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ABSTRACT 

 

Mitoxantrone (MTX) is a chemotherapeutic agent that emerged as an alternative to 

anthracycline therapy. However, the use of MTX is also related to late cardiotoxicity 

whose mechanisms remain largely unknown. Thus, the present thesis aims to highlight 

the underlying mechanisms involved in the MTX-induced cardiotoxicity, namely the effects 

related to mitochondria and metabolism, using in vivo and in vitro models. The in vitro 

models employed in the present work were hepatic S9 fractions and mitochondria, both 

isolated from Wistar male adult rats and H9c2 culture cells. The Wistar rat was the in vivo 

model used. 

MTX (concentrations from 10nM to 100µM) elicited a time- and concentration-

dependent cytotoxicity in H2c9 cells. Two therapeutic concentrations (100nM and 1µM) 

and three time-points were selected (24, 48, and 96h) for further studies. Both MTX 

concentrations caused a significant increase in caspase-3 activity at 24h. Significant 

decreases were observed in the total and reduced glutathione levels only in MTX 100nM 

at 96h, however neither alterations in oxidized glutathione, nor increases in 

malondialdehyde levels were observed in any time or concentrations tested. On the other 

hand, changes in the intracellular ATP levels, mitochondrial membrane potential, and 

intracellular calcium levels were observed in both concentrations and all time-points 

tested. Noteworthy, for the first time, decreased levels of ATP-synthase expression and 

activity and increases in the reactive species generation were observed at 96h in both 

MTX working concentrations. However, neither the radical scavenger N-acetylcysteine nor 

the mitochondrial function enhancer L-carnitine prevented MTX cytotoxicity.  

As evidenced by the in vitro study in H9c2, MTX causes cytotoxicity in therapeutic 

concentrations, then, the following approaches aimed to disclosure the principal 

mechanisms of MTX-induced toxicity, mainly focusing on MTX metabolism and MTX-

induced mitochondrionopathy. The metabolic studies started with the use of hepatic S9 

fractions isolated from rats incubated for 4h with MTX (100µM), whose products were 

analyzed through liquid chromatography coupled with mass spectrometry. After a 4h 

incubation, the MTX content was 35% lower and five metabolites were identified: an 

acetoxy ester derivative never described before, two glutathione conjugates, the MTX 

monocarboxylic acid derivative, and the MTX naphtoquinoxaline. Noteworthy, the 

presence of MTX and of the naphtoquinoxaline metabolite was also evidenced in vivo in 

liver and heart after 7.5mg/kg MTX-administration in rats. Then, the potential cytotoxic 

effects of MTX and MTX plus metabolites were evaluated in the H9c2 cells after 24h 

incubation with MTX alone and MTX after S9 metabolization. The cytotoxicity caused by 
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MTX plus metabolites was higher than that observed in the H9c2 cells incubated with non-

metabolized MTX group. Moreover, the co-incubation of MTX with CYP450 and CYP2E1 

inhibitors partially prevented the cytotoxicity observed in the MTX groups incubated with 

H9c2 cells, highlighting that the metabolism of MTX is relevant for its undesirable effects. 

However, increases in caspase-3 activity caused by MTX incubation were not prevented 

by co-incubation with CYP450 or CYP2E1 inhibitors in this cell model. 

To evaluate the cardiac mitochondrial toxicity of MTX, male Wistar rats were treated 

with three cycles of 2.5mg/kg MTX at day 0, 10, and 20. One treated group was 

euthanized on day 22 (MTX22) to evaluate early MTX cardiac toxic effects while the other 

was euthanized on day 48 (MTX48), to allow the evaluation of MTX late effects. MTX 

treatment caused a reduction in relative body weight gain in both treated groups with no 

significant changes in water and food intake. Increased cardiac relative mass was 

observed in MTX22 group and microscopic changes suggestive of dilated cardiomyopathy 

were evident in both treated groups. Considering mitochondrial effects, it was shown, for 

the first time that MTX induced an increase in the activity of both complex IV and complex 

V in MTX22 group, while the decrease in the complex V activity was accompanied by the 

reduction of ATP content in the MTX48 rats. Despite the MTX-induced cardiotoxicity 

evidenced in our study, we also observed hematotoxicity and direct hepatotoxicity upon 

this MTX administration regimen. 

In summary, this thesis highlights the relevance of CYP450- and CYP2E1-mediated 

metabolism to the MTX-induced cytotoxicity. Moreover, it was shown that energetic crisis 

observed after MTX incubation/administration acts as a possible key factor in the cell 

injury. MTX presents the potential to cause mitochondrionopathy as demonstrated both by 

in vivo and in vitro approaches.  

 

Keywords: Mitoxantrone. Metabolism. Cardiotoxicity. Mitochondrionopathy. 
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RESUMO 

 

A mitoxantrona (MTX) é um agente antineoplásico que foi sintetizado com o intuito 

de ser uma alternativa à terapia com antraciclinas. Contudo, o uso clínico da MTX 

também tem sido associado ao desenvolvimento de cardiotoxicidade tardia, a exemplo do 

que é observado na terapia com antraciclinas. Os mecanismos envolvidos na 

cardiotoxicidade descrita não foram ainda devidamente elucidados. Assim, os estudos 

desenvolvidos no âmbito desta tese tiveram como objetivo esclarecer os principais 

mecanismos associados à cardiotoxicidade induzida pela MTX, nomeadamente no que 

diz respeito à influência do seu metabolismo e os efeitos adversos cardíacos ao nível 

mitocondrial, recorrendo a modelos in vivo e in vitro. Os modelos in vitro utilizados nestes 

trabalhos foram as frações S9 hepáticas e mitocôndrias, ambas isoladas de ratos Wistar 

adultos e a linha celular imortalizada H9c2. O rato Wistar foi o modelo in vivo utilizado.  

As células H9c2 foram incubadas com diferentes concentrações de MTX (10nM a 

100µM) por 24, 48, 72, ou 96h, observando-se uma citotoxicidade dependente da 

concentração e do tempo de incubação. Selecionou-se para os estudos subsequentes 

duas concentrações de MTX consideradas clinicamente relevantes (100nM e 1µM) e três 

tempos de incubação (24, 48, e 96h). Ambas as concentrações de MTX causaram 

aumentos significativos na atividade da caspase-3 após 24h de incubação. Após 96h, 

observou-se ainda uma redução significativa nos níveis intracelulares de glutationa total e 

reduzida, mas apenas com a concentração de 100nM de MTX. Contudo, não foram 

observadas alterações nos níveis de glutationa oxidada ou nos níveis de malondialdeído 

em nenhuma concentração e tempo de incubação testados. Por outro lado, observou-se 

alterações nos níveis intracelulares de ATP, assim como o aumento do potencial de 

membrana mitocondrial e dos níveis intracelulares de cálcio em todos os tempos 

avaliados. Observou-se, ainda, pela primeira vez, que a MTX nas concentrações 

selecionadas e após 96h de incubação, originou uma diminuição da expressão e da 

atividade da ATP sintetase, acompanhada pelo aumento na formação de espécies 

reativas. Contudo, nem a co-incubação com N-acetilcisteína (um captador de espécies 

reativas) ou com a L-carnitina (um potenciador da função mitocondrial) preveniu a 

citotoxicidade induzida pela MTX nestas células. 

Os estudos metabólicos foram realizados incubando MTX (100µM) com frações S9 

isoladas de fígado de ratos Wistar adultos. Ao fim de 4h de incubação, os produtos do 

metabolismo da MTX foram extraídos e analisados utilizando cromatografia em fase 

líquida acoplada com detetor de massa. Após 4h de incubação com as frações S9 

hepáticas, o conteúdo de MTX foi 35% inferior à quantidade inicialmente adicionada ao 
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sistema. Além disso, cinco metabolitos foram identificados: um acetoxi éster nunca antes 

descrito, dois conjugados com glutationa, um derivado do ácido monocarboxílico e o 

derivado naftoquinoxalínico da MTX. De realçar que a presença da MTX e do seu 

derivado naftoquinoxalínico também foi detetada in vivo nos fígados e corações de ratos 

tratados com 7.5mg/kg de MTX. De seguida, os efeitos citotóxicos da MTX sem qualquer 

metabolismo e da MTX após biotransformação obtida através destas incubações foram 

avaliados através da incubação por 24h com as células H9c2. A citotoxicidade causada 

pela MTX em presença de seus metabolitos foi significativamente maior que a observada 

nas células incubadas apenas com MTX. A co-incubação de MTX com os inibidores do 

metabolismo mediado pela CYP450 e CYP2E1 preveniu parcialmente a citotoxicidade, 

provando que o metabolismo da MTX é relevante para os seus efeitos tóxicos. Contudo, 

o aumento na atividade da caspase-3 observada após 24h de incubação com a MTX 

(100nM e 1µM) não foi prevenido pela co-incubação com os inibidores da CYP450 ou 

CYP2E1. 

Para avaliar a toxicidade cardíaca mitocondrial in vivo exercida pela MTX, 

utilizamos como modelo animal ratos machos Wistar tratados com três ciclos de MTX 

(2.5mg/kg) nos dias 0, 10 e 20. Um dos grupos tratados com MTX foi eutanasiado no dia 

22 (MTX22) para avaliar os efeitos cardiotóxicos da MTX logo após o seu último ciclo. O 

outro grupo foi eutanasiado no dia 48 (MTX48) a fim de avaliar os efeitos cardiotóxicos 

tardios causados pelo fármaco. O tratamento com MTX causou uma redução no aumento 

de massa corporal relativa nos dois grupos que receberam MTX, alteração que não foi 

acompanhada por mudanças nos consumos de água e ração. Observou-se, também, um 

aumento na massa relativa dos corações no grupo MTX48 e alterações microscópicas 

compatíveis com cardiomiopatia dilatada nos dois grupos. A administração de MTX 

causou um aumento na atividade dos complexos IV e V mitocondriais no grupo MTX22 e 

uma diminuição na atividade do complexo V mitocondrial, acompanhada pela redução 

nos níveis cardíacos de ATP no grupo MTX48. Foi ainda possível observar efeitos tóxicos 

hematológicos e uma possível hepatotoxicidade direta causada pela administração de 

MTX neste modelo animal e condições experimentais.  

Em conclusão, este estudo contribuiu para demonstrar a relevância do metabolismo 

mediado pela CYP450 e CYP2E1 para os efeitos cardiotóxicos relacionados com a MTX. 

Além disso, observou-se que um dos principais mecanismos de cardiotoxicidade da MTX 

envolve o estabelecimento de uma falha energética, conforme demonstrado através dos 

efeitos tóxicos mitocondriais observados nos modelos in vivo e in vitro utilizados. 

 

Palavras-chave: Mitoxantrona. Metabolismo. Cardiotoxicidade. Toxicidade 

mitocondrial. 
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OUTLINE OF THE THESIS 

 

The present thesis is divided into four main sections: 

 

 Part I: General introduction 

In this section, a review on the existing literature about mitoxantrone is presented, 

in order to provide a good basis for understanding the objectives and the obtained 

results of the experimental studies. The general introduction is subdivided in two 

subchapters. The description of the main objectives is included in the second 

subchapter. 

 

 Part II: Experimental section 

This section is subdivided into two subchapters: one regarding the material and 

methodologies employed in the studies presented in this thesis and the other 

concerning the manuscripts published in the scope of the present thesis. 

 

 Part III: Discussion and Conclusions 

In this section, the integration of the results obtained in all the studies of this thesis 

is performed. The discussion of their potential relevance and their connection with 

existing scientific reports is also addressed here. Moreover, part III includes the 

main conclusions taken from the work performed in this thesis. 

 

 Part IV: References 

In this final part, all the references of the literature that were used in the 

introduction, material and methods, and discussion sections are listed. 
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I.1. Historic context 

Mitoxantrone (MTX) is a chemotherapeutic agent that belongs to the 

anthracenedione chemical group (Figure 1). This chemical group comprises naturally 

occurring quinones present in plants or animals that due to their intense color were used 

as dyes since ancient times (1). Despite the lack of antitumor activity of many naturally 

occurring quinones, the anthracycline antibiotics doxorubicin and daunorubicin, which 

contain the anthracenedione ring framework in their tetracyclic chromophore part are 

ranked as one of the most effective anti-cancer drugs ever developed (1–4). However, 

due to the serious toxicity presented and difficulties experienced in the synthesis of 

anthracycline, molecules with only the anthracenedione group seemed to be a good 

alternative to be explored as anticancer drugs (1). In fact, structural variations conducted 

in the laboratory resulted in active bis-substituted aminoanthracenedione derivatives with 

significant antitumor activity such as ametantrone (1,5). Trying to increase the antitumor 

activity of these compounds, structural variations resulted in the MTX molecule in 1979 

(1,6–8). 

 

Figure 1: Chemical structure of MTX. The chromophore ring is highlighted in red. 

 

The chemical synthesis of MTX involves the reaction of leuco-1,4,5,8-tetra-

hydroxyanthraquinone with 2-[(2-aminoethyl)amino]ethanol. The product of this reaction is 

further aromatized with chloranil (9). Nowadays, MTX is a medicine supplied as a dark-

blue solution in vials, containing 2mg/ml (Novantrone® or mitoxantrone dihydrochloride). 
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I.2. MTX chemical aspects 

MTX is a crystalline, hygroscopic blue powder with melting point of 160-162ºC or 

203-205ºC (for the dihydrochloride form) (9). It is sparingly soluble (from 30 to 100 parts of 

solvent for one part of solute) in water, slightly soluble (from 100 to 1,000 parts of solvent 

for one part of solute) in methanol, and practically insoluble (more than 10,000 parts of 

solvent for one part of solute) in organic solvents such as acetone, acetonitrile, and 

chloroform (9,10).  

In aqueous solution, MTX presents a relevant adsorption to materials such as glass 

and filters (1). Moreover, MTX reacts with sodium metabisulfite and EDTA (10). Solutions 

containing MTX are stabilized by the addition of 0.5% ascorbic acid (10). Additionally, 

MTX is stable in spiked whole blood for 3-6 hours (h) if samples are kept on ice and in 

plasma samples for at least 24h (10,11). After reconstitution with 0.9% sodium chloride or 

5% dextrose, MTX is stable for at least 48h (1). 

I.3. Therapeutic uses 

MTX is a Food and Drug Administration (FDA) approved chemotherapeutic agent in 

the treatment of malignances such as myelogenous acute leukemia and prostate cancer 

and in the treatment of multiple sclerosis (secondary progressive, progressive relapsing, 

or worsening relapsing-remitting) to reduce neurologic disability and/or frequency of 

clinical relapses (2,12,13). Furthermore, MTX is also used in the treatment of acute 

lymphoid leukemia and as an initial approach in adults for the treatment of acute non-

lymphocytic leukemia (which can include myelogenous, promyelocytic, monocytic and 

erythroid acute leukemia), bone marrow transplant, breast cancer, head and neck cancer, 

liver carcinoma, malignant lymphoma, non-Hodgkin’s lymphoma, ovarian cancer, and 

solid tumors (12).  

In general, MTX chemotherapy protocol in humans consists on the administration of 

MTX for 30 minutes (min) via continuous infusion (1,9). The usual doses and dosing 

regimen for MTX indications are summarized on Table 1. It is important to note that the 

chemotherapy schedule might be individually adjusted taking into account the disease 

progression and the clinical condition of the patient, especially when the optimal dose and 

timing is not defined, as it occurs in the non-FDA labeled indications (12). In these 

situations, many intravenous (i.v.) administration regimens and intervals are described in 

the literature, namely a single dose every 28 days, 24h infusion, continuous infusion over 

five or 21 days, three times a day, five times a day, weekly and even high dose regimen 
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for refractory lymphoma employing 90mg/m2 MTX were already described (1,14). 

Moreover, the safety and effectiveness parameters of most MTX uses in pediatric patients 

are not well established, but in such patients presenting solid tumor configuration, the 

recommended dose is 5 to 8mg/m2/week i.v. or an alternative dosing regimen of 18 to 

20mg/m2 i.v. every three to four weeks (12). 

 

Table 1: MTX usual adult dose regimen protocols. 

Disease Dose regimen protocol References 

Acute myeloid leukemia 

 

Induction phase: 12mg/m2/day i.v. on days one to 
three in combination with cytarabine 
(100mg/m2/day) as continuous i.v. 24h infusion on 
days one to seven; if leukemia persists, a second 
induction course of 12mg/m2/day i.v. for two days 
in combination with cytarabine (100mg/m2) daily as 
continuous i.v. 24h infusion on days one to five 
may be given; 12mg/m2/day i.v. over 30min on 
days one, three, and five with cytarabine 
(25mg/m2) once as an i.v. bolus followed by 
100mg/m2/day as a continuous i.v. infusion for 10 
days and etoposide (100mg/m2) i.v. over 1h on 
days one to five  

Consolidation phase: 12mg/m2/day i.v. on days 
one and two in combination with cytarabine (100 
mg/m2/day) as continuous 24h i.v. infusion on days 
one to five; 12mg/m2/day i.v. over 30min for three 
days (on days four to six) with cytarabine 
(500mg/m2) i.v. over 2h every 12h on days one to 
six  

 

(12) 

Multiple sclerosis 
 
Prostate cancer 
 

12mg/m2 i.v. every three months 
 
12 to 14mg/m2 i.v. every 21 days 
 

(12,15) 
 

(2,12) 

Metastatic breast cancer and 
non-Hodgking’s lymphoma, 
hepatoma 

Monotherapy: First dose of 14mg/m2 i.v. This 
administration might be repeated after 21 days if 
blood counts return to normal/acceptable values. 
Patients presenting myelosupression at the 
beginning of treatment may receive a lower dose 
of 2mg/m2.  
Combined therapy: 10 to 12mg/m2 as the initial 
dose.  

(16) 

 

In acute myeloid leukemia, the induction phase is the first course of treatment and it 

aims to induce total remission, which is characterized by the absence of blasts in the 

peripheral blood and the presence of ≤ 5% blasts in bone marrow smears (17). After 

reaching this stage, the consolidation phase aims to maintain the total remission. Thus, in 

the referred acute myeloid leukemia treatment, the antimetabolic agent cytarabine is 

commonly associated to MTX, as described in the Table 1. Another drug associated to 

MTX to deal with cancer relapse or refractory to conventional primary chemotherapy is 
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etoposide (16). Recently, a prospective multicenter phase two trial assessed a novel 

regimen protocol for T-cell prolymphocytic leukemia based on induction by fludarabine 

(25mg/m2/day, i.v., on days one through three), MTX (8mg/m2/day, i.v., on day one), and 

cyclophosphamide (200mg/m2/day on days one and three, repeated on day 28), up to four 

cycles, followed by alemtuzumab in the consolidation phase (30mg i.v. three times weekly 

for a maximum of 12 weeks) (18). 

It is also important to point that, due to the toxicity profile of MTX, its dose regimen is 

limited to the maximum cumulative dose of 140mg/m2 (2). Due to the apparent increased 

susceptibility of multiple sclerosis patients to cardiotoxicity, some authors state that 

maximum cumulative dosage in multiple sclerosis patients might be defined as 100mg/m2 

(19,20). Furthermore, MTX administration is not recommended in patients with a baseline 

neutrophil count of less than 1500 cells/mm3 (unless the patient is receiving MTX for the 

treatment of acute nonlymphocytic leukemia) (12). Moreover, in patients with hepatic 

impairment, the dosage adjustment is necessary and in patients with multiple sclerosis 

presenting this condition, MTX use is not indicated (12). All these aspects are discussed 

in more detail in the next sections. 

I.4. Pharmacological action mechanisms 

MTX is a deoxyribonucleic acid (DNA) intercalating agent that causes single and 

double breaks in the DNA by the stabilization of a complex formed between DNA and 

topoisomerase II (1,2,21). The planar electron-rich chromophore group of MTX (Figure 1) 

is essential for its ability to intercalate in the DNA strains (21). This interaction is 

completed by electrostatic interactions of MTX side chains with the anionic exterior of the 

DNA (1,21). As a consequence, MTX inhibits the DNA replication, the ribonucleic acid 

(RNA) transcription, and also promotes the cell cycle arrest (1,22). Moreover, epigenetic 

effects of MTX were evidenced using purified isolated histones. The incubation with MTX 

(0.1-100µM) demonstrated the high affinity of MTX to histone H1 and core histone 

proteins, suggesting an additional target of this drug (23). 

Due to its immunosuppressive capacity, MTX is also employed to suppress active 

inflammation preventing myelin and axonal damage observed in multiple sclerosis (15). 

MTX induces short- and long-term immunosuppressive effects leading to the induction of 

apoptosis in antigen-presenting cells and the induction of cell lysis, which results in 

reduced levels of blood leukocytes and inhibition of the proliferation of all types of immune 

cells (15,24). MTX inhibits lymphocytes (T cells and B cells) activity and suppresses the 

expression of pro-inflammatory molecules such as prostaglandin, C-reactive protein, 
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cytokines (TNF-α, IL-1β, IL-6, IL-12, and IL-23), and lipopolysaccharide induction of nitric 

oxide production by astrocyte (1,15,25). The clinical effects of MTX in multiple sclerosis 

are suggested to last up to one year after the end of treatment (15,24). As a 

consequence, a reduction in the neurological disability and/or the frequency of clinical 

relapses is expected (2). 

