

iUSE – Visual Analytics & Web

Framework for Desktop Runtime

Intelligence Services

Luís Miguel Fonseca Rodrigues

Mestrado em Multimédia da Universidade do Porto

Orientador: Doutor António Manuel Lucas Soares (Professor Associado)

Junho de 2013

© Luís Rodrigues, 2013

iUSE – Visual Analytics & Web Framework for

Desktop Runtime Intelligence Services

Luís Miguel Fonseca Rodrigues

Mestrado em Multimédia da Universidade do Porto

Aprovado em provas públicas pelo Júri:

Presidente: Doutor Eurico Manuel Elias de Morais Carrapatoso (Professor Auxiliar)

Vogal Externo: Doutor José Benjamim Ribeiro da Fonseca (Professor Auxiliar)

Orientador: Doutor António Manuel Lucas Soares (Professor Associado)

Resumo

iUSE é uma plataforma web de Runtime Intelligence Services para aplicações desktop que

disponibiliza os meios de recolha, transporte e análise visual do uso de uma aplicação

informática. Coloca à disposição dos produtores de aplicações um conjunto de ferramentas

cliente/servidor que, de forma não invasiva, recolhe informação sobre a utilização das suas

aplicações em tempo real. A informação recolhida é condensada em visualizações que mostram

padrões e tendências de uso que revelam o perfil dos utilizadores.

O iUSE inova no domínio de Runtime Intelligence, se comparado com produtos similares,

na introdução de modelos visuais adequados à visualização de dados complexos e suas relações

(modelos visuais baseados em grafos de informação ou modelos hierárquicos) e na sua

capacidade de integração com a web semântica (Linked-data) através da exportação dos dados

recolhidos para RDF, de acordo com o esquema de ontologia definido.

Abstract

iUSE is a Runtime Intelligence Service web framework for desktop applications that

provides the means to collect, transport, analyze and visualize application usage. It offers a

stack of client and server tools to software producers that unobtrusively capture real-time usage

data directly from their applications. Collected intelligence is rendered as visualizations that

show usage trends and patterns that unveil user profiles.

iUSE innovates, when compared to similar products, on how information visualization is

applied and on its ability to provide integration with the semantic web and its linked-data world.

iUSE introduces the concept of networks for Visual Analytics in the domain of software runtime

intelligence and the representation of data using semantic models for the web (OWL and RDF).

Agradecimentos

Embora uma tese seja, pela sua finalidade académica, um trabalho individual, há

contributos de natureza diversa que não podem nem devem deixar de ser realçados. Deixo, por

isso, aqui algumas palavras de agradecimento e profundo reconhecimento.

Ao Professor Eng.º António Lucas Soares, pela disponibilidade manifestada em orientar

este trabalho, pela exigência de método e rigor, pela orientação científica e pelos oportunos

comentários, esclarecimentos e sugestões, e pela acessibilidade e cordialidade demonstradas,

que se tornaram decisivos na elaboração desta tese.

Deixo também uma palavra de agradecimento aos professores da FEUP, que me

acompanharam ao longo do primeiro ano da tese de mestrado. A sua orientação científica e os

comentários críticos aos trabalhos realizados ampliaram significativamente a abrangência dos

meus conhecimentos na área multimédia.

Não poderia também faltar uma palavra de apreço a todos os colegas de mestrado que tive

oportunidade de conhecer, pelo companheirismo e disponibilidade demonstrados ao longo dos

trabalhos que desenvolvemos em conjunto.

Por último, mas não de somenos importância, gostaria de agradecer à minha família. Aos

meus pais, Rosária e Custódio, pelo apoio e compreensão inestimáveis e pelo investimento que

fizeram em mim, ao longo de todo o meu percurso académico. Aos meus irmãos, Paula e Jorge,

pela amizade e encorajamento. À minha namorada Ana pela revisão crítica do texto, pela

compreensão e constante estímulo ao longo da elaboração deste trabalho. E, especialmente, ao

meu filho Tiago, pela ternura com que sempre me presenteou, mesmo nos momentos em que

terei estado menos presente. Espero que o entusiasmo, seriedade e empenho que dediquei a este

trabalho possam servir-lhe de estímulo no futuro, para fazer sempre mais e melhor.

Luís Rodrigues

Index

Introduction ... 1

1.1 Context and Motivation ... 2

1.2 Project ... 3

1.3 Problems, Hypothesis and Research Objectives 3

1.4 Research Methodology .. 5

1.5 Thesis outline .. 6

Literature Review .. 7

2.1 Introduction ... 8

2.2 Visual Data Mining/Analytics ... 8

2.3 Networks and visualization ... 10

2.4 Conclusions ... 17

Market Survey ... 18

3.1 Introduction ... 19

3.2 Millimetrics ... 21

3.3 DeskMetrics .. 23

3.4 TrackerBird ... 25

3.5 UserMetrix .. 27

3.6 EQATEC ... 29

3.7 Mixpanel ... 31

3.8 Conclusions ... 33

Requirement Specification ... 35

4.1 Introduction ... 36

4.2 Stakeholders .. 36

4.3 System Architecture .. 37

4.4 Functional Requirements ... 38

4.4.1 Core Features .. 38

4.4.2 Data Point Requirements ... 40

4.4.3 Linked Data World .. 45

4.5 Technology .. 47

4.6 Visual Analytics Dashboard .. 50

4.6.1 Networks ... 52

4.6.2 Hierarchical model .. 55

4.6.3 Radial Convergence .. 56

4.6.4 Usability .. 57

Implementation ... 59

5.1 Data Storage .. 60

5.2 Web endpoint .. 62

5.3 Modeling with OWL ... 63

5.3.1 Domain and Scope .. 64

5.3.2 Asserted model .. 65

5.4 Dashboard ... 70

Conclusions and Future Work ... 73

6.1 Objectives Accomplishment ... 74

6.2 Future Work .. 74

References .. 77

Usability testing ... 80

Personas ... 82

Stakeholders Survey .. 84

xiii

Figures

Figure 1 - The visual analytics process (Keim et al., 2010, p. 10). 9

Figure 2 - The visual analytics disciplines (Keim et al., 2010, p. 12). 9

Figure 3 - New Visual Language. 16

Figure 4 - Custom reports (Millimetrics) 22

Figure 5 - “Top errors” and “View in time of reports” (Millimetrics) 22

Figure 6 - Environment information (Deskmetrics) 24

Figure 7 - Event trends (Deskmetrics) 24

Figure 8 - Feature Events and OS report (TrackerBird). 26

Figure 9 - Dashboard (TrackerBird) 26

Figure 10 - Dashboard (UserMetrix) 28

Figure 11 - Error detail (UserMetrix) 28

Figure 12 - Environment (EQATEC) 30

Figure 13 - Feature Use (EQATEC) 30

Figure 14 - Events overview (Mixpanel) 32

Figure 15 - Event Period Comparison (Mixpanel) 32

Figure 16 - iUSE overview. 36

Figure 17 - iUSE architecture. 37

Figure 18 - Functional Requirements. 38

Figure 19 - Runtime Intelligence Data. 40

Figure 20 - Canvas vs. SVG performance comparison (MSDN, 2013). 49

Figure 23 - Networks (Lima, 2011, p. 102). 51

Figure 23 - Hierarchical (D3.js). 51

Figure 23 - Radial (Lima, 2011, p. 197). 51

Figure 24 - Network topology. 52

Figure 25 - Hierarchical model. 55

Figure 26 - Radial Convergence. 56

Figure 27 - Real-time synthesized audio. 58

Figure 28 - Entity relationship. 60

Figure 29 - Anatomy of a data request. 61

Figure 30 - Analytics data-mining. 62

file:///C:/Users/lmr/Dropbox/Tese-Projecto/iUSE/Report/iUSE-dissertacao-MMUP.docx%23_Toc363555773
file:///C:/Users/lmr/Dropbox/Tese-Projecto/iUSE/Report/iUSE-dissertacao-MMUP.docx%23_Toc363555774
file:///C:/Users/lmr/Dropbox/Tese-Projecto/iUSE/Report/iUSE-dissertacao-MMUP.docx%23_Toc363555775
file:///C:/Users/lmr/Dropbox/Tese-Projecto/iUSE/Report/iUSE-dissertacao-MMUP.docx%23_Toc363555776
file:///C:/Users/lmr/Dropbox/Tese-Projecto/iUSE/Report/iUSE-dissertacao-MMUP.docx%23_Toc363555777
file:///C:/Users/lmr/Dropbox/Tese-Projecto/iUSE/Report/iUSE-dissertacao-MMUP.docx%23_Toc363555781
file:///C:/Users/lmr/Dropbox/Tese-Projecto/iUSE/Report/iUSE-dissertacao-MMUP.docx%23_Toc363555788
file:///C:/Users/lmr/Dropbox/Tese-Projecto/iUSE/Report/iUSE-dissertacao-MMUP.docx%23_Toc363555789
file:///C:/Users/lmr/Dropbox/Tese-Projecto/iUSE/Report/iUSE-dissertacao-MMUP.docx%23_Toc363555790
file:///C:/Users/lmr/Dropbox/Tese-Projecto/iUSE/Report/iUSE-dissertacao-MMUP.docx%23_Toc363555791
file:///C:/Users/lmr/Dropbox/Tese-Projecto/iUSE/Report/iUSE-dissertacao-MMUP.docx%23_Toc363555792
file:///C:/Users/lmr/Dropbox/Tese-Projecto/iUSE/Report/iUSE-dissertacao-MMUP.docx%23_Toc363555793
file:///C:/Users/lmr/Dropbox/Tese-Projecto/iUSE/Report/iUSE-dissertacao-MMUP.docx%23_Toc363555794
file:///C:/Users/lmr/Dropbox/Tese-Projecto/iUSE/Report/iUSE-dissertacao-MMUP.docx%23_Toc363555795
file:///C:/Users/lmr/Dropbox/Tese-Projecto/iUSE/Report/iUSE-dissertacao-MMUP.docx%23_Toc363555796
file:///C:/Users/lmr/Dropbox/Tese-Projecto/iUSE/Report/iUSE-dissertacao-MMUP.docx%23_Toc363555797
file:///C:/Users/lmr/Dropbox/Tese-Projecto/iUSE/Report/iUSE-dissertacao-MMUP.docx%23_Toc363555798
file:///C:/Users/lmr/Dropbox/Tese-Projecto/iUSE/Report/iUSE-dissertacao-MMUP.docx%23_Toc363555799
file:///C:/Users/lmr/Dropbox/Tese-Projecto/iUSE/Report/iUSE-dissertacao-MMUP.docx%23_Toc363555800
file:///C:/Users/lmr/Dropbox/Tese-Projecto/iUSE/Report/iUSE-dissertacao-MMUP.docx%23_Toc363555801
file:///C:/Users/lmr/Dropbox/Tese-Projecto/iUSE/Report/iUSE-dissertacao-MMUP.docx%23_Toc363555802

xiv

Figure 31 - OWL model. 65

Figure 32 - OWL session. 67

Figure 33 - Menu. 70

Figure 34 - Hierarchical Model. 70

Figure 35 - Networks (Selected Node) 71

Figure 36 - Networks. 71

Figure 37 - Error analysis using networks. 72

file:///C:/Users/lmr/Dropbox/Tese-Projecto/iUSE/Report/iUSE-dissertacao-MMUP.docx%23_Toc363555803
file:///C:/Users/lmr/Dropbox/Tese-Projecto/iUSE/Report/iUSE-dissertacao-MMUP.docx%23_Toc363555804
file:///C:/Users/lmr/Dropbox/Tese-Projecto/iUSE/Report/iUSE-dissertacao-MMUP.docx%23_Toc363555805
file:///C:/Users/lmr/Dropbox/Tese-Projecto/iUSE/Report/iUSE-dissertacao-MMUP.docx%23_Toc363555806
file:///C:/Users/lmr/Dropbox/Tese-Projecto/iUSE/Report/iUSE-dissertacao-MMUP.docx%23_Toc363555807
file:///C:/Users/lmr/Dropbox/Tese-Projecto/iUSE/Report/iUSE-dissertacao-MMUP.docx%23_Toc363555808
file:///C:/Users/lmr/Dropbox/Tese-Projecto/iUSE/Report/iUSE-dissertacao-MMUP.docx%23_Toc363555809

xv

Tables

Table 1 - Runtime Intelligence Services comparative analytics. 20

Table 2 - Common runtime data points and pivots. 41

Table 3 - Application vs. Web analytics focuses and features. 42

Table 4 - Context data points. 43

Table 5 - Execution data points. 44

Table 6 - iUSE and EO common concepts. 46

Table 7 - Techniques for representing multivariate linear data. 50

Table 8 - Database entities. 60

Table 9 - OWL classes. 66

Table 10 - OWL object properties. 68

Table 11 - OWL data properties. 68

xvii

Abbreviations

API Application Programming Interface

CRM Customer Relationship Management

CSS Cascading Style Sheet

DOM Document Object Model

GPU Graphical Processing Unit

GUID Globally Unique Identifier

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IP Internet Protocol

KDD Knowledge Discovery in Databases

LOB Line-Of-Business

LOD Linking Open Data

OOP Object Oriented Programming

OS Operating System

OWL Ontology Web Language

R&D Research and Development

RDF Resource Description Framework

REST Representational State Transfer

SDK Software Development Kit

SOAP Service Oriented Application Protocol

SVG Scalable Vector Graphics

SWEO Semantic Web Education and Outreach

TED Technology Entertainment and Design

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

UTC Coordinated Universal Time

UX User Experience

XML Extensible Markup Language

Chapter 1

Introduction

Introduction

 2

1.1 Context and Motivation

iUSE was motivated by two fundamental principles: organizational and technological.

Technologically, it was an opportunity to learn and practice emerging web technologies like

HTML5 and SVG. However, the main motivation of this project was organizational.

Software development organizations are constantly searching for improved ways to line up

their resources with business goals and to adjust development investments with business

outcomes. To succeed, decision makers need tools whose analysis yield actionable intelligence.

Working as a software developer for the past 15 years, I’ve realized that a common difficulty in

development organizations that produce line-of-business applications is to accurately track the

success and quality of implemented features.

