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Abstract 

 

The oxidation of organic compounds and color removal of a synthetic dyeing effluent when treated with a combination 

of Fenton’s Reagent and biological oxidation in a sequencing batch reactor was evaluated in this work. A central 

composite design approach was used to find the best conditions of temperature, hydrogen peroxide and ferrous ion 

concentrations that maximize color and dissolved organic carbon removal and increase the biodegradability of the 

effluent submitted Fenton’s oxidation. Additional studies on the biological oxidation of the raw and previously treated 

by Fenton oxidation effluent had been performed up to steady-state. Higher efficiencies were obtained when coupling a 

pre-oxidation stage with Fenton’s Reagent to the biological process, but conditions employed in the first process must 

be carefully selected. In particular, the chemical oxidation was focused in conditions that maximize the increase in the 

biodegradability, allowing achieving overall removals of 90.2, 97.3 and 96.1 % for DOC, BOD5 and color, respectively. 
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Introduction 

The main pollutants in textile wastewater originate from the dyeing and finishing steps [1]. The 

wastewater generated is characterized by presenting low metal and suspended solid contents, high 

temperature, alkaline pH in most situations, high chemical oxygen demand and strong color [2]. 

Therefore, it is necessary to find effective methods for treating such wastewater, both in terms of 

water recycling and need for nature preservation.  

One of the most promising alternatives for textile wastewater treatment is based on the 

application of advanced oxidation processes - AOP, as a way to reduce the levels of contamination 

by the destruction of organic pollutants and their conversion to carbon dioxide and water [3]. The 

AOP used in this work is the Fenton’s Reagent. The oxidation is based on ferrous ion and hydrogen 

peroxide, and exploits the very high reactivity of the hydroxyl radical produced in acidic solution by 

the catalytic decomposition of H2O2, particularly through the following reaction [4]:  

Fe
2+
 + H2O2  → Fe

3+
 + OH

─ 
+ OH

•
                                                                            (1) 

Recently, studies on the combination of advanced chemical oxidation and biological treatment 

have been developed. The effluent is first submitted to chemical oxidation to partially degrade the 

organics, generating an uncolored effluent (in the case of dye-containing wastewater), more 

biodegradable and less toxic that is easily assimilated by the biomass in the biological process. This 

way, the economical cost and the environmental impact, frequently associated to the chemical 

processes, are substantially minimized [5]. The biological treatment may be carried out, for 

instance, in a sequencing batch reactor (SBR), which presents a great simplicity and flexibility of 

operation, as well as low cost when compared with other possible configurations [6].  

In this work, the efficiency of an integrated chemical-biological process (i.e., Fenton’s Reagent 

followed by SBR oxidation) was evaluated, in terms of color and organic matter removal, using a 

cotton dyeing synthetic effluent. 
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Material and Methods 

 Synthetic wastewater 

A cotton dyeing synthetic wastewater was used for this study, which was prepared in accordance 

with the information provided by the dye-house Erfoc - Acabamentos Têxteis S.A. (Famalicão, 

Portugal). Basically, the concentrations of all the auxiliary products and dyes was determined taking 

into account the amounts used in the dyeing and rinsing baths and the percentages retained by the 

cotton fibers. The main characteristics of the wastewater are summarized in Table 1. 

Table 1 – Main characteristics of the dyeing cotton synthetic effluent. 

Parameter Value 

pH 10.9 

Absorbance at 520 nm 0.596 

Biochemical oxygen demand (BOD5) (mg O2/L) 239 - 247 

Dissolved organic carbon (DOC) (mg C/L) 140 - 161 

Specific oxygen uptake rate (k’)  (µg O2/mg C . min) 0.25 

Total suspended solid (TSS) (mg/L) 50 - 102 

Total phosphorus (mg P/L) 0.9 - 1.2 

Total nitrogen (mg N/L) 3.5 - 6.0 

Fenton oxidation  

The Fenton oxidation was carried out in a closed jacketed batch reactor (1 L capacity) with 

constant mixing by using a magnetic stirrer in which the temperature was kept constant 

(thermostatic bath Huber, model Polystat CC1). After stabilizing the temperature of the wastewater, 

the pH was adjusted to 3.5 with H2SO4 95-97% (Fluka) or NaOH 6N (Merck, analytical grade). 

Reaction was carried out at pH 3.5 because several other studies pointed for maximal removal at 

this pH value [e.g., 7]. Then, the iron catalyst (FeSO4.7H2O - Panreac) was added and the process 

initiated with the insertion of hydrogen peroxide (H2O2 30%, Riedel-of Haën) into the reaction 

mixture. Periodically, samples were taken from the reactor for analysis and the remaining H2O2 

eliminated by adding a small, but in excess, amount of sodium sulfite p.a. (Riedel-of Haën), in order 

to stop the reaction.  