I.5. Pharmacokinetics 

I.5.1. Absorption and distribution 

The i.v. route is the preferential via of MTX administration (1,26). Intravenously 

administered MTX rapidly disappears from plasma due to the distribution to highly 

perfused organs in humans and laboratory animals (1,26). The MTX distribution half-life is 

about 15min (1,26) and studies are consistent to report very high volumes of distribution 

associated to MTX therapy (1,2,14,26). Thus, in humans, the best fit for the plasma-

concentration curve is reached in a 3-compartment model (1). In patients with refractory 

lymphoma, after 30min i.v. infusion (15mg/m2 or 90mg/m2), the mean maximum MTX 

plasma concentrations were about 1.5 and 12µM, respectively. The volume of distribution 

at steady state (486 ± 254L/m2) was shown to be independent of the dose (14). Firstly, the 

concentration in peripheral cells is higher than plasmatic levels (1,14). In cancer patients, 

35 days after a single i.v. dose of 12mg/m2 C14-labeled MTX, the wide distribution volume 

of MTX was corroborated (26). The tissues that present higher MTX content were the liver 

(1140ng/g wet tissue), soon followed by pancreas (1040ng/g wet tissue), thyroid (958ng/g 

wet tissue), spleen (733ng/g wet tissue), heart (716ng/g wet tissue), stomach (555ng/g 

wet tissue), lymph node (432ng/g wet tissue), kidney (312ng/g wet tissue), lung (276ng/g 

wet tissue), small intestine (173ng/g wet tissue), and bone marrow (78ng/g wet tissue) 

(26). From the best of our knowledge, there are no data regarding pharmacokinetic 

parameters of MTX orally administered in humans because it is not intended for use as an 

oral medication (26).  

In animal models, when administered intramuscularly, significant amounts of MTX 

remain at the muscular tissue used in the administration. For example, in dogs, 16.2% of 

the intramuscular administrated MTX dose (0.37mg/kg) persisted at the injection site for 

ten days (26). In mice, the single intramuscular administration of MTX at doses 0.3mg/kg 

and 3mg/kg resulted in the intramuscular retention of 17.6% and 8.9% of MTX, 

respectively, for at least 24h (26). Besides being an erratic pathway for MTX 

administration, the intramuscular via should be avoided because there is increased risk of 
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extravasation with consequent tissue necrosis when MTX is injected into a muscle, 

subcutaneously, or into spinal cord (2,15). Thus, in humans, this via is irrelevant. 

I.5.2. Metabolism 

MTX metabolism has been evaluated through in vivo and in vitro studies. It was 

already described in human, pig, and rat (27). Regarding in vitro protocols, studies using 

exogenously added isolated enzymes, such as NADPH cytochrome P450 reductase 

(28,29), peroxidase enzyme systems (27,30), primary cultures of hepatocytes isolated 

from rats, rabbits, and humans (31), microsomes, and cytosol fractions isolated from rat 

liver (32) were performed. 

The metabolism of MTX involves phase I, phase II, and phase III reactions. MTX 

main metabolic products are the naphtoquinoxaline metabolite (Figure 2) and its 

respective oxidation products, MTX mono- and dicarboxilic derivatives, and MTX 

conjugated with reduced glutathione (GSH) and glucuronic acid. Regarding the 

interspecies variability, mono- and dicarboxylic acid derivatives of MTX are major products 

of human and rabbit hepatic metabolism, while in rats they are residual (27,31). 

Concerning phase I reactions, the oxidoreductive metabolism of MTX is mediated by 

the microsomal system and/or peroxidase enzymes such as human neutrophil 

myeloperoxidase (33,34). Chemically, the position of the hydroxyethylamino group on the 

chromophore ring produces steric hindrance, impairing the one-electron reductase-

mediated metabolism of MTX (35). Thus, MTX possess a lower one-electron reduction 

potential compared to others analogues (35). Hence, since the one-electron reduction of 

MTX is not facilitated, the preferential pathway of MTX metabolism is the two-electron 

reduction (33,36,37), which generates more stable products when compared to the semi-

quinone radicals produced by one-electron reduction (33). 

As already mentioned, oxidative metabolism of MTX is of great interest since its 

byproducts seem to be involved in the MTX cytotoxic action (33,36,37). This hypothesis is 

supported by the observation that MTX has particular effectiveness in tumors with high 

contents of peroxidases and that the cellular sensitivity to MTX damage is proportional to 

cell metabolic skills (27,30,37). Additionally, the inhibitory effect of MTX (5µM) on cell 

growth in hepatoma cells (HepG2) was prevented after the blockage of cytochrome P450 

metabolism by the co-incubation with metyrapone (MTP) (0.5mM) (33). In another study, 

the inhibition of cytochrome P450 metabolism with the same inhibitor (MTP 1mM) in the 

same cell line (HepG2) and in rat isolated hepatocytes resulted in the total loss of MTX-

induced cytotoxicity, even with high doses of MTX (200 to 400µM incubated for 4 and 9h), 
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leading the authors to assume that, without suffering metabolism, MTX has a negligible 

toxic effect in those models (37). Accordingly, in a human breast cancer cell model, the 

co-incubation of MTP (0.5mM) also prevented the cytotoxicity observed with MTX (5 to 

200µM) (36).  

Still regarding oxidative metabolism of MTX, it was suggested that epoxide 

hydrolase might contribute to MTX detoxification since its inhibition leads to increased 

MTX cytotoxicity. Thus, it suggests that at least one toxic relevant metabolite of MTX is an 

epoxide (33). 

The main studies aiming to elucidate the chemical structures of MTX metabolites 

are summarized on Table 2. Until now, the most pharmacological relevant MTX oxidation 

product is the naphtoquinoxaline metabolite (Figure 2), which presents cytotoxic features 

(37,38).This metabolite was already identified in human, rat, and pig after MTX 

administration (27). 
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Phase II metabolism enzymes are protagonists in the MTX detoxification process, 

namely the conjugation with GSH and glucuronic acid (1,27,32,37).  

 

 

 

 

Figure 2: Chemical structure of 8,11-dihydroxy-4-(2-hydroxyethyl)-6-[[2-[(2-
hydroxyethyl)amino]ethyl]amino]-1,2,3,4,7,12-hexahydronaphto-[2-3]-quinoxaline-7-12-
dione or naphtoquinoxaline, the main bioactive metabolite of MTX. 

 

Efflux transporters are often recognized as phase III metabolism (39,40). MTX is 

substrate of the adenosine 5′-triphosphate (ATP)-binding cassette G2 (ABCG2) 

transporter or breast cancer resistance protein (BCRP), which works as a multidrug 

resistance pump (41). Furthermore, a study using a BCRP and P-glycoprotein inhibitor 

(GF-120918 10mg/kg, administered via jugular vein cannula) co-administered to rats 

receiving MTX (2mg/kg, administered via jugular vein cannula) demonstrates that BCRP 

or P-glycoprotein, or both, elicit an important role in the MTX biliary excretion (42). In fact, 

MTX is described as a substrate of BCRP, although, its transport via P-glycoprotein 

occurs in a minor extent (42). It is an important observation as in cancer treatment, the 

drug extrusion is associated to the resistance to MTX therapy, thus, currently several 

studies are focused on the development of new formulations/vehicles or functionalized 

nanoparticles to overcome drug resistance (43). 

I.5.3. Elimination 

The redistribution of the MTX sequestered in the tissues back to the plasma and its 

elimination from the body is a slow process (26). Indeed, the long-term pharmacological 

and even toxicological effects attributed to MTX might be related to its long cellular 

residence time and its strong affinity for cellular macromolecules and membranes (35,44). 

The majority of excretion studies are designed measuring the radioactivity in the urine and 

feces after MTX labeled administration instead of identifying the metabolites chemical 

structures (1). In humans and laboratory animals, biliary excretion is the main elimination 
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route of unchanged MTX and its conjugated metabolites, although, less amounts can be 

found in urine (1,26,37,42,45). 

I.6. Adverse effects 

As an aggressive chemotherapy drug, MTX treatment has been associated to 

several undesirable effects, such as myelosupression, nausea, vomiting, diarrhea, 

mucositis, and hepatotoxicity (1,9,12,46). Myelosupression manifests as severe 

neutropenia, and sometimes the administration of colony stimulating factors such as 

filgrastim or sargramostim is recommended. Blood transfusion may be needed in patients 

presenting severe thrombocytopenia, anemia, or hemorrhage (12). MTX is classified as a 

drug with low emetic risk (47). However, the management of MTX-induced nausea and 

vomiting is done with dexamethasone and metoclopramide (47). MTX has a high 

extravasation risk, being a vesicant agent (2). If extravasation occurs, the infusion must be 

discontinued and the affected area should be elevated (12).  

The most concerning MTX adverse effect is the late cardiotoxicity due to its life-

threatening risk (2,13), followed by the hematotoxicity and hepatotoxicity, due to their high 

frequency (2,9,12). Due to their relevance, since they can limit the therapy, these MTX-

related toxicities will be addressed separately in independent sub-sections.  

The mean lethal dose (LD50) of MTX in experimental animals was set at 5mg/kg in 

rats, 10mg/kg in mice, and 10mg/m2 in beagle dogs (9,48). As already stated, besides the 

symptoms commonly related to chemotherapy, namely nausea, fatigue, diarrhea, 

alopecia, anorexia, and mucositis, the toxic effects associated with MTX treatment include 

hematotoxicity (2,9), significant hepatotoxicity (9,49), and serious and (sometimes 

irreversible) cardiotoxicity (2,9,20,46). 

I.6.1. MTX-induced cardiotoxicity 

MTX was produced with the goal to overcome the cardiotoxicity observed with 

anthracyclines such as doxorubicin, the prototype of the group. However, MTX has been 

also reported as cardiotoxic in humans, affecting up to 18% of treated patients 

(2,13,50,51). 

The majority of MTX-induced cardiotoxicity manifests as congestive cardiac failure 

characterized by the reduction left ventricular ejection fraction (LVEF) (13). Other cardiac 

disturbances such as tachycardia, dysrhythmias, and chest pain were also reported as 

MTX cardiac side effects (12). In cancer treatment, risk factors for the development of 
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MTX-related cardiotoxicity include previous treatment with anthracyclines, mediastinal 

radiotherapy, pre-existing cardiovascular disease, and cumulative doses superior to 

140mg/m2 (2,13). Additionally, patients presenting LVEF < 50% cannot receive MTX 

(13,52). Thus, monitoring the cardiac function is recommended after a cumulative dose of 

80mg/m2 (2). A reduction of about 10% in the LVEF baseline associated with an absolute 

LVEF value less than 50% should be viewed with concern and cessation of MTX therapy 

is recommended (13,52,53). The main limitation of this approach is its low sensitivity to 

detect cardiotoxicity at early stage. Monitoring based only in the LVEF values do not allow 

preventive strategies since it detects myocardial damage only when a functional 

impairment has already occurred (53). Hence, measurement of cardiac troponin has 

proven to help the early identification of patients susceptible to develop myocardial 

dysfunction and cardiac events (53). 

Despite the most common manifestation of MTX-induced cardiotoxicity is decrease 

in LVEF, less frequent symptoms are disturbances of heart rhythm (12,54). The 2h 

incubation of isolated guinea pig ventricular myocytes with MTX (30µM) induced a time-

dependent prolongation of action potential duration occasionally accompanied by early 

after depolarization (55), which can contribute to the proarrhythmic effect attributed to 

MTX. Additionally, in the same study, it was demonstrated that the same MTX working 

concentration (30µM) caused the depression of both inward rectifier potassium current 

and delayed rectifier potassium current (which can induce torsades de pointes), the 

blockage of 93% the muscarinic-gated receptor potassium current evoked by 1µM 

carbamylcholine incubation, while it did not affect the L-type calcium channels (55).  

Regarding human reports, a female patient, 55 years old, presenting a relapse of 

acute myelogenous leukemia was admitted to reinduction therapy with MTX (10mg/m2, 

i.v.) and etoposide (100mg/m2, i.v.), daily, for five doses. About 22min after her fifth dose, 

the patient presented chest tightness and bradycardia, which was reverted with the 

discontinuation of the drug. She was rechallenged twice in a monitored setting and the 

symptoms recurred (54). It is important to point out that this patient was subjected to a 

previous regimen of chemotherapy months before, namely an induction chemotherapy 

(cytarabine, etoposide, and idarubicin in a cumulative dose of 36mg/m2) followed by the 

consolidation phase with high dose of cytarabine. Furthermore, other medications that the 

patient received in that moment included acyclovir, ciprofloxacin, allopurinol, granisetron, 

potassium chloride, magnesium sulfate, and lorazepam. Thus, possibly, the previous 

anthracycline therapy contributed to the cardiotoxic reaction observed in this patient (54).  

Patients with multiple sclerosis seem more susceptible to cardiac adverse effects 

due to the higher frequency of low baseline LVEF observed in untreated patients 

compared to individuals without multiple sclerosis (13,46). In these patients, the 
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cardiotoxicity occurs at a median of 7.2 cycles of MTX (12mg/m2, every three months, 

cumulative dose of 86.4mg/m2) (19), but it can occur before. In a prospective study, 28 

multiple sclerosis patients treated with MTX were subjected to a LVEF evaluation before 

receiving the fourth cycle of MTX. The results revealed that, at that moment, five patients 

(17.8%) already underwent a significant decline in their baseline LVEF (13). It suggests 

that MTX-cardiotoxicity could be evident at lower doses and earlier in multiple sclerosis 

patients (46) and thus, such patients treated with MTX should be followed warily. The 

monitoring of cardiac function includes a baseline echocardiogram followed by 

echocardiograms at one and two years and even every cycle of MTX (19). Conservative 

authors claim that the maximum cumulative dosage in such patients might be defined as 

100mg/m2 (19,20). Therefore, in multiple sclerosis, the use of MTX is recommended only 

in cases of very aggressive multiple sclerosis, presenting increased disability, frequent 

and severe relapses, and many active inflammatory lesions (20).  

In multiple sclerosis, MTX treatment frequently induces clinical asymptomatic 

reduction of baseline LVEF, which is counteracted, returning to normal values, after MTX 

end of therapy (19,20,56,57). In a review of clinical data from 18 multiple sclerosis 

patients who received MTX dosage (12 patients received 12mg/m2; two patients received 

10mg/m2, two patients started with 15mg/m2 and were kept with cycles of 8mg/m2, two 

patients started with 15mg/m2 and were gradually lowered to 12 and 8mg/m2) and interval 

cycles (12 patients followed the conventional three months interval, two patients 

alternated three and two months courses, one patient performed three cycles with three 

months interval, three cycles of four months and the last three cycles of two months 

intervals, and the last three patients followed a one month interval course) depending on 

the clinical response and side-effects. Cardiac LVEF decrease was observed in all MTX 

treated patients, but only two cases presented severe LVEF decrease (LVEF<55%, 

considered below the normal values). These patients received only two drug infusions and 

were advised to discontinue the therapy although they were clinically asymptomatic. 

Following this procedure their LVEF returned to normal values (56).  

In a retrospective review of 128 patients with multiple sclerosis treated with MTX 

standard protocol (using as top limit the cumulative dose of 120mg/m2), it was observed 

that until the end of the study (median follow-up duration of 14 months), 18 (14%) patients 

developed de novo cardiotoxicity evidenced by decreased LVEF (46). Of these patients, 

only three (17%) recovered to normal in the next assessment, six had no further follow-up, 

and two remained altered until the end of the study (46).  

In a single center, open-label, non-randomized study, 42 secondary progressive 

multiple sclerosis patients were divided in two groups: control (n=11, receiving no 

treatment) and MTX (n=31, receiving 12mg/m2 infusion every three months up to a 
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maximum cumulative dose of 120mg/m2) (20). Ten patients from the MTX group 

prematurely finished the study due to cardiac complications (heart palpitations, pulmonary 

edema, and tachycardia). These cardiac complications were classified as severe 

(decrease of 10% or more from the LVEF baseline) in six patients. However, the post-trial 

cardiac surveillance, which continued for up two years, revealed that 48% of the total MTX 

patients presented decreases in the LVEF, that followed by a post-treatment recovered to 

normal cardiac function (20). 

In another open-label study with 23 multiple sclerosis patients receiving 12mg/m2 at 

three month intervals (up to a maximum cumulative dose of 140mg/m2) only one patient, 

representing 4.3% of the studied population, presented asymptomatic left ventricular 

hypokinesia and reduced LVEF, which was also reverted after the end of therapy (57). 

This lower cardiotoxicity incidence might be related to the reduced number of patients.  

A retrospective study reviewing 41 multiple sclerosis patients who received MTX 

previously (12mg/m2 at three month intervals), evidenced that 9% presented decline 

greater than 20% from baseline LVEF and 7% patients had decline greater than 10% from 

baseline LVEF (19). Of patients re-evaluated off-study, all presented improvements in 

LVEF, also demonstrating that, although the MTX-induced cardiotoxicity is a concern, it 

may be not permanent if the therapy is conducted with regularly monitoring and 

interruption is in place adequately (19). 

There are few studies trying to elucidate the mechanisms involved in the MTX-

induced cardiotoxicity. Frequently, regarding that the clinical manifestations of MTX-

cardiotoxicity are similar to those observed to doxorubicin, it was believed that both 

compounds shared the mechanisms involved in their cardiotoxicity (29,58). However, 

other studies suggest that the mechanisms are dissimilar (50,59). Considering that the 

purpose of the present thesis is to contribute to the elucidation of the mechanisms related 

to MTX-cardiotoxicity, mechanistic studies will be discussed in more details in the 

Discussion section. 

I.6.2. MTX-induced hepatotoxicity 

The occurrence of abnormalities in the liver function during the treatment of complex 

diseases such as cancer and multiple sclerosis can be catastrophic. In fact, it may 

compromise treatment and even, as a consequence of impaired metabolism, contribute to 

MTX toxicity (60). In humans, the MTX-induced hepatotoxicity manifests as transient 

increases in the serum bilirubin concentration and in the activity of hepatic enzymes, 

occurring in about 15% of treated patients (12mg/m2) (9,15). 
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There are few studies focusing on the hepatotoxicity of MTX and it is still unclear 

whether the hepatic disturbances elicited by MTX are due to a direct hepatotoxic effect or 

are a consequence of cardiac failure. The hepatotoxicity was observed in mice treated 

with a single dose of MTX (15mg/kg), which hepatic injury was considered more intense 

compared to the hepatic lesion promoted by doxorubicin in the same dose and model 

(49). Existing data demonstrate that oxidative stress is involved in the hepatic injury 

caused by MTX (33,37,49). A study with HepG2 cell line and rat hepatocytes suggested 

that the cytotoxic effect of MTX depends on prior oxidation mediated by CYP450 (37). The 

incubation of MTX (100µM) with HepG2 cells for 6h promoted a slight decrease in the 

GSH levels (33) that is in accordance with what was found in mice, where decreases in 

the hepatic antioxidant defenses after MTX treatment were also observed (49). In fact, 

four days after the intraperitoneal (i.p.) injection of a single dose of MTX (15mg/kg), 

intense signals of hepatic lipid peroxidation, diminished activity of hepatic superoxide 

dismutase, catalase, and glutathione peroxidase, and depletion of the hepatic retinol and 

GSH contents were observed (49). In the same study, hepatic histopathologic results 

showed intense hydropic vacuolization of the cytoplasm, necrotic areas, picnosis, and 

nuclear lysis (49). 

As mentioned above, in vitro studies suggest that the oxidative biotransformation 

influences MTX toxicity (33,36,37). Hence, the liver is the main destiny of MTX 

accumulation in humans (26) and, as already described, is also in charge of the MTX 

detoxifying process through phase II metabolism (1). Thus, it is not surprising that patients 

presenting hepatic disturbances are prescribed with lower dose of MTX (15). 

I.6.3. MTX-induced hematotoxicity 

As already addressed, after administration MTX is rapidly attracted to blood cells, 

causing immediately its hematological effects (1). In fact, concerns were raised since the 

observation that, 1h after MTX infusion, its concentration in leukemic cells is ten times 

higher than in plasma and 350 times higher after 2-5h (9). On the other hand, MTX 

depressor effects among blood cells, namely macrophage, T and B cells proliferation 

justify its use in the treatment of multiple sclerosis (51). 

