
Optimal Trees for General Nonlinear Network Flow
Problems: A Dynamic Programming Approach

Dalila B. M. M. Fontes
Faculdade de Economia da Universidade do Porto

Adress: Rua Dr. Roberto Frias, 4200-464 Porto, Portugal
Phone: 351-225 571 100, fax: 351-225 505 050

Email: fontes@fep.up.pt

March 2005

Abstract

In this paper, we describe a dynamic programming approach tofind optimal trees to the single-
source minimum cost network flow problem with general nonlinear costs. This class of problems is
known to be NP-Hard and there is a scarcity of methods to address them. The algorithms previously
developed have considered only two particular types of costfunctions: “staircase” and “sawtooth”.
Here, a dynamic programming approach to find optimal trees, that can be used with any kind of
separable and additive cost function, is proposed. Computational experiments were performed using
randomly generated problems and the results reported, for small and medium size problems, indicate
the effectiveness of the proposed approach.

keywords Dynamic programming, network flows, optimal trees, general nonlinear costs

1 Introduction

The main feature defining the complexity of Minimum Cost Network Flow Problems (MCNFPs) is the
type of cost function for each arc. In this sense, MCNFPs can be divided into four categories with
increasing complexity, namely: linear, convex, concave, and general nonlinear. Linear MCNFPs, have
constant marginal arc costs and can be solved in polynomial time [2]. Convex MCNFPs, which have
nondecreasing marginal arc costs, involve the minimization of a convex objective function over a convex
feasible region, defined by the network constraints. Therefore, a local optimum is also a global optimum.
Although harder than linear MCNFPs, these problems are still “easy to solve” [2]. Concave MCNFPs
have nonincreasing marginal arc costs and are much harder than the previous MCNFPs. The complexity
of this type of problems arises from minimizing a concave function over a convex feasible region, which
implies that a local optimum is not necessarily a global optimum. Although concaveMCNFPs are known
to be NP-hard [8] (even for the simplest version), they do exhibit some special mathematical properties
that make them more tractable than general nonlinear MCNFPs [7]. For a recent discussion on general
concave MCNFPs, see for example [3, 5] for approximate methods and [4, 6] for exact methods.

General nonlinear MCNFPs have arc costs that are neither convex norconcave such that no con-
vexity or concavity properties can be explored in the determination of an optimal solution. This type of
problems is also known as indefinite or discontinuous MCNFPs. Many practical problems involve some
sort of discontinuity in cost functions. For example, transport of passengers typically include a fixed
cost proportional to the number of vehicles (fuel, drivers, insurance) and thus if the flow is in number of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143409553?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


passengers, then the cost function is in the form of a “staircase”. Another type of cost function, known as
“sawtooth” may arise in goods distribution as costs are usually made up of a marginal cost, that typically
decreases with quantity and a fixed cost that can introduce discontinuities at quantity “breakpoints”. A
cost function that is concave up to a certain value and convex afterwards may also appear in production
settings, for example due to market reaction for demand of a raw material.

To the best of our knowledge no optimization methods have been reported in the literature for general
nonlinear MCNFPs. Existing literature considers only specific types of cost functions, namely staircase
[11, 10] and sawtooth [11] cost functions. Lamar in [11] proposes to address the MCNFP with sawtooth
or staircase arc costs by transforming the problem into a concave MCNFP on an expanded network.
(This transformation is based on the fact that any arbitrary cost functioncan be rewritten as a summation
of convex and concave functions.) However, as the resulting MCNFP is defined over a much larger
network, this transformation is only useful for very small problems. Recently, Kim and Pardalos [10]
obtained good quality solutions for the nonconvex piecewise linear MCNFP.They solve linear problems
that are recursively updated by using the previous solution. At each iteration the feasible domain is
reduced by a contraction rule. A recent survey on piecewise linear MCNFPs, including staircase and
sawtooth cost functions is given in [9].

In this work, we have decided not to restrict the type of cost functions to be considered, but rather
the network configuration to be searched for. We describe an algorithm tofind the best solution to
the general nonlinear MCNFPs among tree shaped solutions. We focus ontrees since they are a basic
structure in combinatorial problems and represent a fundamental element ina large number of graphic
theoretical problems. On the one hand, they are of considerable importance on their own right and have
many planning and design applications in a variety of network problems. On theother hand, there are
many network flow algorithms which are based on finding optimal trees, both asa final objective or as
an intermediate step. A detailed study on optimal trees can be found in [12]. The algorithm described
here is based on Dynamic Programming (DP) and is an adaptation of an approach previously developed
for concave MCNFPs [4].