All software implements a set of features believed to have a key role on improving user’s

processes in a specific area or domain. During application requirement analysis and design,

features are introduced explicitly by customer’s request, or implicitly by inferred data. The

weakness of inferred features rests in the quality of collected data that supports it - an inferred

feature may be assumed as a justified need but, for a varied number of reasons, users may not

share the same opinion. And that happens to be more critical whenever there are mediators

between the development organization and the customer (end-user), making it difficult to access

truthful feedback from users. Another reason for inferred features to be, sometimes, unaligned

with real end-user needs occurs when the universe of users is too large to efficiently collect

opinions from a relevant sample. In short, after a software release, the lack of an efficient

communication channel with the user, raises common questions to development organizations

related to: when and if the product was installed; the context in what it is running on; the use

that is being given to the various features; the existence or absence of patterns of use; the

existence of trends; quality issues; and so on.

In what concerns quality, usually the developer lacks vital information to help him

diagnose the issue. Commonly, the end-user’s error reports are vague and therefore the

possibilities are immense. From a bug in the software to a particularity of the user’s running

environment that the software is not handling, almost any scenario is possible. At this stage, the

developer, along with the quality team, try to reproduce the problem in a similar context and

following the exact steps as the end-user did. But often the results are different from the

reported issue. What if software developers could get all the diagnostic information they

needed, just by having end-users interacting with their software?

Real-time data streams seen in a perspective of individual usage and their underlying

hardware and software technology stack, combined with “community” usage patterns, help in

answering “development” questions.

Introduction

 3

1.2 Project

The Agile Manifesto states that "Working software is the primary measure of progress and

development's highest priority is to satisfy the customer through early and continuous delivery

of valuable software." In that context, development success can be measured where users and

their applications meet. iUSE targets Development as “the customer” providing reliable

analytics by taking advantage of the most immediate communication tool that development

organizations have at their disposal and rarely use: their application.

 iUSE offers a stack of client and server tools to software developers that unobtrusively

capture usage data directly from their applications. Collected intelligence is rendered in a Visual

Analytics Dashboard with visualizations that show usage trends and patterns that unveil how

users use the software.

“Network thinking” (Lima, 2011) is of key influence in the project: The complex

connectedness of modern times requires new tools of analysis and exploration; it demands a

holistic system approach with macro/micro vision to the intricate mesh of connections among its

smallest elements. It ultimately calls for network thinking.

Networks are omnipresent, so if we consider new methods of analysis or modeling, then

we need to consider the network thinking. This notion is transversal to the project: iUSE ability

to provide integration with the semantic web and its linked-data world (OWL and RDF); and the

Visual Analytics Dashboard follows that consistency in thought by adopting visual models

based on network topologies.

1.3 Problems, Hypothesis and Research Objectives

The project addressed several aspects of today’s desktop analytics software and runtime

intelligence, some of which are the subject of this thesis. Because iUSE was projected to be a

working product, various layers of the system had to be designed and implemented. The

researched problematic concerned desktop software analytic requirements and strategies to

manage runtime intelligence data and investigate new methods of information visualization. I

will briefly comment on each one in the next paragraphs.

The value of analytics is well understood by Web stakeholders and accepted as a standard

component of any Web project. Further, Web users have come to accept that Web sites collect

runtime data. But, traditionally Web analytics has put sales and marketing roles, rather than

development, as "the customer" for these technologies. This difference in focus leads to an

immediate functional divergence and virtually ensures that the gap between development

requirements and Web/mobile analytics functionality will continue to widen.

Understanding this difference in focus between marketing and development roles was the

motivation to define iUSE analytics requirements. The first problem that this thesis addressed

was a definition of a basic set of “development” data suitable to feed a Runtime

Introduction

 4

Intelligence system capable of providing actionable intelligence to the stakeholders of

desktop software development organizations.

A definition to an elementary set of “development” runtime data that an analytic system

should implement was created by analyzing data obtained through the methodologies described

ahead in section 1.4 (Research Methodology).

In information technology, big data is a collection of data sets so large and complex that it

becomes difficult to process using on-hand database management tools or traditional data

processing applications. The challenges include capture, storage, search, sharing, analysis, and

visualization. The trend to larger data sets is due to the additional information derivable from

analysis of a single large set of related data, as compared to separate smaller sets with the same

total amount of data, allowing correlations to be found (e.g. spot business trends). In a smaller

scale, iUSE had to cope with “big data” challenges when handling large quantities of

information collected from thousands of users. Two of those challenges were: how to structure

and aggregate information for web clients properly because communication latency can impact

system performance and user experience; how to expose all the richness of collected raw

intelligence to the outside of iUSE data silo. The later was subject of research.

Previously I have described the first project goal – define an elementary set of

“development” runtime data – which is tightly connected with this second: Proposal of a

standard schema to expose runtime intelligence as raw data. It was not just to provide the

ability to export raw data, but doing so in a way that acknowledges that collected data is stored

in the Web, a growing global “neurological” storage (Lima, 2011). Not only is data becoming

more widely accessible but also it is becoming enriched with metadata, allowing new sets of

comparison.

In a March 2009 talk at Technology Entertainment and Design (TED) conference, Berners-

Lee made a vehement exaltation for linked data (Berners-Lee, 2009). One year later, in

February 2010, he came back to support his vision with various practical examples, stating that

“if people put data on the web – government data, scientific data, community data, runtime

intelligence – whatever it is, it will be used by other people to do wonderful things in ways they

could have never imagined.” This project proposal to a standard schema was to create an

Ontology described with OWL that defines a common model of runtime intelligence data.

Raw data is exported as RDF.

As previously stated “big data” represents a challenge for visualization. One of the best

ways to explore and understand a large data set is to place the numbers into a visual space and

let the brain find the patterns. We are good at that. Runtime intelligence hides a story with its

complex data, a large number of highly interconnected and interdependent variables, that might

never be unveiled with just formal statistical methods or standard graph – bar charts, pie charts,

scatter plots, line charts, and so on. To comprehend it, we need new methods of information

visualization, a new kind of representation for information processing: a tool for understanding

data – i.e., discovering patterns, connections, and structure. Such tool was the visualization

Introduction

 5

problem researched in iUSE - Investigate Visual Analytics
1
 models to enable human-

information discourse of application usage levels, patterns and practices.

1.4 Research Methodology

iUSE project emerged from several years of experience working as a software developer.

The idea grew with the awareness of a common difficulty of desktop applications development

organizations to accurately track the success and quality of implemented features (see 1.1).

Also, market solutions (see Market Survey) presented weaknesses that could be turned into an

opportunity to develop iUSE. Large data point collection costs, unstructured or limited access to

collected data (an important asset for organizations) and failure to provide usage patterns and

relationship analytics (or merely visually scattered information throughout multiple views) were

just some of the weaknesses for the majority of the surveyed products, in spite of good support

in analyzing trends in time and quantifying top usage.

The aspects presented in the previous paragraph identified an opportunity to create the

project (iUSE) focused on strengthening some of the surveyed weaknesses, with special

emphasis on providing high-density visualizations and Visual Analytics of usage relationships

and patterns.

The definition of a basic set of Runtime Intelligence functional requirements for desktop

applications (see 4.4) started by interviewing people from a business software company (Sage

Portugal) in key management roles, in the development process (see Stakeholders Survey) and

by creating Personas that described their profiles (see Personas).

For implementing client services and designing the API that integrators should use to

publish information into iUSE cloud services (see 4.3), client APIs from DeskMetrics and

UserMetrix (surveyed products) were installed and analyzed.

In what concerns the cloud services, models were created to optimize data storage and

mining, and then enhanced in an iterative process with the visual models because of their tight

connection (see 5.1). Technologies and standards were investigated to enable integration of

iUSE Runtime Intelligence Services with the web (see 5.2).

OWL Ontology was modeled using Protégé
2
 with the purpose to create a standard

exporting model to accommodate the gathered Runtime Intelligence Data (see 5.3). A search for

Ontologies in the domain of Runtime Intelligence was made throughout Ontology Stores to find

a matching Ontology to be used or extended, but such Ontology was not found. Nevertheless,

some related Ontologies served as inspiration for modeling some concepts (e.g., Event and

Activity from the Enterprise Ontology).

1 Visual analytics is "the science of analytical reasoning facilitated by visual interactive interfaces."(Cook, 2005)
2 Protégé is a free, open source ontology editor and a knowledge acquisition system.

Introduction

 6

Visual Analytics was supported by a literature review on principles of information

visualization (Tufte, 1990), (Tufte, 1997), (Tufte, 2001) and also a literature review on

displaying complex information through the use of networks (Lima, 2011) – inspired by the

surveyed practices on information visualization (http://www.visualcomplexity.com). From the

state of the art review (see 2.3) and the surveyed contemporaneous information visualizations

examples, three models were chosen to depict patterns of use and relationships between

Runtime Intelligence Data: Network, Hierarchical, and Radial Convergence models (see 4.6).

In what concerns the implementation of the Visual Analytics Dashboard, a set of rich

internet application technologies was examined (see 4.5) and culminated with the adoption of

SVG (Scalable Vector Graphics) and Web Audio API (web synthesized sound), two

specifications of the HTML5 standard proposal, and D3 a JavaScript visualization library. A

high-fidelity prototype implemented interaction behaviors and visualization for the three

selected models (see 0).

The prototype was evaluated using iterative cognitive walkthrough, performed by the

author while developing the prototype, and by using the Talk-Aloud Protocol for usability

testing (see Usability testing).

1.5 Thesis outline

Besides introduction, this thesis has four more chapters. Chapter 2 resumes the literature

review regarding the state of the art in Visual Analytics, with focus on depicting complex

information through the use of network topologies. Market survey examines how runtime

intelligence is implemented by similar products and reported in Chapter 3. Requirement

specifications for all components of iUSE framework are described in Chapter 4. Chapter 5

elaborates on the details of their implementation. The thesis concludes with Chapter 6 stating

conclusions and future work.

http://www.visualcomplexity.com/

Chapter 2

Literature Review

Literature Review

 8

2.1 Introduction

This chapter focuses on visual representation. It starts with an overview on information

visualization fields, specifically the path from Visual Data Mining towards Visual Analytics and

concludes presenting a review of literature on methods of visualizing complex information, with

special emphasis on portraying information using network topologies.

The literature review on methods of visualizing complex information through the use of

networks was based on the work of Manuel Lima (Lima, 2011). Lima is a designer, lecturer and

curator of one of the most influential online galleries that presents some of the best projects in

information visualization: VisualComplexity.com is focused on visualizations of networks. In is

work Visual Complexity: Mapping Patterns of Information (2011), Lima balances historical and

theoretical discussions with the presentation of exemplary projects in network visualization;

elaborates on detailed principles to handle network representation challenges; and discusses an

embryonic and evolving taxonomy – a portrait of the current state of the practice that reveals the

initial building blocks shaping a new visual language for depicting complexity through

networks.

2.2 Visual Data Mining/Analytics

“The goal of visual data mining is to help a user to get a feeling for the data, to

detect interesting knowledge, and to gain a deep visual understanding of the data

set” (Ankerst, 2002)

Nieggman (2001) interprets visual data mining as visual representation close to the mental

model. If humans understand information by forming a mental model, then a data visualization

metaphor close to the mental model can reveal hidden information. In the domain of software

usage, one such model could be the use of networks (graph-based-data).

Ankerst (2000), in addition to the role of the visual data representation, explored the

relation between visualization and the data mining and knowledge discovery (KDD) process,

and defined visual data mining as “a step in the KDD process that utilizes visualization as a

communication channel between the computer and the user to produce novel and interpretable

patterns.”

Visual Analytics uses similar techniques for KDD but with different focus: Data Mining is

computer-centred – computer performs data analysis and humans use the results by visual

inspection and interactive tunning of association rules; Visual Analytics is human-centred –

computer helps humans to solve a complex problem through visual perceptual and cognitive

capabilities. Mining is performed by humans through perception of patterns, reasoning and

intuition, insights otherwise not found by standard algorithmic means (Keim et al., 2010).

Literature Review

 9

"Visual analytics is the science of analytical reasoning facilitated by interactive

visual interfaces" (Cook, 2005)

 The visual analytics process (see Figure 1) aims at tightly coupling automated analysis

methods and interactive visual representations. In the context of visual analytics, the guide to

visually exploring data "Analyze first, show the important, zoom/filter, analyze further, details

on demand” (Keim et al., 2006) indicates that it is not sufficient to just retrieve and display the

data using a visual metaphor (Shneiderman, 1996); rather, it is necessary to analyze the data

according to its value of interest, showing the most relevant aspects of the data, and at the same

time, providing interaction models, which allow the user to get details of the data on demand.

Visualization is at the heart of Visual Analytics (see Figure 2). Information visualization

has developed methods for the visualization of abstract data where no explicit spatial references

are given (Spenc, 2007). The data values cannot be naturally mapped to 2D or 3D display space,

and standard charting techniques such as x-y plots, line graphs and bar-charts are ineffective

with large multi-dimensional datasets. Moreover, as mentioned earlier, the capacity to interact

with the data is extremely important. Novel visualizations have been developed such as

treemaps, glyph and pixel-based visual data representations, to name just a few, together with a

Figure 1 - The visual analytics process (Keim et al., 2010, p. 10).

Figure 2 - The visual analytics disciplines (Keim et al., 2010, p. 12).

Literature Review

 10

variety of techniques to reduce display clutter (Dix, 2007). There are also special techniques for

visualizing structured data, such as graph-based approaches for networks.

2.3 Networks and visualization

Networks and visualization are two techno-cultural phenomena of our time. While some

scientists have already started to study networks in the middle of the twentieth century,

globalization and the rise of the web in the nineties and the explosion of online social networks

in the last decade have drawn attention to their importance. Furthermore, although scientists had

already been making graphs and charts of their data since the early nineteenth century, the

ubiquity of computers and the wealth of data unleashed by networks democratized information

visualization, making it a rapidly growing new area of art and science.

The more recent language of Information Visualization share a lot in common with

standard graph – bar charts, pie charts, scatter plots, line charts, and so on – already in use for

about one hundred years before computers. Both represent quantified data by systematically

mapping it into visual images: points, lines, curves, simple shapes, and other primitive graphics.