SBR operation 

The SBR was operated at constant temperature (25 ± 0.5 ºC) by recirculation of water from a 

thermostatic bath (Isco GTR 90) and with 11.5 hours per cycle (1.1 h feeding, 6 h reaction, 3.5 h 

sedimentation and 0.9 h discharge). Operation proceeded during 15 cycles, i.e. up to steady-state 

conditions, although after 7 cycles a pseudo-steady state has already been reached. In the first cycle, 

the synthetic wastewater with pH previously adjusted with H3PO4 85% (Pronalab) to 7.0 ± 1.0 was 

gradually added to 2.5 L of acclimatized sludge (VSS = 5 g/L) proceeding from the aeration tank of 

Rabada WWTP (Santo Tirso - Portugal) to make up a final volume of 5.0 L. In the subsequent 

cycles the reactor was fed with 2.5 L of wastewater to compensate the discharge of the treated 

effluent. During the reaction stage, the mixed liquor was kept under agitation (rotating speed = 150 

rpm) and the dissolved oxygen content was maintained at 3.0 ± 0.1 mgO2/L by controlled aeration 

using air diffusers. Internal pH was controlled in the range 7.3-7.4 by adding H2SO4 1M and NaOH 

1M. At the end of each cycle the discarded effluent was analysed for several parameters. In the 

wastewater previously treated by Fenton’s oxidation, the elimination of the residual hydrogen 

peroxide by the addition of sodium sulfite was firstly performed and then the pH was adjusted to 7 

with NaOH 6N. After sedimentation, the supernatant was fed to the SBR and the reactor operation 

proceeded in the above-mentioned conditions.  



Analytical Methods 

 

The biodegradability of raw and treated effluent was evaluated from the specific oxygen uptake 

rate (k’) at room temperature. Samples were inoculated with biomass from the aeration tank of 

Rabada WWTP, and then the dissolved oxygen concentration measured using a biological oxygen 

monitor (YSI Model 5300 B) for 30 min. The k’ values were calculated as the ratio between the 

oxygen concentration decay rate and the amount of organic carbon initially present in the sample. 

Color removal was evaluated at λmax = 520 nm (UV–Vis Pye Unicam spectrophotometer, Model 

Heyios α). Other routine analyses were conducted according to Standard Methods [8]. DOC was 

measured in a TC/TOC analyzer (Shimadzu 5000A analyser). 

 

Results and Discussion 

Fenton’s oxidation 

A central composite design in combination with Response Surface Methodology was carried out 

for the ranges of temperature and concentrations of H2O2 and Fe
2+ 
shown in Table 2. The values of 

the variables were based on results from a previous work [7] and other preliminary runs (data not 

shown). Besides, they take also into account situations of practical interest (e.g., temperatures of 

textile effluents). 

Table 2 - Levels of the parameters selected for the experimental design. 

 Level 

Parameter -1.682 -1 0 +1 +1.682 

T (ºC) 6.4 20 40 60 73.6 

[H2O2] (mM) 107 147 206 265 305 

[Fe
2+
] (mM) 0.55 2.68 5.80 8.92 11.05 

 

The Yates algorithmic [9] was then applied to define the conditions and number of experiments 

to be done (see Table 3). In Table 3 are also shown the responses considered in each run: DOC and 

color removal and biodegradability (specific oxygen uptake rate, k’). All these values were obtained 

after 30 min, because differences between 30 and 120 min of reaction are not significant (data not 

shown). Subsequently, the coefficients associated with the significant effects and interactions of 

each variable in a quadratic model were determined (by the least squares fitting method, software 

JMP 5.0.1 being used), just retaining the coefficients statistically significant for a level of 

significance α = 0.05, as indicated by the Student’s t-test [10].  

The semi-empirical quadratic equations obtained (Eqs. 2-4) allow concluding what are the 

variables and interactions that affect a given response. For instance, for the DOC removal the 

temperature (x1) and the square of Fe
2+
 concentration (x3

2
) are those with statistical meaning (cf. 

Eq. 2), while the biodegradability, expressed as k', depends on the values of x1, x2 and x3. 
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Table 3 – Yates algorithm and responses obtained. 

