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Abstract

Robots are quickly becoming an intrinsic part of our daily lives and it is becoming important to
provide the users a simple and intuitive way to interact with them. In this thesis, we present a
Human-Robot Interface for an existing service robot. This robot is mostly addressed to people
with reduced mobility on the shopping process in dynamic and crowded environments (e.g. super-
markets). This interface was created in order to interact with the robot through the recognition of
the START, STOP and PAUSE commands.

Interaction can be performed by two types: verbal and non-verbal. In our approach we decided
to work in a non-verbal interaction that will receive the proposed commands via dynamic gestures.

A novel method for hand gesture recognition based on depth information was implemented
and tested. The software was developed to be used by a robot equipped with a RGB-D camera.
This camera captures images in real time where the robot user’s position is obtained. Taking as
input the information already processed by the robot, the arm/hand is obtained by a depth based
segmentation approach. A Principal Component Analysis is then computed to each object and its
center of mass and eigen vectors are calculated in order to extract the hand’s tip and orientation.
A Kalman Filter is then applied for tracking the hand and get its position through time. Given this
information and based on Finite State Machines it is possible to recognize each gesture (START,
STOP, PAUSE).

Finally, the proposed gesture recognition approach was tested in a real case scenario with
different users obtaining an accuracy around 90%. More specifically, the STOP gesture was rec-
ognized with a correct rate of 97.4%, the PAUSE gesture obtained a correct rate of 84.6% and
finally the START gesture obtained 87.2%.
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Resumo

Os robôs estão rapidamente a tornar-se uma parte intrinseca das nossas vidas e começa a ser im-
portante fornecer aos utilizadores uma forma simples e intuitiva de interagir com eles. Nesta
dissertação, apresentámos uma Interface Homem-Robô para um robô de serviço existente, maior-
itariamente direcionado para pessoas com mobilidade reduzida no processo de compras em ambi-
entes dinâmicos e populosos (ex. supermercados). Esta interface foi criada de forma a reconhecer
os comandos START, STOP e PAUSE.

A interacção pode ser realizada de duas formas: verbal e não-verbal. Na nossa abordagem
decidimos trabalhar numa interação não-verbal de forma a receber os comandos propostos através
de gestos dinâmicos.

Um novo método para o reconhecimento de gestos baseado na informação de profundidade foi
implementado e testado. O software foi desenvolvido de forma a ser utilizado num robô equipado
com uma câmera RGB-D. Esta câmera captura imagens em tempo real em que a posição do uti-
lizador é obtida. Utilizando como entrada a informação já processada pelo robô, o braço/mão é
obtido através de uma segmentação seguindo uma abordagem de profundidade. Uma análise de
componentes principais é calculada para cada objeto onde é obtido o seu centro de massa e os seus
vetores eigen de forma a extrair a ponta da mão e a sua orientação. Um filtro de Kalman é depois
aplicado de forma a obter a posição da mão ao longo do tempo. Dada esta informção e com base
em máquinas de estado finitas que foram implementadas de forma a descrever os gestos (START,
STOP, PAUSE) é realizado o reconhecimento de gestos.

Finalmente, a abordagem proposta de reconhecimento de gestos foi testada num cenário real
com diferentes utilizadores onde foi obtida uma precisão à volta dos 90%. Mais especificamente,
o gesto STOP foi reconhecido com uma taxa de acerto de 97.4%, o gesto PAUSE obteve uma taxa
de acerto de 84.6% e finalmente o gesto START obteve 87.2%.
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Chapter 1

Introduction

1.1 Context

Service Robots have always been a topic in science fiction, since C3-PO from "Star-Wars", or

the cleaning robot Wall-e, or even medical assistants like Baymax from "Bighero-6". It became

clear that it is a dream for humans to include robots in their daily lives and to create some sort of

empathy with the system that helps them in ordinary tasks. Out of science fiction, service robots

are becoming real in our lives and the International Federation of Robotics (IFR) defines them

as “a robot that performs useful tasks for humans or equipment excluding industrial automation

application" [22].

The popularity of these everyday assistants has been increasing exponentially for the last few

years and a lot of examples prove it. From taking care of the elders, to cleaning houses (Roomba

presented in Figure 1.1) or even helping with shopping (OSHbot presented in Figure 1.2,wGO

presented in Figure 1.4).

Figure 1.1: Roomba helping in the
house keeping [1].

Figure 1.2: OSHbot interacting with a
person in a shop [2].

1.2 Motivation

This project is held in a partnership with an innovative Portuguese start-up, Follow Inspiration

S.A. (Figure 1.3). This company is responsible for the creation of a pioneer robot designed to
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2 Introduction

improve the customer’s in-store experience by following them while carrying their shopping bags

(wGO presented in Figure 1.4).

Figure 1.3: Logo of the company Follow Inspiration S.A.[3].

Figure 1.4: wGO in the shopping process [3].

The current interface of wGO has a screen to show information to the user and a button to

start/stop the system. Since the target users of wGO are people with reduced mobility, the company

felt the necessity to implement a more user friendly interface. This would allow an easier use and

also make the user feel more connected with the wGO.

1.3 Objectives

The main objective of this dissertation is to develop a Human-Robot Interface that will allow

the user to communicate with the robot using gestures. By doing that, the robot will be easily

controlled by the user, making the shopping experience smooth and interactive.

Using a RGB-D sensor, the system already detects the user and this information allow us

to focus on the human gestures. This system is meant to be developed in ROS, a very popular

framework for robot software. This is already being used in the wGO development, which will

facilitate the system integration. Firstly, the HRI will be tested independently of the system, and

later it will be integrated in the wGO and tested in a real scenario. In order to adapt the HRI to all

the possible users, we will study and suggest gesture commands, that are easy to perform by low

mobility people to be recognized by our system.
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1.4 Contribution

This work accomplishes the objectives of this dissertation and contributes to the study of Gesture

recognition systems for service robots. The results include:

• A novel approach based on depth image for identifying and tracking the hands of the user.