MTX presents a potential hematotoxicity which can limit and even cause the 

cessation of therapy (9,61). Firstly, the administration of MTX only can be supported after 

hematological screening: patients with baseline neutrophil counts ≤ 1,500 cells/mm3 

should not receive MTX (51). The hematotoxicity of MTX involves myelosuppression that 

manifests mostly as leukopenia, thus being its main dose-limiting effect (9,61). Low 
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hemoglobin (Hb) levels were observed in 21 of 139 (15%) multiple sclerosis patients 

treated with MTX (12mg/m2, i.v., monthly for three months until reaching the cumulative 

dose of 120mg/m2) (46). The same study observed that anemia was associated with 

increasing dose and that only women manifested this condition (46). In a study employing 

high dose regimens (40 to 80mg/m2) by i.v. 15min administration, the myelosuppression 

was universal (62), which is in agreement with the high frequency associated with MTX 

treatment (2,9,24). In a phase II clinical trial, 93% advanced breast cancer patients who 

received MTX (starting dose of 10mg/m2) associated with paclitaxel (175mg/m2) 

presented leukopenia, which was considered severe in 67% of the patients (63). The 

administration of MTX (38mg/m2), via i.p., demonstrated that the observed leukopenia is 

transient since white blood cell (WBC) counting returned to normal values within 7 days 

(61). Curiously, patients treated with higher dose regimens tend to present a faster blood 

count recovery (2). Nonetheless, WBC should be carefully monitored since in severe 

cases of leukopenia, complications such as sepsis and other infections can occur (64). 

During MTX pharmacological use, thrombocytopenia also occurs, but in a lesser 

extent than neutropenia (9). In most cases, neutropenia and thrombocytopenia are mild 

(2). Monitoring hematological parameters during MTX-therapy is recommended and drug 

discontinuation or dose reduction may be warranted with neutrophil counts ≤ 1,000 

cells/mm3 or other signals of strong myelosuppresion (51). However, in spite of the 

relevance of MTX-induced myelotoxicity, patients treated with MTX require fewer median 

platelet (PLT) transfusions and are treated with fewer median days of i.v. antibiotics 

compared to those that received other chemotherapy drugs such as daunorubicin (2). 

In MTX-treated patients undergoing autologous bone marrow transplantation, the 

time of transplant has to be carefully assessed depending on the dose and individual 

pharmacological profile. It is an important observation since MTX treatment increases the 

risk of delayed hematopoetic function recovery (14). 

Consistent with the long accumulation and sustained efficacy of MTX, the 

hematotoxicity of MTX also can emerge after the end of treatment (15). In fact, the most 

serious hematologic manifestation is the development of MTX-associated leukemia, which 

is also related with other topoisomerase II inhibitors (2). The mechanism involved in the 

secondary leukemia is still being debated. One hypothesis is that the chromosomal breaks 

related to perturbations in the topoisomerase II cleavage-religation equilibrium post 

topoisomerase II inhibition can lead to DNA recombination and the resulting translocations 

are responsible for the leukemogenesis (65). The most common chromosomal 

translocations related to the topoisomerase II inhibitors-induced leukemia involve 

rearrangements in the gene mll, chromosome 11q23 (2,17,65). 
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The occurrence of secondary leukemia is related to familiar history of neoplasia, the 

concomitant use of other anti-cancer drugs, chemotherapy doses and regimen, and 

individual immunological condition (17). In most cases, patients develop secondary acute 

myelogenic leukemia, however, some patients develop acute lymphoblastic leukemia (2). 

The pattern of acute myelogenic leukemia related to topoisomerase II inhibitors treatment 

is characterized by a short latent period (usually one year) and it is not associated with a 

myelodysplastic phase prior to its manifestation (2,17). Trying to avoid the associated 

leukemia in multiple sclerosis patients, MTX administration is not recommended in 

patients with previous history of leukemia (15). However, the use of MTX in the treatment 

of multiple sclerosis has been accompanied by reports of leukemia associated to MTX 

therapy in patients without previous diagnosis of hematological disorders (2,51). Thus, 

considering the long-term hematological disturbances, blood cell counts should be 

continued even after the cessation of MTX therapy (15). 
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II. General objective 

In the Introduction section, the therapeutic actions of MTX (as an antineoplastic 

agent and in the treatment of multiple sclerosis) and the limitations related to its adverse 

effects and toxicity (cardiotoxicity, hepatotoxicity, and hematotoxicity) were focused in 

detail. Noteworthy, several case reports were presented evidencing the potential MTX-

induced cardiotoxicity (20,46,52,54). However, the mechanisms underlying this toxicity are 

still not fully elucidated, as will be described in more detail in the Discussion section. 

The general objective of the present thesis was to contribute to the clarification of 

the mechanisms involved in the MTX-induced cardiotoxicity. Additionally, in this work, it 

was intended to highlight the relevance of MTX metabolic pathways and the mitochondrial 

role in that process. Finally, it was intended to correlate the effects and mechanisms 

studied in in vitro systems (cellular fractions, organelles, and cell line cultures) to those 

observed in in vivo model (adult male Wistar rats). 

II.1. Specific objectives: 

 Evaluation of MTX mechanisms of cytotoxicity, through the assessment of viability, 

oxidative stress, energetic, and mitochondrial parameters after MTX incubation in a 

cardiomyoblast model (H9c2 cells). 

 Evaluation of the in vitro mitochondrial toxicity through the assessment of 

mitochondrial membrane potential, ATP synthase expression and activity after MTX 

incubation with H9c2 cells.  

 Evaluation of the direct mitochondrial toxic effect through the assessment of 

mitochondrial membrane potential after MTX incubation with cardiac mitochondria isolated 

from male Wistar rats. 

 Evaluation of the in vivo cardiotoxicity through the assessment of cardiac optic and 

transmission electron microscopy, cardiac protein, glutathione, and ATP levels after the 

administration of three cycles of MTX to male Wistar rats. 

 Ex vivo evaluation of mitochondrial toxicity through the measurement of 

mitochondrial membrane potential and complex IV and V activities of the respiratory chain 

of cardiac mitochondria isolated from male Wistar rats treated with three cycles of MTX. 

 Evaluation of the metabolic profile of MTX through the identification of the 

metabolites generated after the incubation of MTX with hepatic S9 fractions isolated from 

rats. 
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 Evaluation of the contribution of MTX metabolism to its cardiotoxicity using 

in vitro promoted metabolism coupled to cytotoxic assays in H9c2 cell line. 

 Evaluation of the in vivo MTX cumulative sub-chronic toxicity through the 

assessment of biochemical parameters evaluating cardiac, hepatic, and renal 

function, hematological parameters, and hepatic measurements (microscopy, 

hepatic glutathione and ATP levels) after the administration of three cycles of MTX 

to male Wistar rats. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PART II 

Material and Methods 

 

 



 

 

 

 

 



_____________________________________________________________ Experimental Section 

27 

In the present section, all experimental models and protocols employed in this thesis 

will be addressed. 

III.1. Brief considerations on the experimental models and 

concentrations used in the studies 

III.1.1. In vitro models 

In the present thesis, three in vitro models were used, namely hepatic S9 fractions, 

the H9c2 cell line, and isolated mitochondria from heart of adult rat. In general, the in vitro 

models have some advantages when mechanistic studies are being performed (66). It is 

well known that the detection of cardiovascular injury at the cellular level can be 

complicated by interactions between adjacent cells of different types, metabolism of the 

toxic agent under investigation, and by alterations in the concentration of the xenobiotic at 

the cell-body fluid interface (67). Thus, an important advantage of in vitro models is to 

allow a better control of the surrounding environment (66), which is imperative in the 

assessment of cardiotoxicity since humoral, neuronal, and endocrine influences are 

commonly considered confounding factors in the evaluation of cardiotoxicity in vivo (68). 

Another feature is the fact that in vitro studies involve the sacrifice of fewer animals 

compared to in vivo approaches, evidencing an ethical advantage (66). 

III.1.1.1. Hepatic S9 fractions isolated from adult male Wistar rat 

The hepatic S9 fraction is the supernatant obtained after liver homogenization and 

centrifugation at 9,000g for 20min in a suitable medium (100mM phosphate buffer, pH 

7.4). The greatest advantage of this model is the fact that it contains the cytosol (with 

most of the enzymes responsible for the phase II metabolism, such as glutathione-S-

transferases and some enzymes responsible for phase I metabolism, as cytosolic epoxide 

hydrolase) and microsomes (containing enzymes of phase I metabolism such as CYP450 

isoforms and UDP-glucuronosyl transferases responsible for phase II metabolism) (69–

71). Hence, liver S9 fractions are reported as the most representative sub-cellular in vitro 

system to study metabolism because it allows the study of the main biotransformation 

phases at the same time (71), being much more illustrative of a real situation than studies 

using isolated enzymes or microsomes (69,71). Indeed, S9 fractions can be considered a 

classic model since it is commonly used in the pharmaceutical industry coupled to Ames 

test in order to evaluate the possible mutagenic effect after bioactivation of pre-genotoxic 



Experimental Section _____________________________________________________________ 

28 

compounds (72–74). Moreover, procedures involved in liver S9 fractions isolation and 

incubation steps are rapid, do not require sophisticated equipment, are easy to perform in 

laboratory settings, and allow the study of several conditions with a single animal. 

In the study using hepatic S9 fractions isolated from male Wistar rats presented in 

this thesis (Manuscript I), the animals used received phenobarbital 0.2% in drinking water 

for one week prior to the excision of the livers. This approach aims to induce enzymes 

involved in the MTX metabolism (32,75) and was adopted due to the difficulties to 

simulate in vitro MTX oxidoreductive metabolism, being commonly used by other authors 

(28,31–33). In fact, phenobarbital induces CYP450-induced metabolism as well as other 

enzymatic systems present in the S9 fractions, namely epoxide hydrolase, UDP-

glucuronyl transferases, and glutathione-S-transferases (76).  

III.1.1.2. H9c2 cell line 

Permanent cell lines are frequently used as a model for many cell types (77). 

However, immortal cardiac cell lines have been difficult to establish because of the 

heterogeneity of cells present in heart tissue, the inability of isolated cardiomyocytes to 

multiply in culture, and the low frequency of cardiac tumors necessary to create cell lines 

(77,78). The studies presented in the Manuscripts I and II on the next section were 

conducted in the H9c2 cellular model. This clonal muscle cell line derived from embryonic 

rat heart tissue was established in 1976 by Kimes and Brandt. It was obtained through 

selective serial passage from BDIX rat cardioblasts (79). 

Morphologically, H9c2 cells are spindle-shaped cells. The dividing myoblasts are 

large, flat, and their nuclei contain from two to four spherical or lobed nucleoli (78,79). The 

structures and organelles that can be observed in the H9c2 cells are: microtubules 

(sometimes arranged as a dense network), vacuoles, lysosomes, pinocytotic vesicles, 

basement membrane, ribosomes, cell surface enlarged by microvilli, and a rich content of 

mitochondria and rough endoplasmic reticulum (78,79). Golgi cisternae are found near the 

cell nucleus and caveolae are absent (78). At low densities, H9c2 cells organize 

themselves avoiding close contact (Figure 3 A). On the other hand, when they reach 

confluence, they arranged themselves in linear parallel arrays, maintaining these 

characteristics at continual passages (Figure 3 B) (79). 
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Figure 3: Phase contrast micrographs of H9c2 cells. A) at low densities; B) at confluence 
(79). 

 

Binding studies for 1,4-dihydropyridine demonstrated H9c2 heart-specific features 

(78). Additionally, after reaching confluence, H9c2 cells express an L-type calcium current 

characterized by a slow time course of inactivation, unitary conductance properties, and 

sensitivity to organic calcium channel blockers, typical characteristics of cardiac cells 

(78,80). Moreover, at least 2 distinct potassium channels and a nonspecific cation channel 

were described (80). Densely culture conditions seems to optimize calcium channel 

expression, since when cells are in the proliferative phase, these channels are sparse 

(80). However, if H9c2 cells are allowed to reach confluence, the myoblastic population 

becomes depleted faster (81). In order to prevent this inconvenient, cell cultures used in 

this thesis were kept at 70-80% confluence. The H9c2 cells also have features of skeletal 

muscle, namely the tendency of myoblasts to form myotubes, the synthesis of muscle-

specific creatine phosphokinase isoenzyme when the mononucleated myoblasts fuse, and 

the expression of nicotinic receptors (79).  

The pattern of membranous signal-transducing G-proteins found in the H9c2 cells 

shows all characteristics of striated muscle cells (78). They contain two forms of the Gs α-

subunit, two forms of the Giα-subunit, and, as adult rat cardiomyocytes, they lack G0 

subunit (78). H9c2 cells also contain β1 and β2 adrenoreceptors and respond to 

acetylcholine stimulation (81,82). Regarding caveolin, a major structural protein of 

caveolae involved in the AMPc signaling, it was demonstrated that caveolin-1 mRNA 

expression is similar in H9c2 cells and in canine hearts (83). However, the mRNA of 

muscle-specific subtype caveolin-3 is abundantly expressed in cardiac tissues while 

poorly in the H9c2 cells (83). Decreased levels of caveolin-3 expression were associated 

with the development of cardiac hypertrophy since caveolin-3 regulates the inhibition of 

cell growth and proliferation in the heart (84). Recently, a study comparing the response 

patterns after hypertrophic stimulation in primary cardiomyocytes from neonatal rat heart 

and in the H9c2 cell line demonstrated that both models showed almost identical 
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hypertrophic responses (85). Hence, it was concluded that H9c2 cells are a reliable model 

for the study of drug-induced hypertrophy with the ethical advantage of being an animal-

free protocol, in opposition to neonatal cardiomyocytes (85). 

In the present study, we used the H9c2 cells in the undifferentiated state. In this 

condition, the embryonic-derived H9c2 cells are more reliant on glycolysis accordingly 

with the fetal phenotype (86). This cellular model expresses thyreoglobulin at the mRNA 

and protein level. That is an important regulator of cardiac function and cardiovascular 

hemodynamics (87).  

Significant levels of peptidylglycine α-amidating monooxygenase, which catalyzes 

the formation of bioactive α-amidated peptides from glycine precursors, are found in the 

H9c2 myoblasts. This observation suggests the ability of H9c2 to make bioactive α-

amidated hormones and neuropeptides, however, the activity of this enzyme is lower than 

in atrium tissues (88). Although the role of peptidylglycine α-amidating monooxygenase in 

the heart tissue is not fully elucidated, it seems that amidated peptides have a crucial role 

in the early stages of cardiac development (88). 

Furthermore, these myoblasts express multiple CYPs at comparable levels to those 

expressed in the rat heart. CYP1A1 and CYP1B1 are constitutively expressed in both 

H9c2 cell line and rat heart, CYP2B1, CYP2B2, CYP2E1, CYP2J3 are expressed in the 

H9c2 cells at different degrees but in comparable levels to rat heart, and CYP2A1, 

CYP3A1, CYP3A2 are not expressed either in H9c2 cells or in the rat heart (89). Hence, 

regarding their metabolic competence, H9c2 cells have been considered a valuable in 

vitro model to study cardiac drug metabolization and the metabolic capacity of the heart 

(89). 

In conclusion, in spite of the H9c2 cellular model characteristics of muscle cells, it 

preserves several elements of cardiac cells, namely the electrical and hormonal signal 

pathways (78,79). Thus, this in vitro model has been widely accepted as a feasible model 

to study cardiotoxicity (90–93). 

III.1.1.3. Cardiac mitochondria isolated from male Wistar rat 

Mitochondria are responsible for supplying between 80-90% of total ATP produced 

in the cell (94). Due to the high energetic demand in the cardiac muscle, mitochondria 

occupy 20-30% of cell volume, being the highest distribution of these organelles found in 

the cardiomyocytes, showing mitochondria relevance for the cardiac performance (94–

96). Thus, given their importance, one of the main objectives of this thesis was to 

investigate mitochondria as a target for the MTX-induced cardiotoxicity. For this purpose, 
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cardiac mitochondria isolated from male Wistar rats were used. Similarly, this model was 

already employed in the evaluation of the doxorubicin-induced mitochondrionopathy (97–

99). 

III.1.2. In vivo model 

For the in vivo studies, the laboratory animal model used was Rattus novergicus. 

This animal species is recognized as the most widely in vivo model used in medical 

research and, in toxicology, the rodent species of choice (100,101). The advantages of 

working with rats comprises the easier monitoring of their physiology, and, in many cases, 

the physiology is resembled to human conditions (100). Additionally, other advantages 

include metabolic similarities to humans, their relatively docile nature, short life span, short 

gestation period, and the large database of rat nutrition, diseases, and general biology 

(101). Regarding cardiovascular system, the rat is considered an excellent model, 

especially for stroke and hypertension (100). This animal model has been widely used in 

the assessment of chemotherapy-induced cardiotoxicity (102,103). Another advantage is 

that the size of the rat enables both the easy manipulation of the animal in laboratory 

conditions and serial blood draws (100).  

Adult male Wistar rats (Charles River Laboratories, Barcelona, Spain) were housed 

in cages, with a temperature- and humidity- controlled environment. Food and water were 

provided ad libitum and animals were subjected to a 12h light-dark cycle. Animal 

experiments were approved by the Ethics Committee of the Faculty of Pharmacy, Porto 

University, Portugal (protocol number 9/04/2013). Housing and experimental treatment of 

the animals were in accordance with the Guide for the Care and Use of Laboratory 

Animals from the Institute for Laboratory Research.  

In the experiments presented in the Manuscripts III and IV, one week prior the 

experiment, animals were acclimatized in the cages and then were distributed into three 

groups (five animals per group): control, MTX22, and MTX48. Animals were treated by i.p. 

via with three cycles, (5ml/kg), of saline solution (0.9% NaCl) (control) or MTX 2.5mg/kg 

(MTX22 and MTX48) on day 0, 10, and 20. The MTX treated groups reached a total 

cumulative dose of 7.5mg/kg on day 20, as represented in Figure 4. The regimen of 

administration (one cycle every ten days) was performed aiming to simulate the 

chemotherapeutic cycles that comprise several administrations. The interval of ten days 

was defined taking into account the life cycle of the rat and the clinical conditions 

observed in pilot studies. The MTX22 group suffered euthanasia on day 22, in order to 

assess the MTX-induced cumulative damage 48h after the last cycle of treatment. MTX48 
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group suffered euthanasia on day 48, 28 days after the last cycle of treatment, with the 

objective to evaluate late cumulative responses. 

 

Figure 4: Graphic representation of the in vivo experiment design performed in 
Manuscript III and IV. 

 

During the experiment, daily clinical evaluations of all animals were performed by 

the veterinary doctor of the team. The parameters evaluated were piloerection, 

dehydration, hemorrhage and diarrhea, motor function (tone and movement coordination), 

breathing (rate and depth, gasping), mucosal color (pale, cyanotic), and clinical signals of 

abdominal pain. The individual weight and consumption of food and water were also 

recorded every day until the day 30. On the day of euthanasia, animals were anesthetized 

with xylasine/ketamine (10mg/kg/100mg/kg) and blood was collected through cardiac 

puncture. 

The in vivo metabolic study presented in the Manuscript I was also performed 

aiming to verify the presence of MTX metabolites in liver and heart after MTX i.p. 

administration to male Wistar rats. Three animals received a single dose of 7.5mg/kg of 

MTX i.p., and were euthanized 24h after treatment under anesthesia with 

xylasine/ketamine (10mg/kg/100mg/kg). The livers and hearts were excised and MTX and 

its metabolites were extracted as described in the Manuscript I to the LC-diode array 

(DAD)/electrospray ionization interface (ESI)-MS analysis. 
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III.1.3. MTX concentrations and doses 

The human conventional doses of MTX are summarized in the Table 3. The mean 

maximum plasma concentrations in humans after a 15mg/m2 or a 90mg/m2 30min infusion 

of MTX are about 1.5 and 12µM, respectively (14). Considering tissue levels, it is well 

known that MTX is extensively distributed and largely accumulates in heart tissue (104). In 

humans, MTX is detected in the organism for a long period, reaching the amount of 

716ng/g wet weight in the heart even 35 days after a single dose (12mg/m2) (26), 

evidencing the cardiac accumulation of MTX. 

Considering MTX plasma and tissue concentration levels, the MTX working 

concentrations were selected in order resemble therapeutically relevant concentrations. 

Thus, for the in vitro evaluation of the cytotoxic effects upon H9c2 cells, time and 

concentration response curves were performed using the low MTX concentrations of 

10nM, 100nM, 1µM, 5µM, 10µM, 50µM, and 100µM. Afterward, given the cytotoxic profile 

in this model, experiments were performed using the MTX selected concentrations of 

100nM and 1µM.  

 

Table 3: MTX conventional dose for FDA approved therapeutic indications in humans. 

Therapeutic indication MTX dose 
Maximum cumulative 
dose 

References

Acute myeloid leukemia   12mg/m2/Day 140mg/m2 (2,12) 

Prostate cancer 12mg/m2 i.v. every three months 140mg/m2 (2,12) 

Multiple sclerosis 12 to 14mg/m2 i.v. every 21 days 100mg/m2 (12,19,20)

 

Regarding the in vivo experiment, the dose was also calculated considering 

previously pilot studies employing three cycles of 2.5mg/kg, 5mg/kg, and 10mg/kg. The 

body surface area of the rats was also considered in order to correlate the dose in this 

species with the human top limit of MTX doses. Thus, the majority of experiments were 

performed using three cycles of MTX 2.5mg/kg (7.5mg/kg as cumulative dose), which 

corresponds to 16mg/m2 of a rat weighing 240g, by allometric relationship. The metabolic 

in vivo study was conducted using the single dose of 7.5mg/kg, administered via i.p., in 

order to correlate with the total cumulative dose used in the in vivo study of the MTX-

induced cardiotoxicity and to reach the limit of detection of the analytical method used. 
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III.2. Methods 

III.2.2. Evaluation of the metabolic profile of MTX using hepatic S9 

fractions by LC-DAD/ESI-MS 

The metabolic profile of MTX was evaluated using hepatic S9 fractions isolated from 

male Wistar rats (32). Three tubes were incubated and further analyzed in order to assess 

MTX metabolism: 

 Blank tube: control supplemented S9 fractions (without MTX), in order to 

evaluate possible matrix interferences; 

 Control tube: 100µM MTX + 1mM NADPH + 4mM GSH (without the S9 

fractions), in order to rule out the possibility of artifact formation; 

 Sample: supplemented S9 fractions + 100µM MTX, in order to assess the MTX 

metabolism at times 0 and 4h. 

