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Abstract

Nowadays, industries’ major concerns relate to faster reaction to customer needs and
cost reduction in order to increase competitiveness. In this context, lot-sizing problems
play a crucial role in production planning to satisfy market demand at the lowest possible
cost while meeting the production requirements. However, the increasing complexity of
businesses triggered the difficulty in coordinating decisions among different supply chain
stages and hierarchical levels. In addition, uncertainty arising from internal and external
sources complicates even more the task of providing good feasible solutions for lot-sizing.

In the past years, practitioners and researchers realized that production planning deci-
sions could be more coordinated and costs reduced if more realistic models could incor-
porate uncertainty sources and lot-sizing could be integrated to other relevant decisions.
Nevertheless, one of the major hurdles in optimizing integrated lot-sizing decisions under
uncertainty is delivering high quality solutions with low computational effort. Both de-
terministic models and known solution approaches suffer from lack of effectiveness and
efficiency. Consequently, this work aims to efficiently optimize integrated decisions of
production lot-sizing with other decisions under various sources of uncertainty. Therefore,
two research streams are followed to understand how to better approach specific integrated
lot-sizing problems under uncertainty.

The first focuses on the development of integrated lot-sizing mathematical program-
ming models under uncertainty and the comparison and assessment of the main advantages
and limitations of each modeling approach. In this stream, stochastic programming and
robust optimization models are developed and assessed through a simulation experiment
based on Monte Carlo simulation. The models focused on the integration of lot-sizing
and scheduling decisions are evaluated for several instances characteristics and settings in
terms of average cost, risks and computational runtime. Therefore, this study allows for
choosing the most suitable modeling approach according to different circumstances and
decision maker preferences.

The second stream is on exact and hybrid solution approaches that help solving large-
scale integrated and uncertain models in order to reach high quality solutions in adequate
time. In this stream, decomposition methods and acceleration schemes are proposed to
efficiently solve a two-stage stochastic programming model that integrates lot-sizing, tac-
tical planning and supplier selection decisions under several sources of uncertainty. In a
second moment, approximation and adaptation heuristic strategies are developed to address
the integration of lot-sizing and scheduling decisions under multistage demand uncertainty.
All the solution methods proposed are compared to standard approaches or evaluated via a
simulation experiment in order to assess their solution quality and computational efficiency.
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Resumo

Atualmente, as principais preocupações das indústrias estão relacionadas com a neces-
sidade de uma reação mais rápida aos desejos dos consumidores e de uma redução dos
custos, afim de aumentar a competitividade. Neste contexto, o dimensionamento de lotes
desempenha um papel crucial no planeamento da produção por forma a satisfazer os requi-
sitos de produção e a procura do mercado ao menor custo possível. No entanto, a crescente
complexidade das empresas alavancou a dificuldade em coordenar decisões entre diferentes
estágios da cadeia de abastecimento e níveis hierárquicos. Além disso, a incerteza que pro-
vém de fontes internas e externas complica ainda mais a tarefa de gerar soluções factíveis
de boa qualidade para o problema de dimensionamento de lotes.

Nos últimos anos, planeadores e investigadores perceberam que as decisões poderiam
ser mais coordenadas e os custos reduzidos se fossem utilizados modelos mais realistas
que incorporassem fontes significativas de incerteza e integrassem as decisões de dimen-
sionamento de lote com outras relevantes. No entanto, um dos principais obstáculos em
otimizar decisões integradas de dimensionamento de lote sob incerteza é o elevado esforço
computacional necessário para obter soluções de alta qualidade. Nesta linha, este trabalho
visa otimizar de maneira eficiente as decisões integradas de dimensionamento de lotes de
produção com outras decisões sob várias fontes de incerteza. Para tal, duas correntes de in-
vestigação são seguidas afim de compreender como melhor abordar problemas integrados
de dimensionamento de lotes sob incerteza.

A primeira corrente é centrada no desenvolvimento de modelos de programação ma-
temática que integrem decisões de dimensionamento de lotes sob incerteza, e na compa-
ração e avaliação das principais vantagens e limitações de cada abordagem de modelação.
Nesta corrente, modelos de programação estocástica e otimização robusta são desenvolvi-
dos e avaliados através de um experimento computacional baseado na simulação de Monte
Carlo. Os modelos, focados na integração das decisões de dimensionamento e sequencia-
mento de lotes, são avaliados para diferentes características de instâncias e configurações
em termos de custo médio, riscos e tempo computacional. Assim, este estudo permite sele-
cionar a abordagem de modelação mais adequada de acordo com diferentes circunstâncias
e preferências dos tomadores de decisão.

A segunda corrente foca-se em soluções exatas e híbridas que resolvam os modelos
integrados de grande escala e produzam soluções de qualidade elevada em um tempo ade-
quado. Nesta corrente, métodos de decomposição e esquemas de aceleração são propostos
para resolver eficientemente um modelo de programação estocástica de dois estágios que
integra decisões de dimensionamento de lote, planeamento tático e seleção de fornece-
dores sob diversas fontes de incerteza. Em um segundo momento, estratégias heurísticas
de aproximação e adaptação são desenvolvidas para abordar a integração das decisões de
dimensionamento e sequenciamento de lotes sob demanda incerta em vários estágios. To-
dos os métodos de solução propostos são comparados com abordagens padrão ou avaliados
através de um experimento de simulação afim de avaliar a qualidade da solução e eficiência
computacional.





Contents

1 Motivation and overview 1
1.1 Problem setting and statement . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature review 9
2.1 Deterministic lot-sizing problems . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Big bucket models . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Small bucket models . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Lot-sizing variants . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Lot-sizing under uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Demand uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 System uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Rolling horizon approach . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.4 Comparison of uncertainty modeling approaches . . . . . . . . . . 24

2.3 Integrating lot-sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.1 Integrating lot-sizing in a deterministic setting . . . . . . . . . . . 25
2.3.2 Integrating lot-sizing under uncertainty . . . . . . . . . . . . . . . 29

2.4 Literature insights and gaps identified . . . . . . . . . . . . . . . . . . . . 36
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Integrating lot-sizing, tactical planning and supplier selection in the processed
food industry under uncertainty sources 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3 Problem statement and mathematical formulations . . . . . . . . . . . . . . 53

3.3.1 Mixed-integer linear programming formulation . . . . . . . . . . . 56
3.3.2 Generalized disjunctive programming formulations . . . . . . . . . 60

3.4 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.1 Instances generation . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.2 Importance of uncertainty . . . . . . . . . . . . . . . . . . . . . . 65
3.4.3 Integrated vs. decoupled approach . . . . . . . . . . . . . . . . . . 66
3.4.4 Risk-neutral vs. risk-averse strategy . . . . . . . . . . . . . . . . . 67

3.5 Multi-cut Benders decomposition algorithm . . . . . . . . . . . . . . . . . 69
3.5.1 Tightening the Benders master problem . . . . . . . . . . . . . . . 71
3.5.2 Convex combinations . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.5.3 Solving a single Benders master problem . . . . . . . . . . . . . . 73

3.6 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.7 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . 78



xii Contents

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.A Supplementary material . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 Integrating lot-sizing and scheduling under demand uncertainty 93
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.2 General lot-sizing and scheduling models under uncertainty . . . . . . . . . 95

4.2.1 Budget-uncertainty set robust optimization GLSP model . . . . . . 96
4.2.2 Two-stage stochastic programming GLSP model . . . . . . . . . . 99

4.3 Solution approach: A Monte Carlo sampling procedure . . . . . . . . . . . 100
4.4 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4.1 Instance generation . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4.2 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . 104

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.A Supplementary material . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5 Integrating lot-sizing and scheduling under multistage demand uncertainty 133
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.3 Problem statement and traditional modeling approaches . . . . . . . . . . . 137

5.3.1 Rolling-horizon planning scheme . . . . . . . . . . . . . . . . . . 137
5.3.2 Deterministic standard approach . . . . . . . . . . . . . . . . . . . 138
5.3.3 Safety stock approach . . . . . . . . . . . . . . . . . . . . . . . . 139
5.3.4 Exact multistage stochastic programming approach . . . . . . . . . 140

5.4 Adapting uncertainty models to the multistage setting . . . . . . . . . . . . 141
5.4.1 Two-stage stochastic programming model . . . . . . . . . . . . . . 141
5.4.2 Robust optimization model . . . . . . . . . . . . . . . . . . . . . . 141
5.4.3 Shrinking-horizon approach as an adaptation to the multistage setting143

5.5 Approximate heuristic strategy for rolling-horizon planning . . . . . . . . . 144
5.5.1 Approximate multistage stochastic programming model . . . . . . 144
5.5.2 Approximate affinely adjustable robust optimization model . . . . . 146

5.6 Computational experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.6.1 Monte Carlo simulation as evaluation method . . . . . . . . . . . . 151
5.6.2 Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.6.3 Overall results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.A Robust optimization transformations . . . . . . . . . . . . . . . . . . . . . 163
5.B Adjustable robust optimization transformations . . . . . . . . . . . . . . . 164

6 Conclusions and future work 169
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.2 Answering the research questions . . . . . . . . . . . . . . . . . . . . . . 170
6.3 Future work and research opportunities . . . . . . . . . . . . . . . . . . . 172



Chapter 1

Motivation and overview

1.1. Problem setting and statement

Most of global supply chains are complex systems with several interdependent suppliers,
factories, distribution centers and customers (Sethi et al., 2002). Supply chains are usu-
ally subject to a wide variety of uncertainty sources that act at different levels, from raw-
materials price to machine setup-time and customers demand. In addition, many decisions
in the production stage are taken without considering issues from other supply chain stages.
The practice of underestimating uncertainty or not taking joint decisions may jeopardize
the companies goals of reducing costs and satisfying customers with high service levels.
Within the several departments/processes of a company, the production planning process is
key in linking the commercial/marketing efforts with the operational reality.

In particular, decisions of production lot-sizing have an extremely important contribu-
tion in defining the quantities and the timings to produce a specific product in a medium-
term planning horizon (Karimi et al., 2003). For such decisions, when uncertainty is crit-
ical, deterministic models can lead to non-optimal or infeasible solutions. Several works
describe the importance of addressing uncertainty in mathematical models for supply chain
and planning problems (Mula et al., 2006; Peidro et al., 2009; Aissaoui et al., 2007).

In some settings, neglecting demand uncertainty in lot-sizing models can be considered
an inaccuracy (Brandimarte, 2006). Moreover, if a system has limited capacity, uncertainty
in processing or setup times may also generate infeasible solutions. Uncertainty in lot-
sizing models is presented in several practical applications. For example, Yano and Lee
(1995) describe the utilization of random-yields in lot-sizing models in many areas, such
as electronic industry and chemical processes.

Uncertainty can be defined as the difference between the amount of information that is
available and the quantity of information required to successfully accomplish a task (Gal-
braith, 1995; Peidro et al., 2009). According to Ho (1989), uncertainty can be categorized
in two groups: environmental (exogenous) and system (endogenous). A classical example
of the environmental group in industrial problems is demand uncertainty, which can lead
to inventory excess or product shortage, increasing the inventory costs or the dissatisfac-
tion of customers, respectively. On the other hand, system uncertainties take place within
a production system, such as random processing yields, uncertain setup times or random
production times, which can also lead to infeasible production plans.

Two of the most used approaches for modeling uncertainty are robust optimization and
stochastic programming models (Gorissen et al., 2015). Both approaches have distinct
advantages and drawbacks as it will be discussed later in this dissertation. Still, there
is a lack of a systematic methodology that adequately compares the different uncertainty
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modeling approaches (Sahinidis, 2004). A standard comparison methodology is important
in order to assess the performance of the different models concerning the solution quality,
efficiency and risk.

Besides the uncertainty issue, in many industrial applications there is a need to consider
the integration of lot-sizing with other decisions with the purpose of better coordinating
decisions and reducing costs. For instance, in process industries it is necessary to simulta-
neously take lot-sizing and scheduling decisions to make use of the production capacity as
efficiently as possible (Clark et al., 2011).

Decoupled lot-sizing decisions from other supply chain stages (e.g., procurement and
distribution) or decision levels (tactical and operational) can lead to sub-optimal solutions.
To achieve global optimal solutions, the planning decisions of different levels and/or stages
should be taken into account (Maravelias and Sung, 2009).

To integrate different planning decisions into a single model, information between
sub-systems needs to be reliable and shared. Moreover, integrated lot-sizing models are
commonly larger and more computationally complex to solve than the decoupled models.
Usually, more complex planning models should trade-off the level of realism and compu-
tational tractability (Clark et al., 2011). To accelerate this integration, it is required a depth
understanding of the problem structure in order to build efficient models. This knowl-
edge enables the adoption of adequate mathematical modeling and solution techniques to
solve the related problems efficiently and achieve proper solutions. These two elements
(uncertainty and integration) should be incorporated in the design of production planning
models in order to support real-world decisions. It is possible to mathematically define the
integrated lot-sizing problem by means of the following model:

minimize
|J|∑
j=1

|T |∑
t=1

(s jx j,t + h jI j,t + h−j I−j,t) + cT y (1.1)

subject to

I j,t − I−j,t = I j,t−1− I−j,t−1 + q j,t −d j,t ∀ j ∈ J, t ∈ T, (1.2)

p jq j,t ≤Ct x j,t ∀ j ∈ J, t ∈ T, (1.3)
|J|∑
j=1

p jq j,t ≤Ct ∀ t ∈ T, (1.4)

Ax + By = E, (1.5)

Dy = F, (1.6)

x j,t ∈ {0,1} ∀ j ∈ J, t ∈ T, (1.7)

I j,t, I−j,t,q j,t ≥ 0 ∀ j ∈ J, t ∈ T, (1.8)

y ∈ {0,1}∨ y ≥ 0, (1.9)

where J is the set of products and T the set of time periods. I j,t refers to the inventory
decision for item j at the period t and I−j,t the respective backlog decision. q j,t defines the
production quantity of item j in period t and x j,t equals one in case a setup for item j occurs
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in period t, and 0 otherwise. y is the variables vector for the problem to be integrated and
x is the vector of the lot-sizing variables (I j,t, I−j,t,q j,t, x j,t). The parameter Ct represents the
available production capacity in period t, d j,t the demand for item j in period t, I j,0 the
product j initial inventory and p j the required capacity to produce item j. s j is the setup
cost of item j, h−j is the shortage cost and h j is the holding cost of item j. The vector c
contains all the costs related to the secondary (integrated) problem. Moreover, A, D and B
are the matrices that multiply the vectors y and x. E and F are the right-hand vectors.

Objective function (1.1) minimizes the sum of setup, shortage and holding costs for the
planning horizon, which defines the total lot-sizing costs, as well as the costs of the sec-
ondary integrated problem. Constraints (1.2) establish the inventory balance. Constraints
(1.3) guarantee that item j is only produced if the machine is set up accordingly. Con-
straints (1.4) ensure that production capacity is respected. Constraints (1.5) couple the
lot-sizing problem with the secondary problem. Constraints (1.6) define the space of the
secondary problem. Constraints (1.7) - (1.9) are the variables domain-related constraints.

The problem can also have endogenous and/or exogenous uncertainty. Endogenous
uncertainty can be incorporated into the model by assuming, for instance, that processing
time is uncertain. Therefore, p j would be transformed into an uncertain parameter: p̂ j. If
the problem contains exogenous uncertainty sources, such as demand, parameter d j,t would
have to be uncertain: d̂ j,t. Uncertainty can also occur in the secondary problem, such as in
its related costs: ĉT y. Besides that, the model that contains these uncertainty parameters
should be transformed into its solvable counterpart using some of the uncertainty modeling
approaches, such as robust optimization or stochastic programming.

1.2. Research objectives

The main objective of this research is to investigate the integration of lot-sizing decisions
with other relevant problems, in different supply chain stages or hierarchical levels, when
uncertainty is present. This objective is threefold: 1) understand how to better approach
integrated lot-sizing problems under uncertainty with other relevant problems; 2) formulate
adequate models for specific integrated lot-sizing problems under uncertainty; 3) develop
suitable solution techniques to solve the models in an efficient manner. These goals are
interconnected since the last two are fundamental to achieve a clear understanding of the
first one.

The scope of this research lies on the development of theoretical models and solution
techniques that can improve the lot-sizing decisions within the production planning pro-
cesses. The research is not focused on any specific industry. Nonetheless, the models to be
developed will cover challenges that industries face nowadays, according to the scientific
literature and practitioners experience. Moreover, we intend to formulate models that are
capable of managing the impact of the critical uncertainty sources in the supply chain.

There are several ways to formulate a problem using uncertainty modeling approaches
and specific techniques to improve the solving efficiency. Therefore, the performance of
models should be evaluated in terms of solution quality, risk and computational complexity.
We aim to develop and use a methodology to perform a systematic comparison and evaluate
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the different models outcomes and expose their main trade-offs.
The development and usage of solution techniques to solve the models proposed play

a crucial role in this research. As stated before, the main difficulty of integrated models
under uncertainty lies on its solving efficiency. Therefore, this research aims to develop
modeling techniques and solution methods in order to solve the integrated models more
efficiently. Decomposition, approximation and relaxation approaches are usually the main
solution techniques used to solve mathematical models under uncertainty. They will be
revisited for our integrated models, as well as alternative models and valid inequalities that
have been derived by several authors. By going one step further, the research questions
read:

Research question 1:
What is the most adequate approach to model specific integrated lot-sizing problems

under uncertainty?
Lot-sizing problems can be integrated with other problems in order to reach global op-

timality among the problems considered. However, there are many alternatives to integrate
and formulate a lot-sizing problem. Therefore, the model structure should be taken into
account in order to bring a more computationally tractable formulation for the problem. To
that end, different lot-sizing models (e.g., Capacitated Lot-sizing Problem, Discrete Lot-
sizing and Scheduling Problem) and reformulations (e.g., simple plant-location formula-
tion) that have been proposed in the literature should be considered. In order to accelerate
the convergence of the models, reformulations, such as convex hull reformulation and valid
inequalities, should also be properly applied.

Stochastic programming and robust optimization are the two main approaches used to
incorporate uncertainty in optimization models (Gorissen et al., 2015). Nevertheless, usu-
ally these two approaches are applied in difference circumstances. Stochastic programming
models are generally used to optimize expected values or when recursive decisions are re-
quired. On the other hand, robust optimization approaches are used when it is not possible
to generate scenarios or to deliver risk averse solutions. Despite the different applications,
we intend to establish a fair and systematic evaluation method to compare both modeling
approaches. Hence, these approaches will be evaluated in terms of solution quality, compu-
tational efficiency and risks measures. Despite all the conducted research, the community
does not have a clear roadmap on which modelling approach to use for a given setting.

It is also important to quantify how better the solutions provided by these uncertainty
and integrated models are, when compared to the solutions of deterministic and decoupled
models. Therefore, we intend to perform a study to compare the main advantages and
drawbacks of the developed models, considering the problem characteristics (e.g., associ-
ated costs, production capacity assumed, typology of integrated problems, the level and
sources of uncertainty) and uncertainty components (e.g., budget of uncertainty, variability
level, distribution curve assumed, number of scenarios or risk measures incorporated) of
each modeling approach.

In particular we focus on (i) the integration of production lot-sizing with procurement
and distribution planning, supplier selection and product branding decisions under demand,
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price, lead-time and raw-material availability uncertainty; (ii) and on the integration of lot-
sizing with scheduling decisions under (multistage) demand uncertainty.

Research question 2:
What are the best strategies to efficiently solve specific integrated lot-sizing problems

under uncertainty?
There are several known solution techniques that can be used to solve optimization

problems, from exact methods to metaheuristics and hybrid procedures. Since some static
robust optimization approaches generally maintain the computational tractability of the de-
terministic models, standard solution techniques are often suitable to these problems to
optimality. However, stochastic programming and adjustable robust optimization models
usually require more computational effort whenever there are a high number of scenar-
ios or integer variables, respectively. Therefore, these modelling approaches require spe-
cific solution techniques to improve the solving efficiency, such as splitting sets methods
(Bertsimas and Caramanis, 2010; Postek and Den Hertog), decomposition techniques (e.g.,
L-shaped, progressive hedging, Lagrangian decomposition and cross decomposition) and
heuristic approaches (e.g., rolling-horizon schemes and approximation methods).

As mentioned before, the formulation of the models also affects the solving efficiency
and solution quality. Therefore, different lot-sizing and uncertainty models, reformulations
techniques and valid inequalities should also be considered to address the intractability of
the problems.

Finally, it is fundamental to compare several solution techniques and modeling ap-
proaches in terms of solution quality and computational runtime in order to define the most
suitable strategy for solving the specific problems focused. This comparison study is es-
sential to answer this research question and also to fill the gap of studies that compare the
performance of modeling and solution techniques for uncertainty problems.

In particular we focus on (i) the integration of production lot-sizing with procurement
and distribution planning, supplier selection and product branding decisions under demand,
price, lead-time and raw-material availability uncertainty; (ii) and on the integration of lot-
sizing with scheduling decisions under (multistage) demand uncertainty.

1.3. Thesis synopsis

This thesis is organized in the following way. In this introductory chapter, the first section
characterizes the problem and illustrates its practical relevance. Then, the second section
describes the research objectives and raises the main research questions that this research
aims to answer. This section presents the structure of the thesis and describes the content
of each chapter.
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The second chapter reviews the main scientific literature and is divided into four sec-
tions. In the first section we describe the main deterministic lot-sizing models and their
variants, while in the second and third sections we review the main contributions on lot-
sizing under uncertainty and on integrating lot-sizing problems, respectively. In the fourth
section, we report the main literature highlights and the gaps identified.

Chapters 3, 4 and 5 of this thesis consist in submitted papers to international journals.
Each chapter (paper) helps answering one or the two research questions raised. Chapter
3 addresses the first and second research questions. It proposes a two-stage stochastic
programming model and a decomposition approach for solving an integrated strategic and
tactical planning problem for the processing food industry under four sources of uncer-
tainty. Chapter 4 discusses the main trade-offs of uncertainty modelling approaches for the
integrated lot-sizing and scheduling problem under demand uncertainty, which is mainly
aligned to the objectives of the research question 1. Chapter 5 proposes heuristic strategies
to efficiently solve the integrated lot-sizing and scheduling problem under multistage de-
mand uncertainty. Moreover, it compares several models and strategies using a simulation
scheme to help answering the first and second research question.

In Chapter 3, we develop a two-stage stochastic programming model to address inte-
grated decisions of supplier selection and procurement, lot-sizing and distribution planning
under four sources of uncertainty: lead-time, raw material availability, price of raw material
and final product demand. The model is focused on the food processing industry, incorpo-
rating its main features, such as raw material and product perishability and also consumer
willingness to pay according to product shelf-life. To solve the problem in an efficient man-
ner, we reformulate the model using the convex hull reformation, propose two versions of
Benders decomposition and apply acceleration techniques. The summarized contributions
of this work are two-fold: firstly, the development of a new model that considers the main
features of the food processing industry, incorporates several sources of uncertainty and
integrates tactical planning and strategic sourcing decisions. Secondly, the proposal of
decomposition and acceleration methods to solve the two-stage stochastic programming
model more efficiently. In this work, the PhD candidate mainly contributed by validat-
ing the models, developing the decomposition and acceleration methods, performing the
computational study and analyzing the results.

Chapter 4 proposes a robust optimization model based on polyhedral uncertainty sets
and a two-stage stochastic programming model to address demand uncertainty in the lot-
sizing and scheduling problem. In this problem, production and setup variables are taken
and fixed for the whole planning horizon. The main objective is to analyze the main ad-
vantages and drawbacks of the robust optimization and stochastic programming in the lot-
sizing and scheduling context. To that end, we propose a Monte Carlo simulation to evalu-
ate the trade-offs of the uncertainty modeling approaches in terms of average cost, risk and
computational complexity. Based on the simulation outcomes, we provide two flowcharts
to assist decisions makers to best select the right modeling approaches and uncertainty
parameters according to different instance characteristics and decision maker preferences.
The main contributions of this work are the development of a robust optimization for the
problem, a methodology to systematically evaluate the models that incorporate uncertainty,
and the proposal of guidelines to help decision makers to effectively solve the problem ac-
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cording to different preferences and problem characteristics. The contributions of the PhD
candidate in this work are the implementation and validation of the models, the proposal
of the Monte Carlo simulation method to evaluate the uncertainty approaches, the develop-
ment of the computational experiment and the analysis of the simulation outcomes.

In the fifth chapter, two heuristic strategies are proposed to efficiently address the gen-
eral lot-sizing and scheduling problem under multistage demand uncertainty. In this prob-
lem, production, scheduling and inventory decisions can be adjusted in every time period.
The standard approaches to deal with the problem are the multistage stochastic program-
ming or the deterministic model embedded with rolling-horizon planning schemes. The
strategies proposed are combinations of uncertainty modelling approaches and rolling-
horizon planing schemes. The first strategy adapts the two-stage stochastic programming
and robust optimization models to the multistage setting using a shrinking-horizon plan-
ning scheme. The second combines an approximate multistage stochastic programming
model and an approximate adjustable robust optimization model with the rolling-horizon
planning scheme in order to make them more tractable. To compare the strategies and the
models proposed we develop a simulation experiment based on Monte Carlo simulation
and rolling-horizon scheme.

This work has two main contributions, the first is the development of models and
efficient strategies to tackle multistage demand uncertainty in the general lot-sizing and
scheduling problem. To the best of our knowledge, it is the first time that adjustable robust
optimization is applied in lot-sizing and scheduling problems. Also, it seems that approxi-
mation strategies have never been used before to address uncertainty problems. The second
contribution is the proposal of a simulation experiment to evaluate and compare the models
and strategies developed in a multistage demand uncertainty setting. In this work, the con-
tributions of the PhD candidate are the proposal and development of the models, solution
strategies and computational experiments.

Finally, the last chapter summarizes the work contributions and based on them, pro-
vides answers to the research questions raised. This chapter also presents new research
directions.
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Chapter 2

Literature review

This chapter is divided in four sections. In the first section deterministic lot-sizing models
are introduced. Next, lot-sizing models under uncertainty are analysed. In the third section,
a literature review on integrated lot-sizing problems in both deterministic and uncertainty
settings is performed. In the literature review of integrated lot-sizing under uncertainty, the
papers are classified by the problem characteristics, mathematical modeling approach and
solution techniques used. The main objective is to understand the state-of-the-art regarding
models for integrated lot-sizing under uncertainty and identify possible gaps that can be
investigated in the subsequent steps of this research. The chapter concludes in the forth
section with a critical view over the literature in this field.

2.1. Deterministic lot-sizing problems

This literature review details the main capacitated lot-sizing models and their variants. It
is based on the main literature reviews of capacitated lot-sizing problem (Quadt and Kuhn,
2008; Karimi et al., 2003; Gicquel et al., 2009) and lot-sizing and scheduling problems
(Drexl and Kimms, 1997; Copil et al., 2016). We believe that this literature review is
important to frame the major progresses in deterministic lot-sizing problems.

The lot-sizing models can be distinguished into two major categories of time discretiza-
tion. The first is the big bucket models, in which planning horizons are typically consid-
ered to be less than 6 months (Drexl and Kimms, 1997) and several items are allowed to
be produced within a time period. In the small bucket models category, each time period is
discretized in smaller periods (micro-period), and only one product can be produced within
a micro-period. This assumption allows for lot-sizing and scheduling decisions to be taken
jointly in a straightforward manner (Gicquel et al., 2009).

2.1.1 Big bucket models

The capacitated lot-sizing problem (CLSP) differs from the classical economical order
quantity (EOQ), economic lot scheduling (ELSP) and Wagner-Whitin (WW) problems.
In the classical EOQ, the demand is stationary and the capacity unlimited. In the ELSP,
there is capacity limit, but the demand is stationary. In the WW problem, the demand is
dynamic, but there is no capacity limit. In the CLSP, the capacity is limited and the demand
is dynamic.

The CLSP was proven to be NP-hard (Florian et al., 1980; Bitran and Yanasse, 1982).
Consequently, when it is integrated with other problems, such as scheduling, the complex-
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ity to solve it increases substantially - for instance, the general lot-sizing and scheduling
problem (GLSP) is also known to be NP-hard (Jodlbauer, 2006).

As in other problems, the way the CLSP is modeled impacts directly on its linear
programming relaxation and on the performance of the branch-and-bound algorithm. Pre-
vious research, such as Stadtler (2003) and Brandimarte (2006) reformulate the CLSP as a
simple plant-location model, attempting to provide stronger relaxations and consequently
better lower bounds for the model.

We describe below a standard formulation of the CLSP as a mixed-integer program-
ming model (Drexl and Kimms, 1997; Quadt and Kuhn, 2008; Gicquel et al., 2009):

minimize
|J|∑
j=1

|T |∑
t=1

(s jx j,t + h jI j,t) (2.1)

subject to

I j,t = I j,t−1 + q j,t −d j,t ∀ j ∈ J, t ∈ T, (2.2)

p jq j,t ≤Ct x j,t ∀ j ∈ J, t ∈ T, (2.3)
|J|∑
j=1

p jq j,t ≤Ct ∀ t ∈ T, (2.4)

x j,t ∈ {0,1} ∀ j ∈ J, t ∈ T, (2.5)

I j,t,q j,t ≥ 0 ∀ j ∈ J, t ∈ T, (2.6)

where J is the set of products and T the set of time periods. |.| is the cardinality of the set
{.}. Decision variables I j,t refer to the inventory of item j in period t, q j,t to the production
quantity of item j in period t and x j,t equals one in case a setup of item j occurs in period
t, and 0 otherwise. The parameter Ct represents the available production capacity in period
t, d j,t the demand of item j in period t, I j,0 product j initial inventory and p j is the required
capacity to produce item j. The setup cost of item j is given by s j and h j is the holding
cost of item j.

The objective function (2.1) minimizes the sum of setup and holding costs for the plan-
ning period. Constraints (2.2) establish the inventory balance. Constraints (2.3) guarantee
that item j will only be produced if the machine is set up for the respective item. Constraints
(2.4) ensure that production capacity is respected. Constraints (2.5) set the variables x jt as
binaries and constraints (2.6) set variables I j,t and q j,t as non-negative.

2.1.2 Small bucket models

The two most known small bucket lot-sizing models are the Continuous Setup Lot-sizing
Problem (CSLP) and the Discrete Lot-sizing and Scheduling Problem (DLSP). In the
CSLP, it is assumed that the planning is made within micro-periods, in which at most
one product can be produced in each time (micro-)period. In the CSLP changeover vari-
ables are required to indicate that a new item is produced in the beginning of a period. The
mixed-integer programming model of the CSLP is described below:
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minimize
|J|∑
j=1

|T |∑
t=1

(s jx j,t + h jI j,t) (2.7)

subject to

I j,t = I j,t−1 + q j,t −d j,t ∀ j ∈ J, t ∈ T, (2.8)

p jq j,t ≤Cty j,t ∀ j ∈ J, t ∈ T, (2.9)
|J|∑
j=1

y j,t ≤ 1 ∀ t ∈ T, (2.10)

x j,t ≥ y j,t − y j,t−1 ∀ j ∈ J, t ∈ T, (2.11)

y j,t ∈ {0,1} ∀ j ∈ J, t ∈ T, (2.12)

I j,t,q j,t, x j,t ≥ 0 ∀ j ∈ J, t ∈ T. (2.13)

The sets, parameters and most of the variables are equal to the CLSP model. The exception
comes from the variables y j,t = 1 that represent a new setup of item j occurring in period t,
and x j,t that equals one when there is a changeover to product j in period t.

In the CSLP model there are three different constraints from the CLSP model. The
constraints (2.10) ensure that only one setup occurs in a period. Constraints (2.11) ensure
that the setup costs only occur when there is a setup for a new product lot and the constraints
(2.13) set the variables x j,t as non-negative.

A drawback of the CSLP is that if in a given period a product is not produced using
the full machine capacity, then production capacity will remain unused. To workaround
this issue, it is suggested a model where the remaining production capacity may be used to
produce a second item. The proportional lot-sizing and scheduling problem (PLSP) allows
for the scheduling of two items in a single period. To obtain the PLSP model the constraints
(2.9) are replaced by:

p jq j,t ≤Ct(y j,t + y j,t−1) ∀ j ∈ J, t ∈ T, (2.14)

and the constraints that ensure that the production capacity is respected are added:

|J|∑
j=1

p jq j,t ≤Ct ∀ t ∈ T. (2.15)

The DLSP is another well-known small bucket model. The DLSP was also proven to
be NP-hard (Drexl and Kimms, 1997) and the difference from the CSLP is that if a product
is chosen to be produced, it must use the full production capacity. In other words, the
constraints (2.9) are replaced by:
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p jq j,t = Cty j,t ∀ j ∈ J, t ∈ T. (2.16)

2.1.3 Lot-sizing variants

Besides the different aforementioned time period discretizations, the lot-sizing problem can
have several variants in terms of capacity, number of items, number of machines, inclusion
of back-orders and others. Let us characterize the main variants of lot-sizing problems and
the main approaches used to solve them based on the previous existent literature reviews
(Karimi et al., 2003; Quadt and Kuhn, 2008; Gicquel et al., 2009).

2.1.3.1 Capacity

Resources such as manpower, machines and equipments can limit the capacity of the pro-
duction system. When capacity is not taken into account the problem is known as un-
capacitated lot-sizing problem, whereas if capacity is taken into account the problem is
considered capacitated. Capacitated resources directly increase the complexity of the lot-
sizing problems: note that it is possible to solve uncapacitated lot-sizing in polynomial
time, while the CSLP is NP-hard for both single and multi-product settings.

To modify the CLSP model into the uncapacitated version, constraints (2.4) should be
removed and the parameter Ct must be replaced in constraints (2.3) by a Big-M parameter,
for instance:

p jq j,t ≤

|T |∑
t′=t

d j,t′ x j,t ∀ j ∈ J, t ∈ T. (2.17)

It is important to note that without capacity requirements, it is possible to disaggregate the
multi-product model into |J| single-product models.

2.1.3.2 Number of products

Number of final products is another characteristic that directly impacts on the problem
complexity. Naturally, the complexity of the multi-item lot-sizing is higher than the single
item lot-sizing. Single item lot-sizing problem is a well studied problem. Brahimi et al.
(2006) make a detailed literature review of extensions, models and solution techniques of
single item lot-sizing problems. To alter the number of products, it is necessary to change
the set of products J.

2.1.3.3 Number of machines

Lot-sizing problems with parallel machines present a more realistic setting, with a higher
practical relevance. In these cases items have to be produced and assigned to the machines
and it is necessary to decide the number of machines to be used in parallel, which makes
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the production planning more detailed and realistic. This variant is more complex to solve
than the single machine version.

The following mathematical model represents the CLSP with parallel unrelated ma-
chines (Toledo and Armentano, 2006):

minimize
|J|∑
j=1

|T |∑
t=1

|M|∑
m=1

(sm, jxm, j,t + cm, jqm, j,t) +
|J|∑
j=1

|T |∑
t=1

h jI j,t (2.18)

subject to

I j,t = I j,t−1 +

|M|∑
m=1

qm, j,t −d j,t ∀ j ∈ J, t ∈ T, (2.19)

p jqm, j,t ≤Cm,t xm, j,t ∀ j ∈ J, t ∈ T,m ∈ M, (2.20)
|J|∑
j=1

(pm, jqm, j,t + fm, jxm, j,t) ≤Cm,t ∀ t ∈ T,m ∈ M, (2.21)

xm, j,t ∈ {0,1} ∀ j ∈ J, t ∈ T,m ∈ M, (2.22)

I j,t,qm, j,t ≥ 0 ∀ j ∈ J, t ∈ T,m ∈ M, (2.23)

where M is the set of machines, cm, j is the cost of producing product j on machine i,
pm, j is the processing time of product j on machine m, sm, j is the setup cost of product j
on machine m and fm, j is the setup time of product j on machine m. The variables qm, j,t

and xm, j,t now have the index m that represents the machine where the production or the
setup occurs, respectively. The model is similar to the regular CLSP model, being the
main difference the incorporation the setup time into the capacity constraints (2.21) and
the production costs in the objective function.

2.1.3.4 Back-orders

The possibility to attend a demand after its due period is called back-order or backlogging.
When back-orders are incorporated into the models usually a shortage cost is penalized
in the objective function. In the lost sales case, demand that is not fulfilled in its due
period will not be satisfied at all. The incorporation of back-orders or lost sales may be
fundamental in order to reach a feasible plan, because in many real-world cases it is not
possible to attend all the demand required for a given time period.

To incorporate back-orders into the big bucket lot-sizing model, the constraints (2.2)
should be replaced by:

I j,t − I−j,t = −I−j,t−1 + I j,t−1 + q j,t −d j,t ∀ j ∈ J, t ∈ T , (2.24)

where I−j,t refers to the back-order quantity variable. Moreover, the cost of back-order
should be added into the objective function as follows:
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minimize
|J|∑
j=1

|T |∑
t=1

(s jx j,t + h jI j,t + h−j I−j,t), (2.25)

where h−j denotes the cost of backlogging item j.

2.1.3.5 Setup structure

Setup costs and times can be divided into two types: sequence independent and dependent.
In the former case, the setup decision of the preceding period does not influence the setup
time and costs of the subsequent period. In the latter, the opposite happens and therefore,
for different production sequences different setup times/costs are incurred. In both cases
there exists setup carry-over, if when the product produced in the previous period is pro-
duced in the current period, no additional setup is necessary. Another case is family setup,
in which the setup time and cost are dependent of manufacturing similarities among the
products. It is clear that sequence dependent setups are computationally more complex
than the sequence independent.

The following model is an extension of the DLSP model, with sequence dependent
setups (Haase, 1996):

minimize
|J|∑
i=1

|J|∑
j=1

|T |∑
t=1

si, jxi, j,t +
|J|∑
j=1

|T |∑
t=1

h jI j,t (2.26)

subject to

I j,t = I j,t−1 + q j,t −d j,t ∀ j ∈ J, t ∈ T, (2.27)

p jq j,t = Cty j,t ∀ j ∈ J, t ∈ T, (2.28)
|J|∑
j=1

y j,t = 1 ∀ t ∈ T, (2.29)

xi, j,t ≥ y j,t + yi,t−1−1 ∀ j ∈ J, t ∈ T, i ∈ J, (2.30)

y j,t ∈ {0,1} ∀ j ∈ J, t ∈ T, (2.31)

I j,t,q j,t ≥ 0 ∀ j ∈ J, t ∈ T, (2.32)

xi, j,t ≥ 0 ∀ j ∈ J, t ∈ T, i ∈ J, (2.33)

where si, j is the cost of changing the setup from item i to item j and xi, j,t represents the
changeover from item i to item j. The remainder variables and parameters are similar to
the DLSP model described before. The constraints (2.29) force a setup to occur in every
period (which includes setup for the idle item “0”). Constraints (2.30) force a setup cost
to occur every time that setup changes from item i to item j. If the triangle inequality
(si, j ≤ si,k + sk, j ∀ i, j,k ∈ J) does not hold, production of unnecessary items may occur, and
the following constraints can be added to avoid such situation:
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I j,|T | <
Ct

p j
∀ j ∈ J. (2.34)

2.1.3.6 Demand

Demand can be static, dynamic or random. A static demand means that the demand is
equal for any period considered. In the dynamic variant, the demand can vary from period
to period, but it is known in advance. Random demand is not known in advance and its
value is uncertain. Moreover, demand can be classified as dependent and independent. The
independent demand refers to the external demand or customer demand for final products.
The dependent demand (also called internal demand) of a product is defined by the final
products demand and the requirements of intermediate products to produce final products.

