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ABSTRACT 
Mitochondria are central regulators of neuronal homeostasis and survival, and increasingly 
viewed as a drug target in several acute and chronic neurological disorders, e.g. stroke, 
Alzheimer’s, Parkinson’s, and Huntington’s diseases. Frequent working hypotheses aim to 
establish whether and how chemical or genetic lesions affect mitochondrial function in 
neurons, and whether this can be rescued by pharmacological treatments. However, the 
generic designation ‘mitochondrial function’ actually encompasses a wide spectrum of 
individual activities, too numerous to be fully quantified by any single available technique. 
This review aims to provide a broad perspective on the roles played by neuronal 
mitochondria, and addresses multiple techniques that can be used to derive instructive 
functional indicators. These include measurements of mitochondrial respiration, ATP 
production, membrane potential, calcium handling, biogenesis, dynamic movement as well as 
fusion and fission. Technique descriptions are preceded by a summary of mitochondrial 
physiology and pharmacological tools required for functional modulation and parameter 
determination. Hopefully, these will assist researchers interested in testing mitochondria as a 
drug target in neurological disease models. 
 
 
 
1. Introduction 
 
1.1. Neuronal mitochondria: a vital and dynamic asset 
 
Neurons are highly specialized and polarized cells with large energy requirements. 
Excitability demands a continuous maintenance of steep ion gradients, which consumes vast 
amounts of ATP primarily provided by oxidative phosphorylation, thus rendering neurons 
critically dependent on mitochondria and continuous oxygen supply [1]. Mitochondria assist 
neurotransmission and synaptic plasticity via multiple roles beyond ATP production. They 
regulate spatiotemporal patterns of intracellular calcium ([Ca2+]i) signalling [2] and move 
purposefully to meet variable demands across neuronal soma, axons, dendrites and synaptic 
sites [3]. Throughout the lifespan of their post-mitotic hosts, neuronal mitochondria 
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continuously regenerate through a biogenesis process assisted by nuclear and mitochondrial 
gene products [4]. Moreover, mitochondria undergo fission and fusion cycles that modulate 
their number, size and content, allowing functional segregation and adaptation to different 
neuronal compartments and microenvironments [5,6], and likely assist mitochondrial quality 
control mechanisms [7]. Furthermore, mitochondria govern reactive oxygen species (ROS) 
formation and signalling, assist steroid and heme biosynthesis, and several other metabolic 
pathways, being also central regulators of apoptosis and neuronal survival [8]. Interestingly, 
recent evidence suggest that all extant eukaryotes possess mitochondria, some in the form of 
reduced homologues, e.g. hydrogenosomes and mitosomes. So far, the single common 
metabolic function identified across all homologues is iron-sulfur cluster assembly, clearly 
one of the most fundamental mitochondrial functions [9,10]. Focusing on humans, the 
frequent neurological phenotype linked to mitochondria gene mutations [11], and the 
association of mitochondrial dysfunction with acute and chronic neurological disorders 
[12,13], strongly emphasize how much neuronal health depends on fully functional 
mitochondria, and why these are targets for neuroprotection. 
 
1.2. The value of representative functional indicators 
 
When investigating neuronal mitochondria under (patho)-physiological conditions or 
pharmacological interventions one should consider representative functional indicators. 
Indeed, from the experimental standpoint, comprehensively quantifying the full spectrum of 
mitochondrial activities while searching for dysfunctions is tantamount to impossible. 
Hopefully, scientific progress will prove the previous sentence wrong. A Pubmed search 
(www.ncbi.nlm.nih.gov/pubmed) for “mitochondrial function” OR “mitochondrial 
dysfunction” AND “neurons” yields over 1,000 publications during the last decade, exceeding 
7,000 if searching without “neurons”. Indeed, two frequent working hypothesis in 
neuroscience and others fields are: (i) disease x affects mitochondrial function; and (ii) drug y 
induces/improves mitochondrial dysfunction. In some cases, sequencing the mitochondrial 
genome or nuclear-encoded mitochondrial genes objectively answers the first hypothesis, e.g. 
by finding loss-of-function mutations in critical genes. In others cases, mutations may be 
found but it will remain unknown whether these have functional consequences. Still, in most 
cases where the first, and particularly, the second hypothesis are formulated, one must rely on 
functional indicators. Thus, it becomes critical to consider: (i) which functional indicators; (ii) 
what do they mean; and (iii) how are they quantified. The present review addresses these 
issues in the context of neuronal mitochondria. 

The next section summarizes mitochondria physiological and pharmacological principles, 
related to subsequently described techniques. Hopefully, these will provide the grounds for 
those interested in testing mitochondria as a drug target in neurological disease models. 
 
 
2. Mitochondrial physiology and pharmacology 
 
2.1. Respiratory chain, proton motive force, ATP synthesis, and proton leaks 
Mitochondria exhibit a core matrix surrounded by two membranes, the inner one containing 
the respiratory chain (Figure 1, A). This chain combines the sequential activity of enzyme 
complexes, namely complex I (NADH-ubiquinone oxidoreductase), II (succinate-ubiquinone 
oxidoreductase), III (ubiquinol-cytochrome c oxidoreductase), and IV (cytochrome c 
oxidase). Significantly, complex II contains succinate dehydrogenase, a nuclear-encoded 
Krebs cycle enzyme. Electrons from NADH or FADH2 enter the chain at Complex I or II, 
respectively, being sequentially shuttled down their electrochemical potential to complex III 
(via ubiquinone, a.k.a. coenzyme Q10), and then IV (via cytochrome c) where O2 is consumed 
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as the final electron acceptor. This electron flux drives proton (H+) efflux towards the 
intermembrane space via H+ pumps in complex I, III and IV, generating an electrochemical 
H+ gradient (ΔµH+) expressed in electrical potential units (mV) as the proton motive force 
(Δp). At 37ºC, Δp = Δψm −60ΔpH (where Δψm is the mitochondrial membrane potential, and 
ΔpH the H+ gradient). Δp is the primary bioenergetic parameter controlling mitochondrial 
ATP synthesis, while Δψm regulates mitochondrial Ca2+ uptake and ROS generation. Under 
most conditions Δψm is the dominant component (~80%) of Δp. Thus, Δψm and Δp are often 
used interchangeably when referring to the common driving force for key mitochondria 
functions [14,15]. 

