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Nota prévia 

 

Na elaboração desta dissertação, e nos termos do número 2 do Artigo 4º do 

Regulamento Geral dos Terceiros Ciclos de Estudos da Universidade do Porto e do 

Artigo 31º do D.L. 74/2006, de 24 de Março, com a nova redação introduzida pelo D.L. 

230/2009, de 14 de Setembro, foi efetuado o aproveitamento total de um conjunto 

coerente de trabalhos de investigação já publicados ou submetidos para publicação em 

revistas internacionais indexadas e com arbitragem científica, os quais integram alguns 

dos capítulos da presente tese. Tendo em conta que os referidos trabalhos foram 

realizados com a colaboração de outros autores, o candidato esclarece que, em todos 

eles, participou ativamente na sua conceção, na obtenção, análise e discussão de 

resultados, bem como na elaboração da sua forma publicada. O candidato também 

gostaria de acrescentar que estes artigos só foram incluídos nesta dissertação. Os 

artigos aqui apresentados que foram publicados estão representados de forma integral 

com alterações de formatação. 
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Resumo 

 

A maioria da diversidade encontrada em ilhas oceânicas operou-se através de 

radiações adaptativas. Este processo é promovido pela grande quantidade de nichos 

vazios disponíveis neste tipo de sistemas. “Hybrid swarms” são populações que 

resultam da hibridação de diferentes linhagens. Este processo potencia probabilidade 

de ocorrência de radiações adaptativas porque a combinação de novos genótipos pode 

aumentar a capacidade de adaptação das populações envolvidas. 

Desde o ano 2000 vários estudos descreveram uma diversidade genética 

superior ao esperado nas Ilhas Canárias o que levou à formulação da hipótese sobre a 

existência de “surfing syngameon”. Segundo esta hipótese, tal observação resultou da 

criação de “hybrid swarms ” através de múltiplos eventos de colonização do arquipélago. 

As populações daí resultantes divergem em espécies que estão ligadas por fluxo génico 

e evolvem dependentes umas das outras. Este tipo de espécies são conhecidas por 

"syngameon". Apesar da hipótese das “surfing syngameon” ter sido só aplicada para 

explicar a colonização de arquipélagos esta também poderá ser aplicada na colonização 

de cada ilha. Na tese aqui apresentada, testei se a esta hipótese esta correta usando 

as espécies de Micromeria endémicas das Ilhas Canarias como sistema.  

Micromeria distribui-se por todas as ilhas e habitats das Ilhas Canárias e 

apresenta uma grande diversidade morfológica. Este género contem um grupo de 

espécies que são morfologicamente idênticas, sendo o exemplo mais relevante as 

espécies previamente descritas como M. varia s.l. De acordo com estudos de filogenia 

molecular elas têm origens independentes, o que é congruente com um processo de 

evolução convergente. No entanto, considerando os processos de evolução reticulada 

descritos em ilhas oceânicas, estes resultados também podem ser uma consequência 

de introgressão de outras espécies da mesma ilha impedindo a deteção de uma origem 

comum usando apenas alguns marcadores. 

Nesta tese, foquei-me nas hipóteses relacionadas com a extensão da 

“syngameon hypothesis” para a colonização de cada ilha; e uma possível origem única 

do fenótipo de M. varia s.l. A primeira hipótese foi testada através da análise de padrões 

de estruturação genética, diversidade genética e fluxo-genético, numa perspetiva 

abrangente (arquipélago completo) e local (ilha de Tenerife). Para testar a segunda 

hipótese, dados genómicos foram usados para avaliar relações filogenéticas das 

espécies previamente descritas como M. varia s.l. Os objetivos visados só foram só 

concretizados através do desenvolvimento de novos marcadores moleculares. Três 

tipos de marcadores moleculares foram desenvolvidos: “exon primed and intron 
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spanning sequencing markers” (EPIC), microssatélites, e RAD-sequencing. Aqui, 

discuto o tipo de informação e de enviesamentos associados com os diferentes tipos de 

marcadores. 

Os microssatélites mostraram uma diversidade genética mais elevada do que 

esperada em populações ocupando ilhas/regiões mais novas e a uma maior 

diferenciação genética em taxa ocupando ilhas mais antigas. Adicionalmente, foram 

detetados sinais de recente e histórico fluxo genético. Estes resultados são congruentes 

com um cenário onde cada ilha colonizada diversas vezes. Diversidade genética de 

diferentes origens e combinada em populações bastante variáveis através de 

hibridação. Este processo impede a perda de diversidade genética por efeito fundador 

criando condições ideais para a ocorrência de processo de radiação adaptativa. A 

especiação dessas populações resultam em syngameons. Em regiões mais antigas o 

fluxo genético não e ao eficiente na manutenção de conectividade entre espécies. Assim 

barreiras para o fluxo génico podem ser estabelecidas resultando na exclusão dessas 

espécies da syngameon.  

Os dados de RAD-sequencing confirmara origens múltiplas para a morfologia M. 

varia s.l. suportando a ideia de evolução convergente. Adicionalmente, o sinal 

filogenético foi congruente com as zonas ecológicas presentes no arquipélago. Estes 

resultados em conjunto que a prevalência de fluxo-génico inter-especifico detetado com 

os microssatélites, levaram à criação da hipótese que este fenótipo apareceu apenas 

uma vez. Introgressão com espécies da mesma ilha contribuiu para a perda da maioria 

do genoma ancestral de M. varia s.l. Os genes responsáveis por esta morfologia foram 

selecionados durante o processo de adaptação.  

Esta tese disponibiliza novos recursos moleculares que podem ser usados quer 

em Micromeria quer em géneros filogeneticamente próximos. Adicionalmente, o quadro 

teórico desenvolvido nesta tese pode ser aplicado não só em Micromeria ou em ilhas 

oceânicas mas também noutros sistemas onde hibridação promove radiação adaptativa 

ou adaptação local. 

 

 

Palavras-chave: Ilhas oceânicas, Ilhas Canarias, Micromeria, radiação adaptativa, 

syngameon de espécies, microssatélites, RAD-seq, introgressão, hibridação, 

filogeografia, filogenómica, marcadores moleculares. 
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Abstract 

 

Most of the diversity found in oceanic islands is produced by adaptive radiation 

events. This process is promoted by the high availability of free niches and isolation from 

the mainland typical for these systems. Hybrid swarms, where different lineages are 

combined through hybridization, are more likely to result in adaptive radiation events 

because new combinations of genotypes increase the adaptive ability of populations. 

Since the year 2000 several studies suggested that genetic diversity was higher 

than expected in the Canary Islands, which led to the creation of the surfing syngameon 

hypothesis. This hypothesis states that this pattern of high genetic diversity is a 

consequence of the creation of hybrid swarms after multiple colonization events of the 

archipelago. These populations diverge into species connected by gene-flow and evolve 

dependently from each other, also known as species syngameon. Although the surfing 

syngameon hypothesis was originally developed to explain the colonization of the entire 

archipelago, the same process might be applied to the colonization process of each 

individual island. In the present thesis I intend to test if this is the case by using the 

Micromeria species endemic to the Canary Islands as a system. 

Micromeria is distributed throughout all islands and ecological zones of the 

Canary Islands, and it has a high morphological variation. This genus contains groups of 

morphologically identical species, the most remarkable example being the species 

previously classified as M. varia s.l. Based on molecular phylogenetic analyses they 

show independent origins, and since they occupy similar habitats on different islands, a 

case of convergent evolution is indicated. Alternatively, in light of the reticulate patterns 

described on oceanic islands, these results can also be a consequence of introgression 

with other species from the same islands. In this situation, the detection of a single origin 

is prevented if only a few markers are used.  

In this thesis I focus on and compare the hypothesis regarding the extension of 

the surfing syngameon hypothesis to the colonization of each island and the possible 

single origin of the M. varia s.l. phenotype. The first hypothesis was tested by analyzing 

genetic structure, gene-flow, and diversity patterns in wider (entire archipelago) and local 

(Tenerife) scales, including all Micromeria species. To test the second hypothesis, a 

genomic dataset was used to evaluate the phylogenetic relationships of the species 

previously classified as M. varia. These objectives could only be addressed by 

developing new sets of molecular markers. Three marker sets were developed: exon 

primed and intron spanning sequencing markers (EPIC); microsatellites; and RAD 
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sequencing markers. The type of information they provide and the biases associated 

with different types of markers are discussed. 

Microsatellite loci showed a higher genetic diversity than expected in populations 

occupying younger areas/islands, whereas there was a higher genetic differentiation 

among taxa occupying older regions. Additionally, signs of current and historical gene-

flow between species from the same and different islands were detected. These results 

are congruent with a scenario where each island is colonized multiple times. Genetic 

diversity from multiple sources is then combined into a highly diverse population through 

hybridization. This process prevents the loss of genetic diversity through the founder 

effect by creating ideal conditions for adaptive radiation. When these populations 

speciate the resulting species remain connected by gene-flow contributing for the 

expansion of the species syngameon. In older regions gene-flow stops being as effective 

in the remaining connected species, resulting in the establishment of reproductive 

isolation and thereby excluding them from the syngameon.  

The RAD-sequencing dataset, confirmed multiple origins for the species showing 

the M. varia phenotype, supporting the idea of convergent evolution. Moreover, the first 

time phylogenetic analyses was congruent with the distribution of ecological zones in the 

archipelago. These results together with the high prevalence of inter-specific gene-flow 

detected with microsatellites, led to the creation of the hypothesis that this morphology 

appeared just once and was spread through the archipelago. Introgression with other 

species from the same archipelago contributed to the loss of most of the ancestral M. 

varia s. l. genome. The genes responsible for this morphology were selected during the 

adaptation process. 

This thesis provides new molecular resources that can be used both in 

Micromeria species and in some closely related genera. Theoretical framework 

developed here may not only be applied for research focusing in Micromeria or in oceanic 

islands, but also in other systems where adaptive radiation or local adaptation is 

promoted by hybridization. 

 

 

Key words: Oceanic islands, Canary Islands, Micromeria, adaptive radiations, species 

syngameon, microsatellites, RAD-seq., introgression, hybridization, phylogeographic, 

phylogenomics, molecular markers. 
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1.1. Adaptive radiation and hybrid speciation 

 

Adaptive radiation events are diversification processes responsible for much of 

the biological diversity found today (Rundell and Price 2009). Some of the main 

examples of this evolutionary process are the Darwin Finches in the Galapagos (Grant 

and Grant 2002), the Anolis lizards in the Caribbean (Losos et al. 1998), and the cichlids 

from the African lakes (Seehausen 2006). This process occurs when an ancestral 

lineage comes into contact with a heterogeneous habitat and new species are created. 

Adaptive radiation is driven by divergent selection triggered by local adaptation, and 

results in an extremely rapid process of ecological speciation. Ecological speciation is 

the process in which populations occupying divergent niches differentiate from one 

another, becoming gradually reproductively isolated until they are considered different 

species (Schluter 2001).  

From the classical view, the main factors triggering adaptive radiation events are 

the presence of high amount of free niches (either by the appearance of new resources 

or the extinction of species previously occupying them), heterogeneous environments, 

and high competition (Losos 2010). Competition forces individuals to occupy new niches 

and adapt to new ecological conditions. During this process populations are subjected 

to different selective pressures resulting in rapid ecological speciation events. 

Descriptions of adaptive radiation mechanics are mostly based in inferences constructed 

from empirical data. Experimental work using microorganisms as a model confirmed the 

expectations formulated based on empirical data. Using Pseudomonas fluorescens as a 

model, Meyer and Kassen (2007) showed that competition and predation triggers 

radiation. Also using P. fluorescens, Rainey and Travisano (1998), and Brockhurs et al. 

(2007) showed that the availability of heterogeneous conditions and empty niches are 

limiting factors for adaptive radiation events. 

During biological invasions, multiple introductions contribute to the maintenance 

of high genetic diversity and promote local adaptation (Kolbe et al. 2004). The same is 

expected to happen during adaptive radiation events. High genetic diversity facilitates 

the adaptation of populations to new habitats promoting their differentiation (Arnold 2006, 

2015). With hybridization, new combinations of genotypes appear, which theoretically 

would expand populations’ ability to occupy new niches (Dyer and Rice 1999, Meimberg 

et al. 2009). This was the reasoning behind the creation of the hybrid swarm hypothesis 

from Seehausen (2004), where divergent lineages are combined in hybrid swarms which 

result in adaptive radiation events due to their high adaptive ability. Again, this theory 

has been supported by biological invasion studies. By studying the invasion process of 

the three spine stickleback species in Switzerland, Roy et al. (2015) found that the 
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creation of hybrid swarms contributed to the adaptation and diversification of this 

organism into the new habitat. Seehausen’s theory assumes that hybridization is 

common and that it plays a major role in the evolutionary process, which was previously 

not thought to be the case. The description of several examples of speciation with gene-

flow support this idea (i.e. Peters et al. 2007; Alves et al. 2008; Reid et al. 2012). 

The genetic consequences of introgression have been studied in detail by 

focusing on hybrid zones dynamics (i.e. Teeter et al. 2010; Nosil et al. 2012; Larson et 

al. 2014). These studies showed that some regions of the genome were more permeable 

to genetic-exchange than others. This is a consequence of strong, stabilizing selection, 

which maintains genotypes responsible for local adaptation. If this dynamic occurs, 

genomic regions being selected by local conditions will be highly differentiated between 

the two parent species, while neutral-behaving regions will be homogeneous. Over 

longer time scales, with multiple introgression events, genomes become mosaics where 

different regions show different evolutionary patterns (Linder and Reiseberg 2004). 

Lineage sorting also produces a similar incongruence pattern, but because it is random 

the resulting phylogenic signals cancel each other out (Durand et al. 2011). By excluding 

lineage sorting signals the remaining incongruence should be caused by introgression 

(Eaton and Rice 2013). This assumption is widely used to estimate the amount and 

direction of introgression (Jeffroy et al. 2006; Martin et al. 2013). In the present study I 

evaluated the effects of hybridization during adaptive radiation events. 

 

1.2. Islands as models to study evolution 

 

Oceanic islands are usually created by volcanic activity, formed over oceanic 

plates that have never been connected to a continent (Whittaker and Fernandez-

Palacios 2007). These systems are considered to be natural laboratories to study 

evolution (Losos and Ricklefs 2009). They are generally small with well-defined 

boundaries and simplified biota, facilitating the interpretation of evolutionary patterns. 

Moreover, we know that all biota arrived there through colonization, having had to adapt 

to new conditions. The fact that oceanic islands have a volcanic origin and are relatively 

young makes them particularly interesting for geological studies, and a lot of information 

on that matter is available (i.e. Carlquist 1980; Holcomb 1981; Ancochea et al. 1990; 

Carracedo et al. 2002). By incorporating information such as island age, and frequency 

and time of geological events it is possible to have a better perspective of time and tempo 

of the evolutionary processes. Islands can work as replicates of themselves where 



 

5 FCUP 
Capter1: General Introduction 

similar process can be studied in parallel on multiple archipelagos and islands (Losos 

and Ricklefs 2009). 

Many factors influence evolutionary patterns on oceanic islands. The main one 

are geomorphological dynamics associated with volcanic activity and erosion 

(Fernández-Palacios et al. 2011). Volcanic activity contributes to the emergence of 

islands and increases their altitudinal gradient. When it stops, erosion is the main factor 

shaping island morphology (Figure 1). Initially this process increases topographical 

complexity, but ultimately islands become flat and sink. There are several models relating 

these dynamics with speciation rate and species richness (Whittaker and Fernandez-

Palacios 2007; Whittaker et al. 2008; Chen and He 2009; Rosindell and Phillimore 2011). 

The most famous is the general dynamic model of island biogeography (GDM), where 

speciation rate is dependent on an island’s carrying capacity, which is in turn dependent 

on island area and topographic complexity (Whittaker and Fernandez-Palacios 2007; 

Whittaker et al. 2008). According to GDM, speciation rate increases with an island’s 

altitudinal gradient and it reaches its peak concurrent with the island’s maximum 

topological complexity, which results in the increase of species richness. When islands 

start to sink, extinction overcomes the speciation rate and leads to a decrease in species 

richness. This model was later supported by empirical data relating endemism with 

topographic data in the Canary Islands (Otto et al. 2015). Additional models were 

proposed, where the main difference consisted of the weight given to immigration rate 

(Chen and He 2009; Rosindell and Phillimore 2011). Chen and He (2009) suggested that 

speciation rate does not increase as quickly alongside island carrying capacity if the 

immigration rate from the mainland is still high, because gene-flow will prevent 

differentiation and consequently speciation. This provides evidence that geology is not 

the only factor shaping evolution on islands. 

Fig. 1. Representation of island ontology and how species richness and speciation is affected by this process according 

to the GDM model from Whittaker et al. (2007, 2008). 
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Their isolation from the mainland and the high availability of free niches make 

oceanic islands particularly prone to adaptive radiation events (Heaney 2000; Whittaker 

and Fernandez-Palacios 2007; Losos and Ricklefs 2009). These same factors may 

contribute to a high prevalence of hybridization (Francisco-Ortega et al. 1996), which, 

according to Seehausen’s hybrid swarm theory, promotes adaptive radiation events. 

Herben et al. (2005) and Saunders and Gibson (2005) proposed that a process of 

multiple colonization events followed by hybridization could be a frequent occurrence in 

archipelagos close to the mainland and could promote species adaptation. Nevertheless, 

until recently, colonization on islands was thought to occur through single introduction 

events. According to Silvertown (2004) and Silvertown et al. (2005), after the first 

colonization the resulting individuals would occupy their respective niche, out-competing 

all subsequent colonizers. 

When compared with their mainland relatives, Canarian flora is genetically more 

diverse than expected (Francisco-Ortega et al. 2000; García‐Verdugo et al. 2015). This 

is an indication that the founder effect is not very pronounced, which can only be 

explained by multiple colonization events (García‐Verdugo et al. 2015). This finding 

resulted in the creation of the surfing syngameon hypothesis by Caujapé-Castells (2011). 

He suggested that islands work as allelic sinks from the mainland, where individuals from 

multiple sources are combined in hybrid swarms (Fig. 2). Species resulting from these 

highly diverse populations are connected through gene-flow and evolve as unit (Pérez 

de Paz and Caujapé-Castells 2013), which is the definition of a syngameon (Grant 1981). 

According to this hypothesis, islands closer to the mainland constantly experience 

colonization from the mainland, maintaining high levels of diversity and low levels of 

differentiation (Fig. 2). The other islands are colonized mainly by the syngameon, 

resulting in the loss of genetic diversity due to the founder effect. According to Caujapé-

Castells (2011), this will allow for genetic differences to be accumulated in a process 

similar to allele surfing from an expanding population (Excoffier and Ray 2008). Thus the 

surfing syngameon hypothesis predicts that different evolutionary processes occur in 

parallel in one archipelago, such that on some islands the accumulation of genetic 

diversity is more prevalent, while on others differentiation events are more dominant. 

These expectations have been met by Pérez de Paz and Caujapé-Castells (2013) and 

García‐Verdugo et al. (2015) where, in the Canary Islands, genetic diversity was 

positively correlated with distance to the mainland. This thesis will focus on genetic 

diversity and differentiation patterns of a group of taxa from the Canary Islands. 
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Fig. 2. Schematic representation of the “surfing syngameon” hypothesis proposed by Caujapé-Castells (2011). Arrows 

correspond to likely colonization events and the symbols to different alleles of the same locus. Islands closer to the 

mainland receive multiple colonization events preventing the loss of genetic diversity due to the founder effect. These are 

integrated in the island’s genepool through hybridization and speciation results in species syngameon. Colonization of the 

remaining islands is made from the syngameon. Because colonization from the mainland is unlikely, the founder effect 

contributes to a loss of genetic diversity, and together with selection more genetic differences are established. 

 
1.3. Study system 

 

Canary Islands 

The Canary Islands archipelago comprises seven islands located between 100 

Km to 490 Km away from the West Saharan coast. The islands were created by a hotspot 

movement from east to west resulting in an age gradient in the same direction (Fig. 3). 

The eastern most islands Lanzarote and Fuerteventura, formerly a single island, are 15.5 

Ma and 20 Ma, respectively (Fernández-Palacios et al. 2011). Gran Canaria, the third 

oldest island with around 15 Ma, was formed by a subsequent addition of land, resulting 

in two parts with different ages (del-Arco et al. 2002). The southwestern half of Gran 

Canaria is mostly composed of Miocene substrates (Palaeo-canaria) while the 

northeastern part of Pliocene rocks (Neo-canaria). Tenerife is also composed of 

subtracts with different ages, but they resulted from different processes. In the late 

Miocene there were three islands in that region (Ancochea et al. 1990): Adeje (11.6-3.5 

Ma), Teno (6.7-4.5 Ma), and Anaga (6.5-3.5 Ma). These were later connected by volcanic 

eruptions occurring in the late Miocene-Pliocene (around 2 Ma), producing Tenerife’s 

current shape. As a result, Tenerife is composed of substrates from different ages and 

origins. The remaining islands do not have such complex geological histories, and vary 

in age from 10 Ma (La Gomera) to 2 Ma and 1 Ma (La Palma and El Hierro, respectively). 
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The Canary Islands are in different stages of the GDM (Whittaker et al. 2008, Fernández-

Palacios et al. 2011). Lanzarote and Fuerteventura are highly eroded and are almost in 

the sinking stage. Volcanic activity has ceased on Gran Canaria and La Gomera, so 

erosion processes are the major factors shaping these islands. Tenerife already 

achieved its maximum altitudinal range, whereas the other islands are still increasing 

their altitudinal range.  

The Canary Islands are part of the phytobiogeographic region of Macaronesia, 

which is known for high levels of endemism. In fact, just in the Canary Islands, a total of 

3857 endemic terrestrial fungi, plants and animal species are described (Arechavaleta 

et al. 2009). These high levels of endemism are related to the high diversity of ecological 

zones created by the large altitudinal range found in these islands (Juan 2000). These 

ecological zones vary in their composition and location depending on the island slope. 

The northern slopes are wetter because they receive moist air from the trade winds. The 

following ecological zones are found (Juan 2000): coastal desert; arid to semi-arid 

shrubland, laurel forest, pine forest, and subalpine desert. The southern slopes are drier 

and the vegetation belt limit extends to around 300 m higher in altitude, where it is too 

dry for laurel forest to establish (Juan 2000).  

Fig. 3. Map of Macaronesia region. The bottom right map represents the seven Canary Islands with their names and ages 

in millions of years (according to Juan et al. 2000). Picture was taken from Puppo (2015). 
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Flora in the Canary Islands has been described to be mostly of western 

Mediterranean origin (Juan et al. 2000; Carine et al. 2004). However, African and 

America origins have been reported for several genera (i.e. Olmstead and Palmer 1997; 

Juan et al. 2000; Galbany-Casals et al. 2009; Jaén-Molina et al. 2009). 

The fact that the Canary Islands have a well-known geological history makes 

them an ideal system to test evolutionary biology hypothesis, as it is possible to relate 

species diversification patterns with the main geological events. Moreover, the fact that 

we know when these events occurred gives us a better idea of their diversification time 

and tempo. As a result there are many studies focusing on the evolution of both animal 

and plant taxa in the Canary Islands (i.e. Francisco-Ortega et al. 2001, Jorgensen and 

Olesen 2001). Most of the phylogenetic studies done in the archipelago show a 

monophyletic origin, which is unexpected given its proximity to the mainland. However, 

as mentioned in the last section, this may be due to hybridization and the low amount of 

molecular markers used per study, making it impossible for multiple origins to be 

detected (Herben et al. 2005; Caujapé-Castells 2011). Inter-island colonization has been 

described as following mostly a stepping stone model (Sanmartin et al. 2008), which also 

may not be the case when an island is occupied by lineages from multiple sources that 

hybridize after establishment. In the present work, some of these questions are 

discussed using the Micromeria genus in the Canary Islands as a model. 

 

Micromeria species from the Canary Islands 

Micromeria Benth. is a genus of around 52 species distributed throughout the 

Mediterranean basin and Macaronesia, and in some parts of Africa and Asia (Bräuchler 

et al. 2008). It belongs to the family Lamiaceae and it is composed of shrubs, subshrubs 

and herbs with monoecious flowers pollinized by insects. Fruits are mostly dispersed by 

wind, but ants and water can also contribute to this process. Macaronesia presents a 

hotspot of biodiversity for this genus, with 23 currently described species all of them 

being endemic to the archipelagos of Canary Islands, Madeira and Cape Verde (Perez 

de Paz 1978; Bräuchler et al. 2008; Puppo and Meimberg 2015a, 2015b). Micromeria 

forbesii, the only species described in Cape Verde, has an origin independent from the 

remaining Macaronesia taxa (Bräuchler et al. 2005), whereas the remaining species on 

the Canary Islands and Madeira have been reported to be monophyletic (Bräuchler et 

al. 2005; Meimberg et al. 2006; Puppo et al. 2015a). 

On the Canary Islands, Micromeria was initially described in 16 species (Perez 

de Paz 1978) using only morphological characters (Table 1). This classification included 

three species found on more than one island: M. varia (all with exception of La Palma); 
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M. hyssopifolia (Tenerife and El Hierro); and M. lasiophylla (Tenerife and La Palma). The 

remaining species were single-island endemics. With the inclusion of molecular 

approaches, it was verified that these widespread species corresponded to multiple 

lineages (Meimberg et al. 2006; Puppo et al. 2015). Based on this observation, Puppo 

and Meimberg (2015a, 2015b) reclassified this genus, resulting in the following changes 

(Table 1): M. varia was divided into several single-island endemics (with the exception 

of Lanzarote and Fuerteventura, where the same species is found); M. lasiophylla from 

La Palma was considered to be M. herpyllomorpha; and M. varia and M. hyssopifolia 

from El Hierro were classified into a new species (M. hierrensis).  

 

Table 1. List of Micromeria species described in the Canary Islands according to their current and previous classifications. 

Reclassified species are in bold. 

Island 
Current classification (Puppo 

& Meimberg 2015a, 2015b) 
Previous classification (Pérez de 

Paz 1978) 

Lanzarote M. mahanensis M. varia rupestris 

Gran Canaria 

M. pineolens M. pineolens 

M. leucantha M. leucantha 

M. helianthemifolia M. helianthemifolia 

M. benthamii M. benthamii 

M. lanata M. lanata 

M. tenuis M. tenuis 

M. canariensis M. varia canariensis/meridialis  

La Gomera 

M. gomerensis M. varia gomerensis 

M. lepida M. lepida 

M. pedro-luisii M. varia varia 

Tenerife 

M. rivas-martinezii M. rivas-martinezii 

M. glomerata M. glomerata 

M. teneriffae M. teneriffae 

M. lasiophylla M. lasiophylla 

M. lachnophylla M. lachnophylla 

M. hyssopifolia M. hyssopifolia 

M. varia M. varia 

M. densiflora M. densiflora 

La Palma M. herpyllomorpha M. herpyllomorpha / M. lasiophylla 

El Hierro 
M. hierrensis 

M. varia hierrensis / M. 
hyssopifolia 

 

Micromeria species distribution patterns vary from island to island (Fig. 4). 

Micromeria mahanensis has a patchy distribution in both Lanzarote and Fuerteventura. 

El Hierro and La Palma also have only one species, but these are evenly distributed 

throughout the island. La Gomera has three species with highly overlapping distribution 

ranges. In fact, there are populations where the three species grow together, and 



 

11 FCUP 
Capter1: General Introduction 

morphological intermediates of M. lepida and M. pedro-luisii are found. Gran Canaria 

and Tenerife have the highest number of species with eight and seven, respectively. 

Fig. 4. Micromeria species distribution and pictures based on Pérez de Paz (1978) and Puppo and Meimberg (2015a, 

2015b). Micromeria photos were taken by Pamela Puppo, Harald Meimberg and Pedro Luis Perez-de-Paz. The photo 

from M. mahanensis was taken from http://www.floradecanarias.com 

 

http://www.floradecanarias.com/
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In Tenerife, species have a mostly parapatric distribution with some degree of 

overlap (Fig. 4) where morphological hybrids can be found. On this island, there are three 

narrowly distributed species restricted to the older part of the islands: M. densiflora 

restricted to Teno, and M. glomerata and M. rivas-martinezii restricted to Anaga. The 

following species were included in the Spanish IUCN red list: M. rivas-martinezii and M. 

glomerata as critically endangered, and M. densiflora as endangered. Micromeria 

teneriffae is distributed in fragmented patches from Anaga to the southern coast of the 

island. The distribution of the remaining species seems to be related to habitat 

composition. Micromeria varia is found in the Northern coast from Anaga to Teno. 

Micromeria hyssopifolia occupies most of the central part of the island, spanning habitats 

from coastal desert to laurel forest. Micromeria lachnophylla and M. lasiophylla replace 

M. hyssopifolia at high altitudes, the former occupying pine forest up to high desert, the 

latter being found in the Las Cañadas cliffs at the skirts of the Teide volcano. 

Species in Gran Canaria overlap in most of their distributions, and many 

morphological intermediate forms are found where populations from different species 

grow together (Fig. 4). Two species, M. leucantha and M. pineolens, have a highly 

restricted distribution. They are morphologically very different from the other species and 

are included in the IUCN red list as endangered. 

Micromeria species in the Canary Islands seem to have resulted from an adaptive 

radiation event, given that the distribution of most species is correlated with ecological 

zone composition (Meimberg et al. 2006). However, many of the species distribution 

seems to have been influenced by geological events as well (Puppo et al. 2014, 2015). 

Micromeria is an ideal system for investigating the evolutionary biology of biota 

on the Canary Islands. First, it occupies all islands allowing archipelago-wide inferences 

to be made. Second, it occupies all ecological zones, therefore showing a wide range of 

adaptations that cannot be studied in a more restricted genera. Third, publications 

focusing on the evolution of Micromeria in the Canary Islands using molecular data have 

been available since 2006 (Meimberg et al. 2006), providing a theoretical framework and 

a wide variety of available molecular resources. 

 

Micromeria phylogenetic patterns and evolutionary predictions  

According to sequence data from both nuclear and plastid genes, Micromeria is 

divided into two lineages (Meimberg et al. 2006; Puppo et al. 2015a; Fig. 5): an eastern 

lineage composed of the taxa found on the islands of Lanzarote, Fuerteventura, and 

Gran Canaria; and a western lineage composed of taxa found on Tenerife, La Palma 

and El Hierro. Species from both lineages are found on La Gomera, M. lepida and M. 

gomerensis from the eastern lineage, and M. pedro-luisii from the western lineage. 
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Within these lineages, Tenerife and Gran Canaria are paraphyletic relative to the other 

islands, indicating that they were probably the main source of colonization (Puppo et al. 

2015a). The closest related species from the mainland has not been found yet, thus a 

close outgroup was not included in phylogenetic analyses so far. For that reason the 

directionality in this inference is not clear, and final conclusions regarding the starting 

point of Micromeria colonization have not yet been reached. 

 

Fig. 5. Phylogeny of Micromeria genus in the Canary Islands and Madeira based on the work from Puppo et al. (2015a). 

The tree is not a true phylogenetic analysis, but rather a representation of the conclusions drawn in their publication. The 

terminals do not correspond to real individuals, and branch lengths to not correspond to real degree of differentiation 

among species. 
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In Puppo et al. (2015a), the species previously classified as M. varia from the 

eastern group seem to have a common origin (Fig. 5). That M. lepida has an independent 

origin from M. gomerensis indicates that La Gomera was colonized at least three times. 

This finding supports the hypothesis that multiple colonizations can occur. The remaining 

islands seem to have been colonized only once: El Hierro from central Tenerife and La 

Palma, although with low support, from the region of Teno. The molecular markers used 

by Puppo et al. (2015a) were not powerful enough to recover potential origins of M. 

pedro-luisii. According to the predictions from Herben et al. (2005) and Caujapé-Castells 

(2011), the apparent single origin found on most islands can be a consequence of 

introgression directly after colonization from multiple sources.  

Puppo et al. (2014) found that the phylogeographic patterns in Tenerife were 

congruent with the island’s geological history. The species restricted to the older parts of 

the island and M. teneriffae corresponded to older lineages (between 6.7 to 4.5 Ma), 

while the central species resulted from a more recent divergent event (around 4 Ma). 

This pattern is congruent with the colonization of the central part of Tenerife by species 

from the older regions. This could have resulted in a hybrid swarm that differentiated in 

the central species. Considering the predictions made by Caujapé-Castells (2011), the 

resulting species are most likely connected by a syngameon. Additionally, given their 

parapatric distribution of species in Tenerife, hybrid zone dynamics may be established 

in their contact zones.  

Another consequence of the phylogenetic patterns recovered in Puppo et al. 

(2014, 2015a) is the independent origin of several morphological forms, M. varia s.l. 

being the most prominent. This phenotype seems to have appeared once in the eastern 

lineage and possibly several times in the western islands, raising several questions 

regarding the origin of this phenotype. Parallel or convergent evolution are likely 

scenarios, however if gene-flow plays a role in Micromeria diversification other 

hypotheses are plausible. This morphology may actually have appeared only once during 

early stages of Micromeria evolution, and it is undetectable because of high introgression 

with other lineages during Micromeria dispersal throughout the archipelago.  

All of the predictions outlined above will be tested within this thesis. Prior to this 

thesis, all related work had been done with eight exon primed intron covered markers 

(EPIC), which are likely under selection and thus less permeable to gene-flow between 

species. In order to better test hypotheses involving hybridization neutral markers need 

to be used. In the case of Micromeria, this became possible by the development of 16 

microsatellite markers by Puppo et al. (2015b). The implications of the uses of each set 

of markers will also be discussed in the present work. 
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1.4. Molecular markers: applications and development 

 

The use of molecular markers have revolutionized studies of evolutionary biology 

(Avise 2012). With them it is possible to access genetic information directly at its source 

of variability. Among others, some of the advantages of using molecular markers 

compared to morphological data are: their ability to assess homology more accurately; 

their ability to access the genetic basis of phenotypic variation; their almost unlimited 

source of information, since all nucleotides combinations can potentially work as 

characters. 

Several types of molecular markers were developed across time depending on 

the technology available (Schlötterer 2004). Among them it is possible to find markers 

accessing: protein information (allozymes); DNA variability without previous sequence 

knowledge (RAPD, ISSRs, and AFLPs); DNA variability requiring previous sequence 

knowledge (microsatellites, SNPs, and sequence of orthologous regions). The last group 

of markers became more popular because the analyzed genomic region is known, and 

due to the fact that they are able to recover codominant information. Their appropriate 

application also depends on the information being sought. For example, microsatellites 

are preferentially used for comparisons within the same species (Ellegren 2004), while 

sequencing markers for deeper taxonomic comparisons (Thomson et al. 2010). 

Additionally, because microsatellites are mostly neutral, they are widely used to access 

neutral processes such as demographic patterns (Selkoe and Toonen 2006). 

Sequencing markers and SNPs occurring in coding regions can be used to test the effect 

of selection on evolutionary patterns (Morin et al. 2004). In the present study we used 

microsatellites to evaluate structure and connectivity patterns of Micromeria, thus we 

give a particular emphases to these markers. 

Marker development often requires previous knowledge of the genome 

sequencing. Accessing this information with Sanger technology is very expensive and 

labor intensive (i.e. Zane et al. 2002; Selkoe and Toonen 2006). With the appearance of 

second generation sequencing platforms, also known as next generation sequencing 

(NGS), some of these limitations were surpassed (Davey et al. 2011; Gardner et al. 

2011). These technologies allowed the sequencing of millions of base pairs at a relatively 

low price, allowing the assessment of genomic sequence information that could be used 

for primer design. For microsatellite searches, the most common approach was the use 

of the 454 platform from both enriched and non-enriched libraries (i.e. Allentoft et al. 

2009; Santana et al. 2009; Csencsics et al. 2010). In the present study I present 

examples of both approaches. Nevertheless, the genotyping of these markers was still 
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done with traditional methods, such as capillary electrophoresis, which presents a 

limitation to the amount of throughput produced.  

Recently new genotyping approaches incorporating NGS were developed, 

allowing the screening of thousands of markers for non-model organisms. All of these 

require a previous reduction of genome complexity before sequencing (Cronn et al. 

2012). The most common one uses restriction enzymes to sequence flanking regions 

associated to their recognition sites. This is called restriction associated DNA (RAD), and 

it was first presented by Baird et al. (2008). Since then several variations of this approach 

were developed, creating a new class of molecular markers. Alternative methods using 

NGS to sequence amplicons (Egan et al. 2012) or libraries previously enriched for 

specific genes (McCormack et al. 2013) were also developed, but they require some a 

priori knowledge regarding the genome sequence. With RADs this is not necessary, and 

both coding and non-coding regions are sequenced. In this thesis is presented a variation 

of the RAD protocol and its ability in recovering highly detailed phylogenetic patterns for 

Micromeria. 

 

1.5. Objectives and thesis outline. 

 

The main goal of this thesis is to evaluate several hypotheses regarding the effect 

of continuous gene-flow during the evolution of Micromeria on the Canary Islands. More 

specifically, I will: 

I) test the influence of island geological history in Micromeria evolution; 

II) evaluate the possibility of multiple colonization events during the dispersion 

of the genus throughout the Canary Islands; 

III) investigate the role of gene-flow and hybridization in genetic diversity and 

diversification ability; 

IV) study the relation between Micromeria ecological requirements and 

phylogenetic relationships; 

V) focus on the development of molecular resources to test the hypotheses 

outlined in the previous objectives. 

The work developed during my thesis is presented in six papers, four of them 

already published. These are divided in three chapters: Molecular marker development 

(Chapter 2); Evolutionary patterns of Micromeria in the Canary Islands (Chapter 3); and 

Distribution of adaptive traits during adaptive radiation (Chapter 4). The work presented 

in these chapters goes from marker development to their application. 
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Chapter 2 focuses on molecular marker development. It consists of three 

published papers in which molecular markers are developed for several taxa. In the first 

paper, several EPIC markers were developed to be used with Micromeria and other 

Lamiaceae. These were then used in the work from which the hypotheses tested in this 

thesis are based on (Puppo et al. 2014, 2015; Puppo 2015). The other two papers focus 

on microsatellite marker development for Catha edulis and Juniperus oxycedrus. The 

Catha paper was the first in a series of three microsatellite development papers 

addressing NGS shotgun sequencing data. The selection approach was described in 

detail in this publication, and it was extended in the Juniperus paper. The microsatellite 

markers for Micromeria were developed in the context of another PhD thesis (Puppo 

2015), using the same approach presented in the Juniperus and Catha papers. By 

discussing the papers presented in this section it will be possible to better understand: 

1) how molecular marker selection affects future inferences; 2) marker efficiency in 

recovering phylogenetic and phylogeographic patterns; 3) marker utility in the genomic 

era. 

Chapter 3 is the core of this thesis and where most of the proposed objectives 

are addressed. It is composed of two publications, one of them previously published 

(Puppo et al. 2016). Here we tested our hypothesis of how island geological features and 

gene-flow influence the evolution of Micromeria. This was done in two different 

geographical scales: on Tenerife and on the entire archipelago. In this section the 

following questions are discussed: 1) are the phylogeographic patterns of Micromeria 

related to an island’s geological features; 2) is multiple colonization an important process 

in the occupation of new islands; 3) does hybridization and gene-flow play a role in 

Micromeria evolution. 

Chapter 4 focuses on the relation between ecological conditions with the 

phylogenetic patterns of Micromeria. The results are interpreted in a scenario where 

introgression can play a role in the distribution of adaptations. This is done by studying 

the phylogenetic relationships of the species previously classified as M. varia. This 

chapter aims to answer the following questions: 1) are there new M. varia s.l. lineages; 

2) did this phenotype appear completely independently of the known lineages; 3) does 

multiple colonization and introgression play a role in the distribution of Micromeria 

ecological traits. 

Chapter 5 is dedicated to the discussion of the main findings of the separate 

papers and the overall relationships between them. This begins with a discussion of the 

insights that this thesis contributed toward a better understanding of evolution on oceanic 

islands. The evidences of evolution with gene-flow and its impacts in Micromeria 

evolution are examined, as well as how this process can be influenced by an island’s 
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geological history. Afterwards, the influence of genetic-exchange on morphological traits 

is addressed in two parts: first, in how species morphological integrity can be maintained 

despite hybridization; and second, how the mechanisms outlined in the surfing 

syngameon hypothesis can contribute to the appearance of morphologically identical 

species, such as the ones showing the M. varia phenotype. The final discussion point 

centers on molecular markers and the different biases and information associated with 

them. This opens up an opportunity to discuss new genomic approaches and whether it 

is still worthy to invest in classical genotyping strategies, as well as new research ideas 

that relate to the main themes of this thesis.  

Through this comprehensive approach I hope to have covered most of the factors 

shaping the evolutionary patterns of Micromeria in the Canary Islands, from both 

methodological and genetic perspectives. 
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genes for multi locus, species level analyses in the mint family 

(Lamiaceae) 
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Vairão, R. Monte-Crasto, 4485-661 Vairão, Portugal 

 

 

Abstract 

The use of single copy nuclear markers is of increasing importance in plant 

phylogenetics. The generally higher level of variability compared to chloroplast DNA and 

the ability to use incongruence in a multilocus analysis to determine reticulation patterns 

makes these kinds of sequence based markers especially useful for species level 

investigations. However, the prevalence of gene duplication that results from the high 

frequency of polyploidization events during the evolution of higher plants can impede 

marker development especially for groups lacking model organisms. 

Here, we present the strategy and results of marker development for phylogenetic 

analysis in Micromeria, using publicly available DNA sequences and ESTs from related 

genera from Lamiaceae, subfamily Nepetoideae. By eliminating markers with signatures 

of duplication during four steps of marker development, we were able to select 19 primer 

pairs that resulted in orthologous products for all the species studied. This corresponds 

to 23% of the initial 84 primer pairs designed. 

Using an initial sampling of eight individuals, we tested the markers for support 

of phylogenetic hypotheses related to the evolution of Micromeria on the Canary Islands. 

While some hypotheses were supported by all markers, an east west split, with a closer 

relationship between the species of Tenerife and Madeira on one hand and the ones 

from Gran Canaria and the eastern islands on the other is supported by 12 markers but 

contradicted by the remaining seven. This indicates that reticulation and inter-island gene 

flow played a role in the evolution of Micromeria. 

 

Keywords: Micromeria; Lamiaceae; Nepetoideae; EPIC marker; Single copy gene 

 

 

Introduction 

The use of nuclear gene sequence information is of increasing importance to 

resolve deep or species level phylogenies. Low-copy nuclear genes are not only useful 
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because of their potentially rapid evolutionary rate (Sang, 2002, Small et al., 2004 and 

Choi et al., 2006) but also because they constitute a nearly unlimited source of markers 

on different variability levels and are essential for detecting introgression, hybridization, 

and allopolyploidization events (Wendel and Doyle, 1998, Sang, 2002 and Duarte et al., 

2010). Depending on the level of variability, nuclear gene derived markers can be 

classified into two classes: (1) nuclear protein coding regions (NPLCs) and (2) intron 

regions, which are flanked by exons that provide conserved primer binding sites (EPIC; 

Thomson, 2010). Coding sequences tend to be conserved, so NPLC markers are 

preferentially used in phylogenies that cover a broad range of taxa. EPIC markers, 

however, have higher variability and are useful for studies using closely related species 

and intra-species comparisons. On the species level, their high variability results in more 

resolved phylogenies and can constitute a significant improvement compared to 

organelle DNA phylogenetic inferences (Peters et al., 2005, Beltran et al., 2002 and 

Sang, 2002). EPIC markers can also be applied to determine allele frequencies using 

the sequences in haplotype or SNP analysis and have been shown to have a high 

potential in population genetic studies (Backström et al., 2008 and Thomson, 2010). 

Especially in cases of rapid speciation events, genomic DNA may not be 

sufficiently diverged to resolve a phylogeny with only one locus (Seehausen et al., 2003). 

In such cases, multiple independent nuclear loci can then provide the variability 

necessary for reliable phylogenetic analysis (Beltran et al., 2002 and Sang, 2002). 

Methods developed in recent years allow for determination of species trees from 

datasets using coalescence or Bayesian approaches (Murphy et al., 2001, Li et al., 2007, 

Rowe et al., 2008 and Edwards, 2009) and provide resources to apply multiple, highly 

variable EPIC markers for phylogenetic analysis. 

Success in the development of EPIC markers depends highly on the genomic 

resources available for a certain taxonomic group. One approach to develop such 

markers is the comparison between two genomes and the design of primers in conserved 

exon regions. This approach results in markers theoretically suitable for the taxonomic 

range between the species used for the initial genomic comparison (Li et al., 2007) and 

can be especially applied to develop universal NPLC markers. For EPIC marker 

development, it is desirable to include species closely related to the target group in order 

to identify polymorphisms in the potential primer binding sites. Increasing dissimilarity 

between the source genomic sequences used for primer design and the target genomic 

sequences will result in a decrease of PCR amplification. 

While there is an ever-increasing number of newly sequenced genomes (130 in 

progress at Genbank with 30 completed or in assembly as of April 2011), for most non-

model plants whole genome sequences are not available. One way to overcome this lack 
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of complete sequencing data is to use transcript libraries for marker creation. Since 

primer binding sites should be preferentially located in conserved DNA regions, 

transcripts can be used for comparisons and subsequent marker development, for 

example as cDNA libraries (Whittall et al., 2006) or ESTs (Choi et al., 2006 and 

Townsend et al., 2008). 

The use of nuclear genes in phylogenetic analyses of plants is impeded by a high 

frequency of gene duplication. Only a small subset of genes exist in low copy numbers 

across the genome, due to independent gene duplication events or polyploidization, i.e., 

whole genome duplication (Small et al., 2004 and Wu et al., 2006). Polyploidization is 

one of the major evolutionary forces in Angiosperms (Adams and Wendel, 2005) and it 

is assumed that all recent angiosperms underwent at least one polyploidization event 

during their evolution, leading to an increased level of duplicated loci and the existence 

of gene families for most genes (Bodt et al., 2005). The genome tends to lose redundant 

regions by a process known as diploidization, which explains the small sizes of some 

genomes even after polyploidization (Comai, 2005). The most prominent example is 

Arabidopsis thaliana (L.) Heynh. that experienced several polyploidization events but has 

one of the smallest genomes in angiosperms. Nevertheless, plants with polyploidy in 

their evolutionary history show elevated levels of duplicated genes even after reduction 

of genome size (Adams and Wendel, 2005). Consequently, more effort is required in 

marker development and special attention must be given to verify and exclude 

paralogous genes that could confound phylogenetic analyses. 

It has been estimated that around 10% of the genes in plant genomes are single 

copy, presumably because of a detrimental dosage effect after duplication (Duarte et al., 

2010). These dosage affected duplicated genes would likely return to a single copy state 

within a few generations. Comparisons between whole genome sequences allowed the 

discovery of single copy dosage sensitive genes, which were then used to develop 

conserved primers of variable loci for a broad range of taxa (Duarte et al., 2010). 

However, if a locus is not maintained in a single copy state by a biological mechanism, 

it is not possible to conclusively test a priori if a marker is duplicated or not without testing 

multiple sequences and screening the phylogeny or deviation of Hardy Weinberg 

Equilibrium (HWE). The high prevalence for gene duplication in plants has several 

limitations on marker development as error sources in phylogenies (Thomson, 2010): (I) 

Most markers developed will target multiple paralogous copies in the PCR product 

preventing direct sequencing. This is a consequence of length mutations in the intron 

and can be detected in gel electrophoresis if there is a sufficient length difference. (II) All 

heterozygotes detected in duplicated genes will constitute polymorphisms between the 

paralogs rather than alleles, leading to a faulty haplotype reconstruction and increasing 
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the need for a large amount of clones to differentiate the different paralog forms. This is 

not feasible if a multitude of loci and samples are used. (III) Post-duplication: paralogs 

could be sorted into different lineages, or different copies may be lost in different 

individuals. This will lead to incorrect phylogenies where the topology reflects the split 

between groups of paralogs rather than the actual phylogenetic relationships. 

Here we present the strategy and results of a study designed to develop EPIC 

markers for multi-locus intrageneric investigations in the Nepetoideae, a subfamily of 

Lamiaceae. The Lamiaceae, or the mint family, comprises more than 200 genera and 

7000 species subdivided into seven subfamilies (Bräuchler et al., 2010). The largest 

subfamily, the Nepetoidoeae contains several economically important genera such as 

Salvia L., Mentha L., Thymus L., Rosmarinus L., Origanum L., Lavandula L., and 

Ocimum L. We used ESTs available for single species of Nepetoideae for primer design 

after comparison to published whole genome sequences. These primers were used for 

amplification of samples belonging to different taxonomic levels in the Nepetoideae. The 

results were used to discriminate low copy genes for use as phylogenetic markers in an 

infrageneric study of the Nepetoideae genus Micromeria Benth. on the Canary Islands. 

We developed a final set of EPIC markers that mainly consisted of single copy genes 

and are likely to produce orthologous, rather than paralogous products. These loci were 

tested for potential duplication using phylogenetic analyses. Our strategy for marker 

development is a rapid and cost effective way to develop a set of multiple and applicable 

markers. 

 

Materials and methods 

Plant material and DNA isolation 

Representatives from six genera of the Lamiaceae were used in the study. We 

used one species each of Lavandula, Origanum, Salvia, and Ocimum, two species from 

Mentha, and eight samples from six species of Micromeria (Table 1). Plant material was 

collected as fresh leaves from cultivated material that was either the subject of previous 

studies or from cultures for commercial use (Fa. Ervital). One sample of Mentha was 

collected in the field. Leaves were dried over silica and grounded in 2 ml tubes in a 

Retsch Mill (MM400), at maximum force (30 Hz) for 10 min using 2 mm steel beads. 
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Table 1. Primer information for the loci presenting positive amplification results. The information comprises locus name 

and primer sequence, accession number of the sequence from which the primer was designed and respective organism 

and gene. For loci indicated with asterisk (∗) more than one primer pair was designed. 

Marker 
name 

Source 
sequence 
accession 

number 

primer sequence 

organism gene 
Forward Reverse 

O.oni.007 EF558371.1 
TGTAAGTCCCAACAAATGT
GTC 

TGTTCGCCATAAATGGGTT 
Origanum 
onites 

mitogen activated protein 
kinase 1 (MAPKK1) 

L.ang.001 DQ886905.1 
GGTACAAATAAACCATCCC
AT 

TCCACGTGGCACTTCATGA
G 

Lavandula 
angustifolia 

putative alcohol 
acyltransferase 2 (AAT2) 

L.ang.002 DQ886905.1 ATGAGCTCATGAAGTGCC 
GCCTTCTACTACAACCAGA
AG 

Lavandula 
angustifolia 

putative alcohol 
acyltransferase 2 (AAT2) 

M.pip.002 AF116825.2 
CCAGCAGCATACGCTAGAT
C 

AAGCTGGAAAGGACATTGC
T 

Mentha x 
piperita 

1-deoxy-D-xylulose-5-
phosphate reductoisomerase 
(DXR) 

M.pip.006 AY288138.1 
AGCTAACTGCCTGCATATC
T 

TCACCAACAATTGTCAATGT 
Mentha x 
piperita 

mentholdehydrogenase 

M.pip.008 AJ249324.1 TGTAAACTTCACCAGTGGG 
GAGAAGATGGATTCCATGA
T 

Mentha x 
piperita 

isopentenyl monophosphate 
kinase (IPK) 

M.pip.013 AW254715 
CAGATGGCTCGTACCAAGC
AAAC 

CACAGCATGGCTCTGGAAA 
Mentha x 
piperita 

histone H3 

M.pip.014 AW254724 
AGATGTTCATCGGAGATGG
A 

TCCTCGGTGGGGTGAGGA
A 

Mentha x 
piperita 

Mg-dependent ATPase 1 
(LeMA-1) 

M.pip.015 AW254748 
GCAGAGCTTCAGAGGCTTC
T 

GGAATAAAGGTAATGGAGG
AAG 

Mentha x 
piperita 

PHD finger protein-realated 
(ING2) 

M.pip.016 AW254751 TTGCTGAGGAATTGAAGCG 
TCTCAATCACCCGAAACTC
T 

Mentha x 
piperita 

rac-GTP binding protein 
(GTPBP1) 

M.pip.017 AW254759 
GATCCCTATTTCATGCGCA
AC 

TCAATTTCTGTGCTGGGAA
CC 

Mentha x 
piperita 

hydroxyproline-rich 
glycoprotein family protein 
(HRGP1) 

M.pip.024 AW255338 
GAGTATGGTGATATGCAGC
TG 

AGCCACCTTTCCAGATTC 
Mentha x 
piperita 

6-phosphogluconate 
dehydrogenase(PGD) 

M.pip.025 AW255366 
GAAATAGCAGAGAGCATGA
TG 

CAGTAGGTTCTACGCCTGA
AC 

Mentha x 
piperita 

mitochondrial processing 
peptidase (PMPC) 

M.pip.027 AW255375 TAGAGCCAGATCCGAAGCT 
CACCGCTTCAATGAGCATC
TGT 

Mentha x 
piperita 

calcium-dependent protein 
kinase (CaM-KK 1) 

M.pip.028 AW255391 TCGACTCGAAGGCTGCAG 
CAACAAGGCATAGCTAACT
CAAG 

Mentha x 
piperita 

enolase (ENO) 

M.pip.029 AW255394 
CCTGATTACTACTTCCGCAT
CAC 

TTTGGAGGTGGGCGTCG 
Mentha x 
piperita 

chalcone synthase (CHS) 

M.pip.031 AW255423 
AATGGTCTTTGTGGTCAAG
AG 

TACATGTCGGAGGTGTCG 
Mentha x 
piperita 

putative aldo/keto reductase 
(AKR) 

M.pip.035 AW255478 
TGTCCTGCGATCCTTACAT
G 

AGCAGTCATACCAGGCATA
CC 

Mentha x 
piperita 

quinone oxidoreductase (NQO) 

M.pip.037 AW255529 
GAGAAGGAAGAAGTTCGAG
TTC 

GGCATCAACAAGGTATATT
GC 

Mentha x 
piperita 

3'-5' exonuclease (Exo1) 

M.pip.038 AW255571 
CCTCAAAATGCTTAAGCAC
G 

GTTCAGCCCATGAATCAAA
G 

Mentha x 
piperita 

26S proteasome, non-ATPase 
regulatory subunit (PSMD) 

M.pip.041 AW255629 
AATCAATAAACCAGTCGTT
GC 

GACATTGGAACACCAGCAT
A 

Mentha x 
piperita 

ATP-citrate synthase 

M.pip.042 AW255663 
AAGTCTACACCACGAGCAA
G 

TTTTCAGAGCCTTTCCTTTC 
Mentha x 
piperita 

aldo/keto reductase 

M.pip.043 AW255671 
GGGATTTCAAGAGGTTGCA
G 

GGGTCACACAGCAATGACT
G 

Mentha x 
piperita 

ubiquitin conjugating (UBE) 

M.pip.044 AW255729 
CCAGATTCTCAAGTATCCT
CTC 

TGATTCCGATTTTGTTGG 
Mentha x 
piperita 

60S ribosomal protein L23A 

M.pip.046 AW255789 
CGCGGTAGTAGTTGTTGCA
G 

GCACGTGGACCTAACAACA
G 

Mentha x 
piperita 

unknown protein 

M.pip.047 AW255802 
GCTCCATTTATCTGTGAGTT
C 

CAACTGTGATAAAAATCCA
CC 

Mentha x 
piperita 

adenosine kinase (adk) 

M.pip.050 AW255849 
ATGGTGCTCTTGTTCGCGT
C 

GGACCCTCCAGCAAAACGT
G 

Mentha x 
piperita 

Rab GDP dissociation inhibitor 
(GDI) 

M.pip.054 AW255887 
TCATTGCTTTATTTCAGAGG
G 

TGATACCAATGCCCGTTC 
Mentha x 
piperita 

pectin acetylesterase 

M.pip.056 AW255892 
GTTTGGCATTGTTGAGGGT
CT 

AGTGCAATTCCAGCCTTGG 
Mentha x 
piperita 

glyceraldehyde 3-phosphate 
dehydrogenase (gapdh) 

M.pip.057 AW255966 
GCTACAGCTACTTCTTTGAA
GC 

GTCCAGAATCATCTGAGAT
AG 

Mentha x 
piperita 

NAC domain protein (SlNAC1) 

M.pip.058 AW255972 
CCAACGTAGAACTGGTCAA
CT 

GAGAGTTACAAGGACCAAT
GC 

Mentha x 
piperita 

4-hydroxy-3-methylbut-2-en-1-
yl diphosphate synthase (ispG) 

M.pip.059 AW256000 
GGCTTCCTCTCGAAGCTAA
C 

CAACAGCATGAAGAAGTCC
AA 

Mentha x 
piperita 

ubiquitin c-terminal hydrolase 3 
(UCH3) 

M.pip.061 
EL342293 GTTGGCCGTGTTGCTATG 

GCCAATCTTCCCACAAATA
ACT 

Mentha x 
piperita 

Photosystem II, 22 kDa protein 
(PSBS1) 

M.pip.062 AW254789 
GATGTCTATGGTACCTTAG
AAG 

GAGGTTCCCAAATCATCAG
C 

Mentha x 
piperita 

limonene synthase 

O.basi.002 DY344636 TTGGCCATCAAGGATGAAG AGCGGCAACCATGTTCTC 
Ocimum 
basilicum 

cobalamine-independent 
methionine synthase 

O.basi.005 DY344623 
GTAGCTTCCAACAGATGCT
GC 

TCCTTACCTCCCCTGACCT
C 

Ocimum 
basilicum 

selenocysteine 
methyltransferase 

S.milt.001 GQ370517 CTCGAATGTGTTCCTGCAG 
CACATCCCTCTTAGTCCCA
TAC 

Salvia 
miltiorrhiza 

Cold acclimation protein (COR) 

S.milt.003 GQ245764 TGTCTTCCCTGTCCATGTTC 
CCATGGCCTACTACGTCAT
C 

Salvia 
miltiorrhiza 

galactinol synthase (GOLS1) 

S.milt.004 GQ249111 
ATCAATGGATCAATGAGTTT
C 

GCTCATGTTTGCTCAATTC 
Salvia 
miltiorrhiza 

phenylalanine ammonia-lyase 
(PAL2) 

S.milt.009 FJ540907 CTGTCCACCAGACAAAAAG 
TTCAATACCTGAGTGGTGT
G 

Salvia 
miltiorrhiza 

fructose-bisphosphate 
aldolase-like 

S.milt.010 FB335864 
GAACTCCTCGTAGTTGATC

TGC 
AGGAAGCCTTCTCGCTATT

C 
Salvia 
miltiorrhiza 

calmodulin 

S.milt.013 EF377337 
GTGGTTCACTAGCTCAGCA
ATG 

ATGACGGTGCCGTTCTTC 
Salvia 
miltiorrhiza 

cinnamate 4-hydroxylase (C4H) 

M.pip.030* AW255395 
TCAATGAAGGACTGGAGAG
G 

ACAGACTGCATCTACCATT
AGG 

Mentha x 
piperita 

glyceraldehyde-3-phosphate 
dehydrogenase 
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Table 1. Continued 

Marker 
name 

Source 
sequence 
accession 

number 

primer sequence 

organism gene 
Forward Reverse 

M.pip.033* AW255473 TCTGGTCGGTTGGATCGT 
AAGAACTCCTTTTGGTGGA
CG 

Mentha x 
piperita 

Mg-dependent ATPase 1 

S.milt.002* FJ476255 CATTGGCTGCACTAAGAAC 
GCTCTAAAGCATCCTAACT
GG 

Salvia 
miltiorrhiza 

1-deoxy-d-xylulose 5-
phosphate reductoisomerase 

S.milt.006* FJ768961 
CAGCAGCATAAGCTAGATC
C 

TAGCAGATGCTCTAAAGCA
TC 

Salvia 
miltiorrhiza 

1-deoxy-d-xylulose 5-
phosphate reductoisomerase 

S.milt.012* EF666999 
GTTGTTGATCTTGGTGGTG
C 

TCGACACCTCCGACATGTA
C 

Salvia 
miltiorrhiza 

putative aldo/keto reductase 2 

S.milt.015* DQ991431 
GTAATCTTCTTTCCCATATT
CC 

AGACAAGCCTGAAATCATT
C 

Salvia 
miltiorrhiza 

1-deoxy-d-xylulose 5-
phosphate reductoisomerase 

S.milt.017* AY657030 
AACTCCTCGTAGTTGATCT
G 

GAAGCCTTCTCGCTATTC 
Salvia 
miltiorrhiza 

calmodulin 

 

DNA extraction followed the protocol described by Alexander et al. (2006). For 

20 mg of powdered dry material, 320 μl homogenization buffer, 80 μl lyses buffer and 40 

μl RNAse (10 mg/ml) were added and incubated for 10 min at 65 °C. For protein 

precipitation 130 μl potassium acetate (7.5 M) was added, incubated 5 min on ice and 

centrifuged differentially, 1 min at 1000 rpm and subsequently 8 min at 14,000 rpm. The 

supernatant was mixed with 1.5 times its volume in binding buffer and the resulting 

solution passed through a silica membrane column (EconoSpin™) by centrifugation for 

1 min at 14,000 rpm. After washing the membrane two times with 500 μl 70% ethanol, 

DNA was eluted with 50 μl 10 mM Tris buffer pH 7.5 and used subsequently as DNA 

solution in the PCR. 