• Gesture classification based on Finite State Machines.

• Integration of a gesture recognition system in a Service Robot.

The contributions are sumarized in a scientific paper accepted to be published in the VipIM-

AGE conference with the title "Human-Robot Interaction based on gestures for service robots"

[23].

1.5 Thesis outline

The next chapter presents the study of existent service robots and their HRI. It also presents dif-

ferent HRI with focus on non-verbal interaction through gesture recognition.

Chapter 3 introduces the wGO and analyzes the tools and software available on it, specially the

ones found useful for our gesture recognition approach. The integration of our gesture recognition

module in the wGO is planned.

In Chapter 4 the approach for our gesture recognition is presented and described in detail.

It starts by describing the system overview and the decision of the gesture to be performed and

recognized. Also in this chapter, and as the main theme, we present the implementation of the

approach. The method is tested and the results are presented and analyzed.

Chapter 5 is reserved for the conclusions and future work regarding this project.
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Chapter 2

Literature Review

In this chapter, the literature review is presented for this project, talking about some Service Robots

and Human Robot Interaction (HRI). In the section of Service Robots, some examples of existent

service robots are presented from commercial to research solutions. It is also presented the litera-

ture review of HRI with focus on non-verbal interaction via the recognition of dynamic gestures.

2.1 Service Robots

In the last years, the advances in technology allowed service robots to operate in a less structured

and more uncontrolled environment. Robots are now performing more complex tasks and inter-

acting with humans in a more natural way. It leads to a faster proliferation of this kind of robots.

Service Robots have for long been an object of research but only now are considered an emerging

market [24].

2.1.1 Commercial solutions

As commercial products, many have been the service robots helping us in our houses. From

helping in the house, keeping it clean, to companion robots, personal assistants, educational or

entertainment robots. There have been a huge variety of applications for service robots [24].

One of the first robots to appear in our houses was Roomba from the company iRobot. Roomba

is an autonomous vacuum cleaner robot and was presented in 2002 [1].

5



6 Literature Review

Figure 2.1: Roomba robot cleaning [1].

Blue Frog Robotics developed a companion robot called BUDDY. BUDDY interacts with

people by speech recognition and recognizing the person. It can work as a personal assistant

reminding the user of important tasks and events and giving practical information like weather,

recipes, etc., play with the user or even showing multimedia content, and many other services [4].

Figure 2.2: BUDDY interacting with a family [4].

In order to support humans in everyday environments, Fraunhofer developed Care-o-bot that

is already in its fourth version. Care-o-bot is a mobile robot assistant designed to actively help

humans in their daily-life. It can perform a variety of tasks since delivering food and drinks to

assist in the kitchen or cleaning. It can also be used in applications outside of our homes like

supporting patients in hospitals, to help in restoration delivering orders or performing reception

and room service in hotels [5].
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Figure 2.3: Cara-o-bot 4 assisting in kitchen [5].

Like Care-o-bot 4, service robots are also used in tasks outside the home environment like

hospitals, restaurants, malls, deliveries, etc.

Chinese company Sanbot developed Sanbot S1, a service robot that has many cases of appli-

cation. It can be used in education to help children, in health-care, to help doctors by monitoring

the patient and keep track of the medical records, in retail, in order to greet customers and guide

them through store and in security with the help of face recognition to detect strangers [6].

Figure 2.4: Sanbot S1 helping doctors to take care of patients [6].

For security, Cobalt Robotics develops indoor robots to cooperate with human guards in

surveillance patrolling offices, museums, schools, and keeping them safe, looking for intruders

or anything strange [7].
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Figure 2.5: Robot from Cobalt Robotics performing the surveillance of an office [7].

Lowe’s Innovation Labs created OSHbot. This robot is used in retail, customers can tell what

they are looking for or just hold up an item for it to scan. Then OSHbot can guide them to the

product they are looking for [2].

Figure 2.6: OSHbot helping in the shopping process [2].

2.1.2 Research Projects

From research, many have been the projects that allowed to bring new technologies to service

robots. A league called RobotCup@Home, part of the RoboCup initiative, was created with the

aim to develop service and assistive robot technology with relevance for future domestic applica-

tions. Some domains explored in this competition are interaction and cooperation with humans,

navigation and mapping in dynamic environments, object recognition and manipulation, behavior

integration. The competition is performed in a real world scenario and some of the factors eval-

uated are the human robot interaction, the social relevance, the time to perform the task, the easy

set up and low cost [25].
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One of the most relevant participants of the RobotCup@Home is the project AMIGO (Au-

tonomous Mate for IntelliGent Operations) developed by Eindhoven University of Technology

with the aim of allowing older people to be independent in their houses [8].

Figure 2.7: AMIGO robot from the Eindhoven University of Technology [8].

The MOnarCH project (Multi-Robot Cognitive Systems Operating in Hospital), funded by the

European Commission, developed a robot working on the integration of robots in social spaces.

The robot developed was used in the pediatric infirmary in the Portuguese Oncology Institute at

Lisbon (IPOL), Portugal with the aim to entertain and educate children, staff and visitors [26].

Figure 2.8: Monarch with a child at IPO. Picture by Miguel A. Lopes/Lusa.

One of the best examples is the robot from the European research project called SPENCER.

With the motivation of the increasing number of robots sharing space with people the aim of this

project was to break new ground for cognitive systems in populated environments. The technolo-

gies developed were integrated in a robot platform whose aim was to guide people at the airport

[9].
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Figure 2.9: SPENCER interacting with two persons in Airport [9].

2.2 Human-Robot Interaction

HRI studies how humans and robots interact with each other in the more effective and natural way

[27].

Nowadays, with robots entering in our daily lives, it is becoming important to provide the users

a simple and intuitive way to interact with them. Human-Robot interaction has already proved to

be a major field in robotics with an increasingly investment in more rich and innovative kinds of

interaction. Most of those interactions are based on verbal or on non-verbal interaction [28].

