
IndLog — Induction in Logic

Rui Camacho

LIACC, Rua do Campo Alegre, 823, 4150 Porto, Portugal
FEUP, Rua Dr Roberto Frias, 4200-465 Porto, Portugal

rcamacho@fe.up.pt

http://www.fe.up.pt/∼rcamacho

Abstract. IndLog is a general purpose Prolog-based Inductive Logic
Programming (ILP) system. It is theoretically based on the Mode Di-
rected Inverse Entailment and has several distinguishing features that
makes it adequate for a wide range of applications. To search efficiently
through large hypothesis spaces, IndLog uses original features like lazy
evaluation of examples and Language Level Search. IndLog is applicable
in numerical domains using the lazy evaluation of literals technique and
Model Validation and Model Selection statistical-based techniques.
IndLog has a MPI/LAM interface that enables its use in parallel or
distributed environments, essential for Multi-relational Data Mining ap-
plications. Parallelism may be used in three flavours: splitting of the data
among the computation nodes; parallelising the search through the hy-
pothesis space and; using the different computation nodes to do theory-
level search.
IndLog has been applied successfully to major ILP literature datasets
from the Life Sciences, Engineering, Reverse Engineering, Economics,
Time-Series modelling to name a few.

keywords: Inductive Logic Programming

1 Introduction

The objective of an ILP system is the induction of logic programs. As input
an ILP system receives a set of examples (E = E+ ∪ E−) of the concept
to learn (divided in positive, E+, and negative examples, E−), and sometimes
some prior knowledge (or background knowledge, B). Both examples and back-
ground knowledge are usually represented as arbitrary definite logic programs.
An ILP system attempts to produce a logic program (H - set of hypotheses)
where positive examples succeed and the negative examples fail.

The problem of ILP is to find a consistent and complete theory, ie a set
of hypotheses that “explain” all given positive examples and is consistent with
the given negative examples. An ILP system performs a search through the
permitted hypotheses space to find a set with the desired properties.

The hypotheses generated during the search are evaluated to determine their
quality. Coverage is quite often used to estimate the quality of an hypothesis.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143409669?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The coverage of an hypothesis h is the number of positive (positive cover) and
negative examples (negative cover) derivable from B ∧ h. The time needed to
compute the coverage of an hypothesis depends primarily on the cardinality of
E and on the theorem proving effort required to evaluate each example using
the background knowledge.

2 The IndLog system

IndLog [4] is an empirical ILP system written in Yap Prolog [8]. In the line of
MIS, IndLog traverses the generalisation lattice in a top-down fashion. However,
IndLog improves on both MIS and FOIL by using available or user supplied
knowledge to traverse the generalisation lattice efficiently. IndLog differs from
MIS and FOIL by explicitly generating the bottom of the generalisation lattice.
This technique of building an initial clause to reduce the search space is char-
acteristic of the technique of Mode Directed Inverse Entailment. The use of the
bottom clause of the lattice together with further uses of knowledge either pro-
vided by the user or deduced from the available data leads to major efficiency
improvements.

IndLog can handle non-ground background knowledge, can use nondetermi-
nate predicates, uses a strong typed language and makes use of explicit bias
declarations such as mode, type and determination declarations.

IndLog differs from other ILP systems, like Progol or Aleph, in the use of
the Incremental Language Level Search strategy [2] and in a special feature
to handle large datasets called lazy evaluation of examples. Lazy evaluation of
literals together with Model Validation and Model Selection techniques enable
IndLog to handle properly numerical domains. An interface to MPI/LAM en-
abled the development of a distributed/parallel module of IndLog adequate for
Multi-Relational Data Mining applications.

3 IndLog Specific Features

3.1 Lazy Evaluation of examples

Language bias may be used to avoid the generation, and therefore, the evalu-
ation of a significant number of hypotheses. However, once an hypothesis has
been generated the problem then is how to evaluate it efficiently using the avail-
able data (examples and background knowledge). IndLog uses lazy evaluation of
examples [1] as a way to avoid unnecessary use of examples and therefore speed
up the evaluation of each hypothesis. We distinguish between lazy evaluation of
positive examples, lazy evaluation of negative examples and total laziness. To-
tal laziness is based on the fact that generating hypotheses is very efficient and
although we may generate more hypotheses we may still gain by the increase in
speed of their evaluation process. This technique may be very useful in domains
where the evaluation of each hypothesis is very time-consuming. It consists in
making a lazy evaluation of negatives, and then only evaluate the positives is
the hypothesis is consistent with the negatives.