 

Marker development strategy and Primer design 

We used a four step selection process to identify loci from public databases for 

suitability of amplifying the desired ingroup: the species from Micromeria of the Canary 

Islands ( Fig. 1): Step 1: Comparison of publicly available mRNA-derived sequences of 

representatives from the Nepetoideae with the Arabidopsis genome and selection of loci 

that span introns and showed no sign of duplication in the Arabidopsis genome, i.e. that 

produced one single hit in the BLAST search; Step 2: amplification and annealing 

temperature optimization using one individual congeneric to the source species of the 

EST or sequence where failed amplification indicates autapomorphies or sequencing 

errors in the primer binding sites; Step 3: amplification of several genera of Nepetoideae 

including the ingroup to determine the level of applicability of the primers positive in step 

2; Step 4: amplification of multiple samples from Micromeria with primers able to amplify 

the ingroup in step 3 to verify the applicability to multiple species. 
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Fig. 1. Schematic summary of marker development strategy used to develop EPIC markers for Micromeria using publicly 

available sequence information of DNA or RNA from different genera of the Nepetoideae (Lamiaceae). 

 

At each step, primer pairs that amplified paralogs that differed in size of about 25 

bp were identified by gel electrophoresis. All amplification products of markers amplifying 

multiple samples in step four were sequenced from PCR products. Markers excluded 

were those that showed signs of duplication as heterozygous indels fixed within the 

sampling and an excess of heterozygous positions. 

For primer design, ESTs and a low number of genomic sequences were available 

from Genbank for five genera of Nepetoideae, the majority for Mentha and Salvia, a 

lesser amount for Lavandula, Origanum and Ocimum. In total, about 1000 ESTs and 

mRNAs from the nucleotide database were chosen randomly if they were longer than 

500 bp, primarily for Mentha. Mentha is more closely related to our target group, 

Micromeria, than the other genera (Bräuchler et al., 2010) and mainly ESTs from the 

cultivated species Mentha x piperita L. were available. Using the local blast function of 

BioEdit version 7.0.5 (Hall, 1999) the ESTs were blasted against the complete 

Arabidopsis thaliana genome. Tabular output was screened for sequences that (1) 

produced highly significant hits of at least 40 bp, (2) were not aligned to more than one 

region in the Arabidopsis genome and (3) showed highly significant hits of at least two 

different regions of the EST not more than 1000 bp apart on the Arabidopsis genome. 

The latter criterion was chosen because regions between two hits could constitute intron 

regions for the development of the desired variable markers. ESTs satisfying these 
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criteria were selected for primer design. Primers were picked for regions of significant 

blast hits that comprised not more than two mismatches in the potential primer region 

between the genome and query sequence. The sequence from the EST was used as 

primer sequence. Primer design was performed using Primer3Plus (Untergasser et al., 

2007) under manual control, targeting a length of the primers to 20 bp, with 50% GC 

content and not more than three identical nucleotides in a row. For nine loci, multiple 

primers were designed to achieve a higher coverage of the target gene and increase 

likelihood of positive amplification. 

 

Optimization of PCR and selection of primers 

All PCRs were performed with Qiagen Mastermix (QIAGEN – HotStarTaq Plus 

Master Mix Kit). This system was used because of the high level of specificity and the 

reduced need for PCR optimization. All primers designed were initially tested in an eight 

steps temperature gradient ranging from 7 °C below to 7 °C above the optimal calculated 

annealing temperature (typically 48–62 °C), using a sample from the genus the EST was 

derived from. The final reaction volume was 10 μl per well and contained 1 U Taq DNA 

polymerase (QIAGEN), 75 nmol MgCl2, 1 nmol of each dNTP, 4 nmol of each primer, 

about 20 ng template corresponding typically to 0.5 DNA solution. The following 

temperature profile was used: initial denaturation and polymerase activation at 95 °C for 

15 min, followed by 40 cycles of 95 °C for 30 s, annealing for 1 min, and extension at 

72 °C for 1 min, with a final extension step of 72 °C for 10 min. 

Optimal annealing temperatures were defined as the temperature where only one 

specific product was indicated after gel electrophoresis (2% agarose with a resolution of 

approximately 25 bp). Primers that showed no amplification product or more than one 

band in the gel electrophoresis over the whole range of temperature were discarded from 

subsequent steps. 

Primer pairs with positive amplification within the temperature gradient were 

tested as a PCR on all the remaining genera using the optimal annealing temperature, 

and primer pairs that produced a clear band for the Micromeria sample were used 

subsequently to test the applicability of the primer within this genus using the remaining 

Micromeria samples. Primers that were able to produce a product for the majority of the 

samples were chosen for further investigation. 

 

Sequencing and phylogenetic analysis 

Amplification products of the primers chosen in the last step of primer screening 

were sequenced for all samples investigated. PCR products were cleaned using Exo/Sap 

digestion in a final volume of 8 μl containing 4 U Exonuclease I (Fa), 1 U Shrimp alkaline 
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Phosphatase (Fa) at 37 °C for 15 min followed by 15 min at 85 °C for inactivation. The 

resulting solution was used for sequencing using the BigDye 3.1 kit according the 

manufacturer’s protocol, performed at the central sequencing facility at the University of 

Munich. 

Sequences were tested for specificity by BLAST searches against the Genbank 

sequence used for primer design. Sequences of one locus were aligned using the 

ClustalW algorithm as implemented in BioEdit (Hall, 1999) under manual control. 

Heterozygous point mutations were included using equate macros (W, R, Y, S, K, and 

M). In sequences comprising heterozygote length polymorphisms, unreadable parts of 

the sequence were treated as missing data. 

Haplotype reconstruction was performed using the PHASE algorithm as 

implemented in DNASP ver. 5.10 (Librado and Rozas, 2009). Informative indels were 

included in the analysis by treating them as nucleotide information to avoid losing 

information and to limit computational effort. 

Phylogenetic reconstruction was based on maximum parsimony and maximum 

likelihood inference using the exhaustive search algorithm implemented in PAUP v4.0 

(Swofford, 2002). Parsimony analyses were done considering unordered character 

states and equal weighting with gaps treated as missing data. When exhaustive 

searches became computationally intractable, a heuristic search was used with 100 

random stepwise-addition replicates, TBR branch swapping, and MULTREES 

optimization. The consistency index (CI) and retention index (RI) were calculated (Farris, 

1989 and Kluge and Farris, 1969) and branch support was determined by bootstrap 

analysis of 1000 replicates (Felsenstein, 1985) using a heuristic search with identical 

settings as above. The support values are shown on the consensus tree. Maximum 

likelihood analysis was performed under the GTR model of sequence evolution. 

Maximum likelihood and parsimony reconstruction led to comparable results so only the 

likelihood analysis is shown. 

To determine the variability of markers at different sampling levels, we calculated 

three estimates for the number of polymorphic positions: (1) within Nepetoideae: 

between Micromeria species and other Lamiaceae genera, (2) within Micromeria from 

Canary Islands and the outgroup Micromeria inodora (Desf.) Benth. from Baleares, and 

(3) within the Canary Islands only. All measures were obtained using DNAsp (Librado 

and Rozas, 2009). Pair wise and absolute distances were calculated as a measure of 

genetic differentiation on these levels. The distance matrices were obtained using PAUP 

v4.0 (Swofford, 2002) and the average values for each different level were calculated 

using Excel. These measures were used as indicators for suitability of each marker at 

different taxonomic levels. 

http://www.sciencedirect.com/science/article/pii/S1055790312000632#b0085
http://www.sciencedirect.com/science/article/pii/S1055790312000632#b0100
http://www.sciencedirect.com/science/article/pii/S1055790312000632#b0150
http://www.sciencedirect.com/science/article/pii/S1055790312000632#b0065
http://www.sciencedirect.com/science/article/pii/S1055790312000632#b0065
http://www.sciencedirect.com/science/article/pii/S1055790312000632#b0090
http://www.sciencedirect.com/science/article/pii/S1055790312000632#b0070
http://www.sciencedirect.com/science/article/pii/S1055790312000632#b0100
http://www.sciencedirect.com/science/article/pii/S1055790312000632#b0100
http://www.sciencedirect.com/science/article/pii/S1055790312000632#b0150
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Exon boundaries were determined by BLAST searches of the sequences against 

the mRNA used for primer design. The exon regions were searched for synonymous and 

non-synonymous substitutions using DNAsp (Librado and Rozas, 2009). This approach 

required the definition of the open reading frame (ORF) of each gene, which was 

obtained using the ORF finder function at NCBI. 

 

Results 

PCR amplification and sequencing 

In total, 84 primer pairs were designed corresponding to 76 loci, 59 primer pairs 

from ESTs of Mentha x piperita, 20 pairs from ESTs of different Salvia species, five pairs 

from ESTs of Ocimum basilicum L. and one pair from ESTs of Origanum onites L. 

Twenty-six pairs exhibited no product and eight pairs exhibited multiple products over 

the whole range of the temperature gradient and were therefore discarded from further 

analysis. Fifty of the 84 primer pairs successfully amplified a clear distinct product using 

a sample congeneric to the EST (step 2, Fig. 1 and Table 1). Of these, only nine were 

unable to amplify at least one of the other genera investigated in step 3. Amplification 

success of the different Nepetoideae genera was slightly higher with increasing 

phylogenetic relatedness (according Bräuchler et al., 2010) to the source sequence. Of 

the 34 primers derived from Mentha, 33 amplified a product from the Mentha species 

used as template in this study and between 14 and 22 products for the other species 

included. 

A total of 32 primer pairs were applicable for Micromeria within step 3 (Fig. 1). 

These primers were subsequently used for amplification of multiple samples from the 

Canary Islands (the desired ingroup) and the outgroup species, M. inodora from the 

Baleares. The majority of primer pairs were suitable to amplify most of the Micromeria 

samples investigated (Table 2), and 14 primers amplified one or two of the additional 

samples. The outgroup taxon, M. inodora, was positively amplified by only six markers. 

This is likely due to the fact that in the initial amplification in step 3, a sample from 

Micromeria from the Canary Islands was used, creating a desired bias for amplification 

success within the ingroup. Within the ingroup, 24 primer pairs were able to amplify the 

majority of samples. 

 

 

 

http://www.sciencedirect.com/science/article/pii/S1055790312000632#b0100
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Table 2. Amplification and sequencing results of primer pairs tested in Micromeria. The different numbers correspond to 

different levels of amplification success: 0 – no product; 1 – amplification and sequencing success; 2 – amplification of 

multiple products; and 3 – successful amplification but no readable sequences. Note that Ba: Baleares, Te: Tenerife, Ma: 

Madeira, La1: Lanzarote sample one, La2: Lanzarote sample two and GC: Gran Canaria.y: yes, n: no. 

Marker 
names 

M. 
varia 
GC 

M. lanata 
GC 

M. 
tenuis

GC 

M. varia 
La2 

M. varia 
La1 

M. 
varia. 

Ma 

M. 
hyssopifolia 

Te 

M. 
inodora 

Ba 

Nr. 
positives 

Used 
in step 

four 

M.pip.017 1 1 1 1 1 1 1 1 8 y 

M.pip.044 1 1 1 1 1 1 1 1 8 y 

M.pip.056 1 1 1 1 1 1 1 1 8 y 

M.pip.002 1 1 1 1 1 1 1 0 7 y 

M.pip.024 1 1 1 1 0 1 1 1 7 y 

M.pip.027 1 1 1 1 1 1 1 3 7 y 

M.pip.038 1 1 1 1 1 1 1 0 7 y 

M.pip.047 0 1 1 1 1 1 1 1 7 y 

O.basi.005 1 1 1 1 1 1 1 0 7 y 

S.milt.010 1 1 1 1 1 1 1 0 7 y 

M.pip.006 1 1 0 1 1 1 1 0 6 y 

M.pip.014 1 1 1 1 0 1 1 0 6 y 

M.pip.050 1 1 1 1 0 1 1 0 6 y 

M.pip.057 1 1 1 1 1 0 1 0 6 y 

M.pip.058 1 1 1 1 1 0 1 0 6 y 

O.oni.007 1 1 1 1 1 1 3 0 6 y 

S.milt.003 1 1 1 1 0 0 1 1 6 y 

M.pip.013 1 3 1 2 1 1 1 0 5 y 

M.pip.016 1 1 1 1 3 0 1 0 5 y 

M.pip.031 1 0 1 1 1 0 1 0 5 y 

S.milt.001 0 1 1 1 1 0 1 2 5 y 

S.milt.013 1 1 1 0 0 1 1 0 5 y 

M.pip.015 1 1 1 0 0 1 3 0 4 n 

M.pip.041 3 0 1 0 1 1 1 3 4 n 

L.ang.002 1 3 3 1 0 1 3 0 3 n 

M.pip.008 3 0 3 3 3 1 3 3 1 n 

M.pip.025 3 0 0 0 0 0 1 0 1 n 

M.pip.029 0 0 0 2 0 2 1 0 1 n 

M.pip.062 0 1 0 0 0 0 0 0 1 n 

S.milt.012 3 3 0 3 3 3 3 0 0 n 

 

The absolute and relative amount of primers amplifying multiple products 

decreased as expected during the selection steps. A total of 54 primers were unable to 

differentiate between duplicated loci in the PCR. After sequencing of the candidate 

markers identified in step 4, an additional three loci had to be excluded because of fixed 

heterozygous indels indicated in the sequences for all samples investigated. Finally, a 

total of 22 markers were selected according to these criteria based on the results of PCR 

amplifications and sequencing. 

 

Sequence analysis 

Marker sequences were between 350 bp and 1600 bp and in agreement with 

expected lengths relative to the corresponding Arabidopsis sequences, which were 

between 300 bp and 2714 bp. Marker sequence length deviated by 50–250% of the 

genomic sequence used in the BLAST search. In Micromeria, the markers chosen for 

the study were between 361 bp and 1689 bp (in M. hyssopifolia Webb & Berthel. from 
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Tenerife) and comprised between six and 133 polymorphic positions. Absolute numbers 

of polymorphic positions were significantly correlated to length of the locus, however 

several outliers were observed. Maximum average pairwise distances between the 

sequences were between 0.0064 and 0.1548 and nucleotide diversity within the ingroup 

was between 0.00474 and 0.09179. 

From the 22 markers in the final dataset, 20 contained introns. Intron regions, as 

expected, were more variable than exon regions and were responsible for 81% of the 

sequence variation in intron containing markers. This is partly because intron sequences 

cover a larger part of the loci (63% on average of the alignment; sd = 15). The level of 

variability in exon regions ranged between 16% and 77% of intron variability (averages 

37%; sd = 19). Variability of the entire set of markers in the ingroup ranged from 1.2% to 

6.6%, in 8 to 73 positions, respectively (average 27; sd = 17). 

Polymorphic positions were detected as mutations between sequences in 

addition to heterozygous position within one sequence in the chromatogram. Within 14 

of the markers within the ingroup, there was at least one polymorphic position. 

Additionally, there were heterozygous and homozygous positions for both states. 

Some markers showed an excess of heterozygous positions with all of the 

sequences heterozygous at a specific position. Only four of the loci exhibited a higher 

rate of heterozygous polymorphisms than homozygote polymorphisms, indicating low 

quality of sequencing or multiple binding sites. One locus, S.milt.001, showed a 

heterozygous indel for most sequences of the ingroup resulting in a very low amount of 

information. It could therefore not be included in further analyses. 

A phylogenetic analysis was performed for all the 22 loci that could be used for 

comparative sequencing. Results of parsimony analysis, likelihood scores and alignment 

characteristics are summarized in Table 3. Most phylogenies were sufficiently resolved 

for the ingroup to test phylogenetic hypotheses. Phylogenetic analyses of the majority of 

the loci investigated produced congruent results. We tested four hypotheses of the 

evolution of the group as indicated in Meimberg et al., 2006 and Bräuchler et al., 2005 

and according to the species concept of the Canary Islands Micromeria ( Pérez de Paz, 

1978): monophyly of Micromeria; monophyly of the Canary Island representatives; an 

east–west split of the island samples, with closer relationships of samples from Gran 

Canaria and Fuerteventura on one side, and Tenerife La Palma and Madeira on the 

other; and finally, the hypothesis of polyphyly of Micromeria varia Benth., a species 

distributed on several islands. 
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Table 3. Information on the phylogenetic analyses, marker variability in the ingroup and outgroup; ingroup sequence 

alignment length and percentage of exon region in that alignment. The phylogenetic analyses information corresponds to 

the trees obtained using different genera as outgroup and include number of trees, tree length, CI (consistency index) and 

RI (retention index). The variability measures shown are the number of polymorphic positions (left value) and number of 

informative positions (right value). 

Locus 
Numbe

r of 
trees 

Tree 
lengt

h 
CI RI 

Variability Heterozygot
e positions 

in the 
ingroup 

Alignmen
t length 

% 
Exon Ingrou

p 
Outgrou
p 

M.pip.017 38 268 1 1 41|6 265|7 23 1427 27 

M.pip.044 6 51 1 1 8|2 56|40 4 425 58 

M.pip.056 
5 472 

0.906

8 

0.742

7 
24|10 338|115 7 766 52 

M.pip.002 
12 368 

0.951

1 

0.812

5 
28|6 312|68 1 979 52 

M.pip.024 
1 115 

0.947

8 

0.938

1 
12|5 117|42 2 536 100 

M.pip.027 
4 138 

0.978

3 

0.934

8 
20|8 130|38 2 750 42 

M.pip.038 
1 345 

0.988

4 
0.907 57|27 328|32 3 1533 29 

M.pip.047 
3 289 

0.993

1 

0.983

6 
20|1 251|120 5 749 45 

O.basi.005 
12 500 0.942 

0.733

9 
26|9 406|94 6 1311 17 

S.milt.010 3 158 1 1 18|3 156|6 0 1325 21 

M.pip.006 
1 449 

0.986

6 
0.875 41|16 412|43 7 1346 31 

M.pip.014 2 40 1 1 16|4 40|5 8 745 40 

M.pip.050 
2 284 

0.989

4 

0.869

6 
17|2 277|21 5 918 43 

M.pip.057 
1 67 

0.925

4 
0.902 14|2 61|27 4 427 100 

M.pip.058 
2 240 

0.995

8 
0.975 21|9 222|32 3 810 42 

M.pip.013 
2 94 

0.978

7 
0.75 15|5 95|6 3 544 50 

M.pip.016 5 217 1 1 13|4 214|4 5 929 23 

M.pip.031 
3 516 

0.996

1 

0.866

7 
49|8 503|14 5 1717 33 

S.milt.013 
2 243 

0.991

8 

0.933

3 
73|21 234|22 0 1635 17 

O.oni.007 
40 44 

0.976

7 

0.666

7 
39|1 74|3 26 594 74 

S.milt.003 
156 130 

0.992

3 

0.991

4 
133|113 137|113 18 660 65 

S.milt.001 72 9 1 1 6|1 14|1 4 362 38 

 

The majority of the phylogenies supported these hypotheses. Seven markers 

contradicted an east–west split and three markers contradicted a monophyly of Gran 
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Canaria samples (Table 4). The marker S.milt.003, while showing no heterozygous 

positions, had a highly unlikely phylogeny: four Micromeria samples were very similar to 

the outgroup with 0.5–2.5% pairwise differences. The two remaining ingroup samples 

comprised highly diverging sequences with up to 19% differences. This could be an 

indicator of a duplicated locus where different paralogs were amplified in closely related 

individuals and the marker was therefore not regarded as suitable for phylogenetic 

analysis. In O.oni.007 a very high number of heterozygous signals were observed in the 

ingroup which resulted in a low amount of informative positions and poor resolution. The 

remaining 19 markers were good candidates for use in a multi-locus analysis. Combined 

into a single matrix, phylogenetic analysis resulted in a well-supported and resolved 

phylogeny, indicating monophyly of Micromeria, the east–west split and polyphyly of 

Micromeria varia. Gran Canaria samples were shown to be paraphyletic with respect to 

Lanzarote samples. Here, M. varia from Gran Canaria formed the sister clade to M. varia 

from Lanzarote (Fig. 2). 

 

Table 4. Test of different phylogenetic hypotheses using the 22 markers that were used in step 4 (Fig. 1), based on 

interpretation of the phylogeny and the SH test. Indicated are four classes of support, 1: the topology supporting the 

hypotheses (bootstrap value is shown), 2: the topology contradicting the hypothesis (–), 3: the topology is not resolved 

enough to support or contradict the hypothesis (0), 4: taxon sampling is not sufficient to test the hypothesis (?). The SH 

test was performed using the maximum likelihood trees. The SH test marked with an asterisk used the combination of the 

east–west split and Gran Canaria monophyly as null hypotheses. 

Loci 
Micromeria 
monophyly 

SH 
test 

East–west 
split 

Gran Canaria 
monophyly 

SH 

test∗ 
M. varia 

monophyly 
SH 
test 

M.pip. 017 100 1 0 0 0.067 – 0.08 

M.pip. 044 100 1 73 0 0.489 – 0.163 

M.pip.031 96 1 100 0 0.556 – 0.015 

M.pip. 002 100 1 – – 0.019 – 0.015 

M.pip. 024 84 1 62 0 1 – 0.008 

M.pip. 027 100 1 – 0 0.216 – 0.005 

M.pip.038 100 1 100 99 0.517 – 0 

M.pip. 047 100 1 100 90 0.755 – 0.436 

S.milt.010 100 1 100 73 0.353 – 0.053 

M.pip. 006 100 1 98 98 1 – 0.049 

M.pip. 014 100 1 66 0 0.807 – 0.072 

M.pip. 050 100 1 – 65 0.081 – 0.081 

M.pip. 057 85 1 98 66 1 – 0.087 

M.pip. 058 100 1 – – 0.004 ? ? 

O.basi.005 95 1 99 0 0.27 0 0.427 

M.pip. 013 100 1 – – 0.259 – 0.265 

M.pip. 016 100 1 – 0 0.02 0 0.01 

M.pip. 056 100 1 – ? 0.165 – 0.73 

S.milt.013 100 1 100 99 1 – 0 

O.oni.007 100 1 0 0 0.734 0 1 

S.milt.003 – 0 – – 0 0 0.573 

S.milt.001 0 0.779 0 0 0.062 ? ? 
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Fig. 2. Phylogenetic tree calculated using a combined matrix of all 19 loci retained. Maximum likelihood and maximum 

parsimony trees showed congruent results, therefore only the maximum likelihood is shown. 

 

Discussion 

The high frequency of polyploidization events during evolution of higher plants 

and segmental gene duplication complicates the application of nuclear loci in 

phylogenetic studies in angiosperms. In principle, it is also possible in plants with 

duplicated genomes to differentiate between paralogs by selective primers within the 

PCR (Whittall et al., 2006). In population genetic investigations using nuclear markers 

such as microsatellites, primer pairs that lead to multiple products are generally excluded 

during marker development. This can result in the majority of markers included in a study 

to be specific for orthologous sequences even within a polyploid plant that is duplicated 

for all loci. Marker specificity is indicated by unelevated levels of heterozygosity or 

deviations from HWE (e.g. Meimberg et al., 2010). Similar approaches can be used to 

identify nuclear sequence based markers to develop primers that produce orthologous 

products for sequence analysis. In this respect, positive amplification for a comparative 
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study results not only from the existence of a specific primer binding site in all individuals 

but also on the ability of the primers to be selective for one specific ortholog. Depending 

on the source of the initial comparison, either sequence information of species within the 

ingroup to be investigated or sequences from outgroup taxa, different conservation 

patterns of the primer binding sites can be assumed. Ingroup derived primers will 

increasingly show mismatches with the outgroup or the phylogenetically more distantly 

related taxa of the ingroup and thus show lower amplification success over a certain 

range of taxa, considering the increasing likelihood of divergence in primer binding sites 

with increasing phylogenetic distance. On the other hand, the possibility of primers 

amplifying only orthologous sequences is higher here, because primer binding sites can 

be in regions where paralogs have diverged. This divergence was exploited to locate 

one primer of a primer pair in the more variable 5′ UTR region (Whittall et al., 2006). In 

contrast, if only outgroup sequences can be used, as in our case, primers must be 

designed from regions conserved between different genera and should be more prone 

to co-amplifications of paralogs, especially for loci that became duplicated after the split 

between the outgroup and the ingroup. The necessity to use outgroup taxa for primer 

development for Micromeria resulted in a comparably high number of initial failed 

amplifications of about 30% of the constructed primers which amplified only one or none 

of the species used in the study. 

Our approach constitutes a four step, mainly amplification based selection 

process that allows to eliminate loci with signatures for duplication events and that were 

unable to amplify the desired ingroup, Micromeria. The absolute and relative numbers of 

loci excluded at each step decreased, indicating a slight enrichment effect towards 

primer pairs amplifying only orthologous sequences during the procedure. From the 54 

primers amplifying at least two samples, 22 markers which did not show obvious 

signatures of duplication were selected during this process for comparative sequencing 

of multiple ingroup samples in the last step. 

Next to the scan for duplication signal, in different steps of marker development 

as used here and in other studies (e.g., Li et al., 2007), diagnostic characters or 

sequence analysis can be used to avoid the inclusion of duplicated loci in a phylogenetic 

analysis. If diagnostic characters are identified to distinguish different paralogs they can 

not only be used to construct specific primers, as described above, but also to 

differentiate orthologous copies after amplification, for example, if length differences 

between paralogs exist that are large enough to be detected in agarose gel 

electrophoresis. In such a case, both bands can be gel extracted and analyzed 

independently (Thomson et al., 2008). However, in gene families two or more paralogs 

could comprise the diagnostic character and could be co-isolated. 
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We tested the sequence information of the 22 markers selected by focusing on 

excessive heterozygous signals in the chromatograms and by a phylogenetic approach. 

Of these markers only three proved to be unsuitable for comparative analysis. An 

obvious problem with a phylogenetic approach is if reticulation or interspecific geneflow 

is studied, phylogenetic signals that are incongruent to the majority of the markers can 

contain useful and necessary information. Using incongruence to exclude certain 

markers will a priori bias the dataset towards a certain hypothesis. We therefore 

considered also the markers that showed a deviating phylogeny from the majority of the 

markers as suitable. 

Intron containing markers present higher variability than coding sequences 

because in the latter only the synonymous positions are not conserved. Therefore, and 

especially in closely related species where alignment can be done unambiguously, intron 

markers will contain more information (Sang, 2002). For our target group, Micromeria 

from the Canary Islands, the markers were reasonably variable for phylogenetic analysis: 

levels of variation were in all cases higher than comparable chloroplast sequences 

(Meimberg et al., 2006) and showed between 4 and 14 times greater variability. 

Variability level of the intron markers is therefore higher than some of the most variable 

regions in the chloroplast DNA. Phylogenetic analysis showed for the majority of the 

markers congruent phylogenetic hypotheses. Consequently, the combined analysis 

resulted in a strongly supported phylogeny. An east-west split, a close phylogenetic 

relationship between the eastern islands, Gran Canaria and Lanzarote and between the 

western islands, Tenerife and Madeira was supported by the majority of the markers. For 

Micromeria, this east–west split was already described using chloroplast and nuclear 

markers (Meimberg et al., 2006) and could be a consequence of the direction of the 

archipelago’s colonization. This colonization route (from east to west) might be quite 

common and it has been suggested that it applies to about 25% of plant groups studied 

so far in the Canary Islands (Caujapé-Castells, 2011). The same pattern was found for 

other systems such as Gonosperminae (Francisco-Ortega et al., 2001) and Olea 

europaea L. (García-Verdugo et al., 2009). Furthermore, Caujapé-Castells (2011) 

describes a decrease of genetic diversity from east to west for several species from the 

Canary Islands which is most likely a consequence of an expansion starting in the 

eastern most islands. This colonization route is facilitated by the proximity of Lanzarote 

and Fuerteventura to the continent (less than 100 km) and by the fact that these islands 

are the oldest of the archipelago. However, even though an east–west split for 

Micromeria is supported by the majority of the markers, it is contradicted by some of 

them. In systems influenced by reticulation, such contradicting phylogenies could 
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indicate a signature for adaptive introgression or past hybridization and are worthy of 

more intense study. Future work will concentrate on this topic. 

 

Conclusion 

Multi-locus analysis using nuclear gene derived markers is of high importance for 

phylogenetic analysis of plants. With our approach we were able to develop a large 

number of suitable EPIC markers for our group of interest that are also applicable for 

other genera in the Nepetoideae. In total, we identified 33 primers that are able to amplify 

a specific product from four out of the five genera investigated, which can also be used 

as starting point for investigations of related genera, such as Thymus, Satureja L. or 

Rosmarinus. Using the sequence information generated, we are able to further refine our 

primers to achieve a higher success rate in future studies, including the remaining loci 

with poor amplification success. We are using the generated markers not only for 

sequence analysis but also to design genotyping markers to measure the state of indels 

in the loci for determination of multi-locus genotypes. Primers with a 100% success rate 

can then be easily designed from this initial sequence information. 
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Abstract 

The use of Next Generation Sequencing (NGS) techniques to identify 

microsatellite markers has replaced more time intensive methods such as molecular 

cloning. The main advantage of NGS over traditional methods of identifying microsatellite 

markers is the generation of many more sequences with less effort. It is possible to 

design primers from unenriched DNA, thereby further reducing the workload and also 

allowing the use of SSRs that are difficult to enrich (e.g., TA/AT and TAA/ATT). We 

present microsatellite primer pairs that may be used for phylogeographic analysis as well 

as to infer the geographical origin of traded material of Catha edulis, which contains two 

amphetamines that are controlled substances in many counties. We used data from two 

partial 454 pyrosequencing runs that generated about 2000 sequences containing 

microsatellites (3% of all sequences) as well as flanking regions sufficient for primer 

design. Using 23 samples of C. edulis we identified 27 single-copy markers that were 

broadly amplified across the sampled individuals; 18 showed polymorphism information 

content (PIC) higher than 0.5. The genetic structure in wild individuals is concordant with 

their geographic origins; wild samples from northern Kenya are more closely related to 

Ethiopian samples than are other wild samples from Kenya. The geographic differences 

in allele frequencies indicate that microsatellite analysis can be used to determine the 

geographic source of cultivated and wild collected material. 
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Introduction 

Catha edulis (Vahl) Forssk. ex Endl., commonly known as khat or qat, is a species 

of evergreen shrubs and trees from the Celastraceae. It grows naturally at altitudes 

between 1000 m and 2500 m in eastern Africa (Robson, 1966) and is distributed from 

Ethiopia to the Cape Province in South Africa. Qat is also found in Yemen, although it is 

not clear if it is native there (Friis, 1992). 

Qat has variously been considered to be a “social plague” (Al-Thani, 1983) or as 

a “custom [that] gives positive results in the daily gatherings for cultural, historical and 

literary debate” (Morghem and Rufat, 1983). Unlike alcohol, use of qat is not explicitly 

prohibited by Sharia (Islamic religious law; Kennedy, 1987). Some Muslims have 

considered qat to be a holy gift that allows them to pray throughout the night 

(Trimingham, 1965), whereas some Islamic scholars have interpreted it to be banned 

under Sharia (Al-Ghdaian, 1983). 

Qat is openly traded in Djibouti, Ethiopia, Kenya, Somalia, Uganda, and Yemen 

but it is illegal in Eritrea, Kuwait, Saudi Arabia, Sudan, Tanzania, and Zambia (Gerstle, 

2007). Qat is now “… an integral part of the Somali culture” (Odenwald et al., 2005). 

Somalia has perhaps the highest percentage of qat users in the world; most Somali qat 

is imported from Kenya (Perlez, 1992). 

Qat use has recently expanded to Europe and North America based on the 

demand created by Ethiopian, Somali, and Yemeni immigrants (Browne, 1991). Recently 

it has been used by non-immigrants in Europe (Gebissa, 2010). The demand is supplied 

by qat flown in from Ethiopia, Kenya, and Yemen (Gough and Cookson, 1984). Qat is 

still legal in Great Britain (Elliott, 2006), but it is a controlled substance in most other 

countries in Europe, Canada, and the U.S. (DEA, 2006). 

Qat contains three stimulant alkaloids that are structurally similar to 

amphetamine: norephedrine, cathine (Wolfes, 1930) and cathinone (UN Narcotics 

Laboratory, 1975). These alkaloids are concentrated in the young leaves and stems of 

qat. Cathinone is unstable and is only present in young leaves and stems; it is 

enzymatically reduced into cathine as the leaves mature or dry after picking (Schorno 

and Steinegger, 1979). Norephedrine, cathine, and cathinone have been isolated from 

only one other plant genus: Ephedra (Grue-Sorensen and Spenser, 1994). In the U.S., 

cathinone is a schedule I controlled substance and cathine is a schedule IV controlled 

substance (Department of Justice, 1988, 1993). 

Because of its economic and social impact, qat is an interesting model for 

phylogeographic studies. In particular, the different ways of cultivation, by transplanting 

wild individuals or taking seeds or cuttings from cultivated individuals, allows us to test 

the effect of these cultivation activities on the genetic structure of the species. Given the 
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widespread use of cultivated qat, investigations on genetic structure might also enable 

identification of the source of traded material. So far, there is only one study published 

focusing on qat phylogeography and population genetics, which only sampled cultivated 

Yemeni qat for RAPDs without broader conclusions over the entire range of the species 

(Al-Thobhani et al., 2008). Questions that may be addressed by sampling both cultivated 

and wild individuals across the range of qat include: where and how many times qat was 

brought into cultivation, the relationships between named cultivated varieties, gene-flow 

patterns within and between cultivated and wild qat, and the preferred means of 

propagating cultivated qat. 

Microsatellite markers have been one of the preferred markers employed in 

phylogeographic and population genetics studies (Sunnucks, 2000; Haasl and Payseur, 

2011). In non-model species, development of microsatellites generally requires the 

establishment of genomic resources, traditionally in the form of a genomic library, 

enriched for certain SSR (short sequence repeats) motifs, which is used for sequencing 

and tagging of the SSR and the flanking primer sites (Zane et al., 2002). With Next 

Generation Sequencing (NGS), the construction of a genomic library and sequencing of 

individual colonies is replaced by sequencing fragmented genomic DNA. The NGS 

technology most commonly used for SSR discovery is pyrosequencing as implemented 

by the 454 GS-FLX platform (Roche, Branford, CT, U.S.A.). 

Since 2009 several publications have described marker-development 

approaches using this technology (e.g., Santana et al., 2009) and have shown a 

significant improvement in the time, cost and amount of markers compared to traditional 

methodologies. The general strategy using pyrosequencing consists of DNA 

fragmentation, sequencing the fragments, and retaining sequences containing SSR 

motifs with flanking regions on both sides that are long enough for primer design. In this 

strategy an enrichment step is frequently added, using SSR-motif-specific probes 

(Santana et al., 2009; Jennings et al., 2011; Malausa et al., 2011). This approach can be 

advantageous because it increases the number of sequences containing SSRs but it 

also limits the diversity of microsatellite types found. 

In this paper we present the results of a study designed to produce a set of 

polymorphic SSR markers for phylogeographic and forensic studies on qat. We used a 

454-shotgun-genomic-sequencing approach without an enrichment step. The resulting 

loci were tested for allelic richness and population structure using multiple samples from 

both Ethiopian and Kenyan populations. In particular we compared the performance of 

SSRs containing AT/TA vs. TAA/ATT SSRs. These SSRs are difficult to use as targets 

for traditional enrichment methods and therefore they are generally not considered 
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during marker development despite being very frequent microsatellites in most plant 

species (Ellegren, 2004). 

 

Materials and methods 

Samples used and DNA isolation 

We used one sample of C. edulis for 454 shotgun sequencing: an individual of 

uncertain provenance collected from a tree that is part of the United States Botanic 

Garden collection in Washington D.C. (accession 94-0091). The DNA from this sample 

was isolated following Alexander et al. (2006) method. 

 
Table 1. List of 23 qat samples. The population number was defined according to location where the samples were 

collected. 

Population Accession Voucher Country Latitude Longitude Altitude (ft) Status 

1 2083 ETHa Ethiopia N5.22932 E39.61806 4743 Wild 

1 2085 ETHa Ethiopia N5.22995 E39.61503 4981 Wild 

1 2088  Ethiopia N5.22935 E39.61574 4958 Wild 

1 2095  Ethiopia N5.22811 E39.61510 4950 Wild 

1 2111  Ethiopia N5.22546 E39.60992 4988 Wild 

1 2119  Ethiopia N5.22828 E39.61129 5051 Wild 

2 2203  Ethiopia N7.29380 E36.47435 6766 Wild or feral 

3 2296 ETHa Ethiopia N11.28550 E39.83878 7176 Feral 

4 2314  Ethiopia N6.38444 E37.71507 4861 Wild 

5 2348 ETHa Ethiopia N6.37552 E36.73054 5133 Wild 

6 2389  Kenya S0.70634 E37.15706 4042 Wild 

6 2390  Kenya S0.70644 E37.15696 4430 Wild 

6 2391 EAb Kenya S0.70644 E37.15693 4422 Wild 

6 2392 EAb Kenya S0.70654 E37.15699 4420 Wild 

6 2394  Kenya S0.70409 E37.15348 4478 Wild 

6 2396  Kenya S0.70406 E37.15369 4461 Wild 

7 2434a EAb Kenya N1.222 E36.555 7961 Cultivated from wild 

8 2541  Kenya S0.22954 E37.75226 4391 Wild 

9 2622 EAb Kenya S2.52772 E37.78793 4387 Wild 

10 2657a EAb Kenya S3.409 E38.364 4340 Cultivated from Ethiopia 

11 2776  Kenya N1.07331 E34.82217 6166 Wild 

12 2823  Kenya N0.361 E34.724 4700 Cultivated from Tanzania 

13 2945b EAb Kenya S0.286 E36.117 6184 Cultivated from Yemen 

 

Microsatellite variability was tested using 23 qat samples collected from five 

locations in Ethiopia and eight locations in Kenya (Fig.S1 in supplementary material, 

Table 1). Of these 23 samples four are vouchered at the National Herbarium of Addis 

Ababa University (ETH) and six are vouchered at the National Museums of Kenya (EA; 

Table 1). Six individuals were sampled from population 1 in Ethiopia and six individuals 



 

54 FCUP 
Manuel Curto 

were sampled from population 6 in Kenya; we included a single sample from each of the 

other populations. This strategy was applied to broadly sample genetic diversity of the 

Ethiopian and Kenyan populations as well as check for variability within individual 

populations. Four samples were taken from cultivated plants in Kenya (albeit reported to 

have been originally obtained from Ethiopia, Kenya, Tanzania, or Yemen, respectively) 

and one feral specimen was sampled from Ethiopia (Table 1). Groups of plants that were 

originally cultivated but abandoned by the date of sampling were considered feral. The 

DNA from all 23 of the qat samples was isolated according the protocol of Alexander et 

al. (2006) with the following modifications: extraction and lyses buffers were formulated 

according to De La Cruz et al. (1995), and ascorbic acid and DIECA 

(Diethyldithiocarbamic acid sodium salt) were included in the extraction buffer following 

Couch and Fritz (1990). 

 

Pyrosequencing 

The shotgun sequencing (Anderson, 1981), including library preparations, was 

conducted in a 454 GS FLX platform as a service provided by Microsynth (Balgach, 

Switzerland). For library construction 1 μg of DNA was used and nebulized to an 

estimated average fragment length of 400 bp. Sequences were obtained by two 

independent 1/16th picotitre-plate runs. 

 

SSR discovery, primer construction and testing 

The sequences obtained were screened for the presence of microsatellite motifs 

using a text editor (UltraEdit Professional, v16, Fa. IDM Computer Solutions, Inc. U.S.A.) 

or Sciroko ver. 3.4 (Kofler et al., 2007). Sequences were filtered in three steps using the 

default values of Sciroko, which require a minimum score of 15 (i.e., microsatellites 

containing at least 15 bp of perfect repeats). First, all sequences that Sciroko retained 

with a minimum score of 15 were reported (Sciroko fraction). Second, all sequences that 

contained imperfect or interrupted repeats were discarded (perfect-repeat fraction). 

Third, all sequences containing less than 6 repeats were excluded (6-rep. fraction). 

Fourth, only sequences ≥ 200 bp long and with flanking regions of ≥30 bp long on either 

end of the microsatellite were considered for primer design (optimal fraction). 

Primers were designed using Primer3Plus ver. 1.1.0 (Untergasser et al., 2007) 

under manual control using the following settings: optimal melting temperature of 60 °C, 

a GC content ranging from 47 to 53%, an optimal oligo length between 19 and 21 bp, 

and the amplification product between 150 and 300 bp. 

For capillary-electrophoresis genotyping each primer was tagged at the 5′ end 

with one of four different universal primers using the M13-tailed primer method (Oetting 
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et al., 1995). The four universal primers tagged with different dyes were: 6-FAM 

(TGTAAAACGACGGCCAGT), VIC (TAATACGACTCACTATAGGG), NED 

(TTTCCCAGTCACGACGTTG), and PET (GATAACAATTTCACACAGG). The 

sequences of these primers were chosen to complement the sequence that was added 

to the 5′ end of the forward SSR primer (Godinho et al., 2011). The primers were tested 

in two steps: the single qat sample used for microsatellite discovery, and an additional 

23 qat samples (Table 1). 

All primer pairs were tested using QIAGEN Multiplex PCR Master Mix (Qiagen, 

Valencia, CA, U.S.A.) in a 10 μL singleplex reaction containing 5 μL of QIAGEN Multiplex 

PCR Master Mix, 3.3 μL of water, 0.5 μL of DNA (about 40 ng/μL), 0.4 μL of each primer 

with 10 mM reverse and the universal florescent primer and 1 mM forward primer using 

the temperature profile described below. 

Primers that worked in the first step were multiplexed in a single PCR reaction of 

four markers that each incorporated a unique dye during amplification. The multiplex 

primer combination consisted of 4 nmol of each forward primer, 40 nmol of each reverse 

primer and the florescent universal primer. The 10 μL PCR reactions contained 5 μL of 

QIAGEN Multiplex PCR Master Mix, 1 μL of primer mix and 0.5 μL of template DNA 

(about 40 ng/μL). The thermolcycler conditions for the PCR reactions was: initial 

denaturation/activation step of 15 min; 95 °C for 30 s; touchdown starting at 58 °C to 55 

°C, decreasing 0.5 °C per cycle for 45 s; extension at 72 °C for 30 s; followed by 25 

cycles at 55 °C and eight cycles at 54 °C. Amplification success was checked using 2% 

agarose gels. Genotyping was performed with an internal size standard (Genescan-500 

LIZ; Applied Biosystems, Inc., Foster City, CA, U.S.A.) in an ABI3130xl automatic 

sequencer (Applied Biosystems, Inc.). Alleles were called using GeneMapper ver. 4.0 

(Applied Biosystems, Inc.). 

 

Variability analyses 

Variability of the SSRs was assessed by counting the number of alleles per locus 

and by estimating the PIC (polymorphism information content) and expected 

heterozygosity (He) using Cervus ver. 3.0.3 (Kalinowski et al., 2007). 

To check if the set of SSRs obtained were informative to discriminate 

geographical patterns we tested whether genetic structure reflects the geographical 

distribution of the samples by using STRUCTURE ver. 2.3.3 (Hubisz et al., 2009) without 

prior identification of populations. We allowed the number of clusters to range from K = 

2 to K = 9. For each K, we ran the program for 1,000,000 MCMC generations after an 

initial burn-in of 100,000 iterations. The most likely K was chosen by analyzing the 

variation of log probability of the data (ΔK) between successive K values ( Evanno et al., 
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2005). To confirm how the variability is distributed across the clusters defined by 

STRUCTURE, and which SSRs contributed the most to this pattern, we performed a 

locus-by-locus AMOVA by using Arlequin ver. 3.11 (Excoffier et al., 2005). 

 

Results 

SSR filtering 

 

Table 2. Number of sequences retained after each of the selection steps. The Sciroko fraction contains all sequences 

comprising any kind of SSR motif including interrupted repeats. This fraction was analyzed for sequences only containing 

perfect repeats, at least six perfect repeats and sequences that also contained flanking regions longer than 30 bp 

(optimal). From the optimal fraction we designed 63 primer pairs (synthesized primers) from which 43 show successful 

amplification. 

SSR Sciroko Perfect 6 Repeat Optimal 
Synthesized 
primers 

Successful 
amplification 

Mononucleotide 2911 353 353 159 0 0 

Dinucleotide 4545 1895 1895 642 34 25 

TA/AT 3149 1341 1341 456 9 6 

CT/GA 1127 441 441 138 19 13 

GT/CA 266 112 112 48 6 6 

CG/GC 3 1 1 0 0 0 

Trinucleotide 1303 551 275 199 26 19 

AAG/CTT 292 125 62 43 6 5 

CCA/TGG 71 25 11 10 0 0 

CAA/TTG 146 57 12 10 2 2 

ATT/AAT 468 207 128 96 13 9 

GCT/ACG 14 1 0 3 0 0 

GGA/TCC 104 44 23 16 3 2 

GTA/CAT 94 49 20 14 2 1 

GTC/CAG 28 17 6 2 0 0 

GAT/CTA 81 24 13 5 0 0 

GGC/CCG 5 2 0 0 0 0 

Tetranucleotide 771 377 21 18 3 2 

Pentanucleotide 1048 540 7 4 0 0 

Hexanucleotide 1328 241 4 3 0 0 

Total 11906 3957 2555 1025 63 46 

 

The two independent 1/16th picotitre plate runs on the 454 platform resulted in 

65,401 sequences from which 60,678 high quality sequences were considered in the 

subsequent analyses. From these, 11,906 sequences contained SSR motifs that were 

recognized in the Sciroko fraction (Table 2). Excluding mononucleotide SSRs, 8995 

sequences (15% of all sequences) contained an SSR motif. Of these, 3604 sequences 

had perfect SSR motifs and 2202 were at least six repeats long. In the optimal fraction, 

866 (1.4% of the 60,678 sequences) were retained for primer design based on the 

presence of ≥30 bp flanking regions on either side of dinucleotide or longer SSRs without 

ambiguous bases. Mononucleotide SSRs were present in 2911 of the SSR-containing 

sequences (24%) but only 12% of these (353 sequences) were perfect repeats. 
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Mononucleotide SSRs were present in a similar number of sequences as dinucleotide 

SSRs in the Sciroko fraction, yet only 159 of those sequences (compared to 642) were 

retained in the optimal fraction. Mononucleotide SSRs were not considered for primer 

design because of the high slippage error associated with these loci (Ellegren, 2004). 

 

 
Fig. 1. a) Relative frequency distribution of sequence length for all 60,678 sequences compared to SSR containing 

sequences retained in the Sciroko fraction and sequences containing only perfect SSRs that are at least six repeats long. 

The frequency for each size category was calculated by calculating the percentage of sequences in with that particular in 

relation to the total number of sequences of that fraction. b) Comparison of average PIC and He for dinucleotide SSRs, 

TTA/AAT SSRs and all other trinucleotide SSRs. Error bars indicate standard deviation. Both values for non-TTA 

trinucleotides are significantly lower than for the TTA ones in the t-test (alpha = 0.05). 

 

 

The length of all high quality sequences obtained after initial filtration ranged from 

40 to 969 bp with an average of 329 bp. The sequences retained in the Sciroko fraction 

had a maximum and average length of 607 and 335 bp, respectively, while the 

sequences containing perfect SSRs (perfect-repeat fraction) with a minimum of six 

repeats had a maximum and average length of 595 and 294 bp, respectively (Fig. 1a). 

The average length of the sequences used for primer design (optimal fraction) was 354 

bp. This increase in average length is a consequence of the elimination of sequences 

shorter than 200 bp. Dinucleotide repeats were the most frequent SSR type retained in 

the Sciroko fraction (4545 sequences). From these the most frequent SSR was TA/AT 

in 3149 sequences. About 14% of the dinucleotide-SSR-containing sequences retained 

in the Sciroko fraction were suitable for primer design and regarded as optimal by our 

filtering steps. Most of the sequences containing SSR motifs were excluded because 

they did not contain perfect repeats (only 33% of the Sciroko-fraction sequences were 

retained in the perfect fraction). In addition to motif type and the presence of perfect 

repeats, the number of repeat units was employed in filtering sequences for primer 

development. For tetra-, penta-, and hexa-nucleotide SSRs the lower bound for the 
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exclusion step was six repeats, which retained only 2.8% of the sequences in the perfect 

fraction. For mononucleotide and dinucleotide SSRs all sequences containing less than 

six repeats were excluded in the Sciroko fraction. In contrast to the tetra-, penta-, and 

hexanucleotide SSRs, the optimal fraction for mono- and di-nucleotide SSRs resulted in 

retaining only 45% and 34%, respectively, of the sequences in the 6-repeat fraction. The 

contrast in filtration percentages among the motif types is caused by the difference 

between the average length of mono- and di-nucleotide-SSR-containing-sequences (314 

bp) versus tetra-, penta-, or hexanucleotide SSRs (381 bp). We attribute the shorter 

length of dinucleotide-containing sequences to the often terminal position of the SSR in 

the sequence: 33% of the perfect dinucleotide SSR sequences that included at least six 

repeats did not include downstream flanking regions longer than 30 bp, while only 3% of 

the dinucleotide-containing-sequences did not contain long enough upstream flanking 

regions. Upon completion of filtration a total of 866 sequences were found suitable for 

primer design. The 866 sequences consist of 642 dinucleotide SSRs, 199 trinucleotide 

SSRs, 159 mononucleotide SSRs, and 25 sequences in the tetra-, penta-, or 

hexanucleotide class of SSRs (Table 2). 

 

Primer success and SSR variability 

From the 866 optimal sequences with dinucleotide or longer SSRs we designed 

63 primer pairs: 34 for dinucleotide SSRs, 26 for trinucleotide SSRs, and three for 

tetranucleotide SSRs (Table 2). The number of repeats in the SSRs varied from six to 

21 (Table S1 in supplementary material). From the 63 primer pairs, 46 produced 

detectable PCR products from the single initial sample of qat (Table S1). In the second 

step we applied those 46 primer pairs to 23 samples of qat from a diverse geographic 

sampling. After the second step we excluded 14 primer pairs that failed to amplify bands 

from ≥ four samples as well as five primer pairs that may have amplified paralogous loci 

as indicated by fixed heterozygosity or amplification of more than two alleles in any 

sample. We retained 27 primer pairs to test for population structure (Table 3). 

The number of alleles per locus varied between two and 16 (Table 3). The PIC 

value/expected heterozygosity (He) varied from 0.08/0.08 (CE39) to 0.89/0.90 (CE37; 

Table 3). Genetic diversity from the two populations that were each represented by six 

samples was higher for the Ethiopian population (He = 0.40) than for the Kenyan 

population (He = 0.29). 
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Table 3. Amplification, allele calling and variability of the final set of 27 loci. 

Locus SSR 
Failed 
amplifications Heterozygotes 

Allele length 
variation # alleles PIC He 

CE3 (CT)12 0 12 174-198 12 0,8 0,81 

CE4 (AAG)8 0 5 204-210 3 0,36 0,39 

CE8 (ATT)8 2 5 197-227 6 0,68 0,72 

CE15 (AG)9 0 15 170-183 3 0,39 0,46 

CE16 (AAG)8 0 8 242-258 4 0,28 0,3 

CE22 (AG)10 0 7 243-253 6 0,67 0,71 

CE23 (ATC)13 0 12 171-192 8 0,78 0,81 

CE24 (AC)11 0 11 216-224 5 0,53 0,58 

CE29 (AAT)7 0 4 246-258 5 0,6 0,65 

CE30 (AGG)7 0 3 245-254 3 0,33 0,36 

CE31 (AC)9 0 4 189-199 4 0,51 0,6 

CE33 (CTT)7 0 4 215-233 2 0,33 0,42 

CE34 (CT)12 1 9 179-218 12 0,85 0,87 

CE37 (ATCT)11 0 12 208-276 14 0,89 0,9 

CE39 (AAC)6 0 2 171-185 3 0,08 0,08 

CE40 (GT)10 0 1 167-171 3 0,5 0,59 

CE41 (AG)15 0 9 225-265 16 0,83 0,84 

CE42 (GT)9 0 6 245-261 7 0,76 0,79 

CE43 (ATT)10 0 16 157-193 9 0,82 0,83 

CE45 (AG)11 0 10 268-290 8 0,81 0,83 

CE47 (GTT)8 0 1 255-264 3 0,12 0,12 

CE50 (CT)12 0 16 167-191 10 0,85 0,86 

CE56 (GA)6 0 4 208-218 3 0,48 0,56 

CE57 (TTA)13 0 8 194-209 6 0,72 0,75 

CE58 (TTA)13 0 3 174-180 3 0,49 0,57 

CE59 (TTA)15 1 8 191-213 10 0,81 0,83 

CE64 (CT)11 0 5 251-263 8 0,72 0,75 

 

Population genetic structure 

In the STRUCTURE analyses the most likely number of clusters was K = 7 (Ln P 

(D)= -1172). The first clear division (K = 2) is between a group composed of all samples 

from Ethiopia and four from Kenya (samples 2434a and 2776 from northern Kenya and 

samples 2657a and 2945b, which were originally obtained from Ethiopia and Yemen, 

respectively) and the other group consisting of the remaining Kenyan samples, with only 

two samples of >0.8 mixed affinity (Fig. 2). These STRUCTURE results were supported 

by AMOVA analyses, which indicated that 21.8% of variation is explained by differences 

between these two clusters. 

For K = 7 most of the 23 samples were assigned to a single cluster with probability 

of 0.8 (Fig. 2). Overall, the STRUCTURE analysis differentiated all wild Ethiopian and 

Kenyan samples from each other. Of the cultivated Kenyan samples, 2657 and 2945b 

(originally obtained from Ethiopia and Yemen, respectively) cluster together with a feral 

sample from Ethiopia (2296).  
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Fig. 2. STRUCTURE analysis of Ethiopian and Kenyan Catha edulis samples alternately assuming two (K = 2) or seven 

(K = 7) clusters. Asterisks (*) corresponds to cultivated or feral samples that were not directly transplanted from wild 

populations. 