However, there are some unique characteristics of information visualization: contemporary

designers, artists, and computer scientists are trying to represent considerably more data than

ever before; they want to represent relations between more dimensions of data than is possible

with older graph types such as bar charts (one dimension) or scatter plots (two dimensions),

generating designs
3
 that are visually denser, more complex, and more varied than the familiar

charts; and information visualization as also an aesthetical and ideological dimension that lies in

understanding the phenomena of complexity (e.g., chaos theory
4
), which is reflected in the kinds

of visualization we find appealing.

A network is a structural and organizational model transversal to almost every subject,

from genes to computer systems and social communities. This ubiquitous topology is the object

of study in network science, a new discipline aiming to uncover and understand the inherent

principles and behaviors that regulate a variety of natural and artificial systems, normally

characterized by the complexity of a multitude of interconnecting elements.

Application usage runtime data represents interactions between “things” in the domain of

use (i.e., people, software features, and organizations). It stores cause and effect evidences (e.g.,

user fires an event starting an activity that produces a software exception) whose

interconnectedness iUSE tries to unveil. For this reason, networks are a natural choice for

depicting iUSE complexities, because they share the goal to explain important aspects and

clarify given areas of a system. By communicating in a simple, effective way, the network

visualizations become powerful means for information processing and understanding.

3 Examples at www.visualcomplexity.com, http://infosthetics.com/, http://visualizing.org
4 Chaos theory is a scientific theory describing erratic behavior in certain nonlinear dynamical systems.

http://www.visualcomplexity.com/
http://infosthetics.com/
http://visualizing.org/
http://en.wikipedia.org/wiki/Chaos_theory

Literature Review

 11

Deleuze and Guattari in their Capitalism and Schizophrenia (1972-80) introduced the

concept of rhizome, aimed at acknowledging multiplicities and multilinearities:

“In contrast to centred systems with hierarchical modes of communication and pre-

established paths, the rhizome is an acentered, non-hierarchical, nonsignifying

system without a General and without an organizing memory or central automaton,

defined solely by a circulation of states.”

The rhizomatic model is a significant influence in postmodern thinking, particularly in

areas like communication theory, cyberspace theory, complex systems, nonlinear narrative, and

hypermedia. But perhaps one of the most famous demonstrations of the principle’s applicability

is hypertext – perhaps the largest rhizomatic system ever created by man.

A few decades before Deleuze and Guattari’s conception of the rhizome, American

scientist Warren Weaver was already aware of the inherent complexities of nature and the

obstacles anticipated by the scientific community in deciphering them. In 1948 in an article

entitled “Science and Complexity,” Weaver divided the history of modern science into three

distinct stages: “problems of simplicity” – understanding the influence of one variable over

another; “problems of disorganized complexity” – complex systems with many variables where

interaction between many of these variables was thought to be random and sometimes chaotic;

and “problems of organized complexity” – the last stage defined by Weaver, initiated in the

second half of the twentieth century and continuing to these day (Weaver, 1948).

The complex connectedness of modern times requires new tools of analysis and

exploration, but above all, it demands a new way of thinking. It demands a holistic system

approach with macro/micro vision to the intricate mesh of connections among its smallest

elements. It ultimately calls for network thinking.

There are various examples of how previous conceptions of organization (i.e., taxonomies)

are giving way to new ideas capable to address the complexities of modern society (Lima, 2011,

pp. 43-69). Complex systems, such as the Brain or the World Wide Web, are defined by a large

number of interconnected elements, normally taking the shape of a network.

Networks are omnipresent – we act and live in networks, so if we consider new methods of

analysis, modeling or simulation, then we need to consider the network thinking. This notion of

network thinking is transversal to the iUSE project (e.g., iUSE Ontology) and visualization

follows that consistency in though.

Network representation is commonly used by two main areas: graph drawing (under graph

theory) and network visualization (under information visualization). In both disciplines the

pictorial representation of a network throughout a set of vertices (nodes) connected by edges

(links) is known as graph. Network visualization extends beyond the mere geometric drawing

of graphs, using elementary design principles aimed at an efficient and comprehensible

representation of the target system.

Literature Review

 12

The network structure, based on nodes and links, can produce many insights: What are the

nodes doing? How are they interacting? How many connections do they have? What are they

sharing? This series of queries can lead to the identification of the topological significance. In

this pursuit, network visualization can be a remarkable discovery tool, able to translate

structural complexity into perceptible visual insights aimed at a clearer understanding. It is

through its pictorial representation and interactive analysis that modern network visualization

reveals many structures hidden from human perception, from eccentric visualizations of the

World Wide Web to the representation of the brain’s neural network.

As a visual decoder of complexity, the practice of network visualization is commonly

driven by five key functions: document, clarify, reveal, expand, and abstract (Lima, 2011, p.

80). Clarify and Reveal are considered the most relevant for this project:

 Clarify – The central objective in this context is simplification – to explain important

aspects and clarify given areas of the system. By communicating in a simple, effective

way, the network visualizations become powerful means for information processing

and understanding.

 Reveal – Find a hidden pattern or explicit new insight into the system. The goal of

revealing should concentrate on causality by leading the disclosure of unidentified

relationships and correlations while also checking initial assumptions and central

questions.

Graphs are, as of today, the most suitable method for the depiction of networks due to their

intrinsic organization based on nodes and links, but they are far from perfect. Many of the

current limitations – such as resolution and screen size – can quickly lead to cluttered displays.

The adoption of interactive techniques solves some but not all of the problems on the

challenging state of affairs in network visualization. In order for the general usability of network

visualization to improve, we need to embrace the existing body of knowledge from graphic

design, cartography, and visual perception, including notions of color theory, composition,

typography, layout, and spatial arrangement.

Lima (2011) proposes a list of eight principles to support the creation of network

visualizations. The first four are general principles of graphical representations; the subsequent

are detailed principles to handle network representation challenges:

1. Start with a question – The definition of a question is vital and ties back to the need for

a clear purpose and goal in every execution. The initial question is what evaluates the

effectiveness of the project as a measure to filter the essential from the superfluous.

2. Look for Relevancy – Human cognition is relevance oriented (Sperber & Wilson, 1995):

we pay attention to information that seems relevant to us. The measure of relevance is

Literature Review

 13

therefore primarily based on the intent of the project and the validation of the initial

question that set it forward. The selection of the most suitable visualization method for

the project is largely determined by the central question. However, this particular quest

is equally dependent on the end users, their immediate context and expressed needs.

Acknowledging the different contexts of use – when, where, and how the final

execution will be used – is crucial in the pursuit of relevancy.

3. Enable Multivariate Analysis – The ties among elements in a network are immensely

rich and detailed, and the inclusion of additional information – able to provide

additional information on the nature of nodes and respective ties – can be fundamental

in expose causality in patterns and relationships, contributing decisively to the holistic

understanding of the depicted topology.

4. Embrace Time – Time is one of the hardest variables to map in any complex system. It

is also one of the richest. If we consider a social network, a snapshot in time can only

tell us a bit of information about that community. Alternatively, if time were to be

properly measured and mapped, it would provide us with a comprehensive

understanding of the social group’s changing dynamics. Time analysis not only

identifies historical evolution, but also highlights the inherent dynamics of real-time

oscillations (Lima, 2011, p. 85).

5. Enrich you vocabulary – Whenever considering the representation of a network, there

are two vital elements to consider: nodes (vertices) and links (edges). The expressive

capabilities of these elements are often neglected. A consideration of a full spectrum of

visual properties – color, shape, size, orientation, texture, value and position, as outlined

in Jacques Bertin’s list of seven graphical attributes from his seminal work Semiology of

Graphics (1984) – can and should be used comprehensively, always reinforced by a

specific semantics able to tie the different data attributes to corresponding visual

elements.

 Richer Nodes – Nodes can be more intelligible with an appropriate use of color and

graphical features. They can also become responsive and provide contextual

information through the use of interactive features. Nodes can expand or shrink,

show or hide relevant information, and ultimately morph according to the user’s

criterion and input.

 Expressive Edges – Edges can express much more than a single connection

between entities. The following factors should be considered in visualizing edges:

length to suggest a gradation of values; color to differentiate or highlight particular

Literature Review

 14

groups, categories, and clusters, or alternatively, singular connections; shape to

communicate the type of relationship.

 Clear Visual Language – One of the caveats behind the implementation of diverse

graphical attributes is to beware of creating a visual language that might not be

immediately recognized by everyone. Embrace the cartographic technique: the

legend. The map legend is vital, allowing for a quick interpretation of the various

graphic components and facilitating an immediate understanding of topology.

6. Expose Grouping – Spatial relationships are as important as explicit visual ties and are a

critical element in exposing contrast and similarity. The idea of grouping is simply to

combine several units of information into related chunks in order to reinforce

relationships, reduce complexity, and improve cognition. In most cases, elements can be

grouped in five distinct ways: alphabetically, by time, by location, by a particular

continuum (or scale), and by a specified category (e.g., images, videos, text). This

procedure, first proposed by Richard Saul Wurman in Information Anxiety (2000), is

known as the five hat racks, and it delivers an effective way to organize most types of

information. Another remarkable source of knowledge on the notion of grouping comes

from Gestalt psychology (Köhler, 1947). Of particular relevance are the devised rules of

perceptual organization, also known as Gestalt laws of grouping. Three of the Gestalt

laws – similarity, proximity and common fate – are particularly important rules in

exposing groups in network visualization.

 Law of similarity (graphical treatment) – The law of similarity asserts that

elements that are similar – either in color, shape, or size – are perceived to be more

related than elements that are dissimilar. This Gestalt principle highlights the need

for a differentiated graphical vocabulary in the depiction of nodes, as a critical

measure for spotting similarities and differences and in order to apprehend the

overall distribution within the system.

 Law of proximity (spatial arrangement) – The law of proximity states that elements

that are close together are perceived as being more related than elements that are

farther apart. This organizing principle proves that relatedness is not only

expressed by graphical properties but also by spatial proximity. The mere

placement of homologous nodes closer to each other suggests inherent

relationships not solely manifested by edges (links).

 Law of common fate (motion) – The law of common fate proclaims that elements

that move simultaneously in the same direction and at the same speed are perceived

as being more related than elements that are stationary or that move in different

Literature Review

 15

directions. This notion is particularly pertinent when trying to highlight contrast

through animation (e.g. depicting the changing dynamics of a network over time).

7. Maximizing Scaling – One of the biggest misconceptions in network visualization is the

notion that a representation that works at one scale will also work at a larger or smaller

scale. Not only do networks showcase different patterns and behaviors at different

scales, but also the user’s needs vary depending on his or her particular position with

respect to the network. When representing a network, it is important to consider three

fundamental views in line with a specific method of analysis: macro view, relationship

view, and micro view.

 Macro View (pattern) – A macro view should provide a bird’s-eye view into the

network and highlight certain clusters, as well as isolated groups, within its

structure. In most cases, the use of color (within nodes or edges) and relevant

positioning (grouping) is enough to provide meaningful insight into the network’s

broad organization.

 Relationship View (connectivity) – The relationship view is concerned with an

effective analysis of the types of relationship among the mapped entities (nodes). It

not only indicates the existence of connections but also offers further revelation,

such as proximity between the nodes, and type and intensity of association. This is

a fundamental view of network visualization and normally requires analysis from

different perspectives or points of view in order to obtain a solid grasp of the

different topologies.

 Micro view (individual nodes) – A micro view into the network should be

comprehensive and explicit, providing detailed information, facts, and

characteristics on a single-node entity. This qualitative exposure helps to clarify the

reasons behind the overall connectivity pattern, from an isolated node to one highly

connected to a large number of other nodes.

8. Manage Intricacy – Even though the three main views for network visualization appear

to be autonomous, it is imperative that users are able to navigate between them in a

seamless way. Progressive disclosure is an interaction-design technique aiming at

simplification that allows additional content and options to be revealed gradually, as

needed, to the user. This technique is particularly relevant if we consider Hick’s Law,

put forth by psychologist William Edmund Hick, which states that the time required to

make a decision increases as the number of variables increases. Alluding to the risk of

displaying a full, convoluted network at once in a single view, Hick’s Law is an

important point of awareness of the perceptual limits of network visualization. Even

Literature Review

 16

though other methods can and should be devised, there are three important concepts that

can help minimize intricacy and unify the three views of network visualization:

 Adaptive Zooming – This widely used modern cartographic technique – strongly

tied with the notion of progressive disclosure – enables the system to render a

different set of visual elements depending of the present zooming view. A similar

method – semantic zoom – could be employed in the depiction of networks, by

focusing on a gradation from macro to micro view, showing the most prominent

nodes first, and then slowly disclosing additional graphical and textural elements:

major hubs and primary links, labels, secondary nodes and links, and so on.

 Overview and detail – A common interaction-design technique, overview and

detail usually comprises a primary viewing area (detail) that allows for different

levels of zoom, accompanied by a smaller macro view (overview), which permits

users to see where they are in the general context. This is particularly relevant in

reassuring users they are free to navigate the system without getting lost.

 Focus and context – This widely used information-visualization concept is one of

the field’s strongest contributions and its most studied technique. It simultaneously

provides a detailed view (focus) and a macro view (context) within a single

configuration. Popularized by the widespread fish-eye view, this method merges

both views in the same space without the need to segregate them.

The network depictions produced in the last decade, enriched by the diversity of subjects,

portray a variety of visual techniques (Lima, 2011, pp. 97-158). Frequently generated by

computer algorithms and enhanced by iterative features, most projects showcase a broad palette

of visual elements and variations that consider color, text,

imagery, shape, contrast, transparency, position, layout and

configuration. Despite this rich graphical diversity, many

projects tend to follow noticeable trends and common

principles, which in turn result in a type of emergent

taxonomy. See Figure 3 (Lima, 2011, p. 158) .

 This embryonic and evolving taxonomy provides a

portrait of the current state of the practice and reveals the

initial building blocks shaping a new visual language: Arc

Diagram, Area Group, Centralized Burst, Centralized Ring,

Circled Globe, Circular Ties, Elliptical Implosion, Flow

Chart, Organic Rhizome, Radial Convergence, Radial

Implosion, Ramifications, Scaling Circles, Segmented Radial

Convergence, and Sphere. Figure 3 - New Visual Language.