Verbal interaction have been used for a long time as humans recur to voice to communicate and

interact between each other. Thus, this is also used by robots to assure a natural interface between

humans and machines [29]. Speech recognition allows the robot to perceive voice commands

and take actions depending on the received instructions. There are a few libraries available to

implement such solutions [30].

Non-verbal Interaction involves all interaction except the speech and is commonly used by

humans, specially facial expressions and gestures.

2.2.1 Gesture recognition

Gestures are a way of non-verbal communication and can be made from any bodily motion or

state but they are usually made from the face or hand [31]. Gestures can be divided into two types

according to their movement along time: static or dynamic. Static gestures do not change with

time, they are described by the pose/posture in a single instant. Dynamic gestures change the pos-

ture across time and the gestures are described by its movement [32]. Gesture Recognition is the

process of identifying the gesture performed by a user and usually has the aim of interpret certain

commands [33]. We divided the gesture recognition process in four important parts, Data Ac-
quisition where the information from the ambient is acquired, Segmentation where the features
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necessary to perform the gesture recognition are extracted, Tracking where the hand is tracked

across time and Classification where the gestures are modelled and recognized.

2.2.1.1 Data acquisition

In order to perform the gesture recognition it is necessary to acquire the data from the user and for

that, the approach can be from one of these types: motion sensor-based or vision based.

Motion sensors, like gyroscopes, accelerometers, bend sensors and others, allow the acquisi-

tion of movement from the desired joints. In order to detect the movement of some skeleton joints

to perform a gesture recognition system, Alavi et al. attached five wireless IMUs (inertial mea-

surement units) to their arms and upper body. IMUs have accelerometers that give the acceleration

and gyroscopes that have angular velocity as output [34]. Usually, to detect the motions from the

hands, data gloves are used. Adnan et al. developed a low cost dataglove using bending sensors

for the index and middle fingers for measuring its bending for various virtual interaction [35]. Kim

et al. created a data glove with three tri-axis accelerometer sensors, one for the hand palm, another

for the thumb and the other for the other middle finger, the information is sent via Bluetooth to a

PC where a 3D digital hand model for hand motion tracking and recognition is implemented [10].

Figure 2.10: Data glove implemented by Kim et al. [10].

Instead of using a glove and since smartphones usually have accelerometers and gyroscopes,

Gupta et al. used a smartphone to recognize gestures in order to control smart appliances [36].

Since this kind of sensor is attached to the user, the data acquired is not affected by its surroundings

and it provides a better coverage of the movements since vision-based can suffer occlusions or

variations of the light [10]. As a drawback, these approaches are intrusive for the user and do not

allow a very natural interaction [37].

Vision-based solutions are user independent and have emerged to give a most natural experi-

ence to the user. RGB cameras were the first used to acquire data, Argyros et al. [11] and Cristina

Manresa et al. [38] used RGB cameras to acquire the hand in a 2D plan. To acquire the informa-

tion in a 3D space, that allows more complex motion gestures, depth cameras like Stereo, Time
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of Flight (ToF), Leap Motion or Structured Light cameras have emerged. Park et. al. [39] and

Cerlinca et. al. [13] both used depth information from a structured light camera (Kinect) to track

the position of the hand in space.

Figure 2.11: Structured Light camera Kinect v2 from Microsoft.

The vision-based approach, unlike the inertial motion-based approach, gives hand features by

performing hand/arm segmentation and extracting the desired features from it to recognize the

gestures.

2.2.1.2 Segmentation

In order to perform hand/arm segmentation, the most popular method is to do a segmentation

based on skin-color. Argyros et al. proposed a method for detecting skin-colored objects using a

Bayesian classifier with a small set of training with an on-line adaptation of skin-color probabilities

to cope with illumination changes [11].

Figure 2.12: Skin color segmentation [11].

In order to perform a pointing gesture recognition, Park et al. developed a system where after

detecting the face of the user, the hands were detected assuming a similar color of the face [17]. To

minimize some error that can occur because of the illumination changes, models of the variation

of the skin color with the light are used. Liu et al. recognizes hand gestures with a stereo camera,

by performing an online color calibration at the beginning of the process where the user places his

or her hand in a region of interest and a Gaussian Mixture Model (GMM) is trained to cope with
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the variation of light. The segmentation is then performed recurring to the GMM with a region of

interest specified by a tracking module [12].

Figure 2.13: Online color calibration: a) left camera calibration box, b) right camera calibration
box [12].

Rodriguez et al. detects hands in order to perform a 3D gesture interaction with a RGB cam-

era. The author proposed an approach based on the Viola-Jones detector [40] using an AdaBoost

algorithm to select a set of Haar-like features. This approach usually is used for face detection but

it can be used to detect another objects. The distance of the hand from the camera was determined

by the size of the hand [41].

This kind of approaches based on skin color is efficient but it has the problem that the user can

not wear any kind of gloves and it can not appear skin colored objects in the background and some

are susceptible to light variation.

A common method used for hand detection is to perform a simple segmentation applying a

threshold based on distance, recurring to cameras with depth information. The distance used can

be selected regarding to another part of the user. A real-time 3D hand detection was implemented

by Cerlinca et al. assuming that the hands are always closer to the acquisition sensor than the head.

As so, a face detection was implemented and its location on the depth image was used to obtain its

distance to the sensor and then this distance used as a threshold value to obtain the arms. A region

growing algorithm was used to refine the hands [13].

Figure 2.14: Depth map filtering with distance threshold [13].
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In order to implement a real-time hand tracking, Chen et al. used a region growing technique

with the seed point on the estimated center of the hand based on the previous frame. The estimation

of the first seed was obtained by a hand click detection method in order to start the tacking [14].

Figure 2.15: Hand region and center obtained by Chen et al. [14].

Sometimes both skin-color and depth information are used. Bergh et al. used a Time of Flight

(ToF) and an RGB camera for a real-time 3D hand gesture recognition, the face was detected and

the distance from it to the camera was measured. Based on this distance, a threshold was applied

to the depth image to discard background objects. The remaining pixels, together with skin color

detection based on a GMM trained with the variations of illumination, were used to detect the

hands [15].