 

TA, TAA and TTAA SSRs 

We designed 23 primers targeting microsatellite SSRs exclusively composed of 

A and T: 9 dinucleotides, 13 trinucleotides and one tetranucleotide. From the nine primer 

pairs designed for TA-dinucleotide SSRs, only four were able to successfully amplify at 

least 12 of our 23 qat samples. These included two primer pairs that amplified more than 

two alleles from some samples. This corresponds to a lower amplification success than 

the others dinucleotide SSRs (17 out of 25 amplified at least 12 samples). This indicates 

a slight bias against TA SSRs in amplification success. For trinucleotide SSRs, six of the 

13 primers were successfully optimized irrespective of the motif. The TTA/AAT SSRs 

have a level of variability similar to all dinucleotide SSRs, both of which are significantly 

higher than the other trinucleotide SSRs (both comparisons are significantly different 

based on t-tests with alpha = 0.05; Fig. 1b). The TTA/AAT SSRs contribute more to the 

genetic structure than the other trinucleotide loci. An AMOVA of the two clusters 

indicated by STRUCTURE analysis for K = 2, using only wild samples, indicated that 
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44.7% of the TTA/AAT variation is explained by between-group differences, while the 

remaining trinucleotide SSRs explained only 13.2% of the variation. When the same 

analysis was performed using only the two populations composed of six samples similar 

results were obtained. For TAA/AAT SSRs, 63.5% of the variability is explained by 

differences between these two populations compared to 28.3% for the remaining 

trinucleotide SSRs. 

 

Discussion 

The use of Next Generation Sequencing (NGS) techniques to identify SSR 

markers is increasingly important and has become more efficient for microsatellite 

discovery than traditional methods. The most obvious advantage of NGS over older 

methods is the replacement of compiling genomic libraries with time-intensive methods 

by a NGS run. Additionally it is possible, when using NGS, to design primers from 

unenriched DNA, thereby further reducing the workload and also allowing the use of 

SSRs that are difficult to enrich (e.g., TA and TAA). Because of the lower structural 

stability of TA and TAA SSRs, they might be more variable and thus especially useful for 

phylogeographic studies with closely related individuals or populations. 

In this study, we were able to obtain 866 sequences that contained six or more 

perfect repeats with flanking sequences longer than 30 bp, and therefore potentially 

suitable to design PCR primers. Compared with other studies using similar approaches, 

our 866 sequences is considered high. For example, Abdelkrim et al. (2009) and 

Csencsics et al. (2010) used total genomic DNA and they obtained 231 and 307 

sequences containing microsatellites. This difference might be partly because sequence 

length obtained with NGS increased in recent years. In addition it has been shown that 

the fraction of these repetitive motifs varies according to organism (Ellegren, 2004). Even 

though many studies using an enrichment step present higher or similar numbers of 

sequences containing SSRs, we were able to obtain more SSRs than some studies using 

this strategy (Jennings et al., 2011). Other studies that used a larger portion of the 

picotitre 454 plate or an enrichment step obtained many more sequences with SSRs 

(e.g., Boomer and Stow, 2010 [4362 SSRs] and Malausa et al., 2011 [28,336 SSRs]. 

Nevertheless, using our simplified approach we were able to obtain a sufficient amount 

of SSR markers for phylogeographic studies in qat. 

Jennings et al. (2011) used the Illumina platform (Bentley et al., 2008) for SSR 

development and identified 356,958 sequences containing SSRs with 11,650 sequences 

suitable for primer design. Even though the overall number of SSRs containing 

sequences good enough for primer design is high, only 3.3% contain SSRs, which is 

lower than in our study (8.6%), probably because of the shorter sequence length 
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generated by the Illumina platform. An alternative would be to use the Ion Torrent method 

(Rothberg et al., 2011), which produces average sequence lengths of 200 bp and was 

expected to have achieved 400 bp by 2012 (Life Technologies Corporation, 2011) which 

would be sufficient to obtain most of the 866 sequences in our optimal fraction while 

being more cost effective than our pyrosequencing approach (Glenn, 2011). 

The average length of the sequences containing optimal-fraction SSRs obtained 

in our study was just 294 bp, which is shorter than the 329 bp average for all sequences 

obtained. One factor that caused this discrepancy was a drop in sequence quality 

downstream of dinucleotide SSRs. This drop in sequence quality resulted in sequences 

potentially useful for SSR primer design being shorter, on average, than the others as 

well as SSRs lacking sufficient flanking regions to design primer binding sites more 

frequent than expected by chance. Only 25% of dinucleotide containing sequences could 

be used for primer design even though 70% contained a sufficient number of perfect 

repeats. Similar to Sanger sequencing, emulsion PCR prior to pyrosequencing may 

create slippage artifacts that diminish sequence quality downstream of a SSR motif. This 

effect would be overcome by the use of paired-end reads on a given DNA strand, as may 

be obtained using the Illumina technology (Straub et al., 2012). 

In our study we did not use an enrichment strategy to increase the amount of 

SSR-containing sequences but we were nevertheless able to identify a large number of 

SSRs. This way we were able to save time and money obtaining enough SSRs that can 

be used in subsequent studies. The success of designing PCR primers for SSRs 

depends not only on the total number of SSR-containing sequences generated, but also 

on the subsequent success of amplification or optimization and the information content 

from each locus. Unenriched libraries, which contain a relatively large number of TA/AT 

and TTA/AAT SSRs, may provide greater information content per SSR locus than studies 

that include an enrichment step for other SSRs, as was shown in our study. 

We retained just 25 sequences containing tetra-, penta-, or hexa-nucleotide 

SSRs in our optimal fraction (Table 2). If these SSRs are targeted to increase genotyping 

performance then an enrichment step is advisable. Most of our SSR-containing 

sequences that are suitable for primer design correspond to TA/AT SSRs, the most 

frequent SSR in plants (Ellegren, 2004). Success in amplification was lower for TA/AT 

SSRs in comparison to the other SSR types and we were unsuccessful in developing 

any markers with this SSR in our study. Yet one advantage of our approach of using an 

unenriched library was the ability to identify TTA/AAT trinucleotide SSRs. In our study 

this SSR type showed information content comparable to dinucleotide SSRs but with the 

advantage of genotyping a trinucleotide SSR (i.e., less stutter). 
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We successfully developed 27 primer pairs that had high amplification success 

and do not show evidence of amplifying paralogous loci, which corresponds to 43% of 

the 63 primer pairs tested. We further tested the loci using the genetic-diversity measures 

of allele number, PIC and He to determine the amount of information that can be obtained 

from each locus. PIC and He are diversity measures that take into account not only the 

variability of each locus but also the frequency distribution of alleles across the 23 qat 

samples. Referencing these measures enables investigators to avoid polymorphic SSRs 

where all of the variability is found in a few samples, which is not very informative. 

The STRUCTURE analyses successfully differentiated between many of the qat 

samples collected from different regions. Wild qat samples from Ethiopia and northern 

Kenya are differentiated from those collected in southern Kenya. In addition, one of the 

Kenyan samples (2823) was originally obtained from Tanzania and it is assigned to the 

same clusters as the samples from southern Kenya, albeit with different probabilities 

(Fig. 2). These results show that the approach of using microsatellites to differentiate qat 

collected from different regions is promising. 

One of the clusters obtained by STRUCTURE with K = 7 consisted of sample 

2296 from northern Ethiopia and the samples 2657 and 2945b that were cultivated in 

Kenya but originated from Ethiopia and Yemen, respectively. This clustering is consistent 

with the assertion that cultivated qat plants in Yemen originated from Ethiopia rather than 

Kenya. This finding demonstrates that these SSRs can be used in the future to clarify 

the origin of Yemeni qat. 

Although only 23 samples of qat were included in this study we were able to 

obtain preliminary inferences concerning the phylogeographic patterns in qat. The use 

of many more samples from a wider geographic area and multiple samples per 

population will be necessary to make definitive conclusions about population structure. 

The SSR primer pairs that we developed have a high potential to be informative in future 

studies about phylogeographic patterns, genetic structure between cultivated and wild 

qat, as well as determining variation in genetic diversity across the native and cultivated 

distribution of the species. These SSR markers may also be used for forensic 

identification of illegally traded qat. 
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Abstract 

Habitat fragmentation can have a profound effect on the genetic diversity of forest 

species. These effects are especially interesting when forests previously fragmented by 

agriculture start to reconnect due to land abandonment. In this study, we investigate the 

genetic structure and diversity patterns of Juniperus oxycedrus populations from the 

Sabor river valley in Northeast Portugal. We developed 17 microsatellite markers using 

pyrosequencing technology as implemented in the 454 platform. As expected, among 

population differentiation was low with high variability within populations. There was no 

strong pattern of genetic structure in our analyses (FST = 0.018) suggesting that the 

individuals analyzed here belong to one population. The genetic structure seems to be 

equally explained by locality and by tree age. We hypothesize that this is a consequence 

of the land use history from the region. After the abandonment of cultivated fields these 

terrains were probably colonized by individuals from a few older J. oxycedrus 

populations. Thus the genetic structure pattern found may best be explained by this 

recent expansion. This expansion may be currently influenced by the construction of two 

hydroelectric dams that will flood areas with older individuals of the species. 

 

 

Keywords: Juniperus oxycedrus, microsatellites, genetic diversity, land abandonment, 

habitat fragmentation, population structure 

 

Introduction 

Habitat fragmentation may strongly affect plant population genetics by resulting 

in decreased effective population sizes (Ellstrand and Elam 1993) and reduced gene 
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flow among populations (Schaal and Leverich 1996; Couvet 2002), thereby potentially 

causing inbreeding effects and the loss of genetic diversity (Keller and Waller 2002). 

Ultimately this can put species survival at risk and is therefore considered one of the 

major threats to biodiversity (Young et al. 1996). Fragmentation has a higher impact on 

organisms with low dispersal ability and organisms that are obligate outcrossing. 

Autogamous plants are expected to be little affected by fragmentation, while exclusively 

cross pollinated plants (self-incompatible dioecious plants) would be highly sensitive to 

fragmentation effects (Berge et al. 1998; Larson and Barrett 2000; Lennartsson 2002). 

In this group, wind pollinated plants are less affected than animal pollinated plants (Berge 

et al. 1998; Weidema et al. 2000). 

The Mediterranean basin is a hotspot of biodiversity, despite the millennial 

influence of human populations (Cowling et al. 1996; Blondel et al. 2010). Since the 

introduction of agriculture, continuous expanses of natural forests were transformed into 

a mosaic of cultivated fields and forest patches. With time many species adapted to this 

kind of conditions, which allowed them to persist in highly fragmented cultural landscapes 

(Blondel et al. 2010). After the middle of the 20th century, with modernization and 

intensification of agriculture, cultivation of arable fields that were not suitable for high 

productivity and machinery have been progressively abandoned (Sluiter and de Jong 

2007). This resulted in the recolonization of trees and shrubs from the surrounding areas 

which changed the habitats significantly (Chauchard et al. 2007). A number of studies 

have evaluated the effect of this development on the biodiversity of those regions (e.g. 

Sluiter and de Jong 2007; Porto et al. 2011; Santana et al. 2011). Nevertheless, past 

fragmentation and recolonization may also have an effect on the genetic diversity of tree 

and shrub populations especially, but to the best of our knowledge this has never been 

analyzed (but for comparable studies in other regions see Jacquemyn et al. 2009; Leite 

et al. 2014).  

The Sabor region from Northeast Portugal is a good example of past 

fragmentation caused by agriculture (Hoelzer 2003). Human population and agriculture 

strongly expanded in the area from the mid-19th century to the 1950s. Then a process 

of human population decline and land abandonment started and it is ongoing until today. 

Until the mid-20th century almost all the area was cultivated, with remnants of native 

woody vegetation being confined to rock outcrops and the steepest slopes of the river 

valley. In the second half of the last century there was a progressive recovery of shrub 

land and forest vegetation that now covers vast areas across the region. A peculiarity of 

this region are two hydroelectric dams built between 2009 and 2013 which started 

flooding the valley in the winter of 2013/14. As a consequence, the dams will contribute 

to destroying at least some of the forest patches near the river that may be the origin of 
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the colonization of the abandoned farmlands. This makes our study of high priority 

because understanding the spatial genetic structures of populations destroyed by the 

dams will help to understand the impacts of these constructions in the future. 

In this study we investigate the genetic structure of stands of Juniperus oxycedrus 

L. (prickly juniper, Cupressaceae). We expect that the structure patterns found would 

reflect the impact of the past fragmentation followed by land abandonment and 

subsequent expansion of woody species. The species was considered particularly 

suitable to study this process, because its expansion in the region is occurring through 

natural processes, whereas afforestation has facilitated the expansion of other dominant 

trees such as oaks Quercus spp. Juniperus oxycedrus are small trees or big bushes with 

a distribution from Portugal (West) to Iran (East) and from Morocco (South) to France 

(North) (Amaral 1986). It is a drought resistant, light demanding species that together 

with its low soil quality requirements makes it a common pioneer of areas affected by fire 

and deforestation (Bondi 1990; Cano et al. 2007). These characteristics make it more 

likely to establish quickly after abandonment of agricultural fields. Sluiter and de Jong 

(2007) found that when the use of agriculture fields stopped, pioneer vegetation occupies 

it immediately. J. oxycedrus is a dioecious and wind pollinated plant with low fertility 

(Ortiz et al. 1998). This means it may not be as affected by fragmentation effects like the 

other exclusive cross-pollinated plants, though its low reproductive success may make it 

more susceptible. J. oxycedrus has a low production of viable seeds (Juan et al. 2003), 

and studies with its close relatives J. macrocarpa and J. communis showed seed viability 

values of 12% and 3% (Juan et al. 2003; Verheyen et al. 2005). The seeds are mainly 

dispersed by small mammals and birds, making J. oxycedrus a long dispersal species 

(Flynn et al. 2006). In a J. oxycedrus population in Italy Baldoni et al. (2004) found that 

these trees achieve maturity between 17 to 21 years of age and the oldest individual was 

83 years old.   

Former studies on Juniperus oxycedrus had mainly a morphological (e.g. Klimko 

et al. 2007; Brus et al. 2011), phytosociological (e.g. Cano et al. 2007) and demographic 

(e.g. Baldoni et al. 2004) focus. The only molecular studies were made at the European 

scale, focusing on species and subspecies differentiation (e.g. Adams et al. 2005; 

Boratyński et al. 2014). Population genetics studies have been made mainly on other 

juniper species like Juniperus communis and Juniperus macrocarpa. Most of them used 

chloroplast (Provan et al. 2008; Juan et al. 2012) and dominant markers like AFLP and 

isozymes (Lewandowski et al. 1996; Van Der Merwe et al. 2000; Oostermeijer and Knegt 

2004; Vanden-Broeck et al. 2011). Michalczyk et al. (2006) was able to develop five 

microsatellite loci for J. communis that were later used by Provan et al. (2008) in J. 

communis from populations from Ireland, and by Boratyński et al. (2014) for genetic 
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differentiation of several juniper species. Although the use of microsatellites is an 

improvement in relation to the other markers, using such a low number of markers is not 

powerful enough to detect structure in small geographical scales.  

In this study we identified a set of microsatellite loci suitable to identify small scale 

genetic structure in J. oxycedrus. We then investigated genetic structure and diversity 

patterns at these loci in J. oxycedrus trees in the Sabor region to determine the main 

source of genetic structure in the area, in order to estimate signs of past and present 

impacts of the agriculture land use on the vegetation. Specifically, we aim to answer the 

following questions: 1) Is there a signature of past fragmentation in the current genetic 

structure of the population? 2) Does genetic structure depend on geographical distance? 

or 3) Does it depends rather on the age structure of the trees and thus reflect former 

recolonization pathways? The study is part of a Long Term Ecological Research (LTER) 

project designed to determine the impact of fragmentation caused by agriculture and 

infrastructure development. Monitoring of J. oxycedrus populations in this region will be 

made during the lifetime of the hydroelectric dams (about 65 years). This way it will be 

possible to observe the development of genetic structure after the construction event. 

 

Material and methods 

Study area 

Field sampling was carried out in 2011 in the valley of the lower reaches of the 

Sabor River. Climate of the region is Mediterranean with a subcontinental character; in 

the river valley and slopes the mean annual temperature is 14-16ºC and annual 

precipitation is 400-600 mm, whereas in the surrounding plateau the mean annual 

temperature is 12-14ºC and the annual precipitation is 500-800 mm (Hoelzer 2003). The 

precipitation is concentrated in the wet and cold semester (October-March), and it is 

virtually nil in summer. The bedrock of the study area is dominated by schists, whereas 

the soil types prevailing are leptosols and anthrosols (Hoelzer 2003). Human population 

is low and concentrated in a few scattered villages, and the declining agriculture is 

dominated by olive and almond groves, and extensive livestock grazing (mainly sheep 

and goats). Natural vegetation is recovering after the peak of agricultural expansion in 

the 1950s, and include forest patches dominated by cork oak Quercus suber or holm oak 

Quercus rontundifolia, sometimes in combination with prickly juniper, tall scrubs often 

dominated by prickly juniper, and shrublands with species of, for instance, Cistus, 

Genista and Cytisus (Costa et al. 1998; Hoelzer 2003). 
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Fig. 1. Map of the study area, showing sampling localities and the area to be flooded by the Sabor dam. The background 

gray pallet corresponds to the altitudinal gradient. The rectangles correspond to the populations defined a priori. 

 

Sampling strategy and DNA isolation 

We collected leaves from 126 individuals corresponding to five populations defined a 

priori according to the geographic clustering of the individuals (Table S1; Fig. 1). This 

corresponds to a subset of the existing J. oxycedrus in the region, though it is not 

possible to estimate what portion of the total population was sampled because no census 

study is currently available. This study is part of a broader project aiming to study the 

influence of the construction of the two dams on the genetic diversity of J. oxycedrus in 

the region. Because of that, the sampling was made in a way to cover localities alongside 

the river on both sides of the dam construction sites (populations II to V). One population 

(I) was sampled to represent regions away from the river. We measured tree trunk 

perimeter for 55 individuals (Table 1), which was used as a proxy to determine the 

relation between tree age and genetic structure. Because of high vegetation density and 

other accessibility problems in some regions, the trunk perimeter could not be measured 

for all individuals sampled. Some of the unmeasured trees were estimated visually to 

have trunk perimeters > 100cm, and were thus classified as “> 100 cm” and included in 

all the analyses using trunk perimeter (Table 1; Table S1). A sample of J. oxycedrus from 

the UTAD (Universidade de Trás-os-Montes e Alto Douro) botanical garden was 

collected for marker discovery (Reference: D7D8J7).  
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For DNA isolation, leaves were stored and dried in silica gel. Twenty mg of leaf tissue 

was ground by stainless steel beads in two mL tubes using a Retsch Mill (MM400), at 

maximum force (30 Hz). The remaining procedure was performed using the protocol 

described by Alexander et al. (2006) using a CTAB based Lysis buffer and a 96 well 

format like described earlier (Curto et al. 2013). 

 

Table 1. Number of individuals sampled for genetic analysis per a priori population. For each population, the table also 

shows the number of individuals measured for trunk perimeter, minimum and maximum measures, the average and 

standard deviation of the trunk perimeter, and the number of unmeasured individuals with trunk perimeter visually 

estimated to be > 100 cm. 

Population 
Total 
number of 
individuals 

Individuals 
measured 

Average 
trunk 
perimeter 

Standard 
deviation 

Minimum Maximum 
Unmeasured 
individuals > 
100 cm 

I 6 3 36.67 10.27 25 50 0 

II 27 13 70.62 26.54 35 132 1 

III 11 0 NA NA NA NA 2 

IV 48 28 71.83 30.95 25 133 1 

V 34 11 37.73 23.49 15 100 6 

Total 126 55 62.81 31.45 15 133 12 

 

Marker discovery, screening and data production 

Microsatellite discovery was performed by pyrosequencing of a genomic library 

enriched for microsatellite motifs in a Roche 454 GS-FLX platform, subsequent marker 

screening, and primer design as a service by Genoscreen (Lille Cedex, France). To do 

so the company used 1 µg of DNA for library construction. This library was subsequently 

enriched for the following motifs: TG, TC, AAC, AAG, AGG, ACG, ACAT, and ACTC. 

The result from this step was sequenced using only 1/12th of the 454 platform capacity. 

The resulting sequences were filtered so that they contained microsatellite motifs that 

were suitable for primer design. Forward primers were tagged with an extra 

oligonucleotide sequence on their 5’ end according to the M13-tailed primer method 

(Oetting et al. 1995) as described earlier (Curto et al. 2013). Those corresponded to four 

universal primer tails with complementary sequence to a third primer that had a 

sequence specific florescent dye: 6-FAM (TGTAAAACGACGGCCAGT), VIC 

(TAATACGACTCACTATAGGG), NED (TTTCCCAGTCACGACGTTG), and PET 

(GATAACAATTTCACACAGG). A GTTT tail was added to the 5’ end of the reverse 

primer to minimize the polymerase stuttering effect. In this three primer assay the forward 

and reverse primers were used to amplify the region of interest and the tail primer to tag 
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the resulting fragment with a fluorescent chromatophore. The different universal primers 

allowed multiplexing in the PCR.  

All primers were first tested in a simplex on their ability to amplify the sample used 

for marker discovery. With this step, primers that had mismatches presumably due to 

sequencing errors were sorted out. Amplification was done using QIAGEN Multiplex PCR 

Master Mix (Qiagen, Valencia, CA, U.S.A.) in 10 µL reactions containing 5 µL of QIAGEN 

Multiplex PCR Master Mix, 3.3 µL of water, 0.5 µL of DNA, 0.4 µL of each primer solution 

with the following concentrations: 10 mM for the reverse and the universal florescent 

primer, and 1 mM for the forward primer. The temperature profile is described below. All 

primers that showed positive results were multiplexed in four combinations of 50 µL 

solutions containing 4 nmol of each forward primer, and 40 nmol of each reverse and 

florescent universal primers. Each multiplex contained a maximum of four primers pairs 

corresponding to the four dyes used. Those mixtures were then used to amplify all 126 

samples using the PCR protocol described above with 1 µL of primer mix and adjusted 

amount of water.  

All PCR reactions were executed according to the following temperature profile: 

initial denaturation/activation step of 15 min; 95 °C for 30 s; touchdown starting at 62 °C 

to 56 °C, decreasing 0.5 °C per cycle for 60 s; extension at 72 °C for 30 s; followed by 

20 cycles at 54 °C and eight cycles at 53 °C. Amplification success was evaluated by 

electrophoresis on a 2% agarose gel. Nevertheless, all amplification results were also 

genotyped with an internal size standard (Genescan-500 LIZ; Applied Biosystems, Inc., 

Foster City, CA, U.S.A.) in an ABI3130xl automatic sequencer (Applied Biosystems, 

Inc.). Alleles were called using GeneMapper ver. 4.0 (Applied Biosystems, Inc.). 

 

Variability and genetic structure detection 

The markers with positive amplification for most of the samples were screened 

for variability and information content. Variability was assessed by the number of alleles 

per marker and information content by calculating average polymorphism information 

content (PIC) and expected heterozygosity (He) per marker using the program Cervus 

ver. 3.0.3 (Kalinowski et al. 2007). Monomorphic loci were not included in further 

analyses. Deviations from Hardy-Weinberg equilibrium (HWE) and linkage disequilibrium 

(LD) estimations were tested using the software Genepop v 4.2 (Rousset 2008) and 

FSTAT (Goudet 1995), respectively. Frequency of null alleles was estimated using the 

program FreeNA (Chapuis and Estoup, 2007). 

Genetic structure patterns were assessed with and without location coordinates 

of the individuals as prior information using the software Geneland v.4.0.4 (Guillot et al. 

2005) and STRUCTURE v. 2.3.4 (Hubisz et al. 2009), respectively. Since the populations 
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studied are in a small area and gene flow among them is expected, STRUCTURE 

analysis was performed using the admixture model and correlated allele frequencies 

among populations. To find the best value of K, the program was run using K values of 

1 to 20 (ten replicates each) for 200,000 replications, and eliminating the first 100,000. 

The best value of K was defined by Evanno’s et al. (2005) method as implemented on 

Structure Harvester v0.6.93 (Earl and vonHoldt 2012). A STRUCTURE analysis with the 

best K was performed with the same parameters but letting the program run for 

1,000,000 replications excluding the first 500,000. All the analyses made with 

STRUCTURE were performed with and without using populations as a prior. Initially 

Geneland was run for 100,000 replications for a maximum number of populations ranging 

from 2 to 20. The results were recorded every 100th iteration and the first 50,000 

replications were excluded. The optimal number of populations was defined by choosing 

the higher number of clusters where most of the individuals showed an assignment larger 

than 0.5 to one of the clusters. As in STRUCTURE analyses, allele frequencies were 

considered to be correlated. Tests with and without the spatial and null allele model were 

performed as described above with the best maximum number of populations found. The 

model combination that resulted in the least ambiguous cluster assignment was used in 

an additional run, where 1,000,000 iterations were performed and results were recorded 

every 100 replicate. As in the previous tests, the first half of the results were excluded.  

Genetic structure was estimated for populations circumscribed as explained 

above and two age classes. Trunk perimeter was used to separate “younger” from “older” 

individuals. Studies from J. oxycedrus in Italy indicate that a trunk perimeter of 60 cm 

corresponds to trees about 70 years old (Baldoni et al. 2004). This value was used as 

threshold to divide the samples in a group of individuals that were likely present before 

the peak of land use abandonment (about 1940-50) and a group that established later. 

This threshold also resulted in highest genetic differentiation as estimated from AMOVA 

when testing groupings with thresholds set at 10 cm intervals from perimeters 30cm to 

100 cm.  

An AMOVA analysis was also used to evaluate which grouping explained the 

highest amount of difference among groups. AMOVA was done using the software 

Genalex v. 6.5 (Peakall and Smouse 2012) with the following grouping: populations, 

trunk perimeter, and STRUCTURE and Geneland clusters. Groups according to 

STRUCTURE and Geneland, corresponded to the three clusters indicated by these 

analyses respectively. Hereby, samples with assignment probability higher than 0.5 for 

a certain cluster were considered. The AMOVA analyses was performed using FST 

instead of RST because it has been shown that this measure is more efficient in detecting 
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genetic structure in population with high degree of admixture (Balloux and Goudet 2002), 

which is expected due to the relatively small distance among individuals. 

Genetic diversity variation among populations and tree size categories was also 

determined using the software FSTAT by calculating the average expected 

heterozygosity (He) and allelic richness (Ar) per grouping. As an additional measure of 

differentiation, populations’ pairwise FST was calculated using the program FreeNA. This 

software was used because it can incorporate a null allele correction. The software 

Colony (Wang 2004) was used to find possible family relationships in the dataset 

containing trunk perimeter information. Trees with perimeter above 60 cm were assumed 

as potential parents and trees with perimeter below 60 cm as potential offspring. The 

mating system was considered to be polygamous and because we are studying a 

confound area that was previously fragmented we allowed inbreeding to be possible. A 

medium length, full likelihood run was performed with medium precision allowing allele 

frequencies to be updated. Because there is no knowledge of family structure, no 

siblingship prior was used. Since information about the gender of the individuals was not 

collected the potential parents were considered to be both potential fathers and mothers.  

Results from BOTTLENECK v. 1.2.02 (Cornuet and Luikart 1997) were used to 

evaluate the possibility that demographic expansions or declines or founding effect led 

to the current structure. This was done assuming the Stepwise Mutation Model (SMM) 

since all the alleles were separated according to their repeat motif. Significant deviations 

from the mutation-drift equilibrium were calculated using Wilcoxon signed-rank test 

because it is the most reliable when low number of loci are used (Piry et al. 1999). As a 

complementary measure to this analysis, HWE deviations for all populations and trunk 

perimeter categories were estimated using the program Genepop v 4.2. 

 

Results 

Pyrosequencing of the enriched library resulted in 32,883 sequences from which 

6,293 contained microsatellite motifs. From all the potential primer pairs analyzed, 241 

passed Genoscreen bioinformatics validation. From those, 42 primer pairs were 

constructed and tested for amplification success, resulting in 18 markers that could be 

used for genotyping all samples (Table S2). 

All primers amplified most of the samples and only two of them (Joxy28 and 

Joxy35) had an amplification failure larger than 10%. Joxy11 was the only monomorphic 

marker and for that reason was the only marker excluded from further analyses. The 

remaining markers had between two and eleven alleles (Table 2). The marker with lowest 

PIC and He values (Joxy13; PIC=0.08; He=0.09) was not the least polymorphic with 3 

alleles. The most polymorphic and informative marker (Joxy8) had a PIC and He values 
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of 0.83 and 0.85 respectively. According to the LD deviation test using a Bonferroni 

correction, none of the markers were linked. Six markers deviated significantly from 

Hardy-Weinberg equilibrium due to heterozygotes deficiency (FIS of these markers 

ranged from 0.27 to 0.89). In addition, these six markers were the only ones presenting 

a frequency of null alleles greater than 0.1. To test the utility of those markers the 

analyses evaluating population genetic diversity and structure were performed with two 

datasets. The first one was composed by all markers that were variable (17 marker 

dataset) and the second one was composed by all markers that did not deviated from 

HWE (11 marker dataset). 

 

Table 2. Markers variability, amplification success and Hardy-Weinberg deviation statistics. 

Locus 
Number of 
alleles 

Amplification failure 
(%) 

HObs HExp PIC 
HWE p-
value 

FIS NA 

Joxy1 5 8 0.23 0.67 0.60 HS 0.65 0.26 

Joxy3 4 0 0.44 0.46 0.41 0.261 0.03 0.00 

Joxy4 7 1 0.57 0.58 0.50 0.998 0.02 0.01 

Joxy8 11 0 0.78 0.85 0.83 0.528 0.09 0.04 

Joxy10 3 0 0.28 0.46 0.39 0.000 0.40 0.13 

Joxy11 1 0 - - - - - - 

Joxy12 4 0 0.33 0.34 0.29 0.201 0.03 0.00 

Joxy13 3 1 0.08 0.09 0.08 0.329 0.06 0.00 

Joxy14 3 0 0.42 0.45 0.37 0.678 0.06 0.01 

Joxy17 3 0 0.27 0.26 0.23 0.993 
-

0.02 
0.00 

Joxy20 4 0 0.64 0.62 0.53 0.449 
-

0.05 
0.00 

Joxy22 2 1 0.21 0.26 0.23 0.265 0.20 0.06 

Joxy23 5 1 0.51 0.62 0.56 0.122 0.17 0.06 

Joxy28 4 16 0.10 0.26 0.25 HS 0.61 0.17 

Joxy31 3 0 0.25 0.31 0.28 0.214 0.19 0.05 

Joxy35 5 44 0.06 0.54 0.48 HS 0.89 0.32 

Joxy37 2 2 0.23 0.50 0.37 0 0.54 0.18 

Joxy42 4 1 0.33 0.45 0.42 0.003 0.27 0.11 

 

STRUCTURE analysis indicated K=3 as optimal according to Evanno’s Method. 

The analyses with and without a priori knowledge of populations had similar results. A 

priori knowledge of population assignment improved the AMOVA but the structure found 

did not correspond to any geographical pattern, with individuals from the same 

populations being assigned to different clusters (results not shown). The analysis without 

the markers deviating from HWE showed the same assignment probability to all the 

clusters for all individuals. 

In Geneland analysis, the optimal number of populations was also three. 

However, when the non-spatial and null allele models were used, all the samples were 
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assigned to the same cluster and so these models were not used in further analyses. No 

structure among individuals was found for the analyses using 11 markers, so only results 

with the 17 markers are shown. For the analysis using the spatial model, all the 

populations showed assignment to more than one cluster (Fig. 2a). Cluster 1 (white in 

Fig. 2a) was more frequently assigned in the south and Cluster 3 (black) in the north, 

resulting in a slight signature of geographic structure. Nevertheless, all populations 

contained individuals assigned to at least two clusters. When Geneland’s cluster 

assignment probability was plotted according to trunk perimeter as proxy for tree age 

class a similar result was obtained (Fig. 2b). Although all age classes show some degree 

of assignment to all clusters, trees larger than 60 cm showed more assignment to the 

northern cluster while smaller trees to the southern cluster.  

Fig. 2 Plots from the cluster assignment probability obtained in Geneland analyses for a maximum number of three groups. 

The plots were sorted according three different criteria: a) a priori populations; b) trunks perimeter and a priori populations; 

c) separate analyses of trees below 60 cm and trees above 60 cm. 
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Two additional Geneland runs were performed using either “younger” or “older” 

trees to evaluate whether there was any spatial pattern within age classes. In these new 

GENELAND analysis, the best grouping was two for “younger” trees, and three for “older” 

trees. For “younger” trees there was almost no structure with just a very small tendency 

for a North to South gradient in the relative prevalence of the two groups in individuals 

genotyped (Fig. 2c). For older trees we see a clear differentiation among populations, 

with one of the groups dominating in population V and III, another represented primarily 

in population IV, and another dominating in population II but also occurring in population 

IV (Fig. 2c). 

 

Table 3. Summary results of AMOVA analyses for individuals grouped according to the sampled population, trunk 

perimeter (<60 cm vs > 60 cm), STRUCTURE analyses with and without population priors, and Geneland (See main text 

for details). 

Test 
Nr of 

Groups 
Nr of 

individuals 

Variation (%) FST variance 

FST Among 
Groups 

Within 
Groups 

Among 
Groups 

Within 
Groups 

Sampled 
populations        

17 markers 5 126 1.8% 98.2% 0.075 4.014 0.018* 

11 markers 5 126 0.6% 99.4% 0.014 2.425 0.006 

Trunk perimeter        

17 markers 2 67 1.4% 98.6% 0.058 4.134 0.014* 

11 markers 2 67 0.7% 99.3% 0.018 2.445 0.007 

STRUCTURE        
with population 
prior 

3 108 
10.8% 89.2% 

0.457 3.776 0.108* 

without population 
prior 

3 113 
9.2% 90.8% 

0.391 9.867 0.092* 

Geneland 3 124 4.5% 95.5% 0.187 3.974 0.045* 

*Significant value (p value<0.01)       

 

 

AMOVA showed low levels of variation among groups and low values of FST, from 

which only the ones with the 17 marker dataset were significant (Table 3). The analyses 

considering different populations showed both slightly higher FST and slightly higher 

percentage of variation explained by differences among groups (FST = 0.018 and1.8%, 

respectively) when comparing to the division made with trunk perimeter (FST = 0.014 and 

1.4%, respectively). The STRUCTURE test showed higher FST values and higher 

variation among groups (11% and 0.108, respectively) than the Geneland analyses (4% 

and 0.045, respectively). However, for the STRUCTURE analyses fewer individuals 

where used because there was more ambiguity in the assignment of the individuals. 
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Table 4. Genetic diversity and HWE deviation test results for the populations defined and categories of trunks perimeter, 

computed using the data set either with (17) or without (11) markers under Hardy-Weinberg equilibrium. 

Grouping Category 
Nr 

individuals 

17 Marker 11 Marker 

He AR 
HWE p-
value 

He AR 
HWE p-
value 

Populations 

I 6 0.48 2.25 0.03 0.48 2.70 0.60 

II 27 0.45 2.22 0.00 0.43 2.65 1.00 

III 11 0.38 2.03 0.16 0.38 2.46 0.88 

IV 48 0.47 2.30 HS 0.45 2.64 0.09 

V 34 0.44 2.19 0.00 0.44 2.58 0.08 

Trunks 
Perimeter 

< 60 cm 31 0.42 3.55 HS 0.46 3.28 0.03 

> 60 cm 36 0.46 3.81 HS 0.48 3.49 0.23 

 

Expected heterozygosity and allelic richness per a priori population only varied a 

little, ranging between 0.38 to 0.48, and 2.03 to 2.28, respectively (Table 4). For both 

estimates the least diverse was population III, which may be a consequence of its small 

sampling size. A similar result was found for the 11 marker set (exclusion of Markers with 

significant deviation from HWE). Overall there was no clear geographical pattern in 

diversity. The He and AR estimates were slightly higher for older trees in both datasets. 

(Table 4). Using BOTTLENECK, no population or trunk perimeter category defined 

showed significant deviations from the mutation-drift equilibrium (p > 0.01), meaning that 

there was no genetic signature of the major population expansion occurring since about 

the 1950s. Deviations from HWE were only verified for the 17 markers dataset (p > 0.01; 

see Table 4). More specifically for populations I and III and all trunk perimeter categories. 

Pairwise FST values for the 11 markers dataset were smaller than the ones from 17 

markers dataset ranging from -0.014 to 0.017 and from -0.004 to 0.089, respectively 

(Table 5). These values only corresponded to geographical patterns for the 17 marker 

dataset, where population I was more distant in relation to the others and, with exception 

of the comparison between population III and V, FST values seemed to be related with 

geographical proximity when compared to the other populations. For example, 

populations II and III and populations V and IV seem to be more related to each other 

than to the others. Several negative values were observed which can be a consequence 

of continuous gene flow among these groups.  

The family structure analyses performed with Colony found eight potential 

relationships for the 17 marker dataset and 13 for the 11 marker dataset, corresponding 

only to a small portion of the individuals analyzed (Table S3). Most of the relationships 

were between population IV and V and within them. Besides those, there was only one 

relationship between population II and V. Each of the relationship found corresponded 

to a different potential offspring individual and to four potential parents from populations 

IV and V. 
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Table 5. Pairwise FST for all pair of a priori populations, computed using the data set either with (17) or without (11) 

markers under Hardy-Weinberg equilibrium. 

Population 17 markers 11 markers 

I II 0.064 -0.001 

I III 0.089 -0.002 

I IV 0.027 0.017 

I V 0.021 -0.001 

II III -0.004 -0.001 

II IV 0.008 0.007 

II V 0.015 0.005 

III IV 0.019 0.005 

III V -0.001 -0.014 

IV V 0.001 0.003 

 

 

Discussion 

Marker development 

In this study we were able to develop 17 variable microsatellite markers for 

Juniperus oxycedrus. This improvement, compared with previous microsatellite studies 

on Juniperus (five markers for Juniperus communis, Michalczyk et al. 2006), is likely to 

be a consequence of the high throughput sequencing technology used. The higher 

number of sequences generated, several thousand compared to several hundred 

sequences using a subcloning strategy, facilitates the process of microsatellite motifs 

discovery. Thus using Next Generation Sequencing is becoming rapidly the method of 

choice for marker discovery (Ekblom and Galindo 2011). With pyrosequencing (the 454 

technology), typically around 100,000 sequences can be produced (Loman et al. 2012) 

and, when an enrichment step is applied, most of the microsatellite loci from the genome 

can be represented on those sequences. In our case, although we did not use the full 

capacity of a run, we produced 32,883 sequences from which 6,293 contained 

microsatellite motifs and 241 were good enough for primer design. Even when an 

approach without enrichment is used, a high number of potential loci are obtained. For 

example, Csencsics et al. (2010) and Curto et al. (2013) obtained 307 and 866, 

respectively, good quality microsatellite containing sequences from a total of 76,692 and 

65,401 initial sequences. Nevertheless, using an enrichment step resulted in 19% of the 

loci containing a motif, compared to 1.3% in our earlier study (Curto et al. 2013). In this 

study there was very small number of sequences suitable for primer design when 

compared to the microsatellite containing sequences (only 19%). The reads excluded in 

this step did not contain sufficiently long flanking regions for primer design. This may be 

a consequence of the presence of some fragmented DNA that is preferably amplified in 
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the emulsion PCR step of the library construction due to its smaller size. This may be 

creating overrepresentation of sequences containing microsatellite motifs in the 

beginning or in the end of the reads. Recently, alternative sequencing technologies like 

Illumina (Castoe et al. 2010), Ion torrent (Elliott et al. 2014) and PacBio (Grohme et al. 

2013) platforms have been used for microsatellite discovery with similar or better results 

than pyrosequencing. Illumina and Ion torrent platforms produce smaller reads 

(maximum of 250 and 300 bp, respectively) than 454, however they have higher 

throughput making them generally cheaper methods. PacBio produces longer reads 

(around 2000 bp) increasing the likelihood of obtaining a microsatellite containing read 

with flanking regions big enough for primer design. 

The high number of sequences obtained by NGS allows pooling different samples 

during sequencing and screening for markers that are variable already within the 

sequencing step. We used only one individual mainly because we used only a 

comparably small subset of the 454 run for marker discovery, and we were interested in 

variation on a relatively small spatial scale. For both reasons, the amount of duplicated 

loci in the group of polymorphic markers might be increased if multiple non-barcoded 

individuals are used. Nevertheless, from the primers designed, 18 amplified most of the 

samples and only one of them was monomorphic, but in general the markers presented 

a low number of alleles. Only one of them had more than 10 alleles and most of them 

had less than five alleles. The sampling used was geographically very restricted (the 

most distant sampling localities were around 35 Km apart) so low variation is expected. 

For future studies using a larger study area, the variability may be higher and the 

monomorphic locus may be variable in that situation. In addition, less variable markers 

may be especially useful when different species are used. Theoretically, if they are less 

variable in their motif, their primer binding regions might be more conserved and thus 

more likely to be cross amplified in different species. In Boratyński et al. (2014) work, the 

authors had a problem in cross-amplifying microsatellites markers in multiple Juniperus 

species, ending up with a dataset of only three markers. The more conserved markers 

described here may contribute for improvements in this kind of studies.  

Six markers deviated from Hardy-Weinberg equilibrium because their 

heterozygosity was lower than expected. Of those, only one amplified in all the samples, 

and all of them had a high frequency of null alleles, in terms of missing data or determined 

by the program FreeNA. The genetic diversity measures could therefore be 

underestimated in our analysis. For the STRUCTURE and Geneland analyses, when 

these markers were discarded the differentiation signal was lost. Excess of null alleles in 

microsatellite analysis is generally attributed to mutations in the primers’ binding sites. 

The variability in the primer binding site may reflect a general higher variability of these 
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loci which is ultimately contributing to its higher information content. This might explain 

why their inclusion in the analyses lead to detection of a weak genetic structure patterns 

which cannot be resolved using only the 11 marker dataset. No structure was obtained 

using the complete dataset in Geneland when the null allele model was used. Geneland 

tends to overestimate null allele frequencies in case missing data are present (Guillot 

2012) which could have influenced the inference. 

 

Genetic structure 

The dataset contains a weak signal of genetic structure, which was determined 

using Bayesian clustering methods as implemented in the programs STRUCTURE and 

Geneland. For the STRUCTURE analysis, the assignment within each population was 

very heterogeneous and there was no differentiation among the populations studied. For 

the Geneland analysis, the assignment was more homogeneous within each population, 

and there were clear differences among populations. AMOVA supported higher 

differentiation among groups for the STRUCTURE analyses. Geneland analyses uses 

spatial information as a prior and the algorithm is not sensitive to loci deviating from 

Hardy-Weinberg equilibrium (Guillot et al. 2005). Contrary, STRUCTURE assigns 

individuals by optimizing HWE within each cluster (Hubisz et al. 2009) and the use of loci 

not in agreement with this assumption can result in a wrong inference. In the case of 

Geneland none of the assumptions were violated, making it more suitable for this 

particular dataset. Moreover, due to the low variability found in the data, the spatial 

information may have been valuable to detect any weak signal of structure. The 

Geneland analyses implementing the spatial model recovered better results than when 

this model was not used. The non-spatial model does not consider geographical 

information, thus making the analyses less reliable in recovering structural patterns for 

populations with weak genetic structure (Guillot et al., 2008). 

Similar to our analysis, other Juniperus species in larger geographical scales 

showed high variability within populations and low genetic differentiation. This was, for 

example, the case of Juniperus communis populations from Northwest Europe (Van Der 

Merwe et al. 2000; Oostermeijer and Knegt 2004; Michalczyk et al. 2006; Provan et al. 

2008; Vanden-Broeck et al. 2011) and Juniperus macrocarpa from Southern Iberia (Juan 

et al. 2012). Juniperus are dioecious wind pollinated plants, making gene flow among 

fairly distant populations likely. This pattern was found in populations that were way more 

distant from each other than the ones analyzed in here. Thus the gene flow in the 

populations analyzed may be extremely high making it likely for those five populations to 

be in fact one. This would explain the low FST values, the AMOVA results, and the fact 

that we found paternity relationships between distant populations (i.e. between 
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populations IV and I). Moreover, our results show that genetic structure found was 

generally weak and it can be explained by geographical patterns and by tree age. This 

is mainly supported by the AMOVA and Geneland analyses. In our AMOVA result, the 

division by populations provided only slightly better results than the division by trunk 

perimeter. In the Geneland results, one of the clusters was more frequently assigned in 

the south and to younger trees, and the other in the north and to older trees. This can be 

a signal of a weak isolation by distance pattern and a week differentiation among young 

and old trees. The isolation by distance pattern is also supported by the pairwise FST 

results, for which the more distant population (population I) is also the one more 

genetically dissimilar, whereas geographically close populations like IV and V or 

populations II and III showed the lowest FST values. The weak genetic structure found 

has also been reported for other Juniperus populations (e.g. Van der Merwe et al. 2000; 

Oostermeijer and Knegt 2004; Juan et al. 2012). 

When Geneland analysis was ran separately for young and old trees, we found 

a clear geographical structure in older trees. No structure was found in younger trees 

showing that there is no bias created by our sampling. This analyses is furthermore 

congruent with a scenario of past fragmentation followed by recolonization. Genetic 

structure between populations of older trees indicate some restrictions to gene flow 

among these populations in the past. More recently, these barriers ceased to exist 

allowing for a population expansion. As it is shown from the results of Colony, some 

individuals appeared to have contributed more for the expansion of the J. oxycedrus than 

others, resulting in some alleles to be more frequent in younger than older trees due to 

founding effects. This ultimately resulted in the lack of structure in younger trees, which 

contributed to the differentiation observed between old and young trees, and the 

weakening of spatial structure. Because all the parental individuals are from populations 

IV and V we could assume that those are the major contributors for the genetic pool of 

younger trees. However we were only able to find family relationships in a small set of 

the samples used, especially when populations I and II are considered. Thus, younger 

trees may have been originated from populations that were not sampled and a more 

intensive sampling of the region and the surrounding areas is necessary in order to take 

conclusions about this matter. Nevertheless, the fact that a structure according to age 

exists is an indication that some populations are contributing more for the recolonization 

than others. This can be a consequence of demographic reasons, where some 

populations were larger and older when expansion started, making them numerically 

more likely to reproduce successfully. Selection of pioneering features may be also 

behind this finding. Some individuals may have presented characters that were 

advantageous to the establishment of pioneer vegetation being favorably selected. To 
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test these hypotheses a study assessing pioneering features such as seed production 

and viability is necessary. If no difference in these features is found among populations 

the demographic hypotheses would be the most likely explanation. 

This past fragmentation scenario fallowed by expansion of the populations is 

congruent with the land use history of the region. After arable fields were abandoned, 

the expansion of natural vegetation could take place and the population of J. oxycedrus 

increased. A similar pattern was found by Vellend et al. (2004) in the forest associated 

herb Trillium grandiflorum, where individuals from younger secondary forest were 

genetically more divergent from individuals from older primary forest. Other studies using 

forest species found a loss of genetic diversity in recent forests that colonized abandoned 

agriculture fields (e. g. Jacquemyn et al. 2009; Leite et al. 2014). This loss of genetic 

diversity of younger plants is expected because populations undergone a genetic 

bottleneck due to the fragmentation and recolonization event. However, Juniperus plants 

are dioecious making them particularly sensitive to barriers to gene flow. Vanden-Broeck 

et al. (2011) found that younger trees had lower genetic diversity in fragmented 

populations of J. communis. Although we found a greater genetic diversity in older trees, 

the difference in relation to younger trees was small. In addition, no signal of deviation 

from HWE and mutation-drift equilibrium was found for both groups. This is an indication 

that the founding effect was not very severe, which may be a consequence of how recent 

the land abandonment began (around 60 years ago). Alternatively, as described above, 

the genetic diversity of Juniperus populations is highly heterogeneous being possible for 

one population to retain the same degree of genetic diversity when compared with a 

larger group of populations. The high variability within populations plus how recent the 

event is make in this case the founding effects not to create a drastic reduction of genetic 

diversity.  

We found that the best trunk perimeter threshold to assess genetic differentiation 

between younger and older trees was 60 cm. This corresponds to trees about 70 years 

old, as inferred from a regression equation between trunk diameter and tree age for a 

Juniperus oxycedrus populations from Italy (Baldoni et al. 2004), considering that a 

perimeter of 60 cm corresponds to 19 cm of diameter in a perfectly circular section of 

trunk. Taking into account that the maturity age for J. oxycedrus is around 20 years, and 

that land abandonment started at around 60 year ago, it is likely that the trees with current 

perimeter above 60 cm were the only ones able to reproduce at the time. This made 

them the major contributors of the population’s expansion, which explains why the value 

of 60 cm was obtained as the best trunk perimeter division. Nevertheless, to be sure of 

this conclusion a dendrochronological study would be needed to have a more accurate 

estimate of tree ages and the local relationship between trunk diameter and age.  
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Ideally, a fine-scale genetic structure analyses would have been performed, 

focusing not only on genetic diversity and structure patterns, but also on gene flow. Only 

a small set of the populations and localities present in the region were sampled, therefore 

some other populations may be contributing for the genetic poll of the region. For that 

reason, we did not want to take conclusions in the matter of gene flow patterns and 

relations among populations. Debout et al. (2011) did a spatial genetic structure analyses 

(SGS) for Distemonanthus benthamianus, a tree from Western Africa rain forest, which 

consisted in finding correlations between the coefficient of kinship and the spatial 

distance, allowing to find small scale genetic structure patterns. Using that analyses they 

were able to estimate seed dispersal distances. The application of this analyses in J. 

oxycedrus populations would be mainly advantageous in a larger geographical scale. 

This way it would be possible to study the main barriers to gene flow in this species and 

not only in the current study area. In addition, it would also be interesting to see if similar 

patterns are found in other populations that were and were not fragmented in the past. 

That particular study would help to validate the findings in this paper. However, due the 

high intensity of agricultural and pastoral activities in the Mediterranean region it would 

be impossible or nearly impossible to find an area suitable for this study. 

The finding that genetic structure in J. oxycedrus in the Sabor region is best 

explained by age, has several implications: the recovery of the population after the past 

fragmentation might still be ongoing. Trees that established during the recolonization are 

not yet fully admixed with older trees, even though we would expect this to happen in the 

future. This has some implications for the impact of the dam, because it has caused the 

loss of part of the remnant trees that survived the peak of agricultural expansion in steep 

slopes of the river valley. Therefore, these trees will not be available as source of genetic 

variation in the future, and the current pattern of genetic structure might be stabilized. 

The data presented here are a first step in our attempt to study this context.  
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Abstract 

Geological history of oceanic islands can have a profound effect on the 

evolutionary history of insular flora, especially in complex islands such as Tenerife in the 

Canary Islands. Tenerife results from the secondary connection of three paleo-islands 

by a central volcano, and other geological events that further shaped it. This geological 

history has been shown to influence the phylogenetic history of several taxa, including 

genus Micromeria (Lamiaceae). Screening 15 microsatellite markers in 289 individuals 

representing the eight species of Micromeria present in Tenerife, this study aims to 

assess the genetic diversity and structure of these species and its relation with the 

geological events on the island. In addition, we evaluate the extent of hybridization 

among species and discuss its influence on the speciation process. We found that the 

species restricted to the paleo-islands present lower levels of genetic diversity but the 

highest levels of genetic differentiation suggesting that their ranges might have 

contracted over time. The two most widespread species in the island, M. hyssopifolia 

and M. varia, present the highest genetic diversity levels and a genetic structure that 

seems correlated with the geological composition of the island. Samples from M. 

hyssopifolia from the oldest paleo-island, Adeje, appear as distinct while samples from 

M. varia segregate into two main clusters corresponding to the paleo-islands of Anaga 

and Teno. Evidence of hybridization and intraspecific migration between species was 

found. We argue that species boundaries would be retained despite hybridization in 

response to the habitat's specific conditions causing postzygotic isolation and preserving 

morphological differentiation 

 

Keywords: Genetic structure, hybrid zones, island evolution, Macaronesia, 

microsatellites, oceanic islands, paleo-islands, SSR. 
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Introduction 

Speciation is traditionally seen as the accumulation of differences between two 

populations in allopatry, with geographic distance as barrier to gene flow. In general, 

gene-flow will prevent differentiation, so continuous migration and hybridization events 

will counteract speciation processes (Yeaman and Whitlock 2011) and potentially also 

homogenize formerly differentiated species when they come secondarily into contact and 

are not reproductively isolated. However, it had been shown that speciation can occur 

by adaptation and divergent selection also with gene-flow (Seehausen et al. 2014) and 

several new concepts had been developed that explain the context between genetic 

diversity, selection, and gene flow, e.g., the hybrid swarm – (Seehausen 2004) or the 

surfing syngameon hypothesis (Caujapé-Castells 2011). These hypotheses postulate 

that populations can work as sink of genetic diversity through hybridization which 

furthermore could buffer effects of genetic drift and could increase the level of diversity 

for selection to act upon and could thus foster differentiation by adaptation. This context 

had become known during the last year as “speciation-with-gene-flow” especially in 

zoology. A recent paper published by Roy et al. (2015), showed how hybridization in 

contact zones can transform between-lineage variation into within-population genetic 

diversity increasing the population's potential for adaptation, ultimately favoring adaptive 

radiations in a short period of time. Overall, hybridization might enhance genetic and 

phenotypic variation facilitating further divergence and adaptation to changing 

environmental conditions (Pavarese et al. 2013; Seehausen et al. 2014). 

Hybridization might also be able to explain peculiarities of insular radiations, i.e., 

adaptive evolution on oceanic islands. It can be hypothesized that because of the 

restricted space available on islands, alleles not under selection might rapidly drift 

throughout all subpopulations of hybridizing species. In case the selection regime does 

not stabilize both species, the small ranges will cause the two species to rapidly become 

one morphospecies. This will be especially pronounced after secondary contact, e.g., by 

frequent dispersal between current islands or land bridges between paleo-islands 

(Puppo et al. 2014, 2015a). 

This scenario might explain the comparable high levels of genetic diversity (Pérez 

de Paz and Caujapé-Castells 2013; García-Verdugo et al. 2015). In addition, 

hybridization can be quite frequent on islands. For example, Kim (2007) found that 34% 

of the genome in Sonchus (Asteraceae) had been exchanged between two species 

where hybridization has been observed, but the remaining genome had been 

hypothesized to be stabilized by selection. 

Volcanic archipelagos present an ontogeny that is composed of different phases 

beginning with the growth of a sea mount above the sea level, its continuous building 
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until it reaches its maximum area and height, and its reduction below the sea level by 

erosion or other catastrophic events such as caldera collapsing and landslides created 

by volcanic activity (Fernández-Palacios et al. 2011). This continuous change in profile 

directly affects speciation opportunities by increasing or diminishing habitat availability 

as explained by the theory of island biogeography (MacArthur and Wilson 1967) and by 

the general dynamic model of oceanic island evolution (Whittaker et al. 2007, 2008). 

One example of a volcanic archipelago is the Canary Islands, composed of seven 

islands located ca. 100 km off the western coast of Morocco in the Atlantic Ocean. The 

islands have each an independent origin, being oldest in the east and youngest toward 

the west (Carracedo 1994; Juan et al. 2000; Fernández-Palacios et al. 2011). Among 

the Canaries, Tenerife presents the most complex geological history and is currently the 

highest and largest island of the archipelago. Tenerife used to be three islands: Adeje 

(11.6–3.5 Ma), Teno (6.7–4.5 Ma) and Anaga (6.5–3.6 Ma), that got secondarily 

connected during the late Miocene—Pliocene due to successive volcanic activity 

(Ancochea et al. 1990). There is the possibility that Teno and Adeje created their own 

island but the three island hypothesis is more accepted (i.e., Ancochea et al. 1990; 

Guillou et al. 2004; Fernández-Palacios et al. 2011). Tenerife reached its current shape 

ca. 2 Ma (Ancochea et al. 1990) and parts of the paleo-islands remain in Tenerife today 

and exhibit distinct geomorphological and geological characteristics (Fernández-

Palacios et al. 2011; Fig. 1). They also harbor unique floral elements: at least 55 plant 

species are endemic to at least one paleo-island (Trusty et al. 2005): 16 on Anaga, 25 

on Teno, and 14 on the smallest paleo-island region, Adeje (Martín et al. 1999). The 

floristic differences between the paleo-island regions might have been further intensified 

by additional volcanic activity and catastrophic landslide events that might have 

reisolated parts of the island thus disconnecting existing populations (i.e., Mairal et al. 

2015; Otto et al. 2016). From the many landslides occurred during the geological history 

of Tenerife, three massive ones stand out for creating the three major valleys in Tenerife. 

Güímar in the southeast and La Orotava in the northeast were formed between 800–600 

ka and isolated Anaga from the rest of the island (Ancochea et al. 1990; Watts and 

Masson 1995; Juan et al. 2000; Fig. 1). Likewise, the valley of Las Cañadas in the north-

center was formed less than 200 ka and reisolated Anaga and Teno (Ancochea et al. 

1990; Fig. 1). The Teide volcano filled Las Cañadas becoming the highest point of 

Tenerife today (3718 m; Fig 1). 
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Fig. 1. Maps of Tenerife showing: (A) Micromeria sampling localities; long-dashed lines indicate remnants of paleo-

islands; short-dashed lines indicate major valleys; dotted polygons indicate regions formed by geographically close 

populations (see Table 1); symbol shapes and colors correspond to different species of Micromeria; numbers on symbols 

indicate collection localities (see Table 1); (B) distribution of Micromeria species. Species distributions were obtained by 

converting a point per quadrant dataset from Pérez de Paz (1978) into continuous ranges. Individuals of M. varia on the 

central north coast had been assigned to M. hyssopifolia in the meanwhile (Puppo et al. 2014); (C) genetic diversity for 

each species calculated as HE (upper right), HO (middle right), and HT (bottom right). The boxplots showing HE and HO 

were made from single values estimated per population. 

 

The geomorphological history of Tenerife has not only had a strong influence on 

the composition of the regional flora but there are also examples that show its influence 

on population differentiation within species and potential impact on speciation. Examples 

are mainly from animals, where haplotype diversity seems correlated with the paleo-



 

99 FCUP 
Capter 3: Micromeria evolution in the Canary Islands 

islands with high haplotype divergence between Teno and Anaga (Gübitz et al. 2000; 

Brown et al. 2006; Macías-Hernández et al. 2013), though studies with plants are 

increasing over the last years (i.e., van Hengstum et al. 2012; Rumeu et al. 2014; Jones 

et al. 2014; Mairal et al. 2015). It had been postulated that this high divergence and 

patterns of genetic structure are not only explained by the geomorphological history such 

as secondary contact and reisolation by landslides and lava streams. Rather, the 

populations have been probably stabilized by selection, with reduced gene flow between 

genotypes characterized by the haplotypes and the different ecological conditions. For 

example, in the case of Gallotia lizards and Tarentola geckos, this is supported by 

different color patterns and other traits (Gübitz et al. 2000; Brown et al. 2006). In these 

examples, since differences are being maintained, the selection regime must be 

stabilizing the different species preventing them from forming a single morphotype. 

