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Abstract

We propose and evaluate a technique to im-
prove the efficiency of an ILP system. The tech-
nique avoids the generation of useless hypothe-
ses. It defines a language bias coupled with a
search strategy and is called Incremental Lan-
guage Level Search (ILLS). The techniques have
been encoded in the ILP system IndLog. The
proposal leads to substantial efficiency improve-
ments in a set of ILP datasets referenced on the
literature.

1 Introduction

Inductive Logic Programming (ILP) has
achieved considerable success in a wide range
of domains. It is recognised however that
efficiency is a major obstacle to the use of
ILP systems in applications requiring large
amounts of data. Relational Data Mining
applications are an example where efficiency is
an important issue. In this paper we address
the problem of efficiency in ILP systems by
proposing a technique to improve it. Our
proposal is called Incremental Language Level
Search (ILLS) and is a language bias coupled
with a search strategy. It is a correct language
bias as defined by De Raedt (De Raedt, 1992).
ILLS imposes a partition (and a meta-order)
in the subsumption lattice (the search space
of hypothesis). Language levels are defined
based on the repetitions of predicate symbols
in the clauses and since in most of the target
theories of common applications the repetitions
of literals in the clauses is very small or non -
existent the most likely clauses are investigated
first. A very useful admissible pruning rule is a
corollary of this technique. Our proposal is a
general technique that can be implemented in
any ILP system to improve performance.

A typical ILP system carries out a search
through an ordered hypothesis space. During
the search hypotheses are generated and their
quality estimated against the given examples.
Improvements in efficiency may be obtained in
avoiding to generate useless hypothesis or/and
improving their evaluation.

Avoiding to generate useless hypotheses may
be achieved with the specification of language
bias limiting therefore the size of the search
space (Nédellec et al., 1996). One my consider
a procedure where there is a sequence of “space
boundaries” that are increased if the system
does not find an acceptable hypothesis within
the current space. This technique is generally
called shift of bias (De Raedt, 1992). Our ILLS
proposal is a an example of a shift of bias tech-
nique. Another approach considers the study
of refinement operators that allow to efficiently
navigate through a hypothesis space (van der
Laag and Nienhuys-Cheng, 1998).

The problem of efficient testing of candidate
hypotheses has been tackled by two lines of re-
search: improving sequential execution of an
ILP system and; improving hypothesis evalu-
ation by a parallel or a distributed execution.
We first consider the sequential execution.

Sebag and Rouveirol (Srinivasan, 1999; Se-
bag and Rouveirol, 1997) (and later Botta et al.
(Botta et al., 1999)) suggest the use of stochas-
tic matching to speedup hypothesis evaluation.
These approaches reduce the evaluation effort at
the cost of being correct only with high proba-
bility. Another approach is proposed by Costa
et al.. They carried out a study on exact trans-
formations of queries when evaluating hypothe-
ses (see (Santos Costa et al., 2000) and (Costa
et al., 2002 to appear)). In (Santos Costa et al.,
2000), the authors illustrated that query execu-
tion was a very high percentage of total running
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time. Some exact transformations on the gener-
ated hypotheses were proposed that make them
more efficient to execute on a Prolog engine.

There is a great number of common liter-
als in a clause and its refinements and even
with the refinements of its refinements. A query
pack technique (Blockeel et al., 2002) takes ad-
vantage of the great number of shared literals
among a clause and its refinements. Queries
with a great lot of common computations are
grouped in sets called query packs that are ex-
ecuted in a way to avoid redundant computa-
tions.