2.1.3.7 Planning horizon

The planning horizon can be distinguished in finite or infinite. Infinite planning horizon is
often used with a stationary demand assumption and addressed in EOQ and ELSP. Finite
planning horizon is usually associated with dynamic demand.

2.1.3.8 Number of levels

There are two main types of production system considered in lot-sizing problems: single-
level and multi-level. In single-level lot-sizing only independent demand products are
considered and intermediate products are not accounted for producing final products. In
multi-level lot-sizing problems, intermediate items have to be produced in order to be used
to produce or assemble final products. In other words, there exists dependent demand for
intermediate items. Multi-level lot-sizing problems are also more complex to solve than the
single-level problems. Kimms (2012) makes an extensive research on multi-level lot-sizing
and scheduling problem and extensions to it.

Basically, it is possible to incorporate the multi-level structure into the CLSP model by
replacing the constraints (2.9) for:

I j,t = I j,t−1 + q j,t −d j,t −
∑
i∈S j

a j,iq j,i ∀ j ∈ J, t ∈ T , (2.35)

and adding the constraints:

I j,t ≥
∑
i∈S j

min{t+v j,|T |}∑
τ=t+1

a j,iq j,τ ∀ j ∈ J, t = 0, ..., |T | −1, (2.36)

where S j is the set of immediate successors of item j, v j is the lead time of item j and
a j,i is the “gozinto” factor, i.e., the quantity of item j needed to produce one item i. The
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constraints (2.36) add the lead time to attend internal demand.

2.2. Lot-sizing under uncertainty

Several works address uncertainty in their lot-sizing models with the aim of bringing a more
realistic perspective to this problem. Usually, uncertainty sources in lot-sizing problems
occur in demand or within the production system, for example in production times, yields,
lead times and costs related to production and setups.

This literature review focuses on the main works that cover demand uncertainty and
system uncertainty (production times, yields and costs). Moreover, we concentrate this
literature review on researches that use mathematical models (mostly robust optmization
and stochastic programing modelling approaches) to tackle uncertainty in capacitated lot-
sizing models for finite planning horizons with dynamic random demand. Most of the
publications reviewed are in the main literature reviews of uncertainty in lot-sizing (Yano
and Lee, 1995; Sox et al., 1999; Dolgui and Prodhon, 2007; Aloulou et al., 2014).

Several literature review papers address the uncertainty in lot-sizing by many aspects,
nonetheless many of them focus on works that aim at obtaining optimal cyclic policies
(Yano and Lee, 1995; Dolgui and Prodhon, 2007) and make assumptions of stationary or
infinite planning horizon, such as the ELSP (Sox et al., 1999) or focus on different solution
techniques (e.g., Markov chain models, simulation, EOQ models, game-theory models)
(Yano and Lee, 1995; Dolgui and Prodhon, 2007). Aloulou et al. (2014) are the only
authors that provide a detailed taxonomy of the aspects of the problem considered and the
solution technique used.

Most authors consider that there are still gaps to be explored in lot-sizing under uncer-
tainty. According to Aloulou et al. (2014), only recent research started to study complex
system such as multi-product, multi-period and multi-machine settings. Dolgui and Prod-
hon (2007) state that safety stocks are common to avoid the risk of shortage, but in some
cases it can be expensive, so new approaches to efficiently satisfy the demand and reduce
the costs are required. Dolgui and Prodhon (2007) also highlight that few works performed
incorporate both lead-time and demand uncertainty in models and it may have high prac-
tical value. It is clear that the need for complex models brings a collateral challenge of
developing efficient solution approaches, which was identified by Sox et al. (1999).

2.2.1 Demand uncertainty

There is a considerable number of papers addressing demand uncertainty in lot-sizing
problems. Most of the works uses multi-stage stochastic programming and heuristics to
solve the models. Recently, robust optimization has been used as an alternative method to
stochastic programming. Below we describe the main works that contributed to this stream.

Martel et al. (1995) were one of the first authors to develop a two-stage stochastic model
for the multiple-item procurement under stochastic demand setting. The model is focused
on consumer goods and retail industries. Moreover, the authors use a branch-and-bound
algorithm to solve the proposed model.
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To reach a more realistic perspective, a considerable number of authors tackle demand
uncertainty with multi-stage stochastic models. Brandimarte (2006) develops a multi-stage
stochastic model for the stochastic version of the multi-item capacitated lot-sizing problem.
The model is formulated as a plant-location-based model, which provides a better linear
relaxation and consequently a better performance of the branch-and-bound algorithm. De-
mand uncertainty is incorporated in the multi-stage stochastic model and a heuristic is
proposed to solve it. Sodhi (2005) also formulates a multi-stage stochastic model in order
to tackle demand uncertainty for an electronics company. The author also provides two
risk measures to manage the demand uncertainty. In order to solve the model standard
solvers are used since the variables are all linear and the main ones are scenario indepen-
dent. Nonetheless, the author suggests techniques to improve the solving efficiency, such as
Bender’s decomposition, progressive hedging algorithm (PHA) and scenario aggregation
approaches.

Tsang et al. (2007) develop a multi-stage stochastic programming model to optimize
the capacity planning and investment strategy for the vaccine industry. In addition, the
model takes into account uncertainty in demand and incorporates risk measures to be used
in the model.

Some researches apply approaches to reduce the computational complexity of the stochas-
tic models. Taskin and Jr. (2010) develop a multi-stage stochastic programming model em-
bedded with scenario reduction techniques to reduce the computational challenges of the
model. The underlying problem is the inventory control with stochastic demand. Sodhi and
Tang (2009) develop a multi-stage stochastic linear programming to model a supply-chain
planning problem with asset–liability management aspects under demand uncertainty. The
authors propose sampling scenarios, decomposition techniques and scenario aggregation
approaches in order to reduce the stochastic model complexity.

Specific heuristics are also used to solve uncertain lot-sizing problems. Tempelmeier
(2011) develops a column generation heuristic in order to solve the capacitated lot-sizing
with random demand. Moreover, service level constraint and back-orders are considered.
The proposed heuristic is based on column generation with a previous ABCβ heuristic from
the same author. Haugen et al. (2001) develop a metaheuristic based on the PHA to solve a
single-item stochastic lot-sizing problem. In the problem the demand is uncertain and there
is no production capacity. Moreover, the problem is modeled as a multi-stage stochastic
program, in which the authors prove optimality for the 3-stage case.

More recently, robust optimization models have become an alternative to tackle uncer-
tainty. Zhang (2011) tackles demand uncertainty for a single product in the uncapacitated
lot-sizing problem using robust optimization models. Vairaktarakis (2000) also develops
a robust model for the multi-item newsboy with uncertain demand. Ben-Tal et al. (2005)
apply robust optimization to lot-sizing of a single-product in a two-echelon supply chain
focusing more on supplier and retailer coordination with random demand. Bertsimas and
Thiele (2006) propose an interval-based robust optimization to incorporate demand uncer-
tainty in the supply chain control problem.

In cases in which infinite horizon planning or static demand are assumed, other solution
approaches can be used, rather than mathematical programming models. For instance, Min-
ner and Silver (2005) and Minner and Silver (2007) rely on Markov-chain based models to
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tackle random demand for multiple products and establish optimal replenishment policies.
In Aloulou et al. (2014), different modeling approaches are used to tackle non-deterministic
lot-sizing problems, such as simulation, fuzzy programming and game theory.

Dynamic stochastic programming and specific approaches have also been used. Raa
and Aghezzaf (2005) present the single-item lot-sizing problem with demand uncertainty.
To tackle the problem, the authors suggest an alternative dynamic probabilistic approach
for the multi-stage stochastic programming. Moreover, computational experiments are run
to compare the dynamic probabilistic approach, the deterministic model and the static prob-
abilistic approach. The experiment showed that the results of the static probabilistic and
dynamic probabilistic approaches are, on average, 1% and 5% better than the deterministic
approach, respectively. In addition, the authors develop two-stage and multi-stage stochas-
tic models, but it was not possible to run computational experiments for this ones due to
the computational intractability of the models.

Finally, there are stochastic models to compare different production strategies. Leung
and Ng (2007) address the production planning for perishable products. The authors for-
mulate a two-stage stochastic programming model to incorporate production postponement
strategies and tackle the uncertainty in demand and costs. Computational results compare
the postponement strategy with non-postponement strategy and show the relevance of the
model to deal with uncertainty.

2.2.1.1 Conceptual models

Demand uncertainty is one of the major sources of uncertainty (Aloulou et al., 2014). In this
subsection, we present two stochastic models and one robust model incorporating demand
uncertainty.

The two-stage stochastic programming model below considers that the production quan-
tity has to be defined before the demand realization, and the decisions of demand fulfillment
and inventory levels have to be taken in the second stage:

minimize
|J|∑
j=1

|T |∑
t=1

s jx j,t +
|J|∑
j=1

|T |∑
t=1

|K|∑
k=1

πk(h jI j,t,k + h−j I−j,t,k) (2.37)

subject to

I j,t,k − I−j,t,k = I j,t−1,k − I−j,t−1,k + q j,t −d j,t,k ∀ j ∈ J, t ∈ T,k ∈ K, (2.38)

p jq j,t ≤Ct x j,t ∀ j ∈ J, t ∈ T, (2.39)
|J|∑
j=1

p jq j,t ≤Ct ∀ t ∈ T, (2.40)

x j,t ∈ {0,1} ∀ j ∈ J, t ∈ T, (2.41)

I j,t,k, I−j,t,k,q j,t ≥ 0 ∀ j ∈ J, t ∈ T,k ∈ K, (2.42)

where K is the set of scenarios, πk the probability of occurrence the scenario k, such that
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|K|∑
k=1

πk = 1 and d j,t,k the demand of product j at time t in scenario k. The parameter h−j is

the shortage cost of product j, the decision variable that controls the stock I j,t,k becomes a
second stage variable and I−j,t,k is added, which denotes the backlog variable.

A considerable number of authors incorporates demand uncertainty using multi-stage
stochastic models. Multi-stage stochastic programming is even more intractable than the
two stage programming approach (Dyer and Stougie, 2006). However, it can be more
adequate to model some specific problems, for instance when it is possible to adjust the
production lot size every period. We describe the deterministic equivalent of a multi-stage
stochastic model, in which demand is uncertain and the production quantity can be adjusted
in every time period (Kazemi Zanjani et al., 2010):

minimize
|J|∑
j=1

|T |∑
t=1

|K|∑
k=1

πk(s jx j,tk ,k + h jI j,t,k + h−j I−j,t,k) (2.43)

subject to

I j,tk ,k − I−j,tk ,k = I j,tk′ ,k′ − I−j,tk′ ,k′ + q j,t,k −d j,t,k ∀ j ∈ J,k ∈ K, (2.44)

p jq j,tk ,k ≤Ctk x j,tk ,k ∀ j ∈ J,k ∈ K, (2.45)
|J|∑
j=1

p jq j,tk ,k ≤Ctk ∀ k ∈ K, (2.46)

x j,tk ,k ∈ {0,1} ∀ j ∈ J,k ∈ K, (2.47)

I j,tk ,k, I
−
j,tk ,k,q j,tk ,k ≥ 0 ∀ j ∈ J,k ∈ K, (2.48)

where k′(k) is the direct precedent scenario of k in the scenarios tree and tk is the time
period corresponding of scenario k. In this model it is possible to adjust the setup and
production in each time period.

Robust optimization can be an alternative modeling approach to stochastic program-
ming. In this case, the demand uncertainty is modeled in a polyhedral convex set, as
follows:

U =

{
D ∈ R|J|×|T |+ | ξd

j,t ∈ [−1,1],
t∑

τ=1

|ξd
j,τ| ≤ Γ j,t, ∀ j ∈ J, t ∈ T

}
. (2.49)

in which ξd
j,t =

(
d̃ jt −d j,t

)
/d̂ jt is the scaled demand deviation and d̃ j,t is the random demand

variable in the bounded interval [d j,t − d̂ j,t,d j,t + d̂ j,t]. d̂ j,τ is the variability level that limits
the maximum deviation and the parameter Γd

j,t is the budget of uncertainty that controls the
level of robustness.

Using the uncertainty set U, the worst-case realization of the demand is introduced into
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the following demand balance constraints:

H j,t ≥ h+
j,t · I j,t = h+

j,t ·

I+
j,0 +

t∑
τ=1

∑
n∈Nτ

q j,t −min
d̃∈U

t∑
τ=1

(d j,τ + d̂ j,τ · ξ
d
j,τ)

 , ∀ j ∈ J, t ∈ T, (2.50)

and

H j,t ≥ h−j,t · (−I j,t) = h−j,t ·

I−j,0− t∑
τ=1

∑
n∈Nτ

q j,t + max
d̃∈U

t∑
τ=1

(d j,τ + d̂ j,τ · ξ
d
j,τ)

 , ∀ j ∈ J, t ∈ T.

(2.51)

By applying the known robust optimization transformations, the robust counterpart
model remains tractable (Alem et al., 2016):

minimize
|J|∑
j=1

|T |∑
t=1

(s jx j,t + H j,t) (2.52)

subject to

H j,t ≥ h j(I j,0 +

t∑
τ=1

q j,τ−

t∑
τ=1

d j,τ+

+Γd
j,tλ

d
j,τ +

t∑
τ=1

µd
j,τ,t) ∀ j ∈ J, t ∈ T, (2.53)

H j,t ≥ h−j (I−j,0−
t∑

τ=1

q j,τ +

t∑
τ=1

d j,τ+

+Γd
j,tλ

d
j,τ +

t∑
τ=1

µd
j,τ,t) ∀ j ∈ J, t ∈ T, (2.54)

p jq j,t ≤Ct x j,t ∀ j ∈ J, t ∈ T, (2.55)
|J|∑
j=1

p jq j,t ≤Ct ∀ t ∈ T, (2.56)

x j,t ∈ {0,1} ∀ j ∈ J, t ∈ T, (2.57)

λd
j,t +µd

j,τ,t ≥ d̂ j,τ ∀ j ∈ J, t ∈ T, τ ≤ t, (2.58)

λd
j,t,µ

d
j,τ ≥ 0 ∀ j ∈ J, t ∈ T, τ ≤ t, (2.59)

q j,t ≥ 0 ∀ j ∈ J, t ∈ T, (2.60)

where variables λd
j,t and µd

j,τ,t are from the corresponding dual auxiliary problem (see Alem
et al. (2016) to see all the transformations). The traditional inventory balance constraints
are trivially infeasible for any possible parameter variation, so they are replaced by (2.53)
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and (2.54), in which the variable H j,t represents the item j shortage or inventory cost in
period t. Moreover, the constraints (2.58) and (2.59) related to the robust counterpart should
be added. The remaining constraints are similar to those of the deterministic CLSP model.

2.2.2 System uncertainty

Lot-sizing problems under system uncertainties have received less attention by the research
community than the demand uncertain lot-sizing problems. However, there are some works
that consider uncertainty in productions yields, costs and times. Here, we present some of
the works that incorporate system uncertainty in their problems.

Most of the works using mathematical models to tackle this issues use stochastic pro-
gramming. Beraldi et al. (2006) develop a multi-stage stochastic programming to solve the
parallel machine lot-sizing and scheduling problem with sequence-dependent set-up costs
and uncertain processing times and apply a fix-and-relax heuristic. Huang and Küçükyavuz
(2008) also propose a multi-stage stochastic model to solve an uncapacitated lot-sizing
problem with random lead times, demand and costs. Moreover, a specific dynamic pro-
gramming algorithm is developed to solve the model. Zhou and Guan (2010) address the
uncapacitated lot-sizing problem with uncertainty in costs for a single item using two-stage
stochastic model focusing on chemical industries.

Dynamic programming approaches were also used to tackle specific non-deterministic
lot-sizing problems. Guan and Liu (2010) study the computational complexity of the
scenario-tree lot-sizing formulations. They develop a dynamic programming framework
for the stochastic single product lot-sizing problem with backlogging and/or varying capac-
ities with polynomial time algorithms. In the model, uncertainty is considered in demand,
capacity and costs. Guan (2011) uses dynamic programming to solve stochastic lot-sizing
models with uncertain demand, capacity and costs. Jiang and Guan (2011) also resort to
dynamic programming to solve the uncapacitated lot-sizing problem with single item and
random lead times.

In non-linear approaches, Bollapragada and Rao (2006) develop a non-linear stochas-
tic model with a specific heuristic and compare it with a simulation-based optimization
method. The model considers demand and supply uncertainty for a single item, finite plan-
ning horizon and limited capacity setting.

Besides mathematical programming models, other alternative approaches are widely
used. For instance, Grubbström and Wang (2003) resort to a Laplace transform and in-
put–output analysis to model capacity-constrained production–inventory systems and use
dynamic programming as solution technique. Dolgui and Prodhon (2007), Yano and Lee
(1995) and Aloulou et al. (2014) describe other several works that apply simulation, ar-
tificial intelligence, analytical models, fuzzy programming, EOQ models and other ap-
proaches to establish optimal policies and quantities.

2.2.2.1 Conceptual models

In this section, we develop two conceptual models to illustrate how system uncertainty in
lot-sizing can be incorporated into both stochastic programming and robust optimization
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models. In the two-stage stochastic model below we consider uncertainty in processing
times. In the model, the setup decisions are taken in the first stage and the second-stage
variables are the production quantity, the inventory and backlog decisions:

minimize
|J|∑
j=1

|T |∑
t=1

s jx j,t +
|J|∑
j=1

|T |∑
t=1

|K|∑
k=1

πk(h jI j,t,k + h−j I−j,t,k) (2.61)

subject to

I j,t,k − I−j,t,k = I j,t−1,k − I−j,t−1,k + q j,t,k −d j,t ∀ j ∈ J, t ∈ T,k ∈ K, (2.62)

p j,kq j,t,k ≤Ct x j,t ∀ j ∈ J, t ∈ T,k ∈ K, (2.63)
|J|∑
j=1

p j,kq j,t,k ≤Ct ∀ t ∈ T,k ∈ K, (2.64)

x j,t ∈ {0,1} ∀ j ∈ J, t ∈ T, (2.65)

I j,t,k,q j,t,k ≥ 0 ∀ j ∈ J, t ∈ T,k ∈ K, (2.66)

where the parameter p j,k is the processing time of item j in the scenario k, the variable q j,t,k

represents the production quantity of item j at period t in the scenario k. Moreover, the ob-
jective function and the constraints (2.62) and (2.63) are adjusted to the new variables. The
remaining constraints, variables and parameters are the same of the deterministic CLSP.

To incorporate uncertainty in processing time through robust optimization, we first
need to formulate the following polyhedral convex set:

U p =

{
P ∈ R|J|×|T |+ | ξ

p
j,t ∈ [−1,1],

|J|∑
j=1

|ξ
p
j,t| ≤ Γ

p
t , ∀ t ∈ T

}
. (2.67)

in which ξp
j,t =

(
p̃ j,t − p j

)
/p̂ j,t is the scaled processing time deviation and p̃ j,t is the random

processing time variable in the bounded interval [p j − p̂ j,t, p j + p̂ j,t]. Γ
p
j,t is the budget of

uncertainty that controls the size of uncertainty set and reflects risk preferences. Parameter
p̂ j controls the variability level or the deviation interval.

Similarly with the previous robust optimization model and based on the uncertainty
set U p, the worst-case realization of the processing time is incorporated into the capacity
constraints:

max
p̃∈U p


|J|∑
j=1

p̃ jq j,t

 ≤Ct, ∀t ∈ T. (2.68)

The counterpart model is then formulated using basic robust optimization transforma-
tions:
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minimize
|J|∑
j=1

|T |∑
t=1

(s jx j,t + h jI j,t) (2.69)

subject to

I j,t − I−j,t = I j,t−1− I−j,t−1 + q j,t −d j,t∀ j ∈ J, t ∈ T, (2.70)

p jq j,t ≤Ct x j,t ∀ j ∈ J, t ∈ T, (2.71)
|J|∑
j=1

p jq j,t +Γa
t λt +

|J|∑
j=1

µ j,t ≤Ct ∀ t ∈ T, (2.72)

λt +µ j,t ≥ p̂ jq j,t ∀ j ∈ J, t ∈ T, (2.73)

x j,t ∈ {0,1} ∀ j ∈ J, t ∈ T, (2.74)

λt,µ j,t ≥ 0 ∀ j ∈ J, t ∈ T, (2.75)

I j,t, I−j,t,q j,t ≥ 0 ∀ j ∈ J. (2.76)

Similarly to the previous robust model, the variables λt and µ j,t are from the corre-
sponding dual auxiliary problem (see Alem et al. (2016) for more details). The constraints

(2.73) and (2.75) related to the robust counterpart are added and the term (Γa
t λt +

|J|∑
j=1
µ j,t) is

incorporated in constraints (2.72). The remaining constraints are similar to the determinis-
tic CLSP model.

2.2.3 Rolling horizon approach

Uncertainty in long planning horizons in lot-sizing problems can also be tackled using
rolling horizon heuristics or similar approaches. Here, we describe a few works that con-
tributed in this research line.

Bookbinder and Tan (1988) were the first to classify the uncertainty incorporated in
lot-sizing models in three strategies. The first one is “static uncertainty”, where all the
decisions are made in the first period. In the “dynamic uncertainty”, the decisions of the
subsequent periods can be made at each period. Finally, the “static-dynamic” strategy is
a mix of both previous strategies, in which the planning horizon is divided and “dynamic
uncertainty” strategy is applied at each first period of the divided planning horizon sets.
Moreover the authors establish a conceptual comparison of such strategies with rolling
horizon planning, stating that the “static uncertainty" is a more suitable strategy within a
rolling horizon environment.

Baker (1977) was one of the first to study the effectiveness of rolling horizon in produc-
tion planning. Since then, many authors showed the effectiveness in using a rolling horizon
approach for long-term production planning. Recently, several works apply rolling horizon
heuristics for a wide variety of problems. De Araujo et al. (2007) apply a mixed integer
programming model with relax-and-fix heuristic and rolling horizon to solve the general
lot-sizing and scheduling problem. Beraldi et al. (2008) also develop a rolling horizon
heuristic with fix-and-relax for multi parallel machine and scheduling. Li and Ierapetritou
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(2010) resort to rolling horizon to integrate planning and scheduling decisions with limited
production capacity. Tolio and Urgo (2007) apply a rolling horizon approach with two-
stage stochastic programming in order to tackle uncertainty in planning production and
outsourcing. More recently, Bredström et al. (2013) combine robust optimization with a
rolling-horizon procedure to address demand uncertainty in production planning.

2.2.4 Comparison of uncertainty modeling approaches

The incorporation of uncertainty in mathematical linear model was first proposed by Dantzig
(1955). This work also proved the convexity of stochastic models for the general m num-
ber of stages. Since then, many stochastic programing models have been used to tackle
uncertainty in supply chain planning problems.

In the last subsections we presented stochastic programing models to address demand
and system uncertainties. The stochastic programming models are usually classified in two
groups: two-stage stochastic programming and multi-stage stochastic programming. In the
two-stage stochastic models the uncertainty of all periods is revealed at once at the second
stage of the model. In the multi-stage stochastic models the uncertainty is revealed at
each correspondent period. Stochastic models are often recognized to be computationally
intractable, mainly when the number of scenarios or stages are high, which may require
alternative solution methods in order to achieve good solutions.

Robust optimization (RO) models were also introduced in past subsections. Recently,
it became an alternative approach to model uncertainty. Its main advantage is that the
robust version of the models can be tractable, depending on how uncertainty is modeled.
Moreover, it is flexible to model several problems and allows to establish trade-offs between
performance and robustness (Bertsimas et al., 2011). There are several ways to establish
the uncertainty set for the RO models and the level of robustness. Moreover, and because of
their tractability in some cases, conventional solution techniques can be sufficient to solve
the RO models.

Although the application of many modeling approaches to incorporate uncertainty in
lot-sizing models, there is a lack of methodology to compare and assess the models. Sahini-
dis (2004) makes an exhaustive literature review of optimization under uncertainty. The
author classifies the uncertainty optimization techniques in stochastic programming, fuzzy
mathematical programming and stochastic dynamic programming and reiterates the need
of a systematic comparison between the different uncertainty modeling approaches.

Wang (2008) uses a simulation method to empirically compare the performance of
stochastic and robust modeling approaches. The simulation is similar to a Monte Carlo
method, in which the models are solved and the variables before uncertainty are fixed,
after that the uncertain coefficients and parameters are revealed and the costs calculated.
With this simulation approach it is possible to calculate the average, standard deviation
and percentiles in terms of costs. This approach may be the beginning of a systematic
comparison methodology between uncertainty modeling techniques.
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2.3. Integrating lot-sizing

As explained before, taking independently supply chain planning decisions for each prob-
lem may result in lower solution effectiveness (Thomas and Griffin, 1996). Lot-sizing
problems can be integrated with other relevant problems in order to achieve better deci-
sion coordination and optimum solutions among the problems. In this section, we discuss
the main works focusing on integrating production lot-sizing with procurement and dis-
tribution planning and also with other production planning decisions. The first subsection
addresses the integration of lot-sizing with other problems in a deterministic setting. In the
second subsection, we focus on integrating lot-sizing under uncertainty.

2.3.1 Integrating lot-sizing in a deterministic setting

Several works address the lot-sizing integration issue with other planning decisions in a
deterministic setting, mainly focusing on the integration with distribution decisions. In this
subsection, we describe the relevant works done in this field that may contribute for our
research.

2.3.1.1 Integrating lot-sizing with procurement planning

The integration of production and procurement decisions was addressed by less works
when compared to the other integration problems. Goyal and Deshmukh (1992) makes
a literature review of integrated procurement-production systems. The authors focus on
different categories of models, such as the number of products and the planning horizon.
Since most of the works in integrating production and procurement planning assume static
demand and infinite planning horizon, EOQ and similar modeling approaches are mainly
used to solve the procurement-production decisions.

Goyal and Deshmukh (1992) also make important remarks about the models assump-
tions in procurement-production models that may be relevant for this research in order to
build more realistic models. The main remarks are: the models do not take into account
important aspects of production system, such as scheduling; also many models consider
unlimited capacity and they account for only a single facility, which may be far from real
case. Finally, the authors state that one of the main challenges is to incorporate proba-
bilistic demand and probabilistic costs, which may improve the application of integrated
production-procurement models.

In a different approach, Thomas and Griffin (1996) address the buyer-vendor coordina-
tion problem for the procurement stage. Different from the regular EOQ, in buyer-vendor
coordination the order quantities are decided focusing on savings for both purchaser and
vendor simultaneously. Thomas and Griffin (1996) describe important works that address
buyer-vendor coordination. In these works, infinite horizon and general conditions are
considered in order to establish optimal lot size orders.

Although there are only a few works in integrating production and procurement plan-
ning, there are relevant works that focus on order lot-sizing and supplier selection. Aissaoui
et al. (2007) make an extensive literature review addressing supplier selection and order
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lot-sizing modeling. According to the authors, some of the gaps are: the development of
algorithms for complex lot-sizing and supplier selection problems, such as for the setting
with multi-product under different incentives; the consideration of uncertainty parameters
to design a reliable supply chain; and the consideration of decision coordination for the
supplier selection issue.

2.3.1.2 Integrating lot-sizing within hierarchical production planning

There are cases in which lot-sizing decisions can be incorporated in tactical and strategic
planning (Jans and Degraeve, 2008) or integrated with production scheduling in order to
achieve better coordinated decisions and reduce the overall cost. In this section we detail
the relevant research that integrates lot-sizing with other production hierarchical decisions.

Integration of lot-sizing with scheduling decisions has been widely studied. Drexl and
Kimms (1997) make an extensive literature review on lot-sizing and scheduling models,
in which the integration of scheduling and lot-sizing is addressed. Maravelias and Sung
(2009) also make a review of integrating production planning and short-term scheduling
more focused on chemical industries, moreover the authors describe the importance of this
integration and present modeling approaches for it. Jans and Degraeve (2008) describe
some extensions of lot-sizing with scheduling decisions, such as lot-sizing with job shop
scheduling, moreover they state that the “boundaries between lot-sizing and scheduling are
fading” and research on the integration of lot-sizing and sequencing “constitutes a chal-
lenging research track”. More recently, Guimarães et al. (2014) classify several lot-sizing
and scheduling modeling approaches and formulate a new efficient model.

One of the most known problems that integrates lot-sizing and scheduling decisions is
the GLSP. In this problem a number of micro-periods per period is defined a priori, and in
each of them only one product can be produced while respecting the production capacity of
a period (Drexl and Kimms, 1997). Other alternative models are described by Guimarães
et al. (2014), in which the models are classified in two major groups: product-oriented
and sequence-oriented. In product-oriented models, the model defines the sequence of
products, while in sequence-oriented models there are predefined sequences from a set
that the model should choose. Lot-sizing and scheduling decisions are also modeled in
multi-level and multi-product settings (Drexl and Kimms, 1997) or combined with other
problems, such as job-scheduling (Jans and Degraeve, 2008).

In terms of solution and modeling approaches, Maravelias and Sung (2009) provide
several modeling approaches and solution strategies for lot-sizing and scheduling: detailed
scheduling models, relaxed and aggregated formulations and rolling horizon approaches.
Moreover, solution techniques are highlighted (for example, hierarchical methods, itera-
tive and decomposition methods). In this sense, Guimarães et al. (2014) also point out
opportunities for extending the proposed formulations to a more complex and real-world
perspective, such as parallel-machine and multi-level production.

Finally, Maravelias and Sung (2009) present research opportunities for the integration
of production planning and scheduling decisions. According to the authors, the main chal-
lenges of this field are in the formulation of effective scheduling models, development of
iterative and hybrid computational efficient methods, incorporation of uncertainty in the
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models and data integration.

2.3.1.3 Integrating lot-sizing with distribution planning

We base this review on some recent works and on the literature reviews of Sarmiento and
Nagi (1999), Thomas and Griffin (1996) and Fahimnia et al. (2013). The work reviewed
considers finite planning horizon, dynamic demand and the use mainly of mathematical
modeling approaches for formulating the problems.

Substantial costs savings can be achieved with the integration of production and dis-
tribution planning decisions. Martin et al. (1993) describe a real case study, in which the
benefits of a large scale linear programming that integrates production, distribution and
inventory decisions in a tactical-operational perspective are shown.

The integration of production-distribution planning has multiple perspectives. For
instance, Bilgen and Günther (2010) integrate the production and distribution planning
through a block planning approach for the fast moving consumer goods industry using
mixed-integer programming models to minimize production and transportation costs. Fumero
and Vercellis (1997) develop a model solved with Lagrangian decomposition that integrates
production, machine assignment and distribution planning among different manufactur-
ing facilities. Haq et al. (1991) formulate an integrated production-inventory-distribution
model in order to minimize the total system cost considering several warehouses and re-
tailers’ facilities. The function encompasses backlog, recycling, transportation and inven-
tory costs and the model was applied in a chemical industry. Ishii et al. (1988) develop a
methodology to minimize dead stock and stock-outs when there are one manufacturing, one
inventory and one retailer facility with unlimited production and transportation capacity.

Recently, several models were developed incorporating specific industries characteris-
tics, such as product perishability issues. Amorim et al. (2012) perform a study considering
perishable multi-product, multi-period and parallel production lines. Moreover, a multi-
objective framework is considered to also maximize the freshness of the products deliv-
ered. Other authors, such as Yan et al. (2011), develop integrated production–distribution
models for deteriorating products considering constant demand and a constant production
rate with the objective of determining optimal policies to minimize the total system costs.

The combination of lot-sizing and vehicle routing problems also seems to be widely
addressed in the literature. Chandra and Fisher (1994) perform a computational study in
order to compare an integration of lot-sizing and vehicle routing decisions with the same
decisions decoupled. Fumero and Vercellis (1999) also develop a model of production lot-
sizing with vehicle routing to integrate production, inventory and distribution schedules,
the model is solved through a heuristic Lagrangian relaxation.

Some authors approach the production-distribution problem using non-linear mathe-
matical programming models. Benjamin (1989) develops a non-linear model incorporat-
ing inventory, distribution, production and shortage costs for one production plant and one
retailer. To solve the model the authors use a commercial solver and a specific heuristic to
show significant savings in coordinating production and distribution decisions. More re-
cently, Chen et al. (2009) tackle the integration of production scheduling and vehicle rout-
ing for perishable products with a mixed-integer non-linear programming model solved
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with a heuristic algorithm.
In addition, Fahimnia et al. (2013) review several works that use different approaches

in order to solve the production-distribution problem. Besides mathematical models, the
main alternative solution approaches are heuristics, genetic algorithms and simulation.

In the future trends of production-distribution models, the main literature reviews (Fahimnia
et al., 2013; Bilgen and Ozkarahan, 2004) reiterate that it is necessary to expand the objec-
tives to be tackled beyond costs or profit. Hence, measures such as, service level should
be incorporated. Moreover, they state that it is necessary to consider uncertainty and in-
corporate more realistic aspects, such as several shipment modes, heterogeneous fleet, re-
verse logistics and detailed operational decisions. Moreover, they suggest the usage of new
solution techniques, such as new emerging metaheuristics, in order to tackle real-world
problems.

2.3.1.4 Integrating lot-sizing with procurement and distribution planning

There are not many works that incorporate lot-sizing decisions in the whole supply chain
planning or models focusing on deterministic supply chain coordination. According to
Gebennini et al. (2009), a small number of works propose models and methods that enable
practitioners to optimize the whole supply chain globally.

Pal et al. (2011) propose a model for procurement, production and shipment decisions.
The model considers a three-echelon supply chain and supplier order scheduling combined
with a production-shipment decisions. To solve the problem the authors develop a swarm-
based heuristic.

Noorul Haq and Kannan (2006) develop an integrated supplier selection and multi-
echelon distribution inventory model using “fuzzy analytical hierarchy process” and a ge-
netic algorithm. The model focuses on supplier selection, procurement, production, inven-
tory and distribution decisions.

Other authors, such as Yılmaz and Çatay (2006), develop a mixed-integer programming
(MIP) model focusing on planning and coordination of production-distribution decisions,
in which it is considered raw material and delivery costs related to the supplying stage.

In a more strategic aspect, a considerable number of works address decisions of the of
the whole supply chain in a more holistic perspective. For instance, Yan et al. (2003) de-
velop a strategic model for supply chain design in a deterministic setting. Fandel and Stam-
men (2004) develop a model for strategic supply chain management including scheduling
and focusing more on the product’s life cycles.

Also in a more strategic perspective, other researches, such as Melachrinoudis and
Min (2000) and Jayaraman and Pirkul (2001), have lot-sizing incorporated in mathematical
models in order to plan strategic decisions of location of facilities and warehouses and some
tactical/operational decisions related to suppliers, distribution and production.

Melo et al. (2009) and Min and Zhou (2002) present several research opportunities in
modeling integrated supply chain decisions. Melo et al. (2009) state that tactical/operational
decisions, such as procurement, routing and transportation modes decisions are not inte-
grated with location decisions. Aspects of postponement decisions, reverse logistics and
objective functions focused on investment measures are scarce in the literature. The main
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research opportunities that Min and Zhou (2002) describe are the following. Usage of
multi-objectives approaches to analyse joint decisions of procurement, production and in-
ventory planning in terms of cost, level of service and lead time. Application of mathemat-
ical models to overcome conflicts of interest, such as vendors and buyers. And application
of modeling on more complex supply chain networks, such as multi-echelon and multi-
period.

2.3.2 Integrating lot-sizing under uncertainty

In this subsection, the main works that integrate lot-sizing problems under uncertainty are
reviewed. This literature review is focused mainly on mathematical programming mod-
els and problems with dynamic demand and finite planning horizon. Table 2.1 provides
a taxonomy of the works that are categorized according to the planning perspective, the
problem(s) integrated, the source(s) of uncertainty, the problem structure, the modeling
approach and the solution technique. The table has the following notation:

• Perspective: S (Strategic), S-T (Strategic-tactical), T (Tactical) and T-O (Tactical-operational).

• Source of uncertainty: De (Demand), Ca (Capacity), Co (Costs), Pr (Price), Yi (Yield),
Pf (Production failure), Pt (Production time), LT (Lead time) and Ti (Time).

• Problem structure: S-P (Single-product), M-P (Multi-product), M-L (Multi-level), M-M
(Multi-machine) and M-F (Multi-facility).

• Modeling approach: LP (Linear programming), MIP (Mixed-integer programming),
SM (Stochastic Model), SPM (Stochastic programming model), TSSPM (Two-stage
stochastic programming model), MSSPM (Multi-stage stochastic programming model),
RO (Robust optimization), FP (Fuzzy programming), O-S (Optimization-simulation),
NL (Non-linear), CCP (Chance constrained programming) and BLP (Bilevel pro-
gramming).

When compared with lot-sizing deterministic integrations, the integration of lot-sizing
under uncertainty is less addressed in the scientific literature. Most of the works focus
on the integration of production with distribution planning and different hierarchical pro-
duction planing. Stochastic programming and fuzzy programming are the major modeling
approaches used. Specific heuristics and decomposition methods are also used in some
cases.

To the best of our knowledge, there are no work that has reviewed integrated lot-sizing
under uncertainty in a specific framework. Nevertheless, there are two reviews that are
worth mention: Mula et al. (2006) and Peidro et al. (2008) that review production and
supply chain planning under uncertainty and classify the works by research topic.

Moreover, Mula et al. (2006) and Peidro et al. (2008) acknowledge gaps in modeling
production and supply chain planning under uncertainty and describe some research op-
portunities. Several of these opportunities are aligned with the previous literature reviews.
The authors state that new approaches to manage the uncertainty of each company within
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the supply chain are required. According to the authors, most of the works reviewed as-
sume a simple production structure and only one uncertainty source and complex models
are mainly approached with heuristics and simulations. It seems that there is a lack of
exact modelling approaches to model and solve complex production problems under un-
certainty. The authors highlight the following necessities for further research: development
of models that contain several types of uncertainty; development of methods to incorporate
uncertainty in an integrated manner; comparison and assessment of different modelling
approaches.

2.3.2.1 Integrating lot-sizing within hierarchical production planning

Efforts were made on integrating lot-sizing with more detailed production planning de-
cisions under uncertainty sources, mostly demand. Gfrerer and Zäpfel (1995) develop a
hierarchical production planning model with random demand using the concept of robust
production planning. Zäpfel (1996) proposes a hierarchical model (aggregated and de-
tailed planning level) that can be incorporated in the MRP II concept to tackle random
demand. D. Kira (1997) formulate a linear stochastic programming model for the hier-
archical production planning with different uncertain demand distributions. In capacity
planning, Karabuk and Wu (2003) develop a multi-stage stochastic model for planning the
capacity for the semiconductor industry. The uncertainty is found on capacity and demand.

Balasubramanian and Grossmann (2004) develop stochastic programming models to
tackle decisions of batching and scheduling under demand uncertainty. The two-stage
stochastic programming models are embedded in a shrink horizon approach to solve the
multistage stochastic problem. Basically, in the shrink horizon approach, the two-stage
stochastic model is solved iteratively with the decisions of the current period fixed, until
decisions for the entire horizon have been fixed. For the two-stage stochastic model, the
authors consider scheduling as first stage variables and demand fulfilment and inventory
decisions as second stage variables.

Sand and Engell (2004) develop a two-stage stochastic programming with a Lagrangian
decomposition approach in order to solve the hierarchical scheduling of flexible chemical
batch processes. Uncertainty is found at capacity and demand, moreover risk-averse strate-
gies are considered.