Furthermore, in geologically complex islands such as Tenerife species ranges 

previously disrupted by volcanic activity, landslides, and other geological events could 

have later come into contact forming small-scale hybrid zones. Hybrid zones usually 

develop at zones of secondary contact between interbreeding species. In these zones, 

hybridization could be somewhat frequent, with introgression and backcross probability 

decreasing in both directions. The occurrence of hybrid introgression can be masked 

when sequence-based genetic markers are used to investigate the phylogeny of species 

(Herben et al. 2005). Multilocus investigations on insular species groups are comparably 

rare, only a few examples exist where dominant marker sets had been used (e.g., 

Meimberg et al. 2006; Mairal et al. 2015). Codominant markers are the method of choice 

to investigate genetic structure, gene flow and differentiation between populations 

because they allow determining the heterozygote state at one locus. Microsatellites or 

simple sequence repeat (SSR) are loci that show high level of length polymorphisms and 

constitute the method of choice for population genetic analyses, normally used for within 

species investigations. For species groups, they are more rarely applied because even 

though cross species applicability is observed, application can be technically challenging 

(Barbará et al. 2007). However, if markers can be identified that successfully amplify 

across a wider range of species, the use of this marker system allows determining gene-

flow and differentiation between species (González-Pérez et al. 2009; Sosa et al. 2013; 

Turini et al. 2014). 

In this paper, we are studying the context of geological history and population 

differentiation using multiple populations of the species of Micromeria Benth. on Tenerife, 

a genus that comprises paleo-island endemic representatives next to species that are 

widely distributed on the island. We use a set of 15 microsatellite markers able to cross 

amplify all Micromeria species from Tenerife (Puppo et al. 2015b), to investigate the 
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genetic structure of the species of Micromeria present in this island. With this, we aim to 

understand the diversification process of this genus in Tenerife, in particular, if the 

genetic structure can be related to the major geological events that occurred on the 

island. This is of particular interest for the central area species M. hyssopifolia, M. 

lachnophylla, M. lasiophylla, and M. varia. In addition, we investigate the role of 

hybridization in the evolution of Micromeria in Tenerife since natural hybrids had been 

described for most of the species of the genus occurring in this island. Introgression after 

hybridization could have combined Teno and Anaga genotypes and could have 

facilitated the adaptation to the different ecological niches. 

The use of codominant markers and the possibility to determine gene flow within 

species allow outlining different hypotheses about the influence of hybridization on 

evolutionary patterns on oceanic islands. This will contribute to create a new perspective 

on speciation dynamics in oceanic islands: an interaction of gene flow and selection 

driven by geologic and climatic factors might shape evolutionary processes in these 

systems. 

 

Materials and Methods 

Study system, DNA isolation and genotyping 

Micromeria is a genus of the mint family Lamiaceae, subfamily Nepetoideae, and 

is composed of ca. 54 species distributed in parts of Africa and Asia, the Mediterranean 

basin and Macaronesia (Bräuchler et al. 2008). Micromeria is present in the Canary 

Islands with 21 species, presenting the highest diversity on Tenerife and Gran Canaria, 

with 8 and 7 species, respectively (Puppo and Meimberg 2015). In Tenerife, three 

species are narrowly restricted to the paleo-islands, one to Teno (M. densiflora) and two 

to Anaga (M. glomerata and M. rivas-martinezii). Micromeria teneriffae also grows in 

Anaga but its range extends toward the southeast up to Fasnia and Güímar (Fig. 1). In 

the paleo-islands, these four species grow on old rocks and in the southeast, M. 

teneriffae inhabits the coastal desert. In a phylogenetic analysis of multiple nuclear genes 

and morphometric analysis, the species associated to the paleo-islands are not only 

highly morphologically different from those occupying the central area of the island, but 

are also older (Puppo et al. 2014). Contrary to this, relations among the common species, 

i.e., those distributed in the younger parts of the island (M. varia, M. hyssopifolia, M. 

lachnophylla, and M. lasiophylla), are less well supported in the phylogeny and further 

conclusions about their relationships could not be drawn (Puppo et al. 2014). Micromeria 

varia is distributed along the north part of the island from Teno to Anaga, M. lachnophylla 

grows in the central highland of the island above 2000 m, and M. lasiophylla is restricted 

to the southeast rock cliffs of Las Cañadas, above 2000 m (Fig. 1). The species with the 
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widest distribution, M. hyssopifolia occurs throughout the island from 0–2000 m and 

shows a high level of variability growing from costal desert in the south to the pine forest 

belt and the middle altitude wet regions in the north (Fig. 1). The species inhabiting this 

central part come into contact in zones where their distributions overlap and it is possible 

that hybrid zones between all the species exist. 

In total, we included 289 samples of Micromeria in the present study representing 

all currently recognized species in Tenerife. Two to twelve individuals were collected in 

each of the 66 locations sampled (Table S1; Fig. 1). Collection was conducted in Tenerife 

during the years of 2010 and 2012 and leaves were conserved in silica gel in the field for 

subsequent DNA analysis. 

Dried leaves were ground and DNA was extracted using the Macherey-Nagel 

Plant DNA Extraction Kit (Macherey-Nagel, Düren, Germany) according to the 

manufacturer's protocol. The 289 samples were amplified with the 16 microsatellite 

markers developed for Micromeria by Puppo et al. (2015b). Each primer was tagged at 

the 5′- end with one of four different universal primers using the M13-tailed primer method 

as described in Curto et al. (2013) and Puppo et al. (2015b). The 16 primers were 

multiplexed in different polymerase chain reactions (PCR) as in Puppo et al. (2015b) 

using HotStarTaq Plus Master Mix Kit (Qiagen, Valencia, CA). The multiplex primer 

combination consisted of 4 nmol of each forward primer, 40 nmol of each reverse primer, 

and the florescent universal primer. The final volume reaction was 10 μL and contained: 

5 μL of QIAGEN Multiplex PCR Master Mix (Qiagen), 1 μL of primer mix and 0.5 μL of 

template DNA (about 40 ng/μL), and 3 μL of water. PCR was performed using the 

following cycle profile: 95°C for 15 min; 7 cycles of 95°C for 30 sec; touchdown from 

58°C to 55°C, decreasing 0,5°C per cycle for 45 sec; 72°C for 30 sec; 25 cycles of 95°C 

for 30 sec; 55°C for 45 sec; 72°C for 30 sec; 8 cycles of 95°C for 30 sec; 54°C for 45 

sec; 72°C for 30 sec; and a final extension step of 60°C for 30 min. Amplification success 

was confirmed using 2% agarose gels stained with GelRed (Biotium, Hayward, CA). 

Genotyping was performed with an internal size standard (Genescan-500 LIZ; Applied 

Biosystems, Inc., Foster City, CA) in an ABI3130xl automatic sequencer (Applied 

Biosystems, Inc.). Alleles were called using GeneMapper ver. 4.0 (Applied Biosystems, 

Inc.). To check for reproducibility of the data, the amplification and scoring of 96 

individuals were independently repeated for all primers mixes. 

 

Data analyses 

For the population level analyses, only localities with at least four individuals 

sampled were considered. To better understand how the estimates vary across the 
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island regions geographically close localities within the same habitat were considered as 

one population for some analyses (Fig. 1). 

Microsatellite quality was evaluated by quantifying the frequency of null alleles 

and searching for evidence of genotyping errors such as scoring of stuttering bands and 

large allele drops. This was performed with the program Micro-Checker (Van Oosterhout 

et al. 2004) and only populations with at least five individuals with less than 50% missing 

data for all markers were used. Additionally, we tested if they followed all assumptions 

from Hardy─Weinberg Equilibrium (HWE) using the program GenAlEx 6.41 

(http://biology-assets.anu.edu.au/GenAlEx/). 

Genetic diversity per population was estimated by calculating the total number of 

alleles (N), expected and observed heterozygosities (HE and HO), and portion of private 

alleles. To prevent biases due to population size, the total unbiased HE per species and 

regions was calculated (HT). Genetic differentiation was estimated by calculating 

pairwise FST, RST, and Nei distance; RST, to include the information about allele size when 

using microsatellites in the distance estimate. This allows to have a better perspective of 

the evolutionary relationships among groups (Balloux and Goudet 2002). The pairwise 

matrices for genetic differentiation measures were represented by an UPGM 

dendrogram, calculated using the program NTSys pc (Rohlf 1993). Deviations from 

Hardy─Weinberg equilibrium (HWE) were estimated for each population. All these 

statistics were calculated using the program GenAlEx. The existence of changes in 

population sizes was evaluated with the program BOTTLENECK v. 1.2.02 (Cornuet and 

Luikart 1997) under the Stepwise Mutation Model (SMM). Since a low number of loci 

were used, significant deviations from the mutation-drift equilibrium were calculated 

using Wilcoxon signed-rank (Piry et al. 1999). 

Analyses of Molecular Variance (AMOVA) were conducted in GenAlEx 6.41 using 

RST as the measure of differentiation. This was done to access the distribution of genetic 

variation within and among several species groupings. The different groupings that had 

been considered are: paleo-island species versus central species; different species 

within paleo-islands; different species within the central region. 

Genetic structure between and within species was also investigated using the 

Bayesian clustering algorithm implemented in the program STRUCTURE ver. 2.3.3 

(Hubisz et al. 2009) and using Principal Coordinates Analysis (PCoA) calculated in 

GenAlEx 6.41. Creating prior decisions of how taxa are structured may lead to circular 

conclusions. For these reasons, STRUCTURE was run assuming an admixture model 

of population structure with default settings for inferring alpha and without any location 

or population priors. Moreover, it was run with and without considering the allele 

frequencies to be correlated among populations. To determine the number of K 
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(unknown) genetic clusters, K was set to range from 1 to 15; the program was run as 10 

iterations of 500,000 MCMC generations with a burn-in of 100,000 generations for each 

K. The most likely K was selected by analyzing the second-order rate of change of the 

posterior probability of the data (DK) between successive K values (Evanno et al. 2005) 

using Structure Harvester v.0.6.9.3 (http://taylor0.biology.ucla.edu/structureHarvester/). 

Additionally, the suboptimal value of K was searched by redoing the DK test without the 

optimal and smaller values of K. This allowed us to investigate more detailed structure 

signal shown by our data. All 10 iterations were combined using the greedy algorithm 

from the program CLUMPP (Jakobsson and Rosenberg 2007) For better interpretation 

of the results, this analysis was performed for three datasets: a first one containing all 

samples; a second one containing only central species considered by Puppo et al. (2014) 

as young lineages (M. varia, M. hyssopifolia, M. lasiophylla, and M. lachnophylla), and a 

third one containing only M. varia and M. hyssopifolia. 

We calculated historical and contemporary migrations rates between all species 

pairs as proxy of gene flow using the programs MIGRATE v3.2.1 (Beerli and Felsenstein 

2001) and BAYSASS v3.0 (Wilson and Rannala 2003), respectively. MIGRATE 

estimates the number of migrants per generation while BAYSASS calculates the portion 

of individuals originated from the foreigner population. Because of the genetic structure 

and spatial distance between M. varia from Teno and Anaga, these were considered as 

two distinct groups. Two independent replicates were performed for each analysis and 

the average migration rate values are presented. For MIGRATE, these migration rate 

corresponds to the number of individual migrants per generation from the source 

population. While for BAYSASS, these correspond to the portion of migrant individuals 

in the sink originating from the source population. We considered a high migration rate 

to be above 10 individuals per generation for MIGRATE and 10% for BAYSASS in 

accordance to previous studies (i.e., Bertrand et al. 2014; Conflitti et al. 2014; Peacock 

et al. 2015). 

MIGRATE was run considering the data under the Brownian motion model and 

implementing a Bayesian search strategy. One long chain was run saving 25,000 

generations with sampling increments of 100 generations after a burnin step of 10,000 

generations. We defined the maximum prior boundaries of theta and migration rate to be 

200 and 1000, respectively. As recommended by Beerli and Palczewski (2010), a static 

heating scheme was applied with four temperatures of 1, 1.5, 3, and 1 × 106. 

Several test runs were performed with BAYSASS to optimize the acceptance 

rates and the number of generations that should be excluded in the burnin step as 

recommended in the program's manual. For each run, trace files were saved and 

analyzed using the program TRACER v1.5.0 (Rambaut and Drummond 2007). In the 
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final analyses, BAYESASS ran for 20,000,000 generations with a burnin of 2,000,000 

and sampling increment of 200. The experimental run with the best acceptance rates 

(below 0.6) had the DeltaA and DeltaF parameter set to 0.4 and DeltaM to 0.1. For this 

reason, we used these values for the main analyses. 

Because some morphological hybrids were found in our sampling, we tested for 

the likelihood of them being real hybrids by doing a STRUCTURE analyses with the 

individuals from the same localities in which they were found. With this approach, we 

expect that hybrid individuals will show an equal assignment to the clusters from the 

parent species. This result is only considered to be valid if both species are clearly 

differentiated (K = 2). Morphological intermediate individuals were found in the field 

between M. densiflora and M. varia in Teno, M. rivas-martinezii, and M. varia in Anaga, 

M. teneriffae and M. varia in Anaga, and M. teneriffae and M. hyssopifolia in the south 

coast. We performed a STRUCTURE analysis for each species pair with the parameters 

described above. 

 

Results 

Genetic diversity 

From the 16 microsatellite markers included, one (5978) presented low 

amplification success (<50%), so only 15 SSRs were used for further analysis. The 

remaining markers comprised between 11 and 25 alleles, giving a total of 273 analyzed 

alleles. None of the analyzed populations deviated significantly from Hardy─Weinberg 

equilibrium for most of the loci. A few deviations were indicated with near marginal P 

values (P < 0.05) and only for a few loci and single populations. No locus deviated from 

Hardy─Weinberg equilibrium across the majority of populations meaning that all its 

assumptions such as neutrality were met. The same was observed the other way around: 

no population deviated from HWE for most of the loci analyzed (Table S2). There was 

no evidence of scoring errors and none of the markers constantly showed high frequency 

of null alleles in the populations analyzed. The 15 loci investigated were therefore 

retained in the analysis. 

Across all populations, mean number of alleles (N) varied from 4.20 (M. 

densiflora, M. lasiophylla) to 11.27 (M. lachnophylla), HO from 0.29 (M. glomerata) to 

0.62 (M. hyssopifolia), and HE from 0.28 (M. densiflora) to 0.71 (M. lachnophylla), HT 

from 0.32 (M. densiflora) to 0.81 (M. hyssopifolia) (Table 1). Expected heterozygosity 

increased with range size (Fig. 1), i.e., smaller diversity was found in the restricted paleo-

island species and highest diversity was found in the most widespread species M. 

lachnophylla, M. varia, and M. hyssopifolia. Genetic diversity of populations and groups 

of populations were generally similar within one species. Slight differences were found 
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in M. hyssopifolia which seems to have the highest genetic diversity in the southern coast 

(HE = 0.70, HO = 0.62, and HT = 0.81). In M. teneriffae, the populations from the Southern 

coast showed slightly lower diversity (HE = 0.57, HO = 0.44, and HT = 0.72) than the 

population from Anaga (HE = 0.65, HO = 0.51, and HT = 0.72). No differences in genetic 

diversity were found between the two regions (Anaga and Teno) where M. varia grows. 

 

Table 1. Genetic variation statistics per regions and species of Micromeria. This table contains information regarding 

number of populations (Pops.); average number of individuals (Ind.); average number of alleles (N), observed (HO) and 

expected heterozygosity (HE); portion of private alleles (Priv. Al.), and total heterozygosity (HT). 

 

Region Anaga Teno Adeje 

Species 
M. rivas-

martinezii 
M. 

teneriffae 
M. varia 

M. 
glomerata 

M. 
densiflora 

M. 
hyssopifolia 

M. 
varia 

M. 
hyssopifolia 

Nr. 
Pops. 

1 1 8 1 1 3 3 2 

Av. Nr. 
Ind. 

11 6 6.5 5 5 6.33 7 9.5 

N 9.8 5.27 5.98 4.27 4.2 6.07 6.42 9.03 

HO 0.31 0.51 0.57 0.29 0.33 0.46 0.57 0.54 

HE 0.5 0.65 0.64 0.31 0.28 0.63 0.63 0.61 

P. Priv. 
Al. 

– – 0.15 0.13 0.27 0.07 0.11 0.07 

HT 0.53 0.72 0.75 0.37 0.32 0.75 0.76 0.7 

 

 

Table 1. Continued 

Region Teide Southern coast 
Northe

ast 
Northw

est 
Northern 

coast 
Southea

st 

Species 
M. 

lachnophylla 
M. 

lasiophylla 
M. 

teneriffae 
M. 

hyssopifolia 
M. hyssopifolia 

Nr. 
Pops. 

1 2 2 3 3 1 8 3 

Av. Nr. 
Ind. 

12 4.5 5 5.67 6 6 1.63 8 

N 11.27 4.2 4.57 5.42 5.44 5.87 – 7.78 

HO 0.54 0.54 0.44 0.62 0.59 0.52 – 0.54 

HE 0.71 0.53 0.57 0.7 0.67 0.65 – 0.67 

P. Priv. 
Al. 

0.13 0.1 0.07 0.089 0.111 0.267 – 0.133 

HT 0.75 0.65 0.72 0.81 0.8 0.72 0.81 0.75 

 

The number of alleles private to a particular species was generally low (Table 1) 

and no correlation to species range was obvious. Only in M. densiflora and M. 

hyssopifolia from the Northwest, more than 20% of alleles were private. Micromeria rivas-

martinezii and M. teneriffae from Anaga did not show any private allele. The private 

alleles found within a species also tended to be rare. For example, only private alleles in 

M. densiflora and M. lasiophylla had a frequency within species above 10% not shown. 

Frequency of the remaining alleles private to a species was below 10% with an average 

of 3.5%. 
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Four of the analyzed populations significantly deviated from the mutation-drift 

equilibrium (P < 0.05) suggesting that they went through a bottleneck event (Table S2). 

These were the populations from M. glomerata and M. densiflora, one population from 

M. varia from Teno, and one population from M. hyssopifolia from the Southeast. 

 

Genetic Structure 

For all populations, the pairwise FST values were highly significant (P < 0.001), 

varying from 0.042 to 0.500 (Table S3). FST was correlated to species age, with the older 

species (M. glomerata, M. rivas-martinezii, and M. densiflora) presenting higher pairwise 

FST values than the youngest (M. varia and M. hyssopifolia). The pairwise unbiased Nei 

(uNei) distance showed similar patterns to the FST values. RST was calculated among 

island regions and used to evaluate genetic distance patterns among them (Fig. 2). As 

expected, the paleo-island species were the most dissimilar. Micromeria lasiophylla and 

M. lachnophylla appear as sister branches to the remaining central species. M. varia and 

M. hyssopifolia were mostly grouped according to geographical position. For example, 

the populations from both species from Teno grouped together. 

Fig. 2. UPGMA of pairwise unbiased uNei distances and RST among population groups of Micromeria according to island 

regions; regions are those showed in Fig 1 and Table 1. 

 

We performed four independent AMOVA tests using different groupings: all 

species; paleo-island species versus central species; different species within paleo-

islands; different species within the central region (Tables 2). The highest amount of 

variation among groups was explained by differences among paleo-island species (29%) 

followed by differences among all species (11%). Difference between paleo-islands 

species and central species was explained by 8% of variation. Difference among central 
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species was explained by the lowest amount of variation in the dataset (3%). These 

results are concordant with the analyses of pairwise FST and RST, where higher 

differentiation is found among paleo-island species and lower among central species. 

 

Table 2. AMOVA analyses of four groupings calculated using RST. The results presented in a percentage form correspond 

to the amount of variation explained by differences within and among groups 

Grouping 
Number of 
groups 

Number of 
individuals 

Among 
groups (%) 

Within 
groups (%) 

Among all species 8 289 11 89 

Among central species 4 245 3 97 

Among Paleo-island species 4 44 29 71 
Central species versus Paleo-island 
species 2 289 8 92 

 

Fig. 3. Principal Coordinates Analyses (PCoA) of pairwise distances of individuals of Micromeria implemented in 

GeneAlEx for codominant datasets. Shown are the first two coordinates of analyses including: A. all species; B. only 

paleo-island species; C. only central area species; D. only M. lasiophylla and M. lachnophylla; E. only M. varia divided in 

samples from Anaga (A) and Teno (T); F. only M. hyssopifolia divided in samples from Adeje (Old) and the remaining 

samples. 
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When pairwise differences are visualized by PCoA, M. glomerata and M. rivas-

martinezii are separating from the others (Fig. 3A). When only the paleo-island species 

are included (M. teneriffae, M. glomerata, M. rivas-martinezii, and M. densiflora), the 

PCoA shows four clusters corresponding to each species (Fig. 3B). The analysis 

including only the central species (M. lasiophylla, M. lachnophylla, M. varia, and M. 

hyssopifolia) shows no separation of the samples (Fig. 3C). When only the central 

species with narrow range (M. lasiophylla and M. lachnophylla) are analyzed, there is a 

distinction among them (Fig. 3D). When M. varia is analyzed separately, samples from 

Anaga slightly segregate from the rest (Fig. 3E). Although the analysis including only M. 

hyssopifolia shows no obvious subdivisions of the samples, there is a weak signal of 

subdivision between individuals located in older and younger parts of the island (Fig. 3F). 

Fig. 4. STRUCTURE analyses of the species of Micromeria present in Tenerife showing blots of assignment probability 

from K values ranging from K = 2 to K = 9; optima K according to the Evanno method are indicated in red: K = 3 for all 

runs and K = 9 when only K = 4 to K = 15 are analyzed. 
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Fig. 5. Suboptimum K (K = 5) for the analyses including only central area species and assignment probability plotted per 

population on the map. The structure plot is shown to provide a context for the colors shown in the map. 

 

In the STRUCTURE analysis, an optimal K = 3 was obtained according to Evanno 

et al. (2005) method. If results between K = 4 and K = 15 are tested, optimal K is K = 9. 

At K = 9, STRUCTURE analysis resolves all species with the exception of M. 

lachnophylla and M. lasiophylla. The results from the structure analysis at different 

values of K are summarized in Figure 4. The Delta K plots obtained with STRUCTURE 

Harvester for all STRUCTURE tests performed are included in Fig. S1. At K = 2, M. varia 

from Teno, M. lachnophylla, M. lasiophylla and M. hyssopifolia are forming one of the 

clusters. At K = 3, M. varia samples collected in Anaga are forming an additional cluster. 

At K = 5, M. hyssopifolia samples from Adeje are forming their own cluster, and with 

increasing K, M. hyssopifolia becomes more and more subdivided. When the central 

species (M. varia, M. hyssopifolia, M. lachnophylla and M. lasiophylla) are analyzed 
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independently, this differentiation within M. hyssopifolia is clearer. For example, for K 

values higher than 7 one of the clusters is mainly composed of M. hyssopifolia samples 

from the southern coast from subdesert environments, while another cluster is mainly 

composed of individuals form the wet northern coast. Moreover, samples of M. 

hyssopifolia from Teno share the same cluster with samples of M. varia from this same 

region. The best K for the analysis including only the central species was also K = 3 and 

the suboptimum is K = 5 (Fig. 5). Although M. lasiophylla and M. lachnophylla do not 

separate from each other in these runs, with higher values ok K they do. Results were 

the same for correlated and not correlated allele frequencies, so only analysis with 

correlated frequencies is shown. 

 

Gene flow and hybridization 

Several individuals had been determined as hybrids because they present 

morphologically intermediate characteristics from two species. In a STRUCTURE 

analysis together with the putative parental species, the hybrid status of most of these 

individuals were confirmed. According to the DK method, the best K was K = 3 for the M. 

densiflora and M. varia dataset and K = 2 for the remaining species pairs (Fig. 6). From 

the two morphological hybrids between M. rivas-martinezii and M. varia, one showed an 

almost equal assignment to both clusters (44% assignment to M. varia cluster), while the 

other was assigned to the M. rivas-martinezii cluster so it is likely a backcross. In addition 

to these hybrids, two individuals that were morphologically identified as M. rivas-

martinezii showed an almost complete assignment to M. varia evidencing introgression 

between both species. In the analysis between M. teneriffae and M. hyssopifolia, only 

one morphological hybrid could be confirmed with high assignment rates to both clusters 

(39%, of assignment to M. hyssopifolia cluster). Two M. hyssopifolia individuals showed 

mixed assignment (41% and 52% to the M. teneriffae cluster) suggesting them as hybrids 

or backcrosses. For the M. varia and M. teneriffae analysis, only one of the morphological 

hybrids was confirmed (54% assignment to M. varia cluster). Additionally, three M. varia 

individuals showed a high assignment to the M. teneriffae cluster (50% to 81%). 

BAYSASS and MIGRATE were used to estimate contemporary and historical 

gene flow among species, respectively. Contemporary gene flow as indicated by 

BAYSASS was generally low showing migration rates below 10% of individuals 

originated from other populations for most of the comparisons (Table 3). The exceptions 

were migration rates from M. densiflora to M. lasiophylla (17%), M. glomerata to M. rivas-
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martinezii (16%), M. lachnophylla to M. hyssopifolia (25%), and M. varia from Teno to M. 

hyssopifolia (26%). 

Fig. 6. STRUCTURE analyses of potential hybrid individuals of Micromeria between four species pairs: M. densiflora and 

M. varia; M. rivas-martinezii and M. varia; M. teneriffae and M. hyssopifolia from the South; and M. teneriffae and M. varia 

from Anaga. Only the optimal K values according to the Evanno method are presented. The individuals marked with * 

were identified as morphological hybrids. 

 

The historical migration rates calculated by MIGRATE varied between 1.4 and 

19.1 individuals per generation (Table 4). Micromeria hyssopifolia showed to be the main 

source of interspecific gene flow because it had the highest migration rate (to M. 

lachnophylla). And, from the eight comparisons, five showed migration rates above 10 

individuals per generation. Micromeria varia was the second main source of migrants, 

with both M. varia from Teno and M. varia from Anaga showing three migration 

comparisons above 10 individuals per generation. Micromeria rivas-martinezii was the 

main sink population because it received more than 10 migrants per generation from six 



 

112 FCUP 
Manuel Curto 

other species. The species with lowest emigration and immigration, less than 10 

individuals per generation, were M. rivas-martinezii and M. glomerata, respectively. 

Some loci showed higher values of migration rate than others. On average, the overall 

migration rate per locus varied from 4.66 individuals per generation for locus 5419 to 

175.41 for locus 3963 (not shown). 

 

 

Table 3. Contemporary migration rates calculated by BAYESASS between species of Micromeria. Results are presented 

in percentage (%) of individuals from species on top originated from the species in the left; values for migration within taxa 

are highlighted in gray; values above 10% are presented in bold; standard deviation values are in parentheses. 

Source/Sink 
M. densiflor

a 
M. glomerat

a 
M. hyssopifoli

a 
M. lachnophyll

a 
M. lasiophyll

a 

M. densiflora 69.44 (2.39) 1.9 (1.8) 1.94 (1.81) 1.93 (1.81) 16.98 (4.44) 

M. glomerata 1.93 (1.82) 69.46 (2.41) 1.93 (1.83) 1.94 (1.83) 1.93 (1.81) 

M. hyssopifolia 0.21 (0.21) 0.21 (0.21) 97.78 (0.69) 0.21 (0.21) 0.24 (0.24) 

M. lachnophyll
a 

1.01 (0.96) 1.01 (0.96) 24.92 (2.56) 67.91 (1.17) 1.02 (0.98) 

M. lasiophylla 1.84 (1.73) 1.85 (1.73) 1.86 (1.76) 1.85 (1.76) 84.91 (3.86) 

M. rivas-
martinezii 

1.64 (1.56) 1.62 (1.54) 1.63 (1.56) 1.63 (1.56) 1.63 (1.56) 

M. teneriffae 1.05 (1.01) 1.06 (1.03) 2.46 (1.8) 1.05 (1.01) 1.06 (1.02) 

M. varia Anaga 0.64 (0.62) 0.64 (0.63) 0.87 (0.83) 0.65 (0.64) 0.91 (0.81) 

M. varia Teno 0.9 (0.87) 0.9 (0.86) 25.96 (2.3) 0.9 (0.87) 0.9 (0.86) 

 

 

Table 3. Continued 

Source/Sink 
M. rivas-

martinezii 
M. teneriffae M. varia Anaga M. varia Teno 

M. densiflora 1.91 (1.81) 2.03 (2.01) 1.94 (1.83) 1.92 (1.81) 

M. glomerata 15.59 (6.06) 3.37 (4.98) 1.92 (1.81) 1.93 (1.8) 

M. hyssopifolia 0.39 (0.3) 0.29 (0.29) 0.45 (0.33) 0.22 (0.21) 

M. lachnophylla 1.01 (0.97) 1.09 (1.05) 1.01 (0.97) 1.02 (0.97) 

M. lasiophylla 2.04 (1.91) 1.95 (1.85) 1.85 (1.75) 1.86 (1.76) 

M. rivas-martinezii 81.43 (5.88) 7.14 (6.1) 1.64 (1.56) 1.64 (1.57) 

M. teneriffae 1.06 (1.02) 89.06 (2.96) 2.18 (1.61) 1.04 (1.01) 

M. varia Anaga 0.72 (0.7) 0.78 (0.77) 94.15 (1.82) 0.65 (0.64) 

M. varia Teno 0.89 (0.86) 0.91 (0.88) 0.9 (0.87) 67.75 (1.03) 
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Table 4. Historical migration rates calculated by MIGRATE between species of Micromeria. Results are presented in 

average number of individuals per generation; values correspond to migration rates from the species in the left to the 

species on top; values for migration within taxa are highlighted in gray; values above 10 migrants per generation are 

presented in bold; values for 95% confidence intervals are in parentheses 

Source/Sink M. densiflora M. glomerata M. hyssopifolia M. lachnophylla M. lasiophylla 

M. densiflora – 6.56 (0–23.33) 4.56 (0–21.33) 7.17 (0–24) 8.97 (0–25.33) 

M. glomerata 5.36 (0–22) – 4.06 (0–20.67) 2.57 (0–18.67) 6.27 (0–23.33) 

M. hyssopifolia 10.74 (0–26.67) 1.41 (0–18) – 
19.06 (1.33–
36.67) 

8.88 (0–27.33) 

M. lachnophylla 4.53 (0–21.33) 5.79 (0–22.67) 6.09 (0–22.67) – 
14.91 (0–
30.67) 

M. lasiophylla 8.17 (0–24.67) 5.23 (0–22) 5.85 (0–22) 5.97 (0–22.67) – 

M. rivas-martinezii 6.07 (0–22.67) 3.13 (0–19.33) 4.75 (0–21.33) 8.75 (0–24.67) 4.78 (0–21.33) 

M. teneriffae 7.48 (0–24) 3.82 (0–20.67) 9.36 (0–25.33) 3.86 (0–20) 
10.19 (0–
26.67) 

M. varia Anaga 7.19 (0–24) 3.65 (0–20) 10.72 (0–26.67) 9.14 (0–25.33) 7.94 (0–24.67) 

M. varia Teno 11.75 (0–27.33) 3.8 (0–20) 12.64 (0–28) 6.49 (0–23.33) 4.45 (0–21.33) 

 

Table 4. Continued 

Source/Sink M. rivas-martinezii M. teneriffae M. varia Anaga M. varia Teno 

M. densiflora 13.55 (0–29.33) 3.42 (0–20) 4.21 (0–20.67) 3.95 (0–20.67) 

M. glomerata 10.61 (0–26.67) 10.46 (0–26.67) 4.07 (0–20.67) 9.42 (0–26.67) 

M. hyssopifolia 14.9 (0–30.67) 3.62 (0–21.33) 
17.66 (0.67–
34.67) 

13.11 (0–29.33) 

M. lachnophylla 5.86 (0–22) 10.89 (0–26.67) 7.84 (0–24) 6.21 (0–22.67) 

M. lasiophylla 9.14 (0–25.33) 5.9 (0–22.67) 10.96 (0–26.67) 4.89 (0–21.33) 

M. rivas-martinezii – 5.8 (0–22.67) 5.67 (0–22) 6.96 (0–23.33) 

M. teneriffae 10.08 (0–26.67) – 9.99 (0–26) 4.4 (0–21.33) 

M. varia Anaga 10.38 (0–26.67) 10.5 (0–26.67) – 9.55 (0–26) 

M. varia Teno 13.77 (0–29.33) 9.23 (0–25.33) 8.25 (0–24.67) – 

 

 

Discussion 

Geomorphological impact on genetic structure 

In geologically complex islands such as Tenerife, secondary connection of 

previously isolated parts, successive volcanic activity, caldera collapses, landslides, etc, 

could have produced a strong impact on the diversification of its species (Whittaker et 

al. 2007, 2008; Fernández-Palacios et al. 2011). Several molecular studies in different 

organisms have found diversification patterns coinciding with the different geological 

events in Tenerife (e.g., Juan et al. 2000; Carine et al. 2004; Moya et al. 2004; Trusty et 

al. 2005; Mairal et al. 2015). In Micromeria, Puppo et al. (2014) showed that species 

restricted to the paleo-islands are early diverging lineages and are older than the central 

area species. Hereby the restricted ranges of M. densiflora from Teno, M. glomerata and 

M. rivas-martinezii from Anaga can be interpreted as contracted ranges, remnants of an 

earlier, wider distribution, while the range of M. teneriffae can be regarded as a shift from 
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Anaga to the surrounding areas after the uprising of the Teide (Puppo et al. 2014). In the 

present analysis, we found that the highest differentiation is between these four species 

restricted to the paleo-islands, which is in accordance to Puppo et al. (2014) phylogenetic 

hypothesis. The AMOVA results also support this previous study since higher variation 

was found among paleo-endemic species than among central species. Since these 

species are older, they had more time to accumulate genetic differences and are more 

reproductively isolated. The low differentiation between paleo-island and non-paleo-

island species might be explained by the fact that high genetic variation found among 

paleo-island species is increasing the variation within groups. 

The distance analysis of pairwise RST, is highly congruent with the previous 

phylogenetic inferences. In both analyses, the paleo-island species are clustering 

independently from the central species group. The difference is mainly in the most 

widespread species: using the microsatellite dataset, they are positioned more 

pronouncedly according to geography. For example, species from Teno are always 

clustering together while M. varia from Anaga appears together with geographically 

proximate M. hyssopifolia populations. The same is observed for M. lasiophylla and 

M. lachnophylla that occur on high altitude in the Teide Mountain. This might be a result 

of gene flow between the respective populations and is further discussed below. 

Genetic diversity of the restricted species was lower than the common species, 

indicating the possibility that their ranges are contracted. This is supported also by the 

bottleneck analysis for the populations of M. densiflora and M. glomerata. 

Our study shows that the two most widespread species on the island, M. varia 

and M. hyssopifolia, present a genetic structure that is highly correlated to the geological 

composition of Tenerife. In M. varia, samples from Teno and from Anaga are assigned 

to two different clusters. Samples of M. hyssopifolia from Teno cluster together with the 

M. varia samples from this region. This clustering is already indicated in the 

STRUCTURE analysis when K = 2 and is also evident in the PCoA. Additionally, the 

optimal division in STRUCTURE corresponds to the appearance of a unique cluster of 

M. varia from Anaga showing that this corresponds to a deep divergence. Micromeria 

varia is assumed to be distributed along the northern part of Tenerife from Teno to 

Anaga. However, samples from the central part of the northern coast have been 

identified as a different subspecies of M. hyssopifolia, subsp. glabrescens (sensu Pérez 

de Paz 1978). Therefore, M. varia might be restricted to the paleo-islands. Hence, the 

genetic structure observed might be either a consequence of the ancestral split of the 

two paleo-islands or a consequence of the reisolation of Anaga after the central shield 

was formed. For example, Anaga was reisolated by several events such as two massive 

landslides in the north of Tenerife: one occurred ca. 650–370 ka giving origin to La 
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Orotava valley, the second ca. 170 ka formed Las Cañadas Caldera (Ancochea et al. 

1990; Watts and Masson 1995; Juan et al. 2000). The populations of M. varia from these 

two paleo-islands might have been isolated since then. In our previous work (Puppo et al. 

2014), we found that M. varia from Anaga was grouped together with the older lineages 

resulting in a separation from Teno before these landslides. This was assumed to be a 

consequence of hybridization of M. varia populations with the other Anaga species. 

However, now more Anaga populations are included and all show the same pattern. 

Other events might have contributed to the isolation of both M. varia groups. As in 

M. varia, the divergence between Teno and Anaga populations has been observed in at 

least two other plant species, Hypericum canariense (Clusiaceae; Dlugosch and Parker 

2007) and Canarina canariensis (Campanulaceae, Mairal et al.2015), and also in studies 

of mitochondrial haplotype diversity in several animal groups (e.g., Gübitz et al. 2000; 

Brown et al. 2006). It had been suggested that this difference stems from habitat 

discontinuities between and within paleo-islands that causes strong divergent selection 

and impedes migration (Gübitz et al. 2000; Moya et al. 2004). 

Similar to the structure observed within M. varia, genetic divergence within 

M. hyssopifolia seems also related to the paleo-islands, in particular since these samples 

were assigned to multiple clusters in the STRUCTURE plot. Especially evident is the 

segregation of the individuals from Adeje which is the oldest paleo-island. Differently 

from Teno and Anaga which are forming rather independent shields, the remnant of 

Adeje is to a higher extent incorporated into the central massif. Our data show that even 

though secondary contact of Adeje and Teide central massif is supposed to be around 2 

million years ago (Ancochea et al. 1990; Cantagrel et al. 1999), the imprint in genetic 

structure can still be observed. This is the case for the samples from M. hyssopifolia 

collected in Adeje which form a distinct cluster in the STRUCTURE analyses. This can 

be either explained by Adeje as origin of M. hyssopifolia, by different conditions that 

favors certain genotypes by selection, or recent volcanic events that kept these 

populations isolated. 

 

Hybrid zones and potential ecological effects 

Our analysis indicates a strong influence of historical and contemporary gene 

flow between the species on the genetic structure, most pronouncedly in M. hyssopifolia. 

Hybridization between different Micromeria species in Tenerife is well documented and 

hybrids between most of the species have been described: M. varia × teneriffae, 

M. varia × rivas-martinezii, M. varia × densiflora, M. varia × M. glomerata, 

M. teneriffae × hyssopifolia (Pérez de Paz 1978; Santos-Guerra et al. 2011). Some of 

these individuals were included in our dataset and their status as hybrids were confirmed: 
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M. varia × rivas-martinezii, M. varia × teneriffae, M. teneriffae × hyssopifolia because 

they show genotypes intermediate between the parent species. For the two first species 

pairs, these intermediate genotypes were found in individuals morphologically not 

classified as hybrids suggesting that they might be backcrosses. The respective two 

individuals were collected in the contact zone between M. varia and M. rivas-martinezii 

populations where both species grow together (Puppo pers. obs.). Three samples of 

M. varia growing in this contact zone were also assigned to M. teneriffae, which might 

be a consequence of introgression of ancestral alleles shared by M. teneriffae and 

M. rivas-martinezii. 

A lower degree of reproductive isolation between island species, compared to 

continental ones, is generally assumed because of a potentially comparable lower effect 

of fitness decrease after hybridization resulting from the lower levels of interspecific 

competition in island systems (Herben et al. 2005). This context had been discussed in 

several studies and reviews (i.e., Thomas and Leggett 1974; Charmet et al. 1996; 

Herben et al. 2005; Silvertown et al. 2005). 

In Tenerife, species of Micromeria have a pronounced allopatric distribution, i.e., 

species do not occur in sympatry but only come into contact in relatively small areas 

where ranges overlap (Fig. 1). Is in these contact zones where hybridization occurs. 

There are two possible explanations for this distributional pattern. Species might either 

have evolved in parapatry (Gavrilets et al. 2000) where edge populations differentiate 

from a larger central population, i.e., in populations of M. lachnophylla/M. lasiophylla and 

populations of M. varia from Teno. Or, species ranges might have developed after 

secondary contact of well differentiated species after merging of the paleo-islands. In 

any case, even in the presence of hybridization, species boundaries are maintained due 

to differential local selective pressures causing postzygotic isolation and preservation of 

morphological differences (Seehausen et al. 2014). This typically leads to a hybrid zone 

dynamic (Barton and Hewitt 1985). Via backcrossing alleles at neutral loci can pass the 

hybrid zone in both directions, while loci under strong selection cannot and form the base 

for species specific differences in morphology and ecology. This differential introgression 

pattern is very well studied and regarded as a typical expression of the contact zone 

between two species that are able to form fertile hybrids (i.e., Teeter et al. 2010; Nosil et 

al. 2012; Larson et al. 2014). An example of how selection favors certain genotypes in 

dependence of the ecological zone is the gecko Tarentola delallandii (Gübitz et al. 2000). 

Despite being the same species, three highly distinct mitochondrial haplotypes originated 

from the three paleo-islands. This means that, despite the current contact zone, and 

being the same species, gene flow between the corresponding groups might be low. 
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Besides the tests for migration, the existence of hybrid zones between the 

allopatric ranges of the species is supported in our study by three main findings: (1) we 

observed and verified the status of hybrids in the contact zones of four species pairs; (2) 

the two species with the largest contact zones, M. hyssopifolia and M. varia, show also 

the highest interspecific migration rates. (3) With exception of M. densiflora and 

M. lasiophylla, all other connections through gene flow were indicated between species 

that have contacting ranges; and (4) cluster arrangement in the structure analysis gives 

increased assignment probability for adjunct populations even though they belong to 

different species, e.g., for M. hyssopifolia and M. varia from Teno and M. hyssopifolia 

and M. lachnophylla. Hereby, some loci show higher values for migration than others 

indicating asymmetric introgression at some degree. 

The formation of distinct hybrid zones could be observed directly between 

M. varia and M. rivas-martinezii. Here, in a very small spatial scale hybridization occurs 

at the transition from the range of M. rivas-martinezii to M. varia. Micromeria rivas-

martinezii grows in a very restricted area in a small peninsula in the Anaga massif 

(Hernández-Pacheco et al. 1990) where M. varia does not occur. In a few 100 m wide 

zone at the main island adjacent to the peninsula, M. varia × M. rivas-martinezii hybrids 

occur in small individual numbers that are giving way to morphological M. varia 

populations (Puppo pers. obs.). This transition can also be seen in our SSR data, 

indicating a transition in the allele frequency content between M. rivas-martinezii and 

adjacent M. varia populations more gradual than expected if the species were 

reproductively isolated. 

The formation of hybrid zones may have contributed to the increase of genetic 

variation of some taxa facilitating adaptation to changing conditions, shift of ecological 

niches, or range shift for the species after secondary contact of the paleo-islands. An 

example would be M. hyssopifolia, which is the species with the largest range. It 

participates in most of gene-flow exchanges found in the island and it has one of the 

highest genetic diversity. Environmental conditions across the range of M. hyssopifolia 

are highly heterogeneous. The northern part of Tenerife is wetter due to the fog brought 

by the trade winds with high levels of rainfall (ca. 1000 mm precipitation per year) in the 

mid altitudes. Contrary to this, the southern part of the island is dry (below 100 mm 

precipitation per year) due to the shade effect caused by the Teide. As described below, 

this genetic structure might reflect these environmental differences, such as structure 

found between the wet northern and dry southern slopes. Like outlined above, we see 

the population from Adeje slightly differentiated from the remaining M. hyssopifolia 

populations. Besides this, at optimal (K = 3) and higher K (up to K = 9), we observed 

genetic structure among: (1) Teno and west Tenerife; (2) north coast, and (3) southeast 
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and south coast, corresponding to a medium, high and very low precipitation regime. It 

seems likely that genotypes are locally adapted to these different habitats and genotypes 

from the southern part may not be able to establish in the northern part and vice versa. 

These different habitats correspond roughly to the subdivision of M. hyssopifolia. Three 

varieties are recognized within this species: var. hyssopifolia, var. glabrescens, and 

var. kuegleri (Pérez de Paz 1978) reflecting its morphological diversity. The typical 

M. hyssopifolia (var. hyssopifolia) presents a strigose indumentum which gives the 

plants a grayish aspect and is distributed in the pine forest between 400–2000 m. 

Micromeria hyssopifolia var. glabrescens is mostly distributed in the north of the island 

in degraded areas between 300–600 m while var. kuegleri is the coastal form that grows 

in the southeast from the sea level up to 400 m. Thus, our structure pattern differentiates 

mostly var. glabrescens and var. kuegleri. Because the environmental conditions are not 

independent from geography, further work is currently being conducted to confirm the 

hypotheses that: hybridization after secondary contact of former paleo-island species 

allowed the colonization of the whole island by one or a few species, and the genetic 

structure that can be observed in M. hyssopifolia is an expression of local adaptation 

patterns rather than geography. 

 

Low genetic differentiation levels and microsatellites 

The pattern of hybridization found in our study might also explain the apparent 

low genetic distance between the species with microsatellite datasets and with our earlier 

multigene analyses (Puppo et al. 2014, 2015a). In Puppo et al. (2015a), low genetic 

differentiation and low tree resolution were not only found for the central species of 

Tenerife but also for the most widespread species from Gran Canaria. Because they are 

usually neutral and have a high mutation rate, microsatellites are frequently used in 

population genetic studies to identify genetic diversity levels and population 

differentiation within species but they are rarely used in investigations that cover multiple 

species (Barbará et al. 2007). Recent examples are Bonatelli et al. (2014) and Turini et 

al. (2014), where SSR markers and Bayesian clustering had been used to test species 

boundaries or to establish a species concept. 

Gene flow between the species would impact genetic distance. In the case of 

Micromeria, the age estimate especially for the paleo-island species would suggest that 

alleles are highly diverged, and the amount of private alleles within one species should 

be rather high. Even though we found private alleles for the different species, only few 

of them have within species frequencies above 10%, and most of them are rare alleles. 

In addition, pairwise FST between populations is only slightly higher between species 

than within species. Using a microsatellite dataset to investigate different species is likely 
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to underestimate genetic distances between species when hybridization occurs, not only 

because of shared alleles but also because of the choice of loci during the screen for 

markers (Turini et al. 2014). With hybridization between species at a contact zone, 

screen is likely to be biased toward markers that are not linked to loci that are highly 

structured but to neutral loci that can pass the hybrid zone. We assume therefore that 

the degree of genetic differentiation between species might be underestimated using a 

dataset like this. This is especially true when we consider the high morphological 

distinctness of the species under investigation (Puppo et al. 2014). However, considering 

introgression and selection for alleles that are exchanged between species, FST below 

0.1 could be plausible also between these morphologically highly differentiated species. 

This effect may also lead to overestimation of migration rates. Nevertheless, this would 

affect all measures in the same way and not influence interpretations that are made 

comparatively. 

 

Phylogeographic and taxonomic considerations 

Currently, there are eight species of Micromeria recognized in Tenerife with 

different levels of morphological differentiation. Recent phylogenetic analyses (Puppo 

et al. 2014) suggest that the genus was probably present in Anaga around 6.7 Ma, before 

the central shield was formed, and had a first diversification event that gave origin to 

M. teneriffae, and afterwards to M. glomerata and M. rivas-martinezii. A second 

diversification event probably took place in Teno giving origin to M. densiflora ca. 4.5 Ma. 

These four species are also today clearly related to the paleo-islands. According to this 

phylogeny, Teno colonized the central part of Tenerife where the remaining four species 

originated. These analyses were inconclusive with regard to the central species however, 

since relations among the species were poorly resolved (Puppo et al. 2014). 

Nevertheless, phylogenetic reconstruction seems to support a scenario where 

progressive adaptation to higher altitudes of M. varia gave origin to M. hyssopifolia, and 

this to M. lachnophylla and M. lasiophylla (Pérez de Paz 1978; Puppo et al. 2014). 

Microsatellite analysis conclusively supports all species when we consider the 

formation of distinct clusters in the structure analysis. As explained above, it seems likely 

that hybridization between species is decreasing pairwise differences between the 

species. In addition, the paleo-island species appear to a higher extent differentiated 

from the others and microsatellite analyses provide new insights into the genetic 

structure of the central species. Interestingly, M. lasiophylla is showing close affinities to 

M. teneriffae in an analysis of Nei genetic distances as well as cluster together with the 

paleo-islands species for K = 2. Even though M. lasiophylla and M. lachnophylla are not 

early diverging lineages as the paleo-island species, this indicates that diversification 
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might precede the secondary contact that occurred ca. 2 Ma ago (Ancochea et al. 1990; 

Cantagrel et al. 1999). Both M. lasiophylla and M. lachnophylla grow in old rocks of 

volcanic origin. It is possible that progenitors of these species colonized from the paleo-

islands independently from the other species instead of being the high altitude forms of 

M. varia or M. hyssopifolia as suggested by morphology and phylogenetic analysis 

(Pérez de Paz 1978; Puppo et al. 2014). In fact, it has been observed in several groups 

(i.e., Thorpe et al. 1994; Dlugosch and Parker 2007; Cox et al. 2012; Macías-Hernández 

et al. 2013) that taxa from Tenerife's paleo-islands colonized the central, younger part of 

the island, as well as other younger nearby islands, following a stepping-stone model 

(Kimura and Weiss 1964). 

The PCoA shows M. lasiophylla and M. lachnophylla as distinct when analyzed 

separately from the rest of species (Fig. 3D). When K is increased (i.e., K = 10), some 

admixture between M. lachnophylla and M. hyssopifolia is found. This is probably 

caused by hybridization with M. hyssopifolia since M. lachnophylla is distributed from the 

high desert in Las Cañadas down to the border of the pine forest where M. hyssopifolia 

grows. Furthermore, morphologically intermediate individuals have been reported in 

several localities that constitute contact zones where both species occur (Pérez de Paz 

1978). 

 

Acknowledgments 

The authors thank the University of La Laguna in Tenerife for providing a vehicle 

for the field trips. P.L. Pérez de Paz was an invaluable help throughout this study. V. 

Garzón-Machado provided the map for Tenerife. F. Faure helped during collection of the 

plant material and during preparation of Figure 1. This research was supported by the 

Fundação para a Ciência e Tecnologia (FCT) with a research grant to H.M. (PTDC/BIA-

BEC/108866/2008) cofinanced by the Fundo Europeu de Desenvolvimento Regional 

(FEDER) through COMPETE – Programa Operacional Fatores de Competitividade 

(POFC) (FCOMP-01-0124-FEDER-008988), and PhD fellowships to P.P. 

(SFRH/BD/74747/2010) and M.C. (SFRH/BD/79010/2011). 

 

Data Accessibility 

Microsatellite data matrix is deposited in Demiurge as: Puppo P, Curto M, 

Meimberg H (2015) D-NMICR-99 http://www.demiurge-project.org/matrix_digests/D-

NMICR-99. 

Table S3 can be acessed in: 

http://onlinelibrary.wiley.com/doi/10.1002/ece3.2094/full  

 

http://www.demiurge-project.org/matrix_digests/D-NMICR-99
http://www.demiurge-project.org/matrix_digests/D-NMICR-99
http://onlinelibrary.wiley.com/doi/10.1002/ece3.2094/full


 

121 FCUP 
Capter 3: Micromeria evolution in the Canary Islands 

References 

Ancochea E, Fuster JM, Ibarrola E, Cendredo A, Coello J, Hernan F, Cantagrel JM, 

Jamond C (1990) Volcanic evolution of the island of Tenerife (Canary Islands) in 

the light of new K-Ar data. Journal of Volcanology and Geothermal Research, 44, 

231–249. 

Balloux F, Goudet J (2002) Statistical properties of population differentiation estimators 

under stepwise mutation in a finite island model. Molecular Ecology, 11, 771–783. 

Barbará T, Palma-Silva C, Paggi GM, Bered F, Fay MF, Lexer C (2007) Cross-species 

transfer of nuclear microsatellite markers: potential and limitations. Molecular 

Ecology, 16, 3759–3767. 

Barton NH, Hewitt GM (1985) Analysis of hybrid zones. Annual Review of Ecology and 

Systematics, 16, 113–148. 

Bräuchler C, Ryding O, Heubl G (2008) The genus Micromeria (Lamiaceae), a synoptical 

update. Willdenowia 38, 363–410. 

Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and 

effective population sizes in n subpopulations by using a coalescent approach. 

Proceedings of the National Academy of Sciences of the United States of America, 

98, 4563–4568. 

Beerli P, Palczewski M (2010) Unified Framework to Evaluate Panmixia and Migration 

Direction Among Multiple Sampling Locations. Genetics, 185, 313–326. 

Bertrand JAM, Bourgeois YXC, Delahaie B, Duval T, Garcia-Jimenez R, Cornuault J, 

Heeb P, Mila B, Pujol B, Thebaud C (2014) Extremely reduced dispersal and gene 

flow in an island bird. Heredity, 112, 190–196. 

Bonatelli IAS, Perez MF, Peterson T, Taylor NP, Zappi DC, Machado MC, Koch I, Pires 

A, Moraes EM (2014) Interglacial microrefugia and diversification of a cactus 

species complex: phylogeography and palaeo distributional reconstructions for 

Pilosocereus aurisetus and allies. Molecular Ecology, 23, 3044–3063. 

Brown RP, Hoskisson PA, Welton J-H, Báez M (2006) Geological history and within-

island diversity: a debris avalanche and the Tenerife lizard Gallotia galloti. 

Molecular Ecology, 15, 3631–3640. 

Cantagrel JM, Arnaud NO, Ancochea E, Fuster JM, Huertas MJ (1999) Repeated debris 

avalanches on Tenerife and genesis of Las Cañadas caldera wall (Canary Islands). 

Geology, 27, 739–742. 

Carine MA, Russell SJ, Santos-Guerra A, Francisco-Ortega J, (2004) Relationships of 

the Macaronesian and Mediterranean Floras: Molecular evidence for multiple 

colonizations into Macaronesia and back-colonization of the continent in 

Convolvulus (Convolvulaceae). American Journal of Botany, 91, 1070–1085. 



 

122 FCUP 
Manuel Curto 

Carracedo JC (1994) The Canary Islands: an example of structural control on the growth 

of large oceanic-island volcanoes. Journal of Volcanology and Geothermal 

Research, 60, 225–241. 

Caujapé-Castells J (2011) Jesters, red queens, boomerangs and surfers: a molecular 

outlook on the diversity of the Canarian endemic flora. In: Bramwell D & Caujapé-

Castells J (Eds.) The biology of island floras. Cambridge University Press, 

Cambridge, 284–324. 

Charmet G, Balfourier F, Chatard V (1996) Taxonomic relationships and interspecific 

hybridization in the genus Lolium (grasses). Genetic Resources and Crop 

Evolution, 43, 319–327. 

Conflitti IM, Shields GF, Murphy RW, Currie DC (2014) Molecular Phylogenetics and 

Evolution The speciation continuum : Population structure , gene flow , and maternal 

ancestry in the Simulium arcticum complex ( Diptera : Simuliidae ). Molecular 

Phylogenetic and Evolution, 78, 43–55. 

Cornuet JM, Luikart G (1997) Description and power analysis of two tests for detecting 

recent population bottlenecks from allele frequency data. Genetics, 144, 2001–

2014. 

Cox SC, Carranza S, Brown RP (2012) Divergence times and colonization of the Canary 

Islands by Gallotia lizards. Molecular Phylogenetics and Evolution, 56, 747–757. 

Curto MA, Tembrock LR, Puppo P, Nogueira M, Simmons MP, Meimberg H (2013) 

Evaluation of microsatellites of Catha edulis (qat; Celastraceae) identified using 

pyrosequencing. Biochemical Systematics and Ecology, 49, 1–9. 

Dlugosch KM, Parker IM (2007) Molecular and quantitative trait variation across the 

native range of the invasive species Hypericum canariense: evidence for ancient 

patterns of colonization via pre-adaptation? Molecular Ecology, 16, 4269–4283. 

Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals 

using the software STRUCTURE: a simulation study. Molecular Ecology, 14, 2611-

2620. 

Fernández-Palacios JM, de Nascimento L, Otto R, Delgado JD, García-del-Rey E, 

Arévalo JR, Whittaker RJ (2011) A reconstruction of Palaeo-Macaronesia, with 

particular reference to the long-term biogeography of the Atlantic island laurel 

forests. Journal of Biogeography, 38, 226–246. 

Garcia-Verdugo C, Sajeva M, La Mantia T, Harrouni C , Msanda F,  Caujapé-Castells J 

(2015) Do island plant populations really have lower genetic variation than 

mainland populations? Effects of selection and distribution range on genetic 

diversity estimates. Molecular Ecology, 4, 726–741 

http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=Q1XTLiVntsaGZYeOTNR&field=AU&value=La%20Mantia,%20T&ut=10522424&pos=%7B2%7D&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=Q1XTLiVntsaGZYeOTNR&field=AU&value=Harrouni,%20C&ut=7121794&pos=%7B2%7D&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=Q1XTLiVntsaGZYeOTNR&field=AU&value=Msanda,%20F&ut=14526528&pos=%7B2%7D&excludeEventConfig=ExcludeIfFromFullRecPage
http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=Q1XTLiVntsaGZYeOTNR&field=AU&value=Caujape-Castells,%20J&ut=2564404&pos=%7B2%7D&excludeEventConfig=ExcludeIfFromFullRecPage


 

123 FCUP 
Capter 3: Micromeria evolution in the Canary Islands 

Gavrilets S, Li H, Vose M (2000) Patterns of parapatric speciation. Evolution, 54, 1126–

1134. 