Lazy evaluation of examples (Camacho,
2000) as used in IndLog produces considerable
speedups. The technique consists in avoiding
or postponing the evaluation of each hypothesis
against all the examples. Two kinds of lazy eval-
uation of examples is distinguished: negatives
and positives. The rationale supporting lazy
evaluation of negative examples is as follows.
The purpose of evaluating a hypothesis on the
negative examples is to determine if it is con-
sistent, that is to find out if it covers less than
“noise number” of negative examples. If the
hypothesis covers more than “noise number” of
negative examples it has to be refined (it is too
general). In lazy evaluation of negative exam-
ples the system stops as soon as the clause cov-
ers “noise number” + 1 negative examples since
that is enough to determine the lack of consis-
tency of the clause. In the lazy evaluation of
positives the system stops the evaluation of the
clause as soon as it covers 1 more than the best
positive cover so far. That number is enough to
avoid pruning it away. The complete positive
coverage is done only for consistent clauses. In
most applications the negative examples over-
whelm the positives and lazy evaluation of neg-
atives may be very useful. These techniques
prevent the use of negatives or positives counts
in the heuristic functions but in most cases the
speedups of using these techniques overcome the
use of more powerful heuristics.

One last line of research followed by Dehasp
and De Raedt (Dehaspe and De Raedt, 1995)
and by Ohawada et al. (Ohwada et al., 2000),
and enphasised by David Page (Page, 2000), is
the parallel or distributed execution of an ILP
system. It is also a very promising direction to
overcome the efficiency bottleneck. Yu Wang

(Wang, 2000) claim to have achieved super-
linear speedup in their implementation. Gra-
ham et al. (Graham et al., 2000) report a lin-
ear speedup in their implementation. Work in
this line of research has been essentially in dis-
tributing parts of the search space among the
processors. One alternative would have a mas-
ter slave architecture where each slave gets just
one set of the examples partition. The mas-
ter then sends each hypothesis to the slaves for
evaluation on the subsets of the examples. This
approach makes Data Mining applications hav-
ing millions of examples amenable for ILP sys-
tems since each slave processor would process
“just” a subset of the examples, requiring there-
fore less memory resources. A challenging ap-
proach would be to have a parallel execution of
an ILP engine on top of a parallel Prolog engine.
In some datasets it is the large number of ex-
amples that requires parallelization of the ILP
engine whereas in some others evaluating each
hypothesis is hard. In the later case a parallel
Prolog engine could be very useful. Combing
the workload of the ILP and Prolog engine is a
very hard problem.

Most of the techniques we just referred are
applicable in a parallel or distributed execution
setting and therefore substantial improvements
on efficiency may be gained through the com-
bination of the results of all of these lines of
research.

The evaluation of our proposal was done
using the IndLog system (Camacho, 2000).
IndLog is an example of an empirical ILP
system, according to the classification proposed
by De Raedt (1992). It is based on the Mode
Directed Inverse Entailment Muggleton (1995).
IndLog can handle non-ground background
knowledge, can use nondeterminate predicates,
uses a strongly typed language and makes
use of explicit bias declarations such as mode,
type and determination declarations. It has
admissible pruning strategies and can handle
numerical and imperfect data. To handle
numerical data IndLog has the possibility
of lazy evaluation of literals (Srinivasan and
Camacho, 1999) and performs a user-defined
cost search. To handle large amounts of data
IndLog may perform lazy evaluation of the
positive and negative examples. For a complete



description of IndLog refer to (Camacho, 2000).

The structure of the rest of the paper is as
follows. In Section 2 we present the Incremen-
tal Language Level Search strategy. The exper-
iments that empirically evaluate our proposal
are presented in Section 3. The last section
draws the conclusions.

2 Incremental Language Level
Search

IndLog uses a particular strategy of searching
through the hypothesis space that is based on a
structural organization imposed on this space.
We now present the hypothesis space organiza-
tion by language levels and then describe the
search procedure that takes advantage of such
layered organization.

Let D be the set of definite clauses and Li a
set of clauses of level i. Consider a partition1 of

D =
∞⋃
i=0

Li. Each subset Li is called a language

level and is defined as:

Definition 2.1 Language level

Li = {clause | maximum number of occurrences

of a predicate symbol in the body of clause is i}

A clause belongs to the language level i if it
has a predicate symbol P that occurs i times in
the body of that clause. No other predicate sym-
bol Q ( 6= P) of that clause occurs more than i
times.