ATP synthase (complex V or F0F1 ATPase) closes the proton circuit established by 
respiratory chain activity. In analogy to hydroelectric dams accumulating upstream water and 
channelling it through turbines, mitochondria accumulate protons in the intermembrane space 
and channel them through ATP synthase generating ATP, which is exported to the cytosol via 
the adenine nucleotide translocase (ANT). Meaningfully, mitochondria may reverse ATP 
synthase, consuming rather than generating ATP. While transient ATP synthase reversal 
allows Δp maintenance, crucial for mitochondrial activity, unrestrained reversal may lead to 
cellular ATP depletion [16]. 

H+ leaks across the inner mitochondrial membrane decrease the coupling efficiency 
between O2 consumption and ATP synthesis. This ‘uncoupling’ plays a physiological role in 
limiting Δp, otherwise increasing electrons dwell time in complex I and III where they leak 
into oxygen forming superoxide, which in excess may have deleterious effects [17]. 
Mitochondrial H+ leaks include an inducible and a basal component, which is insensitive to 
known activators and inhibitors [18]. Inducible H+ leaks involve uncoupling proteins (e.g. 
UCP1; [19]) and the ANT fatty-acid-dependent H+ leak. Basal H+ leaks may occur at the 
ANT-phospholipid interface, since they increase with ANT content but are independent from 
known ANT functions [20]. 
 
2.2. Mitochondrial calcium handling in neurons 
 
Mitochondria are central to neuronal Ca2+ homeostasis (Figure 1, right). In addition to 
energizing non-mitochondrial Ca2+-handling mechanisms, e.g. plasmalemmal and 
endoplasmic reticulum (ER) Ca2+-ATPases, mitochondria are [Ca2+]i modulators and high 
capacity Ca2+ storage systems. The latter being particularly relevant in neurons, excitable cells 
capable of sudden and extensive [Ca2+]i increases, where mitochondria Ca2+ sequestration 
prevents cytosolic Ca2+ overload and shapes feedback inhibition of Ca2+ transients [1,21]. 
Mitochondria regulate [Ca2+]i via uptake and release, controlling cytoplasmic Ca2+ 
microdomains, and shaping frequency/propagation of Ca2+ signals. The regulation is 
reciprocal since mitochondrial Ca2+ uptake plays key metabolic roles, tuning substrate uptake, 
Krebs cycle activity and ATP synthesis, and influences mitochondrial motility and 
morphology [22,23]. Mitochondria start accumulating Ca2+ when the neighbouring 
concentration rises above the set point (~0.5 µM) at which uptake is balanced by efflux [24]. 
The mitochondrial Ca2+ uniporter and the Na+/Ca2+ (3:1) exchanger provide the main matrix 
Ca2+ uptake and efflux pathways, respectively [25,26]. Above the set point, increasing 
uniporter activity drives Ca2+ to the matrix where buffering occurs via Ca2+ phosphate 
complexes. These are reversible complexes, and when plasmalemmal Ca2+ pumps restore 
[Ca2+]i below the set point, mitochondria gradually release Ca2+ back to the cytosol [27]. 

Ca2+ accumulation is driven by Δψm in competition with ATP production. If oxidative 
phosphorylation decreases, glycolysis may increase via the Pasteur effect, albeit much less 
prominently in neurons than in glycogen containing cells. Upon ATP synthase reversal, Ca2+ 
accumulation may also be driven by glycolytic ATP hydrolysis. Still, mitochondria have a 
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limited Ca2+ buffering capacity, and when exceeded it precipitates mitochondrial permeability 
transition (mPT). This consists of non-specific pore opening at the inner mitochondrial 
membrane, rendering it permeable to ions and molecules < 1.5 KDa. With the exception of 
transient pore openings, which may play physiological roles, unrestrained mPT has 
catastrophic consequences for mitochondria and their hosts. Thus, mPT is currently a subject 
of intense research in neuronal injury and a drug target in neuroprotection [28-30]. 
 
2.3. Mitochondrial biogenesis and dynamics 
 

Biogenesis is critical to replenish mitochondria throughout neuronal lifespan (Figure 1, B). 
Damaged mitochondria are degraded by mitophagy (mitochondria autophagy), a controlled 
process preventing the release of apoptotic factors that might lead to neuronal death. In 
addition, biogenesis increases to meet metabolic demands or compensate for mitochondrial 
dysfunction [4,6,31]. Mitochondria possess their own DNA (mtDNA), each cell containing 
several thousand copies of these small circular genomes that hold testimony to a remarkable 
evolutionary background [32,33]. Nevertheless, the mitochondrial genome is now insufficient 
for independent replication. Moreover, only a few proteins are synthesized within 
mitochondria, which must import about 1,000 different nuclear-encoded proteins [34]. Thus, 
for mitochondria to proliferate, i.e., undergo biogenesis, a concerted action must take place 
between nuclear and mitochondrial genes. Several transcription factors play an important role 
in mitochondrial biogenesis, most notably, mitochondria transcription factor A (mtTFA), 
mitochondrial transcription specificity factors, nuclear respiratory factors (NRF-1 and NRF-
2), and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), the latter 
possibly exerting master regulatory roles [35]. Mitochondrial biogenesis may be altered in 
neurological disorders, thus being a putative therapeutic target [4]. 

Neuronal mitochondria are highly dynamic, undergoing fission, fusion and movement 
along neuronal processes (Figure 1, B,C). Fission-fusion cycles allow mixing and asymmetric 
segregation of mitochondrial contents, including mtDNA, which may compensate or 
propagate mutations. In addition to functional segregation, fission-fusion cycles regulate 
mitochondria number, size and morphology, whereas movement displaces mitochondria to 
sites in need, which in human motor neurons may exceed one meter distance. In combination, 
fission-fusion and movement ensure efficient management and distribution of limited 
mitochondrial resources across vast neuritic networks with variable spatiotemporal demands. 