Run 
T 

(x1) 

[H2O2] 

(x2) 

[Fe
2+
] 

(x3) 

DOC removal 

(%) 

Color removal 

(%) 

k' 

(µg O2/mg C. 

min) 

1 -1 -1 -1 31.0 16.3 0.2 

2 +1 -1 -1 50.1 96.8 2.2 

3 -1 +1 -1 31.2 49.2 1.4 

4 +1 +1 -1 60.3 91.2 1.7 

5 -1 -1 +1 29.6 53.6 0.7 

6 +1 -1 +1 54.6 96.2 4.6 

7 -1 +1 +1 32.5 52.7 3.0 

8 +1 +1 +1 54.8 93.2 6.0 

9 0 0 0 45.1 97.1 3.0 

10 0 0 0 41.9 97.0 2.8 

11 0 0 0 48.7 97.2 3.1 

E1 -1.682 0 0 37.7 31.1 1.6 

E2 +1.682 0 0 61.9 97.0 3.7 

E3 0 -1.682 0 52.8 93.7 0.6 

E4 0 +1.682 0 53.9 76.8 6.1 

E5 0 0 -1.682 37.5 65.0 0.8 

E6 0 0 +1.682 37.9 95.3 5.5 

 

These equations allow obtaining 3D representations, i.e. response surfaces that more clearly 

evidence the effects of the variables in the responses. For example, the effects of the relevant 

variables on DOC removal are shown in Fig. 1a. Maximum performance occurs for [Fe
2+
] = 5.80 

mM. At higher concentrations the Fe species in excess might react with hydroxyl radicals through 

other parallel reactions, namely the following one, detrimentally affecting the overall performance 

[11]: 

HO
•
 + Fe

2+
 � OH

-
 + Fe

3+
                          (5)                                                                                  

In what concerns the effect of temperature, Fig. 1a shows that is presents a positive effect on the 

mineralization of organic mater. 
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Figure 1 - Variation of a) DOC removal and b) color removal with [Fe
2+
] and T as predicted by Eqs. 2 and 3. 

a) b) 



 

For color removal, optimum conditions occur at T= 57.3 ºC and [Fe
2+
] = 7.22 mM (Fig. 1b). The 

existence of an optimum temperature value might be due to the thermal decomposition of hydrogen 

peroxide at high temperatures [12]:  

2H2O2 → 2H2O + O2                                                                                                                (6) 

However, one could expect to notice this effect also in the DOC removal, which is not the case. A 

possible explanation is the difficulty of the polynomial fit in a wide range of response data (color 

removals in the range 16.3-97.2%), yielding inclusively predictions slightly above 100%. The 

biodegradability increases with the increase of the three variables in the study range (see Eq. 4). 

Optimal conditions are therefore T= 73.6ºC, [Fe
2+
] = 11.05 mM and [H2O2] = 305 mM.  

 

Biological treatment in a sequencing batch reactor (SBR) 

Afterwards, the study was focused on the biological oxidation, using a SBR, of raw (1
st
 run) and 

previously submitted to Fenton oxidation effluents. The SBR was thus fed with the partially 

oxidized effluent from the Fenton’s process. Conditions selected for the chemical oxidation were 

those that maximize the color removal (with [H2O2]=107 mM) - 2
nd
 run - or maximize the increase 

in the biodegradability - 3
rd
 run. The reactor was operated up to steady-state (15 cycles). Even so, 

the results obtained indicated that in the 1
st
 run (SBR alone) only 63.9% of color removal was 

reached, which can still be in part attributed to the dyes adsorption into the biomass flocs. The 

organic matter removal is also low (36.0% of BOD5 and 28.9% of DOC), which can be explained 

by the presence of non-biodegradable compounds. In the 2
nd
 and 3

rd
 runs the Fenton pre-oxidation 

alone was responsible for a higher color decrease (more than 95% in both cases - cf. Table 4)), as 

well as for a higher organic load removal. In terms of overall performance, the combined process 

revealed to be much more effective, particularly under conditions that favor the biodegradability 

increase in the chemical oxidation (cf. Table 4, 3
rd
 run). As expected, higher efficiencies are 

obtained when coupling the Fenton’s Reagent to the biological process, but conditions employed in 

the first process must be carefully selected so that maximum degradation of organic matter can be 

achieved. 

 

Table 4 – Values of DOC, BOD5 and color removals in each stage of the integrated process. 

 
Efficiencies in the 2

nd
 experiment Efficiencies in the 3

rd
 experiment 

Parameter 
Fenton 

stage 

(%) 

SBR 

stage   
(%) 

Overall 

removal efficiency 

(%) 

Fenton 

stage 

(%) 

SBR 

stage   
(%) 

Overall 

removal efficiency 

(%) 
DOC 56.8 31.2 70.3 58.6 76.3 90.2 

BOD5 63.7 49.4 81.6 72.9 85.5 96.1 

Color 99.0 * 99.0 95.9 35.0 97.3 

* Absorbance increases induced by the inoculum addition (thus global efficiency is computed based on Fenton’s efficiency). 

 

Conclusions  

A combination of Fenton’s reagent with biological degradation in a SBR has been applied to a 

synthetic textile effluent with the purpose of oxidizing the organic matter and removing color. The 

combination of the two treatment processes provides better performances than any of the treatment 

methods alone. However, if the pre-treatment is applied to the effluent in conditions that maximize 

the biodegradability increase, the final results are further improved.  
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