The maximum number of occurrences of
predicate symbols in the body of the clauses de-
termines to which partition the clause belongs.
The language L0 is composed of definite clauses
with just the head literal. The language L1 is
composed by definite clauses whose literals in
the body have no repeated predicate symbols.
The language L2 will contain clauses whose lit-
erals in the body have a maximum number of
occurrences of the same predicate symbol of
two. Table 1 shows some examples of clauses
classified according to language level. The lan-
guage level definition is applicable to both re-

1The ∞ sign in the upper limit of the union represents
a value limit smaller than infinity since definite clauses,
by definition, have a finite number of literals.

illegal(A, B, C, D, E, D) ∈ L0

multiplication(A,B,C) :-
dec(A,D), multiplication(D,B,E), ∈ L1

plus(E,B,C)
qSort(X,Y) :-

part(X,Z,W), qSort(Z,Z1), ∈ L2

qSort(W,W1), app(Z1, W1, Y)
fold(imglobuli, A) :-

l(A,B), i(50,B,173), a(A,C), i(0,C,1), ∈ L3

b(A,D), i(7,D,10)
p(X) :-

b(X), a(X,U), a(X,Y), ∈ L4

a(X,Z), a(X,W), b(X)

Table 1: Examples of clauses belonging to dif-
ferent language levels.

cursive and non-recursive clauses. Clauses be-
longing to Li will have a minimum length of i+1
(including the head literal) and a maximum of
p * i + 12.

One very important property of the partition-
ing by language level is that all clauses in lan-
guage Li+1 are subsumed by at least one clause
in language Li as stated in Theorem 2.1. The
subsumption relation among language levels is
illustrated in Figure 1.

Theorem 2.1 Let Cj and Ck be clauses and i
an integer (i ≥ 0).

∀Cj∃Ck
: (Cj ∈ Li+1) ∧ (Ck ∈ Li) → Ck � Cj

Any clause belonging to language level Li+1 is
θ-subsumed by at least one clause in language
level Li.

Proof. We prove that for each clause Ci+1 in
Li+1 there is at least one clause Ci in Li whose
literals are a subset of Ci+1. Then we prove
that there is a substitution that completes the
subsumption relation (Ci � Ci+1).

If Ci+1 is in Li+1 then it has at least one
predicate symbol that occurs i+1 times in its
body. We will call it p. Since in each language
level i all clauses have in their body a maximum
of i occurrences of at least one predicate sym-
bol, then necessarily Li has a clause (Ci) with
just i literals in the body having the predicate
symbol p. Assuming that we found a correct

2Where p is the maximum number of predicate sym-
bols usable in the body of a clause.



Figure 1: Partition of the set of definite clauses
by Language Level.

substitution then clause Ci is a subset of Ci+1.
To prove the subsumption relation we have to
find the assumed substitution. The empty sub-
stitution is enough to establish the subsumption
relation. We just have to choose Ci such that
the variables in its body literals are renaming
of the literals p of Ci+1. With this choice, all
body literals of Ci unify with the literals p of
Ci+1 and therefore Ciθ ⊆ Ci+1.