González-Pérez MA, Lledó MD, Lexer C, Fay M, Marrero M, Bañares A, Carqué E, Sosa 

PA (2009). Genetic diversity and differentiation in natural and reintroduced 

populations of Bencomia exstipulata and comparisons with B. caudata (Rosaceae) 

in the Canary Islands: an analysis using microsatellites. Botanical Journal of the 

Linnean Society, 160, 429–441. 

Gübitz T, Thorpe RS, Malhotra A (2000) Phylogeography and natural selection in the 

Tenerife gecko Tarentola delalandii: testing historical and adaptive hypotheses. 

Molecular Ecology, 9, 1213–1221. 

Guillou H, Carracedo JC, Paris R, Pérèz-Torrado FJ (2004) Implications for the early 

shield-stage evolution of Tenerife from K/Ar ages and magnetic statigraphy. Earth 

and Planetary Science Letters, 222, 599-614. 

Herben T, Suda J, Munclinger P (2005) The ghost of hybridization past: niche pre-

emption is not the only explanation of apparently monophyly in island endemics. 

Journal of Ecology, 93, 572–575. 

Hernández-Pacheco A, de la Nuez J, Cubas CR, Hernán F, Fernández S (1990) Los 

Domos sálicos de Tenerife, Islas Canarias. Estudios Geológicos, 46, 175–184. 

Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population 

structure with the assistance of sample group information. Molecular Ecology 

Resources, 9, 1322–1332. 

Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation 

program for dealing with label switching and multimodality in analysis of population 

structure. Bioinformatics, 23, 1801–1806. 

Jones KE, Reyes-Betancort JA, Hiscock SJ, Carine, MA (2014) Allopatric diversification, 

multiple habitat shifts, and hybridization in the evolution of Pericallis (Asteraceae), 

a Macaronesian endemic genus. American Journal of Botany, 101, 637–651. 

Juan C, Emerson BC, Oromí P, Hewitt GM (2000) Colonization and diversification: 

towards a phylogeographic synthesis for the Canary Islands. Trends in Ecology 

and Evolution, 15, 104–109. 

Kimura M, Weiss GH (1964) The stepping stone model of population structure and the 

decrease of genetic correlation with distance. Genetics, 49, 561–576. 

Larson EL, White TA, Ross CL, Harrison RG (2014) Gene flow and the maintenance of 

species boundaries. Molecular Ecology, 23, 1668–1678. 

MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton 

University Press, Princeton, NJ. 



 

124 FCUP 
Manuel Curto 

Macías-Hernandez N, Bidegaray-Batista L, Emerson C, Oromí P, Arnedo MA (2013) The 

imprint of Geologic History on Within-Island diversification of woodlouse-hunter 

spiders (Araneae, Dysderidae) in the Canary Islands. Journal of Heredity, 104, 

341–356. 

Mairal M, Sanmartín I, Aldasoro JJ, Culshaw V, Manolopoulou I, Alarcón M (2015) 

Palaeo-islands as refugia and sources of genetic diversity within volcanic 

archipelagos: the case of the widespread endemic Canaria canariensis 

(Campanulaceae). Molecular Ecology, 24, 3944–3963. 

Martín JL, Vera MA, Arechavaleta M (1999) Biodiversidad taxonómica y análisis de 

prioridad para el establecimiento de áreas protegidas. Vieraea, 27, 245–253 

Meimberg H, Abele T, Bräuchler C, McKay JK, Pérez de Paz PL, Heubl G (2006) 

Molecular evidence for adaptive radiation of Micromeria Benth. (Lamiaceae) on the 

Canary Islands as inferred from chloroplast and nuclear DNA sequences and ISSR 

fingerprint data. Molecular Phylogenetics and Evolution, 41, 566–578. 

Moya O, Contreras-Díaz HG, Oromí P, Juan C (2004) Genetic structure, phylogeography 

and demography of two ground-beetle species endemic to the Tenerife laurel 

forest (Canary Islands). Molecular Ecology, 13, 3153-3167. 

Nosil P, Parchman TL, Feder JL, Gompert Z (2012) Do highly divergent loci reside in 

genomic regions affecting reproductive isolation? A test using next-generation 

sequence data in Timema stick insects. BMC Evolutionary Biology, 12, 1–12. 

Peacock E, Sonsthagen SA, Obbard ME, Boltunov A, Regehr EV, Ovsyanikov N, Aars 

J, Atkinson SN, Sage GK, Hope AG, Zeyl E, Bachmann L, Ehrich D, Scribner KT, 

Amstrup SC, Belikov S, Born EW, Derocher AE, Stirling I, Taylor MK, Paetkau D, 

Talbot SL (2015) Implications of the Circumpolar Genetic Structure of Polar Bears 

for Their Conservation in a Rapidly Warming Arctic. PlosOne, 10, e112021. 

Pérez de Paz PL (1978) Revisión del género Micromeria Bentham (Lamiaceae-

Stachyoideae) en la Región Macaronésica. Instituto de Estudios Canarios, 

Monografías, 16, 1–306. 

de Paz JP, Caujapé-Castells J (2013) A review of the allozyme data set for the Canarian 

endemic flora: causes of the high genetic diversity levels and implications for 

conservation. Annals of botany, 111, 1059-1073.  

Piry S, Luikart G, Cornuet J-M (1999) Bottleneck: a program for detecting recent 

reductions in effective population size reductions from allele frequency data. 

Journal of Heredity, 86, 502–503. 

Puppo P, Curto M, Velo-Antón G, Pérez de Paz PL, Meimberg H (2014) The influence 

of geological history on diversification in insular species: genetic and morphological 



 

125 FCUP 
Capter 3: Micromeria evolution in the Canary Islands 

patterns of Micromeria Benth. (Lamiaceae) in Tenerife (Canary archipelago). 

Journal of Biogeography, 41, 1871–1882. 

Puppo P, Curto M, Gusmão-Guedes J, Cochofel J, Pérez de Paz PL, Bräuchler C, 

Meimberg H (2015a) Molecular phylogenetics of Micromeria (Lamiaceae) in the 

Canary Islands, diversification and inter-island colonization patterns inferred from 

nuclear genes. Molecular Phylogenetics and Evolution, 89, 160–170. 

Puppo P, Curto M, Meimberg H (2015b). Development and characterization of 16 

microsatellite markers for Micromeria (Lamiaceae) from Tenerife (Canary Islands, 

Spain) using 454 sequencing. Conservation Genetics Resources, 7, 743–749. 

Puppo P, Meimberg H (2015) New species and new combinations in Micromeria 

(Lamiaceae) from the Canary Islands and Madeira. Phytotaxa, 230, 1–21. 

Rambaut A, Drummond AJ (2007) TRACER v1.4. Available from: 

http://beast.bio.ed.ac.uk/Tracer 

Rohlf FJ (1993) NTSYS-PC: numerical taxonomy and multivariate analysis system – 

version 2.0. New York: Exeter Software. 

Roy D, Lucek K, Walter RP, Seehausen O (2015) Hybrid ‘superswarm’ leads to rapid 

divergence and establishment of populations during a biological invasion. 

Molecular Ecology, 24, 5394–5411. 

Rumeu B, Vargas P, Jaén-Molina R, Nogales M, Caujapé-Castells J (2014) 

Phylogeography and genetic structure of the threatened Canarian Juniperus 

cedrus (Cupressaceae). Botanical Journal of the Linnean Society, 175, 376–394. 

Santos-Guerra A, Acevedo-Rodriguez A, Reyes-Betancort JA (2011) Redescubrimiento 

del endemismo tinerfeño Micromeria densiflora Benth. (Labiatae). Anales del 

Jardín Botánico de Madrid, 68, 155–159. 

Seehausen O, Butlin RK, Keller I, Wagner CE, Boughman JW, Hohenlohe PA, Peichel 

CL, Saetre G, Bank C, Brännström Å et al. (2014) Genomics and the origin of 

species. Nature Reviews Genetics, 15, 176–192. 

Silvertown J, Francisco-Ortega J, Carine M (2005) The monophyly of island radiations: 

an evaluation of niche preemption and some alternative explanations. Journal of 

Ecology, 93, 653–657. 

Sosa PA, González-González EA, González-Pérez MA, Pérez de Paz PL (2013) 

Contrasting patterns of genetic differentiation in Macaronesian lineages of Ilex 

(Aquifoliaceae). Botanical Journal of the Linnean Society, 173, 258–268. 

Teeter KC, Thibodeau LM, Gompert Z, Buerkle CA, Nachman MW, Tucker PK (2010) 

The variable genomic architecture of isolation between hybridizing species of 

house mice. Evolution, 64, 472–485. 



 

126 FCUP 
Manuel Curto 

Thomas H, Leggett JM (1974) Chromosome relationships between Avena sativa and the 

two diploid species A. canariensis and A. prostrata. Canadian Journal of Genetics 

and Cytology, 16, 889–894. 

Thorpe RS, McGregor DP, Cumming AM, Jordan WC (1994) DNA evolution and 

colonization sequence of island lizards in relation to geological history: mtDNA 

RFLP, cytochrome B, cytochrome oxidase, 12S ribosomal RNA sequence, and 

nuclear RAPD analysis. Evolution, 48, 230–240. 

Trusty J, Olmstead RG, Santos-Guerra A, Sá-Fontinha S, Francisco-Ortega J (2005) 

Molecular phylogenetics of the Macaronesian-endemic genus Bystropogon 

(Lamiaceae): palaeo-islands, ecological shifts and interisland colonizations. 

Molecular Ecology, 14, 1177–1189. 

Turini FG, Steinert C, Heubl G, Bringmann G, Lombe BK, Mudogo V, Meimberg H (2014) 

Microsatellites facilitate species delimitation in Congolese Ancistrocladus 

(Ancistrocladaceae), a genus with pharmacologically potent naphthylisoquinoline 

alkaloids. Taxon, 63, 329–341. 

Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO‐CHECKER: 

software for identifying and correcting genotyping errors in microsatellite data. 

Molecular Ecology Notes, 4, 535–538. 

van Hengstum T, Lachmuth S, Oostermeijer JGB, den Nijs H(J)CM, Meirmans PG, van 

Tienderen PH (2012) Human-induced hybridization among congeneric endemic 

plants on Tenerife, Canary Islands. Plant Systematics and Evolution, 298, 1119–

1131. 

Watts AB, Masson DG (1995) A giant landslide on the north flank of Tenerife, Canary 

Islands. Journal of Geophysical Research, 100, 24487–24498. 

Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using 

multilocus genotypes. Genetics, 163, 1177–1191. 

Whittaker RJ, Ladle RJ, Araújo MB, Fernández-Palacios JM, Delgado JD, Arévalo JR 

(2007) The island immaturity –speciation pulse model of island evolution: an 

alternative to the “diversity begets diversity” model. Ecography, 30, 321–327. 

Whittaker RJ, Triantis KA, Ladle RJ (2008) A general dynamic theory of oceanic island 

biogeography. Journal of Biogeography, 35, 977–994. 



 

127 FCUP 
Capter 3: Micromeria evolution in the Canary Islands 

3.2. Genetic diversity and differentiation patterns of Micromeria from 

the Canary Islands are congruent with multiple colonization dynamics 

and the establishment of species syngameons 

Manuel Curto1,2, Pamela Puppo2, and Harald Meimberg2 

 

1Institute for Integrative Nature Conservation Research, University of Natural Resources 

and Life Sciences, A-1180 Vienna, Austria 

2CIBIO, Research Center in Biodiversity and Genetic Resources / InBio Associated 

Laboratory, University of Porto, Campus Vairão, Vairão 4485-661, Portugal 

 

Abstract 

Background: Especially in islands closer to the mainland such as the Canary 

Islands, different lineages originated by multiple colonization events could merge by 

hybridization, which furthermore could promote radiation events [1, 2, 3]. This is an 

alternative to the scenario, where evolution is mostly driven by drift [4, 5]. In this case 

hybridization should be reflected in the genetic structure and diversity patters of island 

species. In the present work we investigate Micromeria from the Canary Islands by 

extensively studying their phylogeographic pattern based on 15 microsatellite loci and 

945 samples. These results are interpreted according to the hypotheses outlined above.  

Results: Genetic structure assessment allowed us to infer detailed 

phylogeographic patterns such as the role of the region of Teno (Tenerife) in the 

colonization of other western islands of the Canary Islands. Moreover, we were able to 

genetically differentiate most Micromeria species supporting its current classification. We 

found that populations in younger islands were significantly more diverse genetically and 

less differentiated than the ones in older islands. Moreover, we found evidences of 

introgression among species and islands. 

Conclusions: These results are congruent with a scenario of multiple 

colonizations during the expansion into new islands. Hybridization contributes for the 

grouping of multiple lineages into highly diverse populations. Thus, in our case, islands 

receive several colonization events from different sources, which are combined into sink 

populations. This mechanism is in accordance to the surfing syngameon hypothesis. 

Contrary to its current form our results might reflect a slightly different effect: hybridization 

might always be related to colonization also within the archipelago so initial genetic 

diversity might be always high. Thus the emergence of new islands promotes multiple 

colonizations events contributing to the establishment of hybrid swarms that may 

enhance adaptive ability and thus radiation events. 
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Background 

Oceanic islands always had a special focus in evolutionary biology [6]. The high 

availability of empty niches paired with the low migration rate from the mainland may, on 

the one hand, contribute to a high prevalence for ecological speciation [6, 7, 8]. 

Hybridization might facilitate this adaptive evolution by increasing genetic diversity [9]. 

The processes linking hybridization and ecological adaptation as hypothesized by 

Seehausen [10], Seehausen et al. [9], and others (e.g. [11]), might be especially common 

on islands and form the basis for the prevalence of adaptive radiation on oceanic 

archipelagos. In agreement with this idea, Herben et al. [1] and Saunders and Gibson [2] 

suggested that multiple colonization events followed by hybridization, occur in particular 

on archipelagos close to the mainland, promoting adaptive radiation due to the increase 

of genetic diversity. By comparing island taxa with their mainland relatives, it has been 

found that genetic variation in several insular populations was not significantly lower than 

their close relative in the mainland [12, 13]. In case of a single colonization event, the 

founder effect would have created a significant lower genetic diversity in islands taxa. 

These observations led to the formulation of the surfing syngameon hypothesis where 

islands would constitute allelic sinks [3]. Through multiple colonization events originated 

from different sources, previously separated genotypes would be combined in hybrid 

populations (hybrid swarms) thus increasing genetic diversity. These populations might 

then differentiate ecologically into species that are still connected by gene-flow, thus 

forming a syngameon, i.e. a group of hybridizing species that evolve as one unit [3, 14]. 

Islands closer to the mainland are more likely to receive colonizers making them 

genetically more variable. The other islands are less likely to receive migrants from the 

mainland but rather from members of the syngameon. This will lead to the loss of genetic 

diversity compared to the source due to founder effects, and might increase 

differentiation by genetic dynamics of expanding populations due to allele surfing [3, 15]. 

In addition, this difference in likelihood of receiving colonization events explains the 

existence of different evolutionary processes within an archipelago, where in some island 

sink events are more predominant, and in others differentiation events prevail. This is 

the surfing syngameon hypothesis. 

The predictions of the surfing syngameon hypothesis are apparently in 

accordance with the distribution of genetic diversity across the Canary Islands, where 

genetic diversity is negatively- and differentiation positively-related with island distance 
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to the mainland when considering the overall genetic diversity per species per island 

[13]. The Canary Islands are a volcanic archipelago composed of seven islands located 

between 100 and 450 km off the Western Saharan coast. These islands originated from 

east to west from a hot spot movement being older near the mainland, varying in age 

between 20.6 Ma (Fuerteventura) and 1.1 Ma (El Hierro). Like all volcanic islands, the 

Canaries present high levels of endemism as a consequence of their complex 

geomorphological composition and the high diversity of ecological zones [12, 16]. Each 

island is in a different stage of the oceanic islands’ life cycle [17], being some of them 

composed by older and younger parts [18]. For example, Tenerife resulted from the 

connection of three older palaeo-islands (Anaga, Teno, and Adeje) by a central volcano, 

and in Gran Canaria the SW part of the island date back to the Miocene (palaeo-canaria) 

and the NE to the Pliocene (neocanaria; [19]). This has been shown to have a high 

impact on the evolutionary history of the species (i.e. [20, 21, 22, 23, 24, 25] ). Hereby, 

species occupying the younger part of the island can be genetically more diverse but 

less differentiated among each other. This had been shown in our study system, 

Micromeria (Lamiaceae) in Tenerife [24, 25]. 

Here, we expand our previous microsatellite study [25] to include all species of 

Micromeria, covering the whole Canarian archipelago, to investigate structure between 

species and to assess the distribution of within population diversity and between 

population differentiation. If multiple colonizations and hybridization do not occur with 

high frequency, we would expect a decrease of genetic diversity from the older islands 

to the most recently colonized islands. Since the older eastern islands are expected to 

have been colonized first, they would be significantly more diverse than the younger 

western islands. In addition, because the likelihood of gene-flow between populations is 

lower in younger islands, genetic differentiation should be higher. On an alternative 

scenario, hybrid swarm creation would be more recent in younger islands leading to a 

high diversity but higher homogeneity of populations, and genetic differentiation should 

decrease from the older towards the younger islands. In the latter case the formation of 

the syngameon would have a higher significance during the diversification within the 

archipelago.  

Here, these expectations are tested by investigations of the genetic structure, 

gene-flow among species within and among islands, and patterns of genetic diversity 

and differentiation of Micromeria in the Canary Islands. We interpret these results in the 

light of the surfing syngameon hypothesis with special focus on patterns of within and 

among population differentiation across the archipelago. If single colonization events 

prevail we do not expect to find gene-flow between species in different islands and 

genetic diversity should drastically decrease from older to younger islands within and 
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between populations. These expectations outlined by Caujapé-Castells [3] are not 

completely met. We did find evidences of multiple colonization events providing high 

genetic diversity at the colonization front. 

 

Material and Methods 

Biological system 

Micromeria Benth. (Nepetoideae, Lamiaceae) is a monophyletic genus with ca. 

54 species [26] from which approximately 22 are present in the Canary Islands and 

Madeira [27, 28, 29]. As in many other Canarian taxa, molecular data show two main 

lineages of Micromeria in the Canary Islands archipelago [30, 31]. One includes the 

species found in the eastern islands of Gran Canaria, Lanzarote and Fuerteventura; the 

other contains taxa from the western islands of Tenerife, La Palma, and El Hierro. Taxa 

from La Gomera belong to both lineages: M. lepida and M. gomerensis are part of the 

eastern lineage, while M. pedro-luisii is part of the western lineage [31]. 

From all the species present in the Canary archipelago, six share similar 

morphological characters that lead to be previously classified as the same species (M. 

varia). These taxa occupy all islands except La Palma, and have been recently separated 

based on molecular phylogenetic analyses [28, 29, 31] (Fig. 1). La Palma and El Hierro 

where two species were identified in each island [27], and now only one species per 

island is recognized [28, 29].  

Populations from the species previously classified as M. varia in Lanzarote, Gran 

Canaria and from one taxa in La Gomera form a monophyletic group while the remaining 

ones they do not [31]. Likewise, it was also shown that M. varia s.s. in Tenerife is 

genetically and morphologically highly similar to M. hyssopifolia [24]. This variety of 

morphological features and their complex evolution allowed us to evaluate genetic 

variation at different levels: by using only members of morphological and genetically 

similar species we can replicate genetic patterns among individuals with independent 

phylogenetic positions but similar ecological and morphological features; by using only 

individuals from one lineage we can compare the diversity among individuals belonging 

to the same monophyletic group; and by using the whole archipelago we can assess the 

diversity among all terminal branches of Micromeria phylogeny. In the following analysis 

the name M. varia s.l. is used to characterize this group of species.  

Tenerife and Gran Canaria are the largest islands in the archipelago and contain 

the highest number of Micromeria species, eight and seven respectively. La Gomera 

presents three species and the remaining islands one species each. All Micromeria 

species are single island endemics. In Tenerife, it has been suggested that the 

composition of species of Micromeria is linked to the geological history of the island [24, 
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25, 31]. From the eight species occurring in this island, three are restricted to the palaeo-

islands: M. densiflora to Teno and M. rivas-martinezii and M. glomerata to Anaga. These 

species are narrowly distributed in these regions growing in reduced areas (2500-6500 

m2) with few individuals (ca. 400-900; [32, 33]). A fourth species, M. teneriffae, is also 

growing in Anaga palaeo-island but its range extends towards the southeast of the island 

up to Fasnia. Molecular studies suggest that these four species are older lineages that 

evolved before the connection of the three palaeo-islands by the formation of the central 

shield [24]. Micromeria varia s.s. presents a disjoint distribution growing in the palaeo-

islands of Anaga and Teno though molecular studies suggest it as a more recent lineage 

[24, 25]. The remaining three species are distributed in the central, younger part of 

Tenerife: M. hyssopifolia growing throughout the island from the coast up to the pine 

forest, M. lachnophylla from the pine forest up to the high desert, and M. lasiophylla in 

Las Cañadas cliffs, at the skirts of the Teide volcano. In Gran Canaria on the other hand, 

species distribution is not apparently correlated to the island’s evolution [31]. Two 

species are narrowly distributed in the west of the island, M. leucantha restricted to an 

area of 7000 m2 and a population of ca. 2400 individuals, and M. pineolens growing in 

an area of ca. 9500 m2 and a population of ca. 4500 individuals [32]. The remaining five 

species are widely distributed throughout the island. 

 

Samples used and DNA isolation  

A total of 945 individuals were included in this study corresponding to all 

recognized taxa of Micromeria present in the Canary Islands (Fig. 1). These were 

collected during several excursions from 2010 to 2012 and some of these were already 

used in the studies of Curto et al. [34] and Puppo et al. [24, 25, 31, 35]. A total of 196 

localities were sampled (Fig. 1). Each locality was considered to be an independent 

population and they were composed by one to 14 individuals (Supplementary Table S1). 

DNA isolation was done using the Macherey-Nagel Plant DNA Extraction Kit 

(Macherey-Nagel, Düren, Germany) on 20 mg of dried leaf material according to Puppo 

et al. [25].  

 

Genotyping and markers quality control 

The 16 microsatellite markers described in Puppo et al. [35] were amplified using 

the same multiplex primer combinations, florescent dyes, and PCR conditions from 

Puppo et al. [25, 35]. Genotyping was done in an ABI3130xl automatic sequencer 

(Applied Biosystems, Inc., Foster City, CA; USA) using an internal size standard 

(Genescan-500 LIZ; Applied Biosystems, Inc.). GeneMapper ver. 4.0 was used for 

allele’s scoring (Applied Biosystems, Inc.). A total of 96 individuals were genotyped two 
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times to evaluate scoring consistency. After scoring, only markers showing data for most 

of the samples were used for further analyses. This led to the exclusion of one marker 

(6493). Puppo et al. [25, 35] did not find any significant deviation from Hardy-Weinberg 

equilibrium, genotyping errors or high amount of null alleles for any of the markers so no 

further exclusion was necessary. 

Fig. 1. Map of the Canary Islands showing sampled localities and recognized species per island and group (East/West) 

to which they belong. 

 

Genetic structure assessment 

Main genetic structure patterns were evaluated through distances and clustering 

analyses. Clustering analyses were conducted with the program STRUCTURE ver. 2.3.3 
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[36]. Considering there are 22 species and structure within species can be found, the 

optimal K was first tested by doing short runs (10,000 burnin and 10,000 additional 

generation) from K=2 to K=30. For each K, five replicates were performed and the best 

value was obtained using the Delta K method as implemented in STRUCTURE 

Harvester [37]. Longer runs of 1,000,000 generations followed by a burnin of 500,000 

generations were performed from K=2 to the optimal values obtained in the first step. To 

evaluate possible further divisions we searched for the second best K. This was obtained 

by running STRUCTURE harvester with only results corresponding to K values above 

the best. The method only considers a continuous range of K values not allowing values 

smaller than the optimum. All tests were conducted using the admixture model since it is 

expected that individuals present multiple assignments to different clusters. Further 

divisions within the two major lineages (East / West) were evaluated by running two 

independent STRUCTURE analyses including only individuals from these groups.  

To assess the relationships among species, an UPGMA dendrogram was 

constructed using uNeiD distance [38] among populations in PAUP v. 4.0 [39]. Principal 

coordinates analyses (PCoA) were calculated in Genalex v. 6.41 (http://biology-

assets.anu.edu.au/GenAlEx/) considering each population as a sample point, and using 

three different datasets: 1) all populations, 2) Gran Canaria populations; and 3) 

populations assigned to the western group in analysis number 1. Gran Canaria was 

tested separately because it was clearly separated from the other islands in the whole 

archipelago analysis. These were calculated using pairwise genotypic distance among 

populations calculated in GenAlEx. 

 

Gene-flow and hybridization 

Migration rates were calculated as proxy estimates of gene-flow. Bidirectional 

contemporary and historical migration rates were calculated among species and island 

pairs using the program BayesAss v3.0 [40] and Migrate [41], respectively. Combination 

of both provides a perspective of gene-flow patterns in two time scales. Because 

calculating migration-rates among all possible pairwise population combinations was not 

possible computationally, this was done using both islands and species as groups. In 

case a clear division within species was observed in the STRUCTURE analyses, these 

were considered to be different groups. In La Gomera the two highly divergent lineages 

were treated separately in the island comparison. For Migrate, due to computational 

limitations migration among islands was only estimated using island groups. Species 

groups were just used to estimate gene-flow within islands. In BayesAss, the output 

values correspond to the portion of individuals originated from the population that it is 

being compared to, while for the Migrate they correspond to the average number of 

http://biology-assets.anu.edu.au/GenAlEx/
http://biology-assets.anu.edu.au/GenAlEx/
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migrants per generation. For BayesAss, only results with a minimum 95% confident 

interval value above 0.001 were considered to represent significant migration rates. In 

the case of Migrate, only migration rates significantly higher than 0 were considered. 

BayesAss parameters, such as mixing parameters, number of iterations, and burnin were 

optimized in several runs. An optimal run was considered to have migration, allele 

frequency, and inbreeding coefficient acceptance rates below 0.6 and an effective 

sample size above 100 for all parameters (calculated with TRACER v1.5.0, [42]). The 

final analyses ran for 200,000,000 generations, excluding the first 100,000,000, and 

sampling every 1,000th generation for both groupings. For species pair analyses the 

optimal admixing values were 0.5 for both allele frequency and inbreeding coefficient, 

while for island pairs no adjustment was necessary. Migrate was run as described in 

Puppo et al. [25]. We used a burnin of 5,000,000 generations and estimates were 

sampled every 100th generation until a total of 50,000 were recorded.  

Hybridization between all lineages showing significant recent migration rates was 

tested. This was done with the program NewHybrids [43] by calculating the probability of 

individuals being F1 or F2 hybrids, or back crosses with their parent species. NewHybrids 

ran for 1,000,000 generations after a burnin period of 1,000,000.  

 

Genetic diversity and quantitative genetic differentiation 

To test how genetic diversity and differentiation varied through the archipelago, 

several statistics were calculated for three groupings: islands, species per island, and 

populations. We had a special focus on genetic diversity at the population level because 

it is not affected as much by sample size biases. Genetic diversity was assessed by 

calculating expected (HE) and observed heterozygosity (HO), and portion of private 

alleles. Two private allele measures were calculated: one comparing each group to the 

whole archipelago, the other comparing each group to the other groups from the same 

island. Genetic differentiation and quantification of genetic structure was done by 

estimating pairwise FST [44], RST [45] and unbiased Nei’s distance (uNei) among groups. 

All measures were obtained with GenAlEx 6.41 (http://biology-

assets.anu.edu.au/GenAlEx/) using the same matrix but containing only populations with 

at least four individuals; a total of 766 samples and 116 populations (Supplementary 

Table S1).  

Significant variation of genetic diversity and differentiation between old and young 

islands, islands, and species per island were calculated by a variance analyses in JMP 

v. 12 (SAS Institute Inc., Cary, NC, USA). In this analysis, populations or species were 

respectively used as replicates. The Canary Islands are divided into two age groups: old 

areas with a geological age between 15.5 Ma to 5.8 Ma (Fuerteventura, Lanzarote, Gran 
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Canaria, La Gomera, Tenerife palaeo-islands) with the majority around 11 Ma; young 

areas varied between 2 to 1 Ma (central Tenerife, La Palma, and El Hierro) being mostly 

around 1.5 Ma. This resulted in the groups “young island species” and “old island 

species”. There is a large gap between the two islands age (at least 4 Ma) so if age has 

had any effect on genetic diversity, this will be detected by differences between these 

two groups. Tenerife has a special role because formerly independent islands got 

secondarily connected and the so called palaeo-islands have a more pronounced 

botanical singularity than the other islands. The species were grouped according to their 

position in the phylogenetic analysis to account for the possibility of recent range shift 

between old and young substrates. Thus the group of young island species were 

composed of species from the central area, M. lachnophylla, M. lasiophylla and M. 

hyssopifolia, and included the closely related species M. varia s.s., which expanded into 

the palaeo-islands from the central part. This was shown by being phylogenetically more 

closely related to the central area species [25]. Micromeria teneriffae distributed in both 

old and young areas because it is phylogenetically closely related with the species 

restricted to the palaeo-islands it probably underwent a range expansion into the central 

part of the islands. For that reason it was classified as old. When species were grouped 

according to their current main distributions, the results only changed slightly but were 

still significant. As a consequence of calculating pairwise genetic differentiation a third 

category was considered for this measure (differentiation between old and young areas). 

In summary, two categories for the genetic diversity measures were defined (old and 

young) and three for the genetic differentiation measures (among old, among young, 

between old and young).  

Genetic differentiation results may reflect differences among lineages rather than 

among island’s age. This was overcome by doing these analyses including only 

members of the western lineage that occupy both old and young islands. Age-related 

biases were assessed by performing a test including only the recent diverged taxa from 

the M. varia / M. hyssopifolia species complex.  

 

Results 

Genetic Structure 

Patterns of genetic distances (uNei among populations) were visualized using 

both dendrograms and PCoA analyses (Fig. 2). They were generally congruent with 

previous phylogenetic and similarity analyses [24, 25, 31]. Populations cluster in two 

main groups generally corresponding to the division between eastern and western 

islands, with populations from La Gomera assigned to both groups (M. gomerensis with 

the eastern islands; and M. lepida and M. pedro-luisii within the western islands). . Within 
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the eastern islands, M. mahanensis from Lanzarote clusters with M. gomerensis from La 

Gomera, while the position of Gran Canaria species was different between the PCoA and 

the dendrogram. In the dendrogram they are together with M. mahanensis and M. 

gomerensis while in the PCoA they are together with the remaining species from Gran 

Canaria. Within the western group, the position of Tenerife’s species is congruent with 

earlier analyses Puppo et al. [25]. The other islands that are here included for the first 

time are separated from Tenerife with La Palma and La Gomera more similar. In the 

PCoA analyses, the population of M. densiflora from Teno is positioned very close to the 

La Palma / La Gomera cluster linking the Teno massif to these two islands. Micromeria 

glomerata is separated from all species from the western group in the PCoA and in the 

dendrogram. Interestingly, one M. teneriffae population (tetSC5) clusters within the other 

western islands which may indicate gene-flow among these islands. 

In the STRUCTURE analysis (Fig. 3), the optimal K value according to Evanno’s 

method was 13. In an analysis of K values above 13, the most likely K was 19. In Fig. 3 

several runs are presented corresponding to major differentiation events in the 

archipelago. For K=2, the split between the eastern and western groups is indicated with 

the difference that M. lepida is clustered together with to the eastern islands species. At 

K=3, the eastern group representatives of M. varia s.l., M. canariensis, M. gomerensis, 

and M. mahanensis, form an independent group. Central Tenerife is separated from the 

remaining western species at K=5, and at K=8, M. varia from Tenerife is divided 

according to the two palaeo-islands where it grows. For the optimal K (K=13), most of 

the eastern lineage species are differentiated and most of the islands from the western 

lineage present their own cluster. Differentiation of most western lineage species is only 

observed at K=19. When the eastern and western groups are analyzed separately, the 

optimal K was K=2 and the suboptimal was K=11 and K=17 respectively (Fig. 3B). At 

these K, only few species were not assigned to individual clusters: M. gomerensis and 

M. mahanensis in the eastern group, and M. rivas-martinezii and M. glomerata in 

Tenerife. Subdivision within M. canariensis is congruent with Gran Canaria age division 

(palaeo-canaria and neocanaria; Fig. 3B). STRUCTURE analyses show several 

occurrences of gene-flow between species and populations. At all values of K, some 

individuals show high assignments probability to clusters mostly found in other species, 

which is an indication of introgression.  

 

Gene flow and hybridization 

Recent migration rates calculated with BayesAss varied between 0.07% and 

24.44% between islands (all individuals per island are forming one group) and between 

0.18% and 19.9% among species (Supplementary Table S2). All migration rates above 
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0.8% and 0.4 % were significant for islands and species analyses, respectively, and are 

shown on Fig. 4. Past migration rates calculated with Migrate varied from 2.8 to 32.3 

among islands groups, and between 3.38 and 32.77 among species groups 

(Supplementary Table S3). For past migration rates analyses, only migration among 

island groups had a 95% confidence interval above zero. All significant migration rates 

are shown on Fig. 4. 

Fig. 2. Principal coordinates analyses and uNeiD UPGMA dendrogram including all localities with at least four individuals. 

For the PCoA, three analyses were performed: all populations; populations be-longing to the group composed by the 

eastern islands; and the ones belonging to the group composed by the western islands and M. lepida from La Gomera. 

The vertical and horizontal axis explained respectively: 33.1% and 8.3% of the variation for the all island analyses, 31.9% 

and 10.4% for the Gran Canaria analyses, and 17.6% and 13.9% for the western group analyses. Islands are represented 

by the following abbreviations: La (Lanzarote), GC (Gran Canaria), LG (La Gomera); LP (La Palma); EH (El Hierro). 
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Fig. 3. Bayesian clustering analyses with STRUCTURE. A: Analyses including all samples; best value of K was K=13, 

second best was K=19. B: Analyses including only the western and eastern lineages; for both the optimum K value was 

K=2; the suboptimum was K=11 and K=17 for the eastern and western lineages, respectively. 
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Recent connectivity among islands was mostly found within each lineage 

(Supplementary Table S3; Fig. 4). When islands’ groupings were considered, this 

resulted in high gene-flow to Lanzarote from members of the eastern lineage from La 

Gomera and from Tenerife to the western lineage from La Gomera and La Palma. When 

species groupings were considered, inter-island gene-flow was found from M. 

canariensis (Gran Canaria) to M. mahanensis (Lanzarote) and to M. gomerensis (La 

Gomera). Gene-flow among east and west lineages corresponded to migration between 

both lineages in La Gomera for island groupings and from El Hierro to Gran Canaria (M. 

helianthemifolia) and from M. lepida (La Gomera) to M. densiflora (Tenerife) in the 

species grouping. Past gene-flow was found from Tenerife to Gran Canaria, La Palma, 

and El Hierro; and from Gran Canaria to Tenerife. 

 

Fig. 4. Representation of recent and historical migration rates calculated with BayesAss and migrate, respectively. All 

arrows correspond to migration rates with 95% confidence intervals above 0.001 for BayesAss and 0 for Migrate. Arrow 

thickness is proportional to the migration rate. Panels A and B correspond to contemporary migration rates calculated 

between islands using species and islands as groups, respectively. Panel C shows historical migration rates between 

islands groups calculated with Migrate. These were the only significant values obtained from this program. In Panel D, 

contemporary migration rates between species within islands are shown. 
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Table 1. Summary of NewHybrid analyses showing the number of individuals with assignment above 50% of being F1 

and F2 hybrids, and backcrosses with either species one or two. 

Island 1 Island 2 Species 1 Species 2 
nr. 

indiv. 
nr. F1 
>90% 

nr. F2 
>90% 

nr. Back1 
>90% 

nr. Back2 
>90% 

El Hierro 
Gran 
Canaria 

M. 
hierrensis 

M. 
helianthemif
olia 

53 0 0 0 0 

El Hierro Tenerife 
M. 
hierrensis 

M. 
hyssopifolia 

191 0 5 0 0 

Gran 
Canaria 

Gran 
Canaria 

M. 
benthamii 

M. 
canariensis 

225 0 39 0 0 

Gran 
Canaria 

Gran 
Canaria 

M. 
benthamii 

M. 
helianthemif
olia 

128 0 13 0 0 

Gran 
Canaria 

Gran 
Canaria 

M. 
benthamii 

M. lanata 170 0 17 0 0 

Gran 
Canaria 

Gran 
Canaria 

M. 
benthamii 

M. 
leuchantha 

118 0 54 0 0 

Gran 
Canaria 

Gran 
Canaria 

M. 
benthamii 

M. pineolens 124 0 0 0 0 

Gran 
Canaria 

Gran 
Canaria 

M. 
benthamii 

M. tenuis 206 0 26 0 0 

Gran 
Canaria 

Gran 
Canaria 

M. 
canariensis 

M. tenuis 225 0 10 0 0 

Gran 
Canaria 

Gran 
Canaria 

M. 
helianthemif
olia 

M. tenuis 128 0 52 0 0 

Gran 
Canaria 

Gran 
Canaria 

M. lanata 
M. 
helianthemif
olia 

92 0 5 0 0 

Gran 
Canaria 

Gran 
Canaria 

M. lanata M. tenuis 170 0 14 0 0 

Lanzarot
e 

Gran 
Canaria 

M. 
mahanensis 

M. 
canariensis 

134 0 15 1 0 

La 
Gomera 

Gran 
Canaria 

M. 
gomerensis 

M. 
canariensis 

136 0 18 0 0 

La 
Gomera 

La 
Gomera 

M. lepida 
M. 
gomerensis 

41 0 1 0 0 

La 
Gomera 

Tenerife M. lepida 
M. 
densiflora 

32 0 0 0 0 

La 
Gomera 

La 
Gomera 

M. pedro-
luisii 

M. lepida 62 0 1 0 0 

Tenerife Tenerife 
M. 
glomerata 

M. teneriffae  33 0 1 0 0 

Tenerife Tenerife 
M. 
hyssopifolia 

M. 
lachnophylla 

187 0 121 0 0 

Tenerife Tenerife 
M. 
hyssopifolia 

M. teneriffae  191 0 20 0 0 

Tenerife Tenerife 
M. 
hyssopifolia 

M. varia 
Anaga 

221 0 36 0 0 

Tenerife Tenerife 
M. 
hyssopifolia 

M. varia 
Teno 

193 0 154 0 0 

Tenerife Tenerife M. teneriffae  
M. 
lachnophylla 

52 0 12 0 0 

Tenerife Tenerife M. teneriffae  
M. 
lasiophylla 

43 0 4 0 0 

Tenerife Tenerife M. teneriffae  
M. rivas-
martinezii 

41 0 1 0 0 

Tenerife Tenerife M. teneriffae  
M. varia 
Anaga 

86 0 14 0 0 

Tenerife Tenerife 
M. varia 
Anaga 

M. rivas-
martinezii 

71 0 3 0 0 

Tenerife Tenerife 
M. varia 
Anaga 

M. varia 
Teno 

88 0 21 0 0 

 

Within island, Tenerife and Gran Canaria showed recent gene-flow for 12 out of 

56 possible connections and for 14 out of 42, respectively (Supplementary Table S3; Fig. 

4). Although Gran Canaria showed more connections, intra-specific migration rate in 

Tenerife was higher, with an average of 7.39% compared to the 3.53% for Gran Canaria. 
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Within Tenerife, M. hyssopifolia and M. teneriffae were the source of interspecific 

migration. While M. hyssopifolia contributed with gene-flow to the central species, M. 

teneriffae contributed to the palaeo-endemic species. In Gran Canaria, all widespread 

species worked as source of migration. Within La Gomera, M. lepida x pedro-luisii hybrid 

received migration from both potential parental species. Additionally, M. lepida 

contributed with migration for the other two species in La Gomera.  

We used NewHybrids to detect potential hybridization between species pairs 

exchanging recent gene-flow. We considered hybrids to exist if some of the individuals 

showed high probability of being hybrids or backcrosses (above 90 %). With the 

exception of the comparisons M. lepida and M. densiflora, M. benthamii and M. 

pineolens, and M. hierrensis and M. helianthemifolia; all other species pairs showed at 

least one individual with the assignment of being a hybrid or a back cross above 90% 

(Table 1). Potential hybridization between M. pedro-luisii and M. lepida in La Gomera 

would correspond to introgression between the two most divergent lineages however this 

was not verified since only F2 hybrids were found.  

 

Genetic Diversity and differentiation 

Genetic diversity and differentiation was estimated as heterozygosity, RST, FST 

and amount of private alleles (Supplementary Tables S4 and S5). Tenerife was the most 

diverse island showing the highest values of both HE and HO (0.53 and 0.80, 

respectively). The least diverse island was Lanzarote with HE and HO of 0.16 and 0.23, 

respectively. At the species level, taxa from Lanzarote were still the least diverse 

presenting the same values from the overall diversity per Island. Micromeria hyssopifolia 

presented the highest HE (0.77) while M. varia from Teno the highest HO (0.77). HO varied 

between 0.14 and 0.68 while HE between 0.22 and 0.78.  

Pairwise differentiation among islands varied between 0.16 and 0.64 for RST, 0.06 

and 0.37 for FST and 0.42 and 1.18 for uNei. None of the island pairs showed constantly 

either the highest or lowest values for these three measures. At the species level, 

differentiation among M. varia s.s. from Teno and M. hyssopifolia was consistently the 

lowest (RST = 0.01; FST = 0.02, uNei = 0.14) and differentiation between Lanzarote and 

M. glomerata the highest (RST = 0.86; FST = 0.62; uNeu = 3.09). At the population level, 

pairwise RST ranged from -0.21 to 0.91, pairwise FST to 0.05 and 0.66; and uNei from 

0.13 to 5.16. 

To determine to what extent island age influenced genetic diversity measures, 

analyses of variance were performed for differences among categories of: islands age, 

island, and species. These analyses were done using different measures of genetic 

diversity on the species and population levels (Table 2) for three datasets with different 
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sampling subsets: all samples, only M. varia s.l. and M. hyssopifolia, and within the 

western lineage. At the population level, both HO and HE were significantly higher on 

younger than older islands for all tests performed, which also corresponded to significant 

differences between island and species (Table 2 and Fig. 5). At the species level, this 

was only observed for HO in the eastern island dataset, and for both HE and HO for the 

western island dataset. Overall, for both population and species level genetic diversity 

decreased in the direction of east to west (Fig. 5). 

 

Table 2. Results of variance analyses of island age over genetic diversity for three datasets: whole archipelago, M. 

hyssopifolia and taxa belonging to the M. varia complex; and taxa belonging to the western lineage (Tenerife, La Palma 

and El Hierro and M. pedro-luisii from La Gomera). In the Tests column the letters correspond to the tests classes used. 

I: Islands; S: Species; O/N: old/new. * corresponds to p-values < 0.001. 

Dataset Level Test 
HO HE 

DF SS F p DF SS F p 

All samples 

Populations 

I 5 0.4 8.0 * 5 0.7 12.5 * 

S 20 1.0 8.8 * 20 1.3 12.0 * 

O/N 1 0.3 28.3 * 1 0.4 32.7 * 

Species 
I 5 0.1 1.1 0.39 5 0.2 1.2 0.37 

S 1 0.1 8.3 0.01 1 0.1 4.2 0.05 

M. varia and M. 

hyssopifolia 

Populations 

I 4 0.5 15.9 * 4 0.7 34.7 * 

S 6 0.6 15.7 * 6 0.8 26.5 * 

O/N 1 0.4 38.1 * 1 0.6 76.9 * 

Species 
I 4 0.1 2.7 0.23 4 0.2 3.3 0.17 

S 1 0.1 6.4 0.04 1 0.1 4.0 0.09 

Within West 

Populations 

I 5 0.4 18.8 * 5 0.7 29.8 * 

S 11 0.4 9.2 * 11 0.8 25.0 * 

O/N 1 0.1 7.9 0.01 1 0.2 18.6 * 

Species 
I 3 0.0 0.4 0.73 3 0.0 0.2 0.89 

S 1 0.1 6.9 0.03 1 0.1 5.6 0.04 

 

The same categories were used to evaluate the effect of island age on pairwise 

genetic differentiation among populations, species, and islands groups (Table 3; Fig. 5). 

The same three datasets were used (all samples, only M. varia and M. hyssopifolia, 

within the western lineage). At the population level, all differentiation measures were 

significantly different among classes for all tests in all datasets (Table 3). At the species 

level, differences among islands and species were not significant for uNei at the M. varia 

and M. hyssopifolia dataset. Also no differences among islands were observed for FST 

and uNei when only the western lineage was included. For all analyses, genetic 

differentiation among species inhabiting younger areas was lower than among older 

ones (not shown). Pairwise RST and uNeiD between younger and older islands was 

higher than the other categories when the datasets containing samples from the whole 

archipelago and only M. varia and M. hyssopifolia species were analyzed. For the 

remaining tests differentiation between younger and older islands was in an intermediate 
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position relatively to the other two classes. The patterns found for the comparisons 

among age classes were reflected on how genetic differentiation varied across the 

archipelago. While for the western islands dataset there was a gradual decrease of 

genetic differentiation from older to younger islands, for the other two datasets this 

pattern was just evident for FST (Fig. 5).  

 

Table 3. Results of variance analyses of island age over genetic differentiation for three datasets: all archipelago, M. 

hyssopifolia and taxa belonging to the M. varia complex; and taxa belonging to the western lineage (Tenerife, La Palma 

and El Hierro and M. pedro-luisii from La Gomera). I: Islands; S: Species; O/N: old/new. * corresponds to p-values < 

0.001. 

Dataset Level 
Tes

t 

RST FST uNeiD 

D
F 

SS F p 
D
F 

SS F p 
D
F 

SS F p 

All samples 

Population
s 

I 5 
40,

9 
170,

0 
* 5 

11,
3 

319,7 * 5 42,6 26,9 * 

S 21 
93,

5 
100,

6 
* 21 

25,
8 

204,2 * 21 
246,

5 
38,9 * 

O/N 2 
52,

0 
598,

7 
* 2 

11,
5 

926,5 * 2 
486,

5 
985,

7 
* 

Species 

I 5 1,2 7,1 * 5 0,4 8,2 * 5 3,1 2,6 
0,0
3 

S 21 3,7 6,1 * 21 2,2 15,5 * 21 18,9 4,3 * 

O/N 2 0,5 8,2 0 2 0,5 29,6 * 2 7,1 16,6 * 

M. varia and 
M. 

hyssopifoli
a 

Population
s 

I 4 
46,

5 
217,

3 
* 4 7,2 272,2 * 4 84,2 69,1 * 

S 7 
51,

1 
140,

1 
* 7 7,4 162,8 * 7 92,7 43,8 * 

O/N 2 
39,

3 
446,

7 
* 2 8,5 

1147,
0 

* 2 
287,

7 
893,

3 
* 

Species 

I 5 0,7 6,1 0 5 0,2 7,3 * 5 0,8 1,9 0,1 

S 9 0,9 4,2 0 9 0,2 5,4 * 9 1,0 1,3 
0,2
6 

O/N 2 0,1 2,0 
0,1
5 

2 0,1 11,9 0 2 1,8 20,3 * 

Within West 

Population
s 

I 3 
29,

7 
181,

1 
* 3 4,7 218,8 * 3 35,3 

100,
6 

* 

S 11 
55,

2 
106,

8 
* 11 

10,
6 

182,7 * 11 97,6 90,3 * 

O/N 2 
17,

5 
164,

4 
* 2 5,1 469,7 * 2 62,8 

350,
3 

* 

Species 

I 3 0,9 6,5 0 3 0,0 0,3 
0,8
2 

3 0,7 1,5 
0,2
1 

S 11 2,6 7,0 * 11 0,7 8,7 * 11 7,1 6,4 * 

O/N 2 0,6 7,5 0 2 0,4 32,4 * 2 3,8 20,3 * 

 

Portion of private alleles per islands varied between none in Lanzarote to 26.49% 

in Gran Canaria, and per species between zero for several taxa and 8.5% for M. 

hyssopifolia. When compared with the remaining species from the same island, M. 

pedro-luisii had the highest portion of private alleles (51.85 %). On the opposite end was 

M. rivas-martinezii where all alleles are shared with other Tenerife species. At the 

population level, the portion of private alleles varied between 0 % for several populations 

from several species to 6.45 % for one population from La Palma (M. herpyllomorpha). 

This population presented also the highest portion of within island private alleles 

(62.06 %). Private alleles were not as informative when assessing the variation among 

the defined categories. Nevertheless, the number of private alleles per island was 

significantly higher in younger islands when the dataset containing the whole archipelago 
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was considered. This measure was also significantly different among species and island 

groups. 

 
Fig. 5. Representation of expected heterozygosity (HE) and FST per population used as proxy of genetic diversity and 

differentiation. For each measure there is a graph per island, per species, and per age class. Here only the test including 

all samples is shown. Graphs for the other tests are shown in supplementary material. 

 

Discussion 

Factors contributing for island gene-flow 

Codominant genotyping data are rarely applied to questions that cover multiple 

species. In a recent application, Puppo et al. [25] used a codominant dataset to 

determine the genetic structure at a fine scale for the species of Micromeria in Tenerife, 

and also provided evidence of gene-flow between populations and species. In the study 

at hand, we expanded this investigation to cover all the species of this genus present in 

the Canarian archipelago, including multiple populations for each island. We found that 

gene-flow through hybridization does not only exist within islands, but that it also seems 

to link different islands to each other. This is an important prerequisite that indicates that 

connectivity between islands might be higher than generally expected, with the 

subsequent impact on colonization ability and diversification. 

Using the analysis of different programs we found evidence for contemporary and 

historical gene-flow between islands. This was indicated by recent connectivity within the 

eastern and western lineages and by historical connectivity among the central species 

of Tenerife, Gran Canaria, and La Gomera. Tenerife and Gran Canaria are the largest 

and most diverse islands of the archipelago, making them more likely to work as 
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migration sources. High historical migration rates are found between the two major 

lineages (east and west) but recent gene-flow between them is found to be sparse. 

Barriers to gene-flow might accumulate with time and can affect how genetic diversity is 

distributed. Nevertheless, introgression between these lineages is still found especially 

through hybridization in La Gomera. This indicates that although highly diverged, these 

lineages are not yet completely isolated, which can be a consequence of continuous 

genetic exchange during the divergence of these lineages [1]. 

In our previous study, we determined gene-flow between species within Tenerife, 

most pronouncedly between the species in the central part of Tenerife and members of 

the M. varia group. Gene-flow between these species is also indicated by earlier 

phylogenetic reconstruction using a multilocus analysis, where incongruences between 

markers prevent a clear phylogenetic assignment of the respective taxa [24, 31]. This 

can be either attributed to ancestral lineages not yet sorted out [46], or, at least 

occasionally, gene-flow creates a picture of reticulate evolution [47]. Nevertheless, 

analysis of contemporary gene-flow indicates that this is an ongoing process and that 

the species are connected by the occasional hybrids that can be observed. We show 

here that this is not only the case with Tenerife, but also with Gran Canaria and La 

Gomera, i.e. in all islands where more than one species can be found. Interestingly, 

Tenerife shows a larger amount of gene-flow than Gran Canaria when the total amount 

of migration is considered. This might be consequence of the different geological history 

of each island, resulting in a different age of the respective species groups, and thus 

different degree of reproductive isolation and different pattern of potential geographic 

isolation. Both islands are composed by old and young substrates from the Miocene and 

Pleistocene [19, 48]. Puppo et al. [24, 25] found genetic structure among species 

correlated with these regions in Tenerife, which was confirmed by our data. Differences 

in gene-flow between species, and age estimates of phylogenetic relationships between 

the two largest islands, might be related to differences in the geological formation of the 

islands. While both are of similar maximum age, Tenerife as we know it today was 

created by the unification of three older islands by a central area while Gran Canaria got 

its current shape by subsequent additions of land in the northeast direction [19, 48]. 

These different island formation processes resulted in different ways of land occupation. 

While the central, younger part of Tenerife was occupied by colonization from the older 

regions creating a contact zone, younger areas of Gran Canaria were occupied by 

expansion of pre-existing populations. Results from Puppo et al. [24, 25] support the idea 

that the central part of Tenerife was colonized after its emergence and only later it came 

into contact with the palaeo-island species. 
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Genetic differentiation, diversity patterns, and the surfing syngameon hypothesis 

Hybridization can be a driver for adaptive evolution [11, 49] and the underlying 

mechanism could explain different patterns of evolutionary success, e. g. range 

expansion in the context of biological invasions [50, 51], or polyploid speciation [52, 53]. 

Hybridization combines genotypes that evolved independently resulting in the 

appearance of new genomic rearrangements. This can impact adaptive ability during 

colonization in two ways. First, new genotype combinations could result in novel 

characteristics so that sorting out processes can lead to the occupation of different 

ecological niches. This process of hybrid speciation where the hybrid has novel 

characteristics had been prominently shown for Helianthus [54, 55] or Iris [56, 57] where 

characteristics are exchanged between species. Secondly, new diversity might lead to 

higher phenotypic variability for selection to act upon, providing increased adaptability to 

facilitate range expansion into lower quality habitat facilitating long term adaptation [53, 

58]. The creation of new diversity through genetic exchange has been used to explain 

the diversification processes on oceanic islands [1, 2, 3]. However, ecological speciation 

that occurs in islands could be particularly promoted by high levels of genetic diversity. 

The most recent model that includes the effect of genetic diversity on adaptive 

evolution is the surfing syngameon hypothesis, which implies that islands close to the 

mainland should have a higher likelihood to receive multiple colonizers from different 

sources [3]. When these colonizers hybridize with each other and with new arriving 

colonizers, they are forming a syngameon, a group of hybridizing species that evolve like 

one joint group of organisms [3, 14]. The islands closer to the mainland constitute 

therefore recipient islands for colonists and genetic diversity (allelic sinks, [3]). Hereby, 

genetic diversity is created by recombination between these colonists. When the 

remaining archipelago is colonized, colonizers are likely to stem from these allelic sinks. 

The high genetic diversity resulting from the allelic sink effect might facilitate the 

establishment on the remaining islands by provision of suitable genotypes. Single 

lineages can then establish in different islands and form the base for future species 

diversity. Effectively, this allows to hypothesize a reduction of genetic diversity in a 

stepping stone model in the course of the range expansion and the colonization of other 

islands [59]. Therefore, the surfing syngameon hypothesis [3] allows that genetic 

diversity decreases with colonization steps, something that had been shown in several 

examples [13], and also after comparison between mainland and island taxa [60]. In this 

scenario, the syngameon is maintained in the islands by receiving gene-flow as an 

ongoing process from the mainland. Because this will prevent genetic differentiation, it 

can be expected that among populations, differentiation will increase during colonization. 

The hypothesis had been outlined for the Canary Islands where island age decreases 
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with the distance to the mainland (east to west). This should amplify this effect [3], and 

not only genetic diversity should be higher, but also genetic differentiation lower in older 

islands. 

Our data supports rather a scenario where the younger islands receive a 

significant amount of genetic diversity and differentiation is lower than expected when 

considering the surfing syngameon hypothesis. The existence of gene-flow within and 

between islands may explain this pattern, where high levels of admixture increase 

genetic diversity and can ultimately have an adaptive effect. Here, we see that both 

distance to the source of colonization and time have an effect on diversity. Within 

populations, genetic diversity was higher in younger islands, while genetic differentiation 

was always significantly higher for older islands. This might be explained by the following 

mechanism: in younger islands the colonization process is still ongoing, so they contain 

a low number of taxa that may not have yet occupied all niches available, making them 

represented by a lower number of populations and individuals. Colonization might have 

here a higher impact on the genepool of already established populations. In older islands, 

taxa had time to expand and are now represented by higher number of populations, 

individuals, and species. Thus gene-flow into these islands might have a lower effect and 

does not contribute much to changes on the genepool of established populations. 

Therefore, colonizers should have a lower effect preventing population differentiation on 

the older islands, and also a lower effect of increasing within-population diversity. This 

scenario would correspond to models explaining biodiversity as species richness by 

Chen and He [61]. The model shows that, at some point, immigration would have less 

impact in the appearance of new species and speciation events become the main source 

of new biodiversity.  

The surfing syngameon hypothesis implies that the sink populations in a source 

sink dynamics can have a genetic accumulative nature by maintaining their connection 

to their source through gene-flow. We can apply these assumptions to explain our results 

by presenting a scenario of inter-island colonization with continuous gene-flow. After 

emergence of an island, individuals that can hybridize, colonize it outgoing from different 

sources. In this case the syngameon expands with the appearance of new islands and 

prevents the loss of genetic diversity at the colonization front by buffering founder effects. 

In the Canary Islands this has an east-west direction. With the syngameon expansion 

populations in old islands might become isolated, speciate, and thus become 

disconnected with increasing reproductive isolation. This dynamics is similar to the model 

of species range shifts: in the expansion front, new populations have a high connectivity 

to the source, and thus they receive higher amounts of gene-flow, but between 

populations differentiation is low, while the rear relict populations become increasingly 
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isolated showing low within and high between population differentiation [62]. In the 

present study, both genetic diversity and gene-flow results support the syngameon 

expansion. Within populations, genetic diversity is increased on young islands while 

between-population diversity decreases independently of the dataset used. The central 

islands (Tenerife and Gran Canaria) are the only sources of historical migration while 

contemporary migration is originated from western islands like El Hierro. In Micromeria, 

the syngameon is therefore not only expanding and shifting, but it is continuously being 

recreated at the colonization edge, which might hereby increase the potential for ecologic 

speciation at the expansion front.  

 

Phylogeographic implications and conclusions 

We chose to use microsatellites, which are mostly used at the intraspecific level. 

Nevertheless, these have successfully been used to evaluate species boundaries and 

test hypothesis related with species concept [63, 64] supporting our approach. 