Figure 2.16: System overview with the RGB and ToF camera used proposed by Bergh et al. [15].

Park et al. proposed a different approach to detect the hand for a hand tracking implementation

where the hands were detected by using motion clusters and predefined wave motion [39].

With the emergence of skeleton tracking algorithms like OpenNI with NITE [42] and Kinect

SDK [43], it was possible to obtain the skeleton of the user with the information of the most

important joints including arms and hands. Bellmore et al. used NITE to obtain the pose of

the observer to interact with an interactive display. This approach requires a calibration pose to

initialize body tracking [44]. Ghotkar et al. presented an Indian Sign Language recognition using

the Kinect SDK in order to obtain the joints of the user [16].
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Figure 2.17: Skeleton segmentation and extraction of the angle beetwen the arms by Ghotkar et
al. [16].

2.2.1.3 Tracking

With the resultant segmentation and the hand/arm identified and its desired features obtained,

several algorithms can be used to perform the tracking of the desired object.

Mean-Shift algorithm is a non parametric technique used to find modes of density of a dis-

tribuition by climbing the gradient of the probability of the distribution. And it is efficient to

tracking objects whose appearance is defined by histograms [45]. Chen et. al. used MeanShift

algorithm to track the hand identifying the center of the palm [14]. MeanShift does not deal with

the variation of size of the tracking object. Continuously Adaptive Mean Shift (CamShift) al-

gorithm is similar to the MeanShift but it also adjusts the search window size and rotation that

it is useful in hand tracking since the hands can appear near or far from the camera changing its

size [46]. To track the hand, Liu et. al. implemented a CamShift algorithm based on the Hue

component choosing the window of Camshift as the region of interest and its center as the seed

point [12].

Figure 2.18: Sample Hue histogram used for CamShift hand tracking by Liu et al. [16].

Kalman filter provides an efficient computational (recursive) means to estimate the state of

a process from noisy measurements and its previous state, it has been widely used in a variety of
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research fields and real application areas providing many advantages in digital computing [47]. A

Kalman filter was used by Park et al. to continuously track the hand’s location first obtained by

motion clusters and predefined wave motion [39].

Figure 2.19: Hand tracking using Kalman Filter by Park et al. [16].

In order to track the hand after being detected, Rodriguez et al. implemented a Kalman filter

that allowed to predict the next position of the hand helping in the elimination of false positives

[41].

Since Kalman filter is based on Gaussian densities it cannot represent simultaneous alternative

hypotheses for its tracking [48]. Conditional Density Propagation (CONDENSATION) is a

particle filtering algorithm that uses a entire probability distribution in order to track an object’s

state [49]. To perform pointing gesture recognition for mobile robots, Park et al. used a particle

filter was used to track both hands and face in order to determine at where the user is pointing

[17].
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Figure 2.20: Face and hand tracking using 3D particle filters proposed by Park et al. [17].

2.2.1.4 Classification

In order to identify the gesture across time, some classifiers algorithms are used.

Dynamic Time Warping (DTW) is used to find the alignment of two signals. It computes

from two signals, the distance between its points [18]. To identify seven dynamic gestures, after

tracking the hand by a Cam-Shift algorithm, Liu et. al. proposed a DTW algorithm to recognize

gesture by comparing them with a series of prerecorded gestures, obtaining an accuracy of 92.4 %

[12].

Figure 2.21: The optimal alignment of the two time series [18].
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Hidden Markov Models (HMM) are a tool for modelling time series of data representing

probability distributions over sequences of observations [50] [51]. Yang et al. applied an HMM

to identify eight gestures to control a music application in order to adjust the volume and change

the music [52]. To be able to identify 20 dynamic sign of the Indian Sign Language, Ghotkar

identified them with an HMM with an accuracy of 89.25%.

For simple and easy model gestures, Finite State Machines (FSM) can be applied by mod-

elling a gesture as an ordered sequence of states. Ramey et al. used a finite state machine to

classify a simple gesture of waving hand varying the x coordinate to left and right, in order to

integrate with a social robot [19].

Figure 2.22: Example of the used FSM by Ramey et al.. The state represent "hello" gesture that
involves waving the hand. The numbers indicate the state changing sequence [19].

The use of Neural Networks is growing in the last years and many of them are being used for

gesture recognition. Molchanov et al. proposed a Convulotional Neural Network (CNN) to detect

gestures from different inputs since depth, color or stereo-IR sensors achieving a 83.8% accuracy

[53].

Next, we start by presenting the robot (wGO) which we will work with in order to develop an

HRI for its control.



Chapter 3

wGO Case-Study

In this work, the goal was to create a Human Robot Interface for an existent robot in the market.

For this, it is important to study the tools and software available that could be useful and the

restrictions that we would have to deal with.

The robot used in this project was the wGO. The wGO is the main product of the company

Follow Inspiration S.A. and the aim of this service robot is to improve the customer’s in-store

experience. This robot was thought and designed to follow its user while carrying their shopping

bags across the supermarket. The wGo significantly helps people with reduced mobility even

though, any other person is also allowed to use it.

In order for the system to work, it should perform a first valid user recognition. After this

quick process it makes use of a sensor set composed by a laser, system of cameras and a set of

sonar sensors to track the user, follow him and avoid obstacles which may appear in the way.

Figure 3.1: Render of wGO [3].
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3.1 Interaction with the user

In the current version of the wGO, all the interaction with the user is performed by a button that is

pressed to start and stop the robot. A sound warning is also played when the robot loses track of

the user. There is also a screen which shows some useful information for the user to perceive the

current status of the robot or for the development team to check for hardware problems.

3.2 User tracking

The visual tracking system, which has main preponderance in this work, does not require the user

to wear any kind of marker or special clothes. The data acquisition for this process is done using a

RGB-D camera which captures depth and RGB images. This RGB-D camera is a structured light

camera, an Orbbec Astra from the company Orbbec.