The suggested partition by language level ap-
plies directly to the subsumption lattice that
is traversed by the induction algorithm when
constructing the hypothesis clause. The sub-
sumption lattice is subdivided into sub-lattices,
each corresponding to a particular language
level. The search algorithm using the Incre-
mental Language Level Search is summarised
in Algorithm 2.1. As can be seen it involves,
at each step of the main cycle, a call to a
“traditional” hypothesis induction procedure.
At each cycle the “traditional” hypothesis in-
duction procedure may only generate clauses
within the current language level. After each
cycle the language level is increased. The cy-
cle terminates when one of three conditions is
met: i) search constraints C are no longer sat-
isfied; ii) there has been no improvement in
coverage during current level or; iii) there are
no more clauses to refine because they are al-
ready refined or pruned away. If the quality
of a hypothesis is its coverage3 then we may
use Theorem 2.2 to establish a stopping con-
dition. The search may be terminated after a
language level has been search through and no
hypothesis was found that would bring improve-
ments when compared to the hypotheses found
in previous levels. Search constraints C typi-

3As is common in most ILP systems.

cally include the maximum number of clauses
constructed and the maximum length of the
constructed clauses.

Theorem 2.2 If there is no hypothesis at lan-
guage level i that subsumes (covers) more posi-
tive examples than the best of positive coverage
in levels j (< i), then there will be no better
clauses at levels k > i.

Proof. The proof follows from Theorem 2.1
and from the observation that a clause sub-
sumed by another cannot cover more positive
examples than the clause which subsumes it.

Algorithm 2.1
Incremental Language Level Search (ILLS)

input:
C /* search constraints */
D /* a dataset */
h = 2 /* the empty clause */
i = 0 /* language level counter */
SearchStrategy /* a search strategy for the

refinement step */
language = L0 /* initial language is L0 */
improvement = true /* flag */

output: h /* best consistent hypothesis */

while improvement and satisfying C do

/* induce hypotheses */

h′=genHypothesis(SearchStrategy,language,C,D)

/* update */

if (h = h′) then improvement = false
h = bestOf(h,h′) /* update best hypothesis */
i = i+1
language = Li /* update language level */

endwhile

Language level is not directly related to i-
determinacy4 as can be seen by the following
examples: p(X) :- q(X,Y), r(Y,Z) belongs to
level 1 and has i-depth of 2; p(X) :- q(X,Y),
q(Y,Z) belongs to level 2 and has i-depth of 2.

An advantage of the search by language
levels is that the most probable sub-lattices are
searched first. In most of the target theories of
common applications the repetitions of pred-
icate symbols in the clauses is very small or
non - existent. Support for this statement can

4First introduced by Muggleton and Feng (Muggleton
and Feng, 1990).



be found in the books by Stephen Muggleton
(Muggleton, 1992) and the one by Nada Lavrač
(Lavrač and Džeroski, 1994). Those books
present some theories induced by ILP systems
for real world applications. With the exception
of some biochemical applications where the
atoms positions are used, the repetition of
predicate symbols in the body of the clauses
rarely surpasses 2.

Varšek and Urbančič (1993) used a language
restriction that specifies that only one “at-
tribute = value” test is allowed to appear in
the body of the induced rules. This restriction
is equivalent to specifying a language level limit
of one.

The shift of language bias was already de-
scribed by De Raedt (De Raedt, 1992). How-
ever in ILLS the different languages defined are
organised in a subsumption relationship order
that as several advantages as the one of Theo-
rem 2.1. In the work by De Raedt there is no
such concern with the different languages de-
fined.

3 The experiments

To empirically evaluate our proposals we run
IndLog (Camacho, 2000) on several well known
datasets. The experiments aim at estimating
the efficiency gains when adopting the ILLS.
By efficiency gain we mean a reduction in the
number of useless hypotheses generated during
search. This measure is machine and imple-
mentation independent. For each dataset we
used in the experiments the final set of induced
clause(s) are the same with and without ILLS.
Therefore the accuracy of the induced theories
does not change by adopting the proposed tech-
nique.

Settings

The IndLog V1.0 system was used in the exper-
iments. The datasets used in the experiments
are characterised in Table 2 and were down-
loaded from the Oxford5 and York 6 Universities
Machine Learning repositories.