The genetic structure found in the present study was mostly congruent with 

previous phylogenetic studies. All species described in Tenerife had already been 

supported with microsatellite data [25]. At the present study, we were able to do the same 

for most of the remaining Micromeria species, supporting the last Micromeria species 

delimitation from Puppo & Meimberg [28, 29]. STRUCTURE was able to define unique 

clusters for most species at K=19. With exception of M. gomerensis and M. mahanensis, 

all remaining species were differentiated in the analyses containing only individuals from 

the eastern and western groups. Micromeria gomerensis and M. mahanensis were 

separated when EPIC nuclear markers were used [31] so this pattern may be a 

consequence of characteristics intrinsic to microsatellites’ nature. These markers are 

mostly neutral [65] making them more affected by introgression [66]. In fact, we found a 

high migration rate between these two species supporting this explanation. 

Structure patterns were congruent with the colonization paths described for 

Micromeria in previous work [31] (Puppo et al. 2015a). We found a first division between 

the species from the eastern and western groups. Within these groups, species from the 

other islands share clusters with Tenerife and Gran Canaria. This supports the findings 

of Puppo et al. [25] where these central islands were reported to play an important role 

in the diversification and dispersal of Micromeria. Further divisions in the structure 

analyses together with the PCoA and distance dendrogram results allowed us to access 

more detailed diversification and colonization patterns. The data supported a 

colonization of the remaining western islands by the palaeo-islands, in case of La Palma 

and La Gomera from the Teno region. In both STRUCTURE and distance dendrogram 

the eastern species previously classified as M. varia grouped together. In Puppo et al. 
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[25] a similar pattern was found which indicates a common origin for these species. 

The results support the existence of three lineages with independent origins in 

La Gomera: M. pedro-luisii originated from Tenerife; M. gomerensis originated from an 

eastern M. varia s.l. ancestor; and M. lepida with uncertain origin. Micromeria lepida 

showed high assignment to both eastern and western groups depending on the method 

used. The STRUCTURE analyses clustered it with Gran Canaria for some values of K. 

In the PCoA it grouped together with M. pedro-luisii (La Gomera), M. herpyllomorpha (La 

Palma), and M. densiflora (Tenerife). We found evidences of gene-flow between M. 

lepida and M. densiflora and in lower amount with M. pedro-luisii. In the previous 

phylogenetic analyses, this species shared a clade with Gran Canaria species supporting 

an origin from this island [31]. So the incongruences found can be a consequence of high 

introgression with species from the western group. 

Like described before, we found multiple origins for the species previously 

classified as M. varia. This result raises questions related with how this morphology is 

maintained and if this is a consequence of multiple colonization dynamics described 

here. Further research is currently being developed in our lab where hypothesis 

concerning this observation are outlined and tested. 

This was the first time neutral genetic variation was studied for Micromeria across 

the Canarian archipelago. All our results are congruent with the existence of syngameons 

that may facilitate colonization and speciation in oceanic islands. These seem to expand 

and shift in accordance with a range expansion scenario. Island colonizations have many 

parallelisms with other evolutionary processes, and theoretically the model proposed 

here could be applied to scenarios where a range expansion is accompanied by adaptive 

speciation. We showed how genetic diversity is affected by gene-flow and hybridization, 

but we do not assess its adaptive implications. To do so, genomic approaches where 

both coding and non-coding variation is compared with ecological and morphological 

features might successfully be implemented. 
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Abstract 

Some of the endemics of Micromeria from the Canary Islands are morphologically 

very similar, so they had been previously recognized as one species, M. varia s.l., with 

different subspecies described in each island. Ecological requirements of these units are 

very diverse, making them a good model to investigate niche shifts and adaptation. 

Previous molecular studies have failed to reconstruct their phylogenetic relationship 

presumably due to introgression or incomplete lineage sorting. In the present study, we 

develop a RAD-sequencing variant with which we recovered 3571 loci genotyped for a 

total of 45 individuals from Micromeria in order to improve phylogenetic resolution and 

better understand the relationship among these taxa.  

RAD-sequencing data produced a highly resolved phylogenetic tree where all M. 

varia species corresponded to independent units for each species confirming the latest 

species reclassification. This allowed to uncover patterns among some of the species 

that were missed in previous studies. More specifically, we found a close phylogenetic 

relationship between taxa occupying similar ecological conditions in different islands, 

exemplified by the taxa from the laurel forest from La Gomera and Gran Canaria. We 

hypothesize that either the laurel forest worked as a filter and only allowed the 

establishment of colonizers already pre-adapted to these conditions, or the genes that 

facilitated the adaptation to laurel forest were exchanged through introgression from 

Gran Canaria to La Gomera or vice versa. The observations obtained in this study can 

serve as bases for research where potential adaptive related genetic variation is 

compared to phylogeographic patterns, which will ultimately result in a more 

comprehensive view of the radiation processes in oceanic islands. We also present a 
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brief discussion concerning possible biases associated with RAD-sequencing methods 

when applied to phylogenetic studies. 

 

Keywords: Phylogenomics, oceanic islands, Micromeria, niche conservatism, adaptive 

radiation. 

 

Introduction 

Oceanic islands typically harbor a high number of endemic species which can 

occur either as single island endemics or as archipelago endemics occurring in multiple 

islands. The latter usually present some degree of niche conservatism, meaning that the 

taxa occupy the same ecological conditions in different islands (Francisco-Ortega et al., 

1996) and may or not be connected by continuous genetic exchange. However, in some 

cases, such species can occupy different islands’ niches and thus constitute examples 

of niche shift, i.e. the change of the ecological niche during differentiation and 

colonization (Kim et al., 1996; Francisco-Ortega et al. 1996). In the genus Micromeria, 

M. varia sensu Pérez de Paz 1978 (hereafter M. varia s. l.), represents a taxon, with an 

archipelago-wide distribution on the Canary Islands and associated to a wide variety of 

habitats (Pérez de Paz 1978). Based on recent phylogenetic results (Puppo et al., 2015) 

and morphological variation M. varia was separated in several species, all but one (M. 

mahanensis), single island endemics (Puppo and Meimberg 2015 a, b; Fig. 1); however, 

the morphological similarities might be a consequence of adaptation to similar ecological 

zones in the different islands. In the present study we reconstruct in detail the 

phylogenetic relationships of M. varia s. l. using a RAD-sequencing variant in order to 

further support this hypothesis as well as to explore the mechanisms behind this process.  

The genus Micromeria Benth. (Lamiaceae) distributed in Asia, all Mediterranean 

basin, Macaronesia, and some regions of Africa and Asia with approximately 54 species 

(Bräuchler et al., 2008). In the Canary Island it has a center of diversity with 21 single 

island endemic species (Pérez de Paz 1978; Puppo and Meimberg 2015a, b). 

Micromeria varia s.l. is hereby treated as 6 several independent species, The central 

islands, Gran Canaria and Tenerife, are the most diverse with eight and seven species 

respectively, while the remaining islands have three (La Gomera) or one species each 

(Fig. 1). The Canary archipelago was formed by a hotspot movement from east to west, 

resulting on islands with an age gradient in the same direction. The islands have different 

altitudinal gradients depending on their age (Fernández-Palacios et al., 2011), and 

harbor a range of ecological zones from costal desert, passing through laurel forest, to 

sub-alpine desert (Juan et al., 2000). Most Micromeria species distribution is associated 

with these ecological zones indicating that most of the diversity found in the Canary 
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Islands arose through adaptive radiation (Meimberg et al., 2006; Puppo et al., 2014, 

2015a). Similar morphological traits might occur in taxa in different islands in 

consequence to similar ecological zones.  

 

Fig. 1. Up: Map of the Canary Islands showing the distribution of the species of Micromeria present in the Canary Islands. 

Down: species classification according to both Pérez de Paz 1978 (1978) and Puppo and Meimberg (2015 a, 2015b) 

indicating to which lineage (east or west) each species is assigned to according to molecular studies. Species showing 

the M. varia phenotype are indicated in bold. 

 

Micromeria in the Canary Islands is considered to be monophyletic and divided 

in two major lineages (Puppo et al., 2015a; Fig. 1): one composed by the eastern islands 

of Lanzarote, Fuerteventura, and Gran Canaria, and the other by the western islands of 

Tenerife, La Palma and El Hierro. Two taxa from La Gomera (M. gomerensis and M. 

lepida) belong to the eastern clade while the third taxon, M. pedro-luisii, belongs to the 

western lineage. Gran Canaria and Tenerife are paraphyletic relatively to the remaining 

islands and, with exception of La Gomera, all taxa from the other islands are 

monophyletic. Puppo et al. (2014, 2015a, 2016) showed that Micromeria diversification 

pattern was highly congruent with the Canary Island’s geological history. Puppo et al. 

(2016) and Curto et al. (sub.) found that interspecific gene-flow is frequent in Micromeria, 

especially among species from the same island. In these studies, the authors suggested 

that, when a new island emerges, each island works as an allelic sink due to the 

combination, through hybridization, of lineages coming from different sources. This 

process results in the maintenance of high genetic diversity during colonization, 

increasing the likelihood of adaptive radiation events and providing opportunities for 

adaptive introgression (Caujapé-Castells 2011). Furthermore, the high frequency of 
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hybridization events might have also had an impact in the phylogenetic signal of previous 

studies, suggesting the use of phylogenomic approaches. 

No genomic information is available for Micromeria so parallel sequencing of the 

complete genome is not feasible to date. Instead, a reduced representation sequencing 

technique was used allowing the screening of thousands of loci across the genome 

without the need of previous genetic information (Cronn et al., 2012). The most common 

approach uses restriction enzymes to reduce genome complexity (i.e. Baird et al., 2008; 

Elshire et al., 2011; Peterson et al., 2012; Poland et al., 2012). This results in a new class 

of markers where the regions associated with enzymatic cleavage are sequenced. Baird 

et al. (2008) were the first to introduce this principle calling the marker type RAD 

(Restriction Associated DNA). Variations of this method were presented, all of them 

having in common: the use of a restriction enzyme, selection of fragments with the 

appropriate size, and the ligation of adapters specific to a sequencing platform (Andrews 

et al., 2016). In the present study we developed a new RAD-sequencing variant where 

only one restriction enzyme is used and a size selection is made through agarose gel 

electrophoresis, reducing the number of fragments in a way that the Illumina MiSeq could 

be used for sequencing and also decreasing costs. In this variant, individuals are 

identified by adding both barcodes and indexes through adapter ligation and PCR, 

respectively. Because the Illumina platform is being used, it is necessary to add different 

adaptors in opposite ends of each fragment. For this, an adapter containing partly 

complementary oligonucleotides, commonly called Y-adapter, was added.  

In the present study, we use a RAD-sequencing variant in order to recover a 

better resolved phylogeny of Micromeria in the Canary Islands. Since RAD-sequencing 

allows assessing thousands of loci across the genome from both coding and non-coding 

regions, we expect to obtain a more comprehensive view of the evolutionary history of 

this group. Particularly, we aim to solve some of the ambiguous relationships among the 

species of the M. varia species complex and test our hypothesis that the morphological 

similarities found among its taxa result from adaptation to similar ecological zones. The 

RAD-sequencing variant method here developed is also described in detail below.  

 

Materials and methods 

Samples used and DNA isolation 

Most samples used belong to species previously classified as M. varia 

(Supplementary Table S1). If present, at least one population per species per island was 

included. Some individuals were used in previous studies (Curto et al., 2012; Puppo et 

al., 2014, 2015a, b, 2016) while the remaining ones were sampled in the same 

excursions described in these publications. DNA isolation was done using the 
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NucleoSpin® Plant kit from Macherey-Nagel's (Düren, Germany) applying the 

manufacturer’s recommendations for dried leaf material. DNA quality and quantity was 

evaluated through agarose gel electrophoresis in a comparative way. Samples were 

classified according to their DNA quality as: High (high amount of intact DNA); Medium 

(medium amount of intact DNA); Low (low amount of intact DNA); and smeared 

(fragmented DNA). Only samples with some visible DNA content were used in the next 

steps resulting in a total of 93 initial samples representing 25 populations and 11 species 

(Supplementary Table S1). 

 

Method overview 

With our approach we intended to reduce genome’s complexity allowing 

sequencing a higher number of samples. This was obtained by using a rare cutter as 

restriction enzyme (EcoRI) and by selecting fragments of a certain size range through 

gel electrophoreses. We reduced the initial investment in primers and adaptors by using 

a combination of barcodes and indexes as molecular identifiers. Barcodes appear in the 

beginning of each read while Indexes are read directly by the Illumina machine. The 

addition of Illumina’s P5 and P7 was possible by the ligation of a Y-adaptor. This is an 

adaptor where only part of its length is overlapping, and in our case contained the 

barcode information as well. One of the oligonucleotides present in this adapter serves 

as template for index primers containing the P5 and P7 flow cell binding motifs. These 

primers also contain the Index information. This method is divided in four steps and is 

summarized in Fig. 2: 1) DNA digestion with EcoRI and ligation of Y adaptor containing 

the barcode; 2) Multiplex of samples with different barcodes and first size selection in gel 

electrophoreses; 3) Two step PCR where Indexes are added; and 4) Multiplex of 

samples with different Indexes and second size selection electrophoreses to select the 

target size range and exclude excess primers. Details about each of these steps are 

described below. All adapters and primers information is available in the Supplementary 

Table S2. 

 

Step 1: DNA digestion and Y-adaptor ligation 

The Y adapter was obtained by combining 2 nmol of each oligonucleotide in 50 

µL of a Tris-HCl 8 µM solution and incubated in the following temperature scheme: initial 

incubation at 97 °C for 2 minutes followed by a gradual decrease of temperature of 1 °C 

every 30 second until 25 °C where it incubated for an additional 5 minutes. As explained 

before the non-overlapping part is used to add the flow cell specific elements to the final 

fragment. The overlapping part is composed, from 5’ to 3’ by Illumina sequencing primer 

annealing motif, a 5 bp barcode and a sequence overhang (TTAA) in the P7 
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oligonucleotide that allows the ligation to the fragments digested with EcoRI. Restriction 

enzyme digestion and adaptor ligation were done in the same reaction tube containing 

10 µL of DNA, 20 unities of EcoRI (New England Biolabs, Ipswich, Massachusetts, USA), 

3.5 unities of T4 DNA (Promega, Fitchburg, Wisconsin, United States), 2 µg of BSA 

(Promega), 20 pmol of ATP, 0.4 pmol of Y-adapter, 2 µL of each 10X T4 and EcoRI 

buffers, and water for a total volume of 40 µL. The reaction was performed at 37 °C for 

8 hours followed by an enzymatic inactivation period of 65 °C for 20 minutes. 

 

Step 2: First multiplex and size selection 

Nine samples with similar DNA quality category (see “Samples used and DNA 

isolation”) were combined to prevent the over representation of any individual in one 

multiplex library. To make gel loading possible, a total of 40 µL from each multiplex was 

concentrated into final volumes of 15 µL using the NucleoSpin Gel and PCR Clean-up 

Kit from Macherey-Nagel. Size selection was performed by running the samples in a 

1.5% TAE agarose gel and regions ranging from 200 bp to 650 bp were extracted. DNA 

was purified from the gel using the same Macherey-Nagel kit following manufacturer’s 

recommendations. 

 

Step 3: Two-step PCR for Index addition 

This step was divided in two PCR reactions using a total of three primer pairs. 

The first PCR was done with the sequencing primers to create motifs complementary to 

the Index primers and to increase the amount of template. In the second PCR, indexes 

and flow-cell ligation motifs were added by using the Index and Amplification primers. 

The latter primers were used to enrich fragments containing index information and were 

composed by the last 25 and 24 bases of the P5 and P7 Index primers. Two independent 

PCRs with different index combinations were performed for each sample to randomize 

the effects of index sequence content (Supplementary Table S1). The first PCR was 

conducted in a 12.5 µL reaction containing 0.8 pmol of each primer, 3.5 µL of Qiagen’s 

Multiplex PCR kit (Qiagen, Venlo, Netherlands), and 1 µL of DNA template. The second 

PCR was performed in a 25 µL solution with 0.08 pmol of each Index-primer, 0.8 pmol 

of each amplification primer, 8 µL of Qiagen’s Multiplex PCR mastermix, and 1 µL of the 

product of the previous PCR diluted 1:10. Both PCR reactions were made with the 

following temperature conditions: Initial denaturation at 95 °C for 15 minutes; 35 cycles 

of denaturation at 95 °C for 30 seconds, annealing at 57 °C for 30 seconds, and 

extension at 72 °C for one minute followed by a final extension at 72 °C for 10 minutes. 
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Fig. 2. Schematic summary of the RAD-sequencing library preparation method developed applied in the current study. 

This was divided into four steps, further details of which can be found in the text beside each figure section. 

 

Step 4: Second multiplex and size selection 

Index multiplex solution was obtained by mixing 10 µL of each Index PCR 

reaction. This solution was then run in a 1.5% agarose TAE gel and regions between 

300 bp and 650 bp were collected for gel extraction. This last DNA purification step was 
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performed by the NucleoSpin Gel and PCR Clean-up Kit from Macherey-Nagel following 

the manufactures recommendations.  

 

Library quality assessment and sequencing 

Library quality was evaluated by measuring its DNA concentration in a Qubit® 

DNA assay (Life Technologies, Carlsbad, USA); the length profile was assessed in a 

Agilent 2100 Bioanalyzer machine (Santa Clara, USA). Illumina paired-end sequencing 

was performed in a 600 cycles (300 in each direction) Illumina MiSeq run (Illumina, San 

Diego, California, USA). Library quality control and sequencing was done as a service in 

the Genomics Service Unit from Ludwig-Maximilians-University (Munich, Germany).  

 

Sequence analyses 

Sequence quality was evaluated with the program FastQC v. 0.10.1 (Andrews 

2010). Regions containing low quality bases and adaptor’s sequences in the 3’ end were 

removed by the program Cutadapt v. 1.5 (Martin 2011). Cutadapt trimmed low quality 

regions with an average Phred quality below 20. Adapter trimming was done by looking 

for matches with the Illumina adaptors and removing it together with the 3’ down 

streaming sequence. Only matches of at least 20 bp with a maximum mismatch of 15% 

were considered. In addition, only paired reads larger than 70 bp were kept. 

We merged paired reads using the program PEAR v. 0.9.4 (Zhang et al., 2014). 

Only minimum overlaps of 15 bp with a p-value below 0.01 for the highest observed 

expected alignment scores (OESs) were taken. Reads that did not overlap were put 

together in the same sequence with four “n” characters separating them. We used a 

custom python script to separate the reads according to their barcode (Supplementary 

Table S2). The script searches for barcode and restriction site motifs in both sequence 

ends only keeping sequences with these motifs in the expected position. The barcodes 

were cut off so the output sequences start and end with the restriction enzyme binding 

motif. A maximum allowed mismatch of two was applied for both restriction motifs and 

barcodes. Because the barcodes AGCAT and ATCAT only differ in one bp we did not 

allow any mismatch while searching them. 

PyRAD v. 3.0.63 (Eaton 2014) was used to assemble RAD loci and find homology 

among samples. This was done in two clustering steps. In the first one reads were 

clustered within the same individual with a similarity above 88 % into potential loci. In the 

second, the loci defined for each individual were compared among samples and put 

together into alignments if they had a similarity above 85 %. With our approach each 

paired read is sequenced from both directions making it necessary to consider its reverse 

complement while clustering. This was done by implementing the GBS clustering method 
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available in PyRAD. Only loci with a minimum depth of 10 reads and with heterozygosity 

below 0.5 were considered. 

The resulting loci were blasted against themselves to look for the presence of 

paralogs. This was done with Blastn v. 2.2.28 (Camacho et al., 2009); only hits with at 

least 50% overlap of the total length of the respective sequences, and a minimum 

similarity of 85% (the threshold used for clustering among samples) were considered. 

Loci showing significant hits with other loci were excluded from further analyses. The 

data obtained was then filtered in two steps. First, we excluded individuals with missing 

data above 95%, and second, all loci with missing data above a certain threshold were 

excluded. Because we wanted to test the influence of missing data in our final results, 

two threshold values were used, 90% and 50%, resulting in two final datasets. 

 

Phylogenetic analyses 

Phylogenetic relationships were assessed using a Bayesian analyses with the 

program Mr.Bayes v. 3.1.2 (Ronquist and Huelsenbeck, 2003). Since we genotyped a 

high number of loci from all over the genome with distinct evolutionary histories, we 

implemented the most complex model in the Bayesian analyses (GTR+G+I). Analyses 

were done with two independent runs containing four chains each and saving trees every 

1000th generation. We ran Mr.Bayes until all parameters reached an effective sample 

size of 100. This was assessed in Tracer v. 1.6 (http://tree.bio.ed.ac.uk/software/tracer/) 

as was the appropriate burnin value. The program ran for 2,000,000 generations from 

which the first 25% were excluded.  

We assessed tree resolution by estimating the percentage of node with posterior 

probability above 0.7 when compared with the maximum number of possible nodes. A 

tree with N terminal branches can have a maximum number of internal nodes equal to 

N-1.  

 

Results 

 

Sequence analysis 

The MiSeq run resulted in a total of 15,923,850 paired reads from which 

8,892,248 passed the quality control step. From those 8,673,421 (97%) overlapped 

creating sequences with a size range from 70 bp to 592 bp. A total of 4,915,911 

sequences had barcodes and restriction enzymes cutting motifs in the correct position. 

The number of sequence per individuals ranged from 462 for GCle_501 (M. leucantha 

from Gran Canaria) to 250,173 for GCv_457 (M. canariensis from Gran Canaria) 

(Supplementary Table S1). PyRAD recovered 6403 loci from which 242 were excluded 

http://tree.bio.ed.ac.uk/software/tracer/
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because they showed several hits on the blast search. These corresponded to 154 loci 

that may have several copies in the genome. The number of loci per individual varied 

between 1 and 3021, while the individual with the least number of loci from the 45 

samples kept had 200 loci (Supplementary Table S1). All taxa showing the M. varia 

phenotype from both eastern and western lineages were kept. After filtering loci 

according to missing data, 3571 loci were kept in the 90% missing data matrix and 104 

on the 50% missing data matrix. As shown in Table 1 the matrix containing more missing 

data was larger and it contained more variable and informative positions.  

 

Table 1. Alignment information content from the two missing data extractions including: number of loci used in the 

alignment; number of total, variable and informative characters, and portion of branches with a posterior probability above 

0.7. 

Missing 
data 

Nr. 
loci 

Nr. 
characters 

Variable 
characters 

Informative 
characters 

Portion of supported branches 

Complete 
tree 

Eastern 
lineage 

Western 
lineage 

90% 3571 653083 18199 7449 87% 97% 60% 

50% 104 20671 558 286 44% 47% 40% 

 

Phylogenetic analysis 

We tested the effect of missing data and lineage content on tree resolution. This 

was measured by assessing which percentage of the maximum number of possible 

nodes had a support above 70%. Higher missing data resulted in more supported nodes 

for all lineages (Table 1). The eastern clade was more resolved than the western one in 

both datasets although this difference is not as pronounced in the 50% missing data 

matrix (Table 1). Both trees showed a division between the eastern and western 

Micromeria lineages with the same species content described in previous phylogenetic 

analyses (Puppo et al., 2014, 2015a). Given its higher degree of resolution, only the 90% 

missing data tree is being included (Fig. 3). The other can be found in supplementary 

material (Fig. S1). 

In the eastern lineage, for both analyses, all taxa of M. varia s. l. created a 

monophyletic group. However, only the 90% missing data matrix was resolved enough 

to recover informative phylogenetic relationships within this group. The eastern species 

of M. varia s. l. were divided into four lineages (Fig. 3): M. mahanensis from Lanzarote, 

which is in a neighbor group position relatively to the remaining taxa; M. gomerensis from 

La Gomera and M. canariensis from Gran Canaria, which is paraphyletic since the 

individuals from the laurel forest in Gran Canaria are closer to M. gomerensis than to the 

remaining M. canariensis and form a group with M. gomerensis (Fig. 3). The relationships 

of the remaining species from the eastern group are as follows: M. benthamii is sister to 

the M. varia clade followed by a clade composed of one M. gomerensis individual and 
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one sample of hybrid morphology (M. lepida x M. pedro-luisii). Micromeria 

helianthemifolia appears at the base of the eastern lineage. 

 

Fig. 3. Mr.Bayes tree calculated with the dataset including only loci with a maximum missing data of 90%. Bars in the 

nodes correspond to posterior probability values >90. 
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In the western group, La Palma and La Gomera samples form single clades. Most 

M. varia s. s., the species from Tenerife, form a group sister to La Gomera, except for 

one individual which appears unresolved to western lineage. Micromeria lasiophylla is 

the neighbor group to the remaining taxa with M. hyssopifolia forming a polytomy with La 

Palma and La Gomera-M. varia s.s. clades. The maximum 50% missing data matrix 

showed a similar pattern but M. hyssopifolia grouped with M. lasiophylla. 

 

Discussion 

Improvement of Micromeria phylogeny 

The phylogeny obtained in the present study was mostly congruent with previous 

studies for Micromeria from the Canary Islands (Puppo et al., 2015a), and as expected, 

we were able to obtain a more detailed phylogenetic pattern with our RAD approach. 

Particularly, each one of the species previously classified as M. varia constituted 

independent entities. This result is in agreement with the most recent classification of 

these species made by Puppo & Meimberg (2015a, b). Solely based on morphological 

data, Pérez de Paz (1978) recognized different subspecies within M. varia, roughly one 

per island. The reevaluation of these morphological differences led to its reclassification 

and was indicated by microsatellite data. The results of the present phylogeny further 

support the recognition of one lineage per island. 

The higher resolution obtained in the present phylogeny is probably related with 

the number and type of loci analyzed. Previous studies used codominant information 

from two (Meimberg et al., 2006) to 15 loci (Puppo et al., 2016; Curto et al., sub.) thus 

using only a small portion of the genome for phylogenetic inference. Molecular 

phylogenetic analyses using a low amount of loci are more likely to be affected by 

incomplete lineage sorting and hybridization (Rokas et al., 2003) resulting in patterns 

that do not reflect species divergence history. Lineage sorting signal is random, so when 

a genomic dataset is used (thousands of loci spread throughout the genome) its signal 

should be canceled out (Green et al., 2010; Durand et al., 2011). Hybridization is not 

random so its signal persists (Linder and Reiseberg 2004) and depending on how strong 

it is, it can still affect the overall phylogeny even when a high number of loci are used. 

Increasing the number of loci alone may not be always the solution for ambiguous 

phylogenetic relationships. Philippe et al. (2011) stressed that in phylogenomic datasets 

erroneous phylogenetic signal such as the one originated from incorrect identification of 

orthologues, wrong alignments, and incorrect variant call can be more predominant. 

These cannot be overcame by increasing the number of loci but by improving the 

methodological approaches. In our case we used the PyRAD pipeline because it was 

developed with the purpose of processing RAD data for phylogenic analyses of closely 
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related species (Eaton 2014), avoiding many of these errors. This pipeline is able to deal 

with insertions and deletions more efficiently than other methods which allows the 

recovery of more trustworthy comparisons among species (Eaton 2014). By combining 

this approach with paired-end 300 bp reads we analyzed longer RAD loci (up to 592 bp) 

which contain more phylogenetic information than using a single SNP per restriction site.  

 

Micromeria varia evolution 

As in all previous phylogenies, our results show Micromeria is divided into two 

lineages, East and West. Also in agreement with previous studies (Puppo et al., 2015a) 

species previously classified as M. varia from the eastern lineage show a common origin. 

With exception of one individual from M. varia s. s. (Tenerife) both species previously 

classified as M. varia (M. pedro-luisii from La Gomera and M. varia s. s. from Tenerife) 

group together. It is the first time this pattern is recovered. It was not possible to include 

a comprehensive sampling for the western lineage so it is not possible to draw further 

conclusions on those species at this time.  

Also, and in contrast to what was previously described, M. varia individuals from 

the two main Tenerife populations (Anaga and Teno) create a monophyletic group. Both 

microsatellites and nuclear sequencing data showed two independent lineages for these 

regions (Puppo et al., 2014, 2016). In these previous studies the authors suggested this 

was a consequence of introgression with other species present in the island. Since we 

are using a multilocus dataset, the patterns obtained here are a consequence of the sum 

of the phylogenetic signal from each individual locus. The comparison of the 

microsatellite and RAD dataset indicate therefore, that even if many loci can show a 

deviating pattern probably because of gene-flow with other species (Puppo et al., 2016), 

the majority support a common origin of both M. varia s.s. populations.  

 

Niche conservatism between islands 

Our results showed M. canariensis, endemic to Gran Canaria, as paraphyletic to 

M. gomerensis from La Gomera. This results from a lineage in M. canariensis consisting 

of the individuals from the Laurel forest remain at the northern part of Gran Canaria, 

which created an independent clade that is neighbor group to M. gomerensis. This result 

suggests that M. canariensis from Gran Canaria contributed for the colonization of La 

Gomera resulting in the divergence of M. gomerensis (Puppo et al., 2015a). However, 

the role of the laurel forest populations in this event was not yet explored. Based on our 

results three possible scenarios can be outlined. First, M. gomerensis originated from M. 

canariensis from the laurel forest that colonized La Gomera. Second, the close 

relatedness of M. gomerensis and M. canariensis from the laurel forest is a consequence 
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of high introgression between them. Finally, this introgression may have an adaptive 

value and it introduced characters that contributed for the adaptation of M. gomerensis 

to the laurel forest. 

The scenario of a unique origin of M. gomerensis from Gran Canaria laurel forest 

individuals would be congruent with the existence of strong ecological filters during the 

colonization of an island. The laurel forest is very common in La Gomera and most of M. 

gomerensis is distributed in this habitat. So, the close relatedness of these taxa may be 

related with adaptations to the laurel forest conditions resulting in niche conservation 

between two related species from different islands. A similar pattern has been observed 

for other plant taxa from the Canary Islands (Francisco-Ortega et al., 1996; Francisco-

Ortega et al., 2000; Barber et al., 2000). This would imply that M. gomerensis only 

differentiated after M. canariensis became adapted to the laurel forest, which would 

make this lineage one of the youngest in the archipelago. In addition this implies that 

adaptation to laurel forest conditions took place in Gran Canaria where M. canariensis 

grows in a wide range of habitats from semi-arid areas in the south to very humid areas 

in the north. In congruence with this hypothesis is the observation that in all the 

phylogenies obtained so far the species of M. varia s. l. are relatively recent lineages 

(Puppo et al., 2014, 2015a).  

It is possible that introgression between Gran Canaria and La Gomera would 

have contributed to the intermediate position of the laurel forest population relatively to 

these two islands. As mentioned above, in a parallel study we found that multiple 

colonization events contributed to the establishment of taxa connected by gene-flow, 

being this observed even between islands (Curto et al., sub.). This would create an 

accumulative effect where a large part of the M. gomerensis genome would contain 

alleles of Gran Canaria origin. Since we are using a multi-locus approach the phylogeny 

represents the average signal across the genome and if introgression is high enough this 

signal may be more prominent than the one originated from cladogenesis events. This 

idea uses the same premises from Philippe et al. (2011) where despite using whole 

genome data contradictory signal originated from artifacts can still affect the final 

outcome. The same would be expected for introgression.  

Gene-flow from Gran Canaria may have contributed to the inclusion of genes that 

facilitated the adaptation of M. gomerensis populations into the laurel forest. This same 

mechanism may be behind ecological shifts or expansion of other Micromeria species. 

In our focus group it can explain the distribution of M. canariensis, which undergone an 

ecological expansion either from arid to humid parts areas or vice-versa. In this case 

introgression with other taxa from Gran Canaria may have promoted this process. 

Alternatively, it is possible that introgression did not have an adaptive nature and 



 

173 FCUP 
Chapter 4: Distribution of adaptive traits during adaptive radiation. 

introgression is only allowed among similar ecological zones. The transmission of 

advantageous traits through introgression has already been described in several taxa 

(Lexer et al., 2003; Brothers et al., 2013; Arnold 2006, 2015). In oceanic islands 

hybridization was already suggested to be an important process in increasing taxa 

adaptive ability (Saunders and Gibson 2005; Caujapé-Castells 2011). In the case of 

Micromeria, a parallel study showed that hybridization and multiple colonization events 

contributed to the maintenance of a high genetic diversity during Micromeria inter-island 

colonization (Curto et al., sub.). The transmission of adaptive traits may be another 

consequence of this process. Further testing estimating the degree of introgression 

between species is underway and will be necessary to confirm this hypothesis. 

 

Biases related to the use of RAD-sequencing for phylogenetic inference 

Different molecular marker systems have been used to study evolutionary 

processes in Micromeria (Curto et al., 2012; Puppo et al., 2015b), and applied, both 

archipelago-wide (Puppo et al., 2015a; Curto et al., sub.) and island-specific (Puppo et 

al., 2014; 2016). This allows to compare the RAD method with other methods. Each 

method has its characteristics that result in different degrees of suitability to phylogenetic 

or population genetics analyses. Unlike the classical methods RAD characteristics are 

still not fully understood (Hodel et al., 2016). This is especially related with: how recent 

the method is, the requirement of bioinformatics skills to analyses this type of data, and 

the comparable high amount of missing data in a RAD dataset compared to other 

methods. 

Our results showed that the exclusion of loci with high missing data results in the 

loss of phylogenetic information. By using a more stringent approach we are selecting 

for loci that are more similar among all lineages and thus more conserved. Indirectly, this 

will also result in the selection of regions that are more likely to contribute for 

introgression. Hence the difference between both analyses. This was also the 

explanation given to justify the lower genetic differentiation detected among species of 

Ancistrocladus and Micromeria when microsatellites were used (Turini et al., 2014; 

Puppo et al., 2016). 

An uneven distribution of loci across individuals can create biases when they are 

excluded according to missing data. Huang and Knowles (2014) showed that, in 

divergent lineages, mutations in restriction enzyme recognition site result in a non-

random representation of loci across lineages. Which, by excluding loci according to 

missing data, results in loci only present in one or the other lineage. In our case, we have 

more individuals belonging to the eastern lineage resulting in higher probability of 

excluding loci only present in the western lineage. Simulation analyses showed that high 
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missing data has little effect in phylogenetic accuracy. (Rubin et al., 2012; Huang and 

Knowles 2014). Rubin et al. (2012), showed that an uneven distribution of informative 

characters across taxa is more likely to result in a misleading phylogeny than missing 

data per locus. So an approach as implemented in this study where data is filtered 

according to missing data per sample rather per loci is more likely to result in better 

resolved and accurate phylogenetic analyses. 

 

Conclusions and outlook 

In the present study we demonstrated that our RAD method is an additional 

option for phylogenetic analyses using genomic data. RAD-sequencing allows the 

screening of both coding and non-coding regions throughout the genome recovering a 

more comprehensive phylogenetic signal. However, there are some biases associated 

with this method by excluding data according to missing data thus complementary 

approaches can be used. Amplicon sequencing using NGS platforms is widely used for 

barcoding and metagenomics projects (i.e. Fierer et al., 2012; Shokralla et al., 2015; 

Mata et al., 2016) but it can also be applied for phylogenetic analyses. An example of 

this was the sequencing of the complete mitochondria for eastern Africa white eye birds 

(Zostesterops; Meimberg et al., 2016), where a highly resolved phylogenetic signal was 

obtained.  

By evaluating the degree and nature of introgression among and within islands 

we could test all the hypothesis outlined above in order to find if local adaptation of M. 

varia to different island environments was influenced by introgression from other taxa. 

More specifically in La Gomera we will know if the adaptation to the laurel forest is a 

consequence of introgression or if this taxon diverged uniquely from laurel forest 

populations from Gran Canaria. This will be possible by partitioning the phylogenic signal 

of the genome into regions showing different phylogenetic patterns and defining which 

can be involved in introgression or being a consequence of selection. For this purpose, 

a whole genome resequencing approach is more appropriate because we can define 

linkage groups behaving differently and then infer which genes may be responsible for 

this pattern. 

To further investigate our hypothesis, it will be necessary to perform an additional 

phylogeographic study using a comprehensive sampling from M. canariensis. We found 

a division in M. canariensis in the microsatellite data which is concordant with substrate 

age (Curto et al., sub.). The laurel forest population was assigned to the younger 

substrate. Since we did not include a non-laurel forest population from the younger 

substrates in this work, we cannot conclude that this division has an ecological meaning. 
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5.1 New insights into evolution on oceanic islands 

 

Until recently, limitations associated with classical molecular methods only 

allowed the genotyping of a few loci, thereby preventing the detection of reticulate 

evolution patterns (Herben 2005). This influenced the way evolutionary processes were 

viewed, especially concerning the role of hybridization. As a consequence, the 

colonization process on oceanic islands was described as a stepping stone mechanism 

with single introduction events on each island (Sanmartin 2008). These observations 

biased the conclusions made by the authors, exemplified by the niche preemption 

hypothesis proposed by Silvertown et al. (2004, 2005). This hypothesis explains the 

prevalence of single colonization events on islands close to the mainland. It posits that 

island niches are filled relatively fast during the colonization process, which prevents 

secondary colonizers from establishing through competition. Multi-loci genotyping 

approaches showed that reticulated patterns exist (i.e. Kim 2008, Barber et al. 2007) and 

these patterns suggest that hybridization may be common, which contradicts the niche 

preemption hypothesis. Archipelago-wide genetic diversity studies showed a low impact 

of the founder effect, providing some further evidence for the existence of multiple 

colonization events (Francisco-Ortega et al. 2000; Caujapé-Castells 2011; Pérez de Paz 

and Caujapé-Castells 2013). The work gathered in this thesis provides additional 

examples of reticular patterns, thereby supporting the idea that islands are colonized 

multiple times and that gene-exchange between species is rather common. 

 

Evidence of evolution with gene-flow and its impact on genetic variation 

This thesis presents several studies focusing on Micromeria evolution, which 

show evidence of gene-flow between species. These studies employed different 

sampling schemes and marker systems but showed similar results, which provides extra 

confidence in this assumption. 

In chapter 2, Curto et al. (2012) developed 19 EPIC markers and applied them in 

eight Micromeria individuals. This was done by testing their ability in recovering resolved 

phylogenetic trees and their concordance with the expected phylogenetic hypothesis 

through topology comparison. Incongruence was found in both tests, thus supporting a 

reticulate pattern. Using eight of these markers to assess the phylogenetic relationships 

of Micromeria on Tenerife and the entire archipelago, Puppo et al. (2014, 2015) 

recovered some degree of incongruence between these loci as well. These three studies 

provided the first indications that introgression may exist among Micromeria species. 

Similar reticulated patterns were described when chloroplast and ITS loci were 
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sequenced to recover phylogenetic relationships of Canarian flora (i.e. Gruenstaeudl et 

al. 2012; Jones et al. 2014). An early study from Barber et al. (2007) provides evidence 

of multiple colonization events and hybridization in Canarian Sideritis. Discordance 

between gene trees can be caused by lineage sorting as well (Degnan and Rosenberg 

2009), and due to their low number loci these approaches are not able to differentiate 

between lineage sorting and hybridization. With these shortcomings in mind, alternative 

approaches able to detect gene-flow among species directly were investigated. 

Microsatellites are mostly neutral (Selkoe and Toonen 2006), and thus more 

permeable to genetic exchange between hybridizing species under differential selective 

conditions (Teeter et al. 2010). For this reason detecting gene-flow between species 

should be easier using these markers. Microsatellite markers had already been 

developed for Micromeria (Puppo et al. 2015b) and were applied with the objective of 

detecting evidences of gene-flow and hybridization between Micromeria species. In 

chapter 3, significant historical and recent migration rates among most species in 

Tenerife were determined, and it was found that the most widespread species were the 

largest contributors for genetic exchange (Puppo et al. 2016). Hybridization was detected 

for most species pairs showing morphological hybrids. When the entire archipelago was 

considered, data was able to recover some migration rate between islands (Chapter 3: 

Curto et al. sub. a). Additionally, hybrids, which contribute to gene flow, were detected 

between most species. As described above in the case of Tenerife, widespread species 

in Gran Canaria contributed to most of the gene-flow between species. These 

publications provide direct evidence of gene-flow among Canarian species using 

microsatellites and show for the first time introgression between two islands. Previous 

studies on other plant taxa from the Canaries only detected introgression between a few 

species pairs and did not consider the entire archipelago (González-Pérez and Sosa 

2009). 

Although hybridization and gene-flow exists, they do not necessarily have an 

impact on genetic variation. According to both the hybrid swarm theory from Seehausen 

(2004) and the surfing syngameon hypothesis from Caujapé-Castells (2011), 

introgression contributes to an increase in genetic diversity, which will boost populations’ 

adaptive ability. The microsatellite data support this assumption. Both on Tenerife and 

Gran Canaria the species contributing the most genetic-exchange are also the most 

genetically diverse. Incidentally they are also the most widespread species, which can 

be an indication of higher adaptive ability. These factors might not be independent, so 

this needs more testing. One approach would be to evaluate which genes are more 

prone to exchange during the colonization process, and whether they are in regions with 

higher genetic diversity and if their function is related with species adaptation, which is 
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not possible with only microsatellites. By doing so, it would be possible to test the impact 

of introgression on the diversity of regions associated with species fitness. 

So far allozymes have been used to assess genetic diversity in multiple species 

on archipelagoes (Francisco-Ortega et al. 2000; Pérez de Paz and Caujapé-Castells 

2013). Despite being able to associate these patterns with potential multiple colonization 

events, this data was not used to estimate gene-flow directly. In the present thesis a 

similar approach was employed using neutral variation. By combining evidence of gene-

flow together with genetic diversity results, it was possible to extend the surfing 

syngameon hypothesis to the colonization process within the archipelago (Chapter 3: 

Curto et al. sub. a). Data suggests that multiple colonization events do not only occur 

during the colonization of the archipelago but also during the occupation of each 

individual island (Fig. 1). Consequently, the resulting species syngameon expands in the 

direction of the colonization front instead of remaining static. Because some taxa become 

more reproductively isolated, they are excluded from the syngameon, which causes the 

syngameon to vary in composition as well. I expect that with more studies directly testing 

the surfing syngameon hypothesis new features of this mechanism will be described. As 

yet, only Riley et al. (2016) tested this hypothesis outside of the Canary Islands. In their 

work the authors did not find evidence of gene-flow and multiple colonization on the 

Californian Channel Islands. These islands are continental fragments, so this process 

may be promoted by the creation of new land dynamics characteristic to oceanic islands. 

 

Island geological dynamics has an impact on hybridization and diversification 

patterns 

Phylogeographic and phylogenetic studies on islands show high congruence 

between species evolution and island geological history (i.e. Gómez et al. 2003; Moya 

et al. 2004), and Micromeria was no exception (Puppo et al. 2014, 2015). Phylogenetic 

analyses for species both on a single island and between multiple islands supported a 

colonization direction from older to younger islands (Puppo et al. 2014, 2015). Therefore 

the way new land emerges through volcanic activity is one of the major factors shaping 

Micromeria diversification. Other geological events such as mega-landslides seem to 

have influenced Micromeria genetic structure as well (Chapter 3: Puppo et al. 2016). In 

this section I will discuss how some mechanisms of island morphogenesis influenced 

Micromeria evolution. 

Results indicate that different forces shaped the diversification process in 

Tenerife and Gran Canaria. In Tenerife genetic differentiation was congruent with island 

age while in Gran Canaria this was not the case (Puppo et al. 2014, 2015; Chapter 3: 

Puppo et al. 2016; Curto et al. sub. a). This might be related to the islands’ different 
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morphogenesis processes. When the central part of Tenerife emerged it was not 

connected to the remaining palaeo-islands, so Micromeria arrived there through 

colonization. Micromeria encountered new niches during colonization, thus triggering 

speciation. In Gran Canaria land was always subsequently added to the pre-exiting 

island so populations expanded to the new area. Species expansion occurred alongside 

an expansion of established niches, so speciation was less likely to occur. 

 

Fig. 1. Schematic summary of how the surfing syngameon hypothesis can be applied to single-island colonization based 

on the data presented in this thesis. Unless indicated otherwise, dashed circles represent species. Symbols represent 

alleles for a specific locus. A: Multiple colonization on a newly emerged island resulting in the creation of a hybrid swarm. 

Arrows represent colonization events. B: The hybrid swarm differentiates into two species through an ecological speciation 

process. Alleles are sorted according to local selective pressures. C: Connectivity through gene-flow of the species 

syngameon resulted from the multiple colonization process. Species occurring on younger islands are more connected 

than the ones occurring in older ones. This process results in an expansion of the syngameon in the same direction of the 

addition of new land. 

 

So it seems that the appearance of new land was a major driver of diversification 

on oceanic islands (Fig. 1). In chapter 3, taxa occupying younger islands are genetically 

more diverse and less differentiated, which is congruent with multiple colonization of 

each island and subsequent establishment of hybrid swarms (Curto et al. sub. a; Fig. 
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1A). These populations would have a higher adaptive ability and would be more likely to 

result in radiation events. Because populations in younger islands remain connected by 

gene-flow when they differentiate into multiple species, they result in the expansion of 

the species syngameon (Fig. 1B, C). Gene-flow does not affect the diversity of 

populations in older regions, making them more isolated from the syngameon. Overall 

this results in a shift, similar to a species range shift process, in both content and size of 

the species syngameon. In this case the new islands work as the satellite populations in 

the expansion front and are highly connected to the syngameon, while the older islands 

correspond to the rear populations and are less connected to the syngameon (Fig. 1C). 

The appearance of new detached land may trigger the process described in the 

previous paragraph. The emergence of new land provides a high amount of free niches, 

contributing to a decrease in intra-specific competition and making the selection against 

hybrids less severe. This may be the reason why hybridization on islands is so frequent 

(Francisco-Ortega et al. 1996). Following this reasoning, increased likelihood of hybrid 

swarms on new islands also results in increased likelihood of adaptive radiation events. 

Similar mechanisms were responsible for the adaptive radiation in other island-like 

systems. For example, the radiation that gave origin to around 800 cichlid species in 

Malawi lake was shown to originate from a hybrid swarm created by the admixture of 

riverine and paleo lakes species (Seehausen et al. 2003; Joyce et al. 2005; Schwarzer 

et al. 2012; Nichols et al. 2015). In this case the creation of a lake followed by colonization 

from other lakes and rivers is an equivalent process to the emergence of an island and 

its colonization from mainland or other islands. 

Erosion and the occurrence of land-slides can also have a role in shaping genetic 

diversity in oceanic islands. Using microsatellites in populations spread throughout the 

archipelago it was possible to genotype using denser and more evenly distributed 

sampling, and thus resulting in the detection of new structure patterns. For example, in 

Tenerife, intra-specific structure patterns were found (Chapter 3: Puppo et al. 2016): M. 

hyssopifolia populations from Adeje were separated from the remaining island, and M. 

varia was divided into two groups (Anaga and Teno). Although the M. hyssopifolia 

example resulted as a consequence of island age, the separation of the two M. varia 

populations was probably caused by multiple landslides that occurred during Tenerife’s 

morphogenesis, sectioning off populations from one another (Ancochea et al. 1990; 

Watts and Masson 1995; Juan et al. 2000). These geological events seem to have 

contributed toward population structures of both plant and animal species (Gübitz et al. 

2000; Brown et al. 2006; Dlugosch and Parker 2007; Mairal et al. 2015). In Gran Canaria 

genetic structure and differentiation according to island geology (subtract age) was only 

found among M. canariensis populations (Chapter 3: Curto et al. sub. a). Other authors 
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found similar patterns and suggested that this was a consequence of restrictions to gene-

flow caused by lava flows during volcanic events occurring around 2.8–3.5 Ma in the 

northern part of the island (Pestano and Brown 1999; Contreras-Díaz et al. 2003). 

Species inhabiting older areas are less diverse and show higher pairwise 

population differentiation, which is a consequence of the decreased effect of gene-flow 

relative to the increased population size on each island (Chapter 3: Curto et al. sub. a). 

This ultimately results in the reproductive isolation of these species and their exclusion 

from the syngameon. Considering the general dynamic theory island biogeography 

(GDM) from Whittaker et al. (2008), erosion contributes to a decrease in island carrying 

capacity, thus increasing the extinction rate. This same process promotes the exclusion 

of species from the syngameon and their loss of genetic diversity. As shown above, 

catastrophic events create barriers to gene-flow and habitat loss, both of which contribute 

to the extinction of populations, and thus their loss of genetic variability. Moreover, with 

the decrease in an island’s carrying capacity, colonizers are less likely to establish 

successfully, which promotes reproductive isolation relative to populations found on 

other islands.  

In summary, there is a complex set of factors shaping the evolution of Micromeria 

in the Canary Islands. The increase of speciation rate and species syngameon size are 

positively related with the appearance of new islands and their increase in topological 

complexity. In the other hand, the detachment of species from the syngameon and 

consequent accumulation of genetic differences is promoted by erosion and catastrophic 

events such as mega-landslides.  

 

5.2. Effect of syngameon dynamics on species definition and 

morphological traits 

 

Maintenance of species boundaries despite gene-exchange 

If strong selective forces that set certain phenotypes do not exist, populations 

belonging to hybrid swarms are not able to differentiate (Seehausen 2004, Arnold 2006, 

2015). As described in the previous section, selection may be the first trigger of 

differentiation but with time geological events contributing for reproductive isolation can 

further promote this process. Micromeria in the Canary Islands is a great system for 

studying the factors that influence morphological differentiation: there are islands with 

more than one species, allowing the correlation of morphological traits and their 

diversification patterns with an island’s ecological features; and it is composed of species 
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that diverged at different times (Puppo et al. 2014), providing examples of different 

stages of the differentiation process.  

Micromeria species distribution is mostly concordant with island ecological 

zones, indicating that selective forces played a role in the diversification of these species. 

In fact, Puppo et al. (2016) found evidence of hybrid zones in Tenerife, which is a strong 

indicator that selection plays a role in Micromeria morphological differentiation (Chapter 

3). In hybrid zone dynamics, strong stabilizing selection contributes to the fixation of 

alleles responsible for local adaptation (Nosil and Feder 2012). If the divergence of these 

species resulted from an adaptive radiation event, then the genomic regions under 

selection should be responsible for maintaining species morphological integrity despite 

hybridization (Feder et al. 2012). 

Other mechanisms besides selection may have contributed to the morphological 

diversity observed in Micromeria. As mentioned above, older lineages tend to be 

excluded from the species syngameon and become more reproductive isolated, which 

may lead to morphological divergence. In Puppo et al. (2014), Micromeria species 

restricted to older parts of the island were found to be older as well as more genetically 

and morphologically differentiated. In chapter 3, these species did not contributed as 

much to inter-specific gene-flow as the other species (Puppo et al. 2016). A similar 

pattern was found in Gran Canaria where the most morphologically differentiated species 

(M. leucantha and M. pineolens) were the ones showing less connectivity (Chapter 3: 

Curto et al. sub. a). All of these examples serve as evidence that reproductive isolation 

also contributes to morphological differentiation. However, this is contradicted by the 

existence of species that are morphologically similar but genetically divergent. This is the 

case for the M. varia s.l. species complex. The mechanism involved in the maintenance 

of this phenotype despite the high divergence observed in some lineages sharing this 

morphology is discussed in the next section.  

 

The appearance and maintenance of morphologically similar species with 

independent origins 

The fourth chapter of this thesis focuses on the phylogenetic relationships 

between the species previously classified as M. varia s.l. (Curto et al. sub. b). These 

species are morphologically similar and were divided into six independent taxa based on 

molecular data (Puppo and Meimberg 2015a, 2015b). In the study presented in chapter 

4, we hypothesized that adaptations may have been transferred between two of these 

species from different islands through introgression. This was based on the close 

phylogenetic relationship between M. gomerensis from La Gomera and a population of 

M. canariensis from Gran Canaria that grows in the laurel forest. Although we were not 
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able to show that introgression was the main factor contributing for this pattern the high 

gene-flow found between these species, with microsatellite data, make us more 

confident in this hypothesis. If this is the case, these same mechanisms may play an 

important role in the evolution of the remaining M. varia s.l. species. 

In previous work using eight nuclear EPIC sequencing markers M. varia s.l. had 

several different origins (Puppo et al. 2015): one in the eastern lineage and two in the 

western lineage (M. varia from Tenerife and M. pedro-luisii from La Gomera belong to 

different lineages). When the microsatellites were considered the same pattern was 

found. Since a high degree of gene-flow among species from the same island was found, 

introgression may be hiding the phylogenetic signal of a common origin. This effect would 

be more pronounced when just a few loci were used. To overcome this limitation we 

used a phylogenomic approach. The results did not contradict previous phylogenetic 

analyses and confirmed that M. varia evolved several times. The most likely explanation 

for this observation is convergent evolution, and in this section I discuss the mechanism 

that might be behind this process. 

There are three genetic processes contributing to convergent evolution (Stern 

2013): mutations of independent genomic regions resulting in the same phenotype; the 

maintenance of an ancestral allele; and the introduction of common alleles through 

introgression. The patterns gathered in this thesis suggest that a combination of the last 

two processes might be responsible for the convergent evolution of M. varia s.l. 

morphology. 

Introgression was detected in all datasets, so its possible influence in the 

evolution of M. varia s.l. phenotype must not be ignored. Additionally, the mechanisms 

behind this apparent convergent evolution must be inferred while taking into account the 

multiple colonization dynamics described in chapter 3 (Curto et al. sub. a). A 

consequence of this process would be the spread of similar genetic content on all 

islands, allowing for species to show similar adaptations and thus similar phenotypic 

traits. This might be the reason why the M. varia s.l. phenotype could have appeared 

several times during Micromeria evolution. The alleles responsible for this morphology 

would have come to each island during the radiation process and were integrated into 

the gene-pool of the hybrid swarm (Fig. 2). Through selection these would have been 

fixed in the populations that gave origin to the M. varia s.l. species on each island. The 

transmission of traits showing some adaptive value through introgression has been 

described for several systems (Lexer et al. 2003; Brothers et al. 2013; Arnold 2006, 

2015). 

The process described above is congruent with a single origin of the M. varia s.l. 

phenotype. In this case a common origin would only be detected in the genes responsible 
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for this morphology, while the remaining parts of the ancestral M. varia s.l. genome would 

have been replaced with alleles from other species through introgression. If this were the 

case, this phenotype would have appeared early in the divergence process since it is 

shared among highly divergent lineages. A single origin of the M. varia s.l. phenotype 

would be confirmed by the detection of genomic regions common to all individuals 

showing this phenotype. 

 

 

Fig. 2. Representation of how a single genetic origin of a phenotype is congruent with a convergent evolution scenario 

due to the multiple colonization dynamics. Dashed circles represent different species. Green dashed circles show the 

convergent phenotype (ex. M. varia morphology). Arrows represent colonization events and green arrows correspond to 

the establishment of a colonizer containing target phenotype. 

 

The fact that there are other Micromeria species groups showing patterns of 

convergent evolution indicate that this process may occur frequently. Micromeria 

lasiophylla from Tenerife and M. herpyllomorpha from La Palma show similar 

morphologies and have independent origins. In fact, the population from M. 

herpyllomorpha found in high altitudes was once classified as M. lasiophylla (Fig. 3). In 

both the phylogeny from Puppo et al. (2015) and the microsatellite data (Chapter 3: Curto 

et al. sub. a) M. herpyllomorpha is more closely related to M. densiflora than M. 

lasiophylla. Both M. herpyllomorpha high-altitude populations and M. lasiophylla occupy 

similar environments on different islands, indicating that they have the same adaptations. 

Therefore it is possible that some colonizers from the M. lasiophylla ancestry contributed 

to the colonization of La Palma, and that the regions related to high-altitude adaptations 

fostered/supported the occupation of the mountain regions. 

Evidence of convergent evolution and the transmission of adaptive traits through 

hybridization have been described in Heliconius butterflies (wing color; Heliconius 

Genome Consortium 2012) and in the house mouse (Warfarin resistance; Song et al. 

2011). Both studies used genome sequence information, which provides some 

confidence that, if a similar approach is used, the genetic basis of M. varia s.l. 

morphology can be revealed. 
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Fig. 3. Distribution and pictures of M. herpyllomorpha from La Palma (blue) and M. lasiophylla (yellow).from Tenerife. The 

regions surrounded by the black line correspond to the high-altitude populations. Species distributions are based in Perez-

de-Paz (1976). Photos were taken by Pamela Puppo. 

 

5.3. Some remarks about molecular markers 

 

Comparison of information obtained among marker systems 

By using three types of markers in this research it was possible to access 

Micromeria evolutionary patterns from different perspectives. Nevertheless, the main 

phylogeographic/phylogenetic patterns were concordant among all marker systems in 

the following ways: all showed a division between the eastern and western islands 

groups; all revealed that all species previously classified as M. varia from the eastern 

lineage belong together in the same clade/cluster; and all makers support the idea that 

Tenerife and Gran Canaria contributed to most of the diversification and colonization of 

Micromeria in the archipelago. Each of these patterns corresponded to evolutionary 

events occurring in the early stages of the Micromeria diversification process. In these 

stages, Micromeria genetic variation was probably more homogeneous and only a few 

lineages existed. As a consequence, incongruences among different genomic regions 

resulting from lineage sorting and introgression were less likely to occur. With this 

reasoning the incongruent patterns among marker systems should correspond to more 

recent events. 

By comparing EPIC (Puppo et al. 2015) and microsatellite (Chapter 3: Curto et 

al. sub. a) markers a few incongruences were found. In the phylogenetic analyses 

constructed based on EPIC markers, M. lepida belongs to the eastern lineage. With 

microsatellites this pattern was not as clear because it is clustered together with either 

eastern or western lineages depending on the analyses method used. This was 

considered to be a consequence of gene-flow with members of the western group. 

Another incongruence was the inability of the microsatellites to differentiate between M. 

mahanensis (Lanzarote) and M. gomerensis (La Gomera), which was not the case with 
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EPIC markers. This is somewhat unexpected since microsatellites should be able to 

detect more detailed structure patterns (Ellegren 2004). The lack of structure between 

these two species was explained by characteristics inherent to this marker. EPIC 

markers should be less permeable to genetic exchange and thus the recovered pattern 

should be more concordant with species delimitations (Thomson et al. 2010). 