Figure 3.2: Orbbec Camera used in wGO[20]

Structured light cameras work by projecting an Infrared Pattern to the environment, obtaining

the distance (depth) and merging it with the RGB data [54].

From the camera two images are obtained, an RGB image (Figure 3.3.a ) and a Depth image

(Figure 3.3.b ). These images are matrices of pixels with size 640*480 where each pixel in the

position xi yi has corresponding RGB values (Figure 3.5) and a depth value in the depth image

(Figure 3.4) representing the distance from the camera to the object depicted there.
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(a) (b)

Figure 3.3: Data acquisition: a) RGB image with user detection (yellow rectangle) and face detec-
tion (pink circle). b) Depth image with user detection.

The current software on wGO, makes use of the RGB-D information, to compute the identi-

fication of the user on the image. It obtains a bounding box (x,y, width and height) representing

the position of the user on the images captured (Figures 3.3 a and b ). A face detector algorithm is

also implemented to recognize the front part of the user. For that, a Locally Binary Patterns (LBP)

cascade classifier is used, since it is faster than other approaches like Haar and it is very important

for this system to work in real time [55]. The depth and RGB images acquired by the robot with

the user and face detection are presented in Figures 3.3 a and b.

Figure 3.4: Representation of the depth image and the coordinate system (x,y) and the pixel value
as the distance from the camera to the object.
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Figure 3.5: Representation of the RGB image and the coordinate system (x,y) and the color of the
object.

As we can see in the Figures 3.3 a and b, the Field Of View (FOV) of the cameras with the

distance of usage of the wGO restricts the area of the user observed, a fact that is relevant to define

our approach. Besides that, the minimum depth detected is 30cm which also affects the possible

positions of hands being tracked.

3.3 Robot Operating System

The robot software is developed recurring to the Robot Operating System (ROS). ROS is an Open-

Source framework for developing robot software. It is an agglomeration of tools, libraries and

conventions with the intent of helping in the creation of robot software that can be written either

in Python or C++ [56].

Figure 3.6: ROS logo [21]

The major concepts to implement a ROS system are nodes, messages, topics and services. A

ROS system is composed by a number of running independent nodes similar to software modules,

communicating between each other by messages. It follows a publisher/subscriber approach where

each node may either subscribe a certain topic, enabling it to access data transferred through the

messages in that topic, or publish a certain topic with relevant information for any other nodes.

Nodes can also communicate by services where a request is sent for a certain node and then
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a response is expected [56]. A scheme of the ROS system with the nodes and how they can

communicate is presented in figure 3.7.

Figure 3.7: Scheme of the ROS system with the nodes and how they can communicate via topics
and services [21].

All data from the wGO mentioned in Section 3.2 is already being published in four different

topics that can be subscribed by our approach.

3.4 Integration

As soon as the gesture recognition module is completed, it is necessary to send a command to the

robot every time a gesture is recognized.

For an easy integration, without changing the wGO current software, we plan to simulate the

button press in each corresponding gesture recognition. The button calls two different services

to signal the robot when it is pressed or released. To correctly reproduce this action we call the

release service immediately after the press signal. Since the information of the button is the same

for any state, and it is not able to distinguish the command, we subscribe the topic with the current

state of the wGO in order to make sure the command is valid. For instance we only send the start

command if the robot is in standby mode. As wGO is not yet prepared to assume a paused state

(it can either be stopped or following) we test our solution by sending a stop command when the

paused gesture is performed. The interaction of wGO with the Gesture Recognition Module is

described in Figure 3.8.
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Figure 3.8: Interaction of wGO with the Gesture Recognition Module.

In order to escalate the functions of the robot in the future, we implement a topic (/Wiigo_HRI/Cmd)

to broadcast the signals perceived by the HRI module.

A set of possible values is defined as follows: 1 for the START, 2 for the STOP and 3 for the

PAUSE command.

The wGO will behave depending on its current state and the receiving the command message

.

It might also be useful to feedback about the position of the hand and its movement on the

graphical interface. To do so, a message is created to detail all the screen node required information

(/Wiigo_HRI/Hand_position).

Hand_position

bool left_hand

int8 left_handposition_x

int8 left_handposition_y

int8 left_handposition_z

int8 left_orientation

bool right_hand

int8 right_handposition_x

int8 right_handposition_y

int8 right_handposition_z
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int8 right_orientation

Figure 3.9: Proposed wGO interface with the position of the hands and the recognized command.

The interface proposed for the user to have visual feedback of his commands is presented in

the Figure 3.9. By showing this information, the user knows if the hand is being correctly detected,

working as a feedback that makes the user to do the gesture in a correct way.
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Chapter 4

Gestures recognition

In this chapter we present our gesture recognition approach based on the work presented in the

paper "Human-Robot Interaction based on gestures for service robots" accepted to be published

in the VipIMAGE conference [23]. We start by describing our system overview and deciding

the gestures for the commands. We also describe all the phases of the implementation from data

acquisition and segmentation, for the identification of the hand and its tracking, and ending with

the classification of the gestures. Our approach is tested and the results are presented and analyzed.

4.1 System Overview

Our system is divided in four main phases (figure 4.1). In the first, the data acquisition from

the robot is performed. The current robot’s software captures the depth and RGB images and

computes the user’s position. In the segmentation phase, the user is extracted from the background

and then the arms are segmented. In the Hand Detection phase, the position and orientation of the

hand is obtained. Given this data, in the Tracking phase a Kalman filter is applied to track and

filter the hand position so we can identify the gesture using Finite State Machines in the Gesture

Classification part.

Figure 4.1: System overview of the proposed solution.
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4.2 Gestures parameterization

In order to start our Human-Robot Interface, it was important to discuss what type of gestures

would be best suitable for the target end-user. Since the main target is people with reduced mo-

bility, it is important to minimize the constraints on their use, due to possible physical limitations.