Literature Review

 17

Complex networks are intriguing and stimulating – emotional values that these visual

methods intent to depict through the use of aesthetics. When it comes to express particular

intentions, the mere appliance of individual elements – dot, line, color, shape, direction, texture,

scale, dimension, or motion – is not enough. This is why Dondis, in A Primer of Visual Literacy

(1974), provided a complementary inventory of visual methods of how to combine these

ingredients (i.e., balance and instability, symmetry and asymmetry, transparency and opacity).

Dondis’s study provides a set of communication-design patterns for building the most suitable

visual composition for any given intent. It is important to understand such communication

strategies by analyzing the different methods for reaching a particular goal.

Aesthetic judgment has always been seen as an unempirical domain, but many researchers

are striving to quantify and understand it. Information visualization is traditionally viewed as a

tool for data exploration and hypothesis formation. In recent years, however, both the

mainstreaming of computer graphics and the democratization of data sources on the Internet has

had important repercussions in the field of information visualization. With the ability to create

visual representations of data on home computers, artists and designers have taken matters into

their own hands and expanded the conceptual horizon of information visualization.

2.4 Conclusions

Literature review provided a deeper understanding about the Visual Analytics role,

requirements and challenges. The theoretical discussions in the context of exemplary projects

and the presentation of an evolving taxonomy of visualizing complex information, using

network topologies, enabled the author to identify three appropriate visualization models for

iUSE (visualizations that depict usage, patterns and relationships): Organic Rhizome (graph

based), Radial Convergence, and Scaling Circles. Detailed principles to handle network

representation challenges helped to define visual and interactive requirements for the proposed

models.

Market Survey

 18

Chapter 3

Market Survey

Market Survey

 19

3.1 Introduction

In the past few years the offer of desktop analytics software has increased, driven by the

widespread of internet connectivity that boosted the universe of desktop software with access to

cloud services. The growing number of connected customers has created the opportunity to

track usage of desktop software which provided useful data to software developers and product

managers that helped them shape business strategies, based on real facts about their software

usage.

This chapter analyses five products in the area of desktop software analytics. Products

targeting specific web applications (e.g. Google Analytics) or specific software frameworks

were not considered (e.g. PreEmptive is a powerful tool but limited to .NET and Java client

applications). The five products were chosen from an extensive search in the internet and

internet forums and selected according to the following criteria: supporting some analytics

relevant to desktop web based software solutions; supporting multi-platform clients (e.g. .Net,

C, Java, etc.); and support providing (e.g. Chat, FAQ, documentation, SDK, Wiki/Blog/

Forum).

A comparative table (see Table 1) was created to relate relevant analytic features between

the five chosen providers: Millimetrics, DeskMetrics, TrackerBird, UserMetrix, and EQATEC.

Some of these products also implement web metrics, as an example: DeskMetrics implements

Loyalty, New vs. Returning and Funnel Analysis. But because iUSE centers on desktop

applications, marketing metrics aiming web applications were not considered.

 A special paragraph about Mixpanel (a web/mobile analytics product) was also included

because web analytics influence on desktop software analytics can’t be ignored, since there are

some overlapping analytic features that must be considered.

 Below, in this survey, there’s a brief report for each product. Each report is not intended to

be an exhaustive analysis of every single feature, usability or design, but a record about first

impressions in contrast to analytic requirements, as well as a picture of the information

visualization methods, used by current providers.

The chapter ends with a brief conclusion about inspected analytics and presentation

methods.

https://developers.google.com/analytics/
http://www.millimetrics.com/
http://deskmetrics.com/
http://www.trackerbird.com/
http://usermetrix.com/
http://www.eqatec.com/
https://mixpanel.com/

Market Survey

 20

Table 1 - Runtime Intelligence Services comparative analytics.

Logging Millimetrics DeskMetrics TrackerBird UserMetrix EQATEC

OS platform,

architecture,

version

platform,

architecture,

version

platform,

architecture,

version

platform,

version

platform,

architecture,

version

Culture settings language language language - language

Peripherals cd devices,

monitors,

printers,

scanner,

camera

monitors,

display

resolution,

display DPI

monitors,

display

resolution

- monitors,

display

resolution,

display DPI

Hardware GPU, CPU,

memory,

experience

index

Memory CPU,

memory,

pc type

- CPU, memory

Component

information

Flash, Java,

.NET,

Silverlight

.NET, Java - - .NET

User activity - event event event event, activity

User info - -

Geolocation -

Exceptions -

Custom Data - -

Installation/

Uninstallation

- - -

Executions/

Unique

Executions

- -

Licenses - - - -

Messages from

Users

- - - -

Direct2desktop

messaging

- - - -

Log messages - - -

Export jpg, csv, excel csv, json csv, xml - excel

Market Survey

 21

3.2 Millimetrics

Collected information is divided into three separate categories: General, Custom Reports

and Error Reports. The first one includes data about the executing environment; the second one

is used to track different types of information that the software producer decided to trace; the

last one tracks unhandled application exceptions with type, source, message and stack trace. All

information can be filtered by application version and, depending on the context, by date and

OS.

Data reports are displayed as charts and tables. Pie charts and tables display categorized

summaries of information. Trends in time are shown as bar charts and devoted to quantify the

total of session reports (general, custom or error reports). There isn’t a possibility to view trends

in a particular property, such as variations in OS or device. One interesting feature is the mix

between the bar chart that shows trend in total reports and the line graph that shows the relative

increase of new reports (Figure 4). This overlay increases data density, meaning a user can

consume more information from the visualization.

In error report, a table of all exceptions lists detailed information about errors that have

occurred in the application. There is no visual or other tool to quickly assess relations between

errors and environment factors like OS or Architecture. Analytics has to be done by

manipulating the filtering options.

Millimetrics is strong in quantifying environment information it collects, and although

graphically limited, environment data can be easily assessed and proportions understood, at

least while the number of different categories is limited. From this angle, the presentation using

pie charts and tables is efficient. Its analytic weakness is in the failure to show trends other than

the total reports collected that show the trend of usage numbers. There is also no support to

unveil relationships between collected data, especially important when inspecting error reports.

Therefore it was impossible to find the mechanism that could answer the question “which of my

customers is having a specific problem?”

Market Survey

 22

Figure 4 - Custom reports (Millimetrics)

Figure 5 - “Top errors” and “View in time of reports” (Millimetrics)

Market Survey

 23

3.3 DeskMetrics

Deskmetrics is set around four main goals: to know users better – get information about the

user and environment in order to guide decisions; to identify most used features – identity which

features are vital. Discover the user’s path within the application and the most used features; to

grow user’s engagement – make improvements in the product based on user’s behavior and to

grow customer satisfaction; to obtain new insights – recognize new opportunities comparing

data over periods and track trends that can help understanding user’s actions better. These four

principles are well aligned with iUSE requirements. Therefore analyzing this product was

imperative.

The API is organized around a general model: Track user events with associated metadata

that sets the context for relevant runtime properties (e.g. DeskMetricsTrackEvent('Feature',

'{"Real-time Module": "enabled"}')). This type of registering custom values (json array of key

value pairs) is very flexible and has been adopted by numerous providers.

Deskmetrics records environment information such as OS and monitor count, and

distinguishes between execution and installation metrics. There is no support for exceptions

which is an important aspect in a desktop application (it existed in a former version). Desktop

applications can run on multiple environments and an exception can be related to some recorded

environment factor or context data. Therefore, desktop analytics should provide the means to

collect and analyze exceptions.

The interface presents information in the form of tables, line and pie charts. The first thing

that comes to the eye is that there is no legend (color coding). The user has to mouse hover

around graph elements in order to know which property it is representing. The startup page is a

dashboard that quickly shows some current parameters, such as sessions, users, top environment

(OS, language, architecture, and memory size) and top countries. One interesting aspect is the

possibility to show trends of a particular event or events and then, by selecting a specific event,

the trend of its associated custom properties.

Market Survey

 24

Figure 6 - Environment information (Deskmetrics)

Figure 7 - Event trends (Deskmetrics)

Market Survey

 25

3.4 TrackerBird

TrackerBird presents a dashboard with product activity (active users), top 10 versions, OS

distribution, top 5 countries and the choice to view other analytics using line charts for trends,

tables and pie charts for showing proportions (e.g. OS distribution). It has the enhanced ability

to filter all presentation graphs by Country, Application Version, Language, OS type, OS

language and License.

The new features, if compared to previous providers, are the tracking of the installed

software license and the possibility to send messages (announcements, promotions or surveys)

directly to the user’s desktop. Messages are sent to all users that match to a target application

usage profile. You may select a specific target audience using over 20 different filtering criteria

such as geographic location, language, version, license status, application running time, days

since installation, OS type, hardware profile, and so on.

Application Exceptions can be tracked but the provided analytics is a modest list of

exceptions with context information (Product details, Operating System details, and

Architecture details). There is no attempt to find patterns that could help to determine the root

causes of an exception using any of the recorded context information. That inference has to be

done manually by inspecting all logged exceptions. Not very helpful!

A useful configuration attribute in the integration API is the possibility to set different

Privacy Modes (off, low, and high). These modes enable to collect from architecture and usage

data, to architecture only, and don’t collect. The Privacy Mode is selected by the user.

There isn’t much support for custom data (e.g. App.EventTrack(string customText,

double? customValue), and I haven’t found where to explore or analyze it in the front-end.

Market Survey

 26

Figure 8 - Feature Events and OS report (TrackerBird).

 Figure 9 - Dashboard (TrackerBird)

Market Survey

 27

3.5 UserMetrix

UserMetrix is perhaps the simplest provider in this set. The design is not polished but

effective in communicating a snapshot of the implemented analytics. It fails though, in

providing interactivity with the graphical elements. There isn’t even the possibility to filter

information by application version or date and the information granularity in trend is limited to

monthly summaries. The initial dashboard presents summary information about total sessions,

total users, trend in application usage (number of users/new users), most popular versions,

distribution of OS represented in total sessions, most common errors and most common

features.

There are three operational objectives that stand out from its features:

 Spend time fixing bugs, not reproducing them - Whenever customers send feedback to

software developers, it often results in a long laborious process to reproduce and

diagnose the problem. UserMetrix combines application analytics with traditional error

reporting to determine the most likely reproduction steps for software issues. This

allows software developers to focus on actually fixing problems, rather than

reproducing them.

 Learn what frustrates users - Many of the customary feedback approaches allow users

to report problems only when software crashes. This often means that vital information

is easily lost when error reports are not sent. When UserMetrix is integrated with a

‘shake’ gesture or ‘panic’ button it can even collect information about when people are

frustrated or confused, allowing to engineer better user experiences.

 Focus development on what matters most - Developing an application and knowing

what to fix or implement next can be a tricky business. Prioritizing issues by severity is

time consuming and often involves lots of guesswork. UserMetrix helps Product

Managers by prioritizing development on importance, for example, using the “Most

common errors” feature.

This is the only provider to truly implement some actionable intelligence about reported

application exceptions. It uses patterns in the recorded event workflow to infer the most likely

error reproduction steps. The other analytic features are very limited in functionality.

Market Survey

 28

Figure 10 - Dashboard (UserMetrix)

Figure 11 - Error detail (UserMetrix)

Market Survey

 29

3.6 EQATEC

EQATEC is probably the most complete product in this market survey. It provides a full

range of filter options and analytics, from Location, Version, Environment, Installations, New

Version Notification, Log and Exceptions. It has the possibility to explicitly track an activity

(event with duration) and if it was canceled.

One of the useful features is the session search where the system can find associated

sessions by entering an installation ID. It could be useful to extend this functionality to search

for values in other properties or to look for specific information about a user’s session.

It has a flexible API that allows one to define categories of events using the dot notation

(e.g. “Button.FeatureA” indicates that the feature “FeatureA” of category “Button” was used).

The system will inspect this notation and create the different categories in the UI.

Exceptions are presented as a list of aggregated occurrences. For each exception type, a

new case is open. An exception case can be closed or deleted, meaning respectively, that the

exception has been fixed or the exception should not be presented anymore. However, if an

older closed case is detected in a newer application version, the system reopens it, and it will

reappear in the exception list. Generating a case for each exception type has the limitation of

context unawareness. An exception type (ex.: System.ArgumentNullException) can be thrown

from different code locations and for that reason it should be classified in distinct cases. For

each listed exception case, there are details about the environment (OS, language, architecture)

that can be inspected to help in finding a possible cause. Error reports can be viewed using line

graphs to show total exceptions in period, total exceptions per session and the evolution of new

exceptions in the period.

EQATEC supports other two interesting features to the world of desktop applications: New

Version notification and Remote Lookup. The New Version feature can be used to inform users

that a new version of the application is available and can be downloaded from a specific URL.

For that to happen, the producer has to register a new version release in EAQTEC. The client

API compares the current application version with the last registered version and fires an event

to show the update information to the user. The Remote Lookup allows a producer to register a

key/value pair and, in the client API, call the lookup method passing a key to receive a value

stored at the EQATEC server. The returned value can then be used by the application as a

configuration parameter or other.

One limitation compared to some of the other providers is the ability to record and analyze

custom information. For example, Deskmetrics allows producers to store events and an arbitrary

list of event properties (array of key/value pairs). EQATEC only provides an “EventValue”

method to associate a long value with an event name. The sum of this value can then be

visualized together with the event trend in time.

Market Survey

 30

Figure 12 - Environment (EQATEC)

Figure 13 - Feature Use (EQATEC)

Market Survey

 31

3.7 Mixpanel

Like Google Analytics, Mixpanel targets web applications. It offers funnels
5
; segmentation

6

and retention
7
 tools that help to better understand user profiles and optimize applications for

maximum user retention. The biggest difference between Mixpanel and Google Analytics is that

Mixpanel emphasizes event tracking, and Google Analytics emphasizes page view tracking. The

awareness that analytics based on actions and people is more important than page viewing is

what makes it relevant to desktop analytics. It measures people’s actions in the application.