Mitochondrial fission and fusion are membrane-remodelling events assisted by 
evolutionarily conserved dynamin-related GTPases (Figure 1, B). Fission involves 
recruitment of cytosolic DRP-1 and membrane bound Fis-1, whereas fusion of the outer and 
inner membranes is assisted by mitofusins (Mfn-1 and Mfn-2) and optic atrophy-1 (OPA-1), 
respectively. Significantly, Mfn-2 mutation is linked to the peripheral neuropathy Charcot-
Marie-Tooth type 2A, OPA-1 mutation causes hereditary optic nerve degeneration and 
progressive blindness, and DRP-1 mutation has been associated with abnormal brain 
development [36,37]. 

Mitochondria use adaptor proteins to ride molecular motors, possibly paying an ATP fare 
to accelerate along cytoskeletal tracks (Figure 1, C). They use microtubules for long distance 
fast axonal transport, and shift to actin microfilaments for short distances in pre- and 
postsynaptic endings. Typically, kinesin motors drive mitochondria anterogradely, towards 
the (+) end of microtubules in growth cones, whereas dynein motors mediate retrograde 
transport. Miro, Milton and syntabulin are adaptor proteins for kinesins, whereas dynactin 
adapts mitochondria to dyneins [3,13,38]. Miro is also a Ca2+ sensor mediating motility in low 
[Ca2+]i environments and arresting mitochondria in high [Ca2+]i sites in need of buffering such 
as active synapses [39,40]. Mitochondria also follow increasing ADP gradients, moving 
towards ATP impoverished sites [38]. Interestingly, molecular motors remain functional at 
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relatively low [ATP]i sites [3], but inhibition of mitochondrial ATP synthesis with oligomycin 
arrested trafficking in forebrain [41] but not cerebellar neurons [42], which might be 
explained by differences in glycolytic ATP availability or [Ca2+]i levels. Additional 
modulation of mitochondrial function is described below. 
 
2.4. Pharmacological modulation of mitochondrial function 
 
Several pharmacological tools assist the study of mitochondrial function. However, these are 
not widely applicable across different preparations and techniques. Useful tools in isolated 
mitochondria may not reach effective concentrations within intact cells, sometimes requiring 
microinjection or membrane permeabilization, e.g. with digitonin or saponin. Also, 
unpredicted/non-selective drug effects on extra-mitochondrial targets often complicate in situ 
data interpretation. On the other hand, useless drugs for isolated mitochondria experiments 
may be quite helpful in situ (e.g. modulation of trafficking and other dynamic properties). 
 
 2.4.1. Respiratory Complexes and ATP Synthase Inhibitors 
In intact neurons, inhibition of any respiratory complex impairs the chain. Complex I 
inhibition limits NAD+ availability, compromising succinate synthesis for alternative feeding 
of complex II. Conversely, complex II inhibition arrests the Krebs cycle, limiting complex I 
substrate [14]. Because complex III and IV act downstream of electron entry sites, their 
inhibition also halts the respiratory chain (Figure 1, A). Still, complex I-III inhibition can be 
elegantly bypassed in intact neurons by using TMPD (2,3,5,6-tetramethyl-p-
phenylenediamine)/ascorbate, which donates electrons to complex IV, allowing H+ extrusion 
and Δp recovery [8]. To bypass complex I inhibition in intact neurons, one possibility is 
methyl-succinate, a cell-permeable analogue of a complex II substrate [43]. 

Complex I inhibitors are numerous, being chiefly represented by the semi-quinone 
antagonist rotenone and by MPP+, the toxic metabolite from 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine commonly used to induce Parkinson-like neurodegeneration [44,45]. 
Complex II inhibitors primarily include the competitive malonate and the irreversible 3-
nitropropionic acid (3-NP), both acting on succinate dehydrogenase. Notably, 3-NP is 
frequently used to simulate Huntington’s disease neurodegeneration [46]. Complex III is 
inhibited by myxothiazol and antimycin A, respectively, upstream and downstream to the 
ubisemiquinone site. Because at that site electrons can be transferred to oxygen, blocking 
downstream electron flow with antimycin A is a useful strategy to increase mitochondrial 
superoxide formation in neurons [47,48]. Complex IV inhibitors like cyanide and azide inhibit 
electron transfer to oxygen, inducing chemical hypoxia in mechanistic studies of hypoxic 
neurodegeneration [49]. 

Mitochondrial ATP synthase contains a proton-translocating membrane-embedded domain 
(F0), and a catalytic domain (F1). Protons extruded by complex I, III and IV re-enter the 
matrix via F0 and energize a mechanical rotary mechanism linked to ATP synthesis via F1 
(Figure 1, A). Numerous natural and synthetic compounds inhibit ATP synthase (for a 
comprehensive review see Ref. [50]). The macrolide oligomycin is commonly used in 
experiments with neurons. Direct ATP synthase inhibition can be achieved by blocking F0 
proton-flux with oligomycin, thus preventing ATP synthesis/hydrolysis. In neurons, excess 
oligomycin may also inhibit plasmalemmal Na+/K+ ATPase [51]. Oligomycin typically 
increases Δψm (hyperpolarization; but see oligomycin null-point test in Section 4), and allows 
the study of other Δψm-related functions, e.g. Ca2+ buffering, ROS production, independently 
of ATP synthesis/hydrolysis. Cell survival in the presence of oligomycin will primarily 
depend on glycolytic capacity, which may vary significantly across neuronal types [14]. F1 
domain inhibition also directly arrests mitochondrial ATP synthase. The endogenous inhibitor 
protein IF1 may prevent ATP depletion when neuronal insults reverse ATP synthase [16]. 
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Significantly, some mitochondrial markers like rhodamine-6G and structurally related 
lipophilic cations block the F1 domain when in excess concentration, compromising 
interpretation of functional assays [52,53]. Indirect F0F1 ATP synthase inhibition occurs upon 
mitochondrial uncoupling, namely by drugs decreasing the H+ gradient required for ATP 
generation (e.g. protonophores; see below). 
 