2 Problem description and formulation

Our problem consists of finding an optimal tree for the general nonlinear MCNFP. Consider a directed
networkG = (W, A) whereW is a set ofn + 1 vertices containing the source vertex andn demand
vertices andA is a set ofm directed arcs. Vertices 1 ton have a nonnegative integer demandri and the
supply at the source vertexR matches the commodity required by then demand vertices. Flow on each
arc (i, j) has upperuij and lowerlij limits. A general nonlinear and nonnegative cost functiongij is
assigned to each arc. The cost of sendingr units of flow through arc(i, j) is given bygij(r) and satisfies
gij(0) = 0.

We developed a DP model to find a tree network and corresponding flows such that demands are
satisfied at minimum cost. The formulation proposed is independent of the typeof cost functions con-
sidered and of the number of nonlinear arc costs. Also, the cost functions may be neither differentiable
nor continuous, having only to be separable and additive.

Consider a setS ⊆ W and a vertexx ∈ S. Let
{

S′, S̄′
}

be one partition of setS, whereS′ ⊆ S\{x}
andS̄′ is the complement ofS′ in the setS, that isS̄′ = S − S′. For each possible setS′, let z ∈ S′

be the root vertex of a directed tree spanning the setS′ and letr =
∑

i∈S′ ri be the total commodity
required by the demand vertices in setS′.

Let f(S′, z) be the minimum cost of supplying all demand vertices inS′ with the required commod-
ity r available at vertexz through a directed tree rooted atz. The minimum cost of supplying a setS′

from vertexx 6∈ S′ with the required commodityr made available at some vertexz ∈ S′ satisfying
lxz ≤ r ≤ uxz is found by determining the best combination of the minimum cost directed tree ofS′

rooted at vertexz ∈ S′ with the cost of arc(x, z), that is



min
z∈S′

lxz≤r≤uxz

{

f
(

S′, z
)

+ gxz (r)
}

.

By definition, the minimum cost incurred in supplying, through a tree, the remaining demand ver-
tices of setS not in S′ from x is given byf

(

S̄′, x
)

. Thus, the minimum costf(S, x) of supplying all
demand vertices inS, with the commodity available atx ∈ S through a directed tree rooted atx, is
obtained by examining all possible subsetsS′ ⊆ S \ {x}, which is given by

f(S, x) = min
S′⊆S\{x}



f
(

S − S′, x
)

+ min
z∈S′

lxz≤r≤uxz

[

f(S′, z) + gxz(r)
]



 , (1)

wherer =
∑

i∈S′ ri.

Initial conditions are provided by

f (S, x) =

{

0, if S = {x}
∞, otherwise.

(2)

Recursion (1) applies for allS ⊆ W and allx ∈ S. Hence, the cost of the optimal tree supplying all
demand vertices in setW from the source vertext, is given byf(W, t), if one exists.

An illustration is given in Figure 1, which shows a possible partition of setS, a possible directed
tree inS′ rooted at vertexz and a flow pattern of supplyinḡS′ from vertexx.

Z

X

W

S

S’
S’

Figure 1: A flow pattern of supplying setS with the commodity available at vertexx through a directed
tree.

3 Implementation of the DP algorithm

A pure forward DP algorithm is easily derived from the DP recursion by generating all the states of a
particular stage one by one. Such implementation may result in considerable waste of computational
effort either when complete enumeration of the state space is not required,or when some states are not
feasible. In the latter case, the infeasibility of a state is only discovered afterit has been generated.
Thus, we have implemented the DP formulation based on the idea of gradually expanding the state
space graph using a backward-forward procedure on each layer of the state space. Its main advantage
is that the expansion of the state space graph is based upon the information relevant to the part of the
graph which has already been generated. Therefore, states which are not feasible for the problem are
not computed, as only states which are needed for the computation of the solution are considered. The
algorithm is dynamic as it detects the needs of a particular problem and behaves accordingly.



States at stage one are either nonexistent or initialized as in equation (2). The algorithm starts from
the final state(W, t) and while moving backward visits, without computing, possible states until a state
already computed is reached. Then, the procedure is performed in reverse order, i.e. starting from the
state last identified in the backward process, it goes forward through computed states until a state(S, x)
is found which has not yet been computed. At this point, again it goes backward until a computed
state(S′, z) is reached. This procedure is repeated until the final state(W, t) is reached with a value
that cannot be bettered by any other alternative solution. The main advantage of this backward-forward
recursive algorithm is that only intermediate states needed are visited and from these only the feasible
ones that may yield a better solution are computed. As will be shown latter only anaverage of 21% to
25% of the states are computed.