At 0 and 4h, after samples collection, methanol was added (ratio of 1:4 methanol) in 

order to precipitate the proteins and to extract MTX and the metabolites. Methanol was 

evaporated under nitrogen flow and the residue was re-suspended in 200µl phosphate 

buffer saline (for cytotoxicity evaluation) or in 200µl methanol (for LC-DAD/ESI-MS 

analysis). The experimental protocol of S9 fractions isolation, protein quantification, 

incubation conditions, and LC-DAD/ESI-MS analysis are described in details in 

Manuscript I. 

III.2.3. Cytotoxicity assays 

The cytotoxicity assays employed to evaluate the toxic effects of MTX in the H9c2 

cells were the lactate dehydrogenase release (LDH) assay (which correlates with the loss 

of cell membrane integrity) and the reduction of the 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay (which can be used as a mitochondrial viability 

index since it measures mostly the action of mitochondrial dehydrogenases). 
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III.2.3.1. LDH leakage Assay 

At the end of incubation period (24, 48, 72, and 96h), cellular damage was 

quantitatively assessed by the evaluation of cell membrane integrity through the 

measurement of LDH release by means of a kinetic photometric assay. The % of viability 

was evaluated considering the % of LDH released over the total LDH from the complete 

lysis of the cells (artificially promoted by the addition of triton X-100). The absorbance was 

measured at 340 nm in a multi-well plate reader (BioTech Instruments, Vermont, US). 

III.2.3.2. MTT reduction assay 

The cytotoxic effects of MTX after the incubation period (24, 48, 72, and 96h) were 

assessed also through the reduction of MTT assay as previously described (105).The 

reduction of the MTT assay can be used as a mitochondrial viability index since it 

measures mostly the action of mitochondrial dehydrogenases (106). 

Trying to prevent or counteract the observed cytotoxicity of MTX, potential protective 

studies were performed by co-incubating the agents with MTX (100nM and 1μM) at 37 ºC 

for 96h. The protective agents employed were: a) the reactive species scavenger and 

GSH precursor N-acetylcysteine (NAC) (1mM), b) the energetic function enhancer L-

carnitine (1mM), c) the CYP450 inhibitor MTP (0.5mM), and the CYP2E1 inhibitor diallyl 

sulfide (DAS) (150µM) (105). 

III.2.4. Caspase-3 activity assay 

Caspase-3 is a cysteine protease involved in apoptosis, being activated by both 

intrinsic and extrinsic pathways (107). Caspase-3 activity was assessed after 24h 

incubation with MTX (100nM and 1µM) in H9c2 cells through the method previously 

described (108). The CYP450 inhibitor MTP (0.5mM) and the CYP2E1 inhibitor DAS 

(150µM) were used to possible counteract the activation of caspase-3 caused by MTX 

(105) (Manuscript II).  
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III.2.5. Evaluation of oxidative stress 

III.2.5.1. Evaluation of reactive species generation 

Early and late generation of reactive species was evaluated in the H9c2 cells after 

incubation with MTX (100nM and 1µM) using two different probes, dihydrorhodamine 

(DHR) (100µM) (108) or dichlorodihydrofluorescein diacetate (DCFH-DA) (10µM) 

(109,110). Both are non-fluorescent probes that undergo intracellular oxidation to their 

respective fluorescent products in the presence of reactive species such as peroxynitrite, 

and hydroxyl radical (108,111,112). The experimental protocol is described in detail in the 

Manuscript II. 

III.2.5.2. Measurement of intracellular total glutathione (GSHt), GSH, 

and oxidized glutathione (GSSG) levels 

The glutathione status was evaluated after incubation with MTX (100nM and 1µM) in 

the H9c2 cells. It was also evaluated in liver and heart of male Wistar rats after the 

administration of MTX (3 cycles of 2.5mg/kg). The glutathione status was assessed by the 

5,5-dithio-bis(2-nitrobenzoic) acid (DTNB)-GSSG reductase recycling assay, as previously 

described (113,114), and the experimental protocols are described in Manuscript II, III, 

and IV. 

III.2.5.3. Evaluation of lipid peroxidation 

Malondialdehyde is the most used marker of lipid peroxidation (115). The main 

method employed to the malondialdehyde quantification is the thiobarbituric acid (TBA) 

reactive substances (TBARS) assay (116,117). However, this methodology is not specific 

since TBA also reacts with a variety of compounds such as sugars, aminoacids, 

aldehydes, and bilirubin, generating colorimetric interferences (116). Thus, trying to 

counteract this problem, we employed a previously validated HPLC/UV method, with 

minor adaptations, which presents an extraction step employing butanol that reduces the 

interferences, being more reliable (116). The protocol is described in the Manuscript II. 
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III.2.6. Evaluation of the energetic function 

III.2.6.1. Measurement of ATP levels 

ATP determinations were performed after incubation with MTX (100nM and 1µM) in 

the H9c2 cells and in vivo (liver and heart), after the administration of MTX (three cycles of 

2.5mg/kg) to male Wistar rats. The ATP levels were measured through the 

bioluminescence test (118), as described in Manuscript II, III, and IV. 

III.2.6.2. Evaluation of the ATP synthase expression 

ATP synthase expression was evaluated in the H9c2 cells after incubation with MTX 

through western immunoblot (119). The experimental conditions are described in details in 

the Manuscript II.  

III.2.6.3. Evaluation of the ATP synthase activity 

The activity of ATP synthase in the H9c2 cells was indirectly determined by analysis 

of the inorganic phosphate (Pi) released from ATP hydrolysis (119) (experimental protocol 

described in the Manuscript II). 

III.2.6.4. Blue native polyacrylamide gel electrophoresis (BN-PAGE) 

separation of cardiac mitochondria membrane complexes of MTX-treated rats 

The respiratory chain complexes from cardiac mitochondria of MTX treated rats 

(three cycles of 2.5mg/kg) were evaluated. Mitochondrial isolation and BN-Page 

separation of the respiratory chain complexes are described in the Manuscript III. 

III.2.6.5. In-gel activity of mitochondrial complexes IV and V after 

MTX treatment 

The in-gel activity of cardiac mitochondrial complexes IV and V of control or MTX 

treated rats (three cycles of 2.5mg/kg) were evaluated. The in-gel activity of complexes IV 

and V were determined using the methods previously described (95) (Manuscript III). 
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III.2.6.6. Cardiac mitochondrial DNA quantitation in MTX treated rats 

Cardiac mitochondrial DNA of control or MTX treated rats (three cycles of 2.5mg/kg) 

were quantified using the Qubit® dsDNA BR assay kit. Samples were read in a Qubit® 2.0 

Fluoremeter and results are expressed as the ratio between the mitochondrial DNA 

concentration and heart mass. 

III.2.7. Evaluation of the mitochondrial membrane potential after in 

vivo and in vitro treatment with MTX 

Cardiac mitochondria from control and MTX48 rats were isolated for the assessment 

of the late and cumulative effects induced by MTX towards the mitochondrial membrane 

potential. Moreover, an in vitro study with mitochondria isolated from control rat heart (not 

treated with MTX) was also performed in order to assess the direct MTX-induced effects 

in the mitochondrial function after incubation with MTX (10nM, 100nM, and 1µM).   

The evaluation of the mitochondrial function was performed through the 

measurement of the mitochondrial membrane potential and it was assessed using an ion-

selective electrode to measure the distribution of the tetraphenylphosphonium (TPP+), as 

described before (120) (Manuscript III).  

III.2.8. Flow cytometry analysis 

Intracellular calcium measurements and the evaluation of the mitochondrial 

membrane potential in the H9c2 cells were determined through flow cytometry using the 

Fluo-3 AM (10µM) and TMRM (20nM) fluorescent probes, respectively, following the 

experimental protocols described in the Manuscript II. 

III.2.9. Heart and liver preparation for light and transmission electron 

microscopy 

Heart and liver of MTX treated rats were microscopically evaluated through light and 

transmission electron histology (121). Samples were processed as described in detail in 

the Manuscript III and IV.  
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III.2.10. Plasma biochemical analysis 

Plasma parameters of control and both MTX treated rats (three cycles of 2.5mg/kg) 

were evaluated. On the day of euthanasia, blood was collected into heparinized tubes. 

Plasma levels of albumin, total proteins, IgG, IgM, IgE, C3 and C4 complement, total and 

conjugated bilirubin, aspartate transaminase (AST), alanine transaminase (ALT), alkaline 

phosphatase, transferrin, ferritin, iron, cholesterol, triglycerides, glucose, amylase, 

creatinine, urea, uric acid, potassium, sodium, calcium, C-reactive protein, α1 – antitrypsin, 

δ-glutamyltranspeptidase (GGT), and LDH, creatine kinase (CK), CK-MB, and lactate 

were evaluated in duplicate on an AutoAnalyzer (PRESTIGE® 24i, PZ Cormay S.A.) using 

the respective kits and following the manufacturer instructions. 

III.2.11. Hematological analysis 

Hematologic parameters of control or MTX treated rats (three cycles of 2.5mg/kg) 

were evaluated. On the day of euthanasia, blood samples (using EDTA as anticoagulant) 

were collected and processed in order to obtain whole blood. We evaluated the 

erythrocyte count, Hb concentration, hematocrit (HCT), hematimetric indexes – mean cell 

volume (MCV), mean cell hemoglobin (MCH), mean cell hemoglobin concentration 

(MCHC), red cell distribution width (RDW), PLT, plateletcrit (PCT), platelet distribution 

width (PDW), mean platelet volume (MPV), and WBC count, by using an automated blood 

cell counter (Sysmex K1000, Hamburg, Germany). Differential leukocyte count was 

performed on blood smears stained according to Wright (122). Reticulocyte count was 

performed by microscopic counting on blood smears after vital staining with new 

methylene blue (Reticulocyte stain, Sigma-Aldrich, St Louis, MO, USA). 

III.2.12. Total protein quantification 

Except when otherwise specified, the protein levels were determined by Lowry 

method (123). Samples were suspended in NaOH 0.3M and protein content were 

evaluated spectrophotometrically using a microplate reader (750nm) (114). 

III.2.13. Statistical analysis 

Results are presented as means ± standard deviation. The evaluations of the rat 

relative body weight gain and the consumptions of food and water were followed daily. 
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Thus, the statistical analysis was performed using repeated measures ANOVA followed 

by the Student Newman Keuls post hoc test. In the other experiments, statistical 

comparisons between groups were performed with One-Way ANOVA (in case of normal 

distribution) or Kruskal-Wallis test (one-way ANOVA on ranks – in case distribution is not 

normal). Significance was accepted at p values <0.05.  
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The major findings of this thesis were the elucidation of the mechanisms involved in 

the MTX-induced cardiotoxicity, mainly regarding its metabolism and energetic status 

changes. The metabolic profile of MTX after incubation with rat hepatic S9 fractions was 

described and MTX and the MTX-naphtoquinoxaline metabolite were found in extracts of 

heart and liver of male Wistar rats previously injected (24h before, i.p.) with MTX. The 

presence of MTX metabolites increased the MTX cytotoxicity in a cardiomyoblast in vitro 

model (H9c2) and, in the same model, the cell damage was partially prevented by the 

inhibition of the CYP450 metabolism and specifically of the CYP2E1 isoenzyme 

metabolism, highlighting the relevance of MTX metabolism to its cardiotoxicity. Our results 

also suggest an important mitochondrial toxicity evidenced both in vitro and in vivo, which 

is characterized by an energetic gap observed by decreases in the ATP levels and 

disturbances in the mitochondrial complexes. Noteworthy, at the late time point (96h) the 

onset of an oxidative stress phenomenon at the in vitro model was observed at the same 

incubation period that the energetic injury was more dramatic. Moreover, by using an in 

vivo model we observed the occurrence of an intense MTX-mediated hepatotoxicity and 

hematological disturbances. All these aspects are discussed below. 

The in vitro and in vivo models, doses/concentrations, and time of 

incubation/exposition used were adapted to study the MTX-induced cardiotoxicity. For the 

present work, it could be highlighted the fact that the results are originated from in vitro 

and in vivo studies performed in parallel with coordinated goals, generating 

complementary data regarding the advantages of each approach and trying to surpass 

their limitations. Emphasis is given to the mechanistic pathways identified by the in vitro 

studies and pharmacokinetics and biochemical studies by in vivo studies.  

IV.1. Metabolic profile of MTX: in vitro and in vivo studies 

In studies undertaken in the Manuscript I, the metabolism of MTX was simulated in 

vitro by using hepatic S9 fractions isolated from adult rats, supplemented with NADPH 

(1mM) and GSH (4mM). After a 4h incubation with MTX (100µM), the MTX content was 

35% lower than at time 0; five chromatographic peaks were identified as MTX related 

products, namely the naphtoquinoxaline metabolite, an acetoxy ester derivative (never 

described before in this model), two MTX GSH conjugates and a MTX monocarboxylic 

acid derivative (trace amounts) (Figure 5) (Manuscript I).  
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Figure 5: Proposed chemical structure of the metabolites corresponding to the five 
chromatographic peaks obtained by LC/DAD-ESI/MS analysis. Compounds were obtained 
after 4h incubation of MTX (100µM) with hepatic S9 fractions isolated from adult male rats 
pre-treated with phenobarbital (0.2% in drinking water for one week prior isolation). 
Hepatic S9 fractions (4mg/ml) were supplemented with NADPH (1mM) and GSH (4mM). 

 

The UV-VIS spectrum of the MTX obtained products showed that they retained the 

tricyclic planar chromophore group, suggesting that all compounds could have 

pharmacological interest, namely the ability to form covalent complexes with DNA (21). 

However, the only metabolite ever reported as bioactive is the naphtoquinoxaline 

metabolite (Figure 2 and Figure 5) (27,30,37,44). In fact, this metabolite was already 

described as the product of MTX metabolism through heme containing enzymes systems, 

CYP450, and peroxidases, and as an excretion product in the urine of humans and many 

laboratory animals (27,30) (Table 2). 

A novel compound was described as a MTX metabolic product (Manuscript I) 

(Figure 5) with a –COOCH3 group introduced in the MTX molecule. The pathways 

involved in the metabolite formation remain unclear, but we suggested that the acetoxy 

derivative can result from an N-oxygenation in the aromatic amine, followed by an 
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acetylation. In fact, in primary and secondary aromatic amines, N-oxygenation by CYP450 

usually results in the formation of arylhydroxylamines, which can be converted by N-

acetyltransferases (present in S9 fractions), functioning as O-acetyltransferases, to 

acetoxy esters (124). Another structural possibility for this compound is the introduction of 

the –CH2COOH group in the MTX molecule instead of the –COOCH3, which is also 

compatible with the MS spectrum; however, those metabolic routes are unlikely. 

MTX-derived GSH conjugates are known as one of the detoxifying products of MTX 

(27,32) (Table 2). The methodology employed in our study does not allow a conclusion 

about the site of GSH conjugation. Two hypotheses were considered regarding the GSH 

conjugation site, namely in the diaminobenzene and in the dihydroxybenzene part of MTX 

molecule. Initially, Blanz and co-workers described both GSH conjugates on the 

diaminophenyl part using 13C-NMR and 1H-NMR techniques. 13C-NMR data showed that 

regarding the two carbon resonances of MTX attributed to C6/C7 and C2/C3, one suffered 

a downfield shift, indicating a symmetrical substitution of two hydrogen atoms by sulfur-

containing groups. However, the location of the conjugation site remained unclear 

because the chemical shifts of these carbons were nearly equivalent. Thus, the 1H-NMR 

data suggested that the conjugation was at C6/C7 because the resonance typical for the 

protons at C6/C7 disappeared (27). However, in a subsequent investigation applying two-

dimensional 1H-13C-heteronuclear multiple-bond connectivity NMR and within the same 

group of authors, it became apparent that the S-atom of GSH was bound to C2 (37). 

Thus, it was concluded that, while the intramolecular attack of the nucleophilic side chain 

N-atom on the oxidized MTX takes place at position C6, leading to the naphtoquinoxaline 

metabolite, the corresponding reaction with external nucleophiles, such as GSH, occurs at 

the dihydroxybenzene part (Figure 6) (37). 
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Figure 6: Chemical representation of nucleophilic attack sites in the MTX molecule. The 
position 6 of MTX is the site of the intramolecular attack of the nucleophilic side chain 
resulting in the formation of the naphtoquinoxaline metabolite. The external nucleophilic 
attack is favored at position 2 and 3 of MTX molecule. 

 

Given the trace amounts of MTX monocarboxylic acid derivative, little information 

regarding its MS spectrum characteristics was obtained. However, recently, a compound 

with the same molecular ion mass was associated with oxidative metabolism of MTX, 

MTX-derivative dicyclicmonocarboxylic acid (30). Thus, we suggested that the trace 

metabolite found in our experimental conditions has the structure of the 

dicyclicmonocarboxylic acid derivative shown in the Figure 5. Its pharmacological effect 

was not tested, although, we can speculatively say that this compound is a reasonable 

candidate to elicit antitumor effect given its ionisability (30). MTX monocarboxylic acid 

derivative was already detected in rat metabolism in very low and variable levels and its 

formation was related to CYP450-catalyzed reactions (27,30,31). To the best of our 

knowledge, the formation of the monocarboxylic acid derivative from the 

napthoquinoxaline structure (as proposed here) was only related to peroxidase-catalyzed 

reactions (30). Nonetheless, CYP450 and peroxidase enzyme systems, despite differing 

in the reaction mechanisms, apparently can generate identical reaction products (30). 

In order to evaluate the in vivo MTX and napthoquinoxaline metabolite presence in 

the liver (the main metabolic organ) and heart (the main toxicity target of MTX), extracts of 

both organs were analyzed after excision from rats treated with MTX (7.5mg/kg, i.p.) 24h 

before the euthanasia. 
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In liver extracts of animals treated with MTX, it was possible to observe the 

presence of MTX and seven additional peaks when compared to the control livers; hence, 

they were assigned as MTX metabolites (Manuscript I). All the compounds absorb 

radiation in the VIS region (between 500 and 700nm), suggesting that the chromophore 

group remained intact. Due to the huge background present in the chromatograms, only 

MTX and naphtoquinoxaline metabolite, the most pharmacological relevant compound, 

were identified through UV-VIS spectrum characteristics and by the MS fragmentation. 

Although the UV-VIS spectrum does not provide an accurate identification of the 

compounds as does the MS fragmentation, an interesting discovery showed that all the 

compounds present in the liver extract of MTX-treated rats possessed a UV-VIS spectrum 

profile similar to those metabolites proposed in the above mentioned in vitro study, using 

hepatic S9 fractions. The two first peaks assigned as MTX metabolites in the liver 

chromatogram presented a maximum absorbance in the visible region set at 619nm and 

673nm, agreeing with the UV-VIS spectrum of the MTX-GSH conjugate. The next 

metabolite peak had the same absorbance profile in the visible region of the 

dicyclicnaphtoquinoxaline monocarboxylic acid derivative, namely 610nm and 658nm. The 

three remaining compounds had a UV-VIS spectrum with absorbance maximum at 610 

nm and 661nm, which are the absorbance maximum peaks of the novel metabolite 

(acetoxy ester) and MTX. These data suggest that in vivo MTX metabolites found in the 

hepatic tissue are, at least, chemically similar to those produced in vitro. 

In the heart extracts of the animals treated with MTX, only MTX and the 

naphtoquinoxaline metabolite were found in trace amounts. Both compounds were 

identified through analysis of their DAD spectrum properties and MS fragmentation 

(Manuscript I). 

The presence of MTX in heart and liver of MTX treated rats herein shown is in 

accordance with the current literature that states the broad tissue distribution profile of 

MTX (26,104). It is known that MTX is retained in these organs even one month after a 

single dose treatment (12mg/m2) in humans (1,26). However, this is the first time that the 

presence of the naphtoquinoxaline metabolite in liver and heart was described in an 

animal model. The detection of the naphtoquinoxaline metabolite in the liver and heart 

suggests that this metabolite also has the potential to be retained in highly perfused 

organs. Nonetheless, for how long this compound is found in these tissues remains 

unknown. We only evaluated the end-point of 24h after MTX treatment, which is a short 

period to evaluate MTX tissue retention profile. Even so, it might account to MTX toxicity 

observed in these organs, such as those observed in the studies performed within this 

thesis (discussed below).  
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IV.2. Influence of MTX metabolism on its (cardio)toxicity 

According to the results presented in the Manuscript I, metabolites of MTX are more 

cytotoxic than MTX in the H9c2 cells, suggesting the relevance of MTX metabolism to its 

cardiotoxicity. In fact, in the study described in the Methods section we have treatment 

groups with the extracts of the previous incubations of the supplemented S9 fractions with 

100µM MTX at time 0 (non-metabolized MTX) and after 4h (containing 35% less MTX 

than at time 0 plus the proposed metabolites presented in the Figure 5). Furthermore, the 

experimental protocol included a matrix group that did not contain MTX. Analyses of the 

extracts were performed through LC/DAD-ESI/MS, prior to the incubations with H9c2 

cells, to guarantee the identity and content of each extract. Results revealed that even 

with less amounts of MTX, the presence of the metabolites significantly increased the 

cell’s cytotoxicity, evaluated through the reduction of MTT assay after a 24h period of 

incubation, when compared to the non-metabolized MTX group. 