Activity trends allow seeing user engagement week over week, month over month, and

even hourly if you need the granularity. Similar to Deskmetrics, application usage is modeled as

an event and each event can have a collection of associated properties that can be used to set

context data. Trends can be visualized through well designed line charts, allowing a clear

understanding of data points. Events can be filtered allowing for specific comparisons. By

selecting a data point, a comparative table with values from earlier days and weeks can be used

for enhanced period comparison. There is an added functionality when there’s only one event

filtered. In this case a trend of its associated properties is shown.

In this study, Mixpanel was the only provider that has shown an explicit section

specifically designed for tracking user profiles. People analytics is a kind of analytics that

reveals who the application customers are. It allows diving deep into a person's profile to see

who he is and what he has done. There is also an important feature that is to push notifications

to a filtered group of users based on collected profile properties (gender, age, location, and so

on). This feature is different from Trackerbird’s Richout Desktop Messages in the type of user

profile. MixPanel uses people properties (e.g. age, gender), not like Trackerbird’s that uses

application properties usage (version, days since using application, etc.)

Other interesting feature is the ability to add notes and create bookmarks on data for later

reference.

5 Improves conversion rates by identifying where customers are dropping off with funnel analysis. This report

allows you to answer questions like: "How customers that come from a certain ad campaign converting are?"

6 Segmentation is a powerful and flexible way to slice & dice data. Segmentation can answer questions like: "What

does age distribution (not average) of people that came from Twitter who uploaded a video look like?"

7 Visitor retention is a metric that can help to identify if an application is “bleeding” users. It also helps to

determine whether an application is valuable to them or not by showing you how often they come back.

Market Survey

 32

Figure 14 - Events overview (Mixpanel)

Figure 15 - Event Period Comparison (Mixpanel)

Market Survey

 33

3.8 Conclusions

One of the main goals of this comparative study was to see how analytics providers show

quantitative and qualitative data evidence through graphical methods. A first look into the

selected subjects shows a common approach to interface design and statistical presentation. All

use the basic pie charts, bar charts and tables to present distribution of categories, and line

charts to present trends in a time period. These standard methods of statistical presentation are

well understood by the target users of this type of analytics framework. For that reason, they are

very effective on showing information if limited to a small number of variables.

All providers show a maximum of two variables in distribution or trend graphs. In pie/bar

charts, one variable (dimension) is shown using circle angles/bar length. In trends two variables

are used, with data points distributed in an x-axis showing the time variable and quantitative

values in the y-axis indicating a magnitude variable. Multiple lines are displayed simultaneously

for comparative purposes. Color coding is used to associate a graphical element (bar, pie, slice

or trend line) with a property or category name. Mixpanel is the only provider to implement

some interactivity with graphics (see Figure 15) by showing a contrast from the selected data

point value with values from different periods.

In terms of information visualization and in spite of good support on analyzing trends in

time and top usages, the surveyed products did not provide any means to visualize usage

patterns and relationship analysis. Also, information was visually scattered throughout multiple

views, making it difficult to establish relations between views.

There is also a common denominator to the majority of the providers that is interface

clutter – the extent of the interface occupied by the available analytic menu options is an

example, almost asphyxiating information visualization graphics.

Each of the providers has a feature in which it stands stronger when compared to the

others. Next are listed the features that were collected from all subject providers, during this

study, and that were considered the most useful in a desktop analytics framework:

 Use key/value pairs for custom values. (Deskmetrics)

 Show trends of a particular event or events, and also, the trends of its associated

properties. (Deskmetrics)

 Add the installed software license as a tracking attribute. (Trackerbird)

 Send messages (announcements, promotions or surveys) directly to the user’s desktop.

(Trackerbird)

 Add a privacy mode property into the API (off, low, and high). (Trackerbird)

Market Survey

 34

 Use patterns in the recorded event workflow to infer the most likely error reproduction

steps. (UserMetrix)

 Track Activity duration and if it was canceled. (EQATEC)

 Provide a Search option for a specific session ID. (EQATEC) – Useful to add the

capability to search other properties.

 Manage exceptions as “cases”. An exception case can be closed or deleted, meaning

that the exception has been fixed or the exception should not be presented anymore.

(EQATEC)

 Show comparisons with values from earlier days or weeks for enhanced period

comparison. (Mixpanel)

 Push notifications to a filtered group of users based on collected usage profile.

(Mixpanel)

 Create bookmarks on data for later reference. (Mixpanel)

Chapter 4

Requirement Specification

Requirement Specification

 36

4.1 Introduction

This chapter provides the reader with the requirements specification that supported the

implementation of iUSE Runtime Intelligence Framework and its objectives (see 1.2). It starts

with a brief description about the stakeholders, exemplifying in what way iUSE analytics could

help with their responsibilities (4.2). Section 4.3 shows the overall system architecture,

describing each component in its responsibilities and interactions. Functional requirements are

enumerated in section 4.4 and include data point specification, questions the system must

address, and the integration of iUSE with the semantic world and its linked-data world. Section

4.5 contextualizes the project in terms of a Visual Analytics Agenda and states the technology

preconditions and recommendations. It concludes with Visual Analytics Dashboard that

describes the visual models, their interactive and visual mappings, usability and interfaces

(section 4.6). The next figure shows an overview of iUSE framework.

4.2 Stakeholders

The stakeholders are the “actors” of the R&D department of software development

organizations – Managers and Developers. These stakeholders are also the users of iUSE

analytic features.

 Managers – Are responsible for the Research & Development activities within the

company and for managing the product catalog and feature set. A manager is expected

to take strategic decisions affecting the product roadmap. Thus it is crucial to have a

clear and current view of the product usage to take informed decisions. iUSE will

assist in decision making and provide the means to better know users, their

environments and profiles, and assist on R&D priority and investment decisions. It will

Figure 16 - iUSE overview.

Requirement Specification

 37

provide insights about product activity and feature usage trends and provide the

organization with a direct communication channel with its users via their application.

 Software Developer – Is technically responsible for the implementation of the product

features and bug fixing. iUSE will alert to existing application exceptions and suggest

the most likely environment factors and reproduction steps for those exceptions.

4.3 System Architecture

The system will be divided into Client and Server services as follows:

Client component provides a utility to unobtrusively collect and send runtime usage data

(user, session, and device information) to cloud services. Integrators will incorporate this

component on their applications to submit information (in real-time) and to capture environment

information for each user session. It is vital that application performance and user experience

are not affected by the data collector execution utility. For that reason, the collector utility will

run on a separate application thread.

Cloud Services are the server components responsible for data and visualization mining

services. Data services provide the entry point to collected runtime data persistence, mining and

exporting services. The stakeholders will access the analytical features of iUSE anywhere and

anytime by accessing a web dashboard. Cloud services will provide data services to iUSE –

such as:

 Data Storage – Data storage model and technology will take into account scalability,

performance and storage costs associated with large data sets. It will be considered as a

requirement that, where conceivable, data processing (e.g., aggregations) be performed

upfront on receiving data to have a minimal impact on responses to the end user

analytics experience.

Cloud
(iUSE Server Services)

Stakeholders
iUSE-DashboardUsers Applications

Usage Data
Visual analytics
Export Services

Client Server

Figure 17 - iUSE architecture.

Requirement Specification

 38

 Web endpoint – Integrators will submit data from their applications to a web server,

and iUSE Visual Analytics Dashboard will request mined information to feed the

visualization models.

 Export services – Organizations will access collected raw data in a standard format.

The adopted standard will provide integration with the semantic web and its linked-

data world (see 4.4.3).

4.4 Functional Requirements

Data Point Requirements (see 4.4.2) (see Market Survey)

4.4.1 Core Features

 iUSE core features are grouped into five major functional categories: Product,

Environment, Features, Exceptions and Messaging. This grouping reflects the different set of

questions stakeholders expect the system to answer. Questions, such as “What is the Operating

System? Is it a 64 or 32 bit OS?” are frequent among developers when reported issues escalate

to R&D. These and other questions were identified by interviewing the stakeholders and

documented in their profiles (see Personas).

Monitor Product Activity – Tracks how many unique users have installed/uninstalled or

actively use the software; compares product activity between different Versions/Editions of

software; analyzes how often and for how long users interact with the software to identify their

behavior and reliance to the product. iUSE must address the following product related

questions:

 What versions of the application are used and how popular is each version?

 How many times per day do users run the application and how long is a typical

runtime session?

Functional
Categories

Product Environment Features Exceptions Messaging

Figure 18 - Functional Requirements.

Requirement Specification

 39

 Are users switching to the newly released versions fast enough?

 How many users are stuck using an old build?

 How many customers would be affected if you had to stop supporting a particular

build or product version?

 How many users are being affected by that bug you have found in version X?

Collect Environment Data - Get distribution insights on Operating systems, languages,

hardware architecture, display resolutions and machine types. Environment data helps on

prioritize development and testing for customer base platforms and architectures. iUSE must

address the following environment related questions:

 What machines and platforms is the software running on?

 Is it worth fixing a feature affecting Win XP or are there only a few users using it?

 Should you adjust your UI to better support notebooks or should you focus on

widescreens and dual monitors?

Feature Usage Trends – Track which product features are more popular among customers

and which are underused. Define where to focus development efforts either on improving or

removing unused features. iUSE must address the following feature related questions:

 Which features should get higher priority in development?

 What product features are left undiscovered by evaluation users?

 Are customers using the software only for a specific feature-set?

 If you had to stop maintaining a particular feature, would anyone be affected?

Track Application Exceptions – When running, software encounters scenarios never tested

or imagined, therefore exceptions will most likely occur. Proactively problems should be

identified and fixed before they could be reported. iUSE will allow reporting on exceptions by

collecting critical information about the software such as version/edition, the classes and

methods which generated the exception as well as the running environment such as machine

architecture and operating systems. iUSE must address the following application exceptions

related questions:

 What are the most common exceptions?

Requirement Specification

 40

 What unhandled errors does the application cause?

 Which customers are experiencing a specific problem?

 What are the most likely environmental/reproduction steps for a specific software

issue?

Direct-to-desktop Messaging – It is a communication channel through which producers can

easily deliver new updates, marketing announcements, informational and promotional messages

or even surveys to end-users who are running the software. Producers may select a specific

target audience using different filtering criteria such as language, version, edition, license status,

OS type, hardware profile, etc. Messages are delivered to end-users with full control on how

and when users see messages (e.g., embedded within application dashboard). Producers use the

iUSE Client API to retrieve the message contents and display it within the application. It should

be possible to configure messaging to target specific profiles, making the following scenarios

possible:

 Shorter and targeted surveys. With direct-to-desktop surveys and collected runtime

intelligence (software, OS, language, and hardware profile they are running) producers

will be able to customize a survey to a specific audience.

 Send out bug fixes or new version announcements only to users who are running

affected builds.

4.4.2 Data Point Requirements

In order to measure development success, there are two things of key importance:

implementing the means to collect application runtime data in a way that don’t interfere with

normal application execution; offering smart data, which means that the resulting analysis

should contribute to increase application value and customer satisfaction.

Runtime Intelligence Data

Environment

OS

Name Architecture Version

Culture

Language

Device

ID IP Display WxH

Session

User License Usage

Events Activities Messaging Exceptions

Installation Uninstallation

Figure 19 - Runtime Intelligence Data.

Requirement Specification

 41

To create valuable analytics, the client services will collect two types of data – context and

execution data. The context data collects information about the device environment in which the

client application is running. The execution data is information about application usage.

The defined analytic core features (see 4.4.1) together with tables Table 2 and Table 3

worked as a blueprint to the defined data point requirements. Table 2 maps objectives, data

requirements and the instrumentation and analytics technologies selected for “developer as the

customer”. Table 3 summarizes the key features between Web and Desktop analytics flavors.

Table 2 - Common runtime data points and pivots.
8

Objectives Sample Data Points

(Data Worth Collecting)

Sample Filters

(Data Filter and Query Criteria)

Adoption and

Activity

 Unique users

 Sessions

 Session Duration

 Installation

 Uninstallation

 Geolocation (by IP)

 User

 License

 Device

 OS

 Application version

 Geolocation

UX Improvement Features used

 Feature duration

 Feature canceled

 Feature usage sequencing

 Display resolution

 Data values (user-entered

values or other runtime data

bindings)

 Feature used

 Feature canceled

 Data values

Quality of Service Exception reports/stack trace Exceptions by version, stack and feature usage

User Profiling and

Support

 Integration with CRM service

 Direct-to-Desktop Messaging

 License

 Device

8 Based on Holst, S. (2011). "Application Analytics: Why Is the Developer Always the Last to Know?" from

http://visualstudiomagazine.com/Articles/2011/07/01/pfven_App-Analytics.aspx?Page=1.

http://visualstudiomagazine.com/Articles/2011/07/01/pfven_App-Analytics.aspx?Page=1

Requirement Specification

 42

Table 3 - Application vs. Web analytics focuses and features.
9

 Application Analytics Web Analytics

The Customer Development Sales and Marketing

Representative Use

Case Scenarios

 Measure adoption and activity

 Improve UX

 Track exceptions and other Quality of

Service indicators

 Simplify and improve support

 User profiling

 Measure page views and user

clicks

 Target advertising

 Track user conversions

 User profiling

 Usage metering

Platform Support All runtime surfaces including mobile devices,

desktops, server-side and cloud-based runtimes

Browser and/or mobile device only

Data Requirements Complex objects and application-specific data,

including custom types and stack traces

Primitive types with defaults focused

on sales and marketing

requirements

Precision Method-level Presentation layer events (clicks,

page views)

IDE and ALM Tool

Integration

High priority Low priority

Privacy, Identity

and Security

Considerations

 Opt-in policy enforcement

 Developer's own content

 Repository can be local or hosted

 NA

 Ad and analytics service

provider's own content

 Repository is hosted by ad

and analytics providers

9 Holst, S. (2011). "Application Analytics: Why Is the Developer Always the Last to Know?" from

http://visualstudiomagazine.com/Articles/2011/07/01/pfven_App-Analytics.aspx?Page=2.

http://visualstudiomagazine.com/Articles/2011/07/01/pfven_App-Analytics.aspx?Page=2

Requirement Specification

 43

The following tables describe the resulting data point requirements: Table 4 defines

context data and Table 5 defines execution data iUSE will collect in order to support the

functional requirements.

Table 4 - Context data points.

Data Description

OS Identifies operating system platform (e.g., “Windows 7”). iUSE client component

will collect environment information from the device the application is running on.