To evaluate ILLS we run IndLog imposing
a limit on the number of clauses constructed

5URL:www.comlab.ox.ac.uk/oucl/groups/machlearn/
6URL: www.cs.york.ac.uk/mlg/index.html

Dataset positive negative background
examples examples predicates

carcinogenesis 162 136 38
choline 663 663 32
cyclic 2 2 2
member 20 6 2
mesh 2272 223 29
multiplication 9 15 3
mutagenesis 114 57 18
pyrimidines 1394 1394 244
suramin 7 4 2
train 5 5 10

Table 2: Characterisation of the datasets used
in the experiments.

during search7. The IndLog parameter settings
used in the experiments are shown in Table A
of Appendix A. We then measure the percent-
age of constructed clauses that are above the
Language Level of the target theory of each
dataset. This number represents useless clauses
that would never been constructed if ILLS were
active. In some datasets (like mutagenesis or
carcinogenesis) where we do not know the tar-
get theory, we tested several values for the
maximum language level and for the maximum
clause length. Table 3 shows the results of our
experiments.

The results indicate that there can be a lot
to be gained if the language level of the tar-
get theory is 1. The values shown in Table 3 for
language level 1 may reach 70 % (multiplication
dataset) useless clauses that could be avoided.
The ILLS is also recommended if the language
level of the target theory is 1 (or small), clause
length is large (greater than 4) and the target
predicate is determined by a small number of
predicates. If there is a small number of predi-
cate symbols for the body literals and the sys-
tem has to assemble a long clause it is more
likely that repetitions will occur and the ILLS
may be useful.

It may also be noticed that the gain of using
ILLS decreases quite significantly when the tar-
get theory is in language level 2 (see the choline
and the mesh datasets).

4 Conclusions

In this paper we proposed a general technique
that improves the efficiency of an ILP system.

7IndLog’s nodes parameter.



dataset max max useless
length L.L. clauses (%)

carcinogenesis 4 1 29.6
carcinogenesis 6 1 27.6

choline 4 1 9.9
choline 4 2 0.2
choline 6 1 10.2
choline 6 2 0.3
cyclic 3 1 23.8

mutagenesis 4 1 29.4
pyrimidines 4 1 9.6
pyrimidines 6 1 9.9

suramin 4 1 51.1
member 2 1 26.2

mesh 6 2 1.5
multiplication 4 1 70.7

train 4 1 17.4

Table 3: Percentage of useless clauses generated by
IndLog when not using ILLS. The parameter set-
tings are shown in Table A of Appendix A.

It is called Incremental Language Level Search
(ILLS) and avoids the generation of useless hy-
potheses. The ILLS is a language bias coupled
with a search strategy that imposes a partition
(and a meta-order) on the subsumption lattice.

ILLS achieved significant reductions (up to
70.7 %) in the number of useless clauses gener-
ated by the induction algorithm.
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A IndLog Settings

Table A shows the settings of the most relevant
IndLog parameters. Parameter nodes specifies
the maximum number of the subsumption lat-
tice nodes visited during the inductive search.
Noise specifies the maximum number of nega-
tive examples a clause may cover in order to
be accepted. Min cover specifies the minimum
number of positives examples a clause has to

dataset max noise i-depth min
nodes cover

carcinogenesis 1000 15 4 5
choline 200 10 4 20
cyclic 100 0 2 1

mutagenesis 1000 5 2 10
pyrimidines 200 20 4 50

suramin 200 0 4 1
member 100 0 1 1

mesh 1000 5 5 10
multiplication 1000 0 3 1

train 1000 0 2 1

Table 4: IndLog parameter settings used in the
experiments. The heuristic was set to length
(breadth-first search).

cover in order to be accepted (avoids the gener-
ation of clauses with a very poor coverage, pos-
sibly overfitting the data). i-depth specifies the
maximum depth of a literal with respect to the
head literal of that clause. A literal that has an
input argument that is connected to the head is
said to be at i-depth 1. If an input argument of
a literal is connected to an output argument of a
literal of i-depth j then that literal is at i-depth
of j+1.