Since the user will not receive any training to operate it, the gestures have to be natural and simple

so that he can learn them and do not forget it until the next utilization. Given those facts, we

reached to the conclusion that the gesture should be performed by one single arm due to people

using mobility aids. Besides that, due to possible low sensitivity in the movements of hands it was

better to get the arm position for the gesture instead of the hand pose.

(a) (b) (c)

Figure 4.2: Gestures parameterization: a) START gesture where the hand movement is forward
and backward towards the robot. b) PAUSE gesture formed by the lateral movement of the hand.
c) STOP Gesture where the hand does not change position.

The chosen gestures, START (where the robot correctly initiate its process), STOP (shuts down

the robot processes) and PAUSE (puts the robot in pause mode but still working), are represented

in figure 4.2. For those gestures the only information necessary are the coordinates of the the hand

(x,y,z) and the arm’s orientation.

4.3 Data acquisition

The wGO already computes some information that can be useful for our approach such as the

depth acquired by the RGB-D camera, the computed user location and face detection.

The bounding box of the user allows us to focus on the user and reduce the noise of the scene,

removing other people or objects standing next to him.

Since gestures have to be made facing the robot, the information of the face detection is im-

portant to check this condition. The position of the head is also useful to restrict the gestures

to a certain area, minimizing the interference of outside factors or even misunderstandings. A

representation of the important topics subscribed are presented in Figure 4.3.
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Figure 4.3: Representation of the topics subscribed by the gesture recognition module.

4.4 Segmentation

With the relevant data acquired for gesture recognition, it is necessary to perform segmentation of

the desired data in order to extract the user from the background and then extract the arms from

the user. The segmentation process is represented in Figure 4.4.

Figure 4.4: Phases of the Segmentation process.
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Since the system will be used in a non-controlled environment it is necessary to ensure that

only the user will interact with the robot. As we can observe in figure 4.5 the person next to the

user is appearing in the image interfering in the segmentation result.

Figure 4.5: RGB image received from the robot with the face detection of the user.

To separate the user from the background (Background removal step in Figure 4.4), we apply

an histogram approach to find out the distance from the robot to the user’s chest. For this, we

consider the user’s location information given by the robot and. by focusing on the user’s chest.

We select the area of the chest (red square in Figure 4.6) by using the limits of the face detection.

Figure 4.6: RGB image representing with a yellow square the identification from the robot, iden-
tification and with the red square the region of interest to calculate the threshold value.

Then, the region of interest is extracted from the depth image (red square in Figure and 4.7)

from where we compute the histogram (Figure 4.8). We assume that the mode of the histogram is
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the user distance to the camera and so it is used as a threshold value.

Figure 4.7: Depth image correspondent to the image 4.6 with the red square representing the
region of interest of depth values that will be used to calculate the threshold value to use in further
operations.

Figure 4.8: Histogram of the pixel values from the region of the interest. The higher value repre-
sents the distance of the user from the RGB-D camera.
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With the threshold value calculated by the histogram approach we add 15cm to the calculated

threshold to ensure that we segment the user totally and the background is removed (Figure 4.9.b).

Since the resultant image is noisy, a morphological close operation was applied in order to

reduce the noise (Morphological Close step in Figure 4.4). A close operation is the combination

of other two morphological operations, a dilation followed by an erosion [57]. The close operation

smooths sections of contours and it generally fuses breaks and thin gulfs, eliminates holes, and

fills gaps in the contour. A morphological operation is given by the relation of the image with a

structuring element [57]. In this case our structuring element was a circle with 5 pixels of diameter

(Figure 4.9.c).

As the user may not be the only object present in the scene close to the camera, in order to

focus only on the user, we applied a region growing algorithm (Region Growing step in Figure

4.4. Region growing is a procedure that groups pixels or subregions into larger regions based on

predefined criteria. This approach starts by defining a set of "seed" points and from these regions

are grown by aggregating the neighbor pixels that have properties similar to the seed (in this case

the depth value)[57].In our work the seed was selected as the center pixel of the user (based on the

bounding box sent by the robot). The result is the segmented user segmented in a binary image

(figure 4.9.d).

In order to isolate the arms from the body another image was obtained by applying another

threshold to the original image (Threshold Segmentation step in Figure 4.4). Using the previous

value calculated from the histogram it is applied a threshold of this value subtracting 4 cm to obtain

an image only with the objects in front of the user (Figure 4.9.e) . Then, we apply an interception

(AND operation step in Figure 4.4) between the image after the close operation (Figure 4.9.c) with

the region growing mask (Figure 4.9.d) and the image of the threshold ahead of the user (Figure

4.9.e) to obtain only the regions of the user near the camera that we assume as a possible arm of

the user. In the original image (Figure 4.9.a) the user and another person appears in the scene with

another background noise, with this operation the other user is eliminated from the scene and only

the arm of the user is segmented.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: User image segmentation: a) Depth image received from the robot. b) Depth image
after a threshold to perform the background segmentation. c) Morphological close operation on
the threshold image. d) Region growing result with the seed on the center of the user. e) Original
depth image after another threshold to extract what is in front of the user. f) Interception of the
images c, d and e resulting in the parts of the user in front of him.

4.5 Identification and validation

Segmentation retrieves the most important regions on the image, and then it is necessary to sepa-

rate them as distinct objects and find the position of the hands in order to detect gestures.
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(a) (b)

(c) (d)

Figure 4.10: Features extraction: a) RGB image with the identification of the hand’s tip inside the
region of interest (green rectangle). b) Segmentation of the hand and arm. c) Silhouette of the
hand and arm with the center of mass and the eigen vectors represented. d) Line obtained by the
center of mass and the longer eigen vector crossing the silhouette.

We start by labelling the components and then we perform a Principle Component Analysis

(PCA) [58] to each labelled object, which allows the algorithm to understand for each object how

its data is distributed across the image, retrieving its center of mass and eigen vectors. The orien-

tation of eigen vectors is considered to draw a line which passes through the center of mass and

intersects the silhouette of the object in two different points. We also normalize the orientation’s

angle to be sure it is pointing to the upper part of the image, assuming that the gesture has to be

made with the hand in the upper position of the arm. Thus we can guarantee that the tip of the

hand will be the upper intersection point of the line with the object contour.