The complex metabolic extract containing all in vitro formed metabolites (Figure 5) is 

more cytotoxic than MTX without previous metabolism. However, the individual 

contribution of each byproduct was not determined and, as already referred, the majority 

of the proposed metabolites have unknown toxicity profiles. In fact, considering the five 

proposed metabolites, the only that has known toxicological relevance is the 

naphtoquinoxaline (34,37,125). Regarding naphtoquinoxaline-induced cardiac damage, 

Shipp and co-workers described, in 1993, a depletion of ATP levels to 67.3±6.3% of 

control after 72h of previous 3h naphtoquinoxaline (39µM) incubation in cultured neonatal 

rat cardiomyocytes. In the same study and using the same incubation conditions and cell 

model, MTX at 3.9µM, caused a depletion in the ATP levels of about 55.1±3.9% of control 

(125). These results demonstrate that, in the tested conditions, MTX has a greater effect 

on ATP levels than its metabolite since a significant lower concentration of MTX (10 fold) 

was used to obtain similar energetic effects. However, in our study, even considering that 

we did not quantified the naphtoquinoxaline levels present in the MTX+metabolites group, 

its concentration is certainly lower than MTX, since it was formed from MTX (100µM) 

incubation with supplemented S9 fractions. Obviously, this treatment group contains other 

MTX metabolites besides naphtoquinoxaline, which may account for the enhancement of 

the toxic effects even with about 35% less MTX (since MTX was biotransformed) when 

compared to MTX alone group. In fact, the enhanced cytotoxicity of MTX after the 

inhibition of epoxide hydrolase has been already described, suggesting that MTX is 

oxidized by the CYP450 oxidase mixed function to an epoxide (33). Epoxides are quite 

reactive, but none of such toxic metabolites were detected in our study; of notice epoxide 

hydrolase induction may occur by previous phenobarbital administration to the rat. 
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Additionally, it is important to refer that in the study performed by Shipp and co-workers 

the cells were incubated for only 3h, washed, the medium was replaced, and ATP levels 

were evaluated after 72h showing that the initial exposure to the metabolite or MTX was 

sufficient to elicit a toxic response. In contrast, in the study presented in this thesis, the 

incubation period was longer and continuous (24h) and the cytotoxicity was measured by 

MTT reduction assay. In both studies the energetic depletion was evident. Differences in 

the response magnitude might be related to the cell model used since Shipp used cultured 

neonatal rat cardiomyocytes. 

Another great contribution of our work was to highlight the in locu bioactivation of 

MTX mediated through CYP450 and namely CYP2E1 as a contributor to MTX cytotoxicity. 

For the first time, the partial reversion of MTX-induced cytotoxic effects by co-incubation 

with CYP450 metabolism inhibitors, and in particular of CYP2E1 inhibitor, was evidenced 

in a cardiomyoblast model. It is important to consider the relevance of the extra-hepatic 

metabolism to MTX-induced organ toxicity regarding that this drug accumulates in many 

organs (26). In the manuscript I, we demonstrated the presence of both MTX and 

naphtoquinoxaline metabolite in the liver and in the heart tissue of MTX treated rats. The 

toxic metabolites can be produced in the liver and carried to other organs and/or be 

formed in locu. The heart is an organ that express both CYP450 enzymes and NADPH 

cytochrome reductase (33). Noteworthy, CYP2E1 is markedly abundant in the heart when 

compared to other isoenzymes of that family (126), and we showed that it contributes to 

MTX cytotoxicity since by the inhibition of this isoenzyme the observed cytotoxicity was 

partially prevented (Manuscript I). 

Despite the significant protection obtained with CYP450 and CYP2E1 inhibitors, 

MTP (0.5mM) and DAS (150µM) respectively, the damage was only partially 

counteracted. This partial protection may be related to the direct toxic effect of MTX or the 

involvement of other enzymes present in the H9c2 cells that can promote the bioactivation 

of MTX. Additionally, the co-incubation of these inhibitors with MTX (100nM and 1µM) did 

not prevent the increase in the caspase-3 activity shown in the absence of metabolism 

inhibitors, favoring the participation of other metabolites or of MTX-itself to this effect 

(Manuscript II). Thus, these results suggest that CYP inhibition and the metabolites 

generated by it were not associated to apoptosis. 

In accordance with our results, in a previous study performed by co-incubating 

HepG2 cells with MTP (0.5mM) and MTX (5µM) for 4h the decrease in the cell growth was 

prevented when quantified 48h after removing these compounds, and compared to MTX 

incubation in the absence of MTP (33). Conversely, co-incubation of MTP (0.5mM) with 

MTX (10 and 200µM) for 4h partially prevented the cytotoxicity of MTX, evaluated through 

the LDH leakage assay, in the MCF7 human breast cancer cells subjected to CYP450 
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induced metabolism. Furthermore, in the same model, MTP (0.5mM) co-incubated with a 

lower concentration of MTX (10µM) for 4h counteracted the GSH depletion observed in 

the absence of the CYP450 inhibitor (36). The partial counteraction by MTP in the 

reduction of GSH levels might be related to the decreased need of GSH to detoxify the 

MTX toxic metabolites by conjugation, since the formation of those intermediary species is 

inhibited by MTP. Another possibility is that the inhibition of CYP450 leads to the 

formation of less reactive species resulting of the electron leakage of the CYP450 reaction 

by itself, thus consuming less GSH. At high MTX concentration (200µM), although the 

membrane cellular integrity was preserved by MTP (0.5mM) co-incubation, CYP450 

inhibition did not alter the intracellular GSH levels reduced by MTX incubation (36). 

Noteworthy, full protection of MTX-induced cytotoxicity was observed with the 

simultaneous incubation of MTP (1mM) and MTX at high concentrations (200 to 400µM) in 

two different hepatic cell models, namely hepatocytes isolated from male adult rats and 

HepG2 cells incubated for 4 and 9h (37). The prevention of MTX-induced cytotoxicity with 

MTP obtained by Mewes and co-workers (37) was superior of those demonstrated by us 

and by the work of Li and co-workers (36). However, it is important to refer that we cannot 

directly compare different endpoints, cell models, MTX and MTP concentrations. In fact, 

the concentration of MTP employed by Mewes and co-workers (1mM) was twice the one 

used by us and Li and co-workers (0.5mM) and our incubation period was longer (96h) 

with lower MTX concentrations. Moreover, the full vs. partial protection observed can be 

related to the differences in the parameters evaluated to measure the cell damage. 

Mewes and co-workers quantified the ultimate cell viability loss through the LDH leakage 

assay and we used the MTT reduction assay in our protective studies with metabolism 

inhibitors. At least in the H9c2 cell model, the MTT reduction assay demonstrated to be 

more sensitive to detect MTX cytotoxicity than LDH leakage test, as demonstrated by the 

time and response curves using the same MTX concentration range and incubation 

periods in the H9c2 cells (Manuscript II). This result could be explained by the nature of 

both cytotoxicity assays: the MTT reduction test is related to the cell ability to metabolize 

formazan crystals. The MTT metabolization is mostly catalyzed by mitochondrial 

dehydrogenases, thus the reduction of MTT is commonly considered as a mitochondrial 

viability index (106). On the other hand, LDH leakage assay is associated to membrane 

disruption and consequent loss of cellular integrity (127). Hence, LDH leakage assay 

usually measures irreversible damage while changes in the MTT reduction assay, as well 

as alterations in the antioxidant defenses, commonly manifest themselves earlier. Thus, it 

can explain the MTP-induced full protection observed in the LDH leakage assay and the 

absence of a protective effect considering the GSH levels observed by Li and co-workers 

with MTX high concentration (200µM) (36). 
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IV.2.1. Cytoxicity as a consequence of metabolic activation 

Traditionally, it is believed that the mechanisms of MTX cardiotoxicity involve the 

oxidative activation of its quinone group, leading to reactive species generation (36,37). 

Indeed, it was demonstrated that the incubation of MTX (1.60µM) with H9c2 cells elicits 

late increases in the peroxides production after a 16h incubation (128). However, the 

knowledge that the one-electron reduction potential of MTX does not favor the formation 

of a semi-quinone radical brought up questions concerning whether the MTX redox 

cycling has a primary role in MTX cardiotoxicity (35,59,129). Some authors defend that, 

instead of causing oxidative stress, MTX elicits antioxidant effects (1,29) since the 

inhibition of lipid peroxidation after MTX incubation was observed in many in vitro models, 

such as heart sarcosomes isolated from rabbit, mitochondria isolated from rabbit, and in 

liver microsomes isolated from rabbit (29,75). Notwithstanding the contradictory results, 

the interest in the assessment of the MTX effects among (anti)oxidative pathways still 

persists because MTX does not seem to be innocuous to the cellular antioxidant 

defenses. 

The enzymatic pathway of MTX oxidation has a strong influence in the extent and 

nature of all formed metabolites (30). For a long time, it was discussed whether MTX 

undergoes one- or two-electron reduction since this issue will be connected to the 

magnitude of oxidative stress formed as consequence of MTX bioactivation 

(32,33,35,130). The one-electron reduction yields reactive semi-quinone radicals and is 

promoted by reductases (e.g. flavin NADPH cytochrome reductases) and peroxidases 

such as myeloperoxidase (30,33,38) (Figure 7). The generated semi-quinones enter in 

deleterious redox cycling with oxygen, forming many reactive oxygen species and, 

consequently, oxidative stress, in a process similar to what is described for doxorubicin 

(33,35). The two-electron reduction is mediated by CYP450 mixed function oxidases and 

NADPH quinone acceptor oxidoreductase (also known as DT-diaphorase) and forms 

hydroquinones, which are more stable products (32,33,35,130) (Figure 7). Commonly, 

hydroquinones are rapidly eliminated from the cell, but sometimes, in the presence of 

oxygen, they enter in a redox cycle due to auto-oxidation to semiquinones and quinones, 

also generating superoxide radical anion, as represented in the Figure 7 (36). 
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One-electron reduction: 

 

Two-electron reduction: 

 

      O2 

Two consecutive one-electron reductions 

Figure 7: Schematic representation of one-electron and two-electron reduction of 
anthraquinones. The one-electron reduction involves the formation of semi-quinone 
radicals that can enter into redox cycling. Two-electron reduction generates 
hydroquinones, which can be detoxified or suffer auto-oxidation (two consecutive one-
electron reductions). Adapted from (36,130). 

 

Regarding MTX metabolism, the two-electron reduction is considered the 

preferential pathway, as evidenced by the prevention of the MTX bioactivation with 

CYP450-mediated metabolism inhibition (33,36,37), which was also observed by us 

(Manuscript I). One product of the two-electron reduction is the naphtoquinoxaline 

metabolite. However, studies demonstrate that MTX can also be metabolized by 

peroxidases in two steps of one-electron reductions to naphtoquinoxaline metabolite, 

which may contribute to the great effectiveness of MTX in the treatment of solid tumors 

containing high peroxidase secretion capacity (30,34,38). Thus, soluble 

peroxidase/hydrogen peroxide systems present in the extracellular spaces of solid tumors, 

such as lymphoma, breast, and prostate cancer can oxidize MTX and the consequent 

acidic oxidation products may accumulate in the neutral intra-cellular compartments, 

binding to cell targets and increasing MTX cytotoxicity (30). 

The naphtoquinoxaline metabolite formation has been reported through the action of 

CYP450s, DT-diaphorase, NADPH cytochrome reductases, and peroxidases, however it 

is plausible that the naphtoquinoxaline detected in urine samples of MTX patients is 

primary derived from CYP450 oxidation, since it is the main oxidoreductive pathway (30). 

The formation of naphtoquinoxaline involves the abstraction of two electrons. Thus, when 
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suffering one-electron reduction, the naphtoquinoxaline formation might be due to two 

consecutive one-electron abstractions, the second one removed via enzyme interaction 

with MTX radicals or from enzyme-independent radical disprotonation process (30). 

Moreover, as already mentioned, the reduction of MTX by flavin-reductases is not easy 

due to its low one-electron reduction potential (35). Additionally, oxidation by peroxidases 

is strongly dependent on hydrogen peroxide availability (30). The availability of NADPH is 

also crucial, as shown in a study using isolated human liver NADPH CYP450 reductase, 

since the reductive activation of MTX was demonstrated only in the presence of high 

amounts of NADPH (500µM) (28). While incubation of MTX (100µM) in the presence of 

isolated NADPH-cytochrome reductase increased the rate of NADPH oxidation about 20 

fold, using a more complex system such as rabbit hepatic microsomes, MTX incubation 

did not stimulate the basal oxidation of NADPH (29), corroborating the difficulty of MTX 

undergoing one-electron reduction in non-isolated enzyme systems. 

In order to evaluate the role of the metabolic enzymes in MTX-induced cytotoxicity, 

Li and co-workers did a study in 1995 using the MCF7 cell model and cells were pre-

treated with 1,2-benzanthracene (25µM) for three days. Pre-treatment with 1,2-

benzanthrecene induced by 64- and 1.6-fold the activities of CYP450 and DT-diaphorase, 

respectively. An increase of MTX-induced cytotoxicity, evaluated through the LDH leakage 

assay, was related to a decrease in the GSH and protein contents after pre-treatment with 

1,2-benzanthrecene. Even in the cells that had a high increase in CYP450 activity, the co-

incubation of MTX (10µM) with the CYP450 inhibitor MTP (0.5mM) for 4h prevented the 

GSH depletion and reduced the LDH leakage, when comparing to the results observed in 

the absence of MTP (MTX concentrations of 10µM and 200µM). Moreover, co-incubation 

of MTX and dicoumarol (an inhibitor of DT-diaphorase) (30µM) for 4h prevented the MTX 

deleterious effects upon GSH levels in all the MTX treated groups (10, 100, and 200µM), 

in the protein content in 100 and 200µM MTX, and in the LDH leakage assay only in the 

lower MTX concentration tested (10µM). These results show the importance of the two-

electron reduction in MTX bioactivation and its involvement in MTX cytotoxicity and 

impairment of oxidative stress defenses. In the same cell model, pre-treatment with 

dexamethasone (1µM) elicited a small but significant increase in the NADPH cytochrome 

c reductase activity. This increased activity of NADPH cytochrome c reductase had no 

effect on MTX-induced cytotoxicity, evidencing, once more, that the one-electron 

reduction does not seem to be relevant for MTX cytotoxicity (36). However, in a study 

using HepG2 cells by Duthie and co-workers in 1989, no protective effect in GSH levels 

was observed by the incubation of MTX (100µM) with dicoumarol (30µM) (33). Moreover, 

dicoumarol potentiated the cytotoxicity observed with MTX, evaluated by the LDH leakage 

assay (33). These results contradict the results demonstrated by Li and co-workers (36), 
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probably due to the use of different cell models with dissimilar metabolic competence 

(HepG2 cells vs. MCF7 cells). 

IV.2.2. MTX-induced oxidative stress and its (cardio)toxicity 

Oxidative stress appears to be an important component to the toxicity mechanisms 

of several xenobiotics, which contain or can be biotransformed into a quinone (124,131). 

Actually, oxidative stress is commonly referred as a key factor for the intrinsic 

cardiotoxicity elicited by catecholamines (118,132) and the cardiotoxic effects of 

antineoplastic agents such as doxorubicin and daunorubicin (58,133,134). Since the 

cardiotoxicity of MTX is clinically similar to that observed with doxorubicin, it was believed 

that these drugs also shared the mechanisms involved in the late cardiac disease (102). 

Hence, the possibility that oxidative stress exerts a leading role in the MTX-induced 

cardiotoxicity has been considered and largely investigated (49,125,129,130,135). 

The cardiac tissue is particularly susceptible to oxidative stress when compared to 

other organs due to its limited antioxidant defenses (136). Cardiac GSH levels and 

antioxidant enzymes, namely catalase, superoxide dismutase, and glutathione peroxidase 

are less abundant in the cardiac tissue than in the liver (137,138). Even so, paradoxically, 

the heart generates higher levels of hydrogen peroxide than other organs (139) and it may 

contribute to its vulnerability to drug-induced oxidative imbalance. It is known that there is 

a significant positive correlation between the metabolism of most quinone(di)imines and 

the generation of superoxide anion radical, which makes the heart a target to drugs 

containing these chemical structures, such as MTX (124,130,131). Another feature that 

aggravates the consequences of drug-induced cardiotoxicity is the modest regenerative 

ability of the heart. Nowadays, it is known that cardiac cells present a limited capacity for 

myocardial regeneration, although it is commonly insufficient to restore normal heart 

function after cardiac injury (140). 

Besides the above oxidative stress thesis for MTX-induced cardiotoxicity, the results 

compiled in Manuscript II and the glutathione status evaluated in MTX treated heart 

presented in the Manuscript III are consistent with the old thesis of Butler and co-workers 

that MTX metabolism is expected to produce few, if any, reactive species (130). The 

controversy of these results will be discussed in the following paragraphs in order to clarify 

the different perspectives and studies related with the formation of reactive species, lipid 

peroxidation, GSH content, and the use of antioxidants as NAC or of iron chelators. 

Low levels of reactive species formation were observed with some 

quinone(di)imines, such as indophenol, N,N-dimethylindolaniline, 2,3’6-trichloroindophenol 
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trifluoracetate, and N,N’-dichloro-2-chloro-1,4-benzoquinonediimine, and apparently, MTX. 

These compounds undergo rapid metabolism, forming little or no detectable reactive 

species (131). Moreover, as already referred, the oxidoreductive reactions involved in the 

MTX metabolism favor the formation of hydroquinones instead of semi-quinones 

(33,36,37). Hence, there is a minor formation of reactive species directly associated with 

this metabolism in comparison with those generated by quinone/semi-quinone redox 

cycling (130). Even so, the auto-oxidation of hydroquinones can also lead to some 

reactive species generation (36). The studies conducted in the H9c2 cells (Manuscript II) 

suggested that the oxidative stress might not be the primary cause of the MTX 

cytotoxicity, since the evaluation of several markers of oxidative stress showed that they 

remained largely unchanged.  

Regarding lipid peroxidation, we did not observe any significant changes in the 

malondialdehyde levels after incubation with MTX (100nM and 1µM) in H9c2 cells at any 

time point tested (24, 48, or 96h) in comparison with control levels (Manuscript II). This 

finding is in accordance with the results obtained in heart homogenates from MTX treated 

mice (15mg/kg, i.p.) evaluated two and five days after MTX single dose (59). Surprisingly, 

MTX in vitro was already associated with the inhibition of lipid peroxidation. In fact, in liver 

microsomes, heart sarcosomes, and mitochondria isolated from rabbit incubated with 

MTX (50, 100, and 200µM), the rate of lipid peroxidation was significant lower than that 

observed in controls (29,75). Moreover, besides inhibiting the endogenous lipid 

peroxidation, it has been demonstrated that MTX incubation at micro molar levels inhibited 

doxorubicin induced lipid peroxidation, ferric ion- and ADP ferric ion-mediated lipid 

peroxidation (29). The mechanisms involved in these inhibitory effects on lipid 

peroxidation remain mainly unknown: it has been suggested, however, that MTX can 

modify oxidative homeostasis. Data suggest that MTX-inhibition of lipid peroxidation is not 

related to the lower formation of superoxide radical anion since the inhibition of 

doxorubicin-induced microsomal superoxide generation is only reached with higher MTX 

concentrations than those required to inhibit the lipid peroxidation (29,75). Furthermore, 

MTX weakly complexes iron, which is involved in the initiation/propagation of lipid 

peroxidation (75). Hence, authors suggest that the MTX-inhibition of lipid peroxidation 

occurs at a mechanistic step subsequent to the enzymatic generation of superoxide and 

cannot be attributed to any of MTX iron chelation abilities (75).  