Lot-sizing and scheduling decisions under uncertainty were also addressed by some
authors. Meybodi and Foote (1995) address production planning and scheduling under
uncertain demand and production failure with a stochastic model incorporating scheduling
and using a rolling horizon heuristic. Wu and Ierapetritou (2007) address the production
planning and scheduling problem under uncertainty through a hierarchical approach with a
rolling horizon strategy. The authors develop a multi-stage stochastic programming model
to tackle demand uncertainty.

Beraldi et al. (2006) develop a multi-stage stochastic programming to solve the paral-
lel machine lot-sizing and scheduling problem with sequence-dependent setup costs and
uncertain processing times. Using a fix-and-relax heuristic the authors reach an integrality
gap that is lower than 3%.

Metaheuristics were also applied in lot-sizing and scheduling problems. Ramezanian
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and Saidi-Mehrabad (2013) propose an MIP model with a rolling horizon heuristic and a
hybrid metaheuristic for scheduling. The method is focused on solving the lot-sizing and
scheduling problems under uncertain processing times and product demand. In addition,
the authors demonstrate that the metaheuristic performed better than the MIP model with
the rolling horizon heuristic.

The integration of lot-sizing with cutting-stock problems has not been widely ap-
proached. Alem and Morabito (2012) use robust optimization in order to model a pro-
duction planning problem under uncertainty in the furniture industries. The production
planning is a combination of multi-item lot-sizing and cutting-stock problems. In addi-
tion, the models proposed have uncertainty both in terms of costs and demand. In their
subsequent work, Alem and Morabito (2013) propose two-stage stochastic programming
models to incorporate uncertainty in setup times and demand. The models also incorpo-
rate risk averse strategies using conditional value-at-risk, minimax regret, mean-risk and
restricted recourse approaches.

Focusing only on planning the production for several facilities under demand uncer-
tainty, Leung et al. (2006) formulate a two-stage stochastic programming model. Leung
et al. (2007) develop a scenario based robust optimization model to the same problem, with
additional uncertain costs. More recently, Alonso-Ayuso et al. (2014) apply multistage
stochastic programming to incorporate uncertain copper prices in mine planning models.
The different models maximize the expected profits and consider risk averse strategies,
such as Value-at-Risk and variants of Conditional Value-at-Risk.

2.3.2.2 Integrating lot-sizing with distribution planning

The integration of production and distribution planning under uncertainty was addressed
by a considerable number of authors. For instance, Chien (1993) tries to maximize the
expected profit of a production-distribution system under a stochastic demand. The as-
sumptions of the problem are stationary demand, constant production rate and a single
product, moreover the costs considered are shortage, inventory, transportation and pro-
duction costs. The author designs an iterative procedure to achieve optimal production
and distribution policies, moreover a Monte Carlo simulation validates the model. In the
same line, Pyke and Cohen (1994) develop a stochastic programming model to optimize
integrated production-distribution systems with uncertain demand. The authors develop a
specific algorithm that is able to find near-optimal solutions.

Some works were found in integrating decisions at a tactical level, most using stochas-
tic programming models. For instance, Gupta et al. (2000) develop a two-stage stochastic
programming model in order to plan a supply chain in a mid-term horizon. The model fo-
cuses on increasing customer satisfaction and reducing costs while tackling uncertainty in
the demand. Moreover, a customized solution technique together with a chance constraint
approach is used. Gupta and Maranas (2003) develop a two-stage stochastic model in order
to plan the production and distribution decisions in a mid-term horizon under demand un-
certainty. The model has several products and production facilities and takes into account
the customer service level. The authors resorted to a Monte Carlo sampling method to
reduce the computational complexity and solve the model with CPLEX.
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Agrawal et al. (2002) develop a two-stage stochastic programming model that manages
capacity, inventory, and shipments for multiple vendors. The model aims at maximizing
the expected profit and it considers demand uncertainty, distinct vendors, lead times and
production flexibility. Escudero et al. (1999) develop a two-stage stochastic programming
model for manufacturing, assembly and distribution planning with uncertainty in demand,
delivery time and supplying costs. The model considers multi-product and a multi-level
structure.

In a rolling horizon perspective, Rota et al. (1997) develop an MIP model to integrate
firm orders, forecasts and suppliers in order to better coordinate production planning with
other activities. In the model, the demand constraints are uncertain and a rolling horizon
approach is used.

Other approaches, such as standard linear programming models and robust optimiza-
tion models are also used. McDonald and Karimi (1997) formulate a linear model to plan
the tactical production-distribution operations. The authors incorporate safety stocks in the
model in order to tackle demand uncertainty. Yu and Li (2000) develop a general tactical
robust optimization model based on scenarios. The authors give examples where produc-
tion costs and demand are uncertain.

Chen and Lee (2004) resort to a mixed-integer non-linear problem (MINLP) model
to tackle the production-distribution decisions. The model considers multiple conflicting
objectives, uncertain demand, and product prices in a supply chain. They discretize the
demand in scenarios and model the product prices as fuzzy variables. The authors used an
MINLP solver in order to solve small instances.

Other authors apply optimization-simulation approaches for the production-distribution
problems. Usually uncertainty is tackled on the simulation. Lee et al. (2002) propose a
hybrid analytic-simulation method in order to solve the production-distribution planning in
a supply chain. The problem encompasses multi-period, multi-product and multi-facility.
In addition, machine and distribution capacities are considered stochastic.

According to Fahimnia et al. (2013), Lee and Kim (2002) develop one of the most
generic production-distribution models. The authors develop a linear model within a optimization-
simulation approach in order to integrate production and distribution decisions under uncer-
tainty in processing and distribution times. Safaei et al. (2010) develop a hybrid mathematical-
simulation model to integrate production-distribution. The authors consider a setting with
multi-product, multi-period, multi-site and uncertainty is found on unexpected delays,
queuing, machine failure and operation time. The proposed model is deterministic and
the simulation provides the feedback of the stochastic parameters.

There is also an alternative stream that applies fuzzy programming in order to incor-
porate uncertainty in production-distribution problems. For instance, Bilgen (2010) pro-
poses a fuzzy mathematical programming model with fuzzines in capacity constraints and
costs for a multi-echelon problem integrating strategic decisions of production line assign-
ments with tactical decisions of production and distribution. Demirli and Yimer (2006)
also develop a fuzzy integer programming model in order to reduce the overall costs of a
production-distribution system considering multi-level, multi-site and fuzzy costs.

Aliev et al. (2007) develop a fuzzy model that aggregates production and distribution
planning. The model deals with multi-product and multi-facility. Moreover, uncertainty is
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present in demand, capacity and processing times. The authors also propose a genetic al-
gorithm to solve the model. More recently, Liang (2008) proposes a fuzzy multi-objective
linear programming model to solve an integrated production-transportation planning deci-
sion in a fuzzy environment. The model aims to optimize the three fuzzy goals: minimize
production and transportation costs, minimize number of rejected items and minimize the
total delivery time.

2.3.2.3 Integrating lot-sizing with procurement and distribution planning

The integration of procurement and distribution planning with lot-sizing under uncertainty
has been addressed by some authors. Lababidi et al. (2004) focus on tactical procurement,
production and distribution planning of a petrochemical company. The authors formulate
a two-stage stochastic programming model and consider demand, market prices, raw ma-
terial costs and production yields. Von Lanzenauer and Pilz-Glombik (2002) also develop
a stochastic programming model to integrate procurement and distribution decisions. The
model considers demand uncertainty and is applied to a modified version of the Beer Dis-
tribution Game.

More recently, Kanyalkar and Adil (2010) develop a scenario based robust optimization
model to integrate production planning with procurement and distribution. The model con-
siders demand uncertainty, multi-product and multi-plant setting. The authors demonstrate
the effectiveness of the robust model solving an industrial large scale problem.

Other authors develop tactical supply chain planning models using a fuzzy modeling
approach. Peidro et al. (2009), for instance, formulate a fuzzy optimization model to plan
a supply chain under supply, demand and process uncertainty. In the model, procurement,
distribution and production planning decisions are determined. The authors also test the
effectiveness of the model with data from a real automotive supply chain.

Focusing more on the integration with procurement decisions, Coronado (2007) devel-
ops a two-stage stochastic non-linear model to tackle uncertainty at suppliers’ capacity in
a supply chain. In the first stage diversification and safety stock decisions are made. The
author proposes a sample average approximation and a decomposition heuristic in order to
solve the model efficiently. In the work, risks of stock-out are taken into account.

2.3.2.4 Integrating lot-sizing for strategic supply chain planning

With regards to strategic-tactical decisions, lot-sizing can be incorporated in models with
the purpose to optimize supply chains networks and plan strategic decisions. For instance,
Cohen and Lee (1988) develop a stochastic network model that combines material con-
trol, production control, inventory of finished goods and distribution network control. The
model incorporates demand uncertainty and is solved with a heuristic method that decom-
poses the stochastic sub-models in order to optimize the overall objective. Santoso et al.
(2005) also develop a stochastic programming approach for planning a supply chain net-
work under demand and capacity uncertainty. In this work, a large-scale stochastic supply
chain network problem is solved with two approaches: a sample average approximation
scheme is used to generate a small number scenarios and a benders decomposition method
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is applied together with acceleration procedures.
Still focusing on strategic planning, Guillén et al. (2005) develop a two-stage stochastic

programming model to maximize the net present value, demand satisfaction and minimize
the financial risk. The model incorporates stochastic demand. First-stage decision variables
relate to capacity and second-stage variables relate to production and storage. Koutsoukis
et al. (2000) also develop a two-stage stochastic programming model that is incorporated
into a decision support system for the strategic planning of a supply chain with uncer-
tain demand. The model considers capacity and inventory constraints and has decisions
such as production/assembly/distribution sites, number of lines at each site and operational
decisions of acquisition, production and distribution. C. Lucas (2001) formulates a two-
stage stochastic programming model focused to plan a supply chain network. The model
takes into account demand uncertainty and considers multi-facility. The authors apply a
Lagrangian relaxation algorithm in order to solve large instances of the problem.

Alonso-Ayuso et al. (2003a) formulate a two-stage stochastic programming model to
solve the strategic planning of a supply chain. The model considers uncertainty in demand,
price and costs and is solved with a branch-and-fix algorithmic approach. This approach
coordinates the selection of branching nodes to be jointly optimized (Alonso-Ayuso et al.,
2003b). Das and Sengupta (2009) develop a two-stage stochastic programming model for
simultaneous strategic and tactical planning in the supply chain under several uncertainty
sources, such as costs, taxes, demand and transportation lead times. The model also con-
sider several products and facilities.

Using a multi-objective approach, Sabri and Beamon (2000) develop a model for strate-
gic and tactical planning of the supply chain also focusing on service level. The model is di-
vided into a deterministic strategic sub-model and a stochastic operational sub-model. The
operational sub-model incorporates production, demand and delivery uncertainty sources.
The multi-objective approach includes customer service level, costs and flexibility (volume
and delivery) of the supply chain. The authors developed an iterative algorithm to solve
both strategic and operational sub-models.

In a context of the pharmaceutical industry, Levis and Papageorgiou (2004) develop a
two-stage stochastic programming model considering uncertain clinical trials for products.
The model combines decisions of products portfolio, lot-sizing and capacity planning and a
hierarchical algorithm is used to solve the model. Focusing more on material management
in a decentralized supply chain, Lee and Billington (1993) build a stochastic programming
model, in which demand, supply and lead time are uncertain.

Besides stochastic programming models, other approaches are also used to join strate-
gic and planning decisions. Aghezzaf (2005) develops a scenario based robust optimization
model to solve the strategic capacity planning and facility location under uncertain demand.
Although the model is more focused on strategic decisions its core contains lot-sizing as-
pects. To solve the model the author develops a decomposition algorithm using Lagrangian
relaxation. Miranda and Garrido (2004) develop a non-linear model incorporating the eco-
nomic lot-sizing policy with uncertain demand in a facility location model. To solve the
model the authors develop a Lagrangian relaxation and a sub-gradient method. Ryu et al.
(2004) develop a bilevel programming model to integrate production and distribution tac-
tical decisions under demand uncertainty.
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2.4. Literature insights and gaps identified

The literature reviewed covers many aspects of lot-sizing variants, uncertainty issues and
integration with other problems. We believe that this literature review brings insights for
this research in three key directions. Firstly, it allowed us to understand the main mod-
eling techniques and computational complexities of basic lot-sizing models. Secondly, it
showed how integration with other problems and uncertainty can be incorporated in the
models and how the solution techniques are applied in order to achieve good solutions in
adequate time. Finally, it revealed that, nowadays, it is critical that models incorporate the
main particularities of specific industries (e.g., product freshness, type of contracts, possi-
bility of re-manufacturing and critical uncertainty sources) and realistic issues (e.g., several
number of machines and facilities, multi-level product structures and multi-product) in or-
der to bring high valuable contributions to practical problems. To maximize the scientific
contribution of this work, we intend to align the main advances and concerns of the scien-
tific literature to the objectives of this research.

Based on the literature review it is also possible to find some gaps that seem to have
not been widely addressed by the scientific community. The first one is the impact of
uncertainty sources on integrated problems. There are several papers that state the advan-
tages of integrating supply chain stages and optimization problems. Nevertheless, there is
a lack of works that perform a study on how the level of uncertainty affects the decisions
in a integrated system and how integrate models can manage the uncertainty impacts. For
instance, important insights could be reached in a study on how the level of uncertainty
in processing times affects the production capacity planning and how different models per-
form under these circumstances. New works bringing high quality solutions and evaluating
the different approaches to tackle integrated lot-sizing under different sources and levels of
uncertainty are also an opportunity of research.

Several works have explored the integration of production-distribution systems in a
tactical perspective. However, there are only a few studies that have addressed the inte-
gration of lot-sizing in tactical-operational (e.g., lot-sizing and vehicle routing problem)
and strategic-tactical (e.g., lot-sizing and supplier selection, lot-sizing and capacity/facility
planning) perspectives under uncertainty. Additionally, there are few works that integrate
lot-sizing with other problems that may have high practical value (e.g., procurement plan-
ning, cutting problems, make-or-buy decisions).

Most of the works have addressed mainly uncertainty in demand within standard lot-
sizing models. Moreover, most of the stochastic programming models developed to tackle
integrated lot-sizing are limited to two-stage settings. Models that combine several uncer-
tainty sources or take into account complex lot-sizing problems (e.g., multi-level lot-sizing,
lot-sizing with parallel machines) are scarce. The development of complex models may be
necessary to bring superior solutions for practical problems.

Efforts to compare different solution techniques (e.g., exact, decompositions, heuris-
tics, hybrid, metaheuristics) for integrated lot-sizing under uncertainty can provide an un-
derstanding on how suitable each approach is for solving integrated problems.

Moreover, it seems that risk measures, such as value at risk, conditional value at risk
and others are not widely studied in lot-sizing integrated models. Only Alem and Morabito
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(2013) and Alonso-Ayuso et al. (2014) address this matter for integrated problems. More
than just applying risk-averse strategies, it could be interesting to compare and analyse the
trade-offs of these strategies in terms of the impact on the solution quality and effectiveness
on reducing risk for different integrated problems.

Robust optimization approaches have not been widely used to tackle uncertainty in
integrated lot-sizing problems. A research opportunity exists in studying the incorporation
of uncertainty for highly complex integrated systems using robust optimization models in
order to take advantage of their tractability and the unnecessity of generating scenarios to
incorporate uncertainty. Moreover, a study on robust optimization focusing on assessing
its different uncertainty parameters and sets in order to improve the solutions for uncertain
lot-sizing integrated problems may be necessary.

With the emerging of robust optimization models, several advantages and drawbacks
were established for both stochastic programming and robust optimization models. Nonethe-
less, there is not a standardized methodology that compares and assesses both approaches
or a study providing the main advantages and drawbacks for using a specific modeling
approach (RO, two-stage or multi-stage stochastic programming) or solution technique.
Methods and measures that contribute in this sense may be a research opportunity.

Since Bookbinder and Tan (1988), uncertainty in lot-sizing is mostly dealt in a parallel
way, when compared to other optimization problems. The classification of uncertainty in
static, dynamic and static-dynamic and the usage of rolling-horizon heuristics differ from
how uncertainty is classified and tackled in other optimization problems. The attempt to
standardize the uncertainty classification and methods categorization may be important to
take advantage of the progresses in uncertainty modeling and solution approaches from
other optimization problems.

Summarizing, although there are substantial research works in integrating lot-sizing
under uncertainty, there are few papers that bring insights on how the combination of prob-
lem types, modeling approaches, solution techniques, uncertainty levels and number/type
of uncertainty sources impact the solutions quality and effectiveness. These opportunities
are closely aligned to the primary questions and objectives of this research.
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Abstract This paper addresses an integrated framework for deciding about the supplier
selection in the processed food industry under uncertainty. The relevance of including tac-
tical production and distribution planning in this procurement decision is assessed. The
contribution of this paper is three-fold. Firstly, we propose a new two-stage stochastic
mixed-integer programming model for the supplier selection in the process food industry
that maximizes profit and minimizes risk of low customer service. Secondly, we reiterate
the importance of considering main complexities of food supply chain management such
as: perishability of both raw materials and final products; uncertainty at both downstream
and upstream parameters; and age dependent demand. Thirdly, we develop a solution
method based on a multi-cut Benders decomposition and generalized disjunctive program-
ming. Results indicate that sourcing and branding actions vary significantly between using
an integrated and a decoupled approach. The proposed multi-cut Benders decomposition
algorithm improved the solutions of the larger instances of this problem when compared
with a classical Benders decomposition algorithm and with the solution of the monolithic
model
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3.1. Introduction

The importance of food supply chain management has been growing both at the industrial
and scientific levels. The challenges faced in food supply chains are at the intersection of
several disciplines and go beyond the traditional cost minimization concern. Particularly, in
the process food industry, companies have to deal with higher uncertainties both upstream
and downstream of the supply chain. These uncertainties are related to an ever increasing
product variety, more demanding customers and a highly interconnected distribution net-
work. This implies that companies operating in the process food industry need to manage
the risk/cost trade-off without disregarding freshness, sustainability and corporate social
responsibility issues (Maloni and Brown, 2006).

Effective and efficient decision support models and methods for supply chain planning
are critical for this sector that is the largest manufacturing sector in Europe with a turnover
of 1,048 billion euros, employing over 4.2 million people (FoodDrink Europe, 2014). It is
widely acknowledged that the standard tools for supply chain management perform poorly
when applied to process food industries (Rajurkar and Jain, 2011). The characteristics of
food supply chains are significantly different from other supply chains. The main difference
is the continuous change in the quality of raw materials - from the time they are shipped
from the grower to the time they are processed at the plant, and in the quality of final
products - from the time they are shipped from the plant to the time they are consumed.
Ahumada and Villalobos (2009) state that food supply chains are more complex and harder
to manage than other supply chains. The shelf-lives of raw, intermediate and final goods
together with the strong uncertainties in the whole chain challenge a good supply chain
management and planning (Ahumada et al., 2012). Despite the relevant specificities of
process food industries, the consideration of perishability, customers willingness to pay
and risk management at the strategic and planning levels has been seldom addressed in the
literature.

The present work addresses the joint decision of choosing which suppliers to select,
and the planning of procurement, production and distribution in a medium-term planning
horizon. We focus on companies that process a main perishable raw material and convert it
into perishable final food products. These conditions happen for instance in the dairy, fresh
juices and tomato sauce industries. Within this scope we integrate strategic and tactical
decisions in a common framework. We consider a setting in which companies have their
plants and distribution channels well established and, therefore, the supply chain strategic
decisions address the supplier selection and the related product branding. We classify
the suppliers and the product branding as local or mainstream. This differentiation has
already been made for the agri-business (Ata et al., 2012), but never for the food processing
industry. However, there are several practical examples of the leverage than can be achieved
in the customers willingness to pay by branding a product as local, and correspondingly
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sourcing raw materials from local suppliers (Martinez, 2010; Oberholtzer et al., 2014; Frash
et al., 2014). Therefore, the demand and the list price is assumed higher for fresh products
that are branded and produced with local raw materials. In contrast, a similar product with a
low remaining shelf-life and produced with mainstream raw materials has a lower demand
and a lower list price.

Within this context, we propose a two-stage stochastic mixed-integer programming
model to tackle this supplier selection problem. In the first-stage we decide the branding
of products and the quantities to be procured in advance from each supplier. In the second-
stage, we decide on the produced and transported quantities as well as on the quantities
procured in the spot market. Uncertainties relate to the suppliers’ raw material availability,
suppliers’ lead time, suppliers’ spot market prices and demand for final products.

The different sources of uncertainty in this supplier selection problem render the corre-
sponding stochastic programming model hard to solve as a considerable number of scenar-
ios have to be considered. Therefore, to solve this problem we propose a multi-cut Benders
decomposition method. Moreover, to improve its convergence we test several acceleration
techniques.

The remainder of this paper is as follows. Section 3.2 reviews relevant contributions
in the supplier selection problem. Section 3.3 describes formally the problem and the pro-
posed mathematical formulations. Section 3.4 is devoted to the model validation through
an illustrative example. In particular, the importance of considering uncertainty, the in-
tegration of the supplier selection with tactical planning decisions, and the impact of a
risk-averse strategy are discussed. Section 3.5 presents the implementation of a multi-cut
Benders decomposition algorithm for this problem. Section 3.6 reports computational re-
sults for larger instances. Finally, Section 3.7 draws the main conclusions and indicates
future lines of research.

3.2. Literature review

The research on supplier selection problems has been traditionally divided between the op-
erations management community that seeks an intuitive understanding of this problem, and
the operations research community that explores the advantages of structuring this decision
process and unveils hidden trade-offs through the use of techniques, such as mathematical
programming (De Boer et al., 2001). For a thorough review of quantitative methods for the
supplier selection problem the readers are referred to Ho et al. (2010).

Most of the approaches to tackle the supplier selection problem are based on the Ana-
lytic Hierarchy Process (AHP) method to help decision makers in dealing with both uncer-
tainty and subjectivity (Deng et al., 2014). There are also examples of works that combine
AHP with other techniques, such as fuzzy linear programming (Sevkli et al., 2008). Data
Envelopment Analysis (DEA) is also another widely used technique for supplier selection
problems. For example, Kumar et al. (2014) propose a methodology for the supplier selec-
tion taking into consideration the carbon footprints of suppliers as an attribute of the DEA
model.

The most straightforward extension to the supplier selection problem is to couple it
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with decisions about inventory management (Aissaoui et al., 2007). Guo and Li (2014)
integrate supplier selection and inventory management for multi-echelon systems. Other
works incorporate other decisions, such as the carrier selection, besides determining the
ordering quantities (Choudhary and Shankar, 2014).

More recently, researchers have started to address other relevant aspects that can be
studied under this general problem. Chen and Guo (2013) study the importance of supplier
selection in competitive markets, and indicated that besides the more evident conclusion
that dual sourcing can help to mitigate supply chain risks, strategic sourcing can also be an
effective tool in approaching retail competition. Qian (2014) develops an analytic approach
that incorporates extensive market data when determining the supplier selection in a make-
to-order production strategy. With a more practical emphasis, Hong and Lee (2013) lay
the foundations of a decision support system for effective risk-management when selecting
suppliers in a spot market using measures similar to the Conditional Value-at-Risk (Rock-
afellar and Uryasev, 2000, 2002), such as the Expected Profit-Supply at Risk. Another
relevant aspect is disruption management, especially regarding the suppliers’ availability.
Silbermayr and Minner (2014) develop an analytic model based on Markov decision pro-
cesses in which suppliers may be completely unavailable at a given (stochastic) interval of
time. Due to the complexity of the optimal ordering policies, they also derive a heuristic
approach.

Uncertainty has been incorporated in supplier selection problems either through stochas-
tic programming or simulation. Moreover, distinct sources of uncertainty and different
distributions for these uncertainties have been considered. Using a hybrid simulation op-
timization methodology, Ding et al. (2005) are able to estimate the impact of the supplier
selection on the tactical processes of the supply chain, and use this information back in the
decision about which suppliers to select. Stochastic programming has proved to be a suit-
able methodology to address complex issues involved in supplier selection. Sawik (2013)
proposes a similar model to the one presented in this paper as it is able to deal with mul-
tiple periods and it accounts for uncertainty through stochastic programming. Hammami
et al. (2014) propose a model for supplier selection considering uncertainty on the currency
fluctuation. Through a case-study, the authors were able to show the value of the stochastic
solution when compared to the deterministic model.

In light of this discussion, the main contributions of this paper to the supplier selection
literature relate to accounting for uncertainty in the lead time, the consideration of distri-
bution decisions and the emphasis on the characteristics of processed food industries. This
last point is in line with an ongoing discussion about the sustainability and profitability of
local sourcing for processed food industries (Schönhart et al., 2009).

In terms of solution methods, as the complexity of our problem required the use of a
more sophisticated approach rather than solving the monolithic model, we show the appli-
cability of a multi-cut Benders decomposition method to this supplier selection problem.
Moreover, we show that the valid inequalities that can be obtained from a generalized dis-
junctive programming formulation (Raman and Grossmann, 1994) can be used in order to
tighten the Benders master problem.
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3.3. Problem statement and mathematical formulations

This section describes the supplier selection problem for supply chains in the processed
food industry and the mathematical models that have been developed. Let k = 1, ...,K be
the products that are produced in the different factories ( f ∈ F). To produce these products
the factories have to procure raw materials from the different available suppliers (s ∈ S).
These raw materials are classified either as mainstream (u = 0) or local (u = 1) depending
on the distance between the supplier and the customers. Notice that the focus is on a
divergent production structure in which a main raw material (milk, oranges or tomatoes,
for example) is transformed into several final products that vary only in the packaging or in
the incorporation of small amounts of other ingredients. The planning horizon is divided
into periods t = 1, ...,T . These periods correspond to months as we are dealing with tactical
planning. After production, which can take place in regular schedules or overtime, products
are transferred to retailers (r ∈R), which face an uncertain demand (Dav

ktr) that also depends
on the products’ age a ∈ Ak = {0, ..., (S Lk − 1)}, where S Lk corresponds to the shelf-life of
product k. Notice that raw materials also have limited age, a ∈ Au = {0, ..., ( ˆS Lu−1)}, where
ˆS Lu corresponds to the shelf-life of raw material u.

The stochastic data is initially given by continuous distributions and it is then modeled
on some probability space, where V is a set of discrete scenarios with corresponding prob-
abilities of occurrence φv, such that φv > 0 and

∑
vφv = 1. This discretization relates to

the sampling strategy used in the computational experiments. In our two-stage stochastic
program, we define the quantities to procure in advance from each supplier (sts f ) and the
branding strategy for each product: local (χk = 1) or mainstream (χk = 0) as first-stage de-
cisions. Notice that when a product is branded as local it has to be produced only using
local raw materials, whereas when a product is branded as mainstream, it is possible to use
a dual sourcing strategy, and therefore procure raw materials from local and mainstream
suppliers. Procured quantities in the spot market (s̄v

ts f ), production quantities in regular
schedules and in overtime (pav

ku f t and p̄av
ku f t), transportation flows (xv

kt f r), inventory levels of
both raw materials (ŵav

ut f ) and final products (wav
ktr), and demand satisfaction (ψav

kutr) are the
second-stage decisions.

When making the first-stage decisions there are four sources of uncertainty to be con-
sidered. The first regards the demand for final products that is not known with certainty
when negotiating contracts with suppliers and while deciding the branding strategy for
each product. This reflects the real-world setting in which demand for fast moving con-
sumer food goods is highly variable. The other three sources of uncertainty are related
to the suppliers of raw materials: availability, lead time and spot price. While local sup-
pliers have more uncertainty in the available quantities to be delivered over the planning
horizon, mainstream suppliers have larger and more volatile lead times. Generally, local
suppliers manage less structured operations and are harder to be engaged in risk mitigating
strategies, such as production in several locations. Mainstream suppliers are by definition
located in farther locations, and therefore their lead times usually contain more variability.
For a thorough review on the characteristics of these two types of suppliers the readers are
referred to King (2010). Regarding the spot price, it usually depends more on the negotia-
tion undertaken and on the yields of that period than on the type of supplier. Negotiating in
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the spot market has a critical component of price uncertainty that is reflected in our model.
Figure 3.1 illustrates the general problem framework and clarifies the connection between
the formulation stages and the supply chain processes.

Supplier Selection Model for Supply Chains in the Processed Food Industry 

Supply Chain Scope in the Processed Food Industry

Production Planning

Distribution Planning

Factories

Local Suppliers

Mainstream Suppliers

Warehouses/Retailers
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Figure 3.1 – Overview of the scope of this research.

Consider the following indices, parameters, and decision variables that are used in the
stochastic programming formulation.

Indices and Sets
k ∈ K final products
u ∈ U supplier / raw material classification: 0 for mainstream, 1 for local
s ∈ S suppliers
f ∈ F factories
r ∈ R retailers
t ∈ T periods
a ∈ A ages (in periods)
v ∈ V scenarios
Su set of suppliers that supply raw material of type u
Ak set of ages that product k may have
Au set of ages that raw material u may have



3.3. Problem statement and mathematical formulations 55

Deterministic Parameters
S Ps unit purchasing cost of raw material when bought in advance at

supplier s
TCs f ( ˆTC f r) transportation cost from supplier s (factory f ) to factory f (re-

tailer r)
S Lk( ˆS Lu) shelf-life duration of product k (raw material u) right after being

produced (time)
HCk( ˆHCu) holding cost for product k (raw material u)
PCk f (P̄Ck f ) normal (extra) production cost for product k when produced in

factory f
LPku list price for product k when branded as product of type u
Ek f capacity consumption (time) needed to produce one unit of prod-

uct k in factory f
CPt f (C̄Pt f ) normal (extra) capacity of factory f available in period t

Stochastic Parameters
Dav

ktr demand at retailer r for product k with age a in period t in scenario v
LT v

ts lead time offset of a shipment due to arrive in period t from supplier s in
scenario v

¯S Pv
s unit purchasing cost of raw material when bought in a spot deal from sup-

plier s in scenario v
AQv

ts availability of raw material at supplier s for supplying in period t in scenario
v

φv probability of occurrence of scenario v

First-Stage Decision Variables
sts f quantity of raw material procured in advance from supplier s in period t

for supplying factory f
χk equals 1, if product k is produced using only local raw materials (0 oth-

erwise)
η value-at-risk of the customer service
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Second-Stage Decision Variables
τav

ts f auxiliary variable that quantifies the amount of raw material pro-
cured in advance from supplier s that arrives in period t with age
a for supplying factory f in scenario v

s̄v
ts f quantity of raw material procured with a spot deal from supplier

s in period t for supplying factory f in scenario v
pav

kut f ( p̄av
kut f ) regular (overtime) produced quantity of product k in factory f

using raw materials of type u with age a in period t and scenario
v

xv
kt f r transported quantity of product k from factory f to retailer r in

period t and scenario v
wav

ktr(ŵ
av
ut f ) initial inventory of product k (raw material u) with age a in period

t in scenario v at retailer r (factory f ), a = 0, ...,min{S Lk, t−1}(a =

0, ...,min{ ˆS Lu, t−1})
ψav

kutr fraction of the demand for product k produced with suppliers of
type u delivered with age a in period t in scenario v from retailer
r, a = 0, ...,min{S Lk −1, t−1}

δv auxiliary variable for calculating the conditional value-at-risk of
the customer service

3.3.1 Mixed-integer linear programming formulation

The mixed-integer linear programming formulation of the problem is described next. The
constraints that this problem is subject to are organized around the respective supply chain
echelon.

3.3.1.1 Objective function

The first part of objective function (3.1) maximizes the profit of the producer over the
tactical planning horizon. Expected revenue, which depends on the products’ branding is
subtracted by supply chain related costs: purchasing costs of raw materials, both when
bought in advance and or in the spot market, holding costs for raw materials and final prod-
ucts, transportation costs between the supply chain nodes, and normal and extra production
costs. The second part the objective function (starting with γ) maximizes the conditional
value-at-risk of the customer service. This measure reflects the expected customer service
of the (1−α) · 100% scenarios that yield the lowest customer service. For that purpose,
the conditional value-at-risk of the customer service accounts for the expected customer
service below a measure η (value-at-risk of the customer service) at the confidence level
α. The value-at-risk of the customer service is the maximum customer service such that
its probability of being lower than or equal to this value is lower than or equal to (1−α).
This is an adaptation of the Conditional Value-at-Risk (Rockafellar and Uryasev, 2000,
2002) focusing on the customer service. Similar concepts, such as the supply-at-risk (SaR)
were developed in an analogous context Hong and Lee (2013). The incorporation of risk-
measures in supplier selection problems with a narrower scope have already been proposed
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by other authors (e.g. Sawik, 2013). The main advantage of the resulting risk-averse mod-
els is the ability to reshape the profit distribution in such a way that the worst-case scenarios
are drastically reduced. Moreover, similar risk-averse models have proved to be quite ef-
fective in the food industry (Amorim et al., 2013a). The risk-aversion of the solution is
controlled by weight parameter γ.

max
∑

v

φv[
∑

k,u,t,r,a

LPku ·D0v
ktr ·ψ

av
kutr −

∑
k,t,r,a<S Lk

HCk ·wav
ktr −

∑
k,t, f ,r

ˆTC f r · xv
kt f r

−
∑

k,u,t, f ,a

(PCk f · pav
kut f + P̄Ck f · p̄av

kut f )−
∑

u,t, f ,a< ˆS Lu

ĤCu · ŵav
ut f

−
∑
s, f

( ¯S Pv
s + TCs f ) · s̄v

ts f −
∑

t,s, f ,a

(S Ps + TCs f ) ·τav
ts f ] +γ · (η−

1
1−α

∑
v

φv ·δv) (3.1)

Decision variable η retrieves an approximation of the customer service value-at-risk
and the auxiliary variable δv is defined using Eq.(3.2). The equation defines variable δv

making it zero when the customer service in a given scenario is higher that the customer
service value-at-risk. Otherwise, variable δv determines the difference between the cus-
tomer service value-at-risk and the corresponding mean customer service of the scenario.
Figure 3.2 shows a graphical representation of the customer service conditional value-at-
risk. The graph represents the distribution of the random customer service (ω). The cus-
tomer service conditional value-at-risk is given by E[ω|ω ≤ VaRα(ω)], where VaRα(ω) is
the value-at-risk of the customer service with a confidence of α.

δv ≥ η−
∑

k,u,t,r,a∈Ak

ψav
kutr ∀v ∈ V (3.2)
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Figure 3.2 – Graphical representation of the customer service conditional value-at-risk
(adapted from Sarykalin et al. (2008)).
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3.3.1.2 Procurement constraints

Eq.(3.3) translates the first stage decision that defines the quantity and the arrival time of
raw material from each supplier (sts f ) to a second stage decision variable (τav

ts f ) that is
affected by the uncertainty on the lead time (LT v

ts) and by the availability of the supplier
(AQv

ts). Lead time uncertainty offsets both the arrival time and the age of the product.
Therefore, if LT v

tc = 2 then a product that was supposed to arrive on t = 2 with age 0, will
arrive on t = 4 with age 2 in scenario v. The availability AQv

ts is defined a fraction between 0
and 1. The domain of variable τav

ts f is extended in the temporal dimension to accommodate
for arrivals outside the planning horizon. The utilization of this raw material is not possible
in the current planning horizon.

τ
LT v

ts,v
t+LT v

ts,s f = AQv
ts · sts f ∀t ∈ T, s ∈ S, f ∈ F,v ∈ V (3.3)

Over the entire planning horizon it is also important to enforce that the amount of
product arriving with different ages is equal to the quantities that the producer has ordered
discounted by the availability (3.4).

∑
t,a∈Au

τav
ts f =

∑
t

AQv
ts · sts f ∀s ∈ S, f ∈ F,v ∈ V (3.4)

Eq.(3.5) indicates that the inventory amount of raw material available to process at
factory f with age 0 is equivalent to the amount bought in the spot market and bought in
advance when there were no delivery delays.

∑
s∈Su

(τ0v
ts f + s̄v

ts f ) = ŵ0v
ut f ∀u ∈ U, t ∈ T, f ∈ F,v ∈ V (3.5)

3.3.1.3 Production constraints

Eq.(3.6) is an inventory balance constraint for the stock of the raw materials. It also updates
the age of the raw material stock and takes into account the raw materials arriving with
older ages (larger than 0). Notice that the domain of the inventory variables is constrained
in its definition in the beginning of Section 3.3.

ŵav
ut f = ŵa−1,v

u,t−1, f +
∑
s∈Su

τav
ts f −

∑
k

(pa−1,v
ku,t−1, f + p̄a−1,v

ku,t−1, f )

∀u ∈ U, t ∈ {2, ...,T + 1}, f ∈ F,a ∈ Au : a ≥ 1,v ∈ V (3.6)

Eq.(3.7) forces the utilization of local raw material in case the product is branded as
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local.

pav
k0t f + p̄av

k0t f ≤ M(1−χk) ∀k ∈ K, t ∈ T, f ∈ F,a ∈ Au : u = 0,v ∈ V (3.7)

Eqs.(3.8)-(3.9) limit both normal and extra production to the available factory capacity,
respectively.

∑
k,u,a∈Au

Ek f pav
kut f ≤CP f t ∀t ∈ T, f ∈ F,v ∈ V (3.8)

∑
k,u,a∈Au

Ek f p̄av
kut f ≤ C̄P f t ∀t ∈ T, f ∈ F,v ∈ V (3.9)

3.3.1.4 Distribution constraints

Eq.(3.10) forces all production made in the different factories to flow to retailers within the
same planning period.

∑
u,a∈Au

(pav
kut f + p̄av

kut f ) =
∑

r

xv
kt f r ∀k ∈ K, t ∈ T, f ∈ F,v ∈ V (3.10)

The amount of final products entering each retailer corresponds to the inventory avail-
able to satisfy demand with age 0 (3.11). Therefore, notice that after processing the raw
materials, the age of the final products is always set to 0.

∑
f

xv
kt f r = w0v

ktr ∀k ∈ K, t ∈ T,r ∈ R,v ∈ V (3.11)

3.3.1.5 Demand fulfillment constraints

Eqs.(3.12)-(3.13) link the choice on the product branding as local (χk = 1,u = 1) or main-
stream (χk = 0,u = 0) to the type of demand fulfilled that will determine the list price that
the customer pays. These constraints define the revenue of the solution with the first term
of the objective function (3.1).

ψav
k0tr ≤ 1−χk ∀k ∈ K, t ∈ T,r ∈ R,a ∈ Ak,v ∈ V (3.12)

ψav
k1tr ≤ χk ∀k ∈ K, t ∈ T,r ∈ R,a ∈ Ak,v ∈ V (3.13)
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Eq.(3.14) is another inventory balance constraint, but this time in the retailers premises
for final products. This constraint updates the age of final products’ inventory throughout
the planning periods.

wav
ktr = wa−1,v

k,t−1,r −
∑

u

D0v
k,t−1,rψ

a−1,v
ku,t−1,r (3.14)

∀k ∈ K, t ∈ {2, ..., (T + 1)},r ∈ R,a ∈ Ak : a ≥ 1,v ∈ V

Eq.(3.15) keeps the demand fulfilled at different inventory ages below the respective
demand profile (Amorim et al., 2013b).

∑
u

D0v
ktrψ

av
kutr ≤ Dav

ktr ∀k ∈ P, t ∈ T,r ∈ R,a ∈ Ak,v ∈ V (3.15)

Eq.(3.16) ensures that the demand fulfilled with different ages is always below the
demand that the customer would be willing to pay for the product in the fresher state.