Microsatellites, on the other hand, due to their neutral nature are more likely to contribute 

to introgression (Selkoe and Toonen 2006). A high migration rate was found between M. 

mahanensis and M. gomerensis, which could be causing a lack of structure in the neutral 

regions. The marker selection process may have had an impact on this result. Because 

microsatellites are known for being highly variable (Ellegren 2004), they are less likely to 

contain flanking regions preserved among several species, therefore making them 

suitable for primer design (Barbará et al. 2007). By selecting markers that amplify in most 

of the archipelago, we are selecting for markers that are automatically more homogenous 

among species. In doing so we are also increasing the likelihood of selecting loci that 

are contributing to introgression among islands. As it was shown in both microsatellite 

development studies presented in chapter 2, this effect is already detected in the 

population level where the markers showing highest genetic structure were also the ones 

with higher missing data (Curto et al. 2013; 2015). 

In the publication developing microsatellites for Catha edulis we found that 

markers containing “AT” rich repeats were more variable as thus could be serve as a 

good alternative for obtaining highly informative data with lower dropout. The 

microsatellite primers used on Micromeria were designed base on 454 libraries 

previously enriched with probes which are not very efficient in targeting these types of 

motifs. 

With RAD-sequencing we are accessing around 100 times more loci than in the 

traditional methods, so more detailed relationships should be recovered. This was the 

case when a high amount of missing data was allowed; but when loci missing more than 

50% of their data were excluded, much of the resolution was lost. This was mostly 

reflected in the relationships among the species previously classified as M. varia in the 

eastern clade. In Puppo et al. (EPIC marker phylogeny; 2015a), a monophyletic group 

containing these species had already been recovered, but a differentiation pattern 

among them was not clear. Rubin et al. (2012) and Huang and Knowles (2014), based 

on simulated RAD data, suggested that excluding loci according to missing data 

contributes to the loss of phylogenetic information. The same mechanism contributing to 

the lack of structure between some species in microsatellites can also be applied in RAD-

sequencing. In the RAD method presented in this thesis, only fragments with two EcoRI 

cutting sites within a distance of 650 bp are sequenced. Not all restriction sites will be 
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shared among all lineages, creating a bias (Huang and Knowles 2014). By selecting loci 

according to missing data, only more conserved regions and regions highly permeable 

to introgression might be kept. Hence the lack of phylogenetic information. 

These conclusions show that while making inferences, the intrinsic 

characteristics of the method must be considered. Moreover it shows the importance of 

studies which focus on their biases and caveats. 

 

Is it still worthy to invest in classical methods? 

With the appearance of second generation sequencing platforms, there was a 

shift in the technology used to access genetic information (van Dijk e al. 2014). With 

them it was possible to analyze genetic variation on a genomic level, and when combined 

with methods like RAD-sequencing this also became possible for non-model species 

(Davey et al. 2013). Nevertheless, classical methods are still widely used. For example, 

by searching the key words “microsatellite” and “RAD sequencing” in Web of Science for 

the year 2016, until present time, microsatellites had 5,022 entries compared to 30 from 

RAD. Now we face the question of whether these classical markers systems should be 

discarded completely and replaced with new methods to accessing genomic information.  

As pointed out by Hodel et al. (2016), the decision to use microsatellites as 

opposed to genomic approaches such as RAD-sequencing hinges on a tradeoff between 

the investment that a project requires and the amount and type of information needed. 

For short-term projects with small budgets, the investment in a genomic dataset it is still 

not viable. This is particularly true when the researchers still need to acquire the 

bioinformatics skills necessary to analyze NGS data. Many projects require a high 

number of individuals, but not a high number of loci. In this case, the use of markers such 

as microsatellites is still advantageous. For example, according to calculations by Hodel 

et al. (2016), the use of RAD-sequencing in 96 individuals has a similar cost as the use 

of 12-15 microsatellites for the same sampling. However, RAD-sequencing becomes 

more expensive than microsatellites with the addition of more samples. Another 

advantage of using classical marker systems is the fact that they have been used for a 

long time and most of their caveats have already been described. Moreover, by 

combining them with genomic resources it is possible to have a better understanding of 

the patterns obtained from previous publications. For example, by combining 

microsatellites with transcriptomic data it will be possible to access whether markers 

were under selection and to which genes they are connected. Finally, we still do not 

know enough about genomic approaches and the biases associated with them to have 

complete trust in the data obtained. Using RAD-sequencing as an example, several 

problems have been found: inclusion of paralogs due to erroneous assemblies (Etter et 
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al. 2011; Xu et al. 2014); wrong genotypes as a result of sequencing and PCR errors 

(Arnold et al. 2013); biases related to library preparation (Arnold et al. 2013); 

overestimation of heterozygosity (Arnold et al. 2013; Gautier et al.2013); limitation 

related to DNA quality (Andrews et al. 2016); and non-random cleavage of the restriction 

enzyme (Arnold et al. 2013; Huang and Knowles 2014). Although many of the problems 

have been solved by improving bioinformatics analyses algorithms, the restriction-

enzyme-associated biases have not. This ultimately results in a non-random distribution 

of missing data, which may have affected the RAD-sequencing dataset as presented in 

this thesis. 

With time, a better understanding of these new methods and their limitations will 

be achieved and they will eventually replace the classic markers. In the meantime, some 

efforts have been made to genotype markers such as microsatellites with NGS platforms 

(De Barba et al. 2016; Vartia et al. 2016). In fact, amplicon sequencing using Illumina is 

commonly used both for DNA barcoding (Caporaso et al. 2012; Shokralla et al. 2015; 

Mata et al. 2016) and phylogenetic applications (Meimberg et al. 2016, Uribe-Convers et 

al. 2016). These approaches are good alternatives to more traditional methods, mostly 

because they are cheaper and less labor intensive.  

 

5.4. Future directions 

 

A few questions remain unanswered and, in the process of the work presented 

in this thesis, new ones were raised. 

In the phylogenetic analyses from Puppo et al. (2014, 2015) only three species 

were used as outgroups: M. graeca from southern mainland Spain; M. hochreutineri from 

the high Atlas in Morocco; and M. inodora from the Baleares. Of these M. inodora was 

the closest to Micromeria from the Canaries. However, this does not mean that this is 

the most closely related Micromeria mainland species. Knowing the most closely related 

mainland species will allow a better understanding of the diversification process in the 

archipelago. 

Several authors have suggested that colonization of the Canary Islands occurs 

through multiple colonization events (Herben 2005, Sauders and Gibson 2005, Caujape-

Castels 2011). And several studies have supported this idea with empirical data (i.e. 

Percy and Cronk 2002; Galbany-Casals et al. 2009; García‐Verdugo et al. 2015). A 

better understanding of Micromeria’s colonization and adaptation process would be 

obtained by having the most closely related species for comparison. More specifically, it 

would be possible to detect if there is still some degree of connectivity with the mainland 
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populations. This would expand our knowledge about the syngameon hypothesis and 

help us determine which Micromeria adaptations are ancestral or derived, and what their 

genetic bases are. 

The biggest advantage of knowing the most closely related mainland species is 

having a more reliable outgroup for the Micromeria phylogeny. The directionality of 

current phylogenetic relationships may not be correct. Ancestral lineages in Tenerife 

were defined because they were congruent with the island’s geological history, and Gran 

Canaria was differentiated enough to serve as an outgroup (Puppo et al. 2014, 2015). 

However, this is not possible when the whole archipelago is considered. This is 

particularly true if the outgroups are too divergent to share enough ancestral states with 

insular lineages. Directionality will allow us to assess where colonization started, and 

thus have a better understanding of the Micromeria diversification process. We are 

currently in the process of genotyping chloroplast haplotypes for several Micromeria 

species from the mainland, which will allow new insights into this topic.  

In this thesis, mostly neutral variation was assessed and it was not possible to 

make conclusions concerning the genetic bases of Micromeria phenotypes. When the 

RAD-sequencing approach was used, which includes both coding and non-coding 

regions, the data was not powerful enough to identify candidate genes responsible for 

M. varia morphology. Since Micromeria species are a result of an adaptive radiation 

event, the assessment of the genes responsible for morphological features will provide 

a better understanding of the adaptation process. This can be studied archipelago-wide 

by looking for regions that are unique in species showing the same phenotype, which 

can be particularly interesting in the M. varia and M. lasiophylla morphological species 

complexes. By accessing regions that are unique to these groups, it will be possible to 

assess the genetic basis of these phenotypes and consequently confirm whether they 

appear just once or several times during Micromeria evolution. If the same candidate 

genes are found for all taxa, it is possible to conclude that the morphology only appeared 

once and it spread across the islands during the multiple colonization process. 

On single islands, the adaptation process can be studied by focusing on hybrid 

zone dynamics. In a hybrid zone resulting from the interaction of two species with 

different ecological requirements only neutral regions will be permeable to gene-

exchange (Harrison and Larson 2014). The regions that are different between both 

species should be under strong purifying selection, and thus are involved in the 

maintenance of species integrity (Larson et al. 2014). This is usually done by looking for 

FST outliers or genomic clines. The first approach considers that regions associated with 

genes under stabilizing selection should be highly differentiated, and thus show an FST 

significantly higher than the genome average (Gosset and Bierne 2013). In research 
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such as Nosil et al. (2012), this method was deemed prone to false positives since drift 

could create similar patterns. If a hybrid zone is present, the using of genomic clines 

across the contact zone can be a good alternative in the determination of regions under 

selection. (i.e. Payseur 2010; Nosil et al. 2012; Carneiro et al. 2013; Larson et al. 2014). 

These clines result in the comparison of the allele frequency of loci that are fixed in pure 

species and individual hybrid index. If a loci is fixed for different alleles in pure 

populations (hybrid index of 0 or 1), it is a candidate gene. If it is under selection, the 

alleles responsible for a certain habitat adaptation should be kept in high frequency 

independently if the populations contain hybrids. This will result in clines where the 

frequency of an allele changes drastically in the contact zone.  

For most questions outlined above, the application of an entire genome sequence 

approach is ideal. This requires the construction of a good reference genome where 

most genes can be completely annotated. We started this process already and once it is 

complete, resequencing approaches can be employed. 

All of the hypotheses developed here are solely based on empirical data 

produced using Micromeria from the Canary Islands as a model, and are therefore not 

necessarily applicable in other systems. Further investigation is necessary to explore 

whether the conclusions made here can be generalized. Meta-analyses approaches 

similar to the one employed by Pérez de Paz and Caujapé-Castells (2013) are good 

alternatives. Other archipelagos also need be studied to ensure that the patterns 

observed are not unique to the Canary Islands.  

 

5.5. Summary of the major conclusions 

 

This thesis was a continuation of the work of a previous PhD thesis (Puppo 2015). 

There, the first detailed phylogeographic patterns of Micromeria diversification on the 

Canary Islands archipelago and on the island of Tenerife were described. In this thesis 

a more detailed view of how Micromeria differentiate within each lineage was presented. 

This allowed the confirmation of some of the hypotheses outlined by Puppo et al. (2014, 

2015) concerning the importance of Tenerife and Gran Canaria in the dispersal of 

Micromeria. 

By using multiple markers with a neutral nature it was possible to evaluate the 

role of multiple colonization and hybridization in the species diversification process. As 

a consequence a scenario was confirmed in which multiple colonizations exist and have 

an impact on genetic variation. This led to the confirmation that a mechanism similar to 

the surfing syngameon hypothesis can be applied to single-island colonization. As 



 

198 FCUP 
Manuel Curto 

suggested in Caujapé-Castells (2011) the data support the establishment of species 

syngameon; however, instead of being geographically fixed, they expand by adding new 

species in the colonization front.  

In the present work I discussed how the establishment of species syngameon 

can impact the distribution of morphological traits across the archipelago. By using a 

phylogenomic approach, it was possible to evaluate how the M. varia s.l. phenotype 

could have appeared through this process. RAD data supports multiple origins, however 

the concordance of phylogenetic signal with ecological zones for the first time in this 

species group raises questions regarding the role of introgression in the origin of these 

taxa phenotype. This led to the creation of the hypothesis that during the multiple 

colonization process the genes responsible for this trait are introduced on each island 

through introgression and then fixed through selection.  

During this research several marker systems were established for Micromeria, 

resulting in the creation of many molecular resources for this genus and closely related 

taxa. Additionally, several new hypotheses were outlined, which may lead to the creation 

of new research projects that will contribute to a better understanding of evolutionary 

processes in island systems. 
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Table S1. Primers designed with their respective SSR sequence and expected product length. 

Locus 
Genbank accession 
# 

SSR 
Expected 
product size (bp) 

Forward primer Reverse primer # of samples amplified 

CE1 JX406758 (AAG)7 223 GAGGAGGAAGAGAGTTCAGCA GCTTCTTGTTGGTCCGACTC 23a 

CE2 JX406759 (CCT)7 189 CATGTCAGGCAGAATCAACA GCCTGCCATATTTAGGGATT 11 

CE3 JX406760 (CT)12 156 CCTTCTATCACCCTCCCACA CCCTCTGTATTGCACGGTTT 23 

CE4 JX406761 (AAG)8 185 GCAATCCCAATTGAGAGCA CAAGTCCACCAGCATTAGCA 23 

CE5 JX406762 (AT)10 238 ACATGTCAACATCCCACCAT TGGATTAAGGCCTGGTTGTT 0 

CE6 JX406763 (CT)13 163 CAAGCCTCACCACACATCTC AAGAGTGCAAACTTGGTGAGC 23a 

CE7 JX406764 (AT)9 195 GGCTTACCCTCAACCTTTCC CGCGTACATGAAATCTGTGA 23a 

CE8 JX406765 (ATT)8 188 ATTGTTGAAAGGGCCAAGAG CACCCAATCATGCTTTCAGA 21 

CE9 JX406766 (AAT)7 222 AGCAGGCCCAAAGTTCAATA CGGAGACCGGTTAAAATGAC 0 

CE10 JX406767 (AT)13 194 CGATGAGGTCCAATCTCTCC CACATGTCCTCGTGATTTGG 10 

CE11 JX406768 (ATGT)9 223 ACGATTGCAGGTCCTCTCAT TTGTCGATGCTGTTGAGACA 0 

CE12 JX406769 (AT)12 151 TCCTGGCAATCCCACATAA TGCGACTTGCAACCATGTA 10 

CE13 JX406770 (AAG)7 213 CAGAAACAACACCTGCCTCA ATCTCTCCCTCCTGACACCA 0 

CE14 JX406771 (CT)12 174 TCGTTTTCTCTCGTGGACTG ACCCTGTCGCAGCTATGTTT 3 

CE15 JX406772 (AG)9 162 CCTCAATCGGACAACATCAA GCGTACCTGAATCCCTCTTG 23 

CE16 JX406773 (AAG)8 238 CCATTGTTGTGGTGGTTGAG ACCATCAACCATGCCTTCTC 23 

CE17 JX406774 (AAT)7 154 AGTGTTTCCATTGTGGATGG GCATCGATTCCCTGATTGTT 0 

CE18 JX406775 (AGG)8 226 CTTGTGCCAATCCAAATCCT TTCCACCCTGGTTTCTTCC 0 

CE19 JX406776 (AC)12 123 CAAGTGGTGGCCGTAAAAG AGTCACAAGATCCAACTGTCG 10 

CE20 JX406777 (ATT)9 275 AACTTCATCGAGGCACTCAAG GGGGTCACCAAGATACGAAG 0 

CE21 JX406778 (AT)13 132 AACATGTATTCCGGTGGTAGC CAACAACAACCCACAACAAC 16 

CE22 JX406779 (AG)10 225 GCTGCAAGAGGTAGGTGGAT TTCTCTCTCTCGCTTGGCTA 23 

CE23 JX406780 (ATC)13 167 AGCAGCAGCAACAACAAGAA CAGCAAGGGAGGCCTTATTA 23 
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Table S1. Continued 

Locus 
Genbank accession 
# 

SSR 
Expected 
product size (bp) 

Forward primer Reverse primer # of samples amplified 

CE24 JX406781 (AC)11 204 TCTTGCTCCTTCAACCTCAA ATCTTGCCAGCTTCCGTCTA 23 

CE25 JX406782 (AAT)14 146 AACCTGCAATCTGTTTGACC TGATGGGCATCAACTGGTAT 14 

CE26 JX406783 (AT)10 239 GATCCAGACCCAACCCATT TGGTGCATGTGTCCTTTTTC 0 

CE27 JX406784 (AG)21 300 AATGCATGAGCATGACAAGG AGGAAGAGGCGATTGTTTTG 0 

CE28 JX406785 (CTT)9 223 CGACCACACAAATCTTCCAG GGAAGTTCCTCTTCTGGGGTA 1 

CE29 JX406786 (AAT)7 232 GCCAACCTCTTGTTCTGGAG TAGGTTTGGCCATTCGATTC 23 

CE30 JX406787 (AGG)7 224 TGAAGAGTCCAAAGCAGCAG AGACCCATGCACTACCCAAC 23 

CE31 JX406788 (AC)9 173 TTCCCAAAAGTGTTGCTGAG CTTTACTAGGGCCCGTCCTT 23 

CE32 JX406789 (AT)11 234 TGAACTTGTGGGTTGTTGGA GGGACCTGGTTGTGTTTGAT 21a 

CE33 JX406790 (CTT)7 213 AGGTTGAGCTGGAACGAGAA TTCTCATTTGCCTTGTGTGC 23 

CE34 JX406791 (CT)12 173 CGGATGCCAAAACACTATCA ATCCAAGAGGTTTTGGTTGC 22 

CE35 JX406792 (AG)12 178 GCAAATGTCGGTCAAACCTT CTTCTCCAGTGGGCTTCTGT 0 

CE36 JX406793 (ATT)15 320 GATTGGTGGCCACTTCTTTC CATGCATGCAGGAGACTTGT 7 

CE37 JX406794 (ATCT)11 215 ACTCGAAAAACATGGTGCAG TGAGCCTCAATCTGGAGACA 23 

CE38 JX406795 (ATT)11 196 GGATGACCAAGTCGATTCAA GTTCTGCACAGCCCTAAACC 9 

CE39 JX406796 (AAC)9 163 GTGGTTCGAGTCCAGTCCTT CGTTGGAATACACGTGTTGG 23 

CE40 JX406817 (GT)10 151 TGGTATAGCCCATATCGTCAG CACACTACGCTTCACGCTTC 23 

CE41 JX406797 (AG)15 219 GGACAGAATTCCCAAAACGA ATTGCCAGCTCGATCACTCT 23 

CE42 JX406798 (GT)9 230 AAGGGGAAGGAGAGAGATGC CCTCATCCTGATGTGGCTAA 23 

CE43 JX406799 (ATT)10 156 CAGATCCTCCTCCTCCTTCA GGATGCCACAAATGCTGAT 23 

CE44 JX406800 (AGT)8 226 CGACTGCAGATGGTGAGAAA CCAGTCCAAAGCACCCTAAC 0 

CE45 JX406801 (AG)11 247 GGTTTAGCCTCTCCTGCAAGT CAAGTGCGGACTCAACAAGT 23 

CE46 JX406802 (ATT)10 259 GGGGTTTGTGGCTTGTTTT AGGGATCCACCCCTGATAGT 0 

CE47 JX406803 (GTT)8 238 GTGATGATGGGTTGGAATTG ATCCTCATCATCCCCATCAG 23 
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Table S1. Continued 

Locus 
Genbank accession 
# 

SSR 
Expected 
product size (bp) 

Forward primer Reverse primer # of samples amplified 

CE48 JX406804 (AG)12 226 GATGTGGATCTCCCACCTGT ACCCCCTACCTCAATCCACT 13 

CE49 JX406805 (AC)9 166 GGAAAGAGGGAAGTTGGAATG CCACTCACCATTCTCTGCAA 20a 

CE50 JX406806 (CT)12 158 AACTACCCGCCATTTCGAC AGCTGGGCGATTGACTAAAG 23 

CE51 JX406807 (TC)11 167 GAAATTCCCACGACTGTGAAG TTTAACGAATTCTAATGACGGAG 0 

CE52 JX406771 (CT)11 222 AACTACACCGGAGCACAGCA CAGCTATGTTTGCAGAATCGC 0 

CE53 JX406819 (GA)15 163 TTAGGAATCGAAAGTGAGGC TCTTACGTCCTCATATGTACAGG 0 

CE54 JX406812 (CT)12 153 TTTGGTCTTTAATGGCGAAGTC GGAAGGATCTATGACAAGTTGC 0 

CE56 JX406813 (GA)10 199 ACAACCAATGTCGTACAGAGA CAGTATTTGTATCTGCAGTACAG 23 

CE57 JX406814 (TTA)13 187 TCCTGTCCTGATAATATCCTG AGTCCCACTGATTGTTATGAC 23 

CE58 JX406815 (TTA)8 163 TTCCATTGTGGAAATTTGGTG CTTAATGGAACCTATGATCAGC 23 

CE59 JX406816 (TTA)15 192 GAATTCTGATCAAAACTACCAG GGCTTCAGAAAGAATTGGATG 22 

CE60 JX406808 (TTAA)6 269 CTACTTGTCATAACCTTATCCAC TGGGTTGAATTCAATAGAGTAGC 19 

CE61 JX406818 (AT)19 145 TATAATCAGTGTGGGATAGA ACCTAATAATTAGTTACTTGTAC 0 

CE62 JX406809 (TA)13 196 TTGAACTGTTGCCCTCTTGC CTACTGCAACTTATCATTATACC 17 

CE63 JX406810 (CT)19 196 AGAACTCCCTGTAAACTTCCAC AATACTAACCGCTTAATCGACTG 14 

CE64 JX406811 (CT)11 232 CATCCTCAGCCATCTGAGCA AACTGTCTACATGAACTTGTATTC 23 

a Locus with more than one allele per sample or fixed heterozygosity.   
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Fig. S1. Localities of the qat samples used in this study. The numbers correspond to the population number on Table 1. 



 

 

2
1
3
 

213 FCUP 
Appendix II: Supplementary material from section 2.4 

Appendix II: Supplementary material from section 2.4.  

 

Curto, M., Nogueira, M., Beja, P., Amorim, F., Schümann, M., & Meimberg, H. (2015). 

Influence of past agricultural fragmentation to the genetic structure of Juniperus 

oxycedrus in a Mediterranean landscape. Tree Genetics & Genomes, 11(2), 1-13. 
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Table S1. List of samples used with information about the a priori population they were assigned, individual ID, 

coordinates, altitude and trunk perimeter measures. Information about unmeasured individuals visually larger than 100 

cm is also included (“> 100”). NA corresponds to data that was not possible to be collected. 

Population Individual ID Latitude Longitude Altitude (m) Trunks perimeter in cm (TP) 

I 12_1 41.47779 -6.79929 534 50 

I 12_1.2 41.478026 -6.798474 NA NA 

I 12_2 41.47817 -6.79933 595 NA 

I 12_4 41.47789 -6.79926 595 35 

I 12_5 41.47807 -6.79806 602 25 

I 12_6 41.47821 -6.79643 604 NA 

II 13_1 41.48153 -6.6891 556 50 

II 13_11 41.46907 -6.68252 466 50 

II 13_12 41.46593 -6.67987 447 90 

II 13_14 41.462142 -6.67823 417 114 

II 13_15 41.45816 -6.67923 385 70 

II 13_16 41.453175 -6.675993 302 NA 

II 13_16.2 41.454993 -6.677665 339 NA 

II 13_17 41.45657 -6.68044 396 NA 

II 13_18 41.44901 -6.6865 392 NA 

II 13_19.2 41.44764 -6.68763 378 35 

II 13_20 41.44453 -6.69224 313 > 100 

II 13_3 41.48051 -6.69189 449 75 

II 13_4 41.47807 -6.68971 555 132 

II 13_5 41.47704 -6.68771 534 50 

II 13_7 41.47639 -6.68564 522 50 

II 13_8 41.475795 -6.686857 546 60 

II 13_9 41.47122 -6.68363 499 NA 

II 14_1 41.44095 -6.69122 260 NA 

II 14_1.2 41.44095 -6.69122 NA NA 

II 14_2 41.43901 -6.69235 295 NA 

II 14_3 41.43704 -6.69788 310 NA 

II 14_3.2 41.4378 -6.69707 300 67 

II 14_5 41.43391 -6.70344 293 NA 

II 14_6 41.43107 -6.70692 264 NA 

II 14_7 41.43126 -6.70961 287 NA 

II 14_8 41.43052 -6.70607 300 NA 

II 14_9 41.43134 -6.70833 263 75 

III 15_1 41.42517 -6.676283 394 > 100 

III 15_1.2 41.42517 -6.676283 NA NA 

III 15_11 41.40684 -6.80341 NA NA 

III 15_2 41.42413 -6.76438 385 > 100 

III 15_3 41.42186 -6.76716 365 NA 

III 15_4 41.42103 -6.76602 361 NA 
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Table S1. Continued. 

Population Individual ID Latitude Longitude Altitude (m) 
Trunks perimeter in cm 

(TP) 

III 15_5 41.41669 -6.77273 298 NA 

III 15_6 41.41278 -6.78473 236 NA 

III 15_7 41.40871 -6.78794 229 NA 

III 15_8 41.40665 -6.79607 226 NA 

III 15_9 41.40636 -6.80252 226 NA 

IV 1_10 41.31004 -6.88167 NA 150 

IV 1_12 41.31057 -6.88263 NA 75 

IV 1_3 41.30853 -6.87978 NA NA 

IV 1_4 41.30861 -6.87969 NA 100 

IV 1_5 41.30855 -6.87941 NA 50 

IV 1_7 41.30811 -6.87958 NA 50 

IV 1_8 41.3083 -6.87931 NA 100 

IV 1_9 41.30873 -6.87943 NA 100 

IV 16_1 41.33322 -6.86083 468 NA 

IV 16_1.2 41.33322 -6.86083 NA NA 

IV 16_11 41.33296 -6.82593 204 93 

IV 16_12 41.32613 -6.82534 194 NA 

IV 16_13 41.33231 -6.82323 322 NA 

IV 16_14 41.32948 -6.8225 394 NA 

IV 16_15 41.32918 -6.81318 516 133 

IV 16_15 41.32918 -6.81318 NA NA 

IV 16_16 41.32908 -6.81306 474 37 

IV 16_2 41.33863 -6.85192 537 75 

IV 16_3 41.33908 -6.84353 506 NA 

IV 16_4 41.33878 -6.83808 465 NA 

IV 16_5 41.33857 -6.83111 407 NA 

IV 16_6 41.34734 -6.82166 206 NA 

IV 16_7 41.3415 -6.82802 309 110 

IV 16_8 41.34513 -6.8222 253 50 

IV 2_1 41.32343 -6.86595 450 NA 

IV 2_1.2 41.32343 -6.86595 NA NA 

IV 2_2 41.32336 -6.86626 NA 25 

IV 2_3 41.32318 -6.86628 NA 25 

IV 2_4 41.32306 -6.86597 NA 50 

IV 2_5 41.3233 -6.8657 NA 75 

IV 3_1 41.32086 -6.86477 NA 75 

IV 3_2 41.3069 -6.865 NA 75 

IV 3_3 41.32018 -6.86575 NA 50 

IV 3_4 41.32004 -6.86521 NA 50 

IV 4_1 41.31957 -6.86504 NA 100 
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Table S1. Continued. 

Population Individual ID Latitude Longitude Altitude (m) Trunks perimeter in cm (TP) 

IV 4_2 41.31834 -6.8647 NA 100 

IV 4_3 41.31755 -6.86398 NA 50 

IV 4_4 41.31551 -6.86331 NA NA 

IV 4_6 41.31466 -6.86365 NA 75 

IV 5_2 41.30899 -6.85683 186 50 

IV 5_2 41.30899 -6.85683 NA NA 

IV 5_4 41.30956 -6.85591 187 37,1 

IV 5_7 41.31041 -6.85822 NA 51,2 

IV 6_2 41.3153 -6.8614 443 NA 

IV 6_2.2 41.3153 -6.8614 NA NA 

IV 6_3 41.3186 -6.86286 420 > 100 

IV 6_5 41.31717 -6.86249 404 NA 

IV 6_6 41.318 -6.86269 410 NA 

V 10_1 41.23927 -6.96116 165 NA 

V 10_2 41.2389 -6.96083 186 NA 

V 10_3 41.2397 -6.9563 267 > 100 

V 10_5 41.23853 -6.95402 188 NA 

V 10_6 41.23683 -6.95108 187 NA 

V 10_8 41.22591 -6.94637 406 NA 

V 11_2 41.24107 -6.92163 420 > 100 

V 11_3 41.24083 -6.92174 420 > 100 

V 11_4 41.23916 -6.92389 420 > 100 

V 11_5 41.24061 -6.92221 NA > 100 

V 11_7 41.24052 -6.92124 NA > 100 

V 11_8 41.24044 -6.922142 NA NA 

V 4_5 41.28670 -6.9224 511 35 

V 7_1 41.2808 -6.9208 519 25 

V 7_11 41.40684 -6.80341 NA NA 

V 7_2 41.27983 -6.91936 445 15 

V 7_2 41.2806 -6.9211 516 50 

V 7_4 41.27896 -6.91922 422 20 

V 7_6 41.2803 -6.9227 507 50 

V 7_7 41.2798 -6.9222 NA NA 

V 7_8 41.2801 -6.9206 485 100 

V 7_9 41.2803 -6.92122 NA NA 

V 8_1 41.247 -6.9244 375 NA 

V 8_2 41.2484 -6.928 429 25 

V 9_1 41.24697 -6.938 340 15 

V 9_11 41.24663 -6.93846 NA NA 

V 9_2 41.24725 -6.93811 343 30 
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Table S1. Continued. 

Population Individual ID Latitude Longitude Altitude (m) Trunks perimeter in cm (TP) 

V 9_2.2 41.2464 -6.938 399 50 

V 9_3 41.2471 -6.9384 349 NA 

V 9_4 41.24678 -6.93859 351 NA 

V 9_5 41.24651 -6.9391 357 NA 

V 9_6 41.24656 -6.9393 370 NA 

V 9_7 41.2463 -6.9388 404 > 100 

V 9_9 41.2462 -6.9393 437 > 100 
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Table S2. Markers showing positive amplification results for most of the samples. The information displayed corresponds Genebank reference for the sequence used to design the primers, sequences 

used for primer construction, microsatellite motif, repetition number, and size range from the alleles observed. 

Marker 
name 

Sequence 
Genebank 
reference 

Repeat 
Number 

Motif 
Alleles 
Size 

Tail primer (M13 oligo) Primer Forward (GTTT) + Primer Reverse 

Joxy1 KM013332 11 ga 277-285 TAATACGACTCACTATAGGG TTGGTGTACCGATCAACACAG (GTTT)GCTAGGGGAGTTTGATACAAGG 

Joxy3 KM013320 9 aca 121-133 TGTAAAACGACGGCCAGT CTTATCCCAAAGGCAACCAG (GTTT)ATTGGAGCCACTACCACCAC 

Joxy4 KM013322 10 tc 129-143 TAATACGACTCACTATAGGG AATTGGTCATAACCCAAAAGG (GTTT)AACAATGAAAGAGAATAGCACCA 

Joxy8 KM013323 13 ca 130-152 TGTAAAACGACGGCCAGT TCGCTAGTCCAAATCAACCTG (GTTT)TCCACAAGGTGTTTCATATTTCT 

Joxy10 KM013318 7 gt 117-124 TTTCCCAGTCACGACGTTG CCTGCAGCTTCTAAAAGATTGT (GTTT)TCCCACATTGGTGGGTAATC 

Joxy11 KM013328 7 tct 191-191 TGTAAAACGACGGCCAGT TGCTTTATTGGCCTGGTCTC (GTTT)GAAGGAGAAATTTAAGGAGGTGG 

Joxy12 KM013317 8 ttc 111-120 TAATACGACTCACTATAGGG CTCAAGCTCTTCAAGCTTTGTT (GTTT)GAGCTTGTGGTAATCTTGGAGA 

Joxy13 KM013333 8 ct 91-97 TGTAAAACGACGGCCAGT GGAGATCCACATTCATCCATC (GTTT)CCTCATGGAATTTATTGTCGTG 

Joxy14 KM013316 8 ac 110-114 TGTAAAACGACGGCCAGT TCCACTTTATACATATAGCTTGTGGG (GTTT)GACAAGTCCAACCACAAAGGA 

Joxy17 KM013319 8 agg 120-126 TAATACGACTCACTATAGGG CCTTTTGGGAAGGGAAAGAG (GTTT)TCCTTAATCACCTTTCACACCA 

Joxy20 KM013321 8 agg 127-136 GATAACAATTTCACACAGG ACGAGCCACTAGGAAGGAGG (GTTT)CTCCCCTGGTAGGCTTCTTT 

Joxy22 KM013325 7 ttc 149-152 TAATACGACTCACTATAGGG TAGGCTTGGAAACAACTGGC (GTTT)GGCATACTTAGCAAAGGACCA 

Joxy23 KM013324 9 caacat 146-188 TTTCCCAGTCACGACGTTG GTTGGCAACTTCATGACTGG (GTTT)GTGTAATGTTGGTGCGGATG 

Joxy28 KM013326 9 ag 162-168 GATAACAATTTCACACAGG CACATGGGGAAAATAAGAGCA (GTTT)TTAATCATATAATTCATGGTTCACATT 

Joxy31 KM013327 7 ag 173-177 TGTAAAACGACGGCCAGT TTGGCGACTTTGTACTAGCC (GTTT)GGGAAACAATCTTTGGCAATGA 

Joxy35 KM013329 13 tg 196-204 TAATACGACTCACTATAGGG CTCCCATAACCTTAGACAATGAGAA (GTTT)CCCTGAAGATTCTCCTCTAGCA 

Joxy37 KM013330 7 tg 222-224 GATAACAATTTCACACAGG TCTTGGTAGTGGCATGTGGA (GTTT)CAACTTTCGTGACAATGAGAATC 

Joxy42 KM013331 9 ca 257-263 TTTCCCAGTCACGACGTTG TGCTTCCTGTCTTCATCTCTTG (GTTT)CATGTTGATCTCACTCAGGCA 
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Table S3. Family structure analyses result at the individual level including to which population they belong. The probability 

of that relationship is also included. 

 

17 Markers     
Potential 
offspring 

Offspring 
population 

Potential 
parent 

parent 
population Probability 

13_5 II 11_2 V 0.990 

1_5 IV 16_11 IV 1.000 

4_3 IV 6_3 IV 1.000 

1_7 IV 11_2 V 0.990 

3_3 IV 11_7 V 1.000 

7_6 V 16_15 IV 0.578 

7_4 V 6_3 IV 1.000 

7_1 V 11_2 V 0.784 

 
 

 
 

 

11 Markers     
Potential 
offspring 

Offspring 
population 

Potential 
parent 

parent 
population Probability 

12_5 I 6_3 IV 1.000 

13_5 II 11_2 V 0.994 

13_11 II 16_15 IV 0.766 

13_1 II 4_2 IV 1.000 

1_7 IV 11_2 V 0.994 

3_3 IV 11_2 V 0.961 

16_16 IV 16_15 IV 0.764 

3_4 IV 4_2 IV 1.000 

4_3 IV 6_3 IV 1.000 

8_2 V 16_15 IV 0.766 

7_2 V 4_2 IV 1.000 

7_1 V 6_3 IV 1.000 

7_4 V 6_3 IV 1.000 
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Appendix III: Supplementary material from section 3.2.  
 

Puppo, P., Curto, M., Meimberg, H (2016) Genetic structure of Micromeria (Lamiaceae) 

in Tenerife, the imprint of geological history and hybridization on within-island 

diversification. Ecology and Evolution. 2045-7758 
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Fig. S1. Delta K plots obtained by STRUCTURE Harvester for all STRUCTURE tests performed. 
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Table S1. List of Micromeria samples used in the present study including region, locality name and number, geographical 

coordinates (Latitude, Longitude), number of samples per locality (N), and collection information. TFC, Herbarium of the 

Universidad de la Laguna in Tenerife. Numbers of localities correspond to those in Fig. 1. * No geographical coordinates 

are provided for restricted species. 

Species Region Locality 
Loc. 
Nr. 

Latitude 
Longitud
e 

N Collection 

M. teneriffae var. 
cordifolia 

Southern 
Coast 

Fasnia 1 28,2189 -16,4153 4 Puppo 299-301, 303 (TFC) 

M. teneriffae var. 

cordifolia 

Southern 
Coast 

Fasnia 2 
28,2235
1 

-
16,41321 

3 Meimberg 25 

M. teneriffae var. 
teneriffae 

Southern 
Coast 

Güímar 4 28,2944 -16,403 3 Puppo 151, 154, 156 (TFC) 

M. teneriffae var. 
teneriffae 

Southern 
Coast 

Btw Fasnia-
Güímar 

5 28,2497 -16,4382 4 Puppo 160-161, 163-164 (TFC) 

M. teneriffae var. 
teneriffae 

Southern 
Coast 

Bco Eras 6 28,2129 -16,4532 2 Puppo 166, 168 (TFC) 

M. teneriffae var. 
teneriffae 

Anaga 
Bco Tahodio, 
Anaga 

3 28,4982 -16,2589 7 Puppo 185-188, 190-192 (TFC) 

M. glomerata* Anaga 
Taganana, 
Anaga 

7   5 Puppo 200-203 (TFC) 

M. rivas-martinezii* Anaga 
Roque Juan 
Bay, Anaga 

8   1
1 

Puppo 208-215, 218, 227-228 
(TFC) 

M. densiflora* Teno Bujame, Teno 9   5 Puppo 255-257, 259-260 (TFC) 

M. lasiophylla* Teide Teide Nat. Park 10   9 
Puppo 274-276, 279-281, 283, 
286, 288 (TFC) 

M. varia Anaga Anaga 11 
28,5432
8 

-
16,20538 

7 Meimberg 26 

M. varia Anaga Anaga 12 
28,5475
7 

-
16,21141 

5 Meimberg 27 

M. varia Anaga Anaga 13 
28,5459
7 

-
16,21688 

7 Meimberg 28 

M. varia Anaga Anaga 14 
28,5321
9 

-
16,25843 

7 Meimberg 29 

M. varia Anaga 
S. Andrés, 
Anaga 

15 28,5162 -16,1748 1 Puppo 184 (TFC) 

M. varia Anaga 
Bco Tahodio, 
Anaga 

16 28,504 -16,2644 3 Puppo 193-195 (TFC) 

M. varia Anaga 
Parque Rural, 
Anaga 

17 28,5296 -16,1941 2 Puppo 196, 197 (TFC) 

M. varia Anaga 
Parque Rural, 
Anaga 

18 28,5626 -16,2094 2 Puppo 198, 199 (TFC) 

M. varia Anaga Afur, Anaga 19 28,5526 -16,2378 2 Puppo 204, 206 (TFC) 

M. varia Anaga 
Antequera, 
Anaga 

20 28,5425 -16,1305 1 Puppo 223 (TFC) 

M. varia Anaga 
Antequera, 
Anaga 

21 28,5482 -16,1486 5 
Puppo 230, 232, 236, 237-238 
(TFC) 

M. varia Anaga 
Antequera, 
Anaga 

22 28,5434 -16,1379 1 Puppo 224 (TFC) 

M. varia Teno Teno 23 
28,3279
2 

-
16,85619 

1
0 

Meimberg 31 

M. varia Teno Teno 24 
28,3764
7 

-
16,85258 

5 Meimberg 32 

M. varia Teno Teno 25 28,3421 -16,8615 6 Puppo 247-248, 250-253 (TFC) 

M. varia Teno Bujame, Teno 26 28,3518 -16,8717 2 Puppo 261-262 (TFC) 

M. lachnophylla Teide El Portillo 27 28,3091 -16,5672 3 Puppo 290, 294, 296 (TFC) 

M. lachnophylla Teide ca. El Portillo 28 
28,3134
3 

-
16,57074 

2 Meimberg 12 

M. lachnophylla Teide ca. El Portillo 29 
28,3159
3 

-16,5743 2 Meimberg 13 

M. lachnophylla Teide ca. El Portillo 30 
28,3035
3 

-
16,56701 

1
2 

Meimberg 11 

M. hyssopifolia var. 
glabrescens 

Northen 
Coast 

Guancha 31 
28,3808
8889 

-
16,65402
778 

2 Puppo 561 (TFC) 
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Table S1. Continued 

Species Region Locality Loc. Nr. Latitude Longitude N Collection 

M. hyssopifolia 
var. glabrescens 

Northen 
Coast 

Guancha 32 28,36280556 -16,65727778 2 Puppo 589 (TFC) 

M. hyssopifolia 
var. glabrescens 

Northen 
Coast 

Guancha 33 28,4 -16,6647 1 Puppo 563 (TFC) 

M. hyssopifolia 
var. glabrescens 

Northen 
Coast 

Mirador de 
Mazapé 

35 28,3895 -16,63627778 2 Puppo 588 (TFC) 

M. hyssopifolia 
var. glabrescens 

Northen 
Coast 

Rambla de 
Castro 

36 28,39525 -16,62472222 1 Puppo 560 (TFC) 

M. hyssopifolia 
var. glabrescens 

Northen 
Coast 

Rambla de 
Castro 

37 28,39592 -16,58981 3 
Puppo 239, 241, 243 
(TFC) 

M. hyssopifolia 
var. glabrescens 

Northen 
Coast 

Realejos 38 28,37808333 -16,6295 2 Puppo 587 (TFC) 

M. hyssopifolia 
var. kuegleri 

Southern 
Coast 

Los Abades 39 28,14114 -16,45456 3 
Puppo 175-176, 178 
(TFC) 

M. hyssopifolia 
var. kuegleri 

Southern 
Coast 

Acantilado de 
la Hondura 

40 28,200861 -16,424861 3 Puppo 179-181 (TFC) 

M. hyssopifolia 
var. hyssopifolia 

Southern 
Coast 

Arico 42 28,18306 -16,45317 3 Puppo 169-171 (TFC) 

M. hyssopifolia 

var. hyssopifolia 

Southern 
Coast 

Arico 43 28,15231 -16,49158 1 Puppo 172 (TFC) 

M. hyssopifolia 
var. hyssopifolia 

Southern 
Coast 

Btw Fasnia y 
Güímar 

44 28,2497 -16,4382 2 Puppo 162, 165 (TFC) 

M. hyssopifolia 
var. hyssopifolia 

Southern 
Coast 

East coast 45 28,304 -16,38094 6 Meimberg 7 

M. hyssopifolia 
var. hyssopifolia 

Southern 
Coast 

Güímar 46 28,2944 -16,403 1 Puppo 153 (TFC) 

M. hyssopifolia 
var. hyssopifolia 

Southern 
Coast 

Southeast, nr 
Fasnia 

59 28,24405 -16,40731 5 Meimberg 6 

M. hyssopifolia 
var. hyssopifolia 

Southern 
Coast 

Southeast, nr 
Fasnia 

60 28,20048 -16,42502 6 Meimberg 8 

M. hyssopifolia 
var. hyssopifolia 

Northeast Arafo 41 28,37269 -16,42764 3 
Puppo 268-269, 272 
(TFC) 

M. hyssopifolia 
var. hyssopifolia 

Northeast Northeast 47 28,33034 -16,53259 5 Meimberg 14 

M. hyssopifolia 
var. hyssopifolia 

Northeast Northeast 48 28,34888 -16,52472 9 Meimberg 15 

M. hyssopifolia 
var. hyssopifolia 

Northeast Northeast 49 28,3614 -16,50061 4 Meimberg 16 

M. hyssopifolia 
var. hyssopifolia 

North Northwest 50 28,23585 -16,7598 6 Meimberg 3, 10 

M. hyssopifolia 
var. hyssopifolia 

North West coast 66 28,15732 -16,79511 3 Meimberg 18 

M. hyssopifolia 
var. hyssopifolia 

Adeje 
South, nr 
Adeje 

51 28,06075 -16,66895 8 Meimberg 20 

M. hyssopifolia 

var. hyssopifolia 
Adeje Adeje 52 28,14551 -16,74021 11 Meimberg 19 

M. hyssopifolia 
var. hyssopifolia 

South Southcenter 53 28,17351 -16,65225 3 Meimberg 4 

M. hyssopifolia 
var. hyssopifolia 

South Southcenter 54 28,14278 -16,65101 3 Meimberg 5 

M. hyssopifolia 
var. hyssopifolia 

Southeast Southeast 55 28,20875 -16,5392 10 Meimberg 22 

M. hyssopifolia 
var. hyssopifolia 

Southeast Southeast 56 28,20578 -16,53791 3 Meimberg 23 

M. hyssopifolia 
var. hyssopifolia 

Southeast Southeast 57 28,19777 -16,53239 2 Meimberg 24 

M. hyssopifolia 

var. hyssopifolia 
Southeast Southeast 58 28,16728 -16,50658 9 Meimberg 21 

M. hyssopifolia 
var. hyssopifolia 

Southeast Southeast 65 28,23511 -16,48109 5 Meimberg 9 

M. hyssopifolia 
var. glabrescens 

Teno 
Lomo Morin, 
Teno 

34 28,35981 -16,78911 2 Puppo 562 (TFC) 

M. hyssopifolia 
var. hyssopifolia 

Teno Teno 61 28,30052 -16,82512 10 Meimberg 30 

M. hyssopifolia 
var. hyssopifolia 

Teno Teno 62 28,26191 -16,82088 3 Meimberg 1 

M. hyssopifolia 
var. hyssopifolia 

Teno Teno 63 28,28123 -16,81356 5 Meimberg 17 

M. hyssopifolia 
var. hyssopifolia 

Teno nr Teno 64 28,2516 -16,81083 4 Meimberg 2 

Total      289  
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Table S2. Results for HWE and Bottleneck test per population. Here we present the number of loci deviating from HWE 

and the p-value for deviations the from mutation-drift equilibrium (Bottleneck). 

Population Species Region 
nr. Loci deviating from 
HWE 

Bottleneck p-
value 

3 M. teneriffae Anaga 1 0.330 

5 M. teneriffae 
Southern 
Coast 

1 0.593 

7 M. glomerata Anaga 3 0.039 

8 
M. rivas-
martninezii 

Anaga 5 0.219 

9 M. densiflora Teno 0 0.031 

10 M. lasiophylla Teide 0 0.352 

11 M. varia Anaga 2 0.389 

12 M. varia Anaga 5 0.580 

13 M. varia Anaga 0 0.365 

14 M. varia Anaga 2 0.572 

21 M. varia Anaga 0 0.068 

23 M. varia Teno 1 0.195 

24 M. varia Teno 0 0.014 

25 M. varia Teno 1 0.190 

30 M. lachnophylla Teide 3 0.225 

45 M. hyssopifolia 
Southern 
Coast 

0 0.439 

47 M. hyssopifolia North east 2 0.461 

48 M. hyssopifolia North east 2 0.109 

50 M. hyssopifolia North west 2 0.499 

51 M. hyssopifolia Adeje 2 0.407 

52 M. hyssopifolia Adeje 5 0.573 

55 M. hyssopifolia Southeast 4 0.573 

58 M. hyssopifolia Southeast 3 0.039 

59 M. hyssopifolia 
Southern 
Coast 

2 0.377 

60 M. hyssopifolia 
Southern 
Coast 

1 0.318 

61 M. hyssopifolia Teno 3 0.390 

63 M. hyssopifolia Teno 4 0.532 

65 M. hyssopifolia Southeast 3 0.144 
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Appendix IV: Supplementary material from section 3.3.  

 

Curto M., Puppo P., Meimberg H. (submitted) Genetic diversity and differentiation 

patterns of Micromeria from the Canary Islands are congruent with multiple colonization 

dynamics and the establishment of species syngameons. 
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Table S1. List of all localities with information regarding: the number of individuals sampled; species classification 

according to Puppo and Meimberg (2015); coordinates. 

Pop Nr. Samples Species Island UTM Zone 28N Y UTM Zone 28N X 

Laru1 3 M. mahanensis Lanzarote 641246 3215140 

Laru2 8 M. mahanensis Lanzarote 647652 3232688 

Laru3 1 M. mahanensis Lanzarote   
GCbe42 11 M. benthamii Gran Canaria 443984 3087082 

GCbe43 4 M. benthamii Gran Canaria 444738 3085125 

GCbe44 8 M. benthamii Gran Canaria 438613 3095957 

GCbe46 16 M. benthamii Gran Canaria 437917 3091772 

GCbe47 10 M. benthamii Gran Canaria 434909 3100327 

GCbe48 3 M. benthamii Gran Canaria 432428 3086161 

GCbe49 6 M. benthamii Gran Canaria 432543 3100595 

GCbe50 7 M. benthamii Gran Canaria 432653 3085908 

GCbe51 3 M. benthamii Gran Canaria 437537 3090884 

GCbe52 1 M. benthamii Gran Canaria 440143 3103983 

GCbe53 9 M. benthamii Gran Canaria 443891 3087012 

GCbe54 10 M. benthamii Gran Canaria 447591 3092941 

GCbe55 6 M. benthamii Gran Canaria 449898 3092547 

GCbeNX52 9 M. benthamii Gran Canaria 440143 3103983 

GCca1 11 M. canariensis Gran Canaria 426219 3089404 

GCca10 6 M. canariensis Gran Canaria 441064 3109656 

GCca11 4 M. canariensis Gran Canaria 441624 3107616 

GCca12 10 M. canariensis Gran Canaria 433302 3084706 

GCca13 6 M. canariensis Gran Canaria 453948 3094118 

GCca14 3 M. canariensis Gran Canaria 430545 3087138 

GCca15 6 M. canariensis Gran Canaria 430547 3087138 

GCca2 3 M. canariensis Gran Canaria 433440 3085286 

GCca3 11 M. canariensis Gran Canaria 439861 3103791 

GCca31 8 M. canariensis Gran Canaria 428604 3088307 

GCca4 4 M. canariensis Gran Canaria 441607 3107648 

GCca42 7 M. canariensis Gran Canaria 443984 3087082 

GCca43 7 M. canariensis Gran Canaria 444738 3085125 

GCca44 5 M. canariensis Gran Canaria 438613 3095955 

GCca5 1 M. canariensis Gran Canaria 441732 3107161 

GCca56 12 M. canariensis Gran Canaria 442558 3076212 

GCca57 1 M. canariensis Gran Canaria 442847 3077129 

GCca58 2 M. canariensis Gran Canaria 443111 3077399 

GCca6 1 M. canariensis Gran Canaria 442868 3077191 

GCca67 1 M. canariensis Gran Canaria 443042 3077314 

GCca7 3 M. canariensis Gran Canaria 443147 3077353 

GCca8 2 M. canariensis Gran Canaria 443168 3077306 

GCca9 2 M. canariensis Gran Canaria 443294 3077235 

GCcaNew 5 M. canariensis Gran Canaria 443042 3077314 

GChl56 8 M. helianthemifolia Gran Canaria 442558 3076212 

GChl57 6 M. helianthemifolia Gran Canaria 443042 3077314 

GChl58 1 M. helianthemifolia Gran Canaria 443111 3077399 

GChl59 1 M. helianthemifolia Gran Canaria 443072 3077385 

GChl60 8 M. helianthemifolia Gran Canaria 443114 3077477 

GChl61 1 M. helianthemifolia Gran Canaria 443126 3077400 

GCln29 3 M. lanata Gran Canaria 431175 3087367 

GCln31 1 M. lanata Gran Canaria 428604 3088307 

GCln32 1 M. lanata Gran Canaria 431709 3103135 

GCln33 2 M. lanata Gran Canaria 432162 3088094 
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Table S1. Continued 

Pop Nr. Samples Species Island UTM Zone 28N Y UTM Zone 28N X 

GCln34 1 M. lanata Gran Canaria 432227 3088126 

GCln35 3 M. lanata Gran Canaria 432320 3087923 

GCln36 3 M. lanata Gran Canaria 432371 3087366 

GCln37 3 M. lanata Gran Canaria 433443 3089414 

GCln38 2 M. lanata Gran Canaria 437890 3092001 

GCln39 8 M. lanata Gran Canaria 438415 3092818 

GCln40 1 M. lanata Gran Canaria 440461 3093480 

GCln41 3 M. lanata Gran Canaria 441247 3089747 

GCln44 9 M. lanata Gran Canaria 438613 3095957 

GCln46 13 M. lanata Gran Canaria 437917 3091772 

GCln47 13 M. lanata Gran Canaria 434909 3100327 

GClnxbe46 1 M. lanataxbenthamii Gran Canaria 431603 3102671 

GClu65 8 M. leucantha Gran Canaria 424920 3095052 

GClu66 7 M. leucantha Gran Canaria 427243 3096018 

GCpi62 7 M. pineolens Gran Canaria 432335 3103782 

GCpi63 2 M. pineolens Gran Canaria 432182 3103371 

GCpi64 12 M. pineolens Gran Canaria 432337 3103763 

GCtu14 3 M. tenuis Gran Canaria 430545 3087138 

GCtu15 14 M. tenuis Gran Canaria 430547 3087138 

GCtu16 9 M. tenuis Gran Canaria 424743 3100857 

GCtu17 3 M. tenuis Gran Canaria 424929 3095129 

GCtu18 1 M. tenuis Gran Canaria 427243 3096018 

GCtu19 4 M. tenuis Gran Canaria 427540 3082909 

GCtu20 3 M. tenuis Gran Canaria 430567 3086681 

GCtu21 1 M. tenuis Gran Canaria 430583 3086663 

GCtu22 10 M. tenuis Gran Canaria 431131 3107660 

GCtu23 9 M. tenuis Gran Canaria 434508 3082204 

GCtu24 1 M. tenuis Gran Canaria 432071 3096244 

GCtu25 1 M. tenuis Gran Canaria 432078 3096250 

GCtu26 2 M. tenuis Gran Canaria 429302 3085088 

GCtu27 9 M. tenuis Gran Canaria 441956 3113102 

GCtu28 5 M. tenuis Gran Canaria 428854 3086184 

GCtu29 10 M. tenuis Gran Canaria 431332 3096190 

GCtu30 5 M. tenuis Gran Canaria 432043 3096062 

GCtu31 13 M. tenuis Gran Canaria 428604 3088307 

GCtuxca14 1 M. tenuis x canariensis Gran Canaria 430545 3087138 

LGgo11 2 M. gomerensis La Gomera 272067 3114002 

LGgo12 4 M. gomerensis La Gomera 275672 3113273 

LGgo5 4 M. gomerensis La Gomera 285344 3110162 

LGgo6 1 M. gomerensis La Gomera 286523 3110078 

LGgo9 3 M. gomerensis La Gomera 283049 3113035 

LGlp1 4 M. lepida La Gomera 279844 3111428 

LGlp2 8 M. lepida La Gomera 280172 3111082 

LGlp3 4 M. lepida La Gomera 282195 3111442 

LGlp4 4 M. lepida La Gomera 282923 3108046 

LGlp5 4 M. lepida La Gomera 285344 3110162 

LGlp6 3 M. lepida La Gomera 286523 3110078 

LGlpxpl3 1 M. lepida x pedro-luisii La Gomera 282195 3111442 

LGlpxpl4 2 M. lepida x pedro-luisii La Gomera 282923 3108046 

LGlpxpl6 6 M. lepida x pedro-luisii La Gomera 286523 3110078 

LGpl10 4 M. pedro-luisii La Gomera 279413 3117631 
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Table S1. Continued 

Pop Nr. Samples Species Island UTM Zone 28N Y UTM Zone 28N X 

LGpl11 4 M. pedro-luisii La Gomera 279413 3114002 

LGpl13 4 M. pedro-luisii La Gomera 279102 3118023 

LGpl4 1 M. pedro-luisii La Gomera 282923 3108046 

LGpl6 4 M. pedro-luisii La Gomera 286523 3110078 

LGpl7 2 M. pedro-luisii La Gomera 282972 3119896 

LGpl8 4 M. pedro-luisii La Gomera 286742 3113200 

LGpl9 3 M. pedro-luisii La Gomera 283049 3113035 

Tede62 4 M. densiflora Tenerife 316554 3137590 

Tedexva62 1 M. varia x densiflora Tenerife 316554 3137590 

Tegl3 5 M. glomerata Tenerife 381771 3160144 

Tehy10 1 M. hyssopifolia Tenerife 362295 3130619 

Tehy15 10 M. hyssopifolia Tenerife 321033 3131845 

Tehy16 2 M. hyssopifolia Tenerife 336907 3142444 

Tehy17 6 M. hyssopifolia Tenerife 344288 3142006 

Tehy27 3 M. hyssopifolia Tenerife 321385 3127560 

Tehy28 5 M. hyssopifolia Tenerife 322135 3129690 

Tehy29 4 M. hyssopifolia Tenerife 322353 3126403 

Tehy30 3 M. hyssopifolia Tenerife 323741 3115933 

Tehy31 2 M. hyssopifolia Tenerife 324644 3138283 

Tehy32 5 M. hyssopifolia Tenerife 327335 3124584 

Tehy33 1 M. hyssopifolia Tenerife 327338 3124500 

Tehy34 12 M. hyssopifolia Tenerife 329114 3114546 

Tehy35 8 M. hyssopifolia Tenerife 335984 3105056 

Tehy36 2 M. hyssopifolia Tenerife 337619 3138495 

Tehy37 6 M. hyssopifolia Tenerife 337795 3117528 

Tehy38 2 M. hyssopifolia Tenerife 337931 3140511 

Tehy39 2 M. hyssopifolia Tenerife 339687 3141439 

Tehy40 1 M. hyssopifolia Tenerife 340823 3142100 

Tehy41 2 M. hyssopifolia Tenerife 340981 3140280 

Tehy44 10 M. hyssopifolia Tenerife 348944 3121286 

Tehy45 3 M. hyssopifolia Tenerife 349067 3120956 

Tehy46 2 M. hyssopifolia Tenerife 349598 3120061 

Tehy47 5 M. hyssopifolia Tenerife 349764 3134750 

Tehy48 11 M. hyssopifolia Tenerife 350562 3136795 

Tehy49 3 M. hyssopifolia Tenerife 351094 3118406 

Tehy50 10 M. hyssopifolia Tenerife 352089 3116651 

Tehy51 4 M. hyssopifolia Tenerife 352942 3138152 

Tehy52 6 M. hyssopifolia Tenerife 353541 3114975 

Tehy53 5 M. hyssopifolia Tenerife 360114 3139313 

Tehy54 6 M. hyssopifolia Tenerife 360141 3120233 

Tehy55 3 M. hyssopifolia Tenerife 360169 3120299 

Tehy56 5 M. hyssopifolia Tenerife 361935 3125040 

Tehy57 6 M. hyssopifolia Tenerife 364598 3131653 

Tehy7 2 M. hyssopifolia Tenerife 358912 3125710 

Tehy9 5 M. hyssopifolia Tenerife 361330 3122771 

Telc42 2 M. lachnophylla Tenerife 345654 3133206 

Telc43 2 M. lachnophylla Tenerife 345999 3132925 

Telc60 8 M. lachnophylla Tenerife 346345 3132424 

Telc61 12 M. lachnophylla Tenerife 346351 3131823 

Tels58 9 M. lasiophylla Tenerife 345354 3124417 

Tels59 6 M. lasiophylla Tenerife 348456 3124501 
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Table S1. Continued 

Pop Nr. Samples Species Island UTM Zone 28N Y UTM Zone 28N X 

Term x va1 2 M. rivas-martinezii x varia** Tenerife 389591 3157861 

Term1 9 M. rivas-martinezii Tenerife 389591 3157861 

Term2 2 M. rivas-martinezii Tenerife 388725 3157862 

Tetf10 3 M. teneriffae Tenerife 362295 3130619 

Tetf4 4 M. teneriffae Tenerife 376797 3153040 

Tetf5 4 M. teneriffae Tenerife 361115 3122266 

Tetf6 1 M. teneriffae Tenerife 376257 3153686 

Tetf7 5 M. teneriffae Tenerife 358912 3125710 

Tetf9 4 M. teneriffae Tenerife 361330 3122771 

Tetfxhy10 3 M. teneriffae x hyssopifolia Tenerife 362295 3130619 

Tetfxhy8 2 M. teneriffae x hyssopifolia Tenerife 358912 3125710 

Tetfxva6 2 M. teneriffae x varia Tenerife 376257 3153686 

Teva11 3 M. varia Tenerife 316573 3137268 

Teva12 8 M. varia Tenerife 317536 3136504 

Teva13 10 M. varia Tenerife 318033 3134928 

Teva14 5 M. varia Tenerife 318469 3140302 

Teva18 7 M. varia Tenerife 376876 3156804 

Teva19 4 M. varia Tenerife 378916 3159058 

Teva2 8 M. varia Tenerife 388725 3157862 

Teva20 7 M. varia Tenerife 380957 3158289 

Teva21 5 M. varia Tenerife 381494 3158461 

Teva22 2 M. varia Tenerife 381711 3160119 

Teva23 7 M. varia Tenerife 382079 3157979 

Teva24 2 M. varia Tenerife 383166 3156454 

Teva26 10 M. varia Tenerife 387643 3158473 

Teva6 6 M. varia Tenerife 376257 3153686 

Teva62 4 M. varia Tenerife 316554 3137590 

LPhp1 4 M. herpyllomorpha La Palma 218227 3183546 

LPhp2 2 M. herpyllomorpha La Palma 218506 3183953 

LPhp3 4 M. herpyllomorpha La Palma 220098 3184898 

LPhp4 4 M. herpyllomorpha La Palma 223206 3181300 

LPhp5 4 M. herpyllomorpha La Palma 218919 3164257 

LPhp5a 4 M. herpyllomorpha La Palma 213170 3173527 

LPhp6 2 M. herpyllomorpha La Palma 222272 3152723 

LPhp7 2 M. herpyllomorpha La Palma 226161 3162465 

LPhp8 3 M. herpyllomorpha La Palma 229510 3185748 

LPhp9 3 M. herpyllomorpha La Palma 230702 3178927 

EHhi1 4 M. hierrensis El Hierro 204428 3071541 

EHhi2 4 M. hierrensis El Hierro 205015 3061895 

EHhi3 4 M. hierrensis El Hierro 206275 3069905 

EHhi4 4 M. hierrensis El Hierro 214503 3079961 

EHhi5 4 M. hierrensis El Hierro 206417 3069310 

EHhi6 4 M. hierrensis El Hierro 202356 3070599 

EHhi7 4 M. hierrensis El Hierro 204034 3073369 
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Table S2.1. Migration rates among species groups calculated with BaysAss. Values correspond to percentage of individuals originated from species in the left column present in species in the upper 

line. The second value corresponds to the 95% confidence interval. Migration rates significantly higher than zero are marked in bold. 