Alterations in the oxidative stress parameters, namely increase in the reactive 

species and decrease in the GSH intracellular levels, were found only in the last time-

point evaluated in the H9c2 cell model. In fact, after 96h incubation with MTX, both 

working concentrations (100nM and 1µM) caused a significant increase in the reactive 

species (Manuscript II), evidencing that this effect is a late event, since it did not occur in 
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any of earlier time points tested (1h to 10h incubation). The modest potential to generate 

reactive species in short incubation periods was also demonstrated in MCF7 S9 fractions, 

where a very low superoxide anion generation was observed after 30min incubation with 

MTX (100µM) and no hydroxyl radical or semiquinone formation was detected after 

incubation with MTX (even with the high concentration of 400µM) (35,129). Incubation of 

MTX (100µM) in the presence of NADPH-cytochrome reductase increased superoxide 

and hydrogen peroxide generation about 20-fold, however this was considered a slight 

increase when compared to structural analogues. Furthermore, using more complex 

systems such as rabbit hepatic microsomes, MTX incubation did not stimulate any 

detectable superoxide formation (29), suggesting that this pro-oxidant potential is only 

reached with isolated enzymes. Nevertheless, in the H9c2 cells after a 16h incubation with 

MTX (1.60µM), peroxide production increased (128). In the results presented in the 

Manuscript II, we detected increases in reactive species generation after 96h of MTX 

incubation (100nM and 1µM). These results corroborate the suggested hypothesis that the 

oxidative imbalance eventually associated with MTX is secondary to another initial toxic 

mechanism. Considering in vivo studies, mice treated with a single dose of MTX 

(15mg/kg, i.p.) did not present any cardiac significant changes in the hydroperoxide-

initiated chemiluminescence, after two to five days (59). 

After 96h incubation with MTX at the lower working concentration (100nM), a slight 

but significant decline in the GSHt and GSH levels was observed (Manuscript II), without 

any change in the GSSG levels. One hypothesis that could explain this finding is that the 

GSSG formed can be extruded by multidrug resistance proteins for the extracellular 

medium, since the GSSG efflux is a cellular response aiming to protect the cells from 

oxidative stress (108,141). Another possibility is that GSH levels are diminished due to 

conjugation with either MTX or its metabolites. The later hypothesis should be regarded 

as plausible, since the conjugation of MTX metabolites with GSH is described as one of 

the main detoxifying pathway of MTX (36).  

In our study, decrease of intracellular GSH content was not observed for 1µM of 

MTX, even considering that similar levels of reactive species were generated when 

compared to MTX 100nM group, at 96h incubation (Manuscript II). One possible 

explanation is that GSH levels already recovered at 96h of 1µM MTX incubation by GSH 

synthesis. Another hypothesis is that MTX elicited a concentration biphasic decrease in 

the GSHt in vitro. The biphasic effect of MTX upon GSHt levels was already demonstrated 

in another cardiac cell model (HL-1 cells), where after 24h, the incubation of MTX (1µM) 

increased the GSHt levels compared to control cells and the higher concentration (10µM) 

did not affect GSHt levels in the same incubation conditions (142). At a longer incubation 

period (48h), while the values of intracellular GSHt levels remained similar to control with 
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the lower MTX concentration of 1µM, at 10µM MTX incubation elicited a significant 

decrease in the GSHt levels (142). Regarding in vivo results obtained in the scope of 

Manuscript III, no significant changes were observed in the cardiac glutathione levels 

(GSHt, GSH, and GSSG) in none of the treated animals (MTX22 or MTX48). Conversely, 

cardiac GSH levels were not affected by MTX treatment (15mg/kg, i.p.), in mice that 

suffered euthanasia 2-5 days after MTX administration (59) and cardiac GSH content, 

glutathione peroxidase, catalase and superoxide dismutase activities were not altered in 

female BALB/c mice weekly treated with MTX (0.2mg/kg, i.p.) over 12 weeks and suffered 

euthanasia one week after the last treatment (50). 

The use of NAC (1mM) failed to prevent the cytotoxicity elicited by MTX (100nM and 

1µM) after 96h incubation with H9c2 cells (Manuscript II), evaluated through the MTT 

reduction assay. NAC is a powerful scavenger of reactive species and it improves the 

GSH synthesis (143). Because of these properties, NAC has been shown to be effective 

in protecting cells when oxidative stress conditions are imperative (113,114,127). 

However, the only cytotoxic parameter evaluated by using this protective study was the 

reduction of MTT evaluated only at 96h. Thus, it should not be excluded that NAC might 

ameliorate the oxidative stress altered parameters, such as late reactive species 

generation or GSH decrease in the MTX 100nM group (143). Even so, in case that 

protection occurred, it was not enough to prevent cellular damage, again suggesting that 

oxidative stress does not occupy a leading role in the MTX-mediated cytotoxicity.  

Contradictory results exist regarding the protective effects elicited by ICRF-187, an 

iron chelator, in the MTX-induced toxic effects. The aim of using ICRF-187 is to block the 

iron-stimulated free radical formation via Fenton reaction (144). In MTX-treated isolated 

neonatal rat cardiomyocytes, the incubation with ICRF-187 (50µg/ml) elicited a partial 

cytoprotection when continuous incubated 3h before, during, and 72h after previous MTX 

(2µg/ml) 3h incubation, as evaluated through the ATP measurement. However, regarding 

3h co-incubation of MTX and ICRF-187 (without ICRF-187 pre-treatment or post treatment 

but using the same concentrations), this regimen was not effective in protecting the cells 

against MTX-induced cell damage on ATP levels (125). Thus, the cellular protection was 

probably dependent on the time of ICRF-187 incubation. Moreover, ICRF-187 

administered 5min before MTX, (at doses 20 times higher than MTX dose) delayed the 

MTX-induced death on CD-1 mice receiving MTX (twice weekly, at doses 2mg/kg and 

4mg/kg, treated on weeks one, two, and five and suffered euthanasia on the week seven) 

(125), corroborating the cardioprotective effect shown in vitro (125). Despite the 

cardioprotection demonstrated in vitro and in vivo, ICRF-187 did not affect the MTX 

antitumor action in the L1210 cell line (a mouse leukemia cell model) and in a DBA/2J 

mice bearing P-388 leukemia (125), which suggested that the mechanisms involved in the 
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MTX-antitumor action and MTX-induced cardiotoxicity are diverse. In contrast with the 

good results obtained by Shipp and co-workers, female BALB/c mice weekly treated with 

ICRF-187 (12.5mg/kg, 30min prior to MTX) and MTX (0.2mg/kg) over 12 weeks, suffered 

euthanasia one week after the last treatment, did not present significant changes in the 

cardiac parameters evaluated (morphological changes evaluated through light and 

electron microscopy) compared to mice that did not receive ICRF-187 (50). The 

mismatched results may arise from differences in MTX doses and regimen administration, 

namely the duration of treatment. Even so, the partial protective effects of ICRF-187 in 

vitro and in vivo suggest that divalent metal ions, such as iron, can be partially involved in 

the MTX-cardiotoxicity (125), not necessarily through iron-mediated oxidative stress. 

Moreover, we cannot exclude the possibility that the partial protection observed is due to 

another intracellular mechanism of ICRF-187, which is not yet elucidated.  

Despite the majority of negative results in cardiac models, oxidative stress seems to 

assume a more pronounced role in other target organs such as the liver. The MTX-

induced hepatic damage evidenced in the study presented in the Manuscript IV, for 

example, was associated with increases in the hepatic levels of GSHt observed in the 

MTX48 group. This increase was related to a slight (but significant) increase in the GSH 

hepatic levels and to a notorious increase in the GSSG levels. Increases in GSH might be 

interpreted as an attempt to enhance the antioxidant content in order to counteract the 

inflicted injury, while increased levels of GSSG are related with oxidative stress. It is 

known that Kupffer cells, which were abundantly present in the MTX48 livers (Manuscript 

IV), are a source of reactive species (145). The link between oxidative stress and the 

MTX-induced hepatic damage was already suggested in a study with mice, where a single 

administration of MTX (15mg/kg) caused increases in the hepatic lipid peroxidation, 

decreases in the antioxidant enzymes activities (superoxide dismutase, catalase, and 

glutathione peroxidase), and depletion of hepatic retinol and GSH levels (49). Moreover, 

the incubation of MTX (100µM) with HepG2 cells for 6h was enough to promote the 

decrease in the GSH levels (33). The apparent contradiction between our results 

(increase in the GSH hepatic levels) and the previously reported data (decreases in the 

GSH content) may be explained by the differences in the experimental design and model. 

The quoted studies assess in vivo the liver GSH levels three, four, and five days after 

MTX administration (49) or 6h after high concentration incubation of cells with MTX (33). 

In the present study, the significant changes in the glutathione status were a late event, 

only observed 28 days after the last cycle of a cumulative dose administration regimen. 

Hence, the organism is probably subjected to compensatory effects, in order to counteract 

the increase in the hepatic GSSG levels and this adaptive phenomenon is favored by the 

long time between last MTX administration and rat euthanasia. Another evidence of MTX-
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potential oxidative stress on the liver, in particular in human liver microsomes incubated in 

anaerobic conditions with MTX (50µM), is the increased formation of reactive species 

detected through electron spin resonance analysis (135). 

We hypothesize that the different propensity to oxidative stress in different tissues 

might be related to organ metabolic competence. The enzymatic availability in the liver is 

much higher than in the heart. Therefore it is possible that in other systems with a smaller 

amount of enzymes available, such as heart, the oxidative stress is not a primary cause of 

damage, because MTX one reduction potential is very low (527± 5 mV) (35). In contrast, 

in an enzymatic abundant environment, the extent of MTX suffering oxidative activation 

(and, therefore, producing reactive intermediates) is higher, and despite the preference for 

two-electron reduction pathway, a minor extent (but higher than in another organs 

enzymatically poorer) might undergo to one-electron reduction.  

IV.3. Calcium regulation, mitochondrial membrane potential and cell 

death 

The role of calcium on cell physiology goes from cell signaling to cell death (146). 

Normally, intracellular calcium levels are tightly regulated between the range of 10-100nM 

by ionic channels and transporters, energy-dependent pumps, and organelles that uptake 

and buffer this ion (147–149) (Figure 9). The first calcium barrier is the plasma membrane, 

which mediates the calcium influx by ligand-gated and voltage-channels in order to 

maintain a large calcium gradient across the membrane (149). The endoplasmic reticulum 

is the largest reservoir of calcium in cardiomyocytes, having concentrations that can reach 

the milimolar levels (148,149). Furthermore, mitochondria perform the function of buffering 

intracellular calcium. The influx of calcium into the mitochondrial matrix is dependent on 

the membrane electrochemical potential, which is maintained by mitochondrial respiration, 

and by a low resting intra- mitochondrial calcium concentration, which is maintained 

primarily by the mitochondrial sodium/calcium exchanger (146). 
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Figure 8: Mechanisms of elimination and maintenance of calcium cytosolic levels. (A) 
Calcium ATPase-mediated pumping into the extracellular space, (B) ion-gradient driven 
transport into the extracellular space by the sodium/calcium exchanger, (C) ion-gradient 
driven transport into mitochondria by calcium uniporter, and (D) ATPase-mediated 
transport into the endoplasmic reticulum. Adapted from (148). 

 

Intracellular calcium levels rise when calcium flux into the cell is increased, following 

the energetic impairment and/or in conditions that modify the release or uptake of calcium 

from the endoplasmic reticulum and/or mitochondria (147). As a consequence, elevated 

intracellular calcium levels may activate hydrolytic enzymes, such as phospholipases, 

endonucleases, and proteases, resulting in the modification of the permeability of the 

membranes and degradation of intracellular structures (146–148). Moreover, calcium 

overload may elicit the depletion of energy reserves, the dysfunction in microfilaments and 

the generation of reactive species (148). Hence, the calcium hypothesis is based on the 

observation that pathological increases in the intracellular calcium lead to degenerative 

events that can be avoided if those increases are prevented (146). 

A sustained increase in the intracellular calcium precede cellular pre-lethal and 

lethal changes (147). It is known that calcium overload can trigger both cell death forms: 

necrosis and apoptosis (146). The cell death mechanisms are discussed in more detail 
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below, but calcium increases have an important role on caspase activation and 

consequent apoptosis (149). 

In the in vitro study presented in the Manuscript II, MTX incubation with H9c2 cells 

led to increased calcium intracellular levels with concomitant increase in the mitochondrial 

membrane potential. A close relationship between the mitochondrial membrane potential 

and calcium intracellular levels is well known, since the regulation of calcium 

mitochondrial levels is mediated through the calcium uniporter using the mitochondrial 

membrane potential as driving force (148,150). The retention of mitochondrial membrane 

potential during calcium increase favors mitochondrial calcium uptake and overload, 

resulting in cell death, normally by apoptosis (149). The mitochondrial calcium overload 

secondary to a cytoplasmic calcium overload may trigger the mitochondrial permeability 

transition pore (MPT) (149). Although a low conductance state of the pore is reversible, 

sustained transitions dissipate the mitochondrial membrane potential, impairing ATP 

synthesis, leading to the release of cytochrome c and, consequently, initiation of apoptosis 

(148,149,151). The increase in mitochondrial membrane potential is observed in 

pathological conditions, such as ischemic cardiomyocytes during reperfusion. In ischemic 

conditions, cardiac mitochondria are energized and permit calcium uptake and 

mitochondrial damage. During reperfusion, the mitochondrial membrane potential 

increases in order to allow the respiration, lethally damaging other organelles by cytosolic 

increases of calcium (149). Other examples of increased mitochondrial membrane 

potential occurred in mitochondrial vascular endothelial cells subjected to pulsatile shear 

stress (152), and physiologically during pre-implantation stages of human and mouse 

embryo development, in response of metabolic demand (153). The hyperpolarization of 

mitochondrial membrane potential sometimes can precede the mitochondrial collapse 

and, consequently, cell death (154). 

The chronology of the calcium impairment-induced lesion also can be opposite, e.g., 

a direct lesion in the mitochondria or injuries affecting the energetic metabolism can affect 

calcium regulation since the cellular mechanisms involved in calcium handling are ATP 

dependent. Thus, at low energetic levels, calcium pumping activity decreases, resulting in 

cytosolic calcium increase (149) ultimately driving the cell to the “no return point”, leading 

to cell death (147). In our work, we observed an important energetic depletion caused by 

MTX in vitro and in vivo and signs of mitochondrial toxicity. However, it was not yet 

possible to conclude if the calcium overload is a cause or a consequence of that 

mitochondrial lesion. 

In contrast to our present work, a study of Kluza and co-workers in 2004, also with 

the H9c2 cells and using similar MTX concentrations and incubation periods (1.60µM for 

24h), showed a decrease in the mitochondrial membrane potential (128). In fact, in our 
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study, 24h incubation with 100nM and 1µM MTX caused an increase and no alteration in 

the mitochondrial membrane potential, respectively. Considering that we used the same 

cell model and similar MTX concentrations, it is possible that a slight increment in MTX 

concentration (1.60µM instead of 1µM) is enough to promote a different cellular response, 

namely the loss of the mitochondrial membrane potential. Also in the study performed by 

Kluza and co-workers, the MTX concentration of 1.60µM was defined as the mean lethal 

concentration (LC50) at 24h incubation, evaluated through the trypan blue exclusion test. 

In our cytotoxicity studies the LD50 at 24h was about between 10 and 50µM (in the LDH 

leakage assay) and 5 and 10µM (in the MTT reduction test). The discrepancy between our 

results and those presented by Kluza and co-workers might be explained through the 

nature of the cytotoxicity tests used (trypan blue exclusion assay vs. LDH leakage assay 

and MTT reduction test). Moreover, in the protocol performed by Kluza, they employed a 

trypsinization step before the trypan blue exclusion assay, which may have contributed to 

the apparent higher cytotoxic effects observed since the cells were already fragile due to 

the previous incubation with MTX. Furthermore, another data that could help to 

understand these differences is the working number of passages of H9c2 cells, however, 

this information was not available in the manuscript by Kluza. Notwithstanding, in the 

same study, the 24h incubation of MTX (1.60µM) with MTLn3 mammary adenocarcinoma 

cells caused a significant decrease in the aggregation of JC-1 probe, which the authors 

attribute to an increase in the mitochondrial mass (128). It could be an adaptive 

phenomenon, since mitochondria play a significant role in the calcium-dependent cell 

signaling by acting as a buffer of cytosolic calcium excess (98,146,155). 

IV.4. MTX-induced cell death 

Cell death is a normal phenomenon occurring during developmental stages and also 

in adult life, allowing the cells’ turnover (147). Typically, cell death can be divided in two 

modes: necrosis, generally seen as an uncontrolled process, and apoptosis, a 

programmed manner of cell death (148). Additionally, there is cell-death by autophagy, 

which is characterized by the sequestration of cytoplasmic material within 

autophagosomes prior to degradation and occurs without chromatin condensation but with 

massive autophagic vacuolization of the cytoplasm (156). 

During early stages of necrosis, cell can present alterations in compartment volume, 

e.g. swelling and rupture of endoplasmic reticulum or mitochondria, cytoplasmic blebbing, 

chromatin condensation, and eventually, cell membrane disruption (147,157). Based on 

the morphologic features of necrosis, it has been considered as an unregulated or 
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accidental fate (158). Recently, however, this view is under debate and it is considered 

that some types of necrotic death may be regulated (158). Thus, a new concept emerged: 

the necroptosis or aponecrosis, a cell-death process that shares the morphologic features 

of necrosis but is highly regulated, like apoptosis (159). 

Apoptosis occurs during development, aging, and even to allow the normal cell 

renewal, functioning as a homeostatic control of cell population (157). Morphologically, 

comparing to necrosis, the apoptotic cells typically shrink rather than swell, the nuclear 

chromatin condensation is more pronounced (pyknosis), and the cytoplasmic blebs 

usually contain organelles such as mitochondria (147). Afterwards, when the nuclear and 

cytoplasmic content are condensed, it breaks into membrane-bound fragments named 

apoptotic bodies that are phagocytized (148).  

Cells can trigger apoptotic death through different pathways that are linked and can 

mutually influence each other (157). Additionally to the intrinsic and extrinsic pathways, 

there is an additional caspase dependent pathway that involves T-cell mediated 

cytotoxicity and perforin-granzyme-dependent killing of the cell (Figure 8). Caspases are 

cysteine proteases, mostly located in the cytoplasm in their inactive forms (procaspases). 

When caspases are activated, they cleave structural proteins, especially in specific 

aspartate residues sites (148) (Figure 8). 
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Figure 9: Schematic representation of the energetic-dependent cascade of events leading 
to diverse apoptotic pathways. Each pathway activates its own procaspase, which will 
converge to caspase-3 activation (with the exception of granzyme A via that is caspase-
independent). Caspase-3 activation results in other procaspases activation (procaspase 6 
and 7) and, finally, leads to morphological and biochemical features of apoptosis. Adapted 
from (148,157). 

 

The intrinsic pathway involves mitochondria and is independent of receptor-

mediated stimuli (148,157) (Figure 8). The cytotoxic stimuli provoke changes in the inner 

mitochondrial membrane that results in the opening of MPT. It induces loss of the 

mitochondrial transmembrane potential and release of pro-apoptotic proteins, such as 

cytochrome c, Smac/DIABLO, and HtrA2/Omi into cytosol, which, consequently, activate 

the caspase-dependent mitochondrial pathway (157) (Figure 8). Caspase-9 is activated 

through the formation of the apoptosome, which consists in seven heterodimers of 

apoptotic protease activating factor-1 (Apaf-1), joined with cytochrome c that form a 

symmetrical “wheel”, which binds to procaspase-9 and promotes its activation (160). 

Thus, caspase-3 is sequentially activated by caspase-9 (148). 

The extrinsic pathway is related to cell surface death receptors (158). The ligands 

bind to their respective cell death receptor, normally members of the tumor necrosis factor 

receptor gene family (157). Subsequently, a trimerization of the receptor and the 

recruitment of adapter molecules and procaspases to the cytoplasmic tail of the receptor 

occur (148). Then, the death-inducing signaling complex (DISC) is formed and results in 
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the auto-catalytic activation of caspase-8, subsequently triggering to execution phase of 

apoptosis, also with caspase 3 activation (157).  

The perforin-granzyme-dependent pathway involves immunocytotoxicity mediated 

through T-cells that exert their cytotoxic effects on tumor cells and virus-infected cells via 

the secretion of perforin (a transmembrane pore-forming molecule) and release of 

cytoplasmic granules (granzymes) through the pore and into the target cell (157,161). As 

shown in the Figure 8, the granzyme B activates caspase-10, while granzyme A induces 

apoptosis through caspase independent pathways (157).  

Caspase-3 is seen as a key executioner to apoptosis, considering that the extrinsic 

and intrinsic pathways converge to its activation (107). In fact, execution caspases 

(caspase-3, caspase-6, and caspase-7) activate cytoplasmic endonucleases and 

proteases that degrade nuclear material and nuclear/cytoskeletal proteins, ultimately 

leading to irreversible death of the cell (157,160). 

Knowing the main cell death mechanisms, it is interesting to observe that the 

mechanisms underlying cell death induced by MTX are described as bimodal: apoptosis 

at lower concentrations and necrosis at higher concentrations (15). As already stated, in 

the present in vitro studies we used MTX working concentrations clinically relevant given 

the plasma and tissue levels of MTX (14,26). Noteworthy, we observed a time- and 

concentration- dependent cytotoxicity, being the effects more pronounced in the MTT 

reduction assay rather than in the LDH leakage assay (related to cell membrane 

disruption) in all time-points tested. At 24h incubation, only the high concentration of 50µM 

caused a loss of viability higher than 50% in the LDH leakage assay. Even after 96h 

incubation with MTX (100nM and 1µM), the majority of cells maintained their cellular 

membrane integrity, which means that we are not predominantly working in a necrotic field 

with those concentrations (Manuscript II). At higher concentrations, namely more than 

5µM, the results in the LDH leakage assay start to be more expressive at 48 and 72h 

incubation (in the range of 50-60% of viability), being extensive at 96h MTX incubation 

(maintaining only about 25% of total cell viability). These data suggest that the MTX-

induced damage into the cellular metabolic competence is prior to the loss of cellular 

membrane integrity. 