∑
u,a∈Ak

ψav
kutr ≤ 1 ∀k ∈ K, t ∈ T,r ∈ R,v ∈ V (3.16)

sts f , τ
v
ts f , s̄

v
ts f ,w

av
ktr, ŵ

av
ut f , p

av
kut f , p̄

av
kut f , x

v
kt f r,ψ

av
kutr, δv ≥ 0;χk ∈ {0,1};

η ∈ < ∀k ∈ K,u ∈ U,a, t ∈ T, s ∈ S, f ∈ F,r ∈ R,v ∈ V (3.17)

Property 3.3.1. The supplier selection problem for supply chains in the processed food in-
dustry (3.1)-(3.17) has complete recourse, i.e., there exists a feasible second-stage decision
for every first-stage decision and independently of the uncertainties (Wets, 1983).

3.3.2 Generalized disjunctive programming formulations

The supplier selection for supply chains in the processed food industry may be formulated
with generalized disjunctive programming (GDP) (Raman and Grossmann, 1994). With
GDP the different boolean decisions are represented through disjunctions. These disjunc-
tions are then related through propositions. After having a problem formulated using GDP
it is possible to derive other formulations, such as big-M (Nemhauser and Wolsey, 1988)
or convex hull reformulations (Balas, 1985). For an overview of the fundamentals of GDP
please refer to Grossmann and Trespalacios (2013); Castro and Grossmann (2012).

3.3.2.1 Initial GDP Formulation

One possible GDP formulation of the problem addressed in this paper is formalized next.
Boolean variables Yk indicate if product k is branded as local.
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max
∑

v

φv[
∑

k,u,t,r,a

LPku ·D0v
ktr ·ψ

av
kutr −

∑
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∑
k,t, f ,r

ˆTC f r · xv
kt f r

−
∑

k,u,t, f ,a

(PCk f · pav
kut f + P̄Ck f · p̄av

kut f )−
∑

u,t, f ,a< ˆS Lu
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∀k ∈ K (3.18)

(3.2)-(3.6), (3.8)-(3.11)

sts f , τ
v
ts f , s̄

v
ts f ,w

av
ktr, ŵ

av
ut f , p

av
kut f , p̄

av
kut f , x

v
kt f r,ψ

av
kutr, δv ≥ 0;η ∈ <

∀k ∈ K,u ∈ U,a, t ∈ T, s ∈ S, f ∈ F,r ∈ R,v ∈ V (3.19)

Yk ∈ {True,False} ∀k ∈ K (3.20)

Disjunctions (3.18) use the information about the branding choice to set to zero part
of the linear decision variables. In particular, when branding a product as local (Yk) it is
possible to set to zero both the decisions variables related with production and demand
fulfillment of products using mainstream raw materials (pv

k0t f , p̄
v
k0t f and ψav

k0tr).

3.3.2.2 Improved GDP formulation

One of the advantages of formulating a problem using GDP is the potential of deriving
alternative models. The supplier selection for supply chains in the processed food industry
can be addressed from a strategic level in which it is necessary to first choose between
three different options: (1) use local single sourcing to produce all products; (2) use main-
stream single sourcing to produce all products; (3) use dual sourcing and choose individu-
ally which product to brand as local and mainstream. The formulations that are presented
next make no use of global constraints as it is possible to fit all constraints inside of the
mentioned disjunctions. Boolean variables Zi indicate if option (i) is chosen.
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(3.2)− (3.11)
(3.18)

 (3.21)

Z1YZ2YZ3 (3.22)

Z3 ⇐⇒ Yk Y¬Yk (3.23)
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Z3 =⇒ ∨k [¬Yk] (3.24)
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∀k ∈ K,u ∈ U,a, t ∈ T, s ∈ S, f ∈ F,r ∈ R,v ∈ V (3.25)

Z1,Z2,Z3 ∈ {True,False} (3.26)

Yk ∈ {True,False} ∀k ∈ K (3.27)

Disjunctions (3.21) use the information about the sourcing strategy choice to narrow
the search space. The first and the second disjunctions (Z1 and Z2) set to zero all variables
related to mainstream sourcing / branding and to local sourcing/branding, respectively.
The third disjunction (Z3) has a embedded disjunction similar to the one presented in the
previous section (cf. Section 3.3.2.1). Logic proposition (3.22) forces the choice of one of
the sourcing strategies. Logic proposition (3.23) states that if a dual sourcing strategy is
chosen then it is necessary to decide for each product the branding (mainstream or local).
Finally, logic proposition (3.24) ensures that when choosing a dual sourcing strategy there
exists at least one product that is not branded as local.

The use of GDP modeling in this context will be clearer in Section 3.5.1 where the
related convex hull reformulation is used.

3.4. Model validation

In this section we validate with an illustrative example the importance of considering un-
certainty, the impact of considering the integrated approach, and the effects of a risk-averse
strategy in the supplier selection for supply chains in the processed food industry.

3.4.1 Instances generation

We consider a mainstream and a local supplier (S = 2) that supply raw material to a fac-
tory (F = 1). This factory converts the raw material into six products (K = 6) and fulfills
demand for 3 retailers over a horizon of 1 year, discretized in T = 12 time periods. Pur-
chasing raw materials in advance from the mainstream supplier costs 0.3 monetary units
and from the local supplier it costs 0.5. Both raw materials have a shelf-life of 3 periods.
All transportation costs are given in Table 3.1. Holding costs of both raw and final products
are 0.05. All final products require one unit of time of capacity to be produced (Ek f = 1).
There is constant available normal capacity throughout the planning horizon that is equal
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to the expected demand across all scenarios for products in its fresher state. Therefore, the
capacity per period CPt f is determined as

CPt f =
∑
k,r

E(D0v
ktr), ∀t, f .

Extra capacity (C̄Pt f ) is 25% of the normal one. Producing within the normal capacity
(PCk f ) costs 0.1, while using the extra capacity costs 10% more (P̄Ck f = 0.11).

Origin Destination TCs f and TC f r

Mainstream Supplier Factory 0.06
Local Supplier Factory 0.02

Factory Retailer 1 0.01
Factory Retailer 2 0.02
Factory Retailer 3 0.03

Table 3.1 – Transportation costs.

The remaining deterministic parameters for products k (S Lk and LPku) and the statistics
used to generate the demand of final products (Dav

ktr) are given in Table 3.2. Note that the
list price for a product branded as local is 10% higher than for a product branded as main-
stream. This value is in line with the average extra willingness to pay for local products
(Martinez, 2010). Demand for final products follows a gamma distribution (Van Donse-
laar et al., 2006). We consider that final products have a medium product quality risk,
and therefore, a linear decay of demand over the age of the product until they reach zero
(Amorim et al., 2013b; Tsiros and Heilman, 2005). These data reflects general parameters
of perishable consumer goods products, such as milk and yogurt.

Product S Lk LPk0 LPk1 E(D0v
ktr) σ(D0v

ktr)

1 3 2.49 2.74 52.80 11.09
2 2 2.7 2.97 76.80 22.27
3 2 2.99 3.29 135.20 25.69
4 3 1.69 1.86 52.80 11.09
5 3 0.62 0.68 76.80 22.27
6 2 2.68 2.95 135.20 25.69

Table 3.2 – Demand related product parameters.

As already mentioned, the supply uncertainties are related to three stochastic parame-
ters: LT v

ts, ¯S Pv
s and AQv

ts. The local supplier has no uncertainty in the delivery dates and
the mainstream is characterized by an exponential negative offset (Qian, 2014) with an ex-
pected value of one period. The raw material spot cost for both suppliers is on average
10% more expensive than the corresponding cost when buying in advance (S Ps). This cost
surplus follows a normal distribution (Fu et al., 2010) and has a coefficient of variation of
one. Finally, the mainstream supplier has no availability issues and the local supplier has a
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uniformly distributed availability (Federgruen and Yang, 2008) in the interval [0.7,1]. The
value for α is set to 0.95 in all experiments.

3.4.2 Importance of uncertainty

To measure the importance of uncertainty we use the Expected Value of Perfect Information
(EVPI) and the Value of Stochastic Solution (VSS). These two metrics are often used to
evaluate the importance of using stochastic solutions over deterministic approximations.

Let RP be the optimal value of solving the two-stage stochastic programming problem
(3.1)-(3.17), and consider WSv the optimal value of solving the same problem only for
scenario v ∈ V. Then, the wait-and-see (WS) solution is determined as the expected value
of WSv over all scenarios. EVPI is obtained with the difference between WS and the RP:

EVPI = WS−RP. (3.28)

The EVPI may be seen as the cost of uncertainty or the maximum amount the decision
maker is willing to pay in order to make a decision without uncertainty. Higher EVPIs
mean that uncertainty is important to the problem (Wallace and Ziemba, 2005).

Now, let EV be the solution obtained by solving the problem in which stochastic pa-
rameters are replaced by their expected values. The expected value of using the first-stage
decisions of EV over all scenarios is denoted as EEV (expected value of using the EV
solution). VSS is obtained as follows:

VSS = RP−EEV. (3.29)

VSS estimates the profit that may be obtained by adopting the stochastic model rather than
using the approximated mean-value one. Therefore, VSS shows the cost of ignoring the
uncertainty in choosing a first-stage decision (Birge and Louveaux, 1997).

In general, there may be cases in which fixing first-stage decision variables may result
in unfeasible EEV problems. However, as the supplier selection for supply chains in the
processed food industry has complete recourse that is not the case (cf. Property 3.3.1).

To approximate both EVPI and VSS for the supplier selection problem we have sam-
pled 1296 scenarios with equal probability from the stochastic parameters and solved the
supplier selection problem with parameter γ set to 0 and 100. Table 3.3 presents the results
for these two metrics.

WS RP EEV EVPI VSS EVPI/RP VSS/RP

γ = 0 36910 36594 20657 316 15937 0.9% 43.6%
γ = 100 36910 36502 18373 408 18129 1.1% 49.7%

Table 3.3 – EVPI and VSS values for the supplier selection problem.

Both metrics are far from zero and they increase with the risk-aversion of the solution.
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The importance of uncertainty grows along with the concerns about customer service. Ac-
quiring more precise information about uncertain parameters seems not to be as critical as
acknowledging the stochastic nature of this problem. The values of the EVPI show that
the recourse decisions are able to correct substantially previous actions. The relative VSS
values are higher than 40%, which denotes the importance of incorporating the variabil-
ity of the possible outcomes instead of using expected values to make supplier selection
decisions in the processed food industry context.

3.4.3 Integrated vs. decoupled approach

In order to assess the impact of considering an integrated approach to the supplier selection
and production-distribution planning, we have performed sensitivity analysis on the key
parameters that may influence the advantages of this approach. Through preliminary com-
putational tests, weight γ is changed such that customer service conditional value at risk
(cscVaR) is either 90% or 95%, the shelf-life of the raw materials ( ˆS Lu) is varied between
3 and 9 periods and the list price of a product branded as local (LPk0) is 0% or 10% higher
than the mainstream list price.

Solutions are obtained with a sample average approximation scheme (Shapiro and
Homem-de Mello, 1998). We sampled 81 scenarios and solved 50 instances of the approx-
imating stochastic programming. We then evaluated the objective function by solving 1296
independently sampled scenarios. In the Decoupled approach, first problem (3.1)-(3.17) is
solved without production-distribution planning constraints (3.6)-(3.11). Afterwards, hav-
ing the procurement and demand fulfillment variables fixed the overall problem is solved.
In the Integrated approach, problem (3.1)-(3.17) is solved simultaneously.

In Tables 3.4 and 3.5 we report for the Decoupled and Integrated approach, respectively,
several indicators:

• profit - first part of objective function (3.1)

• % local - quantity of local procured raw material over the total procured raw material,∑
(τav

ts′ f + s̄v
ts′ f )/

∑
(τav

ts f + s̄v
ts f ) : s′ ∈ S1.

• % spoiled - amount of spoiled raw material over the total procured raw material,∑
w

ˆS Luv
ut f /

∑
(τav

ts f + s̄v
ts f ).

• % raw - total procured raw material over the total demand
∑

(τav
ts f + s̄v

ts f )/
∑

D0v
ktr.

• # local - number of products that the model chose to be branded as local,
∑
χk

Comparing the results of both approaches it is clear that the integrated approach is
relevant as it is able to grasp the advantages of having a product branded as local in order
to dilute key supply chain costs. These costs may arise, for example, from producing in
overtime. With the 10% increase in the list price, the decoupled approach does not lead
to any product being branded as local, whereas the integrated approach suggests to brand
several products this way. This even happens for the case of product 4, which has an
absolute difference in the list price between the two brands of less than 20 cents. These
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LPk1 +0% +10%
ˆS Lu 9 3 9 3

cscVaR 90% 95% 90% 95% 90% 95% 90% 95%

Profit 32801 32496 33064 32866 32966 32734 33151 32920
%local 3.2% 4.2% 2.8% 3.6% 3.1% 3.5% 3.2% 6.3%

%spoiled 0.2% 0.0% 6.0% 7.4% 0.0% 0.0% 5.9% 7.4%
%raw 104.4% 107.9% 105.3% 108.5% 105.2% 107.7% 105.0% 108.8%
#local 0 0 0 0 0 0 0 0

Table 3.4 – Indicators for the decoupled approach.

LPk1 +0% +10%
ˆS Lu 9 3 9 3

cscVaR 90% 95% 90% 95% 90% 95% 90% 95%

Profit 35232 34834 35345 35114 35206 34863 35368 34960
%local 3.4% 3.8% 2.5% 2.9% 56.3% 66.8% 64.1% 78.5%

%spoiled 0.1% 0.1% 6.9% 6.5% 0.0% 0.0% 3.8% 3.9%
%raw 103.6% 106.0% 106.0% 106.7% 112.4% 117.3% 116.1% 121.6%
#local 0 0 0 0 3 4 4 5

Table 3.5 – Indicators for the integrated approach.

decisions force the amount of local raw material to rise considerably above 50%. This
indicates that the sourcing/branding decisions in the processed food industry may need to
take a wider view over the supply chain than just focusing on the procurement processes.
Results also show that the logistics characteristics of local suppliers (for instance smaller
and less variable lead time) may not constitute a significant attribute to rise considerably
the amount of raw materials bought from such suppliers.

Taking advantage of the higher customer willingness to pay for local products increases
profit and lowers the amount of spoiled raw material. The lower levels of raw material
reaching their shelf-lives is related with the difference in the lead time uncertainty between
mainstream and local suppliers. On the other hand, both higher service levels and lower
shelf-lives of raw materials lead to an increase in the amount of spoiled material and an
increase of the quantities purchased from suppliers in relation to the actual demand. The
quantity of raw materials procured is also related to the amount of local supplies due to the
availability uncertainties that corresponding suppliers are subject to.

Across all solutions a dual sourcing strategy is chosen. This is in line with other qual-
itative supplier selection studies in the process food industry that reiterate the importance
of complementary in procurement (Vukina et al., 2009). Regarding the trade-off between
profit and cscVaR, small losses in the average profit may lead to substantial shift in cscVaR.

3.4.4 Risk-neutral vs. risk-averse strategy

In Section 3.3.1 we have introduced in the supplier selection problem a new objective func-
tion that aims to maximize the customer service conditional value-at-risk. The behavior of
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such risk-aversion measures is well documented for the case in which profit is the metric
to be tackled. The previous section showed the relatively low influence of attributing more
weight to customer service conditional value-at-risk on the average profit. Nevertheless, as
this model deals with an uncertain setting, it is relevant to go one step further and under-
stand the impact on the profit distribution as this customer service measure is optimized.

To obtain such insights we have used the results obtained for the integrated approach
when solving the 1296 independently sampled scenarios in the previous section. These
results were extended by considering a risk-neutral approach (γ = 0). The risk-neutral
approach yielded a customer service conditional value-at-risk of 80%. The results of the
profit distribution after the uncertainty realization are similar across the instances with
different shelf-lives and different list prices. Figure 3.3 shows the results for the instance in
which the list price of a product branded as local (LPk0) is the same as the mainstream list
price and the shelf-life of the raw materials ( ˆS Lu) is 3 periods. Each series correspond to a
risk-aversion strategy regarding the customer service: neutral (cscVaR equals 80%), averse
(cscVaR equals 90%) and very averse (cscVaR equals 95%).
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Figure 3.3 – Profit distribution for different risk-aversion strategies.

Comparing the three risk-aversion strategies it can be seen that as expected the average
profit has a slight decrease as we aim to provide better service levels. But, more impor-
tantly, it seems that the dispersion of the profit increases as we aim for a more conservative
attitude towards the customer service level. At a first glance this is counterintuitive be-
cause usually risk-averse strategies trade-off average profits by more predictable outcomes.
However, to achieve higher service levels - averse to losses in the cscVaR, producers have
to take riskier decisions, such as procuring more locally and more quantity. For certain
uncertainty realization this may yield significant losses.
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3.5. Multi-cut Benders decomposition algorithm

Even while using a sample average approximation scheme, it is necessary to solve a large
number of two-stage stochastic programs that are not trivial to solve using monolithic mod-
els as the ones described in Section 3.3. In this Section we discuss a multi-cut Benders
decomposition method that can be embedded in the sample average approximation scheme
in a hybrid solution approach to solve this supplier selection problem (Santoso et al., 2005).

Benders decomposition (Benders, 1962) is a solution method that is more commonly
known as L-Shaped method when applied to stochastic programming (Van Slyke and Wets,
1969). This solution method partitions the complete formulation into two models. The
Benders master problem approximates the cost of the scenarios in the space of first-stage
decision variables, and the Benders subproblems are obtained from the original one by
fixing the first stage variables to the values obtained in the master problem. This solution
method iterates between these two models improving the upper bounds obtained in the
master problem (UB) with information coming from the lower bounds of the subproblems
(LB).

The resulting Benders subproblems (BSP) that may be decomposed for each scenario
v ∈ V are formulated for each iteration i as follows:
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kut f + P̄Ck f · p̄av

kut f )−
∑

u,t, f ,a< ˆS Lu

ĤCu · ŵav
ut f

−
∑
s, f

( ¯S Pv
s + TCs f ) · s̄v

ts f −
∑

t,s, f ,a

(S Ps + TCs f ) ·τav
ts f ]−γ · (

1
1−α

∑
v

φv ·δv)

subject to:

δv ≥ η
i−

∑
k,u,t,r,a∈Ak

ψav
kutr (3.30)

τ
LT v

ts,v
t+LT v

ts,s f = AQv
tssi

ts f ∀t ∈ T, s ∈ S, f ∈ F (3.31)

∑
t,a∈Au

τav
ts f =

∑
t

AQv
tssi

ts f ∀s ∈ S, f ∈ F (3.32)

(3.5)-(3.6)

pav
k0t f + p̄av

k0t f ≤ M(1−χi
k) ∀k ∈ K, t ∈ T, f ∈ F,a ∈ Au : u = 0 (3.33)



70
Chapter 3. Integrating lot-sizing, tactical planning and supplier selection in the

processed food industry under uncertainty sources

(3.8)-(3.11)

ψav
k0tr ≤ 1−χi

k ∀k ∈ K, t ∈ T,r ∈ R,a ∈ Ak (3.34)

ψav
k1tr ≤ χ

i
k ∀k ∈ K, t ∈ T,r ∈ R,a ∈ Ak (3.35)

(3.14) - (3.16)

τv
ts f , s̄

v
ts f ,w

av
ktr, ŵ

av
ut f , p

av
kut f , p̄

av
kut f , x

v
kt f r,ψ

av
kutr, δv ≥ 0;

∀k ∈ K,u ∈ U,a, t ∈ T, s ∈ S, f ∈ F,r ∈ R (3.36)

In the Benders subproblems we use the optimal first-stage solution of variables sts f , χk

and η coming from the solution of the master problem in the previous iteration i that are
denoted as si

ts f , χ
i
k and ηi.

The Benders master problem (BMP) is formulated as follows:

maxγ ·η−
∑

v

φv · θv (3.37)

θv ≥ −ηΓ
vi +

∑
t,s, f

AQv
tssts f ∆

vi
ts f +

∑
t,s, f

AQv
tssts f Θ

vi
s f +

∑
k,t, f ,a

M(1−χk)Λavi
kt f

+
∑
t, f

CP f tΞ
vi
t f +

∑
t, f

C̄P f tΠ
vi
t f +

∑
k,t,r,a

(Ωavi
ktr −χkΩ

avi
ktr ) +

∑
k,t,r,a

χkΥ
avi
ktr

+
∑

k,t,r,a

Dav
ktrΦ

avi
ktr +

∑
k,t,r

Ψvi
ktr ∀v ∈ V (3.38)

sts f ≥ 0;χk ∈ {0,1};η ∈ < ∀k ∈ K, t ∈ T, s ∈ S, f ∈ F

In the Benders master problem we use the dual values Γvi, ∆vi
ts f , Θvi

s f , Λavi
kt f , Ξvi

t f , Πvi
t f ,

Ωavi
ktr , Υavi

ktr , Φavi
ktr and Ψvi

ktr of constraints (3.30), (3.31), (3.32), (3.33), (3.8), (3.9), (3.34),
(3.35), (3.15) and (3.16), respectively, in iteration i. Note that after preliminary experiments
we chose to add an optimality cut per scenario (3.38) in the master problem instead of a
single global cut (Birge and Louveaux, 1988; You and Grossmann, 2013). As mentioned
before this problem has complete recourse, therefore, no feasibility cuts are necessary (cf.
Property 3.3.1).

Remark 1. It is possible to use a more intensive multi-cutting strategy by introducing
cuts per time period t. However, it is necessary to distinguish the customer service in
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each period, and therefore, to rewrite Eq.(3.2) as δv ≥ η−
∑

k,u,r,a∈Ak
ψav

kutr ∀t ∈ T,v ∈ V.
Consequently dual values Γvi have to be extended to incorporate the time dimension.

Algorithm 1 outlines the main steps of the solution method, where ε is a very small
threshold value.

Algorithm 1: Outline of Benders solution method.

1 initialize s0
ts f , χ

0
k and η0;

2 set UB =∞ and LB = −∞;
3 while UB−LB > ε do
4 Solve BSP;
5 Get Second-Stage Variables;
6 Update UB;
7 Get Duals;
8 Add Optimality Cuts to BMP;
9 Get sts f ,χk,η;

10 Update LB;
11 Update si

ts f , χ
i
k and ηi on the BSP;

The Benders decomposition algorithm is known to have some convergence issues that
can be mitigated through acceleration techniques. In the remainder of this section we
discuss approaches that can be used to this end.

3.5.1 Tightening the Benders master problem

The resulting BMP from the original formulation (cf. Section 3.3.1) has no constraints be-
sides the on-the-fly optimality cuts and the decision variables domain constraints. There-
fore, before “enough” cuts are added into the BMP the convergence of the solution method
is expected to be rather slow. The lack of first-stage constraints is related to two charac-
teristics of this problem. Firstly, the uncertainty of suppliers, both in the available quantity
and on the lead time, forces a translation of the purchased quantities in advance sts f into a
second-stage decision variable τav

ts f . Secondly, the two main first-stage decision variables
(sts f and χk) are not tightly related due to the multi-echelon scope of the supplier selection
for supply chains in the processed food industry, which separates the acquisition of raw
materials u from the transformation and selling of final products k.

With the GDP formulation presented in Section 3.3.2.2 we are able to tighten the first-
stage decisions by introducing the three disjunctions Zi related with the sourcing strategy.
Transforming the GDP formulation into a mixed-integer programming model by applying
classical Boolean algebra rules to convert the logic propositions (Williams, 1999) and re-
formulating the disjunctions using a hull reformulation (Lee and Grossmann, 2000) results
in the following first-stage constraints that are added to the BMP.

z1 ≤ χk ∀k ∈ K (3.39)
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1− z2 ≥ χk ∀k ∈ K (3.40)

K − z3 ≥
∑

k

χk (3.41)

z1 + z2 + z3 = 1 (3.42)

sts f = s2
ts f + s3

ts f ∀t ∈ T, s ∈ S0, f ∈ F (3.43)

sts f = s1
ts f + s3

ts f ∀t ∈ T, s ∈ S1, f ∈ F (3.44)

0 ≤ s1
ts f ≤

∑
t′≥t

(CP f t + C̄P f t)z1 ∀t ∈ T, s ∈ S1, f ∈ F (3.45)

0 ≤ s2
ts f ≤

∑
t′≥t

(CP f t + C̄P f t)z2 ∀t ∈ T, s ∈ S0, f ∈ F (3.46)

0 ≤ s3
ts f ≤

∑
t′≥t

(CP f t + C̄P f t)z3 ∀t ∈ T, s ∈ S, f ∈ F (3.47)

s1
ts f , s

2
ts f s3

ts f ≥ 0;z1,z2,z3,χk ∈ {0,1} (3.48)

Note that χk are the binary variables resulting from transforming Boolean variables
Yk and z1,z2,z3 are the binary variables resulting from transforming Boolean variables
Z1,Z2,Z3, respectively. Moreover, s1

ts f , s
2
ts f , s

3
ts f are the disaggregated variables of sts f for

each disjunctive term.

3.5.2 Convex combinations

The key idea in this acceleration scheme is to consider prior solutions to the BMP, and
then to modify the evaluation of the objective function to also optimize over best convex
combination of multipliers (Smith, 2004).

Let si
ts f , χ

i
k and ηi for i = 1, ..., I be the solutions found after solving the BMP over the
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last i iterations. Parameter I controls the frequency for which the modified BSP (mBSP) is
solved. In this problem the solution of the first-stage decision variables sts f , χk and η that
was found in the previous iteration is replaced by the convex combination of these variables
over the past I iterations

∑
iλisi

ts f ,
∑

iλiχ
i
k and

∑
iλiη

i, respectively. The objective function
(3.30) is modified by adding the following term∑

i

λi ·γ ·η
i.

Moreover, it is necessary to add the following constraints:

0 ≤ λ ≤ 1 (3.49)

∑
i

λi = 1 (3.50)

After solving mBSP in a given iteration, Algorithm 1 proceeds by getting the dual values
of the subproblem constraints and adding the associated cuts to the BMP. Once mBSP is
solved in one iteration, BSP is solved for the next I iterations.

3.5.3 Solving a single Benders master problem

In the classical Benders solution method, outlined in Algorithm 1, we alternate between
solving a master problem and the subproblems. In this acceleration scheme we solve a
single master problem and generate Benders cuts on the fly as we find feasible master
solutions. This general approach is named branch-and-check (Thorsteinsson, 2001). This
approach can be also seen as a branch-and-cut algorithm with the Benders subproblems
sourcing the cuts. In the reminder of the paper we use modern Benders to refer to this
method.

This method takes advantage of callback functions in the solver of the master problem.
Its main advantage is that it avoids considerable rework in the branch-and-bound because
we are keeping the same tree throughout the iterations of the Benders algorithm. Its main
drawback is the harder implementation procedure.

3.6. Computational experiments

In this section we describe computational experiments using the multi-cut Benders decom-
position algorithm presented in Section 3.5. We sampled 81, 256 and 625 scenarios from
the instances described in Section 3.4.1 and solved for the case in which it is necessary to
decide about the supplying/branding strategy of 6, 12 and 24 products. Parameter γ was
set to 0 and to 1000. Therefore, in total we report results for 18 instances. All the programs
were implemented in C++ and solved using IBM ILOG CPLEX Optimization Studio 12.4
on an Intel E5-2450 processor under a Scientific Linux 6.5 platform. For instances with 81
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scenarios, each run was limited to 2 cores of the processor and 8GB of RAM. For instances
with 12 and 24 products under 256 and 625 scenarios the execution was limited to 3 cores
and 12GB of RAM.

In order to achieve better computational results, we solved the scenario subproblems
with parallel computing. We grouped the scenarios into subproblems, in a way that each
subproblem has 9 to 50 scenarios, depending of the number of scenarios in each instance.
This method was effective in improving the computational performance and in reducing
the amount of RAM required.

Table 3.6 shows the size of the monolithic model for each instance.

Products (K) Scenarios Constraints Variables Binary Variables

6 81 167,265 235,903 6
6 256 922,624 1,038,368 6
6 625 2,252,500 2,535,032 6
12 81 330,561 468,460 12
12 256 1,788,928 1,983,014 12
12 625 4,367,500 4,841,288 12
24 81 657,153 933,574 24
24 256 3,521,536 3,872,306 24
24 625 8,597,500 9,453,800 24

Table 3.6 – Size of monolithic model for each instance.

We report in Table 3.7 and 3.8 results for each instance using the mixed-integer solver to
solve the monolithic model (Monolithic), modern Benders decomposition algorithm (MB)
(cf. Section 5.3) and the same algorithm with the hull reformulation (MB+H) (cf. Section
5.1). In Table 3.7, instances were run with the parameter parameter γ set to 0. The results of
Table 3.8 represent the runs with γ set to 1000. All solution methods were limited to 21600
seconds (6 hours). The complete results comparing the performance of all the methods are
available upon request.

The results show that for the instances with 6 products and 81 scenarios CPLEX was
able to solve to optimality within the given time. However, for the more realistic and larger
instances, with more scenarios and products, most of the times the solver was not able to
find a feasible solution to the model. The Benders algorithms did not have enough time
to converge with 12 or 24 products, but they achieved better overall results in instances
with 6 products and in all instances with 256 and 625 scenarios. When comparing the
lower bound, modern Benders decomposition methods (with or without hull reformulation)
outperformed all other methods as they were able to find reasonable or good solutions in
all instances.

Although Benders decomposition achieved better solutions in almost every case, it
was not able to obtain good upper bounds in instances with a larger number of products,
which resulted in higher gaps. This may be caused by the structure and the size of the
model, and also by the slow convergence of Benders decomposition in some cases (You
and Grossmann, 2013).

When compared with classical Benders decomposition, modern Benders decomposi-
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Products (K) Scenarios Monolithic MB MB+H

6

Lower Bound 34,625.94 34,625.94 34,625.94
81 Optimality Gap 0.00% 0.00% 0.00%

Runtime (s) 4,710 937 1,072
Lower Bound 33,280.164 34,451.741 34,451.741

256 Optimality Gap 9.01% 0.00% 0.00%
Runtime (s) 21,610* 3,842 6,262

Lower Bound - 34,193.966 34,193.966
625 Optimality Gap - 0.00% 0.00%

Runtime (s) 21,621* 16,152 17,838

12

Lower Bound 55,439.168 55,433.481 55,501.203
81 Optimality Gap 5.14% 9.15% 9.64%

Runtime (s) 21,606* 21,609* 21,604*
Lower Bound - 45,737.085 45,756.344

256 Optimality Gap - 17.59% 19.47%
Runtime (s) 21,615* 21,610* 21,622*

Lower Bound - 64,207.166 64,129.093
625 Optimality Gap - 21.10% 16.33%

Runtime (s) 21,641* 21,679* 21,677*

24

Lower Bound 90,341.772 90,709.587 90,728.562
81 Optimality Gap 9.21% 19.38% 19.49%

Runtime (s) 21,613* 21,609* 21,610*
Lower Bound - 95,675.549 95,642.661

256 Optimality Gap - 23.76% 20.72%
Runtime (s) 21,633* 21,663* 21,750*

Lower Bound - 97,325.228 97,776.63
625 Optimality Gap - 27.90% 23.77%

Runtime (s) 21,750* 22,157* 21,760*

* Execution time limite reached.
- No feasible solution found.

Table 3.7 – Results for the supplier selection problem with parameter γ set to 0.
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Products (K) Scenarios Monolithic MB MB+H

6

Lower Bound 35,295.29 35,295.29 35,295.29
81 Optimality Gap 0.00% 0.00% 0.00%

Runtime (s) 5,538 971 1,101
Lower Bound 35,060.015 35,060.015 35,060.015

256 Optimality Gap 4.87% 0.00% 0.00%
Runtime (s) 21,608* 4,733 7,202

Lower Bound - 34,880.382 34,880.382
625 Optimality Gap - 0.00% 0.00%

Runtime (s) 21,622* 16,725 19,798

12

Lower Bound 56,169.77 56,169.77 56,249.42
81 Optimality Gap 5.01% 8.41% 10.45%

Runtime (s) 21,606* 21,605* 21,604*
Lower Bound - 46,273.255 46,293.80

256 Optimality Gap - 22.95% 21.43%
Runtime (s) 21,618* 21,678* 21,614*

Lower Bound - 64,848.425 64,885.77
625 Optimality Gap - 19.15% 21.15%

Runtime (s) 21,645* 21,691* 21,772*

24

Lower Bound 89,800.494 91,150.52 90,994.117
81 Optimality Gap 10.63% 22.57% 21.06%

Runtime (s) 21,609* 21,619* 21,624*
Lower Bound - 96,001.70 95,912.45

256 Optimality Gap - 24.38% 27.28%
Runtime (s) 21,677* 21,923* 21,900*

Lower Bound - 98,215.09 97,459.08
625 Optimality Gap - 27.73% 28.35%

Runtime (s) 21,700* 21,842* 21,931*

Table 3.8 – Results for the supplier selection problem with parameter γ set to 1000.
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tion achieved better convergence in all instances. This can be explained by the faster solv-
ing time of the master problem and also by the usage of only one single exploration tree,
in a way that it is not necessary to create a search tree and revisit the same nodes at each
iteration.

The other acceleration techniques did not perform as well as expected. Convex com-
bination was not able to improve the convergence and in instances with 256 and 625 sce-
narios, it reached the total amount of memory allowed in the first iterations. Nonetheless,
we can not conclude that these methods are not effective for other models or instances. In
instances with more products, the hull reformulation constraints were able to improve the
optimality gap of the solutions.

The solution performance of all methods seems to decrease when the parameter γ
changes from 0 to 1000. This is line with the work of Miller and Ruszczynski (2011)
which shows that the more traditional decomposition algorithms have a better performance
for risk-neutral models (γ = 0) rather than for risk-averse ones (γ = 1000).

Figure 3.4 shows the convergence of the upper and lower bound for the multi-cut Ben-
ders decomposition algorithm variants and the monolithic approach when solving the in-
stance with 6 products, 81 scenarios and γ set to 0. In this case, the modern Benders method
had a faster convergence than other variants of Benders and than the monolithic approach.

Figure 3.4 – Comparison of the convergence of the multi-cut Benders decomposition algo-
rithm variants and the monolithic approach for the instance with 6 products, 81 scenarios
and γ set to 0
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3.7. Conclusions and future work

This paper proposes a novel formulation to tackle the integrated decision of supplier selec-
tion and production-distribution planning for processed food supply chains. Uncertainty is
present in the suppliers’ processes namely in lead time, availability and spot price, and in
customers’ demand, which furthermore depends on the age of the sold product. Results
show that only by taking such an integrated approach of tactical and strategic levels, it is
possible to make better decisions regarding sourcing of perishable raw materials to produce
processed food products. The advantages of the premium price customers are willing to
pay is undervalued by decoupled approaches.

Due to the difficulty in solving the problem, we explored a multi-cut Benders decom-
position algorithm that leverages the different proposed formulations. This algorithm suits
the structure of this supplier selection problem, however, in a short time span it is hard to
obtain optimal solutions. Modern Benders decomposition was able to improve significantly
the results in comparison with the classical Benders method and the monolithic model. Al-
though acceleration techniques did not perform effectively, hull reformulation applied to
the Benders master problem showed that it is potentially a promising method to improve
the convergence of Benders, particularly in problems where one can take more advantage
of disjunctive programming to tighten the master problem.

Future research in terms of modelling should focus on improving the realistic aspects of
the models, for example by considering setup costs and the quality decay of raw materials
throughout the aging process. In terms of solution methods, it would be interesting to
explore other possible decomposition algorithms, such as Lagrangian decomposition and
cross decomposition strategies.
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Chapter 4

Integrating lot-sizing and scheduling
under demand uncertainty

An empirical study of the general lot-sizing and schedul-
ing model under demand uncertainty via robust and
stochastic approaches
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Abstract This paper presents an empirical assessment of the General Lot-Sizing and
Scheduling Problem (GLSP) under demand uncertainty by means of a budget-uncertainty
set robust optimization and a two-stage stochastic programming with recourse model. We
have also developed a systematic procedure based on Monte Carlo simulation to compare
both models in terms of protection against uncertainty and computational tractability. The
extensive computational experiments cover different instances characteristics, a consider-
able number of combinations between budgets of uncertainty and variability levels for the
robust optimization model, as well as an increasing number of scenarios and probabil-
ity distribution functions for the stochastic programming model. Furthermore, we have
devised some guidelines for decision-makers to evaluate a priori the most suitable uncer-
tainty modeling approach according to their preferences.

Keywords Lot-sizing and Scheduling Problems; GLSP; Robust Optimization; Stochas-
tic Programming; Empirical Study; Monte Carlo simulation

4.1. Introduction

There is a significant body of research developing mathematical models and efficient so-
lution methods for combining lot-sizing and scheduling problems that reflects numerous
real-world industrial applications whose corresponding optimization problems are compu-
tationally challenging (Almada-Lobo et al., 2015; Copil et al., 2016), e.g., glass container
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production planning (Fachini et al., 2016; Toledo et al., 2016), food and animal-feed indus-
try (Claassen et al., 2016; Toso et al., 2009b), furnace scheduling (de Araujo et al., 2008),
soft drink production (Ferreira et al., 2010), textile and fiberglass industries (Beraldi et al.,
2008; Camargo et al., 2014), amongst many others.

The integration of lot-sizing and scheduling has received a great deal of attention as it
promises to better use the expensive production resources by managing capacity and final
inventories efficiently (Maravelias and Sung, 2009). In particular, the well-known Gen-
eral Lot-sizing and Scheduling Problem (GLSP) arises as the most popular small bucket
product-oriented formulation for merging these decisions (Guimarães et al., 2014). The
benefit of integrating decisions might be even more evident under uncertainty. However,
relatively less attention has been devoted to understanding the role of uncertainty in the
lot-sizing and scheduling problem.

In effect, many practical production planning problems are subjected to both environ-
mental and system uncertainty (Ho, 1989; Mula et al., 2006), but most of the efforts to
handle this problem assumes deterministic settings to find both optimal lot-sizes and pro-
duction sequences (Guimarães et al., 2014). In practice, this means that the inventory lev-
els, which are implicitly found in these decision models, are not strictly used for demand
fulfillment strategies due to demand uncertainty. Therefore, a stochastic inventory man-
agement model is usually used afterwards to take into account overall uncertainties. The
importance of studying models that acknowledge the stochastic nature of operations and
integrate lot-sizing issues within scheduling in finite planning horizons has already been
pointed out by Zhu and Wilhelm (2006). However, even over the past ten years, there have
only been a few contributions focused on two- and multi-stage stochastic programs for the
lot-sizing and scheduling problem.

Early attempts at modeling lot-scheduling problems without setups in a multi-stage
framework can be found in Beraldi et al. (2006); Wu and Ierapetritou (2007). In a dif-
ferent direction, Ramezanian and Saidi-Mehrabad (2013) proposed a multi-level lot-sizing
and scheduling problem with sequence-dependent setup times, stochastic demands and
processing times, by means of chance-constrained programming. The authors assumed be-
forehand the probability distributions of both stochastic parameters to provide a tractable
formulation. More recently, Hu and Hu (2016) tackled a single-level version of the same
problem via two-stage stochastic programming. They presented a numerical study based
on a small number of scenarios generated by moment matching and scenario reduction
techniques. Other studies have assumed an infinite planning horizon for stochastic eco-
nomic lot-scheduling problems (SELSP). The literature on the SELSP is reviewed in Sox
et al. (1999) and Winands et al. (2011). Motivated by several practical process indus-
tries that have limited degrees of freedom when changing over between product families,
Liberopoulos et al. (2013) analyzed the case of a SELSP with constraints in the production
sequence by modeling this problem as a Markov decision process. Löhndorf et al. (2014)
relaxed these assumptions on the changeovers and solved this problem within a simulation-
optimization framework.