Environment information includes properties of the operating system that can

influence the execution of the application, such as:

 Name - Operating system name (e.g., “Windows 7”).

 Architecture - Operating system architecture (e.g., 32/64).

 Service Pack - Operating system Service Pack (e.g., “Service Pack 1”).

Culture Identifies system culture (deduces user culture and other regional settings).

Environment information includes culture properties that can influence the

execution of the application, such as:

 Language - Identifies language using the LCID string table (e.g., “pt-PT”).

Device Identifies applications environment. Environment information will include device

properties that can help on UX improvement, such as:

 Display WxH - Main display resolution. (e.g., “1024x784”).

Environment information will include device properties that can help on User

profiling and Support, such as:

 Device ID - Identifies the device. The default Client implementation will use

disk serial number as the Device unique identifier.

 Device IP Address - Identifies the device IP address, used to estimate the

user location if geolocation is not available.

 Geolocation - Location where the user is executing the application. If

longitude and latitude are not specified, the system will use the device IP

address to estimate user’s location (e.g., using freegeoip.net web service
10

).

10 http://freegeoip.net/ is a public RESTful web service API for searching geolocation of IP addresses and host names.

http://www.science.co.il/language/locale-codes.asp
http://freegeoip.net/

Requirement Specification

 44

Table 5 - Execution data points.

Data Description

API Key Uniquely identifies the owner of an iUSE account. iUSE provides the apiKey to the

integrator when a client creates an account. The integrator will specify this key

when communicating with cloud services.

Session Uniquely identifies each session that is being tracked by iUSE. Client component

creates a session token (GUID) when application starts, and all subsequent

collected data is associated with it.

User Identifies the user running the session. Integrator is responsible for setting the user

identifier according to business and analytical requirements. Examples of user

identifiers are: custom application user identifier, email, OpenID, License User

Serial Number, etc.

This property will work in combination with session ID to determine unique

executions. If the integrator is able to provide a user identifier that uniquely

identifies the user on each session, then iUSE will be able to differenciate between

executions and unique executions. For example, on a specific day the system

could log 100 sessions, but a relevant question is: from how many different users?

License Identifies the license of the running session. Integrator is responsible for setting

the license according to business and analytical requirements. Examples of license

identifiers are: license serial number, customer id, etc.

Application Identifies the running application. Application information will include properties

that can help on measure adoption, such as:

 Name - Identifies the application being tracked. The integrator must

register application on iUSE to be able to log tracking information. This

property will be the main analytical filter (e.g., “NGCO”).

 Version - Identifies the application version that the user is executing. This

property will be used to track version adoption trends (e.g., “12.1”).

Usage Measures adoption and activity by tracking how users interact with the application

and its features. Usage information will include:

 Events Identifies an application event. An event occurs at some point in time and does

not have duration. Application events will be characterized by the following

properties:

 UTC Date/time

 Category (e.g., “menu”)

 Label (e.g., “invoices_click”)

 Feature (e.g., “invoice”)

Requirement Specification

 45

 Activity Identifies an application activity. An event occurs at some point in time during a

period of time. An activity can be cancelled, started by an event or other activity

or process. Application activities will be characterized by the following properties:

 UTC Date/time

 Category (e.g., “e-commerce”)

 Label (e.g., “send invoice pdf”)

 Feature (e.g., “#invoice”)

 UTC Date/time ended

 Canceled (true/false)

 Messaging Identifies a direct-to-user message. The message can be defined to target a

specific user or application profile. Application messaging will be characterized by

the following properties:

 UTC Date/time

 Category (e.g., “UX Survey”)

 Label (e.g., “New Invoice UI Survey”)

 URL (e.g., “https://pt.surveymonkey.com/UXSurvey”)

 Exception Identifies an application error. Exception information will include properties that

can help mitigate or fix quality issues, such as:

 UTC Date/Time

 Source (e.g., “business.createInvoicePDF()”)

 Message (e.g., “out of memory”)

 Stack Trace

Installation

Uninstallation

 Identifies when an application was installed or uninstalled. The only information

captured during an installation or uninstallation session is device information.

4.4.3 Linked Data World

Wikipedia defines Linked Data as "a term used to describe a recommended best practice

for exposing, sharing, and connecting pieces of data, information, and knowledge on the

Semantic Web using URIs
11

 and RDF
12

." Linked Data has one remarkable property: It may be

easily combined with other Linked Data to form new knowledge.

Ontologies are developed to facilitate knowledge sharing and reuse by people and

software. Gruber (1993) defines ontology as a “formal, explicit specification of a shared

conceptualization”. They are a commitment to an abstract representation of knowledge in the

11 URI is used to unambiguously identify a resource (for example a person).
12 Resource Description Framework, an official W3C Recommendation for Semantic Web data models.

http://en.wikipedia.org/wiki/Resource_Description_Framework

Requirement Specification

 46

domain of interest, a commitment to how a thing is represented: a class (general things), the

relationships between those things and the properties (or attributes) those things may have.

iUSE data is already on the Web, but in what regards its visibility to the Web of Data

(World Wide Web global database) it is has if it continues isolated in its proprietary container.

By adopting Linked Data standards iUSE frees its data from its silo (relational database) so that

it may be found, shared and combined with other people’s data. Entities such as Companies,

Countries, Industry Terms, Organizations, People, Products and Technologies stored in iUSE

could be combined by smart applications with other information on the Web of Data, for

example using the Linking Open Data project. The Linking Open Data project is a community

activity started in 2007 by the World Wide Web Consortium’s Semantic Web Education and

Outreach (SWEO) Interest Group. The collection of Linked Data published on the Web is

referred to as the “LOD cloud” and currently consists of more than 300 datasets from various

domains
13

.

iUSE will formally describe the entities and relationships that underlie the framework to

share a common understanding of its information semantics among people or software agents

(Musen 1992; Gruber 1993): with RDF serving as the foundation, RDFS and Web Ontology

Language
14

 as the core representation languages of the Semantic Web.

From the surveyed Ontology stores
15

 no suitable match to accommodate the domain of

iUSE was found. However, some ontology models (i.e., FOAF, OGP, GEO, EVENT, and

OPENID) are relevant to iUSE because they are close related to its entities. The Enterprise

Ontology
16

 contains some intersecting concepts that will be integrated (see Table 6).

Table 6 - iUSE and EO common concepts.

Term Description

ACTIVITY

This is intended to capture the notion that involves actual doing, in particular including

action. An ACTIVITY can have happened is the past and may be happening in the

present. The concept of activity is closely linked with the idea of the DOER, which

EXECUTES an ACTIVITY SPECIFICATION. An ACTIVITY is linked to a TIME INTERVAL to

refer to when ACTIVITIES are performed.

EVENT
This is something that happens in a TIME POINT, a particular, instantaneous point in

time. A DOER triggers the EVENT.

DOER (iUSE User) A DOER may be a PERSON, ORGANIZATIONAL UNIT or MACHINE.

13 See http://www4.wiwiss.fu-berlin.de/lodcloud/state/ for details on the LOD cloud.
14 OWL Web Ontology Language Guide: W3C Recommendation 10 February 2004. W3C (2004-02-10).
15 DMOZ, OOR, Protégé Ontology Library, LearningStation, TONES, NEPOMUK, Mathieu d’Aquin, Natalya F.

Noy, Where to publish and find ontologies? A survey of ontology libraries.
16 Develop within the Enterprise Project, a collaborative effort to provide a framework for enterprise modeling.

http://www.foaf-project.org/
http://ogp.me/
http://www.w3.org/2003/01/geo/
http://motools.sourceforge.net/event/event.html
http://openid.net/foundation/
http://www4.wiwiss.fu-berlin.de/lodcloud/state/
http://www.w3.org/TR/owl-guide/
http://www.dmoz.org/Reference/Knowledge_Management/Knowledge_Representation/Ontologies/Published_Ontologies/
http://oor.net/
http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library
http://resource.learningstation.com/Knowledge_Management/Knowledge_Representation/Ontologies/Published_Ontologies/index.html
http://owl.cs.manchester.ac.uk/repository/browser
http://nepomuk.semanticdesktop.org/nepomuk/
http://www.sciencedirect.com/science/article/pii/S157082681100076X
http://www.sciencedirect.com/science/article/pii/S157082681100076X

Requirement Specification

 47

4.5 Technology

Considering the nature of software development organizations, there isn’t any limitation on

technology requirements. Technology should be the most appropriate to successfully implement

the product’s functional requirements and to guarantee that future enhancements and support are

easily implemented.

The NVAC’s R&D agenda for visual analytics addresses technical needs for multiple

areas, as well as recommendations for speeding the movement of promising technologies into

practice (Thomas & Cook, 2006). The Visual Analytics Agenda addresses technical needs, such

as scalability, that will be considered for the implementation of iUSE Visual Analytics

Dashboard:

 Information scalability – Information presentation will scale and adapt to the audience.

Relevant information may appear at a variety of scales, and the user will be able to

change between scales in a way that is easy to understand and track.

 Visual scalability – Visual scalability is the capability of visualization representation

and visualization tools to effectively display large data sets, in terms of either the

number or the dimension of individual data elements (Eick, S. G. & Karr, A. F., 2002).

Implementation will investigate adequate support for quality of visual displays, the

visual metaphors used in the display of information, the techniques used to interact

with the visual representations, and the perception capabilities of the human cognitive

system.

 Display scalability – Implementation will develop techniques that scale to a variety of

display form factors to take advantage of whatever capabilities are available to support

analysis. One major challenge is to use consistent visualization and interaction

techniques regardless of display’s size.

Implementation will use the stack of Microsoft technologies spanning from client to server

tools and frameworks. This particular choice of technology will not hamper adoption of iUSE

because of its architecture. A REST Web API will be ultimately the interface between

integrators and iUSE cloud services (see 4.3) – the only requirement is to be able to use internet

services using HTTP.

Client services will be implemented as .net 2.0 components. The .net framework has a

broad adoption and support on desktop operating systems, and easy integration with legacy

development tools, such as COM components. Application integrators can implement

proprietary client components, on any technology; as long as they follow the iUSE REST Web

API specification.

Requirement Specification

 48

iUSE server components will be implemented using the Azure cloud computing platform.

Windows Azure is a Microsoft’s cloud-based platform for developing, managing, and hosting

applications off-site. Azure supports open standards and Internet protocols, such as HTTP,

XML, SOAP, and REST. There are SDKs for Java, PHP and Ruby, for applications written in

those languages, and Azure tools for Eclipse.

Collected data will be stored on SQL Azure (a component of Azure platform). Azure

Storage provides high availability and reliability with redundant copies and automatic failover.

The web end-point will be implemented using ASP.NET Web API
17

. HTTP is simple,

flexible, and ubiquitous. Almost any platform has a HTTP library, so HTTP services can reach a

broad range of clients, including browsers, mobile devices and traditional desktop applications.

In what concerns iUSE Visual Analytics Dashboard, one of its requirements is to be an

application for multi-platform audience with access anytime and anywhere. Also, it plans to

reach its audience on the go with devices such as tablets. With HTML web based applications,

the application is reachable from anywhere at any time and, with HTML web-based mobile

applications, the application consistently displays across mobile web browsers, including future

devices.

HTML5 is the next generation on web technologies, enabling web applications to be built

with rich user interfaces and no plug-in requirement for rich multimedia experiences. With

broad support from Apple, Mozilla, Microsoft and Google, all the major browsers have rapidly

incorporated HTML5 features. HTML5 adds new audio and video capabilities, an immediate 2d

bitmap drawing area and 3d rendering using WebGL and a set of API’s to access device

environment, such as local storage and audio synthesis. CSS3 modules have an impact on every

aspect of presentation (such as rotation and scaling) and developers can use CSS3 to specify a

style by device – for example to differentiate styling between PC and mobile devices using

@media rules. Some of the most powerful CSS3 modules for application developers are

“transitions” and “animations”, often supported by GPU acceleration, resulting in an enormous

performance gain when compared to equivalent JavaScript animations.

iUSE Visual Analytics Dashboard will be implemented with HTML5 technologies.

Visualization models will be implemented using one important addition to the HTML5

specification – integrated SVG technology. SVG is used to describe Scalable Vector Graphics, a

retained mode graphics model that persist in an in-memory model that can be manipulated

through code resulting in re-rendering. Similar to HTML, SVG is built into the document using

elements, attributes, and styles. When the <svg> element is first introduced into the document, it

behaves much like a <div> with presentation attributes that can be styled with CSS styling rules.

Another key differentiating factor of SVG is the ability to code interaction without complexity.

Just as SVG has a programmable DOM like HTML, it also has an event model. This integration

with the DOM enables high interactivity with visual elements.

17 ASP.NET Web API is a framework to build HTTP services on top of the .NET Framework.

Requirement Specification

 49

Figure 20 provides a performance comparison between the two 2d drawing technologies of

HTML5, the Canvas and SVG. Considering that between the goals of Visual Analytics

Dashboard are high information density in full-screen mode and high interactivity with

visualization models and display scalability, SVG will be the presentation technology.

In what concerns the implementation of data visualization (see 4.6), Data-Driven

Documents (D3) will be used. D3
18

 is a JavaScript library with the central tenet to make

visualization easier without introducing a new way of representing an image. D3 uses existing

standards – namely HTML, CSS and SVG. With D3, designers selectively bind input data to

arbitrary document elements (e.g., Circle, Path) applying dynamic transforms to both generate

and modify content, typically using JavaScript (Michael Bostock, Vadim Ogievetsky, & Jeffrey

Heer, 2011). D3 is different from other graphical libraries, besides ingeniously architected, it

separates data from presentation. D3 provides a series of mathematical models that can be used

to graphically represent data, using the developer choice of presentation technology (e.g.,

HTML, CANVAS, WEBGL, SVG, etc.). It also has a great support for defining Colors (RGB,

HSL and other color spaces) and Scales (Quantitative and Ordinal Scales), used to define color

ranges (integrates ColorBrewer sets) and important in defining the range of graphical

dimensions in the domain of the data they represent. iUSE will use three of those mathematical

models to help depicting its visual analytics models:

 Force Layout –Will be used to create network visualizations (see 4.6.1). A flexible

force-directed graph layout implementation using position Verlet integration
19

 to allow

simple constraints. This implementation uses a quadtree
20

 to accelerate charge

interaction using the Barnes–Hut approximation
21

. In addition to the repulsive charge

force, a pseudo-gravity force keeps nodes centered in the visible area and avoids

18 Introduction to D3: http://mbostock.github.io/d3/talk/20111018/#0
19 Verlet integration is a numerical method used to integrate Newton's equations of motion.
20 A quadtree is a two-dimensional recursive spatial subdivision.
21 The Barnes–Hut simulation (Josh Barnes and Piet Hut) is an algorithm for performing an n-body simulation.