Considering the death mechanisms, we showed that MTX (100nM and 1µM) elicited 

an increase in the caspase-3 activity after 24h incubation in H9c2 cells (Manuscript II). 

These results are in accordance with previously reported characteristic signals of 

apoptosis (appearance of hypoploid DNA content, cytoplasm and chromatin 

condensation) after 24h incubation in the H9c2 cells with MTX (1.60µM) (128). After 48h 

incubation of MTX (1.60µM) in H9c2 cells, features of late phase of apoptosis, such as 

nuclear disintegration and apoptotic bodies formation, can be observed (128). Recently, 
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the evaluation of caspase-9, caspase-8, and caspase-3 activities after MTX incubation 

with the HL-1 cell model demonstrated that after 24h incubation, MTX (1µM and 10µM) 

promoted significant activity increases in all caspase subtypes tested (142). Thus, it was 

not possible to indicate one preferential pathway of MTX-induced apoptosis, suggesting 

that MTX can promote intrinsic- and extrinsic-mediated apoptosis. In the same study, after 

48h incubation, no changes were observed in caspase 3, caspase-8, and caspase-9 

activities compared to control cells (142), being in accordance with our pilot studies. When 

we evaluated the caspase-3 activity after longer incubation periods (48h and 96h) in H9c2 

cells (data not shown), no significant differences were observed, suggesting that caspase 

cascade activation is an earlier effect.  

Despite the partial protection towards MTX cytotoxicity (at 100nM and 1µM) after 

96h with the co-incubation with the CYP450 inhibitor MTP (0.5mM) or with the CYP2E1 

inhibitor DAS (150µM) (Manuscript I), the co-incubation with these metabolism inhibitors 

did not prevent the increase in the caspase-3 activity promoted by MTX incubation at 24h. 

Thus, the previous partial protection obtained with the metabolism inhibitors is not 

associated with apoptosis prevention. 

IV.5. Energetic imbalance as a protagonist of MTX-induced cardiotoxicity 

Besides the sustained rise in intracellular calcium levels, another critical biochemical 

disorder that may lead to cell death is ATP depletion. ATP is the major source of energy in 

the cardiac tissue (162,163). In fact, ATP plays a pivotal role in cellular maintenance, 

since it is utilized in biosynthetic reactions, incorporated into co-factors and nucleic acids, 

required for muscle contraction, cellular motility, cell division, vesicular transport, and even 

for the maintenance of ionic homeostasis and cell morphology (148). In healthy hearts, 

ATP levels are maintained constant. Despite studies regarding failing hearts have not 

reached a consensus, some reports found decreased levels of ATP in human failing 

hearts and that loss has been correlated with the degree of cardiac impairment (164,165).  

Due to the importance of energy supply for the muscular function, there is another 

important muscle energetic reserve system: the phosphocreatine (PCr), which is present 

in the heart at twice the ATP cardiac concentration (162). The reaction catalyzed by the 

enzyme CK transfers the phosphoryl group from ATP to creatine, forming PCr (Figure 10) 

at a rate about ten times faster than the rate of ATP synthesis. There are 3 major CK 

enzyme subtypes identified: CK-MM is the principal form in skeletal muscle, CK-BB is the 

predominant form in the brain and the kidney, and CK-MB is the main subtype in the 

myocardium, although CK-MM is also found in the heart (162). PCr is considered an 
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energetic source of rapid demand and when ATP use exceeds ATP supply, the use of 

PCr is a major pathway of energy (162). The total creatine pool is about 60 % lower in 

failing hearts, while CK levels are relatively abundant in this condition (163). Thus, a lower 

total creatine pool means that PCr must also be lower (163).  

 
 

 

 

 
Figure 10: Schematic representation of PCr mobilization. PCr is an energetic reserve 
that, through CK catalyzed-reaction, produces creatine and ATP. 

 

In the present work, decreased levels of ATP were observed in both in vitro 

myoblasts incubated with MTX and ex vivo in the heart from MTX-treated rats 

(Manuscripts II and III, respectively). In the H9c2 cells, the decrease in the ATP 

intracellular content was evident in all time points tested (24, 48, and 96h), in both MTX 

working concentrations (100nM and 1µM) and it preceded the declines in the ATP-

synthase expression and activity (Manuscript II). In the in vivo study, significant decreases 

in cardiac ATP levels were only seen in the late endpoint (MTX48 group), demonstrating 

that this effect is a late response. Significant decreased levels of ATP were already 

demonstrated as a late event (72h after pre-incubation) in cultured neonatal rat cardiac 

cells pre-incubated with MTX (about 0.1µM - 10µM for 3h) (125). Failing human hearts 

have about 25-40% less ATP than healthy hearts and the heart in energetic starvation 

fails to support an increase in the workload (163,165). Thus, the length of time that the 

heart can survive with such ATP depletion still remains unclear (163), and speculatively 

could help to explain the two deaths observed in the MTX48 group (Manuscript III). 

It has been described that the loss of ATP in the failing myocardium is a slow and 

progressive phenomenon, only detectable when the heart is in severe failure (163), which 

is in agreement with our in vivo results. The sequence of events in the establishment of a 

failing and energy starved heart are: the decrease in the PCr levels followed by the loss in 

the creatine levels and, ultimately, ATP depletion (163). Decreases in the plasma total CK 

activity and CK-MB levels were observed in the MTX22 group (Manuscript III) and may be 

interpreted as a hallmark of the development of the heart failure (136). However, signaling 

pathways involved in CK alterations remain to be elucidated (136). Even so, it has been 

reported a decreased CK activity in heart mitochondria isolated from MTX treated female 

rats (1mg/kg, twice a week, for four weeks), immediately after the first dose (166). 

PCr+ ADP +H+ ↔ creatine + ATP 
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Moreover, in the same study, the creatine content of heart mitochondria was increased, 

evidencing the loss of mitochondrial membrane permeability (166). 

Besides the ATP depletion observed in MTX48 hearts, plasma lactate levels were 

increased in this group in comparison with MTX22 and control levels (Manuscript III), 

which was accompanied by increases in the cardiac relative mass, suggesting a cardiac 

failure condition. Increased levels of plasma lactate are suggestive of lactic acidosis and 

occurs in response of tissue hypoxia, uncoupling of oxidative phosphorylation, generalized 

cachexia (due to increased anaerobic glycolysis in the skeletal muscle), congestive heart 

failure, and in situations where the hepatic clearance is compromised (which can also be 

the case regarding the hepatic damage described in Manuscript IV) (136,167). However, 

in failing hearts, the heart assumes the fetal pattern, switching the main substrate of 

energetic sources from fatty acids to glycolysis with a reduced oxidative metabolism 

(136,168), thus, more lactate is produced and lower levels of ATP is generated (136). 

The glycolytic pathway and the tricarboxylic acid cycle usually give small 

contributions to the cardiac ATP content, being the major source of ATP the mitochondrial 

oxidative phosphorylation, which is usually enough to support the normal needs of the 

heart, even when the heart’s demand is increased (162). The factors required by the 

mitochondria are usually obtained after β-oxidation of fatty acids in the mitochondria and 

peroxissomes. Thus, when ATP supply and demand are mismatched, it can indicate a 

defect in mitochondrial synthesis of ATP. For instance, in ischemic, hypoxic and 

cardiomyopathic hearts, the cell’s ability to match ATP supply and demand is disrupted 

and the depletion of the cardiac energy pool is accompanied by a dysfunction on 

mitochondrial ATP turnover mechanisms (169). 

IV.6. MTX-induced mitochondrial toxicity 

In general, mitochondria perform central functions in the cardiac cell such as energy 

supply, regulation of reactive species formation, buffer cytosolic calcium, and regulation of 

apoptosis (155). Mitochondria have two membranes: the outer membrane is rich in 

cholesterol and is permeable to ions and solutes up to 14KDa while the inner membrane 

contains membrane proteins that transport selected ions and metabolites across the 

membrane. Additionally, the inner membrane delimits the matrix, where the mitochondrial 

DNA and soluble enzymes such as those from the tricarboxylic acids cycle and β-

oxidation are found (170). The respiratory chain is located in the mitochondrial inner 

membrane and is responsible for ATP production through the oxidation of NADH and 

ubiquinol, which transfer electrons to the oxygen through the respiratory chain complexes. 
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There are five mitochondrial respiratory chain complexes: complex I (NADH:ubiquinone 

reductase), complex II (succinate:ubiquinone reductase), complex III 

(ubiquinol:cytochrome c reductase), complex IV (cytochrome c oxidase), and complex V 

(ATP synthase). Mitochondrial respiration promotes the proton ejection without charge 

compensation. Hence, the electrochemical gradient and free energy provided are enough 

to serve as motive force to the ATP synthesis (96,155). 

Heart muscle is a highly oxidative tissue that produces more than 90% of its energy 

through mitochondrial respiration (136). Mitochondria occupy about 30% of cardiomyocyte 

space, suggesting its relevance for cardiac performance (136,162). Cardiac mitochondria 

have a large number of cristae, which is justified due to the high energetic demand and 

respiratory activity of the cardiac tissue (96). Considering that mitochondrial oxidative 

phosphorylation is the major source of ATP, mitochondrial dysfunction and consequent 

disruption of energy metabolism are associated to rapid depletion of cellular energy 

reserves (169). 

It was already demonstrated that mitochondria is involved in doxorubicin-induced 

cardiomyopathy. After the doxorubicin acceptance of unpaired electrons from complex I of 

the mitochondrial electron transport chain, the resulting reactive species are stabilized by 

superoxide dismutase and by reacting with mitochondrial reducing equivalents such as 

GSH. As a consequence, GSH oxidation leads to the MPT opening and, subsequently, 

mitochondrial swelling, depolarization, loss of calcium regulation, and inhibition of 

mitochondrial bioenergetics (97).  

The H9c2 cells incubation with MTX (100nM and 1µM) caused the late inhibition of 

ATP synthase expression and activity (Manuscript II), suggesting that MTX causes a 

direct inhibition of ATP synthesis. However, decreased levels of ATP were observed 

earlier than ATP synthase expression and activity inhibition (table 4), suggesting that 

other effects besides interference with ATP synthase are involved in intracellular ATP 

depletion. Considering that this cell model privileges the glycolytic pathway, another 

possible target of MTX is enzymes involved in glycolysis. Other possibilities are the lack of 

nucleotides (which was not investigated by us) or increased consumption of ATP by 

diverse biochemical mechanisms. The late (96h) inhibition of ATP synthase and 

expression induced by MTX, to the best of our knowledge, was described for the first time 

by our works. Additionally, in this cell model, the mitochondrial membrane potential was 

hyperpolarized after MTX (100nM and 1µM) incubation at 24, 48, and 96h. At 24h 

incubation with 1µM MTX neither the hyperpolarization of mitochondrial membrane 

potential nor the elevation of calcium intracellular levels were observed. In the other 

experimental conditions tested (48 and 96h), the mitochondrial membrane potential was 

elevated simultaneously with rise of intracellular calcium levels, which may difficult to 
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assert which was the first event. Even so, the mitochondrial membrane potential may be 

elevated as an attempt to provide motive force to restore the energetic homeostasis that is 

altered given the early decreases in the ATP levels. At 96h incubation, the decreases in 

the ATP-synthase content and activity are accompanied by increases in the reactive 

species generation, suggesting a possible connection between events (Manuscript II). The 

chronology of the energetic imbalance observed in the H9c2 studies was summarized in 

the table 4.  

Table 4: Diagram representing the chronogram of energetic/mitochondrial changes 
observed in the H9c2 cells after incubation with MTX. (yes = presence of the effect, n.o = 
not observed [absence of the effect], n.d= not determined). The results were obtained 
after comparison with control cells. 

 

  MTX 100nM MTX 1µM 
  24h 48h 96h 24h 48h 96h 

Decreases in the intracellular ATP levels yes yes yes yes yes yes 

Inhibition of ATP synthase expression n.o n.o yes n.o n.o yes 

Inhibition of ATP synthase activity n.d n.d yes n.d n.d yes 

Hyperpolarization of mitochondrial 
membrane potential 

yes yes yes n.o yes yes 

Increases in the intracellular calcium 
levels 

yes yes yes n.o yes yes 

Increases in the reactive species 
generation 

n.d n.d yes n.d n.d yes 

 

Considering the suggested mitochondrial injury, L-carnitine was used to study the 

possible protection of MTX effects in the H9c2 cell model. First, the transport of fatty acids 

across mitochondrial membrane is only possible when these substrates are attached to 

carnitine (171), allowing their β-oxidation. Furthermore, L-carnitine improves the trans-

esterification/excretion of acyl-CoA esters, the oxidation of α-ketoacids, and the removal 

of toxic acylcarnitine ester from the mitochondria (171,172). However, although L-carnitine 

(1mM) is considered a mitochondrial enhancer, under our experimental conditions it did 

not protect the H9c2 cells from the cytotoxicity induced by MTX incubation (96h), 

evaluated through the MTT reduction test. This lack of protection probably occurs 

because the MTX-induced cytotoxicity has a mitochondrial mechanism other than the 

ones targeted by L-carnitine. In fact, our results suggest that MTX causes important 

energetic crises, directly affecting ATP content and synthesis. Even so, in contrast to our 

data, protective effects of L-carnitine were observed in MTX treated mice: the 

administration of L-carnitine decreased the lethal toxicity of MTX (LD50 MTX 
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alone=15.2mg/kg vs. LD50 MTX+L-carnitine 200mg/kg=21.8mg/kg) (173), which may 

indicate that in vivo, the enhancement of mitochondrial function elicited by L-carnitine may 

favor a better response to MTX. Nonetheless, regarding mice with solid Ehrlich tumor, the 

co-administration of L-carnitine did not present any potentiating effect on the antitumor 

efficacy of MTX considering the tumor growth rate or increased the survival of mice (174). 

In fact, the acetyl ester of carnitine (L-acetyl-carnitine) may impair the antineoplastic 

treatment since the combined therapy of MTX and acetyl-L-carnitine in mice with solid 

Ehrlich tumor showed a higher occurrence of metastases with broad dissemination to the 

kidneys, lung, heart, and mediastinum (175), greatly harming the clinical efficacy of MTX. 

Trying to evaluate MTX-induced mitochondrial toxic effects in vivo, the cumulative 

mitochondrionopathy of MTX was studied using male adult Wistar rats (Manuscript III). 

Early and late toxic effects (two days vs. 28 days after reaching the MTX total cumulative 

dose - MTX22 and MTX48 groups, respectively) were evaluated in order to better 

understand the (mal)adaptive responses involved in MTX-induced cardiotoxicity 

(Manuscript III). The mitochondrial functional and morphological disturbances were 

demonstrated in both treated groups and were more pronounced in the late time point 

(Manuscript III). In the present study, the mitochondrial cristae were well defined and 

swelling was absent, thus, the mitochondrial morphologic changes were restricted to giant 

and collapsed mitochondria (Manuscript III). One hypothesis that could explain this finding 

is the MTX ability to intercalate into the DNA molecule causing single and double breaks 

and inhibiting DNA and RNA synthesis (22), compromising the mitochondrial turnover. 

Other changes in the mitochondria morphology were already reported after MTX 

administration. A chronic administration regimen of MTX (0.2mg/kg, weekly for 12 weeks, 

reaching a total cumulative dose of 2.4mg/kg) in female BALB/c mice caused late cardiac 

mitochondrial degenerative changes, such as mitochondrial swelling, partial clearing of 

the matrix, and the appearance of myelin figures (50). Moreover, comparative studies with 

MTX and doxorubicin demonstrated an increased mitochondrial toxicity potential of MTX 

compared to doxorubicin (102). 

In our in vivo study, in both treated groups (MTX22 and MTX48) increased activity of 

the mitochondrial complex IV was observed. In the activity of complex V dissimilar results 

were shown in different groups: MTX22 had increased levels while in MTX48 the activity 

of complex V decreased (Manuscript III). The increases in the activity of the complex IV 

and V in MTX22 may result from an adaptation of mitochondria to provide more efficiently 

ATP in response to MTX toxic effects. Conversely, in the MTX22 group, no significant 

difference in the ATP cardiac content compared to control rats was observed, showing 

that, at this time point, the increased activity of the complexes appears to be sufficient to 

maintain ATP overall levels, although other mechanisms should not be neglected. 
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However, the increase in complex IV activity was not enough to support the ATP demand 

when accompanied by decreased mitochondrial complex V activity, as observed in the 

MTX48 group, as levels of cardiac ATP significantly decrease. A reduction in the electron 

transfer activity of state III and a concomitant uncoupling of oxidative phosphorylation 

were already observed in cardiac mitochondria isolated from MTX treated female rats 

(1mg/kg, twice a week, for four weeks reaching a cumulative dose of 8mg/kg) (166). 

Furthermore, cardiac mitochondria showed a reduction in the electron transfer and the 

respiratory chain activity, uncoupling of oxidative phosphorylation with consequent 

relevant drop in the Na+/K+ ATPase activity (166). It is also important to refer that besides 

the association of the ATP decreased levels and an inhibited ATP synthesis suggested by 

the late decreases in the activity of ATP synthase complex presented here, changes in the 

ATP levels in the failing myocardium can also be related to the loss of total tissue purines 

(165), which were not evaluated in our studies. 

In contrast to the mitochondrial effects demonstrated in vivo, the incubation of MTX 

(10nM, 100nM, and 1µM) with cardiac mitochondria isolated from untreated rats did not 

cause any change in the mitochondrial functionality evaluated by the distribution of TPP+ 

assay. In contrast, mitochondria isolated from two animals from the MTX48 group 

presented an increased lag phase, demonstrating a difficulty to repolarize and sustain the 

mitochondrial potential, which is consistent with an inhibition of ATP synthesis. As already 

referred, MTX metabolism exerts a pivotal role to the MTX-induced toxicity. Thus, one 

possibility is that the direct toxic effect mediated by MTX in vitro may be residual and 

insufficient to elicit significant alterations in this model without being biotransformed. 

Hence, differences in the metabolism rate might be behind the intersubject variability 

observed in the clinical evaluations of the treated animals presented in the present work 

(discussed further) and in the human MTX therapy. 

IV.7. Types of cardiomyopathies 

Diseases of the myocardium usually produce abnormalities in cardiac wall thickness 

and chamber size, and mechanical and/or electrical dysfunction, which are associated 

with significant morbidity and mortality (176). Cardiomyopathies are classified in three 

forms: restrictive, hypertrophic, and dilated (176,177) that will be described in the following 

paragraphs. 

The restrictive cardiomyopathy is the less frequent and it is a disorder characterized 

by an impaired ventricular filling during diastole due to a less compliant ventricle without 

changes in the systolic function of the left ventricle (176).  
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The cardiac hypertrophy is classified in concentric hypertrophy or eccentric 

hypertrophy (162,177). In concentric hypertrophy, new contractile protein units are 

disposed in parallel resulting in cardiomyocyte enlargement, while in eccentric 

hypertrophy the assembly of new contractile protein units occurs in series, producing 

increases in the length of cardiomyocytes (162). Essentially, in affected individuals, a 

disproportionate thickening of the interventricular septum when compared with the free 

wall of the left ventricle occurs (176). Additionally, hypercontractile systolic function 

resulting in exaggerated pump function is accompanied by a poor relaxation of the heart 

resulting in diastolic dysfunction (177). The hypertrophy involves alteration of components 

of sarcomere and, histologically, a massive hypertrophy of the muscle fibers, mainly in the 

interventricular septum, acute interstitial fibrosis, and loss of muscle fiber organization are 

observed (176). Both hypertrophy and restrictive cardiomyopathies can cause heart failure 

due to the diastolic impairment while the mechanism involved in the heart failure related to 

dilated cardiomyopathy is mainly systolic dysfunction (176). 

Dilated cardiomyopathy is the most prevalent cardiomyopathy and it is characterized 

by increased volume of cardiac chambers (176,177). Histologically, some hypertrophy can 

be seen, although, it is not as pronounced as in the hypertrophic cardiomyopathy. The 

most abundant microscopic feature of dilated cardiomyopathy is the abundant interstitial 

fibrosis without loss of organization in the muscle fibers (176). Moreover, it involves 

alterations in a wide variety of proteins, predominantly of the cytoskeleton, but also 

affecting the sarcomere, mitochondria, and nuclear envelope (176,177). Although 

hypertrophic and dilated cardiomyopathies have different morphologies and subcellular 

phenotypes, they share the same clinical complications, such as shortness of breath, easy 

fatigability, inability to tolerate physical exercise, fainting, light headedness, sweating at 

rest and in some cases, increased heart rate, enlargement of the liver, and sudden death 

(177).  