After initialization, which is given by equation (2), the optimal tree costf(W, t) is obtained by
calling the recursive functionCompute(W, t).

Compute(S, x)

If f (S, x) 6= ∞ then return f (S, x) to caller
Set min = ∞
For each S′ ⊆ S

Call Compute(S \ S′, x)
If f (S \ S′, x) ≥ min then get another subset S′

For each z ∈ S′

If (x, z) 6∈ A then get another vertex z
r =

∑

i∈S′ ri

If r > uxz or r < lxz then get another vertex z
If f (S \ S′, x) + gx,z (r) ≥ min then get another vertex z
Call Compute(S′, z)
If f (S \ S′, x) + gx,z (r) + f (S′, z) ≥ min then get another vertex z
min = f (S \ S′, x) + gx,z (r) + f (S′, z)
Store information on subset=S′, vertex=z, flow=r, and f (S, x) = min.

End for
End for
Return f (S, x)

At the end of the procedure, iff(W, t) = ∞ then no tree network exists satisfying the flow limits;
otherwisef(W, t) gives the cost associated with an optimal tree. The solution structure, i.e. thearcs
used and the amount of flow routed through these arcs, is obtained by a recursive routine that backtracks
through the information stored during the computation of intermediate states.

The complexity of the DP algorithm is, in the worst case, of the orderO (n2n). As expected, the
complexity increases exponentially with the number of demand vertices. On the other hand, it should be
noted that the DP model can be applied to MCNFPs with arbitrary cost functions without deteriorating
its performance. As it will be shown in Section 4, the algorithm behaviour is independent of the type
and number of nonlinear arc costs.

4 Computational results

The algorithm presented in this paper was implemented in Fortran and computationally evaluated on
a 200MHz Pentium PC with 64 MB of RAM by solving a set of randomly generated test problems.
The problems considered are amongst the most difficult problems as all arcs have cost functions that
are neither convex nor concave. Three different types of cost functions are considered: type G1 and



type G2 are variations of the fixed-charge cost function where discontinuities other than at the origin
are introduced and type G3, which have arc costs that are initially concaveand then convex having a
discontinuity at the break point. Types G1 and G2 correspond to the so called staircase and sawtooth
cost functions, see [9], in our case with two segments.

gij(r) =







0, if r = 0,

−aijr
2 + bijr + cij if r ≤ R̂,

aijr
2 + bijr + cij + k otherwise,

whereaij = 0 for G1 and G2,k = bij for G1, andk = −bij for G2 and G3.
A graphical representation of the three cost functions considered is given in Figure 2.

Type G1 Type G2 Type G3

0

100

200

300

400

500

600

0 5 10 15 20

Flow – r

C
os

t–
g
(r

)

0

100

200

300

400

0 5 10 15 20

Flow – r

C
os

t–
g
(r

)

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20

Flow – r

C
os

t–
g
(r

)
Figure 2: Types of general nonlinear cost functions considered.

The problems data can be downloaded from the OR-Library [1] and a thorough description of the
generation procedure is provided in [5]. For each type of cost function five groups (groups 1 to 5 in [1])
of problems were considered, each group containing three problem instances of the same size. Problem
group is mainly defined by the expected ratio between the variable cost and the fixed cost (V/F ), which
was set to 0.01, 0.1, 1, 2, and 10. The value ofR̂ was set to 50% of the total demandR. Problem size,
given by the number of verticesn + 1, was set to 10, 12, 15, 17, and 19.

Overall, computational experiments were carried out on 225 unconstrained problem instances (15
instances were solved for each problem size and each type of cost function) and the computational results
are presented in the following section.

Table 1 summarizes the results for all test problems solved using the DP algorithm described in
this paper. The figures shown in this table were obtained as averages over 15 problem instances of a
given problem size and cost function type. In order to show even stronger evidence that the methods
performance is independent of cost function type we also give the results obtained for the same set of
problems considering linear cost functions (bijr).

Two measures of performance were computed for each problem: Time-the computational time
(h:mm:ss) required to find an optimal solution; andScomp-1the percentage of the state space that is
actually computed by the DP algorithm.

The results reported show that a significant reduction in the state space enumeration has been
achieved for all problems (only an average of 21% to 25% of states have tobe computed). On the
other hand, the computational time increases exponentially with problem size. Nevertheless, as ex-
pected, the computational time is independent of the cost function type, evenwhen comparing general
nonlinear and linear costs. The algorithms performance, can also be observed in the graph of Figure 3,
which displays the computational time versus problem size for each type of cost function.