Gestures presented in section 4.2 are validated using the face position obtained in 4.3 , consid-

ering only those which are made on the lateral parts of the face and above the chain, given by the

bottom part of the rectangle which defines user’s face.
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4.6 Tracking

Given the hand tip’s position, we are able to track the hand’s position across time to be able to

identify the gestures performed by the user.

4.6.1 Kalman Filter

As seen in Chapter 2 of Literature Review, the Kalman filter is used for tracking. Since it only

depends on the previous estimation and the new measurement, it requires low computing resources

and has proven its efficiency. The main goal of the Kalman filter is to estimate the state of a

dynamic system from (noisy) measurements and its previous state by a form of feedback control.

Figure 4.11: The Kalman filter cycle with the two calculation phases (time update and measure-
ment update) and their equations.

The Kalman filter works by creating a loop represented in Figure 4.11, where it first predicts

the state of the system (time update phase), and then it corrects the initial prediction with a given

new noisy measurement (measurement update). It is assumed that the system is linear and the

probability density function follows a Gaussian distribution in each state [39][47].

The equations for the Kalman filter can be divided in two groups:time update and measure-
ment update equations.

The current state and error covariance estimates are computed by the time update equations in

order to obtain a priori estimates for the next step. Being responsible for the feedback, recurring

to the a priori estimate obtained with the time update equations and a new measurement, the

measurement update equations compute a posteriori estimate. [47].

Equations 4.1 and 4.2 are from the time update phase. Equation 4.1 projects the state (x−k ) and

equation 4.2 projectsthe covariance (P−
k ) from time step k-1 to step k.

x̂−k = Ax̂k−1 +Buk−1 (4.1)

P−
k = APk−1AT +Q (4.2)
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Equations 4.3, 4.4 and 4.5 belong to the measurement phase. The first step during the mea-

surement update is to compute the Kalman gain (Kk) with Equation 4.3. After obtaining a new

measure (Zk), it is generated an a posteriori state estimate as in equation 4.4. The final step is to

estimate an a posteriori error covariance with equation 4.5.

Kk = P−
k HT (HP−

k HT +R)−1 (4.3)

x̂k = x̂−k +Kk(Zk −Hx̂−k ) (4.4)

Pk = (I −KkH)P−
k (4.5)

The hand of the user is characterized by the coordinates on 3D space and its orientation. The

state to the Kalman filter can be described with four variables (x,y,z and theta) assuming a 4D state

space.

xk =


posxk

posyk

poszk

θk

 , (4.6)

In our implementation of the Kalman filter, we assumed that the hand will try to stay close of

its last position. For that, we considered a constant position model where the next state is defined

by the previous state.

A =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , (4.7)

In the measurement update, in order to not confuse the hand with another object that could

appear on the scene, if the segmentation was not efficient, it is assumed that the closest object to

the estimated position of the hand is the hand in the actual frame to be the measurement state zk.

This choice is represented in Figure 4.12.
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Figure 4.12: Selection of the hand comparing measuring the distance from the hand of the previous
frame.

The next figures show the orientation and positions of the controlling hand in the 3 different

axis, with the actual measures and the estimated positions computed by the Kalman filter.

Figure 4.13: X axis hand position variation measured and estimated.
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In Figure 4.13, it is presented the position of the hand measured by our system and the esti-

mated position computed by the Kalman Filter in X axis across time.

Figure 4.14: Y axis hand position variation measured and estimated.

In Figure 4.14, the measured and estimated positions from the hand in Y axis are presented

across time.

Figure 4.15: Z axis hand position variation measured and estimated.
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In Figure 4.15, the measured and estimated positions in the Z axis of the hand are presented.

Figure 4.16: Theta orientation variation measured and estimated.

In Figure 4.16, the measured orientation of the arm and its estimation are presented.

In the tracking graphics we observe a smoother trajectory of the hand performed by the Kalman

filter. We notice a small delay in our tracking due to the constant position model used, it is caused

by the fact that we estimate the next position as the actual position and it will be proportional with

the velocity of the hand. Since the gesture is a sequence of positions and for our classification

approach we do not analyze the velocity of the hand this delay is not relevant.

In Figure 4.17 the path of the hand in PAUSE gesture is presented.

Figure 4.17: Path of the hand in PAUSE gesture. The white circle represents the measured point
and the blue the tracked hand.



40 Gestures recognition

The state vector obtained with the estimated hand position in each frame allow us to obtain the

track to perform the gesture recognition later.

4.7 Classification

In order to identify which gesture was made by the user, a simple Finite State Machine (FSM) for

each gesture was implemented.

4.7.1 Finite State Machine

FSM were designed according to the movement of the proposed gestures. Since the hand moves

along different coordinate axis ( along the z axis for the START and along the x axis for the

PAUSE) or does not even move (in case it is a STOP gesture) the proposed approach was designed

respecting the gesture parameterization. The states and conditions of the finite state machines

were achieved by analyzing the movement of the hand obtained from some demonstration of the

gestures.

In figure 4.18, the finite state machine implemented for the STOP gesture is presented. In the

initial state the hand is moving freely in the "Hand moving freely" state and when it stops moving,

it goes to the "No hand movement" state. If it moves again, it will return to the "Hand moving

freely". However, if after 1.5 seconds it does not move, it goes to the "Gesture STOP" state were

the gesture STOP is recognized and a command is sent to the robot.

Figure 4.18: Finite state machine of the STOP command.

The FSM for the the START gesture is presented in figure 4.19. It starts in "Hand moving

freely" and when the hand starts moving back it goes to the "Moving back" state. After this

movement, if it starts moving in front it goes to the "Moving front" state, otherwise, if it moves

in another direction it returns to the "Hand moving freely". Then, if the two last transitions are

repeated and if so, a gesture START is detected and sent to the robot. The variation of the hand

position is performed mostly in the Z axis.
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Figure 4.19: Finite state machine of the START command.