Figure 20 - Canvas vs. SVG performance comparison (MSDN, 2013).

http://mbostock.github.io/d3/talk/20111018/#0

Requirement Specification

 50

expulsion of disconnected subgraphs, while links are fixed-distance geometric

constraints.

 Pack Layout – Will be used to create the hierarchical visualizations (see 0). Produces a

hierarchical layout using recursive circle-packing. The size of each leaf node’s circle

reveals a quantitative dimension of each data point. The enclosing circles show the

approximate cumulative size of each subtree.

 Chord Layout - Will be used to create the Radial Convergence visualizations (see

4.6.3). Chord diagrams show relationships among a group of entities and are produced

from a matrix of relationships.

4.6 Visual Analytics Dashboard

Although the analytical challenges of a Runtime Intelligence Service are vast in what

concerns Visual Analytics, the scope of iUSE Dashboard is on finding usage patterns and

relationships around features and environment.

Multidimensional data is a challenging aspect in Information Visualization, because some

properties of images have to be explored to distinguish between several variables in a 2D

drawing plane. For this purpose several methods have been proposed. Sachinopoulou (2001)

suggested a classification into six groups summarized in the following table:

Table 7 - Techniques for representing multivariate linear data.

Methods Description Some Known Techniques

Geometric Transforming and projecting data in a

geometric space.

Scatterplot matrix, Hyperslice, Prosection

views, Surface and volume plots, Parallel

coordinates, Textures and rasters.

Icon Relies on a geometric figure (the icon) where

the values of an attribute is associated with

one features of this, such as the color, a

shape, the orientation.

Chernoff faces, Stick figure, Color icon, Glyphs

and Autoglyph.

Pixel Use pixel as basic representation unit, and

manipulate pixels to represent data.

Space fillings and Mosaic plots.

Hierarchical Include trees and hierarchies and are useful

when the data has some hierarchical or

network structure.

Hierarchical axes, Dimension stacking, Threes,

Worlds within worlds, Infocube.

Distortion Propose to distort the tree-dimensional space

to allow more information to be visualized.

Perspective Wall, Pivot table and table lens,

Fish eye view, Hyperbolic trees, Hyperbox.

Requirement Specification

 51

Graph based Represent data using nods and edges and is

adopted when the large graphs should be

represented.

Basic graph, Hyperbolic graph.

iUSE will focus on two of them: Hierarchical (Include trees and hierarchies that are useful

when the data has some hierarchical or network structure); and Graph based (Represent data

using nodes and edges and is adopted when the large graphs should be represented). Radial

Convergence (Lima, 2011, p. 196) will be used as an analytical complement to the Graph based

representation. The next figures show examples of the three visual taxonomies that will be

implemented in iUSE:

There are additional techniques for multidimensional data representation that should be

used together with the techniques cited in the table above. Their purpose is to highlight

relationship on a subset of variables – composition, layering and separation, micro-macro

readings, and small multiplies. iUSE will implement layering and separation, micro-macro

readings and small multiples:

 Layering and separation is a technique illustrated by (Tufte, 1990), among others, and

concerns the visual differentiation of various aspects of the data. It is achieved by

distinction of color, shape, size, addition of elements that direct the attention via visual

signals, or ordering data to emphasize layer differences.

 Micro-macro reading is a method for presenting large quantities of data at high

densities in a way that a broad overview of the data is given and yet immense amount

of detail is provided (Ruddle et al., 2002). It encodes information at different levels of

detail. As an example, one same image can be used to detect fine-grained level on

information encoded (micro processing) as well as large-grained level of information

(macro processing). Micro/macro designs enforce both local and global comparisons

and, at the same time, avoid the disruption of context switching. High-density designs

also allow viewers to select and personalize data for their own uses (Tufte, 1990).

Figure 23 - Networks (Lima, 2011, p. 102). Figure 23 - Hierarchical (D3.js). Figure 23 - Radial (Lima, 2011, p. 197).

http://www.google.pt/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=LvkEtXTosV7u-M&tbnid=e0bCNzZBcyb9FM:&ved=0CAUQjRw&url=http://www.visualcomplexity.com/vc/index.cfm?trend=co-citations&ei=kfjKUeXGIsPP0AXj7IDwAQ&bvm=bv.48340889,d.ZGU&psig=AFQjCNGuH6QaWblyO09Cboq7RM-OsCVzQg&ust=1372342739895312

Requirement Specification

 52

 Small multiples technique consists of the same graphical design structure repeated

several times (Tufte, 1990). It is used to compare at a glance series of graphics

showing the same combination of variables while another variable changes.

The proposed visual taxonomies – Networks (Graph based), Hierarchical and Radial

convergence – all provide good micro-macro capabilities that will be enhanced by interactivity.

The user will be given the option of zoom and detail on demand. Layering and separation will

be implemented mainly by the use of color, size, transparency and visual signals to direct the

user’s attention. The technique of small multiples – to maintain a design structure while

changing the variables – will be applied by reusing the visual taxonomies for presenting

different types of data. For example, in iUSE Dashboard, networks will be used to represent

workflows between features, collected data points and to highlight error related patterns of

usage and extract the most likely reproduction steps.

4.6.1 Networks

Figure 24 depicts the base structure of a network, with its nodes and links mapped to

runtime intelligence data. The mappings are described next:

Node – Node will represent the frequency of a specific data point or class such as Device,

Event, Activity, Feature, Error or Direct2User (see 4.4.2). A typical data point is represented by

iUSE as “{class:’Event’, category:’menu’, label:’invoice_click’, feature:’invoice', date:’2013-

06-28T10:23:57.2340’}”. Nodes will encode the following properties:

 Color – Color is used to represent data classes (e.g., “Event”, “Error”). In the

workflows represented by iUSE (Data, Features, and Errors), the nature of data is

qualitative, therefore adequate color will be chosen and consistently applied so the user

Figure 24 - Network topology.

Requirement Specification

 53

can easily recognize the specific type of data being represented. ColorBrewer
22

 will be

used for assigning qualitative colors. Red will be reserved for class Error because of its

association with warnings.

 Text – Label of the specific data represented by the node. For example, when depicting

data or error workflows, the text of the node is the data point label property (e.g.,

“invoice_click”, “out of memory”). When in feature workflow, the text of the node

will be its associated feature property (e.g., “invoice”).

 Size – The area of the node is proportional to the represented data point frequency

within the data represented, which is the same as the sum of all links strengths

converging into the node. Figure 24 shows clearly that the node with more occurrences

is N1. It could signify that feature N1 is at the top of user’s preferences or that N1

represents a specific error that is having the biggest impact on users. It also shows that

for N1, as stated before, its value (15x) is equal to the sum of links whose destination

is N1 – (N3 N1) = 5, (N2 N1) = 5, (N4 N1) = 2, and (N1 N1) (see Stroke-

width below) = 3 – totalizing 15.

 Stroke – Stroke-width is proportional to the frequency of a node where source equals

target (link to himself). For example, node N1 has a stroke-width larger than N3,

which visually represents the fact that occurrences of type (N1 N1) occur more

frequently than (N3 N3) or any other nodes.

Links – Represent specific workflow between data elements (source target) and its

frequency. Links will encode the following properties:

 Color – Link color is related to the source node. For example, link (N1 N4) is

orange, the same color of node N1 (source). The color-coding used, having a specific

node as a reference, enables looking at its links and realize if they are outbound links

or inbound links. Links of different color connected to the reference node mean for

sure different types of data inbound to the node, while links of the same color represent

connections to the same data type (inbound or outbound). In order to reduce display

clutter when representing heavily linked networks, arrows from extremities

representing orientation will not be used. When the node has the same color coding as

the links connected, link orientation will have to be disambiguated by selecting the

node. When a node is selected all outbound links, besides the color, are coded has

dashed lines (see Selected Node, below).

22 ColorBrewer, from http://colorbrewer2.org/, is a tool that depending on the number of data classes, and the nature

of data, suggests appropriate color schemes, including colorblind safe colors.

http://colorbrewer2.org/

Requirement Specification

 54

 Stroke – The stroke-width is proportional to the frequency of the link. For example,

link (N2 N1) has the same stroke-width than link (N3 N1) – both have the same

occurrence (5x) – as opposed to link (N2 N1: 5x) that is 5 times thicker than (N2

N4: 1x).

 Opacity – Represents the relevance of a connection. Less opaque (more transparent)

links are less relevant to the analysis. Relevance is connected to the number of runtime

sessions a link occurred. Considering an example of feature workflow, based in Figure

24, the link (N3 N1) occurred 5 times and the link (N3 N4) occurred 3 times.

Nevertheless, the link (N3 N1) is depicted with transparency because it has a

relevance of 1 (“1: 5x”) and (N3 N4) is fully opaque because of its relevance of 2

(“2: 3x”). The opacity levels will follow a logarithmic scale to create a more effective

layering of links, reducing display clutter by concealing the less relevant links from the

visual representation.

Selected Node – Figure 24 (center) shows the network adapting to a change in context, in

this case the selection of a node. When a node is selected, its entire outgoing links will be

dashed to help distinguish between inbound and outbound links, when networks are more

complex. Also, any other nodes or links that are not connected to the selection are dimmed

(irrelevant to the analysis) and connected node texts will maintain only the name and not the

value. Each connected link will present a small text indicating its frequency.

Pinned Node – To help in network analysis, the user will select and drag nodes to reveal

more information and to force repositioning of the network. But, because the physics engine

will try to bring together heavy linked nodes, a scheme to pin a node in a position will be

implemented. The user can press CTRL key or activate an UI element to pin a node after

dragging it. This will enable the user to distribute network nodes to analyze relationships

between nodes of interest better (see N4 from Figure 24 (center)).

Filters – Networks will provide better analytics when application usage generates patterns

of usage – which generally do. However, there are also less used workflows that may be

irrelevant to the analysis but create display clutter. For this reason, a filter will be implemented

allowing users to select the range of node values. Nodes bellow the defined threshold will be

considered irrelevant and not shown in the visualization. Users will also be able to filter by node

class, such as Activities or Events, etc. (see Legend in Figure 24)

Requirement Specification

 55

4.6.2 Hierarchical model

Figure 25 shows the hierarchical visualization that will be used to identify top product

usages. This model produces a cluster layout using recursive circle-packing. Details are on

demand – user selects a node and the system will zoom-in to show enclosed details. The cluster

view implements the small-multiples technique where a fixed structure (colored circle) is

repeated with variations in data, represented by size and color.

Clusters will be used to show application execution trends, such as: Sessions (cluster by

Application Version), Application Data (cluster by Application Version Label of data),

Application Features (cluster by Application Version Feature) and Device Environments,

such as Operating System (cluster by Application Version OS Name OS Language

OS Architecture 32/64 bits).

Considering a cluster of Features as an example, Figure 25 (left) shows an overview of

feature usage by application and version. The overview shows that version 1.1 of application

“DEMO” is clearly the one that contains more assorted feature usage and, in overall, the Orange

tinted feature is the most used, except in version 1.0 – probably because it was a feature

introduced later. From the detailed information Figure 25 (right), the user can visualize

individual feature usage (name and frequency). The mappings are described next:

 Color – Identical to network usage (see above). Application, version and specific

classes of data (Events, Activities, Direct2user and Errors) are qualitative values

represented by color that will be consistently used throughout the Dashboard

visualization models. Each pack (parent node) will have a stroke color that

corresponds to its super-class value (Application, Version) and each data (child node)

will be filled-in with the color of its data class. Data class can be one of the following:

label of data point when showing all collected data classes (i.e., events, activities,

errors, etc.), feature name when viewing feature trends, or device properties when

Figure 25 - Hierarchical model.

Requirement Specification

 56

viewing operating system distribution (i.e., OS name, OS language, OS Architecture,

OS Service Pack).

 Text – Implemented in the same way as in networks (see above).

 Size –The size of the child nodes represents the frequency the specific data occurred in

the visualized data sample. The size of each parent node is recursively calculated to

accommodate all its children. Also, the size of text is proportional to the size of the

node.

 Opacity – Implemented in a similar way as the network links. But in this case, the

relevance is proportional to the frequency, hence its size (see above).

4.6.3 Radial Convergence

Radial convergence uses a circular layout that represents relationships between elements of

the data. The next illustrations
23

 depict the structure of the Radial Convergence model.

In Figure 26, links with variable thickness represent the extent of the relationship between

elements. The quantity of the associated relationship (e.g., frequency of a specific Feature), will

be represented by the thickness of the link. A link will have variable sized ends to indicate a

ratio A:D = 1:5. Figure 26 (left) shows that when links are colored based on the elements that

they relate, spotting patterns is easier. The direction of relationships (links) will be colored by

source. For example, in Figure 26 (left), when considering the cells A and B, according to color-

coding the direction of their link is (B A). By coloring the links based on one of the

elements, it becomes easier to follow relationships to/from an element. In Figure 26 (right) Data

links (A B) and (B A) are shown by a single ribbon whose ends are of variable thickness,

23 From http://circos.ca/presentations/articles/vis_tables1/

Circos is a software package for visualizing data and information.

Figure 26 - Radial Convergence.

http://circos.ca/presentations/articles/vis_tables1/

Requirement Specification

 57

which are the data values from source and target. For example, if (A B) = 2 and (B A) =

10 then the ribbon's end touching A is thickness 2 and the ribbon's end touching B is thickness

10.

The Radial Convergence is a good analytic complement to iUSE networks. Each node in

the network, whose value corresponds to the strength of inbound links, will be related to a cell

in the Radial, whose value corresponds to the strength of outbound links. There will be a

connection between the two visual models in a way that when a user selects a node (network

model) or a cell (radial model) the other model will reflect the same selection, offering two

complementary views, one dedicated to inbound links and the other to outbound links.