3.2 Incremental Language Level Search

We define a partition of the definite clauses D =
∞⋃

i=0

Li. Each subset Li is called

a language level and is defined as:
Li = {clause | maximum number of occurrences of a predicate symbol in the body of

clause is i}
where the level i of a language L is the maximum number of occurrences of a
predicate symbol in the body of the clauses belonging to the language L.

The maximum number of occurrences of predicate symbols in the body of
the clauses determines to which subset the clause belongs. The language L0 is
composed of definite clauses with just the head literal. The language L1 is com-
posed by definite clauses whose literals in the body have no repeated predicate
symbols. The language L2 will contain clauses whose literals in the body have a
maximum number of occurrences of the same predicate symbol of two.

IndLog searches one language at a time starting at language level 0 and
progressing incrementally one level at a time. One very important property of the
partitioning by language level is that all clauses in language Li+1 are subsumed
by at least one clause in language Li. An advantage of the search by language
levels is that the most probable sub-lattices are searched first.

3.3 Cost Search

For some applications the target predicate may be modelling a functional rela-
tion whose output value is a numerical value. Constructing the model for such
function involves the minimisation of a cost function other than coverage. Ind-
Log uses lazy evaluation of literals [5] as a basic technique to handle numerical
domains. It also improves over other ILP system by means of statistical-based
Model Validation and Model selection tests. These latter techniques revealed
very important in noisy datasets. IndLog uses and interface to the R-project li-
brary providing to the user a large number of numerical and statistical methods
to be used as ILP background knowledge.

3.4 Parallel/distributed execution

A parallel implementation of an ILP algorithm may: i) improve the quality of
the solutions found by searching more space in the same time of the sequential
execution and/or; process larger datasets distributing the examples among the
computing nodes (loading all of then in a single node may be impossible in some
cases) or; get the same solution of the sequential execution much faster.

Using a MPI/LAM interface IndLog [6] has a module for parallel or dis-
tributed execution, essential for Multi-relational Data Mining applications. In
IndLog, parallelism may be used in three flavours: splitting of the data among
the computation nodes; parallelising the search through the hypothesis space
and; using the different computation nodes to do theory-level search, that is
generating different theories in different computation nodes and choosing the
best one.



4 The applications

IndLog was successfully applied to major datasets from the ILP literature. It is
currently being applied to the problem of Protein Folding (predicting the sec-
ondary and tertiary structure of proteins). In the first stage of this study IndLog
induces rules to predict the start and end points of an α-helix. It is being applied
to two “Structure-Activity Relationship” problems: understanding of anti high
blood pressure drugs and; anti malaria drugs. The parallel and distributed mod-
ule is of capital importance to process very large datasets. IndLog is currently
being used in the analysis of the firewall logs of a university campus. In this
application approximately 50 MB of data is generated per day. It has been suc-
cessfully applied to Time-Series prediction problems [7] and Reverse Engineering
tasks [3]. IndLog automatically computed the thresholds of a TAR model, used
in Time-Series applications.

References

1. Camacho, Rui, As lazy as it can be, 8th Proceedings of the Scandinavian Confer-
ence on AI, ed. Biornar Tessen et al. IOS press, 47-58, (2003).

2. Camacho, R, Improving the efficiency of ILP systems using an Incremental Lan-
guage Level Search, Twelfth Belgian-Dutch Conference on Machine Learning
(Benelearn 2002), The Netherlands, 2002.

3. Camacho, R. e Brazdil, P., Improving the robustness and encoding complexity of
behavioural clones, Twelfth European Conference on Machine Learning (ECML-
01), Freiburg, Germany, 2001

4. Camacho, R., Inducing Models of Human Control Skills using Machine Learning
Algorithms, Dep. Electrical Engineering and Computation, Univ. Porto, (2000).

5. Srinivasan, A. and Camacho, R., Numerical Reasoning with an ILP System Ca-
pable of Lazy Evaluation and Customized Search, Journal of Logic Programming,
2-3, Vol. 40, pp 185-213, 1999.

6. Rui Camacho, “From sequential to Parallel Inductive Logic Programming” 6th
International Meeting on high performance computing for computational science
VECPAR 2004, Valencia, Espanha, Junho 2004

7. Alves, A., Camacho, R., Oliveira, E., “Learning Time Series Models with Inductive
Logic Programming”, European Symposium on Intelligent Technologies, Hybrid
Systems and their implementation on Smart Adaptive Systems (EUNITE 2003),
10 - 12 July 2003 in Oulu, Finland

8. Costa, V. and Damas, L. and Reis, R. and Azevedo, R., YAP Prolog User’s Manual,
Universidade do Porto, (1989).


