 45,
the ringless fit and residual

5.5 Impact of time-sampling and instrument preci-

sion

For the fiducial planet (Table 3.1) on 25-day orbit (0.16AU), the maximum tran-

sit duration (with face-on ring) is 6.38 hrs and the duration of the ring signature at

ingress/egress is ∼ 70mins. The detection of the ring signature in this timescale will

require a high precision and high time resolution.
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Here we assess the impact of time-sampling and instrument precision on ring sig-

nature detection. For long time-sampling, the ring signature might not be well-

captured (under-sampled) with the few observational data points whereas for short

time-sampling, the noise level per point might be too high to detect the ring signa-

ture. Therefore, a compromise has to be reached between the time-sampling and the

achieved photon noise limited precision especially in the photometry. Using the fiducial

planet with face-on ring, transit signals were simulated with different time-sampling

from 30mins long-cadence to 1min short-cadence (30, 15, 7, 3.5 and 1 min). The fitting

procedure done in Chapter 4 was performed again on each of these transit signals and

the residuals are generated. Fig. 5.7 shows the maximum absolute residual gotten for

the different time-sampled signals. For each of the time-sampled signals, the precision

attained for each exposure should be at/below the set detection limit.

It is seen in the flux residual plot that the ring signature is prominent (above

the 100 ppm detection limit) for time-sampling below 15 minutes. This confirms the

photometric result from Barnes and Fortney (2004) that the detection of large rings

require ∼15min time-sampling. However, the best photometric results are gotten with

time-sampling between 1 - 7 mins where the 70min ring signature is well sampled.

This is within the time-resolution of the upcoming instrument CHEOPS 1. The ring

signature is fairly constant below 7mins time-sampling indicating that 7mins suffices

for the ring detection. The precision of CHEOPS in 7mins is 56 ppm (for 9th magnitude

star) which will allow the detection of even low amplitude ring signatures. A time-

sampling of 3.5mins will be required for orientations where the ring signature has a

short duration.

At 15 minute time-sampling, the RV ring signature is well above the 1m/s detec-

tion limit. 1m/s is noted as the current RV precision of HARPS 2 (Mayor et al., 2003).

This is very promising for the spectroscopic search for rings since RV measurements
1CHaracterising ExOPlanet Satellite. CHEOPS will have photon noise limited precision of 150

ppm/min for transit across a G5 dwarf star of V=9 magnitude (Broeg et al., 2013).
2High Accuracy Radial velocity Planet Searcher
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Figure 5.7: Top pane: Amplitude of photometric ring signature for dif-
ferent time-sampling. Black line indicates the detection limit of 100 ppm.
Bottom pane: Amplitude of spectroscopic ring signature for different
time-sampling. Black and Red dashed line indicate detection limit of

HARPS (1m/s) and ESPRESSO (0.1m/s).

typically require up to ∼15min integration to average out the short-period stellar os-

cillations on FGK stars. In addition, upcoming spectrographs like HIRES on E-ELT

(Marconi et al., 2016) and ESPRESSO3 on VLT will present interesting possibilities

for ring detection. For instance, ESPRESSO will be capable of 0.1m/s accuracy on 5th

magnitude stars in 1min exposures (Pepe et al., 2014). Although the typical ∼15min

RV exposure might preclude a 1min time-sampling, the unprecedented accuracy will

increase ring detectability. The ESPRESSO detection limit of 0.1m/s is also shown in

the bottom plot of Fig. 5.7. However, it is not clear if this sort of RV precision can be
3Echelle SPectrograph for RockyExoplanets and Stable Spectroscopic Observations
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Figure 5.8: Top:Light curve fit of the fiducial planet at 1AU with
time sampling of 15mins. Bottom: Residuals and the CHEOPS 39 ppm

precision in 15mins is shown as black dotted lines.

achieved for G and K stars due to stellar granulation and oscillation noise (Dumusque

et al., 2011).

The duration of the ring signature depends on semi-major axis, so for the same

ringed planet but with a semi-major axis of apr, the duration of ring signature will be

70× (apr/0.16AU)1/2. This implies that it will be easier to detect rings around longer-

period planets since the ring signature timescale will be longer and can be sampled

more easily. For instance, the same ringed planet at 1AU will have ring signature

timescale of 175mins. The resulting light-curve can still be well-sampled with 15min

exposure time for ring detection and a photometric precision of 39 ppm (V=9 star)

will be achieved with CHEOPS (Fig. 5.8). The RM signal can be sampled with up to

20min exposure with ESPRESSO RV precision of 0.1m/s for V=8.6 star (Fig. 5.9 ).

The impact parameter, planet radius and ring parameters can also alter the duration

of the ring signature.
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Chapter 6

Conclusions

This work presented the development of SOAP3.0 and demonstrated its capability for

the simulation of photometric and spectroscopic signal of a transiting ringed planet.

SOAP3.0 is able to generate the light-curves and RM signals of a planet with the addi-

tional effects of rings included. The suitability of this tool was validated by comparing

its result with others in literature. The tool was used to characterise ring signatures

considering different possible orientations of the ring and it highlighted the ring ori-

entations that are favorable for detection using each of the transit techniques. Most

interesting are the orientations close to edge-on for which ring signatures can still be

detected. This is very promising in the search for exoplanetary rings and the charac-

terisation sheds important light as to how rings might be detected around exoplanets

if they exist as expected.

The work highlighted different factors that would impact both methods either to

amplify or attenuate the ring signature. It was observed that:

• The gap between planet surface and ring inner radius is pertinent for ring detec-

tion.

• High impact parameter transits cause asymmetry in the signals which leads to

large ring signatures for tilted rings.

• Transits across fast rotating stars can have more prominent spectroscopic ring

signatures than in the photometry.



46 Chapter 6. Conclusions

• Inaccurate estimation of the limb darkening coefficients leads to damping of ring

signatures more in the spectroscopic RM signals than in the photometric light-

curves.

• Time-sampling ≤7 minutes is required for the photometric ring detection while

15minute sampling suffices for spectroscopic ring detection.

• The precision of upcoming instruments like ESPRESSO and CHEOPS will in-

crease the ring detectability.

It should be noted that although we considered the tough scenario of a ringed planet

orbiting at 0.16 AU, the method is valid for planets at any distance from the star with

the only difference being in the timescale. Our results have thus shown the comple-

mentarity of the two transit techniques, a synergy which will increase the certainty of

any positive ring detection.

The result of the work has been submitted to the Astronomy & Astrophysics journal

and accepted for publication. Future development will be to apply the ring model

presented here to search for rings in transit data. The ideal targets for this search

would be:

• Transit candidates that have been classified as false-positives on the account of

large transit depths.

• Transit candidates with V-shaped light-curves (since they are mostly flagged as

false positives).

• Confirmed planets with anomalously low densities.

• Transiting planets for which the transit derived stellar density is low and is in

disagreement with that derived using asteroseismology.
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