2.4.2. Ionophores, Inhibitors of mPT, Ca2+ Uniporter and other Transporters 
Ionophores are central to the study of highly polarized membranes, such as that of neurons 
and their mitochondria. Ionophores modify the ion permeability of lipid bilayers, typically 
lacking selectivity towards the multiple membranes in a cell [54]. Some ionophores form 
relatively non-selective cationic channels (e.g. gramicidin), whereas others are selective 
mobile carriers catalyzing the electrogenic uniport of a single ion [e.g. H+ (protonophores), K+ 
(valinomycin), or Ca2+ (ferutinin)], or the electroneutral antiport/exchange of two different 
ions [e.g. K+/H+ (nigericin), Ca2+/2H+ (ionomycin or calcimycin)] [14,55]. 

Protonophores, most commonly FCCP or CCCP, increase H+ permeability of the inner 
mitochondrial membrane, decreasing Δp and uncoupling respiration from ATP synthesis. 
Protonophores only partially mimic the endogenous uncoupling protein UCP-1 [56]. Indeed, 
UCP-1 operates selectively at the inner mitochondrial membrane where it provides a Δp-
dependent endogenous H+ leak, which does not compromise maximal ATP generation 
capacity since UCP-1 becomes almost inactive during state 3 respiration (see Section 3) [57]. 
Conversely, protonophores affect H+ gradients across non-mitochondrial membranes, e.g. 
modifying plasmalemmal and synaptic vesicle transmembrane potentials that are particularly 
relevant for neuronal physiology. Some selectivity can be achieved by protonophore titration. 
Indeed, 0.25 µM FCCP selectively collapsed Δψm in cerebellar neurons, whereas 2.5 µM 
FCCP also collapsed plasma membrane potential (Δψp), as evidenced by simultaneous 
recording of both potentials [54]. Still, 1 µM FCCP increases Δψp, as shown by patch clamp 
recordings in hippocampal neurons [58]. Thus, Δψp collapse with 2.5 µM FCCP likely 
involves ATP depletion and changes in permeability to ions other than H+. In neurons, the 
prevailing effect of low FCCP concentrations (‘mild-uncoupling’) is a decrease in maximal 
ATP generating capacity, whose consequences outweigh marginal reductions in matrix 
superoxide levels [59]. Moreover, by increasing mitochondrial H+ conductance FCCP 
reverses ATP synthase, which consumes ATP to extrude H+ in a futile attempt to recover Δp. 
This H+ cycling will lead to cellular ATP depletion, delayed only by glycolytic ATP 
availability. Thus, in intact neurons, if the goal is to collapse Δψm without consuming cellular 
ATP, FCCP should be combined with oligomycin. Alternatively, the same goal can be 
achieved with a respiratory chain inhibitor (e.g. myxothiazol) plus oligomycin, with the 
advantage of avoiding FCCP-induced H+ permeability of non-mitochondrial membranes [8].  

Potassium ionophores are useful in isolated mitochondria experiments to equilibrate the 
transmembrane K+ gradient with Δψm (valinomycin, K+ uniport) or with ΔpH (nigericin, 
K+/H+ antiport; allowing Δp to be expressed solely as Δψm) [60-62]. In neurons, valinomycin 
depolarizes and swells mitochondria, a property applied to study how mitochondria volume 
affects their trafficking in neurites [42,63]. Valinomycin and nigericin oppositely modulate 
neuronal Δψm and Δψp. Valinomycin K+ uniport decreases Δψm via K+ influx, and increases 
Δψp via K+ efflux. Conversely, nigericin K+/H+ antiport increases Δψm via compensatory 
response to ΔpH collapse, and decreases Δψp via plasmalemmal H+ influx in exchange for K+ 
efflux [54]. Moreover, > 1 µM nigericin allows extracellular Na+ influx, further decreasing 
neuronal Δψp and short-circuiting the Na+-K+ ATPase [64]. 

Calcium ionophores, typically Ca2+/2H+ exchangers such as ionomycin and calcimycin 
(A23187), are frequently used in neurons for calibrating fluorescent Ca2+ probes, including 
Fura-2 and derivatives (a condition in which the non-fluorescent 4Br-calcimycin is preferred; 
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[55,65]). In isolated mitochondria, ionophore-induced Ca2+/2H+ exchange is partly 
compensated by Ca2+ reuptake and increased respiration-driven H+ extrusion, leading to futile 
Ca2+ cycling and uncoupling [66]. In situ, effects of Ca2+ ionophores are more complex, 
influencing both Δψm and Δψp, and also modifying plasmalemmal and ER ion exchange 
[54,55]. While neutral ionophores (Ca2+/2H+ exchangers) like calcimycin are frequently used 
to study Ca2+-dependent neuronal cell death [67], electrogenic Ca2+ uniport with ferutinin may 
promote a more physiological model of mitochondria Ca2+ overload, involving Ca2+-
dependent and cyclosporin A sensitive mPT pore opening [55]. 

mPT inhibitors like cyclosporin A (CsA; [68]) interfere with cyclophilin-D (a 
mitochondrial matrix peptidyl-prolyl cis-trans isomerase; [69]), preventing its facilitatory 
effect on Ca2+-triggered mPT. CsA also binds cytosolic cyclophilin-A, forming a complex 
that inhibits calcineurin and leads to immunosuppression. When studying neuronal 
mitochondria in situ it is relevant to discriminate CsA’s effect on both targets. For this 
purpose one might compare experiments with CsA with those performed with tacrolimus 
(a.k.a. FK-506 or fujimycin), which inhibits calcineurin but not mPT [70]. Alternatively, non-
immunosupressive CsA analogs like N-Me-Val-4-CsA, 6-Me-Ala-CsA, N-Me-5-isoleucine-
CsA (NIM811), and D-3-MeAla-4-EtVal-CsA (Debio-25), retain cyclophilin-D and mPT 
inhibition but their complexes with cyclophilin-A fail to inhibit calcineurin [28,71]. Similarly, 
the unrelated mPT inhibitor sanglifehrin A does not inhibit calcineurin, binding both 
cyclophilin-D and cyclophilin-A at distinct sites from CsA [72]. The mPT pore is also 
inhibited by ATP and ADP, but not by their Mg2+ complexes, nor by other nucleotides that 
are poorly or not transported by the ANT (e.g. AMP, GDP or GTP). Interestingly, ANT 
inhibitors oppositely modulate mPT pore opening probability by trapping ANT in opposite 
conformations (carboxyatractyloside increases and bongkrekic acid decreases mPT Ca2+ 
sensitivity). Thus, despite recent knockout studies showing that ANT and VDAC (voltage 
dependent anion channel, a.k.a. porin) are not essential for mPT to occur, the ANT does exert 
a regulatory role [28,73-75]. 