Using stochastic programming approaches to hedge against uncertainty, though, is
sometimes criticized for being computationally prohibitive for combinatorial problems,
especially for a large number of scenarios. At the same time, designing a plausible set of
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scenarios is often difficult due to the lack of historical data and/or to the excessive theoreti-
cal requirements for using the available scenario generation methods. The aforementioned
drawbacks might be overcome by using robust optimization (RO) approaches, whose main
goal rely on yielding “less sensitive” solutions to data variation, e.g., near-optimal solutions
with a lower probability of being infeasible. Such a goal is usually achieved by modeling
data uncertainty within bounded intervals that describe the uncertainty without needing
the full knowledge of the probability distributions. The resulting model is thus optimized
from a worst-case perspective, which is partially controlled by the risk preference of the
decision-maker. Despite these potential advantages, RO has never been used to solve a lot-
sizing and scheduling problem with sequence dependent setups. However, this approach
has been successfully employed in more tactical and theoretical production planning prob-
lems. For example, Klabjan et al. (2013) proposed a robust minimax model for solving
a single-item lot-size problem. The effectiveness of the model is validated by numerical
experiments where it was proved that under certain conditions the robust model converges
to the traditional stochastic model.

This paper thus contributes to this gap by developing a novel budget-uncertainty set
robust optimization model for the GLSP under demand uncertainty. We have also devel-
oped a systematic procedure based on Monte Carlo simulation to compare our RO model
to the traditional two-stage stochastic programming with recourse model in terms of pro-
tection against uncertainty and computational tractability. The extensive computational ex-
periments cover different instances characteristics, a considerable number of combinations
between budgets of uncertainty and variability levels for the robust optimization model,
as well as an increasing number of scenarios and probability distribution functions for
the stochastic programming model. Furthermore, we have devised some guidelines for
decision-makers to evaluate a priori the most suitable uncertainty modeling approach ac-
cording to their preferences. To the best of our knowledge, it is the first paper that proposes
to investigate GLSP via robust optimization, also pointing out benefits and disadvantages
of RO and stochastic programming. In fact, Sahinidis (2004) reiterated the need of a sys-
tematic comparison between the different uncertainty modeling approaches and Mula et al.
(2006) also acknowledged that there was a need to compare different modeling approaches
for production planning under uncertainty.

The remaining paper is organized as follows. Section 4.2 develops a robust optimiza-
tion model with demand uncertainty for GLSP. Section 4.3 presents the stochastic program-
ming model and the Monte Carlo experiment used to compare and assess the RO model.
In Section 4.4 the computational experiment is described and its results are presented and
commented. Finally, section 4.5 concludes this work and provides research directions.

4.2. General lot-sizing and scheduling models under uncertainty

The GLSP determines the production lot-sizes to fulfill demands and defines the best pro-
duction sequence to minimize overall costs, assuming that setup is sequence-dependent.
Mathematically, let J be the set of products indexed by j and `, and T be the set of pe-
riods indexed by t. Assume that Nt is the subset of micro-periods of period t, such that
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⋃
t∈T Nt = N. The deterministic GLSP can be posed as follows (Fleischmann and Meyr,

1997; Meyr, 2002):

(F1: DetModel)

min
∑
j∈J

∑
t∈T

(
h+

j · I
+
jt + h−j · I

−
jt

)
+

∑
( j,`)∈J

∑
n∈N

s j` ·Z j`n (4.1)

s.t.: I+
j(t−1) + I−jt +

∑
n∈Nt

X jn = I+
jt + I−j(t−1) + d jt, ∀ j ∈ J∧ t ∈ T (4.2)∑

j∈J

∑
n∈Nt

p j ·X jn +
∑

( j,`)∈J

∑
n∈Nt

q j` ·Z j`n ≤ capt, ∀t ∈ T (4.3)

X jn ≤ b jt ·Y jn, ∀ j ∈ J∧ t ∈ T ∧n ∈ Nt (4.4)∑
j∈J

Y jn = 1, ∀n ∈ N (4.5)∑
`∈J

Z j`n = Y j(n−1), ∀ j ∈ J∧n ∈ N (4.6)∑
j∈J

Z j`n = Y`n, ∀` ∈ J∧n ∈ N (4.7)

X jn ≥ m j ·
(
Y jn−Y j(n−1)

)
, ∀ j ∈ J∧n ∈ N (4.8)

Y jn ∈ B, X jn, Z j`n, I+
jt, I−jt ≥ 0, ∀( j, `) ∈ J∧n ∈ N ∧ t ∈ T. (4.9)

The input data h+
j , h−j , s j`, d jt, p j, q j`, capt and m j, represent holding cost, shortage

cost, setup cost, demand, production time, setup time, capacity and minimum lot, respec-
tively. Decision variables are related to production X jt, inventory I+

jt, backlogging I−jt, setup
Y jn and changeover between two products Z j`n. The objective function (4.1) minimizes
the overall costs. Constraints (4.2) and (4.3) refer to demand balance and capacity, respec-
tively. Constraints (4.4) and (4.5) express the setup constraints and the requirement that
only one setup state is defined in each micro-period, respectively. Parameter b jt imposes
an upper bound on the production amount. Constraints (4.6) and (4.7) state the relation
between setup and changeover states. Constraints (4.8) enforce the minimum lot size if
family j was not produced in the previous micro-period. A minimum lot size is needed as
setup times do not always satisfy the triangular inequality (Fleischmann and Meyr, 1997;
Toso et al., 2009a). Finally, constraints (4.9) define the domain of the variables.

4.2.1 Budget-uncertainty set robust optimization GLSP model

Following the uncertainty budget-uncertainty set robust optimization approach, we assume
that uncertain demands belong to an “uncertainty space”, which is modeled via a convex
polyhedral set composed by the corresponding nominal (deterministic) value of the pa-
rameter as well as a deviation from the nominal value. Polyhedral sets provide tractable
robust counterparts, which is particularly appealing to deal with combinatorial problems
under uncertainty. Furthermore, it is possible to control the conservativeness of the robust
solution by limiting the number of parameters that achieve their worst-case values.
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To determine the robust counterpart of the GLSP with demand uncertainty, we first
rewrite the balancing constraints (4.2) as a set of inequalities. Otherwise, those con-
straints might be trivially infeasible depending on data variation; see a more detailed
discussion in Gorissen et al. (2015). For this purpose, let us define the net inventory
for product j in period t by I jt = I+

jt − I−jt, with I jt being unrestricted in sign. Clearly,
I jt = I j0 +

∑t
τ=1(

∑
n∈Nτ

X jn−d jτ), which yields the following two balancing constraints:

H jt ≥ h+
jt · I jt = h+

jt ·

I+
j0 +

t∑
τ=1

∑
n∈Nτ

X jn−

t∑
τ=1

d jτ

 , ∀ j ∈ J∧ t ∈ T, (4.10)

and

H jt ≥ h−jt · (−I jt) = h−jt ·

I−j0− t∑
τ=1

∑
n∈Nτ

X jn +

t∑
τ=1

d jτ

 , ∀ j ∈ J∧ t ∈ T. (4.11)

H jt denotes the holding costs or shortage costs of product j in period t according to
the sign I jt takes. Now, following the robust optimization perspective advocated by Bert-
simas and Sim (2004) and Bertsimas and Thiele (2006), the uncertainty demand in both
constraints (4.10) and (4.11) is modeled over the polyhedral-uncertainty set U:

U =

{
D ∈ R|J|×|T |+ | d̃ jt ∈ [d jt − d̂ jt,d jt + d̂ jt],

t∑
τ=1

|d̃ jτ−d jτ|

d̂ jτ
≤ Γ jt, ∀( j ∈ J∧ t ∈ T )

}
.

(4.12)

in which D = [d̃i j] indicates that all the |J| × |T | coefficients are subject to uncertainty.
However, it would be possible to reduce the dimension of matrix D by modeling only a
subset of uncertain coefficients, say, D′ ⊆ D. Notice that the uncertainty set considers that
the cumulative random variable d̃ jτ is bounded and symmetrically distributed around the
half-length of the interval

[
d jτ− d̂ jτ, d jτ + d̂ jτ

]
. It is also usual to define a scale deviation

ξ jt =
(
d̃ jt −d jt

)
/d̂ jt that belongs to the interval [−1,1], such that d̃ jt = d jt + d̂ jtξ jt.

The budget of uncertainty parameter Γ jt limits the allowed realizations of data within
the range around the nominal values, as shown in (4.12). Basically, Γ jt controls the size
of the uncertainty set or equivalently the maximum number of coefficients that can assume
their worst-case value for each product j and period t. The budget can also reflect risk
preferences. Risk free managers are insensitive to risk and/or random events, so they can
assign Γ jt = 0 to optimize the nominal (deterministic) problem only. Very conservative
risk averse managers might adopt larger budgets to be protected for any realization of
the random variables within the uncertainty set, i.e, Γ jt = t. Finally, Γ jt ∈ [0, t] enables
risk averse managers to trade-off robustness and cost to construct a myriad of feasible
(maybe optimal) solutions for the actual problem. Typically, we assume that the uncertainty
increases with the number of time periods and that it does not make sense to increase the
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budget greater than the actual increase in the periods, the formulation also holds Γd
j1 ≤ Γd

j2 ≤

· · ·Γd
j|T | and Γ jt − Γd

j(t−1) ≤ 1, ∀( j, t) (Bertsimas and Thiele, 2006; Bienstock and Ozbay,
2008; Alem and Morabito, 2012).

The worst-case realization of the demand uncertainty is finally achieved by solving the
nonlinear new constraints (4.13) and (4.14) over the uncertainty set, i.e.:

H jt ≥ h+
jt · I jt = h+

jt ·

I+
0t +

t∑
τ=1

∑
n∈Nτ

X jn−min
d̃∈U

t∑
τ=1

(d jτ + d̂ jτ · ξ
d
jτ)

 , ∀ j ∈ J∧ t ∈ T, (4.13)

and

H jt ≥ h−jt · (−I jt) = h−jt ·

I−0t −

t∑
τ=1

∑
n∈Nτ

X jn + max
d̃∈U

t∑
τ=1

(d jτ + d̂ jτ · ξ
d
jτ)

 , ∀ j ∈ J∧ t ∈ T. (4.14)

Both inner optimization problems in contraints (4.13) and (4.14) lead to the primal
problem for each pair ( j, t) depicted in (4.15), which is transformed to its dual in (4.16):

max
t∑

τ=1

d̂ jτ · ξ jτ

s.t.:
t∑

τ=1

ξ jτ ≤ Γ jt,

0 ≤ ξ jτ ≤ 1, ∀τ ≤ t.

(4.15)
min Γ jt ·λ

d
jt +

t∑
τ=1

µd
jτt

s.t.: λd
jt +µd

jτt ≥ d̂ jτ, ∀τ ≤ t
λd

jt, µ
d
jt ≥ 0, ∀τ ≤ t.

(4.16)

The decision variable ξd
jt can be seen as a binary decision that assumes 1 only if the

maximum deviation of the parameter d jt is taken into account. However, as the correspond-
ing technological matrix of the subproblem (4.15) is totally unimodular, then it follows that
ξd

jt can be modeled as a continuous variable in the interval [0,1].
The robust linear counterpart of the GLSP with uncertainty demand is obtained thus by

incorporating the dual of the auxiliary problem into formulations (4.13) and (4.14) in an
attempt to produce a mathematical model as tractable as the original formulation:

(F2: RobModel)

min
∑
j∈J

∑
t∈T

H jt +
∑

( j,`)∈J

∑
n∈N

s j` ·Z j`n (4.17)

s.t.: Constraints(4.3), (4.4), (4.5), (4.6), (4.7), (4.8)

H jt ≥ h+
jt ·

I+
0t +

t∑
τ=1

∑
n∈Nτ

X jn−

t∑
τ=1

d jτ +Γ jt ·λ jt +

t∑
τ=1

µ jτt

 , ∀ j ∈ J∧ t ∈ T (4.18)

H jt ≥ h−jt ·

I−0t −

t∑
τ=1

∑
n∈Nτ

X jn +

t∑
τ=1

d jτ +Γ jt ·λ jt +

t∑
τ=1

µ jτt

 , ∀ j ∈ J∧ t ∈ T (4.19)
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λ jt +µ jτt ≥ d̂ jτ, ∀ j ∈ J∧ t ∈ T ∧τ ≤ t (4.20)

λ jt, µ jτt ≥ 0, , ∀ j ∈ J∧ t ∈ T ∧τ ≤ t (4.21)

Y jn ∈ B, X jn, Z j`n ≥ 0, ∀( j, `) ∈ J∧n ∈ N ∧ t ∈ T. (4.22)

The robust GLSP assumes that uncertainty affects the “cumulative” demands over the
planning horizon in an attempt to avoid very pessimistic solutions. In fact, in the subprob-
lem (4.15), notice that the budget of uncertainty Γ jt can be “shared” among all the decision
variables ξ up to the current period t, i.e., for t = 2, we have ξ j1 + ξ j2 ≤ Γd

j2. If we assume
that uncertainty relies on each d̃ jt, that would lead to the following constraints ξ j1 ≤ Γd

j1
and ξ j2 ≤ Γd

j2, thus having only Γ jt = 0 or 1, which means either nominal or worst-case
scenario. Finally, notice that this model naturally ensures H jt ≥ 0, as the right-hand sides
of the reformulated balancing constraints are always non-negative.

Let X?
jn be the optimal solution of the robust optimization model. Then, the probability

of violating the demand balancing constraints can be evaluated as follows (Wei et al., 2010):

Pr

H jt < h+
jt ·

 t∑
τ=1

∑
n∈Nt

X?
jn−

t∑
τ=1

d̃ jτ


 ≈ 1−Φ

(
Γ jt −1
√

t

)
(4.23)

and

Pr

H jt < h−jt ·

− t∑
τ=1

∑
n∈Nt

X?
jn +

t∑
τ=1

d̃ jτ


 ≈ 1−Φ

(
Γ jt −1
√

t

)
(4.24)

where Φ(θ) is the cumulative distribution function of a standard normal for all pairs ( j, t).
These bounds on the probability of constraints violation might be used to define a priori
a reasonable budget of uncertainty, thus avoiding to solve the robust counterpart several
times for each budget of uncertainty. For example, if the decision maker would like to
guarantee that a given threshold (cost or profit) will not be violated more than a confidence
level α, we have that Γ jt = 1 +Φ−1(1−α) ·

√
t.

4.2.2 Two-stage stochastic programming GLSP model

A natural benchmark for assessing the performance of RO models is solving the corre-
sponding two-stage model. In traditional scenario-based two-stage stochastic approaches,
uncertainty is handled via a finite set of outcomes or scenarios k ∈ K in some probability
space. Scenarios may represent the realizations of the random variables. For this modeling,
we commonly assign a probability πk for the occurrence of scenario k, such that πk > 0 and∑

k πk = 1. In this paper, we consider independent realizations for demands.
The flexibility of reacting to the uncertainty outcomes is linked to several factors, such

as the production technology/capital insensitivity, the planning horizon, and the planner
attitude towards risk. Here, the stochastic programming model considers that both produc-
tion quantities and production sequences have to be defined in the first stage, i.e., before
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uncertainty unveils. In the second stage, the model reacts to the uncertainty outcomes by
adjusting the demand fulfillment in a simple recourse formulation, as follows:

(F3: StochModel)

min
∑
j∈J

∑
t∈T

∑
k∈K

πk ·
(
h+

j · I
+
jtk + h−j · I

−
jtk

)
+

∑
( j,`)∈J

∑
n∈N

s j` ·Z j`n (4.25)

s.t.: Constraints (4.3), (4.4), (4.5), (4.6), (4.7), (4.8)

I+
j(t−1)k + I−jtk +

∑
n∈Nt

X jn = I+
jtk + I−j(t−1)k + d jtk, ∀ j ∈ J∧ t ∈ T ∧ k ∈ K (4.26)

Y jn ∈ B, X jn, Z j`n, I+
jtk, I−jtk ≥ 0, ∀( j, `) ∈ J∧n ∈ N ∧ t ∈ T ∧ k ∈ K. (4.27)

Differently from the RO model, the objective function reflects an expected cost. Con-
straints (4.26) must be feasible for all scenarios k ∈ K. The main goal of the two-stage pro-
gram is to find a good compromise solution for both production quantities and sequences
so as to minimize the excess of inventory and backorder costs incurred in the second-stage
for each scenario. This model considers fixed production planning and scheduling for the
entire time horizon, which can be applied to conservative planning and in rigid production
environments, such as the steel production planning (Mattik et al., 2014).

4.3. Solution approach: A Monte Carlo sampling procedure

The benefits and drawbacks of both GLPS models under uncertainty are empirically as-
sessed via a Monte Carlo sampling procedure. Figure 4.1 summarizes the proposed Monte
Carlo procedure based on Wang (2008). Firstly, deterministic, robust, and stochastic mod-
els are solved by a commercial solver until the (sub) optimal solution is found. Then,
production and setup variables are fixed in their primal values and random realizations
for demands are generated from distinct probability density functions (PDF) in order to
analyze the effect of having made the right or wrong assumption on the true underlying
distribution. After a considerable number of realizations it is possible to compare average
costs, standard deviations, and worst- and best-case scenario costs of all approaches. For
comparison purposes, this paper proposes to fix the corresponding here-and-now decisions
of the two-stage model in all models (F1, F2 and F3). Then all the proposed models are
solved with only the wait-and-see decisions free and the corresponding average cost for
each demand realization is obtained.

Three different PDFs are analyzed in the experiment: uniform, gamma, and log-normal.
Each demand distribution has the mean and coefficient of variation values previously deter-
mined for the respective product and period. The variability of the realizations is based on
the coefficient of variation given by the ratio between standard deviation and mean value.
In this study, the values chosen were 0.2 and 0.5. The simulation procedure was repeated
1,000 times for each demand distribution to achieve statically significant results. The same
seed generator was used for all simulations.
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Figure 4.1 – Overall framework of the Monte Carlo procedure.

The experiment for the robust model was performed with the variability level γ̂ varying
from 0 to 3 in steps of 0.1, where d̂ jτ = γ̂ ·σ and σ is the known demand standard devia-
tion. We have also tested 4 different values for the budget of uncertainty parameter Γ jt: t,
0.5t + 0.5, 0.1t + 0.5 and 0.05t + 0.1 , where t is the time period. These budgets of uncer-
tainty represent different attitudes towards risk. Γ jt = t represents the worst-case or Soyster
approach, where all the uncertain coefficients are assumed to vary in their worst-case values
for all j and t. Naturally, it is not necessary to use robust optimization to protect against this
extreme case. In fact, it suffices to replace nominal demands by d jt + d̂ jt. For this reason,
we have analyzed less pessimistic budgets, as already studied in recent literature (Adida
and Perakis, 2010; Alem and Morabito, 2012). Figure 4.2 shows the cumulative protec-
tion over the time horizon for each proposed budget of uncertainty. For example, when
Γ jt = 0.5t + 0.5 we have that the minimum protection is 1 and the maximum is 3.0 when
t = 5. This means that the first period is fully protected, but the last period is protected
against the variation of 60% of the coefficients.

We have tested 5 different sizes of scenario-trees for the two-stage stochastic program-
ming model: 100, 200, 300, 400, and 500. The scenarios were randomly generated using
the mean and the coefficient of variation of product demands in each time period t, which
are assumed to have a distribution of probability given by uniform, gamma, or log-normal.
All the assumed distributions are combined with the true underlying distribution obtained
from the Monte Carlo simulation in order to analyze how much an inaccurate distribution
impacts on the average cost. Figure 4.3 shows the overall scheme and the combinations of
parameters performed for both robust and stochastic models. This numerical study help us
to evaluate the combination of parameters that has the best performance in terms of average
cost and/or worst-case value.
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Figure 4.3 – Simulation framework for both robust and stochastic approaches.
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4.4. Computational experiments

The goals of the computational tests are threefold: (i) Evaluate and compare the perfor-
mance of both robust and stochastic approaches in terms of average costs, conservative-
ness, and computational efficiency. (ii) Find patterns in how each approach hedges against
uncertainty on different instances characteristics. (iii) Provide a practical guideline on how
to select the most suitable method based on the advantages and disadvantages of each one.
This section is organized as follows. Subsection 4.4.1 shows the characteristics of the pro-
posed instances. Subsection 4.4.2.1 presents the comparisons among the models using the
proposed Monte Carlo procedure. Finally, subsection 4.4.2.3 discusses managerial insights
into the usage of both approaches and provides some guidelines for decision makers. All
the computational experiments were implemented in C++ language and the models were
solved using IBM ILOG CPLEX Optimization Studio 12.4 on an Intel E5-2450 processor
under a Scientific Linux 6.5 platform.

4.4.1 Instance generation

In order to analyze the impact of the input parameters on the simulation results, we gener-
ated 80 instances divided into 8 different classes. The instances present the same number of
products, periods, and micro-periods: |J| = 5, |T | = 4 and |Nt| = 5, respectively. The mean
value of demands (µ jt) is randomly generated from a uniform distribution U(120,480) in
all instances. The capacity (capt) is derived from the mean demand. Other parameters,
such as production time, minimum and maximum production lot are also equal for all in-
stances: p j = 1, m j = 1 and b jt = capt, respectively. The instances of the same class differ
by setup time, setup costs and holding costs, which are random generated from the follow-
ing uniform distribution: q j=` = U(1,10), q j,` = U(11,50), s j=` = 0, s j,` = q j` ·U(0,1) and
h+

j = U(1,10). The differences between each class of instances rely on the coefficient of
variation (CV) of the demand, expected capacity utilization, and relation of shortage and
holding costs, as shown Table 4.1.

Class capt h−j CV

1
∑

j µ jt

0.6 2h+
j 0.2

2
∑

j µ jt

0.6 2h+
j 0.5

3
∑

j µ jt

0.6 10h+
j 0.2

4
∑

j µ jt

0.6 10h+
j 0.5

5
∑

j µ jt

0.9 2h+
j 0.2

6
∑

j µ jt

0.9 2h+
j 0.5

7
∑

j µ jt

0.9 10h+
j 0.2

8
∑

j µ jt

0.9 10h+
j 0.5

Table 4.1 – Characteristics of each class of instances
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4.4.2 Results and discussions

4.4.2.1 Average and worst-case analysis

As already mentioned, we tested the RO model for 30 variability levels and 4 budgets of
uncertainty, whereas the SP model was analyzed for 5 sizes of scenario-trees and 3 assumed
PDFs. For each combination of robust and/or stochastic parameters and class of instances,
we have 10 instances and 1,000 runs of the Monte Carlo sampling procedure, totaling
10,000 simulation runs. We then evaluate the average performance of both models for
each combination of parameters over 10,000 simulation runs. For each class of instances
and true underlying distribution, we also have the corresponding (best) combination of
parameters that lead to the lowest average cost (Table 4.2) and and worst-case scenario
cost (Table 4.3). The headings of both tables are as follows: the class of instances (column
# 1), the true underlying demand distribution (column # 2), the objective value (columns
# 3, 9, and 15), the average cost obtained from the Monte Carlo simulation (columns # 4,
10, and 16), the standard deviation of average cost (columns #5, 11, and 17), the average
worst-case value (columns #6, 12, and 18), the average best-case value (columns # 7, 13,
and 19), and the runtimes (columns # 8, 14, and 20). In addition, columns # 21, 22, and 23
show the relative differences on the average and worst-case costs for each two approaches.
Further details on the combination of parameters that achieved the best performance for
both stochastic and robust approaches is depicted in Tables 4.4−4.6 of the supplementary
material.

Not surprisingly, the deterministic approach fails in hedging against uncertainty for all
class of instances. Indeed, the main performance metrics reveals that under uncertainty
its solutions are, on average, at least 31% more expensive, 39% less stable in terms of
standard deviation, and 29% less robust in terms of worst-case cost, in comparison to the
solutions provided by the remaining approaches. These figures are still more pronounced
in classes 3 and 4 due to their high shortage costs. On the other hand, tighter capacity and
larger coefficient of variation apparently reduce the cost difference amongst the approaches.
Notice that average costs provided by the deterministic approach are always cheaper when
the true underlying distribution is log-normal, probably because it is less likely to generate
backlogging due to its skewness. Following a similar rationale, it is clear that average costs
are always more expensive when the underlying distribution is uniform. Last, but not least,
it is worth noting that, “if everything goes right”, the deterministic approach yields a better
best-case cost, as expected. Of course, when there is no disruption, one should favor the
deterministic approach to save approximately 12%.

As expected, the stochastic model presents the best average performance over the pro-
posed class of instances and simulation runs. On average, the costs provided by the stochas-
tic model are 2.11% lower. In classes 7 and 8, though, the stochastic model has an average
cost up to 4.5% lower than those provided by the robust optimization model, probably
because tighter capacity and higher backlogging costs provoke a worsen increase in the
objective values of the RO model as a result of the worst-case deviation of demands. How-
ever, it is clear from Table 4.3 that RO outperforms SP in terms of standard deviation with
23% less dispersed values and almost 12% lower worst-case costs, on average. In partic-
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ular, class 3 reveals that it is possible to reduce by 68% the costs of the most pessimistic
solutions and by 46% its corresponding standard deviation.

All the aforementioned phenomena are in accordance with both SP and RO paradigms,
i.e., SP minimizes (expected) average costs while RO minimizes the maximum (worst)
cost. Over the past years, many authors have confirmed such behavior for different prob-
lems, e.g., Adida and Perakis (2010); Thorsen and Yao (2015); Melamed et al. (2016). As
a consequence, when the priority is to minimize the worst-case cost, the best performance
will occur for more conservative budgets and higher variability levels, which in turn will
increase the average cost. However, as the RO model tradeoffs performance and conser-
vativeness, it is also possible to choose a good combination of budget and variability to
obtain a good average cost. This might be achieved, e.g., by selecting less conservative
budgets of uncertainty in an attempt to be partially protected against worst-case deviations,
while not increasing dramatically the so-called “price of robustness” (Bertsimas and Sim,
2004). In fact, the results given by classes 1 and 2 show some examples in which RO
outperforms SP in terms of both standard deviation and worst-case cost, still providing bet-
ter average costs, even when the best combination of parameters is focusing on minimum
average costs. This is achieved by selecting a less conservative budget (Γ jt = 0.10t + 0.5)
most times; see columns #10 and #16 in Table 4.2. When the focus is on minimum worst-
case cost, we found many examples, mainly in the first three classes of instances, where
solutions are more stable and worst-case costs are much lower at the expense of a minor
deterioration in average costs.

Figure 4.4 tradeoffs average against worst-case costs in terms of the relative differences
∆avg(·) and ∆wc(·) to illustrate the previous results. The argument (·) refers to either the
minimum average cost focus “avg” exhibited in Table 4.2 or the minimum worst-case cost

focus “wc” exhibited in Table 4.3. Also, ∆avg(·) =
zavg

RO−zavg
S P

zavg
RO

and ∆wc(·) =
zwc

RO−zwc
S P

zwc
RO

, in which

zavg
RO (zavg

RO ) refers to the average cost of the RO (SP) model and zwc
RO (zwc

S P) is the worst-case
cost of the RO (SP) model. The closer to the left and bottom the solutions are, the better
is the RO performance in comparison to the SP performance. Notice that the RO model is
able to substantially mitigate worst-case costs at the expense of a more slowly increase in
average costs, mainly when the best combination is focused on minimum worst-case costs,
as already discussed. In these cases, it is preferable to select more conservative budgets
to be protected against larger deviations of the demand uncertainty. These results indicate
that the RO model also has a good performance regarding average costs, but the SP model
rarely has good worst-case costs performance.

Apparently, the assumed demand distribution has a relatively small impact on the per-
formance of the SP model in terms of average values for the proposed instances. The
major difference between assumed and true underlying demand distribution is only 2.46%
in terms of average cost. This might happen because we have an increased chance to sam-
ple similar scenarios amongst the three types of distributions as the number of realizations
increases as well. And, in fact, in most cases the best average (worst-case) costs are at-
tained with large number of 500 (200) scenarios. For this reason, while runtimes of both
deterministic and robust models have the same order of magnitude, the stochastic model is
approximately 30 times more expensive computationally, on average. In class 1, though,
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Figure 4.4 – Tradeoffs between average against worst-case costs. The above figure refers
to the values that lead to the best combination of parameters to minimize average costs
(Table 4.2). The below figure refers to the values that lead to the best combination of
parameters to minimize worst-case costs (Table 4.3).
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the SP model is hundreds of times slower than the RO model.
All these results are in accordance with the size of the mathematical models. In fact, as

it is reasonable to assume that the number of scenarios is greater than the number of periods,
then |K| � |L| hold, where L = {τ|τ ≤ t, t ∈ T }. Consequently, we can say that the SP model
has |J| × |T | × (|K| − |L| −1) more constraints and |J| × |T | × (2|K| − |L| −1) more variables
than the RO model. In our particular class of instances, we have 9,780 more constraints
and 19,780 more variables with 500 scenarios than the RO model. Figure 4.5 shows a clear
tradeoff between performance and tractability as the number of scenarios increases. The
solution becomes more accurate, but in exchange of a substantial increase in runtimes. We
also compared RO and SP approaches when both present the same magnitude of runtimes,
which is true when the SP model has approximately 10 scenarios. In this case, the SP
model has considerable worse performances than the robust optimization model in most
classes of instances in terms of average and worst-case costs, and standard deviation. RO
has also clear advantages over SP when short runtimes are necessary (see Table 4.7 in the
supplementary on line material).
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Figure 4.5 – Stochastic programming performance according to the number of scenarios.

According to columns # 13 and 15 of Table 4.2, the objective value of the stochastic
programming model is fairly precise on the simulation average cost, which can be consid-
ered an advantage to better “predict” the model’s performance. The robust objective value,
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though, overestimates the average cost for the first 5 instance classes and underestimates
it for the last 3 instance classes. This happens because the robust optimization model is
worst-case oriented, thus minimizing the cost for the worst-case demand deviation accord-
ing to its variability level and budget of uncertainty, which differs from the average cost
in the simulation experiment. The under or overestimate of the RO objective function is
related to its budget of uncertainty and variability level (see Table 4.5): protective budget
of uncertainty and/or high variability level lead to overestimation of average cost (first 5 in-
stance classes) and less conservative budget of uncertainty and low variability level lead to
underestimation of average cost (last 3 instance classes). Figure 4.6 show the performance
of the robust and stochastic models according to variability level and number of scenar-
ios. The combination of the parameters Γ jt and d̂ jτ has a critical impact on the robust
optimization model performance. For the stochastic programming model, after a certain
number of scenarios, it has a lower impact on the solution quality. It is also worth of note
that the demand distribution does not have a great impact on the performance of the best
combination of Γ jt and γ̂ for the robust optimization model. Hence, it suffices to decide
on a single combination of parameters for each class of instances considering any demand
distributions.
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Figure 4.6 – Robust optimization model performance according to the different values of
Γ jt and γ̂.
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4.4.2.2 Analysis of solutions characteristics

The histograms in Figure 4.7 exhibit the probability of incurring backorders, which is eval-
uated as the total number of times when we have a backlogging in the last period over the
5 products and the 10,000 simulation runs, totaling 50,000 possibilities. As expected, the
deterministic model delivers the overall worst performance. Notice that backorder occurs
at least 44% of the times with probability up to 0.33 and more than 48% of the times with
probability of 0.5. These results jointly with the average low cost performance of the de-
terministic model corroborate its inability to hedge against uncertainty demand. Although
both RO and SP models provide good backlog performances, RO with the best combination
found to minimize worst-case values (RO-WC) clearly dominates SP in terms of average
(20.92% against 27.97%), maximum (41.24% against 42.62%), and minimum backlogging
values (0.14% against 8.56%). It is remarkable that RO-WC yields solutions that may gen-
erate a backordered demand for any product less than 1% of the times with almost 0.17 of
probability.

A deeper analysis into the backlogging and its corresponding cost brings out differences
between RO and SP. Both approaches present a similar solution structure in many instances
when the best combination of parameters is focused on minimizing average costs. In fact,
the first graph depicted in Figure 4.8 shows a clear concentration of solutions around zero
and that most values are within 4%, indicating that, in these cases, the relative difference
in terms of backlog quantities and costs between both models is negligible. Moreover, RO
dominates SP in both criteria, backlog quantities and backlog costs, for all the solutions in
the shaded area. Notice that RO is more effective to mitigate the backlogging because most
solutions are on the left of zero, but SP is more effective to minimize backlogging costs,
since most solutions are above zero. On average, RO is able to fulfill 0.2% more products
than SP, but the latter saves 3.4% in backlogging costs. When the best combination of
parameters focuses on minimizing worst-case costs, though, the difference between RO
and SP solutions is much more pronounced. In this case, RO clearly dominates SP for a
wider range of solutions. On average, RO is able to fulfill 114% more products with a
corresponding cost 149% cheaper in comparison to SP.

Figures 4.9 and 4.10 illustrate the average backlogging in the last period for both RO
and SP models in classes 1 and 8, respectively. When production capacity is not too re-
stricted (class 1), backlogging is substantially reduced as robustness is enforced, i.e., via
more conservative budgets and higher variability levels. However, when production ca-
pacity is too restricted (class 8), conservative solutions try to protect almost integrally all
worst-case demand deviations, which is not possible due to the limited capacity, which
deteriorates backlogging levels. In fact, the so-called over conservativeness of the RO to-
gether with some characteristics of the problem/instance might lead to poor solution quality
in this case. If Γ jt = t, for instance, the demand constraint is “fully protected” because of
the cumulative effect of aggregating the fully deviation d̂ jt to the nominal value d jt. In
the last period, the demand deviations from all periods, i.e., d̂ j|T |, d̂ j|T |−1, d̂ j|T |−2, · · · , d̂ j1,
are incorporated in the nominal value, resulting pessimistic solutions in some cases. This
behavior was already pointed out in other papers focused on different applications, e.g.,
Alem and Morabito (2012); Gorissen and den Hertog (2013); Thorsen and Yao (2015).
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Figure 4.7 – Histograms of the backorder in the last period for all approaches: determinis-
tic, RO focusing on average values (RO-Avg), RO focusing on worst-case values (RO-WC),
SP focusing on average values (SP-Avg), and SP focusing on worst-case values (SP-WC).
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costs (Table 4.9).
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Figure 4.9 – Robust optimization and stochastic programming final backlog for the instance
class 1.
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Figure 4.10 – Robust optimization and stochastic programming final backlog for the in-
stance class 8.
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Both stochastic and robust models present similar average inventory levels and costs,
which are both higher than those from the deterministic model, as illustrated in Figure 4.11.
In particular, it is worth commenting that class 4 presents a substantially larger amount of
inventory in all approaches, probably as consequence of its higher coefficient of variation,
greater capacity, and relatively cheaper inventory cost. This behavior is more pronounced
in RO focusing on worst-case values. The results also show that RO-WC maintains a
relatively higher amount of inventory with fewer setups in comparison to the remaining
approaches, probably in an attempt to meet worst-case demands and avoid backordering.
However, this strategy sometimes fails due to the over protection, as previously discussed.
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Figure 4.11 – Tradeoffs between average inventory and setup costs for all approaches:
deterministic, RO focusing on average values (RO-Avg), RO focusing on worst-case values
(RO-WC), SP focusing on average values (SP-Avg), and SP focusing on worst-case values
(SP-WC).

4.4.2.3 Guidelines for decision makers

Based on the insights of our extensive numerical results, we propose a general flowchart
to assist decision makers to select the most appropriate modeling approach to deal with
optimization under uncertainty. This is accomplished via the development of the decision
tree depicted in Figure 4.12, which is based on three main questions:

1. Is it possible to generate plausible scenarios?

2. Is the time required to obtain a solution critical?
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3. Is it possible to test more than one approach and decide a posteriori which solution
will be implemented?

Figure 4.12 – General flowchart for decision makers to select the uncertainty modeling
approach.

Although there is a variety of well-established scenario generation methods in the lit-
erature, there are none unrestrictedly recommendable ones for all possible mathematical
models, even if these models are subject to the same random phenomena (Kaut and Wal-
lace, 2003). Most methods are based on the existence of sufficient data to match statistical
properties, which is not a trivial assumption in real-life applications; others, though, sim-
ply assume a priori underlying distribution without any further tests to analyze the quality
of the generated scenarios. Therefore, providing a reasonable set of scenarios is usually a
challenging task. Obviously, if the answer for the first question is “no”, RO must be used to
hedge against the uncertainty. In this case, it will be necessary to select a budget of uncer-
tainty and a variability level. We have discussed along the paper that suitable budgets are
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chosen according to risk preferences, simulation, and/or probabilities of constraints viola-
tion equipped with a confidence level, which should be intuitive for most decision makers.
The variability level also does not require (precise) data; it might reflect a hypothetical de-
viation from the nominal data and it can also be estimated via simulation in the absence of
further information.

The second question refers to the well-known tradeoff between available time and so-
lution quality. Notice that it is necessary to define what is an acceptable runtime to further
evaluate if this time is critical or not. It could be acceptable to run strategic models within
many hours, but tactical and operational models often must be solved within minutes or
even seconds. In general, as stochastic programming models require a relatively large set
of scenarios to provide accurate solutions, usually at the expense of an expensive compu-
tational burden, RO must be preferred if the time required to obtain a solution is critical.

It is also important to notice that tactical production planning does not always require
fast and agile solutions, and depending on the number of products, length of the time pe-
riod, instance size and structure, the time required to solve the models can be suitable for
both modeling approaches. In addition, even if the robust optimization model is much more
tractable, it may require tuning and testing the robust parameters, which can increase the
time required to reach good solutions. However, there are strategies to work around this
issue, such as using previous historical data to define the variability level, testing only the
combinations of robust parameters that had good performance in similar cases in the past,
and defining the budget of uncertainty using the theoretical probability bounds on the con-
straints violation according to inequalities (4.23) and (4.24), which eliminates the necessity
of testing several profiles of budgets of uncertainty. For example, Figure 4.13 shows that
the probability of constraint violation decreases as time period increases because budgets of
uncertainty are time-dependent. As robustness is enforced, via more conservative budgets,
this probability decreases convexly and tends to reach zero nearly after the end of the time
horizon. Notice also that even though less conservative budgets lead to high probabilities
of constraint violation in a short-term horizon, the empirical performance of such budgets
is very good.

The third question is related to the possibility of testing both modeling approaches.
In effect, if it is possible to supply plausible scenarios and the time required to obtain a
solution is not critical, SP could be a more “natural” fashion to represent and solve the op-
timization problem under uncertainty. However, even in this case, RO has a great potential
to generate alternative good solutions from a worst-case perspective mainly, which in turn
usually results in more stable solutions. For this reason, we claim in this paper that using
both modeling paradigms provide a more precise manner to make decisions when uncer-
tainty matters. If both approaches are adopted, decision-makers may run a Monte Carlo
simulation to get useful statistics and implement solutions according to their preferences.

The flowchart depicted in Figure 4.14 shows how to empirically select the most appro-
priate modeling approach to deal with the GLSP model under demand uncertainty, without
needing to perform a Monte Carlo simulation experiment. We assume that the decision-
maker knows the mean and the coefficient of variation of the demand, the relation between
costs and capacities as well. The criteria used to select the modeling approach are faster
runtimes and whether the average cost of the modeling performance is the best or is within
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the 2% of the best modeling approach performance. If there is a case in which the param-
eters characteristics are different from the instance classes we proposed, the best option is
to select the strategy for an instance class that has similar parameters characteristics.