1
Scomp =

no. of states computed
total no. of states × 100%.



Size Linear Cost Type G1 Cost Type G2 Cost Type G3
N Time Scomp Time Scomp Time Scomp Time Scomp

10 0:00:01 22.72 0:00:01 24.10 0:00:01 24.15 0:00:01 23.85
12 0:00:07 22.66 0:00:05 22.18 0:00:08 23.37 0:00:08 23.18
15 0:03:24 22.14 0:03:49 22.60 0:04:02 22.61 0:03:52 21.51
17 0:35:50 22.19 0:38:30 22.69 0:40:32 22.69 0:39:15 22.63
19 5:15:41 21.39 5:44:45 21.05 5:45:14 21.06 5:45:36 21.3

Table 1: Computational performance for each problem size and cost function type.

Problem Size

T
im

e
(m

in
ut

es
)

10 12 15 17 19
0

50

150

250

350

G1
G2
G3

Linear

Figure 3: The effect of problem size on computational time for each cost function type.

5 Conclusions

In this paper we presented a DP methodology for finding optimal tree-networks to general nonlinear
MCNFPs. In fact, the cost functions do not have to be differentiable norcontinuous. Also, they might
be neither convex nor concave having only to be separable and additive.

Not many work has been reported in literature involving MCNFPs with nonlinear arc costs that are
neither convex nor concave. The works found, although searching for any solution structure, address
only staircase and sawtooth cost functions.

Optimal trees are of importance since they constitute the simplest form of network which can be
used for distribution. Furthermore, even when a more complex network is being thought of, a tree is still
of great importance either as a starting point or as building block.

The algorithm implementation is based on the idea of gradually expanding the statespace graph
using a backward-forward procedure on each layer of the state space. One of its main advantages is that
the expansion of the state space graph requires information relating only to the part of the graph which
has already been generated. A large number of randomly generated testproblems of varying size and
complexity was used to evaluate the algorithms performance and the results have shown it to be effective
at solving small and medium size problems only (as time requirements grow exponentially).

References

[1] J. E. Beasley. Or-Library. http://www.brunel.ac.uk/depts/ma/research/jeb/info.html.

[2] D. P. Bertesekas.Network Optimization: Continuous and Discrete Models. Athena Scientific,
1998.



[3] R. E. Burkard, H. Dollani, and P. H. Thach. Linear approximations ina dynamic programming ap-
proach for the uncapacitated single-source minimum concave cost network flow problem in acyclic
networks.Journal of Global Optimization, 19:121–139, 2001.

[4] D. B. M. M. Fontes, E. Hadjiconstantinou, and N. Christofides. A dynamic programming approach
for solving single-source uncapacitated concave minimum cost network flow problems. 2003.
Under Revision.

[5] D. B. M. M. Fontes, E. Hadjiconstantinou, and N. Christofides. Upper bounds for single source
uncapacitated minimum concave-cost network flow problems.Networks, 41:221–228, 2003.

[6] D. B. M. M. Fontes, E. Hadjiconstantinou, and N. Christofides. A branch-and-bound algorithm for
concave network flow problems. 2004. Submitted.

[7] G. M. Guisewite. Network problems. In R. Horst and P. M. Pardalos,editors,Handbook in Global
Optimization, pages 506–648. Kluwer Academic, 1994.

[8] G. M. Guisewite and P. M. Pardalos. Algorithms for the single-source uncapacitated minimum
concave-cost network flow problem.Journal of Global Optimization, 3:245–265, 1991.

[9] D. Kim. Piecewise linear network flow problems. In C. A. Floudas and P.M. Pardalos, editors,
Encyclopedia of Optimization. Kluwer Academic Publisher, 2003.

[10] D. Kim and P. M. Pardalos. A dynamic domain contraction algorithm for nonconvex piecewise
linear network flow problems.Journal of Global Optimization, 17:225–234, 2000.

[11] B. W. Lamar. A method for solving network flow problems with general nonlinear arc costs. In
D.-Z. Du and P. M. Pardalos, editors,Network optimization Problems. World Scientific, 1993.

[12] T. L. Magnanti and L. A. Wolsey. Optimal trees. In M. O. Ball, T. L. Magnanti, C. L. Monma, and
G. L. Nemhauser, editors,Network Models, chapter 9. Elsevier, 1995.