Ca2+ uniporter inhibitors like ruthenium red (RuRed) inhibit Ca2+ uptake into isolated 
mitochondria.  RuRed exhibits poor membrane permeability and selectivity, significantly 
affecting other Ca2+ channels (e.g. plasmalemmal L-type, and ER ryanodine-sensitive), which 
limits it usefulness in intact cells. Comparatively, the analog ruthenium 360 (Ru360) 
displayed increased potency, selectivity, and membrane permeability in isolated cardiac 
myocytes, suggesting that Ru360 might be used in intact cells [76]. Microinjected Ru360 was 
effective in neurons from hippocampal slice cultures, and higher concentrations were reported 
for counterbalancing illumination-dependent decomposition of the ruthenium complex [77]. 
More recently, in studies with cultured hippocampal neurons, Ru360 did not modify cytosolic 
Ca2+ responses to glutamate nor associated changes in mitochondria morphology or Δψm. 
However, Ru360 was effective following plasmalemma permeabilization with saponin, thus 
arguing against Ru360 entering intact neurons [78]. Still, because Ru360 is rapidly oxidized 
by room air, and prolonged incubation periods are required to load intact cells, it is critical to 
renew Ru360 with freshly prepared solutions in order to ensure compound integrity in long-
term experiments [43]. 

The mitochondrial Na+/Ca2+ exchanger is inhibited by CGP-37157 (7-chloro-3,5-dihydro-
5-phenyl-1H-4,1-benzothiazepine-2-one). Caution is advised when using CGP-37157 in intact 
neurons. At concentrations required for measurable effects on mitochondrial Ca2+ buffering, 
CGP-37157 directly inhibits voltage-gated Ca2+ channels preventing depolarization-induced 
Ca2+ influx [79]. CGP-37157 may also inhibit neuronal NMDA receptors [80], and some 
plasmalemmal Na+/Ca2+ exchanger isoforms expressed in neurons [81] (Figure 1, right).  
 
2.4.3. Disrupting mtDNA, Protein Synthesis, and Trafficking Cytoskeleton 
Mitochondrial DNA is selectively disrupted in eukaryotic cells exposed to ethidium bromide 
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(EtBr), chronically producing ρ0 cells without a functional respiratory chain and auxotrophic 
for uridine and pyruvate. ρ0 cells can be repopulated with mitochondria from other cells 
originating cytoplasmic hybrids (cybrids) [82,83]. Although EtBr preferentially intercalates 
mitochondrial double-stranded DNA, mutagenic effects on nuclear DNA cannot be excluded 
thus prompting development of alternative strategies, e.g. targeted restriction endonucleases 
[84]. In neurons, EtBr mtDNA disruption was used to investigate the mitochondrial role in 
axonogenesis [85]. Alternatively to EtBr, the toxic mitochondrial dye rhodamine 6-G also 
prevents mtDNA transmission. Rhodamine 6-G treated embryonic stem cells can be rescued 
by fusion with cytoplasts, containing wild-type or mutated mtDNA, and differentiated into 
neurons for functional studies [86,87]. 

Mitochondrial protein synthesis is selectively inhibited with chloramphenicol, previously 
used for studying how mitochondrial translation impacts neuronal differentiation [88]. 
Conversely, cycloheximide reversibly inhibits cytosolic protein synthesis in neurons, whereas 
puromycin inhibits both cytosolic and mitochondrial protein synthesis [89,90]. 

Mitochondrial trafficking cytoskeleton may be selectively disrupted to investigate neuronal 
mitochondrial motility. Neuronal microtubules are depolymerized by nocodazole or 
vinblastine, whereas actin filaments are depolymerized or disorganized by latrunculin or 
cytochalasin [91,92]. Taxol and nocodozale, respectively, stabilizing and disrupting neuronal 
microtubules, were shown to depolarize mitochondria and evoke Ca2+ release. CsA blocked 
these effects on mitochondria, suggesting that taxol and nocodazole induce mPT [93]. 
Cytochalasin and nocodazole, respectively, disrupting actin filaments and microtubules, 
differentially affected the stochastic and directed modes of mitochondrial movement in 
respiratory neurons [94]. 
 
2.4.4. Additional Tools 
RNA interference allows modulation of in situ mitochondrial function, e.g. preventing 
expression of fusion/fission related proteins [95,96], or interfering with mitochondrial protein 
import [97,98]. Moreover, multiple drugs affecting neuronal function can be applied to the 
study of in situ mitochondria, e.g. tetrodotoxin or veratridin to decrease or increase neuronal 
activity, respectively [99]. In addition to the experimental modulation addressed in this 
review, mitochondria are primary or secondary targets for several therapeutic molecules 
[100,101] and gene-therapy [102]. 
 