Figure 4.14 – Specific flowchart for decision makers to select the uncertainty modeling
approach without running the simulation experiment.

As mentioned before, the demand distribution does not have a significant impact on
the performance of the best combination of Γ jt and γ̂ for the robust model. Nevertheless,
in cases where costs are very sensitive, it is possible to select the best combination of
robust parameters for each class of instance and demand distribution using the Tables 4.5
and/or 4.6. If necessary, this flowchart can be extended to a more fine discretization and/or
additional instance characteristics for a more precise selection of modeling approach and
uncertainty parameters. Furthermore, we can also incorporate risk preferences, e.g., if the
decison-maker is more average- or worst-case oriented so as to distinguish the type of
solution that should be preferred in each case.

4.5. Conclusion

This paper presented a “distribution-free” robust optimization and a scenario-based two-
stage stochastic programming model to deal with the GLSP model under demand uncer-
tainty. Although both methodologies are popular in production planning problems, this
paper arises as the first effort in using both of them in a specific lot-sizing and schedul-
ing problem. Because of the lack of a systematic methodology to assess the advantages
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and disadvantages of each modeling approach, we proposed an extensive simulation ex-
periment based on Monte Carlo to evaluate different characteristics of the solutions, such
as average costs, worst-case costs, and standard deviation. The extensive numerical study
clearly highlighted the importance of the simulation experiment for tuning the parameters
of both approaches and to select an appropriate modeling approach aligned to the decision
makers preferences and goals. The main results showed that both approaches outperform
the deterministic model at the expense of a minor increase in price. Also, we confirmed
the main known tradeoffs among robust optimization and stochastic programming in terms
of solution quality and runtime, and provided some new insights allowing decision-makers
to choose the best solution according to their preferences and for different instance struc-
tures of the GLSP. The proposed flowcharts help decision makers in this task, without
necessarily needing to run a simulation experiment. Contrary to common sense, our over-
all findings indicate that the RO model has not only the best worst-case performance, but
also a good average performance. On the other hand, the SP model rarely presents a good
worst-case performance. Future research relies on the study of the GLSP under endoge-
nous uncertainty sources, such as processing and setup times. In addition, the possibility
of readjusting the production in each time period via multi-stage stochastic programming
and/or adjustable robust optimization is also a promising topic for further research.

References

E. Adida and G. Perakis. Dynamic pricing and inventory control: robust vs. stochastic
uncertainty models – a computational study. Annals of Operations Research, 181(1):
125–157, 2010.

D. J. Alem and R. Morabito. Production planning in furniture settings via robust optimiza-
tion. Computers & Operations Research, 39:139–150, 2012.

B. Almada-Lobo, A. Clark, L. Guimarães, G. Figueira, and P. Amorim. Industrial insights
into lot sizing and scheduling modeling. Pesquisa Operacional, 35(3):439–464, 2015.

P. Beraldi, G. Ghiani, A. Grieco, and E. Guerriero. Fix and relax heuristic for a stochas-
tic lot-sizing problem. Computational Optimization and Applications, 33(2):303–318,
2006.

P. Beraldi, G. Ghiani, A. Grieco, and E. Guerriero. Rolling-horizon and fix-and-relax
heuristics for the parallel machine lot-sizing and scheduling problem with sequence-
dependent set-up costs. Computers & Operations Research, 35(11):3644–3656, 2008.
Part Special Issue: Topics in Real-time Supply Chain Management.

D. Bertsimas and M. Sim. The price of robustness. Operations Research, 52(1):35–53,
2004.

D. Bertsimas and A. Thiele. A robust optimization approach to inventory theory. Opera-
tions Research, 54(1), 2006.



122 References

D. Bienstock and N. Ozbay. Computing robust basestock levels. Discrete Optimization,
5(2):389–414, 2008.

V. C. Camargo, F. M. Toledo, and B. Almada-Lobo. HOPS - hamming-oriented partition
search for production planning in the spinning industry. European Journal of Opera-
tional Research, 234(1):266–277, 2014.

G. Claassen, J. Gerdessen, E. Hendrix, and J. van der Vorst. On production planning
and scheduling in food processing industry:modelling non-triangular setups and product
decay. Computers & Operations Research, 76:147 – 154, 2016.

K. Copil, M. Wörbelauer, H. Meyr, and H. Tempelmeier. Simultaneous lotsizing and
scheduling problems: a classification and review of models. OR Spectrum, pages 1–
64, 2016.

S. A. de Araujo, M. N. Arenales, and A. R. Clark. Lot sizing and furnace scheduling in
small foundries. Computers & Operations Research, 35(3):916 – 932, 2008. Part Special
Issue: New Trends in Locational Analysis.

R. F. Fachini, K. F. Esposto, and V. C. B. Camargo. Glass container production planning
with warm-ups and furnace extraction variation losses. The International Journal of
Advanced Manufacturing Technology, pages 1–17, 2016.

D. Ferreira, R. Morabito, and S. Rangel. Relax and fix heuristics to solve one-stage one-
machine lot-scheduling models for small-scale soft drink plants. Computers & Opera-
tions Research, 37(4):684–691, 2010.

B. Fleischmann and H. Meyr. The general lotsizing and scheduling problem. Operations-
Research-Spektrum, 19(1):11–21, 1997.

B. L. Gorissen and D. den Hertog. Robust counterparts of inequalities containing sums of
maxima of linear functions. European Journal of Operational Research, 227(1):30–43,
2013.

B. L. Gorissen, I. Yanikoglu, and D. den Hertog. A practical guide to robust optimization.
Omega, 53:124–137, 2015.

L. Guimarães, D. Klabjan, and B. Almada-Lobo. Modeling lotsizing and scheduling prob-
lems with sequence dependent setups. European Journal of Operational Research, 239
(3):644–662, 2014.

C. Ho. Evaluating the impact of operating environments on mrp system nervousness. In-
ternational Journal of Production Research, 27:1115–1135, 1989.

Z. Hu and G. Hu. A two-stage stochastic programming model for lot-sizing and scheduling
under uncertainty. International Journal of Production Economics, 180:198–207, 2016.

M. Kaut and S. W. Wallace. Evaluation of scenario-generation methods for stochastic
programming. In World Wide Web, Stochastic Programming E-Print Series, pages 14–
2003, 2003.



References 123

D. Klabjan, D. Simchi-Levi, and M. Song. Robust stochastic lot-sizing by means of his-
tograms. Production and Operations Management, 22(3):691–710, 2013.

G. Liberopoulos, D. G. Pandelis, and O. Hatzikonstantinou. The stochastic economic
lot sizing problem for non-stop multi-grade production with sequence-restricted setup
changeovers. Annals of Operations Research, 209(1):179–205, 2013.

N. Löhndorf, M. Riel, and S. Minner. Simulation optimization for the stochastic economic
lot scheduling problem with sequence-dependent setup times. International Journal of
Production Economics, 2014.

C. T. Maravelias and C. Sung. Integration of production planning and scheduling:
Overview, challenges and opportunities. Computers & Chemical Engineering, 33(12):
1919–1930, 2009.

I. Mattik, P. Amorim, and H.-O. Günther. Hierarchical scheduling of continuous casters
and hot strip mills in the steel industry: a block planning application. International
Journal of Production Research, 52(9):2576–2591, 2014.

M. Melamed, A. Ben-Tal, and B. Golany. On the average performance of the adjustable
ro and its use as an offline tool for multi-period production planning under uncertainty.
Computational Management Science, 13(2):293–315, 2016.

H. Meyr. Simultaneous lotsizing and scheduling on parallel machines. European Journal
of Operational Research, 139:277–292, 2002.

J. Mula, R. Poler, J. Garcia-Sabater, and F. Lario. Models for production planning under
uncertainty: A review. International Journal of Production Economics, 103:271–285,
2006.

R. Ramezanian and M. Saidi-Mehrabad. Hybrid simulated annealing and mip-based heuris-
tics for stochastic lot-sizing and scheduling problem in capacitated multi-stage produc-
tion system. Applied Mathematical Modelling, 37(7):5134–5147, 2013.

N. V. Sahinidis. Optimization under uncertainty: state-of-the-art and opportunities. Com-
puters & Chemical Engineering, 28(6):971–983, 2004.

C. R. Sox, P. L. Jackson, A. Bowman, and J. A. Muckstadt. A review of the stochastic lot
scheduling problem. International Journal of Production Economics, 62(3):181–200,
1999.

A. Thorsen and T. Yao. Robust inventory control under demand and lead time uncertainty.
Annals of Operations Research, pages 1–30, 2015.

C. F. M. Toledo, M. da Silva Arantes, M. Y. B. Hossomi, and B. Almada-Lobo. Math-
ematical programming-based approaches for multi-facility glass container production
planning. Computers & Operations Research, 74:92–107, 2016.



124 Chapter 4. Integrating lot-sizing and scheduling under demand uncertainty

E. Toso, R. Morabito, and A. Clark. Lot sizing and sequencing optimisation at an animal-
feed plant. Computers & Industrial Engineering, 57:813–821, 2009a.

E. A. Toso, R. Morabito, and A. R. Clark. Lot sizing and sequencing optimisation at an
animal-feed plant. Computers & Industrial Engineering, 57(3):813–821, 2009b.

Y. Wang. Empirical Comparison of Robust, Data Driven and Stochastic Optimization.
Master thesis, Massachusetts Institute of Technology, USA, 2008.

C. Wei, Y. Li, and X. Cai. Robust optimal policies of production and inventory with
uncertain returns and demand. International Journal of Production Economics, 2010.
doi:10.1016/j.ijpe.2009.11.008.

E. M. Winands, I. J. Adan, and G. Van Houtum. The stochastic economic lot scheduling
problem: a survey. European Journal of Operational Research, 210(1):1–9, 2011.

D. Wu and M. Ierapetritou. Hierarchical approach for production planning and scheduling
under uncertainty. Chemical Engineering and Processing: Process Intensification, 46
(11):1129–1140, 2007.

X. Zhu and W. E. Wilhelm. Scheduling and lot sizing with sequence-dependent setup: A
literature review. IIE transactions, 38(11):987–1007, 2006.

Appendix 4.A Supplementary material



Bibliography 125

A
ss

um
ed

D
is

tr
ib

ut
io

n
U

ni
fo

rm
G

am
m

a
L

og
-n

or
m

al
A

ss
um

ed
D

is
tr

ib
ut

io
ns

D
iff

er
en

ce
ID

R
ea

lD
is

tr
ib

ut
io

n
A

ve
ra

ge
St

d.
D

ev
ia

tio
n

W
or

st
-c

as
e

B
es

t-
ca

se
A

ve
ra

ge
St

d.
D

ev
ia

tio
n

W
or

st
-c

as
e

B
es

t-
ca

se
A

ve
ra

ge
St

d.
D

ev
ia

tio
n

W
or

st
-c

as
e

B
es

t-
ca

se

1
U

ni
fo

rm
13

54
1

33
81

25
46

1
54

88
13

60
6

34
78

26
40

5
58

21
13

61
8

34
84

26
62

7
58

53
0.

57
%

G
am

m
a

13
56

1
42

85
32

96
5

46
44

13
52

0
44

18
34

16
5

41
90

13
52

6
44

62
34

21
4

41
23

0.
3%

L
og

-n
or

m
al

13
70

1
41

72
32

41
7

48
23

13
61

3
43

07
32

98
1

47
18

13
60

7
43

69
33

39
7

47
48

0.
69

%

2
U

ni
fo

rm
30

22
5

76
04

58
88

3
12

06
6

30
54

3
79

68
62

47
5

13
31

1
30

87
6

82
64

64
52

9
13

54
6

2.
11

%
G

am
m

a
30

76
2

99
13

85
58

0
11

32
8

30
42

5
10

62
2

88
52

5
96

45
30

53
5

10
99

9
90

16
5

86
92

1.
1%

L
og

-n
or

m
al

30
69

0
10

32
4

91
83

1
11

04
6

29
97

6
11

17
0

95
47

5
99

35
29

93
5

11
54

3
96

08
2

99
24

2.
46

%

3
U

ni
fo

rm
17

26
5

48
93

42
08

9
72

26
17

32
1

51
25

43
82

9
71

90
17

29
0

50
01

43
05

1
70

61
0.

32
%

G
am

m
a

19
23

8
79

81
74

93
1

71
28

19
28

6
83

99
76

76
7

69
70

19
26

2
81

70
75

94
0

72
43

0.
25

%
L

og
-n

or
m

al
19

54
2

81
71

77
48

9
80

72
19

57
6

86
01

79
58

5
77

28
19

56
6

83
91

79
12

2
80

40
0.

17
%

4
U

ni
fo

rm
45

06
8

12
94

1
11

61
49

17
49

7
45

17
0

12
88

4
11

58
40

17
69

3
45

20
4

12
67

7
11

15
15

17
78

6
0.

3%
G

am
m

a
54

08
8

27
14

2
27

05
54

21
40

6
54

13
5

26
91

1
26

80
51

21
63

4
54

14
7

26
60

9
26

68
82

21
16

3
0.

11
%

L
og

-n
or

m
al

55
79

6
31

23
2

30
18

76
21

66
1

55
86

6
31

07
3

30
27

85
21

08
2

55
92

1
30

77
5

30
04

63
21

95
2

0.
22

%

5
U

ni
fo

rm
13

07
5

33
82

25
27

5
55

78
13

09
2

34
40

26
08

2
57

10
13

10
3

34
54

26
29

2
55

94
0.

21
%

G
am

m
a

12
93

5
42

23
34

25
3

39
15

12
92

4
43

18
34

94
5

36
88

12
93

6
43

37
35

25
9

36
16

0.
09

%
L

og
-n

or
m

al
12

98
7

41
02

30
61

4
45

65
12

94
3

41
97

31
06

7
45

07
12

93
9

42
05

30
89

1
43

66
0.

37
%

6
U

ni
fo

rm
29

26
6

81
10

61
85

5
12

05
7

29
36

6
83

61
63

33
9

11
73

9
29

39
2

84
24

63
75

2
11

68
6

0.
43

%
G

am
m

a
28

76
2

10
69

9
90

19
0

85
92

28
71

2
11

02
4

91
82

8
73

33
28

71
6

11
03

7
91

86
8

72
85

0.
18

%
L

og
-n

or
m

al
28

10
2

11
11

5
91

61
8

92
39

27
90

1
11

43
8

92
41

6
87

40
27

89
5

11
46

9
92

53
2

84
95

0.
74

%

7
U

ni
fo

rm
29

04
0

13
36

4
91

84
9

76
46

29
14

6
13

76
8

94
78

6
76

74
29

15
5

13
75

5
94

46
4

74
89

0.
4%

G
am

m
a

29
77

1
17

08
7

13
05

61
71

37
29

68
8

17
62

5
13

37
35

66
16

29
68

9
17

55
8

13
30

06
66

14
0.

28
%

L
og

-n
or

m
al

29
34

6
16

64
7

10
94

47
66

40
29

20
0

17
07

0
11

13
19

64
04

29
23

7
17

11
2

11
19

00
63

18
0.

5%

8
U

ni
fo

rm
90

10
1

41
79

7
27

58
42

21
55

6
90

30
6

42
47

9
27

97
93

20
78

4
90

61
9

42
61

7
28

11
22

21
11

0
0.

57
%

G
am

m
a

91
40

9
55

02
6

39
59

41
18

58
8

91
16

2
55

79
2

39
73

85
17

63
7

91
33

9
56

93
0

40
32

01
16

71
5

0.
27

%
L

og
-n

or
m

al
88

28
7

57
17

5
42

26
22

16
99

6
87

85
7

58
00

8
42

72
82

15
88

9
87

77
9

59
01

6
42

92
76

14
09

2
0.

58
%

Ta
bl

e
4.

4
–

St
oc

ha
st

ic
m

od
el

pe
rf

or
m

an
ce

.



126 Chapter 4. Integrating lot-sizing and scheduling under demand uncertainty

ID Distribution Average Std Dev. Worst-case Best-case Γ jt d̂ jτ

1
Uniform 13534 3382 25488 5455 0.10t + 0.5 2.5
Gamma 13498 4385 33775 4257 0.10t + 0.5 2.1

Log-normal 13588 4352 33117 4861 0.10t + 0.5 1.9

2
Uniform 30218 7622 59064 12268 0.10t + 0.5 2.4
Gamma 30397 10668 89382 9535 0.10t + 0.5 1.7

Log-normal 29882 11516 95921 10409 t 0.5

3
Uniform 17403 5012 43755 7683 0.10t + 0.5 2.9
Gamma 19317 8043 75304 7252 0.10t + 0.5 2.9

Log-normal 19599 8093 77208 7810 0.10t + 0.5 2.9

4
Uniform 45715 14364 123259 17978 0.10t + 0.5 2.7
Gamma 54509 25396 260755 23617 0.50t + 0.5 1.4

Log-normal 56052 32406 302733 21890 0.10t + 0.5 2.7

5
Uniform 13093 3445 25896 5372 0.10t + 0.5 1.9
Gamma 12930 4298 34953 3660 0.50t + 0.5 0.9

Log-normal 12943 4259 31281 4342 0.50t + 0.5 0.8

6
Uniform 29294 8214 62531 12019 0.10t + 0.5 1.2
Gamma 28704 10935 91297 7771 0.50t + 0.5 0.5

Log-normal 27898 11533 92674 8602 0.05t + 0.1 3

7
Uniform 30702 14628 100022 8217 0.10t + 0.5 1.3
Gamma 31231 19506 143807 5779 0.50t + 0.5 0.5

Log-normal 30553 18905 119795 6248 t 0.4

8
Uniform 94951 46082 295601 20005 0.10t + 0.5 0.8
Gamma 94877 61306 422260 15549 0.50t + 0.5 0.3

Log-normal 90785 63266 447196 14242 0.50t + 0.5 0.3

Table 4.5 – Robust model performance focused on minimizing average cost.
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ID Distribution Average Std Dev. Worst-case Best-case Γ jt d̂ jτ

1
Uniform 13574 3344 25225 5361 0.10t + 0.5 2.9
Gamma 14954 3917 29375 5133 0.50t + 0.5 2.2

Log-normal 15465 3895 30207 6070 0.50t + 0.5 2.3

2
Uniform 30477 7465 57394 13129 0.50t + 0.5 1.4
Gamma 39476 8701 72938 18135 0.50t + 0.5 3

Log-normal 40283 8849 85611 16806 0.50t + 0.5 3

3
Uniform 19955 4107 33212 7610 t 1.5
Gamma 28515 4299 42066 14493 0.50t + 0.5 2.8

Log-normal 29857 4278 45574 17221 0.50t + 0.5 2.9

4
Uniform 51787 10583 86739 18712 t 1.5
Gamma 73486 19991 184853 34793 t 1.9

Log-normal 82099 22298 239944 40366 0.50t + 0.5 2.5

5
Uniform 13188 3330 24574 5800 0.50t + 0.5 1.2
Gamma 16007 4118 31804 6035 t 1.7

Log-normal 13158 4011 30359 4588 0.50t + 0.5 1.2

6
Uniform 31488 7732 57854 13222 0.50t + 0.5 1.3
Gamma 42330 8979 84357 20442 t 2.1

Log-normal 28520 10890 91920 9880 0.10t + 0.5 1.6

7
Uniform 46130 11369 84971 18958 t 1
Gamma 67692 11669 114327 40734 t 1.4

Log-normal 34063 16010 114127 9605 0.10t + 0.5 1.8

8
Uniform 131852 34307 241753 53448 0.10t + 0.5 2.5
Gamma 140607 44043 379875 59275 t 1

Log-normal 147058 44674 425204 69074 0.10t + 0.5 3

Table 4.6 – Robust model performance focused on minimizing worst-case scenario.



128 Chapter 4. Integrating lot-sizing and scheduling under demand uncertainty

R
obust

Stochastic
C

ostD
ifference

C
lass

D
istribution

A
verage

Std
D

ev.
W

orst-case
B

est-case
R

untim
e(s)

A
verage

Std
D

ev.
W

orst-case
B

est-case
R

untim
e(s)

R
obust-Stoch

1
U

niform
13534

3382
25488

5455
12

14625
3768

29178
5979

55
-8.05%

G
am

m
a

13498
4385

33775
4257

14
14414

4719
36317

5150
57

-6.78%
L

og-norm
al

13588
4352

33117
4861

11
14754

4991
35621

5169
47

-8.58%

2
U

niform
30218

7622
59064

12268
14

32598
8643

65756
12393

17
-7.88%

G
am

m
a

30397
10668

89382
9535

19
32980

11907
94391

10920
24

-8.5%
L

og-norm
al

29882
11516

95921
10409

11
31815

11643
99974

11127
34

-6.47%

3
U

niform
17403

5012
43755

7683
9

18870
5306

45620
7658

9
-8.43%

G
am

m
a

19317
8043

75304
7252

9
21225

8621
77780

8619
7

-9.88%
L

og-norm
al

19599
8093

77208
7810

9
22593

9430
77493

9595
8

-15.28%

4
U

niform
45715

14364
123259

17978
10

51092
16384

134645
20281

7
-11.76%

G
am

m
a

54509
25396

260755
23617

37
60905

26870
254147

25403
10

-11.73%
L

og-norm
al

56052
32406

302733
21890

10
67891

35366
305136

28424
9

-21.12%

5
U

niform
13093

3445
25896

5372
15

13867
3708

27006
5701

17
-5.91%

G
am

m
a

12930
4298

34953
3660

35
13693

4583
36363

4785
30

-5.9%
L

og-norm
al

12943
4259

31281
4342

15
13997

4410
33343

4974
22

-8.14%

6
U

niform
29294

8214
62531

12019
104

31017
8764

63458
12415

26
-5.88%

G
am

m
a

28704
10935

91297
7771

61
30067

11032
92464

9861
23

-4.75%
L

og-norm
al

27898
11533

92674
8602

54
29597

11679
94358

9612
28

-6.09%

7
U

niform
30702

14628
100022

8217
188

31194
14381

95816
8037

24
-1.6%

G
am

m
a

31231
19506

143807
5779

104
32514

18424
132964

7627
25

-4.11%
L

og-norm
al

30553
18905

119795
6248

93
32052

18387
116517

7289
20

-4.91%

8
U

niform
94951

46082
295601

20005
75

96008
42712

277813
22646

27
-1.11%

G
am

m
a

94877
61306

422260
15549

51
98219

58107
410151

18153
20

-3.52%
L

og-norm
al

90785
63266

447196
14242

51
92873

59944
425329

17221
19

-2.3%

A
verage

35069.7
16734.1

128628
10200.8

42.1
37452.5

16824.1
127568

11626.7
23.6

-7.45%

Table
4.7

–
Perform

ance
ofthe

stochastic
(w

ith
10

scenarios)and
robustm

odels.



Bibliography 129

D
et

er
m

in
is

tic
R

ob
us

t
St

oc
ha

st
ic

C
la

ss
D

is
tr

ib
ut

io
n

A
vg

.
B

ac
kl

og
A

vg
.

In
ve

nt
or

y
%

of
B

ac
kl

og
(l

as
tp

er
io

d)
Q

t.
of

B
ac

kl
og

(l
as

tp
er

io
d)

B
ac

kl
og

C
os

t
In

v.
C

os
t

Se
tu

p
C

os
t

A
vg

.
B

ac
kl

og
A

vg
.

In
ve

nt
or

y
%

of
B

ac
kl

og
(l

as
tp

er
io

d)
Q

t.
of

B
ac

kl
og

(l
as

tp
er

io
d)

B
ac

kl
og

C
os

t
In

v.
C

os
t

Se
tu

p
C

os
t

A
vg

.
B

ac
kl

og
A

vg
.

In
ve

nt
or

y
%

of
B

ac
kl

og
(l

as
tp

er
io

d)
Q

t.
of

B
ac

kl
og

(l
as

tp
er

io
d)

B
ac

kl
og

C
os

t
In

v.
C

os
t

Se
tu

p
C

os
t

1
U

ni
fo

rm
19

8
19

9
49

.1
4

25
8

98
61

49
40

11
7

10
2

33
6

31
.2

8
12

9
50

80
83

37
11

7
10

2
33

7
32

.9
4

13
9

50
34

83
90

11
7

G
am

m
a

19
5

18
8

48
.7

26
1

97
36

46
96

11
7

11
6

30
5

32
.7

6
15

1
57

94
75

87
11

7
11

9
29

9
33

.4
4

15
6

59
35

74
68

11
7

L
og

-n
or

m
al

18
8

19
6

47
.4

2
25

2
94

30
48

88
11

7
11

8
30

3
32

.9
4

15
4

59
33

75
39

11
7

11
9

30
0

33
.3

4
15

6
60

01
74

89
11

7

2
U

ni
fo

rm
49

5
49

8
49

.2
8

64
6

21
99

2
11

13
4

13
1

26
2

82
6

32
.1

6
33

2
11

63
9

18
44

8
13

1
25

6
83

7
33

.3
8

35
2

11
35

3
18

74
2

13
1

G
am

m
a

48
1

46
7

45
.7

6
64

4
21

42
3

10
43

7
13

1
32

5
70

8
33

.7
4

42
6

14
46

2
15

80
4

13
1

32
5

70
9

33
.8

8
42

5
14

45
9

15
83

5
13

1
L

og
-n

or
m

al
45

3
47

1
44

.3
4

61
6

20
18

4
10

49
2

13
1

33
6

66
3

32
.4

6
42

7
14

96
5

14
78

6
13

1
33

5
66

7
33

.1
43

7
14

96
6

14
83

9
13

1

3
U

ni
fo

rm
19

8
19

9
49

.1
4

25
8

41
00

8
41

23
84

16
68

2
7.

84
19

31
29

14
18

9
84

15
68

3
8.

56
22

30
20

14
16

1
84

G
am

m
a

19
5

18
8

48
.7

26
1

40
50

1
38

76
84

25
68

3
8.

36
28

50
48

14
18

5
84

24
68

4
9.

16
30

49
92

14
16

2
84

L
og

-n
or

m
al

18
8

19
6

47
.4

2
25

2
38

87
7

40
50

84
24

69
8

8.
08

29
49

98
14

51
7

84
24

70
0

8.
8

31
49

62
14

49
6

84

4
U

ni
fo

rm
49

5
49

8
49

.2
8

64
6

10
76

16
10

70
6

10
8

54
15

87
9.

5
61

11
08

9
34

50
5

12
2

43
16

57
9.

18
59

90
47

35
90

2
12

0
G

am
m

a
48

1
46

7
45

.7
6

64
4

10
44

10
10

08
1

10
8

75
17

63
6.

86
64

16
31

8
38

08
3

10
8

82
16

78
9.

92
97

17
51

4
36

45
4

11
9

L
og

-n
or

m
al

45
3

47
1

44
.3

4
61

6
98

27
0

10
18

8
10

8
94

16
42

9.
8

11
1

20
10

8
35

82
3

12
2

85
17

18
9.

5
10

9
18

48
5

37
19

2
11

9

5
U

ni
fo

rm
19

8
19

9
49

.1
4

25
8

94
58

47
52

78
12

5
29

6
35

.1
15

5
58

90
70

98
10

5
12

0
30

5
33

.8
14

5
55

80
73

95
10

0
G

am
m

a
19

5
18

8
48

.7
26

1
93

56
44

73
78

12
3

29
1

32
.8

6
15

2
58

71
69

48
11

1
12

6
28

5
34

.0
8

16
0

59
88

68
46

91
L

og
-n

or
m

al
18

8
19

6
47

.4
2

25
2

89
48

46
72

78
12

4
29

1
33

.4
15

6
59

11
69

30
10

2
12

3
29

4
33

.5
2

15
8

57
75

70
74

90

6
U

ni
fo

rm
49

5
49

8
49

.2
8

64
6

20
53

7
10

34
0

10
5

41
6

60
2

42
.7

2
51

6
16

00
2

13
12

3
17

0
41

7
60

5
42

.6
2

51
7

15
70

6
13

40
1

15
9

G
am

m
a

48
1

46
7

45
.7

6
64

4
20

00
5

96
59

10
5

40
7

57
6

39
.2

52
4

16
15

8
12

37
7

17
0

40
8

57
2

39
.5

6
52

7
16

32
1

12
24

7
14

4
L

og
-n

or
m

al
45

3
47

1
44

.3
4

61
6

18
71

1
97

52
10

5
38

2
58

1
37

.0
4

50
2

15
43

8
12

29
5

16
6

38
5

57
8

37
.4

6
50

7
15

40
2

12
35

5
13

7

7
U

ni
fo

rm
19

8
19

9
49

.1
4

25
8

43
08

7
43

35
10

9
12

9
33

6
31

.7
2

13
7

22
72

0
78

28
15

4
13

2
34

0
31

.7
8

14
2

20
46

7
84

18
15

5
G

am
m

a
19

5
18

8
48

.7
26

1
42

70
1

40
74

10
9

11
9

31
3

31
.4

2
14

0
24

00
9

70
66

15
6

12
6

32
1

31
.3

4
14

8
21

63
5

78
96

15
8

L
og

-n
or

m
al

18
8

19
6

47
.4

2
25

2
40

89
0

42
56

10
9

11
5

32
5

29
.4

6
13

8
23

04
5

73
51

15
8

12
3

33
4

29
.9

8
14

4
20

80
4

82
38

15
8

8
U

ni
fo

rm
49

5
49

8
49

.2
8

64
6

10
66

83
10

77
8

11
0

43
4

64
6

41
.7

8
53

9
79

62
7

15
15

6
16

8
46

1
67

7
41

.8
2

56
6

72
90

5
17

03
4

16
2

G
am

m
a

48
1

46
7

45
.7

6
64

4
10

36
28

10
12

0
11

0
41

3
60

2
39

.4
53

3
80

79
2

13
90

9
17

5
44

9
64

5
39

.5
8

55
9

74
76

7
16

22
7

16
8

L
og

-n
or

m
al

45
3

47
1

44
.3

4
61

6
97

40
4

10
18

1
11

0
39

1
61

2
37

.0
6

51
3

76
45

1
14

15
8

17
5

41
5

63
9

37
.6

2
54

1
71

65
3

15
95

7
16

9

Ta
bl

e
4.

8
–

C
om

pa
ri

so
n

of
so

lu
tio

ns
ch

ar
ac

te
ri

st
ic

s
fo

cu
se

d
on

m
in

im
um

av
er

ag
e

va
lu

es
.



130 Chapter 4. Integrating lot-sizing and scheduling under demand uncertainty

D
eterm

inistic
R

obust
Stochastic

C
lass

D
istribution

A
vg.

B
acklog

A
vg.

Inventory
%

ofB
acklog

(lastperiod)
Q

t.ofB
acklog

(lastperiod)
B

acklog
C

ost
Inv.
C

ost
Setup
C

ost
A

vg.
B

acklog
A

vg.
Inventory

%
ofB

acklog
(lastperiod)

Q
t.ofB

acklog
(lastperiod)

B
acklog
C

ost
Inv.
C

ost
Setup
C

ost
A

vg.
B

acklog
A

vg.
Inventory

%
ofB

acklog
(lastperiod)

Q
t.ofB

acklog
(lastperiod)

B
acklog
C

ost
Inv.
C

ost
Setup
C

ost

#1
#2

#3
#4

#5
#6

#7
#8

#9
#10

#11
#12

#13
#14

#15
#16

#17
#18

#19
#20

#21
#22

#23

1
U

niform
198

199
49.14

258
9861

4940
117

90
362

28.76
113

4489
8968

117
103

333
33.1

140
5201

8224
117

G
am

m
a

195
188

48.7
261

9736
4696

117
56

484
15.48

58
2806

12032
117

107
329

32.22
147

5260
8297

117
L

og-norm
al

188
196

47.42
252

9430
4888

117
51

515
14.04

53
2588

12759
117

103
341

30.9
142

5112
8568

117

2
U

niform
495

498
49.28

646
21992

11134
131

221
917

26.84
251

9833
20514

131
258

837
32.7

342
11466

18697
131

G
am

m
a

481
467

45.76
644

21423
10437

131
97

1569
9.28

90
4327

35016
133

270
836

30.58
370

12034
18656

131
L

og-norm
al

453
471

44.34
616

20184
10492

131
99

1603
8.92

101
4415

35735
133

259
854

27.48
353

11564
19008

131

3
U

niform
198

199
49.14

258
41008

4123
84

5
916

0.68
1

950
18920

84
15

683
8.56

22
3020

14161
84

G
am

m
a

195
188

48.7
261

40501
3876

84
2

1356
0.16

0
333

28097
84

24
684

9.16
30

4992
14162

84
L

og-norm
al

188
196

47.42
252

38877
4050

84
2

1420
0.14

1
331

29442
85

24
700

8.8
31

4962
14496

84

4
U

niform
495

498
49.28

646
107616

10706
108

12
2263

0.8
2

2634
48995

158
41

1692
8.78

55
8733

36521
116

G
am

m
a

481
467

45.76
644

104410
10081

108
130

2374
10.76

153
16556

56780
149

79
1713

9.7
94

17074
37051

116
L

og-norm
al

453
471

44.34
616

98270
10188

108
186

2473
9.66

138
22003

59960
136

85
1734

9.38
108

18396
37589

115

5
U

niform
198

199
49.14

258
9458

4752
78

117
318

32.02
135

5205
7853

130
120

305
33.8

145
5580

7395
100

G
am

m
a

195
188

48.7
261

9356
4473

78
183

379
31.08

258
5965

9913
130

123
294

33.38
156

5755
7119

100
L

og-norm
al

188
196

47.42
252

8948
4672

78
114

322
29.38

136
5069

7959
130

116
309

31.38
145

5405
7482

100

6
U

niform
495

498
49.28

646
20537

10340
105

519
716

41.24
695

14390
16939

159
420

608
42.8

523
15596

13575
152

G
am

m
a

481
467

45.76
644

20005
9659

105
821

1032
31.42

1240
17031

25178
121

413
585

39.52
527

15578
13042

159
L

og-norm
al

453
471

44.34
616

18711
9752

105
406

610
37.82

523
14472

13881
166

393
595

37.4
510

14622
13411

152

7
U

niform
198

199
49.14

258
43087

4335
109

285
505

25.2
441

33600
12386

144
134

342
31.78

144
20690

8491
155

G
am

m
a

195
188

48.7
261

42701
4074

109
451

667
22.16

725
51029

16521
142

136
336

31.2
149

21607
8360

155
L

og-norm
al

188
196

47.42
252

40890
4256

109
163

387
30.14

183
24494

9424
146

130
346

29.68
143

20618
8573

155

8
U

niform
495

498
49.28

646
106683

10778
110

843
1079

31.16
1187

104592
27122

138
468

685
41.9

569
72757

17356
163

G
am

m
a

481
467

45.76
644

103628
10120

110
883

1097
33.28

1313
112384

28077
146

470
669

39.5
581

74410
17168

163
L

og-norm
al

453
471

44.34
616

97404
10181

110
919

1180
31.64

1296
116186

30739
132

444
675

37.48
563

70843
17370

163

Table
4.9

–
C

om
parison

ofsolutions
characteristics

focused
on

m
inim

um
w

orst-case.



Bibliography 131

5
·1

03

1
·1

04

1.
5
·1

04

2
·1

04

2.
5
·1

04

3
·1

04

3.
5
·1

04

4
·1

04

4.
5
·1

04

5
·1

04

5.
5
·1

04

6
·1

04

6.
5
·1

04

7
·1

04

7.
5
·1

04

0

1

2

3

4

5

Cost

R
el

at
iv

e
Fr

eq
ue

nc
y

(%
)

Stochastic Programming
Robust Optimization

(a) Uniform demand distribution.

0
·1

00

1
·1

04

2
·1

04

3
·1

04

4
·1

04

5
·1

04

6
·1

04

7
·1

04

8
·1

04

9
·1

04

1
·1

05

1.
1
·1

05

0

1

2

3

4

5

6

Cost

R
el

at
iv

e
Fr

eq
ue

nc
y

(%
)

Stochastic Programming
Robust Optimization

(b) Gamma demand distribution.
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(c) Log-normal demand distribution.

Figure 4.15 – Robust optimization and stochastic programming cost relative frequency for
the instance class 2.
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(b) Gamma demand distribution.
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(c) Log-normal demand distribution.

Figure 4.16 – Robust optimization and stochastic programming cost relative frequency for
the instance class 8.
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Abstract
This work addresses the lot-sizing and scheduling problem under multistage demand

uncertainty. A flexible production system is considered, with the possibility to adjust the
size and the schedule of lots in every time period based on a rolling-horizon planning
scheme. Computationally intractable multistage stochastic programming models are often
employed on this problem. An adaptation strategy to the multistage setting for two-stage
programming and robust optimization models is proposed. We also present an approx-
imation heuristic strategy to address the problem more efficiently, relying on multistage
stochastic programming and adjustable robust optimization. In order to evaluate each strat-
egy and model proposed, a Monte Carlo simulation experiment under a rolling-horizon
scheme is performed. Results show that the strategies are promising in solving large-scale
problems: approximate strategy based on adjustable robust optimization has, on average,
6.72% better performance and is 7.9 times faster than the deterministic model.
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5.1. Introduction

The integration of lot-sizing and scheduling problems has been widely addressed in the
literature and its benefits and applications are also shown in many previous contributions
(Maravelias and Sung, 2009; Copil et al., 2016; Almada-Lobo et al., 2015). Moreover,
significant improvements on the formulation of lot-sizing and scheduling models have been
achieved in recent works (Guimaraes et al., 2014), which has substantially increased the
efficiency of solving complex and practical production planning problems. Nevertheless,
as most of the works consider deterministic parameters (Hu and Hu, 2016), the literature
on lot-sizing and scheduling under uncertainty is scarce, especially regarding multistage
decision-making.

In this work, we are considering the integration of lot-sizing and scheduling decisions
under multistage uncertain demand. Several modeling approaches can be used to address
demand uncertainty in lot-sizing and scheduling problems. Two straightforward exact ap-
proaches would be formulating the problem as a multistage stochastic programming model
or using a deterministic model embedded into a rolling-horizon planning scheme. Never-
theless, these approaches have particular issues: multistage stochastic programming mod-
els are usually intractable and deterministic models may produce inferior solutions in un-
certain settings.

Therefore, the main idea of this paper is to provide high quality solutions in short
computational runtimes for the lot-sizing and scheduling problem under multistage de-
mand uncertainty by means of the following solving strategies: i) Adaptating the two-stage
stochastic programming and robust optimization models to a multistage structure; and ii)
Approximating heuristically the multistage stochastic programming and adjustable robust
optimization models. We also introduce two traditional approaches for the problem as a
comparison basis to the strategies proposed: iii) Deterministic model with safety stocks
incorporated; and iv) Classical multistage stochastic programming model. We believe that
it is the first time the integration of lot-sizing and scheduling under uncertainty is tackled
via the strategies proposed. Moreover, as far as we know, adjustable robust optimization
has never been applied in lot-sizing and scheduling problems.

The proposed strategies seem to be promising in reducing the computational complex-
ity of lot-sizing and scheduling problems under uncertainty, especially when there is a high
number of products or a long planning horizon. The adaptation strategy allows the ap-
plication of static robust optimization and two-stage stochastic programming models for
solving problems under multistage uncertainty through a rolling-horizon planning scheme.
Usually, these models are more tractable than the multistage stochastic programming, for
instance, the static robust optimization presents a similar tractability of its deterministic
version. The approximate strategy reduces the complexity of the problem by eliminating
the setup (binary) variables for future periods, which allows to improve the tractability of
the multistage stochastic programming and adjustable robust optimization models without
much loss of their solution quality.