The FSM for the PAUSE gesture is similar to the one from START gesture. The difference is

the directions of movement, since the direction for the START are front and back, the directions

for the PAUSE are right and left. Taking into account this variation it is looked to the X axis instead

of the Z axis. The finite state machine for the PAUSE is presented in the figure 4.20.

Figure 4.20: Finite state machine of the PAUSE command.

Given the implemented finite state machines, our gesture recognition system was implemented

and tested in a real case scenario. Next, we present the results obtained for the proposed approach.

4.8 Experimental results

To evaluate the efficiency of our method, 13 volunteers were asked to perform the gestures. After

explaining how to perform the gestures, the volunteers performed them 3 times alternating between

gestures.

Figures 4.21 and 4.22 represents a Time-lapse and the hand displacement with the correspon-

dent state of the FSM across time respectively. In the Figure 4.22 we can see that the major
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movement is on the X axis having some variation in the Y too. The variation on the Z axis is not

significant. The hand is moving freely in the beginning and when the movement of the hand in-

verts its direction in the X axis where it goes to the "Moving right 1" state, in the next two changes

of direction it passes trough the states "Moving Left" and "Moving Right 2" and finally, in the last

change of direction the gesture PAUSE is detected like it was parameterized.

Figure 4.21: Time-lapse of the PAUSE gesture performed across time.

Figure 4.22: Hand displacement in the PAUSE command across time with the correspondent state.

A Time-lapse of the START gesture is represented in Figure 4.23 and its hand displacement

with the correspondent state of the FSM is presented in Figure 4.24. Similar to PAUSE gesture,

it has a major movement in one axis which in this case is along the Z axis. After passing by the

states "Moving Back 1", "Moving Front" and "Moving Back 2", the gesture START is recognized.
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Figure 4.23: Time-lapse of the START gesture performed across time.

Figure 4.24: Hand displacement in the START command across time with the correspondent state.

The gesture STOP was the third gesture moduled. In Figure 4.25 is represented a Time-lapse

of the gesture and in Figure 4.26 the hand displacement and the respective state of the FSM. The

hand is moving freely in the beginning and when the movement stops it enters in the "No hand

movement" state. After 1.5 seconds the STOP gesture is recognized.
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Figure 4.25: Time-lapse of the STOP gesture performed across time.

Figure 4.26: Hand displacement in the STOP command across time with the correspondent state.

The results for the gesture recognition were obtained by 13 volunteers and are presented in

table 4.1.

Table 4.1: Results of the experimental performances

Gesture True Positive False Negative False Positive
PAUSE 33 6 1
STOP 38 1 1

START 34 5 2

In our results we obtained a certain number of false positives. The false positives are less

important when we take into account the state of the robot. Since the START gesture can be only

performed when the Robot is stopped and the PAUSE and STOP gesture when it is in use. So we

can assume that the detected false positives are irrelevant.



4.8 Experimental results 45

Table 4.2: Correct rate of identification for each gesture.

Gesture Accuracy(%)
PAUSE 84,6
STOP 97,4

START 87,2
Average 89,7

As presented on the table 4.2, for each gesture performed it was achieved a correct rate of

84,6% for the PAUSE, 97,4% for the STOP and 87,2% for the START, with a global accuracy of

89,7%.
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Chapter 5

Conclusions and Future work

The proposed solution defines a new approach for Human-Robot Interaction based on the recog-

nition of dynamic gestures to be used in a Service Robot.

Based on the depth image, the face detections result and the user identification received from

the robot, a depth based approach was implemented that does not need any kind of calibration

and can work in a real case scenario, to perform gesture recognition. Three single-arm dynamic

gestures were parameterized for the commands START, STOP and PAUSE in order with the aim

of being simple and intuitive for the user.

The developed methodology makes use of the previous described information and for each

depth image received, if the face is detected, it performs the following process: The background

is removed using the distance of the user to the RGB-D sensor as a threshold value. This distance

was computed based on an histogram approach. Then a morphological close and a region grow-

ing operation are used in order to remove all the possible noise present on the image. Another

threshold using the same distance value is then performed in the original depth image in order to

obtain the arms of the user and other possible objects close to the camera. An AND operation is

performed with the two resultant images and the original depth image and the arms of the user are

obtained. After the segmentation process and with the arms obtained, a PCA is computed to each

individual object to detect its orientation and the tip of the hand that is tracked later. The tracking

is performed using a Kalman filter using a constant position model that proved to be efficient. In

order to identify the three gestures parameterized three simple FSMs were implemented since the

gestures are very distinct and not difficult to model. The FSM were low compute expensive and

of easy implementation.

The presented solution was tested by several people in a real case scenario, where a real robot

was controlled by the user only with gestures. A global accuracy of 89.7% was achieved which

indicates the robustness of our proposed approach. Individually, the STOP gesture was recognized

with a correct rate of 97.4%, the PAUSE gesture obtained a correct rate of 84.6% and finally the

START obtained 87.2%. Regarding the application of our solution on wGO, it clearly contributes

for a more natural interface between the robot and supermarket customers.

Even though there is still room for some improvements. At this moment, the system only

47
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works for the right hand but this can easily be replicated for the left hand. Further work in this area

could also include the expansion of the work space of the hand, enlarging it so that gestures could

be detected in a wider area, or improving the tracking component in order to deal with occlusions.

Moreover, it may also be interesting to implement a probabilistic classification method like the

Hidden Markov Models in order to improve the accuracy of the system as it will allow us to add

more complex gestures to the Human-Robot interface. To finish the integration procedure it will

be necessary for the robot to have a PAUSE mode we can use the corresponding gesture commands

sent by the described topic in Chapter 3.4.The implementation of the figured interface would also

improve the interaction with the user, giving him a visual feedback of his hands performing the

gestures.
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