Dilated cardiomyopathy is most commonly associated to anthracycline treatment, as 

evidenced by hystopathomorphological data (97), but sometimes children receiving drugs 

from this therapeutic class can develop restrictive cardiomyopathy (3,176). The cardiac 

damage shown in the histology performed in the present study was observed in both 

ventricular sides without differences, suggesting that both sides were equally affected. 

Considering cardiac abnormalities induced by MTX, in our studies, light microscopy of 

right and left cardiac ventricles from rats subjected to MTX treatment (MTX22 group) 

revealed dispersed cellular and interstitial edema, diffusion of inflammatory cells, and 

proliferation of connective tissue (Manuscript III). In the MTX48 group, dispersed areas of 

an intense proliferation of the connective tissue with abundant cellular infiltration, probably 

by fibroblasts, was observed. The sub-endocardial region was considered more affected 
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compared to the sub-pericardial since the cellular edema and fibrosis were more 

pronounced in this region. The transmission electron microscopy of MTX22 and MTX48 

hearts revealed edema of cardiomyocytes, lysossomal activation in the cardiomyocytes, 

and proliferation of connective tissue and fibroblasts, suggesting a chronic inflammatory 

process probably because of an adaptation/repairing process due to continuous cell 

death. Conversely, abundant collagen deposition in the interstitial space was observed in 

MTX48 group and the heart from these animals presented significant increase in heart 

relative mass. Interstitial reparative fibrosis typically occurs as a response to the loss of 

myocytes due to myocardial ischemia or senescence (178).  

The increase in the cardiac relative mass was not accompanied by differences in the 

total cardiac protein levels. Thus, our results suggest that the increase of cardiac relative 

mass was related to water retaining instead of hypertrophy. Cellular edema was observed 

as an increase of the cellular perimeter. It can be distinguished from cardiac hypertrophy 

since hypertrophic cardiomyocytes present homogenous eosinophilic cytoplasm because 

of the close contact of myofibrils. In the cellular edema, however, it is observed the 

separation of myofibrils and increased amount of water within the cell. Thus, in this 

condition, the eosinophilic coloration of cytoplasm remains irregular (white areas and 

vacuoles between the myofibrils) (Figure 2, manuscript III). The accumulation of 

connective tissue in response to continuous cardiomyocyte death may also contribute to 

the increased cardiac relative mass, however, the method used to quantify protein does 

not detect collagen. These changes in the cardiac collagen network are seen in response 

of pressure/volume overload, after myocardial infarction (178), and, as already mentioned, 

in dilated cardiomyopathy (176). 

Microscopic data from heart of MTX-treated rats evidenced the presence of digiform 

endothelial projections suggesting endothelial degeneration (Manuscript III). This finding 

was consistent in all MTX treated rats, in both right and left ventricles, and it was also 

seen in our previous pilot studies with higher doses (three cycles of 5 and 10mg/kg) in a 

dose-dependent manner (data not shown). Similar endothelial alterations were reported in 

intestinal epithelium and in human skeletal muscle capillaries after prolonged ischemia 

(179,180). Thus, it is possible that this microscopic observation may be related to cardiac 

hypoxia, which is in accordance with the signs of small caliber arteries obstruction seen in 

the histology (Manuscript III). 
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IV.8. Intersubject variability in the in vivo study 

During the in vivo MTX treatment (Manuscripts III and IV), rats received three cycles 

of 2.5mg/kg MTX at days 0, 10, and 20, reaching the cumulative dose of 7.5mg/kg or 

48mg/m2 at the end of the third cycle. Clinical evaluations of rats showed great variability, 

especially in the MTX48 group after the third cycle of treatment. Also the clinical 

responses during the experiment were already heterogenous: on the day 22, two rats from 

the MTX22 group presented moderate piloerection. On the day 25, three animals from the 

group MTX48 showed intense signals of toxicity, namely slight dehydratation, cyanosis, 

and slight bleeding. The cyanosis seems to be a common observation related to MTX 

treatment considering that female rats previously treated with MTX (1mg/kg, twice a week, 

for four weeks) presented a blue coloration of the skin and tissues, color that was also 

observed in isolated mitochondria from the heart of these rats (166). In humans, 

discoloration of the nails was already associated to MTX therapy and it was related to 

early anemia (181). One of those clinically debilitated animals presented clinical recover, 

but the other two died on day 35, 15 days after the end of treatment. The death 

circumstances of those animals were not elucidated, but we speculate that it might be 

related with the cardiac ATP depletion or with a non-reverted myelossupression. 

Paradoxically, the two animals that complete the MTX48 group did not present any 

significant clinical observed change during all the experiment. Variations in the clinical 

responses were already associated to MTX treatment in humans, and it highlights that 

intersubject variation is crucial in the MTX toxic effects (26). 

The variability of MTX effects was also suggested by the increases in the standard 

deviations in the % of relative body weight gain after the third cycle until the day 30 

(Manuscript III). Animals treated with MTX showed a tendency to decrease the relative 

body weight gain compared to control group after the second cycle. These decreases 

were more evident and statistically significant after the third cycle until day 30 and were 

not accompanied by changes in food and water consumptions. This change is indicative 

of toxicity. MTX (6, 9, and 12mg/kg) treatment was already associated with a lower body 

mass gain in mice with Ehrlich tumor (175). Transient changes in the food and water 

consumption were individually observed in the animals that presented clinical toxic 

manifestations, namely decreases in the water consumption in rats presenting 

dehydration and fluctuations on food consumption in those animals presenting bleeding 

(data not shown). 
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IV.9. MTX-induced hepatotoxicity  

The MTX sub-chronic treatment of rats induced an important hepatotoxicity. Firstly, 

the MTX-induced hepatic damage was clearly evidenced at necropsy by the macroscopic 

changes observed in the MTX treated livers (Manuscript IV). Excised livers presented mild 

edema (characterized by the beaded edge and brilliant aspect) and rigid consistency, 

being more severe in the MTX48 group than in the MTX22 group. Signals of the 

cumulative hepatic injury were also observed in both treated groups and were 

characterized by macro- and microscopic changes in the hepatic architecture, biochemical 

alterations, and decreases in the hepatic protein levels in the MTX22 group, late 

decreases in the hepatic ATP content and by the increases in the GSHt, GSH, and GSSG 

hepatic levels in MTX48 group. 

Signals of the cumulative hepatic injury are observed in the earlier time point 

(MTX22 group), namely by changes in plasma parameters (decreases in the total plasma 

protein, ALT, alkaline phosphatase, triglycerides, and transferrin and increases in C4 

complement, cholesterol, and iron levels) and decreases in the hepatic total protein levels. 

These data suggest a hepatic dysfunction, seen in lower plasma hepatic enzyme levels 

but higher free cholesterol as seen in other reports (182,183). This increase in the plasma 

cholesterol levels in the MTX22 group is consistent with the mild steatosis observed in the 

respective histology, which can be related to the decreased hepatic synthesis of 

lipoproteins (60). The impairment of hepatic functionality is also evidenced by early 

increases in the iron levels and decreases in plasma triglycerides in both treated groups, 

being the last molecules mainly synthesized by the hepatocytes. 

The hepatic protein synthesis seems to be impaired in both treated groups as 

evidenced by the low levels of plasma biochemical parameters such as ALT, alkaline 

phosphatase, and transferrin (Manuscript IV). AST activity remained unchanged in both 

treated groups when compared to control levels. The lack of changes in AST activity might 

be related to its slower released pattern in comparison to ALT (175). For this reason and 

considering that ALT is primarily found in the liver, while AST is also distributed among 

other tissues such as heart, kidney, brain, and muscle, ALT is the standard biomarker of 

hepatotoxicity (184). In fact, as already mentioned, in humans, acute hepatotoxicity of 

MTX manifests as transient increases in the activity of both liver enzymes (9). In mice with 

Ehrlich tumor treated with MTX single dose (9 and 12mg/kg), AST activity increased when 

compared to control and ALT activity increased only with the higher dose of MTX after 14 

days of MTX-treatment (175). Given the AST broad distribution, rises in its activity in the 

absence of concomitant ALT increases are frequently interpreted as indicative of 

abnormalities in tissues such as the heart (184). Thus, it is possible that the changes in 
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the liver aminotransferases after MTX single doses observed in the study performed by 

Niang and co-workers are related to the classic MTX-cardiotoxicity. In that administration 

regimen, only the higher MTX dose might have elicited hepatotoxicity, considering the 

rises in ALT activity observed with this dose (175). 

The lower plasma enzyme levels observed in Manuscript IV suggest that protein 

turnover is decreased. Moreover, decreases in the hepatic synthesis of these enzymes 

were considered an outcome to the (sub)chronic hepatotoxicity induced by others 

xenobiotics (60,183,185,186). Increases in the unconjugated bilirubin (observed indirectly, 

since it was shown by decreases in conjugated bilirubin and no significant changes in total 

bilirubin) in both treated groups are suggestive of impaired conjugation with glucuronides. 

Sub-clinical unconjugated hyperbilirubinemia is related to antituberculosis therapy, and it 

is attributed to the inhibition of the bile salt exporter pumps (187). 

The apparent recovery of the hepatic total protein levels on MTX48 compared to 

MTX22 does not mean functionality gain, considering the alterations in MTX48 hepatic 

ATP and plasma protein levels. Indeed, instead of recovery, the hepatic lesion was more 

pronounced in the later time point (MTX48 group) as seen by liver histology. In rats, the 

liver is able to repair from hepatic injury in five to seven days (188). Even so, despite the 

adaptive/repair ability of the liver to react to a hepatic injury, this organ seems to be 

vulnerable to MTX toxic effects since that mice treated with MTX (15mg/kg) presented 

significant changes in the liver microscopic architecture that were not reverted until five 

days after the MTX-administration (49). In our study, histologic data did not revealed 

signals of a hepatic damage secondary to heart failure. As already stated, MTX and its 

toxic metabolite are retained in the hepatic tissue (Manuscript I) and the continued hepatic 

exposure might lead to prolonged hepatic injury. Furthermore, in the later time point, the 

classic late cardiotoxicity of MTX (which was described in the Manuscript III) may 

contribute to promote a secondary hepatic lesion (189).  

Microscopic evaluations of liver showed a huge proliferation in the Kupffer cells, 

hepatic edema, and collagen proliferation, which are indicative of an inflammatory 

process. Indeed, that was corroborated by the significant increases in the plasma C4 

complement levels since this component is synthesized by Kupffer cells (190). Previously, 

a single dose administration of MTX (15mg/kg) was enough to cause an intense hydropic 

vacuolization of the cytoplasm, necrosis areas, picnosis, and nuclear lysis in the hepatic 

tissue, observed five days after treatment (49). 

As already discussed, the cumulative late MTX-induced hepatotoxicity was 

associated with oxidative stress as seen by significant increases in the hepatic levels of 

GSHt, GSH, and GSSG observed in the MTX48 group. Moreover, to the best of our 

knowledge, it was the first time that hepatic late energetic imbalance was associated to 



Discussion and Conclusions ________________________________________________________ 

136 

MTX-induced hepatotoxicity. In the present study, the inhibition of the hepatic protein 

synthesis occurred prior to the decreases in the ATP content in the liver. This early effect 

might be related to the MTX ability to inhibit protein synthesis (2). The late decrease in the 

hepatic ATP levels was observed even 28 days after the last MTX administration. 

Decreases in the ATP hepatic levels are observed in the human nonalcoholic 

steatohepatitis (191) and are associated to covalent binding of drugs to intracellular 

proteins (192). Thus, once again these effects can be attributed to the ability of MTX and 

naphtoquinoxaline metabolite to accumulate in the liver (26). MTX persistence in the cells 

is related to its strong affinity for cellular macromolecules and membranes (35,44).  

IV.10. MTX-induced hematotoxicity 

In our in vivo study, the MTX-induced hematological toxic effects were evidenced by 

a notorious early bone marrow depression on MTX22 group, characterized by the 

significant decreases in red blood cell (RBC) count, HCT, and reticulocytes, as well as in 

WBC count, as compared to control. Additionally, an anemic condition was observed 

since Hb levels were significantly decreased. Besides being a signal of hepatic lesion, the 

increase in the plasma iron might be related to an increase in iron absorption to overcome 

the reduction in RBC. Increased of MPV and a marked bone marrow suppression were 

observed in the MTX22 group, as shown by the absence of circulating reticulocytes. 

Recovery signals of the hematopoiesis were observed in the MTX48 group, namely by 

increases in reticulocytes when compared to control. Additionally, increase of MCH and 

MCV levels were observed when compared with the control. The observed macrocytosis 

and anisocytosis are associated with increases in the reticulocytes count (Manuscript IV). 

The reduction in blood cells is probably mainly due to marrow suppression. Caution is 

needed in the interpretation of the cause of the anemia since disturbances in the iron 

metabolism (increases in the iron plasma levels and decreases in the transferrin levels) 

and increases in the non-conjugated bilirubin levels can represent confounding factors. It 

is important to take into account that, simultaneously to a hematologic disturbance, an 

impaired hepatic function has been established in our model. Despite of hemorrhagic 

clinical signals seen in some MTX-treated rats, no increase in the LDH plasma levels was 

observed. 

As already mentioned, MTX is an immunosuppressive agent that acts by promoting 

apoptosis in antigen-presenting cells and reducing levels of all types of immune cells 

(15,24). Accordingly, the MTX administration caused transient decreases in plasma IgG 

levels in MTX22 rats. In another study that assessed the human safety of MTX, rituximab, 
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ifosfamide, and etoposide combined therapy a significant decrease in the IgG levels in 

treated patients with non-Hodgkin’s lymphoma was demonstrated (193). The IgG is 

synthesized by blood cells and corresponds to about 80% of total immunoglobulin (194). 

Thus, the huge decreases in IgG levels observed in the MTX22 group might be the cause 

of the decreases observed in the total plasma protein levels in this group since albumin 

levels are similar to control levels (data not shown). Additionally, the absence of significant 

differences in the plasma albumin levels might be related to its long turnover (195). 

Conversely, decreases in serum total protein levels without changes in the serum albumin 

levels were already described in MTX single dose (6, 9, or 12mg/kg) treatment in mice 

with Ehrlich tumor (175). 

The presence of micronucleus in MTX22 blood smears was constant in all animals 

from this group, suggesting the genotoxicity capacity of MTX. This genotoxicity could 

underlie an ineffective hematopoiesis, supporting our hematologic data at MTX22 (bone 

marrow suppression). Accordingly, it is well known that MTX causes single and double 

breaks in the DNA (1,2) and also affects the cell cycle at various stages (1,22), with 

known mutagenicity ability.  

The pancytopenia was not proven only because the PLT lineage is not depleted. 

The circulation time of PLT in healthy conditions is about seven to ten days (196). Thus, it 

is possible that, at the time points evaluated, the PLT count was already normalized in 

opposition to other lineages. Moreover, it is in accordance with the reports describing that 

thrombocytopenia is a mild, less common event in the MTX treatment (2). The MPV is 

increased in the MTX22 group and it no changes in the PDW were seen, demonstrating 

that the PLT population is homogeneously macrocytic. Despite the clinical use of this 

parameter is not yet well validated, studies demonstrate an association between enlarged 

MPV and cardiovascular risk because larger PLTs are hemostatically more active, leading 

to higher risk of myocardial infarction (196–198). Pro-inflammatory states frequently 

present PLT with higher volume because cytokines such as interleukines 3 and 6 can 

mediate the production of PLT with higher MPV and metabolic/enzymatically more actives 

(196). 

The myelossupression observed in our work is in accordance to what is observed in 

humans and justifies the importance of monitoring hematological parameters during MTX 

chemotherapy (2). The MTX-induced myelosuppression manifests mostly as leukopenia, 

thus being its main dose-limiting effect (61). In humans, after the administration of high 

dose MTX (38mg/m2, i.p.), the WBC counting returned to normal values within seven days 

(61). However, it is known that patients treated with higher dose regimens tend to present 

a faster blood count recovery (2). Additionally, blood cell counts should be continued after 

MTX-therapy cessation due to the risk of MTX-associated secondary acute leukemia (15). 
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In the present study using clinically relevant doses, RBC and WBC counts, which were 

depressed in the early time point, returned to normal values in the MTX48 (28 days after 

the MTX last cycle) (Manuscript IV).  

IV.11. Conclusions and future perspectives 
 

Four hallmarks are defined as contributing to the pathology of cardiac disease: a 

critical energy loss; a critical accumulation of cellular calcium; effects of reactive species 

formation; and injurious effects of the accumulation of long-chain acyl compounds (169). 

From these, we demonstrated the occurrence of marked energy depletion in vitro and in 

vivo, increased levels of intracellular calcium after MTX incubation in the H9c2 cells, 

increased generation of reactive species only at the longer incubation period of 96h with 

concomitant mitochondrial disturbance. The acyl compounds accumulation was not 

evaluated but the negative results in the protective studies with L-carnitine suggested that 

it did not exert a leading role in the MTX-mediated cytotoxicity. 

MTX induces a relevant cumulative mitochondrionopathy characterized by the 

aberrant mitochondria found in the cardiac tissue after in vivo MTX treatment, the 

disturbances in the mitochondrial complexes and ATP synthesis, and perturbations in the 

mitochondrial membrane potential. MTX interference with the mitochondrial functionality 

and consequent energetic imbalance result in a dysfunctional heart since depleted of its 

energetic content, the cardiac performance is impaired. Hence, this thesis highlights the 

relevance of the MTX-induced mitochondrial toxicity to the cardiomyopathy related to the 

MTX therapy. 

In the opposite of what is observed in the doxorubicin cardiomyopathy, the oxidative 

stress does not seem to occupy a central role in the MTX-mediated cardiac disease. The 

eventual MTX-related oxidative stress does not seem to be related to quinone activation, 

but secondary to energetic loss. Thus, the contribution of the metabolism to the 

cardiotoxicity seems to be more related to the reaction products (for an example, the 

naphtoquinoxaline metabolite, which was demonstrated to accumulates in liver and heart) 

than the sub-products (reactive species generation associated to quinone activation). 

Increased levels of reactive species formation were only observed in a late time point, 

secondary to another significant changes such as energetic depletion, intracellular 

calcium overload, and mitochondrial disturbances. Even so, studies demonstrating the 

inhibition of lipid peroxidation after MTX incubation (29) suggest that MTX may alter the 

antioxidant defenses in some extent and it is worth to be highlighted.  
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It was also demonstrated a relevant hepatotoxicity associated to MTX therapy in 

rats. After 28 days of the last MTX administration, the liver regeneration was limited and 

the hepatic tissue remained with altered levels of glutathione and ATP, which are 

essential for the hepatic function, namely protein synthesis and detoxifying process. 

Despite the direct hepatotoxic potential, cardiotoxic drugs such as MTX, can cause acute 

liver failure as a result of a primary congestive heart failure (189). In the case of 

congestive heart failure, the low cardiac output results in a reduced hepatic blood flow 

(189). However, in the histology of MTX-damaged livers, no signals suggestive of 

congestive heart failure-mediated hepatic lesion were observed. Thus, it is possible that 

MTX exerts a significant direct hepatotoxicity. 

Considering MTX cardiomyopathy, our results demonstrate an abundant interstitial 

fibrosis without loss of organization in the muscle fibers and mitochondrial disorganization, 

suggestive of dilated cardiomyopathy. However, conclusive studies regarding the protein 

alterations after MTX therapy are required to confirm the cardiomyopathy type related to 

MTX treatment. The only protective agents that partially counteracted the cellular lesion 

caused by MTX incubation were metabolism inhibitors. However, despite the evidenced 

metabolic relevance to MTX-cardiomyopathy, bioactivation is also required for the MTX 

pharmacological effects. Hence, blocking MTX systemic metabolism is not a viable 

alternative since it would compromise the antineoplastic treatment. Even so, the studies 

presented within this thesis may open up ways to enhance MTX therapy. 

Regarding future perspectives, the relation between MTX treatment and long-term 

hematotoxicity, which can result in the serious late secondary leukemia, needs to be 

better highlighted. Furthermore, understanding the MTX toxic effects among 

hematopoiesis are the first step to circumvent them and to increase the MTX tolerance 

and safety. Moreover, the intrinsic hepatotoxic potential of chemotherapy is of great 

concern because an altered hepatic function might compromise the therapy and/or 

increase toxic adverse effects (60). Given that relevance, more studies highlighting the 

mechanisms involved in the MTX-induced hepatotoxic potential are needed in order to 

improve therapy. Furthermore, the pharmacological and toxicological potential of the 

metabolites presented in the Manuscript I need to be highlighted. If they have a good 

pharmacological potential and a negligible toxicity, one possibility is to isolate, purify, and 

to explore these promising compounds in preclinical studies. However, it is important to 

point that, in the case of MTX derivatives, long term protocols to assess the toxicity are 

needed. Other future directions aim to define if the MTX pharmacological action is also 

dependent of MTX mitochondrial effects and to explore mitochondrial protective agents to 

counteract the MTX-induced mitochondrionopathy, minimizing cardiac side effects without 

affecting the MTX-pharmacological effectiveness. 
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