We consider the General Lot-sizing and Scheduling Problem (GLSP) as the base for-
mulation for the models proposed. In addition, the strategies presented are assessed via
a Monte Carlo simulation experiment under a rolling-horizon planning scheme and are
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evaluated in terms of average cost, standard deviation, worst-case scenario cost, best-case
scenario cost and runtime. At the end, we draw the main advantages and drawbacks of
each strategy and provide guidelines based on the experiment results.

Rolling-horizon planning scheme is generally used in a stochastic environment (Sethi
and Sorger, 1991) or for reducing computational times when solving detailed industrial
problems with long planning horizons. For instance, De Araujo et al. (2007); Clark and
Clark (2000); Li and Ierapetritou (2010) propose rolling-horizon schemes to reduce the
computational requirements to solve complex lot-sizing and scheduling problems. Us-
ing stochastic programming in a rolling-horizon environment, Beraldi et al. (2008), Wu
and Ierapetritou (2007) and Sand and Engell (2004) address uncertainty in lot-sizing and
scheduling problems. In the robust optimization field, Bredström et al. (2013) propose a
rolling-horizon method to tackle demand uncertainty in production planning. Based on the
previous works, we present a rolling-horizon planning scheme in the Section 5.3, it will be
a common setting in the Monte Carlo simulation for each model proposed.

The paper is organized as follows. Section 5.2 presents the related works on lot-sizing
and scheduling problems under uncertainty. Section 5.3 states the problem, introduces
the rolling-horizon planning scheme, describes the deterministic GLSP model with safety
stocks and presents the exact multistage stochastic programming model. Section 5.4 in-
troduces the multistage adaptation strategy for the two-stage stochastic programming and
robust optimization models. Section 5.5 proposes an approximate heuristic strategy to
achieve better computational performance for multistage stochastic programming and ad-
justable robust optimization models. In Section 5.6, the Monte Carlo simulation experi-
ment is described, its results are discussed and guidelines are provided. Finally, Section
5.7 concludes this work and provides further research directions.

5.2. Related works

In the past years, many of the contributions considering uncertainty in lot-sizing and schedul-
ing relied on stochastic programming, hierarchical production planning schemes (Wu and
Ierapetritou, 2007), meta-heuristics (Ramezanian and Saidi-Mehrabad, 2013) and rolling-
horizon planning strategies (Beraldi et al., 2008). More recently, robust optimization mod-
els have been used to incorporate uncertainty in lot-sizing and scheduling problems (Gabrel
et al., 2014; Alem et al., 2016). The main contributions to the uncertainty field in lot-sizing
and scheduling problems are presented next.

To overcome the computational complexity of solving an integrated monolithic model,
some authors resort to hierarchical production planning schemes within optimization frame-
works. For instance, Meybodi and Foote (1995) address production planning and schedul-
ing under demand and production failure using a stochastic hierarchical production plan-
ning model with scheduling and rolling-horizon heuristics. Sand and Engell (2004) de-
velop a two-stage stochastic programming approach with a Lagrangian decomposition in
order to solve the hierarchical scheduling of flexible chemical batch processes with uncer-
tainty in capacity and demand. Wu and Ierapetritou (2007) also address the production
planning and scheduling problem under uncertainty through a hierarchical approach with
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a rolling-horizon strategy, however the authors develop a multistage stochastic model to
tackle demand uncertainty.

Some efforts were devoted to address uncertainty in lot-sizing and scheduling prob-
lems using stochastic programming and to improve its intractability. In order to increase
the solving efficiency of batching and scheduling problems under demand uncertainty, Bal-
asubramanian and Grossmann (2004) propose an approximation strategy to the multistage
stochastic optimization, which is achieved by embedding two-stage stochastic models into
a shrinking-horizon solution scheme. Ramezanian and Saidi-Mehrabad (2013) use meta-
heuristics to tackle the lot-sizing and scheduling problem considering multistage produc-
tion system and parallel machines under uncertain processing times and product demand.
Also considering parallel machines, Beraldi et al. (2006) develop a multistage stochastic
programming and apply a fix-and-relax heuristic to solve a lot-sizing and scheduling prob-
lem with sequence-dependent set-up costs and uncertain processing times. In a subsequent
work, Beraldi et al. (2008) focus on identical parallel machines, providing rolling-horizon
and fix-and-relax heuristics, which can be applied in large-scale applications, such as in the
fiberglass and textile industries. More recently and targeting the automotive industry, Hu
and Hu (2016) propose a two-stage stochastic model and use a scenario reduction approach
to deal with demand uncertainty in the lot-sizing and scheduling problem.

Notwithstanding the scarcity of works integrating lot-sizing and scheduling under un-
certainty, there is a wide range of works that address both problems independently under
uncertainty using either stochastic programming or robust optimization approaches. For
instance, literature reviews in lot-sizing (Aloulou et al., 2014) or lot-scheduling problems
(Sox et al., 1999) present several works that incorporate uncertainty using methods, such
as stochastic, fuzzy models and simulation. The majority of these studies only consider
a single uncertainty modeling technique and do not benchmark performance against with
other uncertainty modeling approaches.

With the recent advances in the field of robust optimization (Bertsimas and Sim, 2004;
Ben-Tal et al., 2004; Gabrel et al., 2014), some works have started applying these tech-
niques to lot-sizing and scheduling and related problems. For instance, Chunpeng and
Gang (2009) develop a hierarchical optimization-simulation approach for the production
planning and scheduling in refineries. The authors incorporate uncertain demand using a
robust optimization model and resort to a rolling-horizon planning scheme that includes
the detailed simulation scheduling only for the current period. Alem et al. (2016) develop a
robust optimization model for the general lot-sizing and scheduling problem and compare
it with a two-stage stochastic model using Monte Carlo simulation. Contributions using
robust optimization have also been addressed in related fields, such as inventory manage-
ment (Klabjan et al., 2013; Zhang, 2011; See and Sim, 2010; Ben-Tal et al., 2004; Qiu
and Shang, 2014), inventory routing (Solyali et al., 2012), lot-sizing and cutting (Alem and
Morabito, 2012), production planning (Bredström et al., 2013) and others (Gabrel et al.,
2014).

Significant advances in adjustable robust optimization (ARO) have been made on lot-
sizing and production planning problems. Zhang et al. (2016) develop an adjustable robust
mixed-integer linear programming model to solve the scheduling of continuous industrial
processes with interruptible load under uncertainty. Lappas and Gounaris (2016) also ap-
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ply ARO for process scheduling under uncertainty in processing times, showing that the
ARO model achieves superior performance than the static robust optimization version. Us-
ing ARO in lot-sizing problems, Postek and Den Hertog propose a methodology to solve
the model that splits the uncertainty sets and constructs decision rules for integer and con-
tinuous variables. Melamed et al. (2016) develop a linear model using affinely adjustable
robust optimization to address demand uncertainty in the single-product production plan-
ning problem. The model accounts for backlog and inventory costs, however it does not
have production capacity neither setup constraints. To the best of our knowledge, ARO ap-
proaches have not yet been applied in the integration of lot-sizing and scheduling problems
under demand uncertainty.

Acknowledging on one hand the scarcity of works looking at multistage demand uncer-
tainty in the lot-sizing and scheduling problem, and on the other hand the intractability of
the majority of the respective approaches, different strategies are proposed in this work in
order to efficiently tackle demand uncertainty in a multistage decision setting and rolling-
horizon planning scheme.

5.3. Problem statement and traditional modeling approaches

We consider a multiproduct, multiperiod and capacitated lot-sizing and scheduling prob-
lem under independent and dynamic demand uncertainty. Changeovers incur in dependent
setup times and costs and backlogs are allowed. The objective is to attend the demand at
minimum cost, which includes setup, inventory and backlog costs. A flexible production
system is present, where production, scheduling and inventory decisions can be adjusted in
every period. Moreover, within a rolling-horizon planning scheme, all decisions are taken
for the current period with: 1) the past decisions fixed; 2) the demand of current period
revealed; and 3) the mean and the coefficient of variation of future demand known.

The next subsections are organized in the following way. We first present the rolling-
horizon planning scheme that will be used in the Monte Carlo simulation for each model
proposed. Secondly, we formally describe the deterministic formulation for the lot-sizing
and scheduling problem. Next, we show how safety stocks can be incorporated into the
deterministic model and then present the exact multistage stochastic programming model
for the GLSP.

5.3.1 Rolling-horizon planning scheme

The rolling-horizon planning scheme can be divided into two parts. The first refers to the
current period, for which the demand information is known and inventory, lot-sizing and
scheduling decisions are not to be taken right away. The second part is related to the future
periods where the demand is unknown and the decisions should not be immediately imple-
mented. After the decisions of the current period have been implemented, the following
period becomes the current period, the respective demand is revealed and decisions are
then implemented. The iterative approach continues until all decisions within the planning
horizon are taken. Figure 5.1 illustrates how the rolling-horizon scheme can be applied in
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a setting with demand uncertainty. We intend to evaluate and compare the solutions of all
the models proposed within this rolling-horizon planning scheme.

Figure 5.1 – Rolling-horizon planning scheme example for 3 time periods.

5.3.2 Deterministic standard approach

The classical GLSP is one of the most used formulations for solving deterministic lot-
sizing and scheduling problems. The formulation is as follows (Fleischmann and Meyr,
1997; Meyr, 2002):
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(F1: DetModel)

min
∑
j∈J

∑
t∈T

(
h+

j · I
+
jt + h−j · I

−
jt

)
+

∑
j,`∈J

∑
n∈N

s j` ·Z j`n (5.1)

s.t.: I+
j(t−1) + I−jt +

∑
n∈Nt

X jn = I+
jt + I−j(t−1) + d jt, ∀ j ∈ J, t ∈ T (5.2)∑

j∈J

∑
n∈Nt

p j ·X jn +
∑
j,`∈J

∑
n∈Nt

q j` ·Z j`n ≤ capt, ∀t ∈ T (5.3)

X jn ≤ b jt ·Y jn, ∀ j ∈ J, t ∈ T, n ∈ Nt (5.4)∑
j∈J

Y jn = 1, ∀n ∈ N (5.5)∑
`∈J

Z j`n = Y j(n−1), ∀ j ∈ J, n ∈ N (5.6)∑
j∈J

Z j`n = Y`n, ∀` ∈ J, n ∈ N (5.7)

X jn ≥ m j ·
(
Y jn−Y j(n−1)

)
, ∀ j ∈ J, n ∈ N (5.8)

Y jn ∈ B, X jn, Z j`n, I+
jt, I−jt ≥ 0, ∀ j, ` ∈ J, n ∈ N, t ∈ T. (5.9)

The parameter J refers to the set of products and T the set of periods. Nt is the subset
of micro-periods of period t, such that

⋃
t∈T Nt = N. The parameters h+

j , h−j , s j`, d jt, p j,
q j`, capt, b jt and m j, stand for holding cost, shortage cost, sequence-dependent setup cost,
demand, production time, setup time, capacity, maximum lot and minimum lot-sizes, re-
spectively. Decision variables X jt, I+

jt, I−jt, Y jn and Z j`n are related to production, inventory,
backlogging, setup and changeover among two products, respectively.

Objective function (5.1) minimizes the total cost. Constraints (5.2) are the inventory
balance constraints and (5.3) the production capacity. Constraints (5.4) allow the produc-
tion of product j only if its setup occurs in the respective micro-period. Constraints (5.5)
limits to one the number of setups in each micro-period. Constraints (5.6) and (5.7) enforce
the relation of setup and changeover states. To ensure the triangular inequality, Constraints
(5.8) establish a minimum lot size for product j in case it was not produced in the last
micro-period. Constraints (5.9) define the variables domain.

5.3.3 Safety stock approach

Many authors (Bredström et al., 2013; Rafiei et al., 2015; Absi and Kedad-Sidhoum, 2009)
incorporate safety stocks in production planning optimization approaches to tackle product
demand variability. Absi and Kedad-Sidhoum (2009) treat the safety stock level as one
of the objectives in the lot-sizing problem, rather than a constraint, which maintains the
feasibility for every safety stock level desired. Using as a basis the work of Absi and
Kedad-Sidhoum (2009), the DetModel can be reformulated to incorporate safety stocks in
the GLSP as follows:
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(F2: SafetyDetModel)

min
∑
j∈J

∑
t∈T

(
sc+

j ·S
+
jt + sc−j ·S

−
jt + h−j · I

−
jt

)
+

∑
j,`∈J

∑
n∈N

s j` ·Z j`n (5.10)

s.t.: Constraints (5.3), (5.4), (5.5), (5.6), (5.7), (5.8)

S +
j(t−1) + S −jt + I−jt +

∑
n∈Nt

X jn =

δ jt + S +
jt + S −j(t−1) + I−j(t−1) + d jt, ∀ j ∈ J, t ∈ T (5.11)

S −jt ≤ sl jt, ∀ j ∈ J, t ∈ T (5.12)

Y jn ∈ B, X jn, Z j`n, S +
jt,S

−
jt, I−jt ≥ 0, ∀ j, ` ∈ J, n ∈ N, t ∈ T. (5.13)

Note that variables I+
jt are now replaced by variables S +

jt and S −jt, that stand for overstock
and safety stock deficit, respectively. sc+

j and sc−j are penalties for overstock and safety
stock deficit, respectively. Clearly, sc−j has to be lower than h−j . Parameter sl jt represents
the desired safety stock level for period t and product j. δ jt is the safety stock variation
in period t, i.e. δ jt = sl jt − sl j(t−1). Constraints (5.11) are equivalent to Constraints (5.2)
and Constraints (5.12) limit the maximum safety stock deficit to the safety stock level.
Objective function (5.10) now minimizes backlog, setup costs, overstock and safety stock
deficit.

5.3.4 Exact multistage stochastic programming approach

In the multistage stochastic programming model version of the GLSP, uncertainty is mod-
eled through a finite number of scenarios |K|, and each scenario k has a probability πk of
demand realization and the summation of all probabilities must be 1, i.e.

∑
k πk = 1. It is

assumed that production quantities and production sequences can be readjusted in every
time period, as well as inventory and demand fulfilment decisions. A model based on a
scenario tree (Brandimarte, 2006), in which scenarios and periods are represented by a set
of nodes that specify the potential realization of the uncertainty, is described below:

(F3: MstageStochModel)

min
∑
m∈M

πm ·

∑
j∈J

(
h+

j · I
+
jtmm + h−j · I

−
jtmm

)
+

∑
j,`∈J

∑
n∈Nm

s j` ·Z j`nm

 (5.14)

s.t.: I+
jtaa + I−jtmm +

∑
n∈Nm

X jnm = I+
jtn + I−jtaa + d jtmm, ∀ j ∈ J, m ∈ M,a = am (5.15)∑

j∈J

∑
n∈Nm

p j ·X jnm +
∑
j,`∈J

∑
n∈Nm

q j` ·Z j`nm ≤ captm , ∀m ∈ M (5.16)

X jnm ≤ b jt ·Y jnm, ∀ j ∈ J, m ∈ M, n ∈ Nm (5.17)∑
j∈J

Y jnm = 1, ∀m ∈ M, n ∈ Nm (5.18)
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∑
`∈J

Z j`nm = Y j(n−1)m′ , ∀ j ∈ J, m ∈ M, m′ ∈ {m}∪ {am}, n ∈ Nm (5.19)∑
j∈J

Z j`nm = Y`nm, ∀` ∈ J, m ∈ M, n ∈ Nm (5.20)

X jnm ≥ m j ·
(
Y jnm−Y j(n−1)m′

)
, ∀ j ∈ J, m ∈ M, m′ ∈ {m}∪ {am}, n ∈ Nm (5.21)

Y jnm ∈ B, X jnm, Z j`m, I+
jtm, I−jtm ≥ 0, ∀ j, ` ∈ J, ∀m ∈ M, ∀n ∈ N, (5.22)

where, M is the set of nodes, Nm is the set that contains the micro-periods related to node
m, am is the immediate predecessor of node m and tm is the period of node m. In the model,
production and scheduling decisions, as well as inventory and demand fulfilment variables
are adjusted in every period (for each demand realization), which relates to a more flexible
production system.

5.4. Adapting uncertainty models to the multistage setting

In this section we first present a two-stage stochastic programming and a robust optimiza-
tion model to solve the GLSP under demand uncertainty. Then we apply the shrinking-
horizon approach (Balasubramanian and Grossmann, 2004) as a strategy to adapt both
models to the multistage structure.

5.4.1 Two-stage stochastic programming model

The following two-stage stochastic programming model has production and setup as here-
and-now variables, while inventory and demand fulfillment are considered wait-and-see
variables. Its objective function aims at minimizing the expected cost and Constraints (5.24)
represent the inventory balance for each scenario k ∈ K:

(F4: 2stageStochModel)

min
∑
j∈J

∑
t∈T

∑
k∈K

πk ·
(
h+

j · I
+
jtk + h−j · I

−
jtk

)
+

∑
j,`∈J

∑
n∈N

s j` ·Z j`n (5.23)

s.t.: Constraints (5.3), (5.4), (5.5), (5.6), (5.7), (5.8)

I+
j(t−1)k + I−jtk +

∑
n∈Nt

X jn = I+
jtk + I−j(t−1)k + d jtk, ∀ j ∈ J, t ∈ T, k ∈ K (5.24)

Y jn ∈ B, X jn, Z j`n, I+
jtk, I−jtk ≥ 0, ∀ j, ` ∈ J, n ∈ N, t ∈ T, k ∈ K. (5.25)

5.4.2 Robust optimization model

In the robust optimization modeling approach, uncertainty is modeled using an interval-
polyhedral uncertainty set. Following the budget of uncertainty approach proposed by Bert-
simas and Sim (2004), the demand uncertainty is modeled using the polyhedral-uncertainty
set U:
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U =

{
D ∈ R|J|×|T |+ | ξ jt ∈ [−1,1],

t∑
τ=1

|ξd
jτ| ≤ Γ jt, ∀ j ∈ J, t ∈ T

}
, (5.26)

in which ξ jt =
(
d̃ jt −d jt

)
/d̂ jt is the scaled demand deviation and d̃ jt is the bounded random

demand variable in the interval [d jt− d̂ jt,d jt + d̂ jt]. The budget of uncertainty parameter Γd
jt

reflects risk preferences and controls the maximum number of coefficients that can assume
extreme values.

To determine the tractable robust counterpart of the GLSP with demand uncertainty,
the balancing Constraints (5.2) need to be replaced by inequalities constraints. Otherwise,
those constraints make the robust formulation generally intractable (Melamed et al., 2016).
Therefore, Constraints (5.2) are replaced by (see Melamed et al. (2016); Alem et al. (2016)
for more details):

H jt ≥ h+
jt · I jt = h+

jt ·

I+
j0 +

t∑
τ=1

∑
n∈Nτ

X jn−

t∑
τ=1

d jτ

 , ∀ j ∈ J, t ∈ T, (5.27)

and

H jt ≥ h−jt · (−I jt) = h−jt ·

I−j0− t∑
τ=1

∑
n∈Nτ

X jn +

t∑
τ=1

d jτ

 , ∀ j ∈ J, t ∈ T. (5.28)

Using the uncertainty set U, the worst-case realization of the demand is now introduced
into the new Constraints (5.29) and (5.30):

H jt ≥ h+
jt · I jt = h+

jt ·

I+
j0 +

t∑
τ=1

∑
n∈Nτ

X jn−min
d̃∈U

t∑
τ=1

(d jτ + d̂ jτ · ξ
d
jτ)

 , ∀ j ∈ J, t ∈ T, (5.29)

and

H jt ≥ h−jt · (−I jt) = h−jt ·

I−j0− t∑
τ=1

∑
n∈Nτ

X jn + max
d̃∈U

t∑
τ=1

(d jτ + d̂ jτ · ξ
d
jτ)

 , ∀ j ∈ J, t ∈ T. (5.30)

By applying transformation techniques (Bertsimas and Sim, 2004) used in robust op-
timization (see Appendix for the detailed derivation), the robust optimization problem is
reformulated into its tractable finite counterpart:

(F5: RobModel)
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min
∑
j∈J

∑
t∈T

H jt +
∑
j,`∈J

∑
n∈N

s j` ·Z j`n (5.31)

s.t.: Constraints (5.3), (5.4), (5.5), (5.6), (5.7), (5.8)

H jt ≥ h+
jt ·

I+
0t +

t∑
τ=1

∑
n∈Nτ

X jn−

t∑
τ=1

d jτ +Γd
jt ·λ

d
jt +

t∑
τ=1

µd
jτt

 , ∀ j ∈ J, t ∈ T (5.32)

H jt ≥ h−jt ·

I−0t −

t∑
τ=1

∑
n∈Nτ

X jn +

t∑
τ=1

d jτ +Γd
jt ·λ

d
jt +

t∑
τ=1

µd
jτt

 , ∀ j ∈ J, t ∈ T (5.33)

λd
jt +µd

jτt ≥ d̂ jτ, ∀ j ∈ J, t ∈ T, τ ≤ t (5.34)

λd
jt, µ

d
jτt ≥ 0, , ∀ j ∈ J, t ∈ T, τ ≤ t (5.35)

Y jn ∈ B, X jn, Z j`n ≥ 0, ∀ j, ` ∈ J, n ∈ N, t ∈ T. (5.36)

5.4.3 Shrinking-horizon approach as an adaptation to the multistage setting

In both two-stage stochastic programming and robust optimization models, the here-and-
now decisions are related to production quantities and setup scheduling. Usually, these
models can be applied in rigid production planning systems, in which it is not possible
to easily readjust the production planning and scheduling sequences in every time period.
However, if a flexible production system is considered, in which it is possible to adjust the
production quantities and scheduling decisions every period, those models may be ineffec-
tive.

Focusing on the latter case, it is possible to adapt formulations F4 and F5 to the
multistage setting. Balasubramanian and Grossmann (2004) propose an approach called
shrinking-horizon, which uses the two-stage programming model as an approximation
model for the multistage problem. In this method, the standard two-stage stochastic model
is formulated for the entire planning horizon T . In the first iteration (i = 1), the model is
solved and then the variables from the first period (stage) are fixed. After that, the model is
solved again for the next period with the remaining periods |T |− i and variables from previ-
ous periods fixed. The algorithm proceeds until the decision variables from all periods are
fixed and then the cost is computed. The pseudo-algorithm can be described as follows:

Algorithm 2: Shrinking-horizon heuristic

1 t(current time period) = 0
2 T H(planning horizon) = |T |
3 while t ≤ T H do
4 0) Demand realization for period t
5 1) Solve 2stageStochModel or RobModel for t to T H
6 2) Fix decision variables X, Z, Y I− and I+ for period t
7 if t = T H then
8 3) Compute total cost

9 4) Update t = t + 1

The main difference between shrinking-horizon heuristic and the rolling-horizon plan-
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ning scheme is that the planning horizon considered is fixed for the shrinking-horizon
heuristic, which is not always true for the rolling-horizon planning scheme. Since we
are considering a fixed planning horizon for the Monte Carlo simulation, both approaches
can be considered similar. Hence, we apply the shrinking-horizon heuristic in both robust
and stochastic models of this section as a more computationally efficient alternative to the
exact multistage stochastic model embedded in the rolling-horizon planning.

5.5. Approximate heuristic strategy for rolling-horizon planning

The rolling-horizon heuristic with approximate models proposed by Clark and Clark (2000)
gives a reliable approximation of the regular rolling-horizon scheme for lot-sizing with
sequence-dependent setups. Moreover, it is considerably faster than the standard rolling-
horizon scheme. The idea behind this method is to solve the model in a rolling-horizon
environment, but relaxing the integer setup variables that are not within the current period.
After the model is solved, the current period is updated and the setup variables of the
previous period are fixed, then the model is solved again with the setup variables of the
next periods relaxed.

The main argument of using approximation heuristics (De Araujo et al., 2007) is that
there is no need for detailed schedules for later periods in rolling-horizon planning because
decisions for later periods are never implemented in the current period. Hence, it is pos-
sible to use a simplified version that is easier to solve for future periods. This simplified
version already used in deterministic lot-sizing and scheduling problems can be extended
to uncertainty models, such as multistage stochastic programming and adjustable robust
optimization models, in order to overcome their intractability.

5.5.1 Approximate multistage stochastic programming model

In this work, we first adapt this heuristic for the multistage stochastic model. In each period
(stage) the model is solved with the corresponding setup variables being integer, with fixed
variables from previous periods, and relaxed setup variables for future periods. Hence, the
reformulated model will have |J|× |Nt| integer variables, instead of

∑|T |
t (|J|× |Nt|×

∏t
t′ |Kt′ |)

from the regular model, |Kt′ | being the number of scenarios in period t′. Therefore, the
approximate multistage stochastic programming model is formulated as follows:

(F6: AppMstageStochModel)

min
∑
m∈M

πm ·

∑
j∈J

(
h+

j · I
+
jtmm + h−j · I

−
jtmm

)+
∑

m∈MP

πm ·

∑
j,`∈J

∑
n∈Nm

s j` ·Z j`nm


+

∑
m∈MF

πm ·

∑
j∈J

∑
n∈Nm

c j ·X jnm

 (5.37)

s.t.: I+
jtaa + I−jtmm +

∑
n∈Nm

X jnm = I+
jtn + I−jtaa + d jtmm, ∀ j ∈ J, m ∈ M (5.38)
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∑
j∈J

∑
n∈Nm

p j ·X jnm +
∑
j,`∈J

∑
n∈Nm

q j` ·Z j`nm ≤ captm , ∀m ∈ MP (5.39)∑
j∈J

∑
n∈Nm

u j ·X jnm ≤ captm , ∀m ∈ MF (5.40)

X jnm ≤ b jt ·Y jnm, ∀ j ∈ J, m ∈ MP, n ∈ Nm (5.41)∑
j∈J

Y`nm = 1, ∀m ∈ MP, n ∈ Nm (5.42)∑
`∈J

Z j`nm = Y j(n−1)m′ , ∀ j ∈ J, m ∈ MP, m′ ∈ {m}∪ {am}, n ∈ Nm (5.43)∑
j∈J

Z j`nm = Y jnm, ∀` ∈ J, m ∈ MP, n ∈ Nm (5.44)

X jnm ≥ m j ·
(
Y jnm−Y j(n−1)m′

)
, ∀ j ∈ J, m ∈ MP, m′ ∈ m∪am, n ∈ Nm (5.45)

X jnm, Z j`m, I+
jtm, I−jtm ≥ 0, ∀ j, ` ∈ J, ∀m ∈ M, ∀n ∈ N (5.46)

Y jnm ∈ B, ∀ j ∈ J, ∀m ∈ MP, ∀n ∈ N (5.47)

Where MP is the set related to the past and current periods and MF is the set that
contains nodes related to future periods. In Constraints (5.40), the production time of
future periods is increased using u j factor, to compensate for the relaxed setup time. u j is
the approximated production rate for product j. Usually this parameter is calculated using
the demand mean (dmean j) of product j over periods and the mean setup time to product
j, (q−to

j ):

u j = (q−to
j + p j ·dmean j)/dmean j. (5.48)

In the objective function (5.37), the setup cost for future periods is replaced by c j,
which is the approximated setup cost for product j per unit produced. Usually, it is cal-
culated taking into account the demand mean (dmean j) of product j over periods and its
mean setup cost to product j (s−to

j ):

c j = s−to
j /dmean j. (5.49)

One problem with this traditional estimation is that it can be rather conservative when
discrepancies between setup time and costs among products are high. Therefore, we pro-
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pose to follow a weighted mean approach to fine-tune the parameters u j and c j:

Algorithm 3: Fine tuning method for parameters u j and c j

1 1) Solve DetModel for a specific instance
2 2.1) q−to

j =
∑
`∈J

∑
n∈N

q` j ·Z` jn/|N |

3 2.2) u j = (q−to
j + p j ·dmean j)/dmean j

4 3.1) s−to
j =

∑
`∈J

∑
n∈N

s` j ·Z` jn/|N |

5 3.2) c j = s−to
j /dmean j

With this weighted mean approach, only the setup times and costs that were executed
in the determinist solution will be taken into account when calculating parameters u j and
c j. This fine tuning avoids calculating a mean that takes into account setups that may never
occur, especially when the variability of dependent setup times and costs among products
is high.

5.5.2 Approximate affinely adjustable robust optimization model

One of the assumptions of the robust optimization (RO) approach is that all the variables
are here-and-now decisions. As mentioned before, this assumption may be unrealistic for
multistage optimization problems or may produce highly conservative solutions. There-
fore, we propose an adjustable robust optimization formulation for the GLSP. In adjustable
robust models, it is possible to have wait-and-see variables, i.e., some decisions can be
adjusted after the uncertainty is revealed. The main drawback of ARO models is their in-
tractability, as shown in Ben-Tal et al. (2004). Nevertheless, it is possible to approximate
the continuous wait-and-see variables using affine functions in order to keep tractability
of the model. For instance, the production decision variables X jn and the auxiliary vari-
able H jt would be replaced by the following variables (see Melamed et al. (2016) for more
details), respectively:

X jn(d jt) = X0
jn +

t−1∑
r=1

Xr
jn ·d jr, ∀ j ∈ J, t ∈ T, n ∈ Nt, (5.50)

H jt(d jt) = H0
jt +

t−1∑
r=1

Hr
jt ·d jr, ∀ j ∈ J, t ∈ T. (5.51)

Bertsimas et al. (2010) proved that this approximation provides optimal solutions when
uncertainty is modeled using box sets. However, for mixed-integer linear programming
models, it is not possible to model integer variables as wait-and-see decisions using para-
metric decision rules. In this case, it is necessary to resort to others approaches. Bertsimas
and Caramanis (2010) introduce an approach that splits an uncertainty set Z into smaller
I subsets Zi that have their own integer variables. The drawback here is that the resulting
model will have I more integer variables, increasing its computational complexity. Postek
and Den Hertog propose a similar method for splitting the uncertainty sets and construct-
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ing decision rules for integer and continuous variables. However, these approaches are still
highly intractable for large problems (Gorissen et al., 2015).

To deal with integer variables in the GLSP, we propose to apply the same approxima-
tion strategy (see Section 5.5.1) on the ARO model within the rolling-horizon perspective.
Hence, the ARO model contains the setup integer variables only for the current period,
which are considered here-and-now variables, and continuous setup variables for future
periods. For this purpose, we divided the planning periods of the model in present period
(T P) and future periods (T F). Hence, by applying the approximate techniques (described
in Section 5.5.1) and the affine functions (Constraints (5.50) and (5.51)) for the future vari-
ables, the approximate ARO model can be modeled as follows:

(F7a: AppAROModel)

min
∑
j∈J

∑
t∈T P

H′jt +
∑
j,`∈J

∑
t∈T P

∑
n∈Nt

s j` ·Z j`n

+
∑
t∈T F

∑
j∈J

(c j · (
∑
n∈Nt

X0
jn +

t−1∑
r=|T P|+1

Xr
jn ·d jτ) + H0

jt +

t−1∑
r=|T P|+1

Hr
jt ·d jr) (5.52)

s.t.:

H′jt ≥ h+
jt ·

I+
0t +

t∑
τ=1

(
∑
n∈Nτ

X′jn−d jτ)

 , ∀ j ∈ J, t ∈ T P (5.53)

H′jt ≥ h−jt ·

I−0t +

t∑
τ=1

(
∑
n∈Nτ

−X′jn + d jτ)

 , ∀ j ∈ J, t ∈ T P (5.54)

0 ≥ −(H0
jt +

t−1∑
r=|T P|+1

Hr
jt ·d jr)

+ h+
jt ·

I+
0t +

t∑
τ=|T P|+1

(
∑
n∈Nτ

(X0
jn +

τ−1∑
r=|T P|+1

Xr
jn ·d jr)−d jτ)

+
∑
τ∈T P

(
∑
n∈Nτ

X′jn−d jτ)

 , ∀ j ∈ J, t ∈ T F (5.55)

0 ≥ −(H0
jt +

t−1∑
r=|T P|+1

Hr
jt ·d jr)

+ h−jt ·

I−0t −

t∑
τ=|T P|+1

(
∑
n∈Nτ

−(X0
jn +

τ−1∑
r=|T P|+1

Xr
jn ·d jr) + d jτ)

+
∑
τ∈T P

(
∑
n∈Nτ

−X′jn + d jτ)

 , ∀ j ∈ J, t ∈ T F (5.56)∑
j∈J

∑
n∈Nt

p j ·X′jn +
∑
j,`∈J

∑
n∈Nt

q j` ·Z j`n ≤ capt, ∀t ∈ T P (5.57)
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∑
j∈J

u j ·
∑
n∈Nt

(X0
jn +

t−1∑
r=1

Xr
jn ·d jr) ≤ capt, ∀t ∈ T F (5.58)

X′jn ≤ b jt ·Y jn, ∀ j ∈ J, t ∈ T P, n ∈ Nt (5.59)∑
j∈J

Y jn = 1, ∀t ∈ T P, n ∈ N (5.60)∑
`∈J

Z j`n = Y j(n−1), ∀t ∈ T P, j ∈ J, n ∈ Nt (5.61)∑
j∈J

Z j`n = Y`n, ∀` ∈ J, t ∈ T P, n ∈ Nt (5.62)

X′jn ≥ m j ·
(
Y jn−Y j(n−1)

)
, ∀ j ∈ J, t ∈ T P,∈ Nt (5.63)

X0
jn +

t−1∑
r=|T P|+1

Xr
jn ·d jr ≥ 0, ∀ j ∈ J, t ∈ T F, n ∈ Nt (5.64)

H0
jt +

t−1∑
r=|T P|+1

Hr
jt ·d jr ≥ 0, ∀ j ∈ J, t ∈ T F (5.65)

Y jn ∈ B, X′jn, Z j`n ≥ 0, ∀ j, ` ∈ J, n ∈ N, t ∈ T. (5.66)

Where, variables X′jn and H′jt refer to production and inventory/backlog costs in the
current periods, respectively. Objective function (5.52) contains the approximation of fu-
ture setup costs and minimizes the setup and inventory/backlog costs related to the current
period and future periods. Constraints (5.53) and (5.54) are the inventory and backlog
constraints for the current period. Constraints (5.55) and (5.56) are the inventory and back-
log balance for future periods. Constraints (5.57) and (5.58) limit the production capac-
ity for the current and future periods, respectively. Constraints (5.59) -(5.63) enforce the
sequence-dependent setup setting and are equivalent to Constraints (5.4)-(5.8), but now
they are applied only for the current period. Constraints (5.64) and (5.65) define the do-
main of variables for future periods. Constraints (5.66) define the domain of variables for
the current period.

By using the uncertainty set U and applying robust optimization transformations tech-
niques (see Appendix), we can obtain the following solvable mixed-integer linear model:

(F7c: AppAROModel)

min
∑
j∈J

∑
t∈T P

H jt +
∑
j,`∈J

∑
t∈T P

∑
n∈Nt

s j` ·Z j`n +
∑
t∈T F

∑
j∈J

(
∑
n∈Nt

c j ·X0
jn + H0

jt)

+
∑
t∈T F

∑
j∈J

(
t−1∑

r=|T P|+1

(
∑
n∈Nt

Xr
jn · c j + Hr

jt) ·d jr +Γ jt−1 ·λ
A
jt

+

t−1∑
τ=|T P|+1

µA
jτt +Γ jt−1 ·λ

F
jt +

t−1∑
τ=|T P|+1

µF
jτt) (5.67)

s.t.:
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H jt ≥ h+
jt ·

I+
0t +

t∑
τ=1

(
∑
n∈Nτ

X′jn−d jτ)

 , ∀ j ∈ J, t ∈ T P (5.68)

H jt ≥ h−jt ·

I−0t +

t∑
τ=|T P|+1

(
∑
n∈Nτ

−X′jn + d jτ)

 , ∀ j ∈ J, t ∈ T P (5.69)

0 ≥ h+
jt ·

I+
0t +

t∑
τ=|T P|+1

∑
n∈Nτ

X0
jn +

t∑
τ=|T P|+1

(
∑
n∈Nτ

τ−1∑
r=|T P|+1

Xr
jn ·d jr −d jτ)

+
∑
τ∈T P

(
∑
n∈Nτ

X′jn−d jτ)


− (H0

jt +

t−1∑
r=|T P|+1

Hr
jt) +Γ jt ·λ

B
jt +

t∑
τ=|T P|+1

µB
jτt,∀ j ∈ J, t ∈ T F (5.70)

0 ≥ h−jt ·

I−0t −

t∑
τ=|T P|+1

∑
n∈Nτ

X0
jn +

t∑
τ=|T P|+1

(
τ−1∑

r=|T P|+1

∑
n∈Nτ

−Xr
jn ·d jr + d jτ)

+
∑
τ∈T P

(
∑
n∈Nτ

−X′jn + d jτ)


− (H0

jt +

t−1∑
r=|T P|+1

Hr
jt) +Γ jt ·λ

C
jt +

t∑
τ=|T P|+1

µC
jτt, ∀ j ∈ J, t ∈ T F (5.71)

∑
j∈J

∑
n∈Nt

p j ·X′jn +
∑
j,`∈J

∑
n∈Nt

q j` ·Z j`n ≤ capt, ∀t ∈ T P (5.72)

∑
j∈J

∑
n∈Nt

u j ·X0
jn +

∑
j∈J

∑
n∈Nt

u j ·

t−1∑
r=|T P|+1

Xr
jn ·d jr

+
∑
j∈J

(Γ jt−1 ·λ
D
jt +

t−1∑
τ=|T P|+1

µD
jτt) ≤ capt, ∀t ∈ T F (5.73)

X0
jn +

t−1∑
r=|T P|+1

Xr
jn ·d jr − (Γ jt−1 ·λ

E
jn +

t−1∑
τ=|T P|+1

µE
jτn) ≥ 0, ∀ j ∈ J, t ∈ T F, n ∈ Nt, (5.74)

H0
jt +

t−1∑
r=|T P|+1

Hr
jt ·d jr − (Γ jt−1 ·λ

F
jt +

t−1∑
τ=|T P|+1

µF
jτt) ≥ 0, ∀ j ∈ J, t ∈ T F, (5.75)

X′jn ≤ b jt ·Y jn, ∀ j ∈ J, t ∈ T P, n ∈ Nt (5.76)∑
j∈J

Y jn = 1, ∀t ∈ T P, n ∈ N (5.77)∑
`∈J

Z j`n = Y j(n−1), ∀t ∈ T P, j ∈ J, n ∈ Nt (5.78)∑
j∈J

Z j`n = Y jn, ∀` ∈ J, t ∈ T P, n ∈ Nt (5.79)

X′jn ≥ m j ·
(
Y jn−Y j(n−1)

)
, ∀ j ∈ J, t ∈ T P,∈ Nt (5.80)
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λA
jt +µA

jτt ≥
∑
n∈Nt

c j ·Xτ
jn · d̂ jτ, ∀ j ∈ J, t ∈ T F, τ < t (5.81)

λA
jt, µ

A
jτt ≥ 0, ∀ j ∈ J, t ∈ T F, τ < t (5.82)

µB1
jτt +µB2

jτt + νB1
jτt + νB2

jτt = (
t∑

τ=r+1

∑
n∈Nτ

Xr
jn ·h

+
jt −Hr

jt −h+
jt) · d̂ jτ, ∀ j ∈ J, t ∈ T F, τ < t

(5.83)

µB1
jτt +µB2

jτt + νB1
jτt + νB2

jτt = −d̂ jτ ·h+
jt, ∀ j ∈ J, t ∈ T F, τ = t (5.84)

λB
jt − ν

B1
jτt + νB2

jτt ≥ 0, ∀ j ∈ J, t ∈ T F, τ ≤ t (5.85)

λB
jt, µ

B1
jτt, ν

B1
jτt ≥ 0, ∀ j ∈ J, t ∈ T F, τ ≤ t (5.86)

µB2
jτt, ν

B2
jτt ≤ 0, ∀ j ∈ J, t ∈ T F, τ ≤ t (5.87)

µC1
jτt +µC2

jτt + νC1
jτt + νC2

jτt = (h−jt −
t∑

τ=r+1

∑
n∈Nτ

Xr
jn ·h

−
jt −Hr

jt) · d̂ jτ, ∀ j ∈ J, t ∈ T F, τ < t

(5.88)

µC1
jτt +µC2

jτt + νC1
jτt + νC2

jτt = d̂ jτ ·h−jt, ∀ j ∈ J, t ∈ T F, τ = t (5.89)

λC
jt − ν

C1
jτt + νC2

jτt ≥ 0, ∀ j ∈ J, t ∈ T F, τ ≤ t (5.90)

λC
jt, µ

C1
jτt, ν

C1
jτt ≥ 0, ∀ j ∈ J, t ∈ T F, τ ≤ t (5.91)

µC2
jτt, ν

C2
jτt ≤ 0, ∀ j ∈ J, t ∈ T F, τ ≤ t (5.92)

λD
jt +µD

jτt ≥
∑
n∈Nt

u j ·Xτ
jn · d̂ jτ, ∀ j ∈ J, t ∈ T F, τ < t (5.93)

λD
jt , µ

D
jτt ≥ 0, ∀ j ∈ J, t ∈ T F, τ < t (5.94)

λE
jn +µE

jτn ≥ Xτ
jn · d̂ jτ, ∀ j ∈ J, t ∈ T F, τ < t (5.95)

λE
jt, µ

E
jτt ≥ 0, ∀ j ∈ J, t ∈ T F, τ < t (5.96)

λF
jt +µF

jτt ≥ Hτ
jt · d̂ jτ, ∀ j ∈ J, t ∈ T F, τ < t (5.97)

λF
jt, µ

F
jτt ≥ 0, ∀ j ∈ J, t ∈ T F, τ < t (5.98)

Y jn ∈ B, X′jn, Z j`n ≥ 0, ∀ j, ` ∈ J, n ∈ N, t ∈ T. (5.99)

5.6. Computational experiment

With this computational experiment we intend to assess each strategy and model proposed
mainly in terms of average costs and under four other criteria: standard deviation, worst-
case scenario cost, best-case scenario cost and runtime. With these criteria it is possible to
evaluate the trade-offs of the proposed strategies regarding quality of solutions and compu-
tational performance, and then provide guidelines of the strategies that solve the problem
in the most practicable manner. The experiment is implemented in C++ programming
language and the models were solved using CPLEX 12.6 optimization tool on an Intel
E5-2450 processor with a Scientific Linux 6.5 platform.