 
3. Oxygen consumption and ATP production 
 
Mitochondrial oxygen consumption (‘respiration’) is controlled by cellular ATP turnover 
(‘respiratory control’), and directly proportional to H+ current across the inner mitochondrial 
membrane. This H+ current comprises H+ flow through ATP synthase and H+ leaks. 
Importantly, respiration driving H+ leaks changes in a ‘non-ohmic’ manner, i.e., increases 
disproportionately to Δp at high membrane potential [14]. In neurons, ATP is primarily 
produced by mitochondria when compared with glycolysis, and mostly spent in energizing 
plasmalemmal Na+/K+- and Ca2+-ATPases in order to maintain ion gradients and thus 
excitability [1]. Monitoring of mitochondrial respiratory rates with oxygen electrodes 
provides valuable quantitative information on: (i) mitochondrial ATP synthesis; (ii) 
magnitude of the H+ leak, i.e., uncoupling; and (iii) spare respiratory capacity, i.e., the 
mitochondrial ability to fulfil increased ATP demand. 

The respiratory control ratio (RCR) is a classical parameter indicating the coupling 
efficiency of oxidative phosphorylation. RCR is calculated by dividing the respiration rate 
when ATP synthesis is maximal (state 3) by the respiration rate without ATP synthesis, 
driven solely by H+ leaks (state 4). For isolated mitochondria suspended in cytosolic-like 
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buffer (high K+), containing phosphate and substrate, the maximal ADP-evoked respiration 
provides the state 3 rate. Subsequent ATP synthase inhibition with oligomycin provides the 
state 4 rate. In intact neurons, respiration can be assessed by monitoring downstream oxygen 
levels in the buffer perfusing coverslip-attached cells [103,104], or by using microplate-based 
respirometry [105,106]. 

In situ neuronal mitochondria typically respire in ‘state 3½’ [107], between state 3 and 4, 
with submaximal ATP synthesis. Oligomycin places mitochondria in state 4, whereas FCCP 
induces maximal uncoupled respiration. Full mitochondrial complex I and III inhibition with 
rotenone and myxothiazol, respectively, provides non-mitochondrial respiration that should 
be subtracted from all measurements. The difference between basal (state 3½) and oligomycin 
respiration (state 4) is an approximate measure of basal ATP turnover. The difference from 
FCCP respiration indicates spare respiratory capacity. With the proviso that FCCP respiration 
is not limited by ATP synthase activity, but represents maximal substrate oxidation capacity, 
comparing FCCP respiration with that reached during neuronal challenges, such as NMDA 
receptor activation, allows estimates of whether a lack of spare ATP generating capacity 
limits neuronal survival [108,109]. In practice, oligomycin respiration underestimates basal 
ATP turnover because ATP synthase inhibition increases Δp and, consequently, the non-
ohmic conductance, thus overestimating H+ leaks in state 3½ [110]. Assessing the variable 
impact of non-ohmic H+ conductance on coupling efficiency is feasible in isolated 
mitochondria, namely with the systems approach  ‘modular kinetic analysis’ [111]. 
Simultaneous oxygen consumption and Δψm measurements while substrate oxidation is 
titrated with FCCP, and state 4 respiration titrated with complex inhibitor (rotenone or 
malonate for complex I or II substrates, respectively), allows coupling efficiency calculations 
at any chosen Δψm value [62], thus accounting for the non-ohmic conductance and possibly 
identifying functional differences between control and test mitochondria. 

Measuring neuronal ATP levels may provide information on mitochondrial ATP synthesis. 
In such measurements one should consider that: (i) glycolysis also contributes for cellular 
ATP and may be increased by Pasteur effect masking mitochondrial dysfunction [112]; (ii) 
presence of non-neuronal cells, e.g. astrocytes, influences global ATP measurements [113]; 
and (iii) ATP synthase reversal causes mitochondria to consume rather than generate ATP. 
The ATP content of neuronal populations can be quantified at specific time-points using 
luciferin-luciferase luminescence or HPLC techniques, which allow additional measurements 
[114-116]. Single-neuron dynamic changes in [ATP]i can be monitored indirectly via changes 
in [Mg2+]i. Cytosolic Mg2+ normally binds ATP and is released upon ATP hydrolysis, causing 
free [Mg2+]i to inversely correlate with [ATP]i. This can be assessed by real-time fluorescence 
microscopy using Mg2+-sensitive indicators like Magnesium Green (Kd Mg2+ ~1 mM; Kd Ca2+ 
~6 µM) or Mag-Fura-2 (Kd Mg2+ ~2 mM; Kd Ca2+ ~25 µM). Simultaneous recordings with a 
spectrally distinct and selective Ca2+ indicator, e.g. Magnesium Green + Fura-2, allow 
correction for [Ca2+]i changes [117,118]. Also, real-time monitoring of intracellular ATP or 
ATP:ADP ratio may be performed with genetically encoded reporters [119-121]. 
Furthermore, qualitative information on whether neuronal mitochondria are generating or 
consuming ATP can be inferred from the ‘oligomycin null-point test’ [122] using Δψm-
sensitive probes, as addressed below. 
 
 
4. Mitochondrial and plasma membrane potentials 
 
Mitochondrial membrane potential (Δψm) measurements follow the Nernstian distribution of 
lipophilic cations, which cross membranes and re-equilibrate in response to changes in 
electrochemical potential gradients. Isolated mitochondria Δψm is traditionally assessed with 
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tetraphenylphosphonium (TPP+) and electrode-based detection, whereas in situ Δψm 
measurements frequently use fluorescent detection of rhodamine derived probes, most 
notably, tetramethylrhodamine methyl or ethyl ester (TMRM+ or TMRE+, respectively) and 
rhodamine-123 (Rh123) [123]. Interpreting fluorescence changes in neurons loaded with 
these probes is far from trivial, but observing three important principles minimises 
misinterpretations. First, lipophilic cations are Δψm-‘sensitive’, not Δψm-‘specific’. They 
partition across plasma and mitochondrial membranes and respond to Δψp and Δψm changes 
(Figure 1, bottom right: TMRM+). Second, redistribution is much faster across the 
mitochondrial vs. plasma membrane due to surface/volume differences. Third, when matrix 
probe reaches an aggregation threshold, fluorescence is quenched becoming nonlinear with 
concentration [15,54]. 