Source/Sink 

Lanzarote Gran Canaria La Gomera 

M. 
mahanensi
s 

M. 
benthamii 

M. 
canariensi
s 

M. 
helianthemifoli
a 

M. lanata 
M. 
leucantha 

M. 
pineolens 

M. tenuis 
M. 
gomerensi
s 

M. lepida 
M. lepida x 
M. pedro-
luisii 

M. pedro-
luisii 

Lanzarote M. mahanensis 67,74 ± 1,02 0,27 ± 0,26 0,23 ± 0,23 0,64 ± 0,63 0,37 ± 0,37 0,81 ± 0,79 0,75 ± 0,74 0,27 ± 0,26 0,84 ± 0,81 0,67 ± 0,65 0,98 ± 0,94 0,68 ± 0,66 

Gran 
Canaria 

M. benthamii 0,89 ± 0,86 
93,12 ± 

1,23 
0,41 ± 0,35 1,33 ± 1,09 1,51 ± 0,81 

14,91 ± 
2,81 

2,56 ± 1,5 0,97 ± 0,55 0,85 ± 0,82 0,67 ± 0,65 0,98 ± 0,94 0,68 ± 0,66 

M. canariensis 13,57 ± 2,77 0,83 ± 0,5 
94,12 ± 

1,07 
0,66 ± 0,64 0,43 ± 0,43 0,91 ± 0,86 0,76 ± 0,74 2,73 ± 0,95 

13,04 ± 
2,67 

0,68 ± 0,67 0,98 ± 0,94 0,68 ± 0,66 

M. helianthemifolia 0,89 ± 0,86 0,27 ± 0,26 0,23 ± 0,22 67,41 ± 0,72 0,37 ± 0,37 0,81 ± 0,78 0,76 ± 0,75 0,27 ± 0,26 0,85 ± 0,82 0,66 ± 0,66 0,98 ± 0,94 0,68 ± 0,67 

M. lanata 0,89 ± 0,86 0,3 ± 0,29 0,23 ± 0,23 1,23 ± 0,91 89,9 ± 1,67 0,99 ± 0,93 0,76 ± 0,75 0,71 ± 0,52 0,85 ± 0,82 0,67 ± 0,66 0,98 ± 0,94 0,7 ± 0,68 

M. leucantha 0,89 ± 0,86 0,27 ± 0,27 0,22 ± 0,22 0,65 ± 0,63 0,37 ± 0,37 
67,63 ± 

0,92 
0,76 ± 0,74 0,26 ± 0,26 0,84 ± 0,81 0,67 ± 0,66 0,97 ± 0,93 0,67 ± 0,67 

M. pineolens 0,89 ± 0,86 0,31 ± 0,3 0,23 ± 0,23 0,65 ± 0,63 0,37 ± 0,37 0,82 ± 0,79 
81,51 ± 

2,57 
0,27 ± 0,27 0,85 ± 0,82 0,67 ± 0,67 0,97 ± 0,94 0,68 ± 0,66 

M. tenuis 0,89 ± 0,86 0,64 ± 0,44 0,87 ± 0,47 16,51 ± 2,57 1,07 ± 0,67 0,94 ± 0,9 0,78 ± 0,76 
90,49 ± 

1,47 
0,84 ± 0,81 0,66 ± 0,65 0,97 ± 0,93 0,68 ± 0,66 

La Gomera 

M. gomerensis 0,89 ± 0,85 0,26 ± 0,26 0,23 ± 0,22 0,64 ± 0,63 0,37 ± 0,37 0,81 ± 0,79 0,76 ± 0,74 0,27 ± 0,26 
67,67 ± 

0,96 
0,66 ± 0,64 0,97 ± 0,93 0,68 ± 0,67 

M. lepida 0,89 ± 0,85 0,28 ± 0,28 0,23 ± 0,22 0,86 ± 0,78 0,4 ± 0,4 0,82 ± 0,79 0,75 ± 0,74 0,28 ± 0,28 2,36 ± 1,37 
85,32 ± 

2,32 
10,7 ± 2,86 1,21 ± 0,94 

M. lepida x M. pedro-
luisii 

0,9 ± 0,86 0,27 ± 0,26 0,23 ± 0,23 0,65 ± 0,63 0,37 ± 0,36 0,81 ± 0,79 0,76 ± 0,74 0,27 ± 0,27 0,84 ± 0,81 0,66 ± 0,65 67,87 ± 1,13 0,67 ± 0,66 

M. pedro-luisii 0,89 ± 0,86 0,27 ± 0,26 0,23 ± 0,22 0,65 ± 0,64 0,38 ± 0,38 0,81 ± 0,78 0,75 ± 0,74 0,27 ± 0,27 0,84 ± 0,81 0,66 ± 0,65 1,91 ± 1,29 
84,15 ± 

2,41 

Tenerife 

M. densiflora 0,89 ± 0,85 0,26 ± 0,26 0,23 ± 0,23 0,65 ± 0,63 0,37 ± 0,37 0,82 ± 0,79 0,76 ± 0,74 0,27 ± 0,26 0,84 ± 0,81 0,67 ± 0,65 0,98 ± 0,94 0,68 ± 0,66 

M. glomerata 0,89 ± 0,86 0,26 ± 0,26 0,23 ± 0,23 0,65 ± 0,63 0,37 ± 0,37 0,81 ± 0,79 0,76 ± 0,74 0,26 ± 0,26 0,84 ± 0,81 0,67 ± 0,65 0,99 ± 0,95 0,67 ± 0,66 

M. hyssopifolia 0,89 ± 0,86 0,26 ± 0,27 0,23 ± 0,23 0,65 ± 0,63 0,37 ± 0,36 0,81 ± 0,78 0,75 ± 0,73 0,27 ± 0,26 0,85 ± 0,82 0,66 ± 0,65 0,97 ± 0,94 0,75 ± 0,73 

M. lachnophylla 0,89 ± 0,86 0,27 ± 0,26 0,23 ± 0,23 0,65 ± 0,63 0,37 ± 0,37 0,81 ± 0,79 0,75 ± 0,73 0,26 ± 0,26 0,84 ± 0,81 0,66 ± 0,65 0,97 ± 0,93 0,68 ± 0,66 

M. lasiophylla 0,89 ± 0,86 0,27 ± 0,26 0,23 ± 0,23 0,64 ± 0,63 0,36 ± 0,36 0,81 ± 0,79 0,76 ± 0,74 0,27 ± 0,27 0,85 ± 0,82 0,66 ± 0,65 0,97 ± 0,93 0,69 ± 0,67 

M. rivas-martinezii 0,89 ± 0,86 0,26 ± 0,26 0,23 ± 0,23 0,65 ± 0,63 0,38 ± 0,37 0,81 ± 0,79 0,76 ± 0,73 0,27 ± 0,27 0,84 ± 0,81 0,67 ± 0,65 0,97 ± 0,93 0,68 ± 0,66 

M. teneriffae 0,89 ± 0,86 0,27 ± 0,26 0,23 ± 0,23 0,64 ± 0,62 0,37 ± 0,37 0,81 ± 0,78 0,76 ± 0,75 0,27 ± 0,27 0,85 ± 0,82 0,67 ± 0,65 0,97 ± 0,93 0,77 ± 0,74 

M. varia Anaga 0,89 ± 0,86 0,27 ± 0,26 0,23 ± 0,23 0,65 ± 0,64 0,36 ± 0,36 0,81 ± 0,78 0,76 ± 0,74 0,27 ± 0,26 0,87 ± 0,84 0,67 ± 0,65 0,98 ± 0,94 0,75 ± 0,73 

M. varia Teno 0,89 ± 0,86 0,26 ± 0,26 0,23 ± 0,23 0,65 ± 0,63 0,37 ± 0,36 0,81 ± 0,78 0,76 ± 0,74 0,26 ± 0,26 0,84 ± 0,81 0,66 ± 0,65 0,98 ± 0,93 0,68 ± 0,67 

La Palma M. herpyllomorpha 0,89 ± 0,86 0,27 ± 0,27 0,23 ± 0,23 0,65 ± 0,63 0,38 ± 0,38 0,81 ± 0,78 0,77 ± 0,75 0,27 ± 0,27 0,84 ± 0,82 0,68 ± 0,66 0,98 ± 0,94 0,74 ± 0,71 

El Hierro M. hierrensis 0,89 ± 0,86 0,27 ± 0,27 0,23 ± 0,23 1,64 ± 1,01 0,37 ± 0,36 0,81 ± 0,79 0,75 ± 0,73 0,29 ± 0,29 0,85 ± 0,82 0,67 ± 0,66 0,98 ± 0,94 0,75 ± 0,73 
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Table S2.1. Continued 

Source/Sink 

Tenerife La Palma El Hierro 

M. 
densiflora 

M. 
glomerata 

M. 
hyssopifolia 

M. 
lachnophylla 

M. 
lasiophylla 

M. rivas-
martinezii 

M. 
teneriffae 

M. varia 
Anaga 

M. varia 
Teno 

M. 
herpyllomorpha 

M. 
hierrensis 

Lanzarote 
M. mahanensis 

1,13 ± 1,09 1,13 ± 1,08 0,18 ± 0,18 0,66 ± 0,64 0,81 ± 0,79 0,86 ± 0,83 0,64 ± 0,63 0,41 ± 0,41 0,58 ± 0,57 0,61 ± 0,59 0,66 ± 0,65 

Gran 
Canaria 

M. benthamii 
1,14 ± 1,09 1,14 ± 1,08 0,18 ± 0,18 0,66 ± 0,64 0,82 ± 0,79 0,86 ± 0,84 0,65 ± 0,65 0,41 ± 0,41 0,59 ± 0,58 0,6 ± 0,59 0,65 ± 0,63 

M. canariensis 
1,13 ± 1,09 1,13 ± 1,08 0,18 ± 0,18 0,66 ± 0,64 0,81 ± 0,79 0,87 ± 0,83 0,65 ± 0,64 0,41 ± 0,41 0,58 ± 0,57 0,6 ± 0,59 0,65 ± 0,64 

M. helianthemifolia 
1,13 ± 1,08 1,13 ± 1,08 0,18 ± 0,18 0,66 ± 0,65 0,8 ± 0,78 0,86 ± 0,83 0,66 ± 0,64 0,41 ± 0,41 0,59 ± 0,57 0,61 ± 0,6 0,65 ± 0,64 

M. lanata 
1,13 ± 1,08 1,13 ± 1,08 0,18 ± 0,18 0,66 ± 0,65 0,81 ± 0,78 0,87 ± 0,83 0,65 ± 0,64 0,41 ± 0,4 0,59 ± 0,58 0,61 ± 0,6 0,65 ± 0,64 

M. leucantha 
1,13 ± 1,08 1,13 ± 1,08 0,18 ± 0,18 0,66 ± 0,64 0,81 ± 0,79 0,86 ± 0,83 0,65 ± 0,64 0,41 ± 0,41 0,59 ± 0,57 0,61 ± 0,59 0,65 ± 0,64 

M. pineolens 
1,14 ± 1,09 1,13 ± 1,08 0,18 ± 0,18 0,66 ± 0,65 0,82 ± 0,79 0,85 ± 0,82 0,66 ± 0,64 0,41 ± 0,4 0,59 ± 0,58 0,6 ± 0,59 0,65 ± 0,64 

M. tenuis 
1,13 ± 1,08 1,13 ± 1,08 0,18 ± 0,17 0,66 ± 0,64 0,81 ± 0,79 0,86 ± 0,83 0,64 ± 0,63 0,41 ± 0,41 0,65 ± 0,63 0,6 ± 0,59 0,66 ± 0,64 

La Gomera 

M. gomerensis 
1,13 ± 1,08 1,13 ± 1,08 0,18 ± 0,18 0,66 ± 0,64 0,81 ± 0,78 0,86 ± 0,83 0,66 ± 0,65 0,41 ± 0,4 0,59 ± 0,58 0,61 ± 0,59 0,66 ± 0,64 

M. lepida 
7,85 ± 3 1,13 ± 1,07 0,18 ± 0,18 0,67 ± 0,64 0,81 ± 0,78 0,85 ± 0,82 0,65 ± 0,64 0,42 ± 0,41 0,59 ± 0,58 0,61 ± 0,6 0,65 ± 0,63 

M. lepida x M. pedro-
luisii 

1,14 ± 1,09 1,13 ± 1,08 0,18 ± 0,17 0,66 ± 0,64 0,81 ± 0,79 0,86 ± 0,83 0,65 ± 0,64 0,42 ± 0,41 0,59 ± 0,57 0,61 ± 0,6 0,65 ± 0,64 

M. pedro-luisii 
1,14 ± 1,09 1,13 ± 1,08 0,18 ± 0,18 0,66 ± 0,64 0,82 ± 0,79 0,86 ± 0,83 0,65 ± 0,64 0,41 ± 0,4 0,6 ± 0,58 0,61 ± 0,59 0,66 ± 0,65 

Tenerife 

M. densiflora 
68,1 ± 1,33 1,13 ± 1,07 0,18 ± 0,18 0,66 ± 0,64 0,81 ± 0,79 0,85 ± 0,82 0,65 ± 0,64 0,41 ± 0,41 0,59 ± 0,57 0,61 ± 0,6 0,65 ± 0,64 

M. glomerata 
1,13 ± 1,07 68,1 ± 1,33 0,18 ± 0,18 0,66 ± 0,64 0,81 ± 0,78 0,86 ± 0,83 0,65 ± 0,64 0,41 ± 0,4 0,59 ± 0,57 0,61 ± 0,6 0,65 ± 0,64 

M. hyssopifolia 
1,36 ± 1,27 1,13 ± 1,08 95,73 ± 0,84 17,38 ± 2,39 0,81 ± 0,79 0,86 ± 0,83 7,37 ± 2,7 0,64 ± 0,6 19,9 ± 2,25 0,65 ± 0,64 0,67 ± 0,66 

M. lachnophylla 
1,13 ± 1,09 1,13 ± 1,07 0,18 ± 0,18 67,42 ± 0,73 0,82 ± 0,79 0,86 ± 0,83 0,66 ± 0,66 0,41 ± 0,41 0,59 ± 0,57 0,61 ± 0,59 0,66 ± 0,64 

M. lasiophylla 
1,14 ± 1,08 1,12 ± 1,07 0,18 ± 0,18 0,66 ± 0,64 67,63 ± 0,92 0,86 ± 0,83 0,66 ± 0,64 0,41 ± 0,41 0,58 ± 0,57 0,61 ± 0,6 0,65 ± 0,63 

M. rivas-martinezii 
1,14 ± 1,08 1,13 ± 1,08 0,18 ± 0,18 0,66 ± 0,64 0,81 ± 0,78 67,69 ± 0,98 0,65 ± 0,64 0,41 ± 0,41 0,59 ± 0,57 0,61 ± 0,59 0,66 ± 0,64 

M. teneriffae 
1,16 ± 1,12 8,18 ± 2,97 0,25 ± 0,24 1,38 ± 0,93 15,3 ± 2,66 13,73 ± 2,81 77,59 ± 3,08 0,8 ± 0,61 0,69 ± 0,65 0,65 ± 0,64 0,66 ± 0,64 

M. varia Anaga 
1,14 ± 1,09 1,13 ± 1,07 0,41 ± 0,31 0,68 ± 0,66 0,81 ± 0,78 1,43 ± 1,11 1,95 ± 1,35 90,3 ± 1,73 0,85 ± 0,74 0,61 ± 0,6 0,66 ± 0,65 

M. varia Teno 
1,13 ± 1,08 1,14 ± 1,08 0,18 ± 0,18 0,66 ± 0,63 0,81 ± 0,79 0,85 ± 0,83 0,65 ± 0,64 0,41 ± 0,41 67,33 ± 0,65 0,6 ± 0,59 0,65 ± 0,64 

La Palma 
M. herpyllomorpha 

1,13 ± 1,08 1,13 ± 1,07 0,19 ± 0,19 0,66 ± 0,64 0,81 ± 0,78 0,85 ± 0,83 0,69 ± 0,68 0,42 ± 0,41 0,59 ± 0,57 86,53 ± 2,19 0,66 ± 0,65 

El Hierro 
M. hierrensis 

1,13 ± 1,08 1,13 ± 1,08 0,2 ± 0,2 1,25 ± 0,89 0,82 ± 0,79 0,85 ± 0,82 0,65 ± 0,64 0,42 ± 0,42 0,58 ± 0,57 0,63 ± 0,62 85,6 ± 2,29 
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Table S2.2. Migration rates among island groups calculated with BaysAss. Values correspond to percentage of individuals originated from islands in the left column present in islands in the upper line. 

The second value corresponds to the 95% confidence interval. Migration rates significantly higher than zero are marked in bold. 

Source/Sink Lanzarote Gran Canaria La Gomera Tenerife La Palma El Hierro 

Lanzarote 68,63 ± 1,79 0,07 ± 0,07 0,41 ± 0,4 0,1 ± 0,1 0,88 ± 0,86 0,98 ± 0,95 

Gran Canaria 1,45 ± 1,39 99,37 ± 0,25 0,42 ± 0,41 0,1 ± 0,1 0,88 ± 0,86 0,98 ± 0,96 

La Gomera 25,55 ± 3,09 0,13 ± 0,13 97,26 ± 1,08 0,1 ± 0,1 0,9 ± 0,88 0,98 ± 0,94 

Tenerife 1,46 ± 1,4 0,08 ± 0,08 0,81 ± 0,64 99,44 ± 0,24 1,2 ± 1,1 1,14 ± 1,11 

La Palma 1,45 ± 1,38 0,08 ± 0,08 0,46 ± 0,45 0,14 ± 0,13 95,24 ± 1,94 0,98 ± 0,95 

El Hierro 1,45 ± 1,39 0,26 ± 0,18 0,64 ± 0,6 0,13 ± 0,12 0,91 ± 0,89 94,93 ± 2,06 



 

 

F
C

U
P

 
M

a
n
u
e
l C

u
rto

 

2
3
6

 

Table S3.1. Migration rate calculated with Migrate among islands. Values correspond to average number of individuals migrating, per generation, from islands in the left column to islands in the upper 

line. Values with 95% intervals above zero (under brackets) are marked as bold. NA: Not available.  

Source/Sink Lanzarote Gran Canaria La Gomera Tenerife La Palma El Hierro 

Lanzarote NA 2.80 (0.00 - 19.33) 6.26 (0.00 - 22.67) 3.65 (0.00 - 20.00) 6.29 (0.00 - 22.67) 3.13 (0.00 - 19.33) 

Gran Canaria 16.16 (0.00 - 32.00) NA 20.50 (3.33 - 36.67) 13.00 (0.00 - 28.67) 32.03 (14.67 - 48.67) 14.36 (0.00 - 30.00) 

La Gomera 5.97 (0.00 - 22.67) 11.22 (0.00 - 27.33) NA 14.43 (0.00 - 30.00) 9.69 (0.00 - 26.67) 12.26 (0.00 - 28.00) 

Tenerife 6.64 (0.00 - 23.33) 4.56 (0.00 - 21.33) 3.75 (0.00 - 20.00) NA 7.15 (0.00 - 23.33) 7.35 (0.00 - 23.33) 

La Palma 10.39 (0.00 - 26.00) 28.41 (11.33 - 44.67) 18.21 (1.33 - 34.67) 15.85 (0.00 - 31.33) NA 16.94 (0.00 - 32.67) 

El Hierro 4.15 (0.00 - 20.67) 5.73 (0.00 - 22.00) 8.26 (0.00 - 24.00) 8.83 (0.00 - 24.67) 9.58 (0.00 - 25.33) NA 

 

Table S3.2. Migration rate calculated with Migrate among Gran Canaria species. Values correspond to average number of individuals migrating, per generation, from species in the left column to 

species in the upper line. Values with 95% intervals above zero (under brackets) are marked as bold. NA: Not available. 

Source/Sink M. benthamii M. canariensis M. helianthemifolia M. lanata M. leucantha M. pineolens M. tenuis 

M. benthamii NA 16.12 (0.00 - 48.00) 19.61 (0.00 - 52.00) 26.85 (0.00 - 57.33) 20.00 (0.00 - 52.00) 11.89 (0.00 - 45.33) 25.27 (0.00 - 56.00) 

M. canariensis 16.76 (0.00 - 49.33) NA 9.10 (0.00 - 42.67) 29.87 (0.00 - 60.00) 9.30 (0.00 - 42.67) 10.09 (0.00 - 44.00) 31.30 (0.00 - 62.67) 

M. helianthemifolia 5.78 (0.00 - 38.67) 3.38 (0.00 - 36.00) NA 20.84 (0.00 - 53.33) 13.91 (0.00 - 46.67) 22.46 (0.00 - 53.33) 4.94 (0.00 - 37.33) 

M. lanata 17.92 (0.00 - 49.33) 10.87 (0.00 - 44.00) 12.87 (0.00 - 45.33) NA 26.03 (0.00 - 57.33) 13.27 (0.00 - 45.33) 6.45 (0.00 - 40.00) 

M. leucantha 7.83 (0.00 - 41.33) 5.97 (0.00 - 40.00) 16.92 (0.00 - 49.33) 21.05 (0.00 - 54.67) NA 6.05 (0.00 - 38.67) 11.20 (0.00 - 44.00) 

M. pineolens 6.78 (0.00 - 40.00) 4.90 (0.00 - 37.33) 7.94 (0.00 - 41.33) 7.96 (0.00 - 42.67) 5.83 (0.00 - 38.67) NA 4.05 (0.00 - 37.33) 

M. tenuis 29.22 (0.00 - 60.00) 12.77 (0.00 - 46.67) 13.24 (0.00 - 46.67) 19.74 (0.00 - 57.33) 9.32 (0.00 - 42.67) 13.24 (0.00 - 45.33) NA 
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Table S3.3. Migration rate calculated with Migrate among La Gomera species. Values correspond to average number of individuals migrating, per generation, from species in the left column to species 

in the upper line. Values with 95% intervals above zero (under brackets) are marked as bold. NA: Not available. 

Source/Sink M. gomerensis M. lepida M. pedro-luisii x M. lepida M. pedro-luisii 

M. gomerensis NA 12.33 (0.00 - 45.33) 20.94 (0.00 - 53.33) 5.00 (0.00 - 37.33) 

M. lepida 13.82 (0.00 - 46.67) NA 23.86 (0.00 - 56.00) 5.41 (0.00 - 38.67) 

M. pedro-luisii x M. lepida 4.10 (0.00 - 37.33) 16.51 (0.00 - 49.33) NA 4.30 (0.00 - 37.33) 

M. pedro-luisii 5.11 (0.00 - 38.67) 4.27 (0.00 - 37.33) 15.52 (0.00 - 48.00) NA 

 

Table S3.4. Migration rate calculated with Migrate among Tenerife species. Values correspond to average number of individuals migrating, per generation, from species in the left column to species 

in the upper line. Values with 95% intervals above zero (under brackets) are marked as bold. NA: not valieble. 

Source/Sink M. densiflora M. glomerata M. hyssopifolia 
M. 

lachnophylla 
M. lasiophylla 

M. rivas-
martinezii 

M. teneriffae M. varia Anaga M. varia Teno 

M. densiflora NA 
13.65 (0.00 - 

49.33) 
6.18 (0.00 - 

38.67) 
3.87 (0.00 - 

37.33) 
4.18 (0.00 - 

37.33) 
5.09 (0.00 - 

37.33) 
8.72 (0.00 - 

41.33) 
4.21 (0.00 - 

37.33) 
14.22 (0.00 - 

48.00) 

M. glomerata 
18.20 (0.00 - 

49.33) 
NA 

10.70 (0.00 - 
42.67) 

13.94 (0.00 - 
45.33) 

4.50 (0.00 - 
37.33) 

5.31 (0.00 - 
38.67) 

5.42 (0.00 - 
38.67) 

7.40 (0.00 - 
40.00) 

12.32 (0.00 - 
44.00) 

M. hyssopifolia 
13.49 (0.00 - 

45.33) 
26.55 (0.00 - 

57.33) 
NA 

26.52 (0.00 - 
58.67) 

13.93 (0.00 - 
46.67) 

17.07 (0.00 - 
49.33) 

32.77 (0.00 - 
64.00) 

17.65 (0.00 - 
49.33) 

31.67 (0.00 - 
62.67) 

M. 
lachnophylla 

4.55 (0.00 - 
37.33) 

7.13 (0.00 - 
40.00) 

18.17 (0.00 - 
50.67) 

NA 
8.87 (0.00 - 

41.33) 
19.88 (0.00 - 

50.67) 
20.07 (0.00 - 

52.00) 
5.39 (0.00 - 

38.67) 
16.28 (0.00 - 

50.67) 

M. lasiophylla 
8.72 (0.00 - 

41.33) 
5.68 (0.00 - 

38.67) 
15.79 (0.00 - 

48.00) 
4.90 (0.00 - 

37.33) 
NA 

4.68 (0.00 - 
37.33) 

8.38 (0.00 - 
41.33) 

6.55 (0.00 - 
40.00) 

17.89 (0.00 - 
49.33) 

M. rivas-
martinezii 

7.22 (0.00 - 
40.00) 

5.16 (0.00 - 
38.67) 

5.34 (0.00 - 
38.67) 

7.03 (0.00 - 
40.00) 

5.01 (0.00 - 
37.33) 

NA 
17.63 (0.00 - 

49.33) 
5.32 (0.00 - 

38.67) 
14.68 (0.00 - 

46.67) 

M. teneriffae 
15.12 (0.00 - 

46.67) 
5.48 (0.00 - 

38.67) 
27.57 (0.00 - 

58.67) 
24.29 (0.00 - 

54.67) 
6.64 (0.00 - 

40.00) 
21.15 (0.00 - 

52.00) 
NA 

14.57 (0.00 - 
46.67) 

14.37 (0.00 - 
46.67) 

M. varia Anaga 
6.74 (0.00 - 

40.00) 
5.42 (0.00 - 

38.67) 
11.06 (0.00 - 

44.00) 
8.64 (0.00 - 

41.33) 
5.70 (0.00 - 

38.67) 
9.00 (0.00 - 

41.33) 
12.63 (0.00 - 

45.33) 
NA 

8.87 (0.00 - 
41.33) 

M. varia Teno 
15.53 (0.00 - 

48.00) 
22.18 (0.00 - 

56.00) 
9.21 (0.00 - 

42.67) 
14.04 (0.00 - 

46.67) 
19.72 (0.00 - 

56.00) 
12.60 (0.00 - 

45.33) 
9.92 (0.00 - 

42.67) 
6.53 (0.00 - 

40.00) 
NA 
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Fig. S1. Representation of expected heterozygosity (He) and FST per population used as proxy of genetic diversity and 

differentiation. For each measure there is a graph summarizing it per island, per species, and per age class. From top to 

bottom the box-plots correspond to the different datasets used: including all samples, .only M. varia and M. hyssopifolia, 

and Western lineage (Tenerife, EH, LP, and part of LG). 
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Appendix V: Supplementary material from section 4.2.  

 

Manuel Curto, M., Christina Schachteler, C., Puppo, P., Meimberg, H., (submitted.) 

Phylogenetic analyses of RAD data to infer the evolution of Micromeria in the Canary 

Islands. 
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Table S1. Samples used in this study including individual code, islands of origin, species, population code, evaluation of 

DNA quality (High: strong high molecular weight band; Medium: less strong molecular weight band; Low: faint molecular 

weight band; Smeared: fragmented DNA), number of reads retained per sample after quality filtering (Nr of final reads), 

and number of loci produced by PyRAD (Nr of loci). The column “Included in phylogeny” contains information regarding 

the inclusion of each sample in the final phylogenetic analyses. The last four columns include information regarding the 

barcode and index used for each sample. 

Individ
ual 

Island Species 
Popul
ation 

Sample 
quality 

Nr of 
final 
reads 

Nr of 
loci  

Included in 
phylogeny 

Barco
de P5 

Barco
de P7 

Index P5 Index P7 

GCbe_
154_1b 

Gran 
Canari
a 

M. 
benthamii 

Gcbe
1 High 108447 850 yes 

ATCA
T 

ATGA
T 

TATAGCCT / 
TATAGCCT 

GAGATTCC / 
ATTACTCG 

GCbe_
155_1C 

Gran 
Canari
a 

M. 
benthamii 

Gcbe
2 High 86483 724 yes 

AACG
T 

ACGT
T 

GGCTCTGA / 
TATAGCCT 

CTGAAGCT / 
ATTACTCG 

GChl_4
32 

Gran 
Canari
a 

M. 
helianthe
mifolia 

GChl
1 High 23202 200 yes 

TCAG
A 

TCTG
A 

GGCTCTGA / 
TATAGCCT 

CTGAAGCT / 
ATTACTCG 

GCv_1
4_1 

Gran 
Canari
a 

M. 
canariens
is 

GCca
1 Medium 53691 444 yes 

AGCA
T 

ATGC
T 

TCATCTTA / 
TATAGCCT 

CGGCTATG / 
ATTACTCG 

GCv_1
7_17 

Gran 
Canari
a 

M. 
canariens
is 

GCca
2 High 124911 1726 yes 

ATCA
T 

ATGA
T 

GGCTCTGA / 
TATAGCCT 

CTGAAGCT / 
ATTACTCG 

GCv_1
7_19 

Gran 
Canari
a 

M. 
canariens
is 

GCca
2 High 21186 231 yes 

TACG
A 

TCGT
A 

CCTATCCT / 
TATAGCCT 

GAATTCGT / 
ATTACTCG 

GCv_2
1_2 

Gran 
Canari
a 

M. 
canariens
is 

GCca
3 High 25753 200 yes 

TCGA
A 

TTCG
A 

ATAGAGGC / 
TATAGCCT 

ATTCAGAA / 
ATTACTCG 

GCv_2
2_1 

Gran 
Canari
a 

M. 
canariens
is 

GCca
3 Medium 172394 921 yes 

AACG
T 

ACGT
T 

GTACTGAC / 
ATAGAGGC 

GAGATTCC / 
ATTACTCG 

GCv_2
4_1 

Gran 
Canari
a 

M. 
canariens
is 

GCca
3 High 41766 329 yes 

AGCA
T 

ATGC
T 

GGCTCTGA / 
TATAGCCT 

CTGAAGCT / 
ATTACTCG 

GCv_2
9_12 

Gran 
Canari
a 

M. 
canariens
is 

GCca
4 Medium 57211 519 yes 

TCGA
A 

TTCG
A 

TCATCTTA / 
TATAGCCT 

CGGCTATG / 
ATTACTCG 

GCv_2
9_5 

Gran 
Canari
a 

M. 
canariens
is 

GCca
4 High 109398 1518 yes 

AACG
T 

ACGT
T 

TATAGCCT / 
TATAGCCT 

GAGATTCC / 
ATTACTCG 

GCv_3
33 

Gran 
Canari
a 

M. 
canariens
is 

GCca
5 High 76831 700 yes 

ACAG
T 

ACTG
T 

AGGCGAAG / 
TATAGCCT 

TTAATGCGC 
/ ATTACTCG 

GCv_3
40 

Gran 
Canari
a 

M. 
canariens
is 

GCca
5 High 57195 762 yes 

ACGT
T 

AACG
T 

ATAGAGGC / 
TATAGCCT 

ATTCAGAA / 
ATTACTCG 

GCv_4
36 

Gran 
Canari
a 

M. 
canariens
is 

GCca
6 High 41413 417 yes 

AGCA
T 

ATGC
T 

CCTATCCT / 
TATAGCCT 

GAATTCGT / 
ATTACTCG 

GCv_4
37 

Gran 
Canari
a 

M. 
canariens
is 

GCca
6 High 103883 1188 yes 

ATCA
T 

ATGA
T 

ATAGAGGC / 
TATAGCCT 

ATTCAGAA / 
ATTACTCG 

GCv_4
54 

Gran 
Canari
a 

M. 
canariens
is 

GCca
7 Medium 57539 375 yes 

TCAG
A 

TCTG
A 

GTACTGAC / 
ATAGAGGC 

GAGATTCC / 
ATTACTCG 

GCv_4
55 

Gran 
Canari
a 

M. 
canariens
is 

GCca
7 Medium 77482 635 yes 

TCAG
A 

TCTG
A 

TCATCTTA / 
TATAGCCT 

CGGCTATG / 
ATTACTCG 

GCv_4
56 

Gran 
Canari
a 

M. 
canariens
is 

GCca
7 High 250095 2924 yes 

ACAG
T 

ACTG
T 

ATAGAGGC / 
TATAGCCT 

ATTCAGAA / 
ATTACTCG 

GCv_4
57 

Gran 
Canari
a 

M. 
canariens
is 

GCca
7 High 250173 2792 yes 

ACGT
T 

AACG
T 

CCTATCCT / 
TATAGCCT 

GAATTCGT / 
ATTACTCG 

GCv_5
05_1 

Gran 
Canari
a 

M. 
canariens
is 

GCca
8 Low 150589 1022 yes 

AACG
T 

ACGT
T 

TATACGGT / 
ATAGAGGC 

ATTCAGAA / 
ATTACTCG 

GCv_5
05_2 

Gran 
Canari
a 

M. 
canariens
is 

GCca
8 Low 36782 292 yes 

AGCA
T 

ATGC
T 

ATACACCG / 
ATAGAGGC 

GAATTCGT / 
ATTACTCG 

GCv_L
F_4 

Gran 
Canari
a 

M. 
canariens
is 

GCca
10 High 86084 1069 yes 

AACG
T 

ACGT
T 

CCTATCCT / 
TATAGCCT 

GAATTCGT / 
ATTACTCG 

GCv_L
F3 

Gran 
Canari
a 

M. 
canariens
is 

GCca
10 High 124683 1881 yes 

AGCA
T 

ATGC
T 

ATAGAGGC / 
TATAGCCT 

ATTCAGAA / 
ATTACTCG 

Lav_Mi
cE 

Lanzar
ote 

M. 
mahanen
sis  

Lama
2 Low 32795 246 yes 

ACGT
T 

AACG
T 

ATACACCG / 
ATAGAGGC 

GAATTCGT / 
ATTACTCG 

Lav_Mi
cH 

Lanzar
ote 

M. 
mahanen
sis  

Lama
2 Low 37542 329 yes 

ACAG
T 

ACTG
T 

ATACACCG / 
ATAGAGGC 

GAATTCGT / 
ATTACTCG 

LGvg_5
72_1 

La 
Gomer
a 

M. 
gomerens
is 

LGgo
2 High 163107 1639 yes 

AACG
T 

ACGT
T 

AGGCGAAG / 
TATAGCCT 

TTAATGCGC 
/ ATTACTCG 

 

 

 



 

 

242 FCUP 
Manuel Curto 

Table S1. Continued 

Individ
ual 

Island Species 
Popu
lation 

Sample 
quality 

Nr of 
reads 

Nr 
of 

loci 

Included in 
phylogeny 

Barco
de P5 

Barco
de P7 

Index P5 Index P7 

LGvg_5
72_4 

La 
Gomer
a 

M. 
gomerensis 

LGgo
2 

High 38484 380 yes 
TCAG
A 

TCTG
A 

CCTATCCT / 
TATAGCCT 

GAATTCGT / 
ATTACTCG 

LGvg_5
72_7 

La 
Gomer
a 

M. 
gomerensis 

LGgo
2 

High 22761 210 yes 
TTGC
A 

TGCA
A 

TCATCTTA / 
TATAGCCT 

CGGCTATG / 
ATTACTCG 

LGvg_5
72_8 

La 
Gomer
a 

M. 
gomerensis 

LGgo
2 

High 
15553

4 
1481 yes 

TCAG
A 

TCTG
A 

AGGCGAAG / 
TATAGCCT 

TTAATGCGC 
/ ATTACTCG 

LGvg_5
79_3 

La 
Gomer
a 

M. 
gomerensis 

LGgo
3 

Medium 66112 495 yes 
ATCA
T 

ATGA
T 

GTACTGAC / 
ATAGAGGC 

GAGATTCC / 
ATTACTCG 

LGvg_5
79_7 

La 
Gomer
a 

M. 
gomerensis 

LGgo
3 

High 48721 503 yes 
TCGA
A 

TTCG
A 

CCTATCCT / 
TATAGCCT 

GAATTCGT / 
ATTACTCG 

LGvg_5
79_8 

La 
Gomer
a 

M. 
gomerensis 

LGgo
3 

High 
23286

9 
2278 yes 

ATCA
T 

ATGA
T 

AGGCGAAG / 
TATAGCCT 

TTAATGCGC 
/ ATTACTCG 

LGvv_5
64_10 

La 
Gomer
a 

M. pedro-
luisii 

LGpl1 High 68669 424 yes 
ACGT
T 

AACG
T 

GGCTCTGA / 
TATAGCCT 

CTGAAGCT / 
ATTACTCG 

LGvv_5
65_2 

La 
Gomer
a 

M. pedro-
luisii 

LGpl2 High 
11789

1 
970 yes 

ATCA
T 

ATGA
T 

CCTATCCT / 
TATAGCCT 

GAATTCGT / 
ATTACTCG 

LGvv_5
83_1 

La 
Gomer
a 

M. 
gomerensis 

LGgo
4 

High 25240 247 yes 
TCAG
A 

TCTG
A 

ATAGAGGC / 
TATAGCCT 

ATTCAGAA / 
ATTACTCG 

LGvv_5
83_3 

La 
Gomer
a 

M. 
gomerensis 

LGgo
4 

High 
24786

9 
3021 yes 

AGCA
T 

ATGC
T 

TATAGCCT / 
TATAGCCT 

GAGATTCC / 
ATTACTCG 

LGvvxlp
_570_6 

La 
Gomer
a 

M. lepida x 
M. pedro-
luisii 

LGplx
lp1 

High 
22142

9 
2450 yes 

ACAG
T 

ACTG
T 

TATAGCCT / 
TATAGCCT 

GAGATTCC / 
ATTACTCG 

LPla_31
_A 

La 
Gomer
a 

M. 
herpyllomorp
ha 

LPhe
1 

High 66990 589 yes 
TACG
A 

TCGT
A 

AGGCGAAG / 
TATAGCCT 

TTAATGCGC 
/ ATTACTCG 

LPla_31
_B 

La 
Gomer
a 

M. 
herpyllomorp
ha 

LPhe
1 

Medium 69519 362 yes 
AACG
T 

ACGT
T 

TCATCTTA / 
TATAGCCT 

CGGCTATG / 
ATTACTCG 

Tela_27
7 

La 
Gomer
a 

M. lasiophylla Tela1 High 
16089

9 
1230 yes 

AGCA
T 

ATGC
T 

AGGCGAAG / 
TATAGCCT 

TTAATGCGC 
/ ATTACTCG 

Tev_26
_3 

La 
Gomer
a 

M. varia Tev5 High 99753 713 yes 
ACAG
T 

ACTG
T 

GGCTCTGA / 
TATAGCCT 

CTGAAGCT / 
ATTACTCG 

Tev_31
_10 

La 
Gomer
a 

M. varia Tev7 Medium 58188 292 yes 
TCAG
A 

TCTG
A 

CAGGACGT / 
TATAGCCT 

TGCGCGAA / 
ATTACTCG 

Tev_31
_6 

La 
Gomer
a 

M. varia Tev7 Medium 72130 310 yes 
ACAG
T 

ACTG
T 

CAGGACGT / 
TATAGCCT 

TGCGCGAA / 
ATTACTCG 

Tev_31
_8 

La 
Gomer
a 

M. varia Tev7 Medium 54849 274 yes 
AACG
T 

ACGT
T 

CAGGACGT / 
TATAGCCT 

TGCGCGAA / 
ATTACTCG 

Tev_56
3_7 

La 
Gomer
a 

M. 
hyssopifolia 

Tehy
2 

Medium 
12849

7 
406 yes 

ACGT
T 

AACG
T 

TCATCTTA / 
TATAGCCT 

CGGCTATG / 
ATTACTCG 

GCv_45
3 

Gran 
Canari
a 

M. 
canariensis 

GCca
7 

High 18190 138 d3 
TTGC
A 

TGCA
A 

GGCTCTGA / 
TATAGCCT 

CTGAAGCT / 
ATTACTCG 

GCv_L5
09 

Gran 
Canari
a 

M. 
canariensis 

GCca
9 

High 17000 102 d3 
ACGT
T 

AACG
T 

TATAGCCT / 
TATAGCCT 

GAGATTCC / 
ATTACTCG 

GCv_L
F1 

Gran 
Canari
a 

M. 
canariensis 

GCca
10 

Smeare
d 

15359 43 d3 
ATCA
T 

ATGA
T 

TATAGCCT / 
ATAGAGGC 

CTGAAGCT / 
TCCGGAGA 

LGlp_5
81_1 

La 
Gomer
a 

M. 
gomerensis 

LGgo
1 

High 21247 158 d3 
TCGA
A 

TTCG
A 

ATACACCG / 
ATAGAGGC 

GAATTCGT / 
ATTACTCG 

LGvg_5
72_2 

La 
Gomer
a 

M. 
gomerensis 

LGgo
2 

High 14541 105 d3 
TCAG
A 

TCTG
A 

TATAGCCT / 
TATAGCCT 

GAGATTCC / 
ATTACTCG 

LGvg_5
77_9 

La 
Gomer
a 

M. lepida LGlp2 High 13640 82 d3 
TACG
A 

TCGT
A 

TATAGCCT / 
TATAGCCT 

GAGATTCC / 
ATTACTCG 

LGvvxlp
_570_4 

La 
Gomer
a 

M. lepida x 
M. pedro-
luisii 

LGplx
lp1 

High 17195 109 d3 
TTGC
A 

TGCA
A 

CCTATCCT / 
TATAGCCT 

GAATTCGT / 
ATTACTCG 

Tev_19
7 

La 
Gomer
a 

M. varia Tev1 
Smeare
d 

959 5 d3 
TACG
A 

TCGT
A 

TATAGCCT / 
ATAGAGGC 

CTGAAGCT / 
TCCGGAGA 

EHv_H
5_E 

El 
Hierro 

M. hierrensis EHh1 High 5300 29 No 
TCGA
A 

TTCG
A 

GGCTCTGA / 
TATAGCCT 

CTGAAGCT / 
ATTACTCG 

EHv_H
5_F 

El 
Hierro 

M. hierrensis EHh1 High 4741 41 No 
ACGT
T 

AACG
T 

AGGCGAAG / 
TATAGCCT 

TTAATGCGC 
/ ATTACTCG 

GCle_5
01 

Gran 
Canari
a 

M. leucantha 
GCle
1 

Medium 463 5 No 
TTGC
A 

TGCA
A 

CAGGACGT / 
TATAGCCT 

TGCGCGAA / 
ATTACTCG 
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Table S1. Continued. 

Individ
ual 

Island Species 
Popu
lation 

Sample 
quality 

Nr of 
reads 

Nr 
of 

loci  

Included in 
phylogeny 

Barco
de P5 

Barco
de P7 

Index P5 Index P7 

GCpi_3
90 

Gran 
Canari
a 

M. pineolens 
GCpi
1 

Medium 2145 19 No 
ACGT
T 

AACG
T 

CAGGACGT / 
TATAGCCT 

TGCGCGAA / 
ATTACTCG 

GCpi_3
93 

Gran 
Canari
a 

M. pineolens 
GCpi
1 

Medium 2696 27 No 
ACGT
T 

AACG
T 

GTACTGAC / 
ATAGAGGC 

GAGATTCC / 
ATTACTCG 

GCpi_3
94 

Gran 
Canari
a 

M. pineolens 
GCpi
1 

Medium 11771 70 No 
ACAG
T 

ACTG
T 

GTACTGAC / 
ATAGAGGC 

GAGATTCC / 
ATTACTCG 

GCte_3
21 

Gran 
Canari
a 

M. tenuis 
GCte
1 

Medium 732 10 No 
TACG
A 

TCGT
A 

TCATCTTA / 
TATAGCCT 

CGGCTATG / 
ATTACTCG 

GCv_14
_2 

Gran 
Canari
a 

M. 
canariensis 

GCca
2 

Smeare
d 

5160 22 No 
AGCA
T 

ATGC
T 

TATAGCCT / 
ATAGAGGC 

CTGAAGCT / 
TCCGGAGA 

GCv_14
_5 

Gran 
Canari
a 

M. 
canariensis 

GCca
3 

Smeare
d 

568 1 No 
TTGC
A 

TGCA
A 

ATAGAGGC / 
TATAGCCT 

ATTCAGAA / 
ATTACTCG 

GCv_17
_15 

Gran 
Canari
a 

M. 
canariensis 

GCca
2 

Medium 17569 128 No 
TACG
A 

TCGT
A 

GTACTGAC / 
ATAGAGGC 

GAGATTCC / 
ATTACTCG 

GCv_33
5 

Gran 
Canari
a 

M. 
canariensis 

GCca
5 

Medium 668 8 No 
TCGA
A 

TTCG
A 

CAGGACGT / 
TATAGCCT 

TGCGCGAA / 
ATTACTCG 

GCv_33
8 

Gran 
Canari
a 

M. 
canariensis 

GCca
5 

High 3917 21 No 
ACAG
T 

ACTG
T 

CCTATCCT / 
TATAGCCT 

GAATTCGT / 
ATTACTCG 

Lav_1 
Lanzar
ote 

M. 
mahanensis  

Lama
1 

Smeare
d 

10633 32 No 
ACGT
T 

AACG
T 

TATAGCCT / 
ATAGAGGC 

CTGAAGCT / 
TCCGGAGA 

Lav_2 
Lanzar
ote 

M. 
mahanensis  

Lama
1 

Low 4791 40 No 
TCGA
A 

TTCG
A 

TATACGGT / 
ATAGAGGC 

ATTCAGAA / 
ATTACTCG 

Lav_Mic
G 

Lanzar
ote 

M. 
mahanensis  

Lama
2 

Low 10189 75 No 
TCGA
A 

TTCG
A 

ATACACCG / 
ATAGAGGC 

GAATTCGT / 
ATTACTCG 

LGlp_5
71_1 

La 
Gomer
a 

M. lepida LGlp1 Medium 17215 137 No 
ATCA
T 

ATGA
T 

CAGGACGT / 
TATAGCCT 

TGCGCGAA / 
ATTACTCG 

LGvg_5
72_6 

La 
Gomer
a 

M. 
gomerensis 

LGgo
2 

Medium 15056 111 No 
TCGA
A 

TTCG
A 

GTACTGAC / 
ATAGAGGC 

GAGATTCC / 
ATTACTCG 

LGvg_5
79_5 

La 
Gomer
a 

M. 
gomerensis 

LGgo
3 

Low 4009 42 No 
TTGC
A 

TGCA
A 

TATACGGT / 
ATAGAGGC 

ATTCAGAA / 
ATTACTCG 

LGvv_5
64_11 

La 
Gomer
a 

M. pedro-
luisii 

LGpl1 Low 1011 6 No 
AGCA
T 

ATGC
T 

TATACGGT / 
ATAGAGGC 

ATTCAGAA / 
ATTACTCG 

LGvv_5
64_3 

La 
Gomer
a 

M. pedro-
luisii 

LGpl1 Low 4944 33 No 
ACAG
T 

ACTG
T 

TATACGGT / 
ATAGAGGC 

ATTCAGAA / 
ATTACTCG 

LGvv_5
64_7 

La 
Gomer
a 

M. pedro-
luisii 

LGpl1 Medium 12273 88 No 
ATCA
T 

ATGA
T 

TCATCTTA / 
TATAGCCT 

CGGCTATG / 
ATTACTCG 

LGvv_5
64_9 

La 
Gomer
a 

M. pedro-
luisii 

LGpl1 Low 15163 93 No 
AACG
T 

ACGT
T 

ATACACCG / 
ATAGAGGC 

GAATTCGT / 
ATTACTCG 

LGvv_5
65_10 

La 
Gomer
a 

M. pedro-
luisii 

LGpl2 Medium 7516 53 No 
AGCA
T 

ATGC
T 

CAGGACGT / 
TATAGCCT 

TGCGCGAA / 
ATTACTCG 

LGvv_5
68_4 

La 
Gomer
a 

M. pedro-
luisii 

LGpl3 High 1463 9 No 
TACG
A 

TCGT
A 

ATAGAGGC / 
TATAGCCT 

ATTCAGAA / 
ATTACTCG 

LGvv_5
68_5 

La 
Gomer
a 

M. pedro-
luisii 

LGpl3 Medium 11929 77 No 
ACAG
T 

ACTG
T 

TCATCTTA / 
TATAGCCT 

CGGCTATG / 
ATTACTCG 

LGvvxlp
_570_5 

La 
Gomer
a 

M. lepida x 
M. pedro-
luisii 

LGplx
lp1 

Low 8733 77 No 
TACG
A 

TCGT
A 

TATACGGT / 
ATAGAGGC 

ATTCAGAA / 
ATTACTCG 

LPhe_3
2_A 

La 
Gomer
a 

M. 
herpyllomorp
ha 

LPhe
2 

Low 15731 70 No 
TCAG
A 

TCTG
A 

ATACACCG / 
ATAGAGGC 

GAATTCGT / 
ATTACTCG 

Mav_6 
La 
Gomer
a 

M. 
maderensis 

Mam
1 

Smeare
d 

1886 7 No 
TCGA
A 

TTCG
A 

TATAGCCT / 
ATAGAGGC 

CTGAAGCT / 
TCCGGAGA 

Tehy_2
_3 

La 
Gomer
a 

M. 
hyssopifolia 

Tehy
1 

Low 2764 24 No 
TTGC
A 

TGCA
A 

TATAGCCT / 
ATAGAGGC 

CTGAAGCT / 
TCCGGAGA 

Tela_28
9 

La 
Gomer
a 

M. lasiophylla Tela2 Medium 4748 42 No 
TTGC
A 

TGCA
A 

GTACTGAC / 
ATAGAGGC 

GAGATTCC / 
ATTACTCG 

Tev_19
9 

La 
Gomer
a 

M. varia Tev1 Medium 84677 393 No 
ATCA
T 

ATGA
T 

TATACGGT / 
ATAGAGGC 

ATTCAGAA / 
ATTACTCG 

Tev_26
0 

La 
Gomer
a 

M. varia Tev3 
Smeare
d 

8030 24 No 
AACG
T 

ACGT
T 

TATAGCCT / 
ATAGAGGC 

CTGAAGCT / 
TCCGGAGA 

Tev_26
1 

La 
Gomer
a 

M. varia Tev3 
Smeare
d 

1050 5 No 
TCAG
A 

TCTG
A 

TATAGCCT / 
ATAGAGGC 

CTGAAGCT / 
TCCGGAGA 
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Table S1. Continued 

Individ
ual 

Island Species 
Popul
ation 

Sample 
quality 

Nr of 
reads 

Nr of 
loci  

Included in 
phylogeny 

Barco
de P5 

Barco
de P7 

Index P5 Index P7 

Tev_2
8_2 

La 
Gome
ra 

M. varia Tev6 Medium 12635 84 No 
TACG
A 

TCGT
A 

CAGGACGT / 
TATAGCCT 

TGCGCGAA / 
ATTACTCG 

Tev_2
8_4 

La 
Gome
ra 

M. varia Tev6 Smeared 11397 28 No 
ACAG
T 

ACTG
T 

TATAGCCT / 
ATAGAGGC 

CTGAAGCT / 
TCCGGAGA 

Tev_3
1_2 

La 
Gome
ra 

M. varia Tev7 Low 3420 28 No 
TACG
A 

TCGT
A 

ATACACCG / 
ATAGAGGC 

GAATTCGT / 
ATTACTCG 

Tev_3
19 

La 
Gome
ra 

M. varia Tev4 Medium 5423 40 No 
TTGC
A 

TGCA
A 

TATACGGT / 
ATAGAGGC 

ATTCAGAA / 
ATTACTCG 

Tev_3
2_3 

La 
Gome
ra 

M. varia Tev8 Low 19821 116 No 
TCAG
A 

TCTG
A 

TATACGGT / 
ATAGAGGC 

ATTCAGAA / 
ATTACTCG 

Tev_5
63_10 

La 
Gome
ra 

M. 
hyssopif
olia 

Tehy2 High 9334 48 No 
TTGC
A 

TGCA
A 

AGGCGAAG / 
TATAGCCT 

TTAATGCGC / 
ATTACTCG 

Tev_5
63_9 

La 
Gome
ra 

M. 
hyssopif
olia 

Tehy2 Medium 33607 124 No 
AGCA
T 

ATGC
T 

GTACTGAC / 
ATAGAGGC 

GAGATTCC / 
ATTACTCG 

 

Table S2. Oligonucleotides used in our RAD-sequencing approach. Barcodes and Index information are available in Table 

S1. 

Name Sequence 

Y-adapter P5 5'-ACACTCTTTCCCTACACGACGCTCTTCCGATCT[Barcode]-3 

Y-adapter P7 [Phos] 5'-AATT[Barcode]AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC-3' 

P5seq 5'-ACACTCTTTCCCTACACGACGCTCTT-3' 

P7 seq 5'-GTGACTGGAGTTCAGACGTGTGCTCTT-3' 

P5amp 5'-AATGATACGGCGACCACCGAGATCT-3' 

P7amp 5'-CAAGCAGAAGACGGCATACGAGAT-3' 

P5_Index_Pri
mer 

5'-
AATGATACGGCGACCACCGAGATCTACAC[IndexP5]ACACTCTTTCCCTACACGAC
GCTCTTCCGATCT-3' 

P7_Index_Pri
mer 

5'-
CAAGCAGAAGACGGCATACGAGAT[IndexP7]GTGACTGGAGTTCAGACGTGTGCTC
TT-3' 
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Fig. S1. Mr.Bayes tree calculated with the dataset including loci with a maximum missing data of 50%. Bars in the nodes 

correspond to posterior probability values >90%. The last two letters after species name correspond to island information 

as in Table S3. 