This section is divided into 3 parts. Subsection 5.6.1 explains the Monte Carlo simu-
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lation experiment and how the performance of the proposed strategies and models can be
evaluated with this procedure. In the second subsection, we list the sizes and structures of
the instance sets generated. Finally, Subsection 5.6.3 presents the results of the experiment
with the main remarks and guidelines.

5.6.1 Monte Carlo simulation as evaluation method

The experiment is carried out in the following way for all the proposed models. First, the
models are solved with the demand of the current period revealed and only the mean and
coefficient of variation of future demand known. After the model is solved, the decisions
of the current period are fixed, the demand of the next period is revealed and the model is
solved again. The method continues until the demand for all periods is revealed and the
decisions for all periods are fixed. Thus, after repeating the simulation a significant number
of times, it is possible to calculate the performance of each model in terms of average cost,
standard deviation, worst and best-case scenario cost and runtime.

We perform fifty replications in order to achieve statistically significant results without
compromising the computational complexity of the experiment. Moreover, we use the
same seed generator for all the simulations. The demand distribution is assumed to be
log-normal, also the mean and variability values are given for the respective product and
period. As mentioned before, the product demand is independent for every product j and
time period t. Furthermore, we assume that the time limit to solve the model in each period
is 10 minutes.

In order to achieve the best potential of each model in terms of reducing the average
cost, we test several combinations of uncertainty parameters for each approach. For the
ARO (RO) models, the experiment is performed with the variability level γ̂ varying from 0
to 3 (0.5 to 2.5) with a step of 0.1, in which d̂ jτ = γ̂ ·σ and σ is the standard deviation. Also,
we assume four different budgets of uncertainty (Γ jt): t, 0.5t+0.5, 0.1t+0.5 and 0.05t+0.1
, where t is the time period. For the stochastic models, we consider 5 different numbers
of scenarios: 10, 50, 100, 200, and 500. The scenarios were generated using the Sample-
Average Approximation technique (Kleywegt et al., 2002). For the deterministic model
with safety stock, the desired safety stock level sl jt was varied from 0 to 0.5, with a step of
0.01. Therefore, besides comparing the models, the simulation method is used to evaluate
the impact of the combination of the uncertainty parameters. This allows for selecting the
combination of parameters that provides the best performance for each modeling approach.

We also evaluated the static strategies in the simulation for the following models: de-
terministic, deterministic with safety stocks, robust optimization and two-stage stochastic
programming with 10 scenarios. This analysis is important to quantify the value of using a
rolling-horizon planning scheme.

5.6.2 Instances

We organize our instances in 2 classes by changing the production capacity:

1. High capacity: capt =
∑

j∈J E(d jt)
0.75 ;
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2. Low capacity: capt =
∑

j∈J E(d jt)
0.90 ,

where
∑

j∈J E(d jt) is the sum of the expected demand for all products in period t.
For each class, we create two sets of instances with different instance sizes: small (with

|P| = 3 and |T | = 3) and medium (|P| = 5 and |T | = 4). Each set contains 5 instances. The
number of micro-periods per period of each instance is equal to the number of products
(i.e., |Nt| = |P|). Also, the parameters of each instance are generated based on Amorim
et al. (2013) and according to the following structure:

1. Expected demand: E(d jt) = U(120,480);

2. Coefficient of variation: 0.5;

3. Setup time (same product type): q j=` = U(1,10);

4. Setup time (different product type): q j,` = U(11,50);

5. Holding cost: h+
j = U(1,10);

6. Shortage cost: h−j = 10 ·h+
j ;

7. Setup cost among same products type: s j=` = 0;

8. Setup cost among different products type (for medium instances): s j,` =
(h−j +h+

j )
2 ·5 ·

U(0,1);

9. Setup cost among different products type (for small instances): s j,` =
(h−j +h+

j )
2 · 10 ·

U(0,1);

10. Production time: p j = 1;

11. Minimum lot size: m j = b jt;

12. Maximum lot size: m j = capt.

With this arrangement we can examine the performance of each strategy as a function
of the production capacity, number of products and length of the planning horizon.

5.6.3 Overall results

Tables 5.1 and 5.2 present the performance of each strategy proposed for instances with low
and high production capacities, respectively. As mentioned before, among all uncertainty
parameters combinations tested for each strategy, we selected the one that has the best
performance in terms of average cost. The heading of the tables has the following structure:
the strategy and modeling technique proposed, then the average cost, standard deviation,
worst-case cost, best-case cost and runtime for small and medium instances. Also, the
tables are divided in 3 different categories: the first category contains the static approaches
without rolling-horizon planning, the second indicates the expected value given perfect
information, finally the strategies within the rolling-horizon planning scheme are presented.
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Table 5.3 describes the overall performance of each strategy using a rolling-horizon
planning scheme compared to the deterministic rolling-horizon planning scheme. The first
column displays the strategies proposed, the second column shows how better each strategy
proposed is when compared to the deterministic approach, and the last column shows the
ratio of the deterministic runtime over the proposed strategy runtime.

Firstly, it is important to notice that the simulation experiment confirms some intu-
itive thoughts regarding uncertainty in production planning. The value of perfect infor-
mation (VPI)∗ decreases when the production capacity is more restrictive and the value
of stochastic solution (VSS)† is lower for high production capacity. The value of using
a rolling-horizon planning scheme (VRHS)‡, which is the difference between the static
and rolling-horizon solution, also decreases if there is low production capacity, it means
that to take full advantage of flexible decisions and rolling-horizon planning schemes it is
important to have high production capacity.

Results also suggest that the performance of each strategy is more affected by the ad-
vantages and drawbacks of the modeling approach and by the size of instances (number of
products and planning horizon) rather than the production capacity of each instance. It is
also important to notice the high disparities of the simulation runtime, especially for the
stochastic models. This happens because sometimes models with a small number of sce-
narios have a better performance in terms of average cost than the ones with a large number
of scenarios.

Below we analyze the performance of each strategy and provide some insights regard-
ing solution quality and computational complexity. The strategies are organized in the fol-
lowing way: standard strategies (deterministic, deterministic with safety stocks and exact
multistage stochastic programming models within the rolling-horizon planning scheme),
adaptation strategies (two-stage stochastic programming and robust optimization models
adapted to the multistage setting using the shrinking-horizon planning scheme) and ap-
proximate strategies (approximate multistage stochastic programming and approximate
adjustable robust optimization models in the rolling-horizon planning scheme with and
without fine tuning).

Standard strategies: The deterministic model in the rolling-horizon planning scheme is
one of the fastest strategies. It is 178 times faster than the multistage stochastic program-
ming model. However, it assumes only the mean as information of future demand, which
results in inferior here-and-now solutions and a general poor performance, when compared
with other methods. The incorporation of safety stocks does not help to reduce the aver-
age cost, however it can reduce the worst-case scenario cost. Hence, the incorporation of
safety stocks can be considered a conservative robust approach, somehow similar to the
Soyster’s model (Soyster, 1973). Because of that, we argue that using robust optimization
models that incorporate uncertainty using polyhedral uncertainty sets may bring a preciser

∗VPI average value for low capacity instances: 14.12%. VPI average value for high capacity instances:
36.72%.
†VSS average value for low capacity instances: 6.07%. VSS average value for high capacity instances:

1.77%.
‡VRHS average value for low capacity instances: 81.73%. VRHS average value for high capacity instances:

95.31%.



156
Chapter 5. Integrating lot-sizing and scheduling under multistage demand

uncertainty

Strategy
(D

eterm
inistic-Strategy)/D

eterm
inistic

perform
ance

D
eterm

inistic/Strategy
runtim

e

D
eterm

inistic
0%

1.00
D

eterm
inistic

w
/safety

stocks
0%

1.015
E

xactm
ultistage

stochastic
program

m
ing

5.16%
0.006

A
dapted

tw
o-stage

stochastic
program

m
ing

3.60%
0.033

A
dapted

robustoptim
ization

6.70%
0.329

A
pproxim

ate
m

ultistage
stochastic

program
m

ing
5.32%

0.189
A

pproxim
ate

m
ultistage

stochastic
program

m
ing

(tuned)
5.24%

0.048
A

pproxim
ate

adjustable
robustoptim

ization
6.62%

7.790
A

pproxim
ate

adjustable
robustoptim

ization
(tuned)

6.72%
7.899

Table
5.3

–
O

verallperform
ance

ofeach
strategy

using
a

rolling-horizon
planning

schem
e

in
the

sim
ulation

experim
ent.



5.6. Computational experiment 157

trade-off than safety stocks models in terms of average cost and risk.

The exact multistage stochastic programming performance is, on average, 5.16% better
than the deterministic model, but it is 166.6 times slower. When compared with other
strategies it does not achieve a good performance for medium instances because of its
intractability. The model is not able to converge within the 10 minutes limit for each period,
even for a small number of scenarios, resulting in high gaps and poor solution quality.

Adaptation strategies: The two-stage stochastic programming adapted to the multistage
setting has, on average, solution with 3.60% better quality than the deterministic model.
It achieves the best solution for large instances with low capacity, however it can take
a significant amount of time to be solved, on average it requires 6 times more than the
deterministic model. Still, this adaptation strategy is more tractable than the traditional
multistage stochastic programming, as also shown by Balasubramanian and Grossmann
(2004). One possible drawback of this strategy is that we are considering production and
setup decision as first-stage variables, even for future periods, which is conservative and
may increase the inventory costs. An alternative approach would be considering the future
production and scheduling decisions as wait-and-see decisions (with the risk of being under
conservative for instances with low production capacity).

The robust optimization has the second best overall performance in the simulation ex-
periment. On average its performance is 6.70% better than the deterministic model, with
similar computational complexity (3 times slower). The good performance of this approach
may be caused by the following aspects: the rolling-horizon planning scheme eliminates
the static decisions from the robust optimization models and allows for dynamic produc-
tion and scheduling decisions; also, the unnecessity of scenarios to incorporate uncertainty
keeps the tractability of the model reasonable. However, this approach may require to test
several combinations of variability levels and budget of uncertainty profiles to obtain a
setting that is neither under nor over-conservative. An alternative to testing several robust
optimization parameters is to obtain a reasonable budget of uncertainty using the probabil-
ity of violating the demand constraints (see Wei et al. (2011) for more details) or choosing
a budget of uncertainty based on previous experiences from similar instances (see Alem
et al. (2016) for more details).

Approximation strategies: On average, the approximate multistage stochastic program-
ming has almost the same performance (5.32% better than the deterministic model) as the
exact multistage stochastic programming model. It is 0.82% worse for small instances and
1.15% better for large instances than the exact one, suggesting that this strategy may be
more suitable for long planning horizons. Generally, it is 33 times faster than the exact
multistage stochastic programming model, however it still requires generating scenarios,
which increases the intractability and may demand a high quantity of scenarios in order to
provide good solutions.

The approximate adjustable robust optimization (tuned) has the best overall perfor-
mance (6.72% better and 7.9 times faster than the deterministic model). We believe that
there are two main reasons for the high efficiency of this strategy. The first one is that the
relaxation strategy considers the scheduling integer decisions only for the current period,
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which substantially reduces the number of binary variables in the mixed-integer program
model. The second is that the robust optimization model does not requires scenario gen-
eration to incorporate uncertainty, which makes it more tractable. These aspects allow
to tackle longer planning horizons or even higher number of products. However, it has the
same disadvantage of the robust model - the need for testing several uncertainty parameters
combinations in order to generate good solutions.

The tuning of the approximation parameters slightly contributed to improve the per-
formances only for the approximate adjustable robust model. The tune of the approximate
parameters c j and u j improved the solutions by 0.11 p.p. on average.

Given the high efficiency of the approximate adjustable robust optimization, we present
in Table 5.4 the results of the simulation experiment for large instances (7 products and 8
periods) to show the practicability of the approximate adjustable robust optimization in
solving large instances of the problem.

Overall, the strategies that employ robust optimization approaches achieve better re-
sults: approximate adjustable robust optimization and adapted robust optimization have
similar solution quality, but the first strategy is considerably faster than the second. Strate-
gies that employ stochastic programming models also achieve acceptable results. The ap-
proximate multistage stochastic programming model achieve a slightly better performance
than the exact multistage stochastic programming model and is almost 8 times faster. The
solutions provided by the adapted two-stage stochastic programming is considerably worst
than the exact multistage stochastic programming model, but it is still a faster option than
the standard method.

5.7. Conclusion

This work presents adaptation and approximation strategies for improving the solving ef-
ficiency of the GLSP under demand uncertainty in a multistage setting. These strategies
are alternatives to the multistage stochastic programming and the standard rolling horizon
approaches. The main premise to apply these strategies is that in a flexible production
system, the solutions implemented are only here-and-now decisions, hence future decision
variables can be approximated in order to improve solving efficiency without much loss
of solution quality. A simulation experiment was developed to compare the strategies pro-
posed with the main standard approaches: deterministic GLSP, deterministic GLSP with
safety stocks and multistage stochastic programming models within rolling-horizon plan-
ning schemes. The simulation results indicate that the strategies proposed are suitable to
solve the problem, especially for long planning horizons or large quantity of final products.
The approximate adjustable robust optimization is able to provide rapid and high quality
solutions for any of the tested class/size of instances and is the only method that is able to
provide adequate solutions for large planning horizons in the simulation experiment.

Besides the promising results, we believe that there is still room for improvement. Fu-
ture work lies on the study of machine learning to create more precise approximations
and/or rules to efficiently provide near-optimum decisions in the rolling-horizon setting. A
study that compares these strategies with meta-heuristics and other heuristics (e.g., hierar-
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chical approaches, rolling-horizon heuristics) in a uncertainty setting can be very valuable.
Opportunities also lie on applying and evaluating these strategies in other lot-sizing settings
such as multi-level lot-sizing, lot-sizing with parallel machines or with uncertain process-
ing/setup times.
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Appendix 5.A Robust optimization transformations

The worst-case realization of the demand uncertainty is finally achieved by solving the
nonlinear new constraints (5.100) and (5.101) over the uncertainty set, i.e.:

H jt ≥ h+
jt · I jt = h+

jt ·

I+
j0 +

t∑
τ=1

∑
n∈Nτ

X jn−min
d̃∈U

t∑
τ=1

(d jτ + d̂ jτ · ξ
d
jτ)

 , ∀ j ∈ J, t ∈ T, (5.100)

and

H jt ≥ h−jt · (−I jt) = h−jt ·

I−j0− t∑
τ=1

∑
n∈Nτ

X jn + max
d̃∈U

t∑
τ=1

(d jτ + d̂ jτ · ξ
d
jτ)

 , ∀ j ∈ J, t ∈ T. (5.101)

Both inner optimization problems in constraints (5.100) and (5.101) lead to the follow-
ing auxiliary primal (dual) problem for each pair ( j, t):

max
t∑

τ=1

d̂ jτ · ξ
d
jτ

s.t.:
t∑

τ=1

ξd
jτ ≤ Γ jt,

0 ≤ ξd
jτ ≤ 1, ∀τ ≤ t.

(5.102)
min Γ jt ·λ

d
jt +

t∑
τ=1

µd
jτt

s.t.: λd
jt +µd

jτt ≥ d̂ jτ, ∀τ ≤ t
λd

jt, µ
d
jτt ≥ 0, ∀τ ≤ t.

(5.103)

The dual auxiliary problems are incorporated into the robust optimization model in
order to produce a tractable formulation.
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Appendix 5.B Adjustable robust optimization transformations

By applying the worst-case realizations of the demand uncertainty in the ARO model we
obtain the following non-linear model:

(F7b: AppAROModel)

min
∑
j∈J

∑
t∈T P

H′jt +
∑
j,`∈J

∑
t∈T P

∑
n∈Nt

s j` ·Z j`n +
∑
t∈T F

∑
j∈J

∑
n∈Nt

c j ·X0
jn

+
∑
t∈T F

∑
j∈J

max
d̃∈U

∑
n∈Nt

c j ·

t−1∑
r=|T P|+1

Xr
jn · (d jτ + d̂ jτ · ξ jτ)


+

∑
t∈T F

∑
j∈J

max
d̃∈U

H0
jt +

t−1∑
r=|T P|+1

Hr
jt · (d jr + d̂ jr · ξ jτ)

 (5.104)

s.t.:

H′jt ≥ h+
jt ·

I+
0t +

t∑
τ=1

(
∑
n∈Nτ

X′jn−d jτ)

 , ∀ j ∈ J, t ∈ T P (5.105)

H′jt ≥ h−jt ·

I−0t +

t∑
τ=1

(
∑
n∈Nτ

−X′jn + d jτ)

 , ∀ j ∈ J, t ∈ T P (5.106)

0 ≥ −H0
jt + h+

jt ·

I+
0t +

t∑
τ=|T P|+1

∑
n∈Nτ

X0
jn +

∑
τ∈T P

(
∑
n∈Nτ

X′jn−d jτ)


+ max

d̃∈U

 t−1∑
r=|T P|+1

(
t∑

τ=r+1

∑
n∈Nτ

Xr
jn ·h

+
jt −Hr

jt) · (d jr + d̂ jr · ξ jr)

−

t∑
r=|T P|+1

h+
jt · (d jr + d̂ jr · ξ jr)

 , ∀ j ∈ J, t ∈ T F (5.107)

0 ≥ −H0
jt + h−jt ·

I−0t −

t∑
τ∈T F

∑
n∈Nτ

X0
jn +

∑
τ∈T P

(
∑
n∈Nτ

−X′jn + d jτ)


+ max

d̃∈U

− t−1∑
r=|T P|+1

(
t∑

τ=r+1

∑
n∈Nτ

Xr
jn ·h

−
jt + Hr

jt) · (d jr + d̂ jr · ξ jr)

+

t∑
r=|T P|+1

h−jt · (d jr + d̂ jr · ξ jr)

 , ∀ j ∈ J, t ∈ T F (5.108)

∑
j∈J

∑
n∈Nt

p j ·X′jn +
∑
j,`∈J

∑
n∈Nt

q j` ·Z j`n ≤ capt, ∀t ∈ T P (5.109)
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∑
j∈J

∑
n∈Nt

u j ·X0
jn + max

d̃∈U

∑
j∈J

∑
n∈Nt

u j ·

t−1∑
r=|T P|+1

Xr
jn · (d jr + d̂ jr · ξ jτ)

 ≤ capt, ∀t ∈ T F

(5.110)

X′jn ≤ b jt ·Y jn, ∀ j ∈ J, t ∈ T P, n ∈ Nt (5.111)∑
j∈J

Y jn = 1, ∀t ∈ T P, n ∈ N (5.112)∑
`∈J

Z j`n = Y j(n−1), ∀t ∈ T P, j ∈ J, n ∈ Nt (5.113)∑
j∈J

Z j`n = Y`n, ∀` ∈ J, t ∈ T P, n ∈ Nt (5.114)

X′jn ≥ m j ·
(
Y jn−Y j(n−1)

)
, ∀ j ∈ J, t ∈ T P,∈ Nt (5.115)

X0
jn + min

d̃∈U

 t−1∑
r=|T P|+1

Xr
jn · (d jr + d̂ jr)

 ≥ 0, ∀ j ∈ J, t ∈ T F, n ∈ Nt (5.116)

H0
jt + min

d̃∈U

 t−1∑
r=|T P|+1

Hr
jt · (d jr + d̂ jr)

 ≥ 0, ∀ j ∈ J, t ∈ T F (5.117)

Y jn ∈ B, X′jn,H
′
jt, Z j`n ≥ 0, ∀ j, ` ∈ J, n ∈ N, t ∈ T. (5.118)

Each inner optimization problem can be transformed in an auxiliary primal and respec-
tive dual problem for each ( j, t, ∀t ∈ T F):

max
t−1∑
τ=1

∑
n∈Nt

c j ·Xτ
jn · d̂ jτ · ξ

d
jτ

s.t.:
t−1∑
τ=1

ξd
jτ ≤ Γ jt−1,

0 ≤ ξd
jτ ≤ 1, ∀τ < t.

(5.119)

min Γ jt−1 ·λ
A
jt +

t−1∑
τ=1

µA
jτt

s.t.: λA
jt +µA

jτt ≥
∑
n∈Nt

c j ·Xτ
jn · d̂ jτ, ∀τ < t

λA
jt, µ

A
jτt ≥ 0, ∀τ < t.

(5.120)
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max −

t∑
τ=1

d̂ jτ ·h+
jt · ξ

d
jτ + (

t−1∑
r=1

(
t∑

τ=r+1

∑
n∈Nτ

Xr
jn ·h

+
jt −Hr

jt) · d̂ jτ · ξ
d
jτ

s.t.:
t∑

τ=1

|ξd
jτ| ≤ Γ jt,

−1 ≤ ξd
jτ ≤ 1, ∀τ ≤ t.

(5.121)
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t∑
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d̂ jτ ·h+
jt · ξ

d
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r=1

(
t∑
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∑
n∈Nτ

Xr
jn ·h

+
jt −Hr

jt) · d̂ jτ · ξ
d
jτ

s.t.:
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Ξd
jτ ≤ Γ jt,

−Ξd
jτ ≤ ξ

d
jτ ≤ Ξd
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Ξd
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−1 ≤ ξd
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(5.122)

min Γ jt ·λ
B
jt +

t∑
τ=1

(µB1
jτt −µ

B2
jτt)

s.t.: µB1
jτt +µB2
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n∈Nτ
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jτt + νB2

jτt = −h+
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jτt, ν
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jt, µ
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jτt, ν

B1
jτt ≥ 0, ∀τ ≤ t.

(5.123)

max
t∑

τ=1

d̂ jτ ·h−jt · ξ
d
jτ−

t−1∑
r=1

(
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τ=r+1

∑
n∈Nτ

Xr
jn ·h

−
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jt) · d̂ jτ · ξ
d
jτ

s.t.:
t∑
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|ξd
jτ| ≤ Γ jt,

−1 ≤ ξd
jτ ≤ 1, ∀τ < t.

(5.124)
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max
t∑

τ=1

d̂ jτ ·h−jt · ξ
d
jτ−

t−1∑
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(
t∑

τ=r+1

∑
n∈Nτ

Xr
jn ·h

−
jt −Hr

jt) · d̂ jτ · ξ
d
jτ
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t∑

τ=1

Ξd
jτ ≤ Γ jt,

−Ξd
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d
jτ ≤ Ξd

jτ, ∀τ ≤ t
Ξd

jτ ≥ 0, ∀τ ≤ t
−1 ≤ ξd
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(5.125)

min Γ jt ·λ
C
jt +

t∑
τ=1

µC
jτt

s.t.: µC1
jτt +µC2

jτt + νC1
jτt + νC2

jτt = (h−jt −
t∑

τ=r+1

∑
n∈Nτ

Xr
jn ·h

−
jt −Hr

jt) · d̂ jτ, ∀τ < t
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jτt +µC2
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jτt, ν

C1
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(5.126)

max
t−1∑
τ=1

∑
n∈Nt

u j ·Xτ
jn · d̂ jτ · ξ

d
jτ

s.t.:
t−1∑
τ=1

ξd
jτ ≤ Γ jt−1,

0 ≤ ξd
jτ ≤ 1, ∀τ < t.

(5.127)

min Γ jt−1 ·λ
D
jt +

t−1∑
τ=1

µD
jτt

s.t.: λD
jt +µD

jτt ≥
∑
n∈Nt

u j ·Xτ
jn · d̂ jτ, ∀τ < t

λD
jt , µ

D
jτt ≥ 0, ∀τ < t.

(5.128)

max
t−1∑
τ=1

Xτ
jn · d̂ jτ · ξ

d
jτ

s.t.:
t−1∑
τ=1

ξd
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min Γ jt−1 ·λ
E
jn +

t−1∑
τ=1

µE
jτn

s.t.: λE
jn +µE

jτn ≥ Xτ
jn · d̂ jτ, ∀τ < t, n ∈ Nt

λE
jt, µ

E
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(5.130)
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max
t−1∑
τ=1

Hτ
jt · d̂ jτ · ξ

d
jτ

s.t.:
t−1∑
τ=1

ξd
jτ ≤ Γ jt−1,

0 ≤ ξd
jτ ≤ 1, ∀τ < t.

(5.131)
min Γ jt−1 ·λ

F
jt +

t−1∑
τ=1

µF
jτt

s.t.: λF
jt +µF

jτt ≥ Hτ
jt · d̂ jτ, ∀τ < t

λF
jt, µ

F
jτt ≥ 0, ∀τ < t.

(5.132)

Therefore, the dual auxiliary problems can be incorporated into the ARO model in
order to produce a tractable tractable formulation.



Chapter 6

Conclusions and future work

This thesis approaches studies the integration of lot-sizing with other planning decisions
and the acknowledgement of uncertainty. The work can be divided into three branches.
The first is the review of the literature in order to classify and identify state-of-the-art
approaches regarding uncertainty and integration in lot-sizing, as well as the respective
main gaps. The second is focused on developing relevant integrated lot-sizing models that
are able to manage uncertainty and that have not been addressed in the literature. The
third is more results-oriented, in which the models and solution approaches developed are
assessed in terms of computational complexity, quality of solutions and risk measures.
Chapter 2 is dedicated to the first branch of this research, in which we point out the main
contributions, research opportunities and gaps in the literature of deterministic, uncertainty
and integrated lot-sizing problems. Chapters 3, 4 and 5 are aligned with the second research
branch, devoting to new models that integrate lot-sizing with other planning decisions and
incorporate critical uncertainty sources. Finally, Chapters 3 and 5 also contribute to the
third branch, as underlying works suggest strategies to solve large instances of the problems
in a more tractable form. Bellow we first discuss the main contributions of each chapter,
then we provide our contribution by answering the research questions raised and finally
point directions for further research.

6.1. Contributions

Chapter 3 brings several insights about integration and incorporation of uncertainty fo-
cused on food processing industry. The integration of decisions accounted for significant
savings: results show that integration of supplier selection, product branding and tactical
planning decisions can improve up to 7.4% the solution quality, when compared to decou-
pled models. Moreover, the incorporation of relevant specific features of food industry,
such as shelf-life, customer willingness to pay and critical uncertainty sources helps by
delivering good solution quality for the problem. The incorporation of risk measures for
the stochastic programming model was also important to stablish a trade-off on expected
profit and profits in worst-case scenarios. Finally, the main insight provided by this work
shows that decomposition and acceleration schemes are also powerful for complex prob-
lems: modern Benders decomposition technique was up to five times more efficient than
the monolithic model solved with CPLEX. Generally, integrated and stochastic problems
have a natural decomposition structure that can exploited by reformulations and decompo-
sitions approaches to make them more tractable. Nevertheless, decomposition methods are
not guaranteed to improve the solution efficiency. Sometimes, it is necessary to test several
decomposition and acceleration schemes in order to select the best one.
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The contributions of Chapter 4 are two-fold. The first is formulating a robust opti-
mization and a two-stage stochastic programming model for the lot-sizing and scheduling
problem. The models incorporate uncertainty in demand and assume a fixed production
quantity and sequence for the entire planning horizon, allowing only inventory decisions to
be adjusted in every time period. To the best of our knowledge, it is the first time that GLSP
has been tackled using a robust optimization model. The second contribution is the devel-
opment of a method to evaluate aspects of the different uncertainty modeling approaches.
The simulation experiment allows the trade-off analysis of robust and stochastic models
according to different risk preferences and instances characteristics. For example, in many
instances the robust optimization model yields almost the same solution quality in terms of
expected costs as the stochastic programming model, showing that it is possible to have a
tractable model that incorporates demand uncertainty and generates adequate solutions for
the problem. Moreover, the simulation showed itself to be an useful tool to fine tune the
robust optimization parameters, allowing for a precise measure of risk and performance
trade-off. Finally, based on the simulation experiments, a novel flowchart contributed in
providing guidelines to select the best modeling approach and uncertainty parameters for
different settings.

Chapter 5 presents adaptation and approximate strategies for solving efficiently the lot-
sizing and scheduling problem under multistage demand uncertainty. Focusing on solution
quality and computational complexity, the proposed heuristic strategies outperformed the
standard approaches in terms of efficiency for large instances and long planning horizons:
in our experiments, the strategies proposed delivered up to 6.72% better performance and
7.9 times faster results than the deterministic model. We believe that it is the first time that
an approximate strategy is used in uncertainty lot-sizing problems and, to the best of our
knowledge, adjustable robust optimization had never been used before to address lot-sizing
and scheduling problems. Given the absence of standardized evaluation methods, this work
also presents a simulation experiment based on Monte Carlo and rolling-horizon schemes
in order to systematically compare the models and strategies proposed. This turned out
to be a reliable method for evaluating the performance of the models and strategies in
multistage uncertainty settings.

6.2. Answering the research questions

Here, we give our contribution in answering the research questions raised. There is not an
easy and unique answer for each question raised. Therefore, we provide our answers based
on the works already discussed and focused on the integrated problems addressed. We
also derive general guidelines that may help the scientific community and decision makers
to approach other integrated lot-sizing problems under uncertainty in a more effective and
efficient manner.

Research question 1:
What is the most adequate approach to model specific integrated lot-sizing problems
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under uncertainty?
Some aspects can define the adequate modeling approach regarding uncertainty. After

identifying the critical uncertainty sources to be incorporated, it is necessary to check if
the uncertainties can be defined from previous data or a distribution curve, and whether
recursive decisions are required. In case it is not possible to generate credible scenarios
through previous data or distribution curves, robust optimization may be the appropriate
choice. On the other hand, if recursive decisions are required then static robust optimization
should be discarded.

Results suggest that the choice of the modeling approach depends on the problem struc-
ture and risk preferences of the decision maker. Despite the known advantages and draw-
backs of stochastic and robust approaches, the problems structure and size substantially
impacts on the performance of both modeling approaches, as shown in Chapter 4. The
length of the planning horizon, size of instances and number of the uncertainty sources
may render the stochastic programming approach an intractable option. On the other hand,
restrictive production capacity may impact the robust optimization solution quality. If the
decision maker is prioritizing conservative decisions, then risk measures (such as condi-
tional value-at-risk applied in Chapter 3) or min-max approaches should be incorporated
in the stochastic programming model or the robust optimization model should be used.

Focusing on the integration issue, the decisions to be integrated should be directly
related or affect production lot-sizing decisions. Moreover, the integration must have po-
tential to improve the designed objective. The structure of the resulting integrated model
should be considered for identifying valid inequalities and for possible reformulations or
application of decomposition methods. For instance, Chapter 3 exploits the problem struc-
ture to apply convex hull reformulations in order to provide better bounds for the model.

Finally, we believe that it is crucial to evaluate the models proposed and measure their
trade-offs for each specific problem and instance characteristic. To that end, a Monte Carlo
simulation is suggested. As shown in Chapters 4 and 5, the Monte Carlo simulation exper-
iment allows to measure, in a quantitative manner, several metrics of models in a uncer-
tainty setting, for instance: 1) evaluate and validate the solutions from different models and
strategies; 2) tune models uncertainty parameters; 3) evaluate the value of integration, the
value of perfect information and the value of uncertainty incorporated; 4) evaluate the cost
of assuming a wrong moment information about the uncertainty (e.g., mean, distribution,
deviation).

Research question 2:
What are the best strategies to efficiently solve specific integrated lot-sizing problems

under uncertainty?
Solving efficiency is achieved by the right combination of modeling approaches and

solving techniques. Therefore, we believe that a deep understanding of the problem and
integration structure as well as the uncertainty sources to be incorporated and the risks
preferences should be the first step in order to select the combination of modelling and
solution technique.

Depending on the uncertainty modeling approach, it is possible to maintain the same
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tractability of the deterministic versions of the problem and provide an adequate solution.
Nevertheless, if we are dealing with large problems or intractable uncertainty modeling
approaches, such as stochastic programming or adjustable robust optimization, there are
specific techniques that can improve the solving efficiency. In case the deterministic ver-
sion of the problem is already intractable because of the integration, there might be a natural
decomposition of the decisions that can be exploited by decomposition methods, such as
Benders decomposition, Lagrangian decomposition or cross decomposition. Intractable
stochastic programming models can have intractability improved by Sample Average Ap-
proximation, scenario reduction techniques, or by decomposition methods previously men-
tioned. For example, Chapter 3 applies Benders decomposition and Sample Average Ap-
proximation approaches to improve the tractability of the stochastic programming model.
Splitting uncertainty sets methods can be used for adjustable robust optimization models
to deal with adjustable integer variables, still some authors suggest that more research is
needed in this field. Therefore, heuristic strategies can be a good alternative, especially
for highly intractable problems, such as multistage uncertainty problems. As an example,
Chapter 5 shows that by using approximate heuristics we can transform the intractable ad-
justable robust optimization model to a tractable version that is 7.9 times faster than the
deterministic model.

Another way to improve the tractability of lot-sizing models is by means of their re-
formulation. Lot-sizing problems have alternative formulations, such as the simple plant
location model, that provides better relaxations and can be used for lot-sizing problems
that do not consider cumulative backlogs. Also, integrated models can be tightened by
valid inequalities. For instance, scheduling inequalities can be added to the GLSP model in
order to improve its solving efficiency, as applied in Chapter 4. Convex hull reformulations
can also provide better relaxation bounds than the standard Big-M formulation, especially
when we are dealing with hierarchical decisions, as shown in Chapter 3.

6.3. Future work and research opportunities

The integration of lot-sizing under uncertainty is a broad field and, as mentioned in Chap-
ter 2, there are research opportunities and gaps in the literature that still need attention.
Here, we first mention further research related to the works developed and at the end we
describe general opportunities and research directions in the field of integrated lot-sizing
under uncertainty.

Chapter 3 proposes a two-stage stochastic model that integrates supplier selection with
tactical planning decisions. There are opportunities lying on the development of a more
complex and detailed model, considering setup decisions and supplier contracts. Addi-
tional work can also be performed regarding the application of a tractable robust optimiza-
tion model to address the problem and its comparison with the stochastic programming
model. Decomposition algorithms may also be more explored in order to improve the solv-
ing efficiency of the problem. Research on the efficiency of Lagrangian decomposition,
cross decomposition or heuristic-generated cuts for the problem seems also promising.

Chapter 4 addresses demand uncertainty in a lot-sizing and scheduling problem. The
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proposed models can be extended to incorporate system uncertainties, such as uncertain
setup or processing times. In terms of solution performance, the study of methods to re-
duce the conservativeness of robust optimization solutions and improve its solution quality
is a possible research direction. Finally, we believe that experiments and methods that com-
pare uncertainty modeling approaches can be improved and standardized. These methods
should allow to systematically compare robust optimization and stochastic programming
models in a more efficient manner and grasp their best characteristics for different problems
and circumstances.

Chapter 5 presents strategies for solving the GLSP under multistage demand uncer-
tainty. Even though these strategies showed to be efficient, they can still be improved.
Opportunities lie on the study of machine learning to create precise approximations and
rules in order to improve solutions in the rolling-horizon setting. Moreover, it would be
valuable to compare these strategies with meta-heuristics and other heuristics (e.g., hi-
erarchical approaches, rolling-horizon heuristics). The study of these strategies in other
lot-sizing settings (e.g., multi-level lot-sizing, lot-sizing with parallel machines) is also a
possible research direction.

Besides the research opportunities related to the work developed, we describe the gaps
identified in the literature review that have not been addressed in this thesis. Firstly, there
is still a lack of works that consider system uncertainty and complex lot-sizing models.
Models that combine several uncertainty sources or take into account complex lot-sizing
problems can bring superior solutions for practical problems. Nevertheless, we agree that
these models would be highly intractable and specific attention on solving efficiency would
be required.

There are few studies that have addressed the integration, in a uncertainty setting, of
lot-sizing with classical problems (e.g., vehicle routing problem, capacity/facility planning,
procurement planning, cutting problems, make-or-buy decisions). Research in this direc-
tion may have high practical application. A research opportunity also lies on the study and
comparison of risk-averse strategies (robust optimization models and the incorporation of
risk measures in stochastic models) in integrated lot-sizing models. Works that analyze, for
different problems and uncertainty sources, the trade-offs in terms of solution quality and
risk reduction could bring significant contributions to the scientific community.

Moreover, there are only few studies that assess the cost of assuming a wrong informa-
tion about the uncertainty source or evaluate the performance of models when the uncer-
tainty moments are partially known. Studies in these directions can provide guidelines to
best deal with uncertainty in these cases.

Finally, one of the major issues of uncertainty problems is the intractability of the
underlying modeling approaches. An emerging research stream is the study of efficient
solution methods for complex integrated lot-sizing problems under uncertainty. Tractabil-
ity in uncertainty models would allow to incorporate more realistic features and expand
the application to practical problems. We suggest two research streams to contribute in
this direction. The first is the study of tractable robust optimization models for complex
problems. The development of methods to reduce conservativeness would be extremely
valuable in improving the average solution quality of robust optimization models. The
second stream is on the study of methods (e.g., decomposition, approximation, heuristics)
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in order to bring tractability for specific modeling approaches, especially for multistage
stochastic programming and intractable robust optimization approaches.
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