Quench vs. non-quench (or equilibrium) are two different experimental approaches with 
Δψm-sensitive probes. Their interpretation varies significantly, and probe titration is essential 
to ensure the desired approach. In equilibrium conditions, using low probe concentrations to 
avoid matrix quenching, whole-cell fluorescence originates mostly (~75%) from polarized 
mitochondria (for Δψm ~150mV and 1% matrix/cytoplasm volume; [15]). Under these 
conditions, whole-cell fluorescence is theoretically related to Δψm. Still, variation in 
matrix/cytoplasm volume or in Δψp may influence differences among cells. In quench mode, 
resting whole-cell fluorescence does not reflect Δψm because matrix probe aggregation blunts 
concentration differences. Nevertheless, because mitochondrial hyperpolarization or 
depolarization drives matrix probe influx or efflux, respectively, these changes in Δψm can be 
transiently detected in cytosolic or whole-cell fluorescence [8,15]. 

Rh123 is less permeable than TMRM+, thus equilibrating slowly across the plasma 
membrane. Hence, short-term experiments using Rh123 in quench mode allow dynamic Δψm 
recording with less interference from Δψp [122,124,125]. For TMRM+, the ambiguity in 
relating changes in fluorescence to Δψm or Δψp can be circumvented via simultaneous 
recordings with an anionic Δψp probe, and with the assistance of computer algorithms [54]. 
Simultaneous Δψm/Δψp and [Ca2+]i measurements are feasible in intact neurons. Stepwise 
extracellular K+:Na+ replacement and the Goldman equation allow Δψp probe calibration, 
whereas maximal and minimal (0 Ca2+:EGTA) ratiometric signals with ionophore allow 
[Ca2+]i probe calibration [54,126]. 

The oligomycin null-point test distinguishes neurons with competent (ATP-producing) 
mitochondria from those with damaged (ATP-consuming) mitochondria. With sufficient 
glycolytic ATP, damaged mitochondria can hold Δψm by ATP synthase reversal and load 
efficiently with Δψm-sensitive probes. Oligomycin hyperpolarizes ATP-producing 
mitochondria by preventing F0 H+ re-entry. Conversely, oligomycin depolarizes ATP-
consuming mitochondria by preventing F0 H+ extrusion. Under quench conditions, 
hyperpolarization decreases whole-cell fluorescence by driving cytoplasmic probe to the 
matrix quenching environment. Depolarization increases whole-cell fuorescence as the probe 
exits the matrix towards the cytosol. Terminating experiments with full Δψm collapse by 
FCCP provides positive control for quenching conditions [122,127,128]. 

A major source of artefacts with Δψm-sensitive probes is their efficient extrusion by the 
multi-drug resistance (MDR) pump, P-glycoprotein, expressed by some cells-lines used as 
“neuronal models”. To avoid erroneous interpretations of decreased Δψm in such cells, one 
should test whether MDR inhibitors like verapamil or CsA significantly increase probe-
loading efficiency. Conversely, to avoid erroneous interpretations of mPT inhibition when 
CsA increases probe fluorescence, one should test whether verapamil is devoid of the same 
effect [129], and/or use other mPT inhibitors (see Section 2.4.2). Note that, in neurons, Ca2+ 
channel blockade by verapamil may confound data interpretation. 
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5. Mitochondrial-dependent calcium handling 
 
Ca2+-buffering capacity is a frequently assessed mitochondrial function. A high capacity 
affords protection from Ca2+-induced damage, e.g. following excitotoxic Ca2+ elevation. 
Conversely, a decreased capacity suggests mitochondrial dysfunction. Measurements in 
isolated mitochondria typically monitor how much Ca2+ (nmol/mg protein) the population can 
buffer before generalized mPT. Ca2+-sensitive electrodes or fluorescent probes, e.g. Calcium-
Green, allow continuous extra-mitochondrial [Ca2+] monitoring. Mitochondria concentration, 
buffer composition, notably in phosphate and adenine nucleotides, and the mode of Ca2+ 
addition, repetitive bolus vs. continuous infusion, significantly impact maximal Ca2+ 
buffering capacity [104,130]. Non-mitochondrial Ca2+-handling mechanisms and glycolytic 
ATP in intact neurons complicate assessment of in situ mitochondrial Ca2+-buffering [127]. 

Mitochondrial-dependent Ca2+-handling, i.e., without glycolytic ATP interference, can be 
assessed by replacing glucose with 2-deoxy-D-glucose plus pyruvate as mitochondria 
substrate. This is particularly relevant in cell-lines where abundant glycolysis obscures 
mitochondrial Ca2+-handling [65]. Fluorescent Ca2+-probes carrying a delocalized positive 
charge, e.g. rhod-2 and analogues, accumulate preferentially in mitochondria but require 
appropriate measures to minimize extra-mitochondrial signal [8]. In addition, genetically 
encoded mitochondria-targeted Ca2+-sensors provide elegant ways to monitor mitochondrial 
Ca2+-handling in intact cells, including in vivo. Novel aequorin and GFP-based Ca2+ sensors 
are not without limitations, but there have been improvements in selective organelle targeting, 
[Ca2+]i detection range, and imaging technology to deal with low photon yield and fluorescent 
signal/noise ratios [131,132]. Importantly, dynamic measurements with mitochondrial matrix 
Ca2+ probes report changes in free (not total) Ca2+ levels. Due to formation of Ca2+-phosphate 
complexes, free Ca2+ is buffered at ~ 0.2−5 µM in spite of continuous increase in total matrix 
Ca2+ [24,27]. Inducing Ca2+ release with FCCP, and monitoring the area under the curve with 
a low affinity ratiometric Ca2+-probe, estimates total Ca2+ buffered by neuronal mitochondria 
during glutamate receptor activation [133]. Recently, we proposed a strategy for comparisons 
of in situ mitochondrial Ca2+-buffering capacity, using neurons and astrocytes from different 
brain regions, with calibration for different rates of [Ca2+]i elevation and mitochondrial 
content [126]. 

In situ evaluation of mPT in neurons has been performed by the calcein/cobalt-quenching 
technique [93,134]. Cells loaded with sufficient calcein-AM display both mitochondrial and 
cytosolic fluorescence. However, the latter is selectively quenched with cobalt (Co2+), which 
does not permeate an intact inner mitochondrial membrane. Induction of mPT releases 
mitochondrial entrapped calcein, detected by mitochondrial fluorescence decay [135]. With 
Co2+ in the cytosol, mitochondria fluorescence decay may also be due to Co2+ influx and 
calcein quenching [136]. Different cell-types exhibit different Co2+permeability. In neurons, 
Co2+ uptake occurs via active AMPA/kainate receptors, thus varying with receptor density 
and neuronal activity. Also, single neurons display incomplete co-localization of calcein and 
Δψm-sensitive probes, so their combination is recommended to identify calcein-loaded 
mitochondria [134]. Co2+ microinjection may overcome permeability issues, but high 
cytosolic Co2+ may be problematic. Although Co2+ is not transported by the Ca2+ uniporter, it 
inhibits Ca2+ uptake and decreases mitochondria respiration [135]. An alternative technique, 
described in non-neuronal cells, combines two fluorescent probes to discriminate polarized 
from depolarized (possibly via mPT) mitochondria within the same cell. The two probes, 
Mitotracker Green (MTG) and TMRM+, accumulate electrophoretically into mitochondria, 
but MTG establishes covalent bonds becoming retained after depolarization. By imaging 
fluorescence resonance energy transfer (FRET) between MTG and TMRM+, depolarized 
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mitochondria (MTG only) were identified against a background of hundreds of polarized 
(MTG + TMRM+) mitochondria [137]. 
 
 
6. Biogenesis, trafficking, fusion and fission 
 
Mitochondrial biogenesis indicators include mtDNA copy number, mitochondria 
mass/volume, transcription factors (e.g. PGC-1α, mtTFA, NRF-1 and NRF-2), and 
mitochondrial proteins (e.g. cytochrome oxidase and ATP synthase subunits) [35]. Biogenesis 
has been assessed in populations of cultured neurons and brain tissue, namely in the context 
of diabetic neuropathy or stroke, using hyperglycaemic or hypoxic-ischemic injury, 
respectively [31,138]. Moreover, differential biogenesis between single neurons and within 
subneuronal compartments can be investigated by incorporating deoxyuridine derivatives into 
newly synthesized mtDNA [139]. 

Labelling mitochondria with fluorescent probes, e.g. lipophilic cations or genetically 
encoded mitochondrially-targeted proteins [140-142], allows monitoring and quantification of 
mitochondria dynamics using video-microscopy and digital image processing techniques, 
respectively. In any case, care should be taken to minimize mitochondrial toxicity [143]. 
Mitochondrial fractional occupancy measurements (Σmitochondria length /Σneurites length, using 
skeletonized images; [99]) provide information on mitochondrial biogenesis. Trafficking 
information can be derived from time-lapse image acquisition and processing, most often 
requiring manual mitochondria tracking [3], although some measurements can be automated, 
e.g. using an ‘optical flow’ method [144]. Several analysis strategies have been described, 
notably, ‘single particle analysis’, ‘dwell areas’ visited by mitochondria in a given time 
interval, and ‘kymographs’, i.e., time-projections of fluorescence intensities across neuritic 
lines, where slopes are proportional to speed, and direction can be inferred (see [38]). Levels 
of motor or adaptor proteins and their association with mitochondria provide additional 
trafficking-related information [145,146]. Fusion and fission can be estimated from the 
number and size of mitochondrial particles [95], as well as by quantifying levels of fusion and 
fission related GTPases [96,138,147].  
 
 
7. Other techniques and concluding remarks 
 
In addition to the parameters and techniques addressed in this review, multiple others assist 
the study of neuronal mitochondrial function. E.g. Changes in NAD(P)H and FADH2 
autofluorescence monitor mitochondria redox state in isolated suspensions, neurons or brain 
slices [124,148,149]; Oxidation of dichlorofluorescein, dihydroethidine or its 
mitochondrially-targeted derivative MitoSox estimate neuronal ROS formation, with some 
limitations related to pH sensitivity and Δψm-dependent probe localization [59,107,118]; 
Apoptotic protein release, e.g. cytochrome c, signals mitochondria-dependent apoptosis [150]; 
Sequential histochemical staining for cytochrome c oxidase and succinate dehydrogenase 
activities identifies neurons with dysfunctional mitochondria, where mtDNA mutations can be 
probed via laser microdissection and polymerase chain reaction [151,152]. 

The study of neuronal mitochondria is clearly enriched with many complementary 
experimental approaches, allowing researchers to test disease-induced mitochondrial 
dysfunction and protective pharmacological strategies. Given the wide variety of possible 
research subjects and experimental models, choosing a single ‘best’ technique is a utopian 
endeavour. Nevertheless, given their central roles in mitochondrial activity, Δψm, Ca2+-
buffering and the highly informative respiration measurements are good choices both for 
isolated and in situ mitochondria. The researcher interested in additional events will certainly 
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appreciate the alluring mitochondrial dynamics. 
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Figure 1. Mitochondrial bioenergetics and dynamics. 
A-(left to right), Respiratory chain and proton circuit. Transhydrogenase (TrH), complexes (I-
IV), ubiquinone (UQ) and cytochrome c (cyt c), H+ leaks and F0F1 ATPase generating ATP. 
Adenine nucleotide translocase (ANT) and voltage dependent anion channel (VDAC), at the 
inner (grey) and outer (white) mitochondrial membranes, respectively. Glycolysis (top right) 
feeds mitochondria via pyruvate (dashed lines).  
A-(top-right to bottom), Simplified circuits for Ca2+ and other ions across mitochondrial, 
endoplasmic reticulum (ER) and plasma membranes. Grey hexagon depicts calcium 
phosphate complexes (Ca2+-Pi). TMRM+ (bottom right) distribution influenced by Δψm and 
Δψp.  
B, Biogenesis, transcription factors and protein import via outer and inner membrane 
translocases (TOM and TIM). Fusion (outer and inner membranes) and fission via respective 
GTPases. C, Bi-directional microtubule-based transport, motors and adaptor proteins. See text 
for further details. 
 
 