4.6.4 Usability

Tufte (1990) states that “Escaping the flatland of two-dimensional computer screen and

enriching the density of data displays are the essential tasks of information design.” In what

concerns data density, the Dashboard will be optimized for full-screen mode. This will allow

taking advantage of the maximum display resolution to create high-density visualizations.

Also, taking advantage of the increasing multiple-monitor environments is important. The

user will be given the option to see overview on one monitor and detail on another. The two

views must be connected together to enable that interaction in one monitor produces changes on

the second monitor view. This possibility increases display scalability (see 4.5).

As stated in the previous section, iUSE targets a multi-platform audience with access

anytime and anywhere. Also, it plans to reach its audience on the go with devices such as

tablets. For this reason, the UI must be designed with the focus on touch interaction.

 Stakeholder’s (users of the Visual Analytics Dashboard) work in silent environments,

therefore sound will be limited to engagement, interaction and feedback purposes

(Action Sound). In the context of networks, the movement produced by node dragging will

generate sound based on multidimensional information, derived from the node value and the

number of network links. Figure 27 shows the process of synthesizing sound for iUSE networks.

The process is a variation of “Ambient Drone”
24

 that uses Web Audio API
25

 to synthesize

ambient sound textures in real-time using filtered noise.

Figure 27 (A), (B) and (C) represent real-time JavaScript manipulations of the different

audio nodes. First the system will map the number of generators producing sound (n) to the total

links in the network. Then, when the network is moving by the dragging of one of its nodes, the

base note of the generated sound will be proportional to the selected node size (A), panner will

be updated with random (x,y,z) positioning (B), and audio gain will be proportional to the

network internal alpha cooling parameter (C).

24 See “Ambient Drone” details at http://matt-diamond.com/drone.html.
25 W3C Web Audio API Draft: https://dvcs.w3.org/hg/audio/raw-file/tip/webaudio/specification.html.

http://matt-diamond.com/drone.html
https://dvcs.w3.org/hg/audio/raw-file/tip/webaudio/specification.html

Requirement Specification

 58

Internally, the network layout uses a cooling parameter alpha (k) which controls the layout

temperature: as the physical simulation converges on a stable layout, the temperature drops,

causing nodes to move more slowly. Eventually, alpha drops below a threshold and the

simulation stops completely.

The overall audio synthesis simulates movement friction and each interaction with a

network specific node will reproduce a one-off sound, because although it uses the same base

note, the resulting sound will be slightly transformed by the random noise filter.

Figure 27 - Real-time synthesized audio.

Implementation

 59

Chapter 5

Implementation

Implementation

 60

5.1 Data Storage

This section reveals details about data storage implementation, presenting an overview of

database schema and design decisions. Resulting from data storage technology requirements

(see 4.5) the database is hosted on a cloud server running SQL Azure that provides the

necessary IT infrastructure and QoS: scalability, availability and reliability.

Table 8 briefly describes the entities being modeled and Figure 28 shows an overview of

their relationships.

Table 8 - Database entities.

Entity Description

Project The software application to be tracked. A project can have multiple versions. The version is defined

at runtime by the client API.

Member A person registered in iUSE as a member (e.g., Developer), using the framework to record usage of

a Project. A member has a key which authorizes him to communicate with iUSE REST Web API.

User The person that is interacting with the Project at runtime. The user ID should be the same between

sessions in order to capture distinct usage in time.

Session Session represents all collected data points from a User since the beginning of a Project execution

until application termination. A data point is a specific type of data collected in a point in time. The

client API should create a GUID that uniquely identifies each new session.

session_data_direct2user

session_data_event

projects

sessions

session_data_error

session_data_activity

member_projects

members

session_data_device

session_data

Figure 28 - Entity relationship.

Implementation

 61

iUSE databases can rapidly grow larger, depending on the quantity of data points an

organization is collecting. Therefore, a major concern when designing the database was to

properly normalize tables, saving storage space and storage cost.

The main tables are [session], [session_data] and [session_data_*]
26

. Each individual

session is represented by one row of [session], with all common data stored in [session_data]

(Super-table) and specific types of information in [session_data_*]. Special care was taken on

defining indexes for foreign keys for search fields in order to optimize response time to analytic

requests.

Figure 29 shows a typical request for analytical data when client applications use the web

API to query information. For performance reasons, all queries to the database are implemented

as stored procedures so that they be pre-compiled and optimized. Stored procedures then access

information by using views that abstract internal representation of fragmented tables. For

example, a query to a user’s workflow calls the stored procedure “sp_user_flow” that queries

the view “view_user_flow”, ordering its results by data point date. This view “view_user_flow”

encapsulates a union between all relevant specific session data (“session_data_event”,

“session_data_activiy”, “session_data_error“, etc).

Some analytics require mined data; some of this computation is executed at runtime, at the

client web dashboard. But, to limit the amount of data returned to the client and for performance

requirements, some aggregations must be made at the server’ side either directly at the database

server or by the web role. For example, data inserted into tables related to features

(session_data_event, session_data_activity) are monitored by database triggers. On inserting,

the trigger updates a session feature_flow table that maintains the number of occurrences

between features (important to monitor feature workflow trends). This data is then mined by the

web server to create global community usage information. The aggregated information is then

consumed by iUSE visual analytics models.

26 *represent sub-tables of specific type, such as Event or Activity.

Figure 29 - Anatomy of a data request.

Implementation

 62

5.2 Web endpoint

iUSE Web endpoint is built with ASP.NET Web API – a framework for building HTTP

services on top of the .Net Framework. HTTP is simple, flexible, and ubiquitous. Almost any

platform has an HTTP library, so HTTP services can reach a broad range of clients, including

browsers, mobile devices, and traditional desktop applications.

This service provides insert and query interfaces to the data storage, and computes mined

data to be consumed by visual analytics models. Figure 30 illustrates the six types of data-

mining accessed through the Web endpoint.

 The different data mining models are optimized for a particular visualization model and

consumed by the Visual Analytics Dashboard.

All requested data can be filtered by date interval, application name, application version

and category. Each element of the aggregated response includes a Range value – total subject

occurrences; and a Domain value – total of distinct subjects. For example, an element of the

Session execution analytics with a Domain value = 3, and Range = 10 reveals that 3 distinct

users executed 10 sessions (in the context of the specified filter).

The next list is a brief description about each analytic model:

 Partition Mining – Creates parent-child aggregations. Partition analytics can be

requested for Device usage overview, particularly OS distribution (e.g., OS >

Language > Architecture) and Application usage distribution (e.g., Application >

Version). The subject of Domain is distinct devices.

 Execution Mining – Creates data point aggregations by month, day and hour.

Execution analytics can be requested for Sessions, Events, Activities, Direct2Users,

Figure 30 - Analytics data-mining.

Visual Analytics
Dashboard

REST Web APIhttp

Data
Request

select SQL Azure

Create
Worflow
Mining

Create
Execution

Mining

Create
Partition
Mining

Create
Matrix
Mining

Create
Device
Mining

Create
Error

Mining

Implementation

 63

Errors, Installations and Uninstallations. The subject of Domain varies according to

context:

o Sessions – Subject of Domain is distinct users.

o Events, Activities – Subject of Domain is distinct labels.

o Direct2User – Subject of Domain is distinct URL’s.

o Errors – Subject of Domain is distinct error messages.

 Workflow Mining – Creates aggregations of sequence data points. The collected usage

data includes Events, Activities, Direct2User and Errors. Each element on the

workflow represents a link between two data points. Subject of Domain is distinct

Sessions.

 Matrix Mining – Structures the workflow analytics as a matrix [MxM] where M = total

distinct workflow links.

 Error Mining – Creates aggregations on error sequences. The system searches for

previous interactions with the system before errors. The analysis will create a

workflow between collected data points with the intent to highlight eventual error

related patterns of usage and extract the most likely reproduction steps.

Mined data is not limited to feed iUSE Visual Analytics but also any other HTTP Client.

For example, the organization could integrate that information on a SharePoint portal in the

format, or a list, or other visual graphic.

5.3 Modeling with OWL

OWL is the W3C recommended language for describing Ontologies. The model was built

using Protégé-2000
27

 following an iterative process.

iUSE ontology is based on simple hierarchy of concepts and relations captured from the

database schema (see 5.1) and linked data requirements (see 4.4.3) enriched with axioms used to

fix the semantic interpretation of concepts and relations. In terms of modeling one of the goals

was to keep it simple to allow easy extension – Creeping conceptualization
28

 (Antipattern).

Nevertheless, extension will depend on how iUSE integration is being architected and the type

of information that is collected.

27 Ontology tools survey, Revisited (Denny, 2004)
28 Semantic Web for the Working Ontologist (Allemang & Hendler, 2008)

Implementation

 64

The design of software inherently involves a model of the commonality and variability in

its domain. The object model (API) of iUSE was implemented using OOP that uses classes and

sub-classes to represent hierarchies. Classes high up in the hierarchy represent common

functionality while classes farther down represent more specific functionality. The idea of class

hierarchies is transversal to semantic web standards. High-level classes represent commonality

among a large variety of entities, whereas lower-level classes represent commonality between a

small, specific set of things. The model hierarchy was consistently implemented throughout the

iUSE database model, OOP model and the Ontology.

RDFS inference is the mechanism that enables a system to determine other information,

related to stated information, as if it had been stated. This inference mechanism greatly reduces

the quantity of information needed to be export by iUSE.

5.3.1 Domain and Scope

Requirements specification (see 4.4), database entities, properties and relationships (see

5.1) helped to define de domain and scope of the Ontology: Tracking usage of desktop software.

The main purpose is to expose iUSE data, by providing a mechanism to export data into any

RDF data store and creating the basic axioms that provide inference mechanisms to facilitate the

query
29

 of simple questions about the usage of software application. Competency questions such

as:

 What is the workflow in the application? This can be answered by querying all

instances of type “Data”.

 What is the usage of a specific type of data? This can be answered by querying all

instances of the specific type (e.g., “Activity”, gives all tracked activities).

 Is there any Data that should trigger an alert or organizational procedure? There are

some types of data that are tracked with the intent to trigger some kind of procedure in

the software organization. For example, error and warnings could trigger an alert on

development to proactively investigate the possible causes. This can be answered

querying all instances of type “Error”.

 How can I merge usage data with other ontologies? In terms of modeling, the primary

goal was to keep it simple so it could be easily extended or merged with other

ontologies. Linking data to other ontologies depends on how software organizations

architect iUSE framework integration and the type of information that is being stored.

For example, the proliferation of social network web applications is putting the social

29 SPARQL is an RDF query language, that is, a query language for databases, able to retrieve and manipulate data

stored in Resource Description Framework format.

http://en.wikipedia.org/wiki/RDF_query_language
http://en.wikipedia.org/wiki/Resource_Description_Framework

Implementation

 65

graph concept at the center of the scene. To merge iUSE with social network

ontologies, the user of the application should be given a unique identifier capable of

making the bridge (OPENID, foaf:email, etc.). In such scenarios, data-link

requirements should be defined when architecting iUSE integration.

5.3.2 Asserted model

 The main terms were imported from the terms created when designing the database

schema. A top-down approach was used (Uschold & Gruninger, 1996) to specialize some new

classes: “CompletedActivity”, “CanceledActivity” (sub-classes of “Activity”). Specific “Data”

classes like “Event” or “Activity” were already specialized when creating the database schema

and ported to this model (see Table 9). Figure 31 shows the asserted OWL model.

 Figure 31 - OWL model.

Implementation

 66

Table 9 - OWL classes.

Class Description

Project Software application that is being tracked.

Member A person, registered in iUSE as a member (e.g. Developer) that is using

the framework to record usage of a Project.

User A person that is using the Project.

Feature Represents a functional unit that is being used by the User.

Session Encloses all information recorded by a Member about a User

interaction in a Project.

Data

D
is

jo
in

t
C

la
ss

e
s1

Encloses all different data types recorded in the Session.

Device
A specific type of data. It represents information about the device

where the Session is executing.

Execute Specific type of data. It represents the start of a Session.

Terminate Specific type of data. It represents the end of a Session.

Event
A specific type of data. Something triggered in the application. An

event has no duration, it happens in a point in time.

Error
Specific type of data. It represents an exception during the execution

of a Session.

Direct2User Direct2User represents interaction with the user via redirect to a URL.

Activity

Activity is a specific type of data related to some task the user has

performed. An activity is associated with a time-span. An Activity can

be cancelled.

CompletedActivity

(Activity)

D
is

jo
in

t2

CompletedActivity is a specific type of Activity data. It represents all

activities that were completed.

CanceledActivity

(Activity)

CanceledActivity is a specific type of Activity data. It represents all

activities that were cancelled.

1
 A specific Data instance can only be of one type.

2
 An Activity instance can be classified (typed) as Completed or Canceled (Exclusive)

Implementation

 67

The instances are created by the export mechanism included in iUSE Web API, which lets

the user export session data in RDF/XML or Turtle. Figure 32 shows a representation of a

session instance.

A Session carries all the Data recorded by a Member about usage of a User in a Project

running in a specific Device and time-frame that spans from Execute to Terminate.

Project, User, Member and Feature are classes connected to Session by object properties –

modeled as classes better reveal the organic of a session. When exporting RDF data, different

Sessions may point to the same instance of a Project, User, Member and Feature, as long as they

represent the same thing. Also, considering RDF queries, this structure better serves the visual

representation and inference engine to obtain answers about specific entity individuals, such as:

 What are the Sessions running the Project (id=”NGCO”, version=”12.00”)?

 What Sessions have been used by User (id=”luismiguelfr74@hotmail.com”)?

 Who is using Feature (id=”#320”)?

Properties were imported from database schema, although not used in the same way. A

property, unlike OOP or database schema, is not part of the class; it connects a class or classes

to a value property or object property. For example, a “hasFeature” (object property) is

associated to the domain of “Data”, so it can be referenced by any of its sub-classes (In current

implementation to “Activity” and “Event”). Table 10 and Table 11 (below) show the complete

description of object and data properties.

Figure 32 - OWL session.

Implementation

 68

Table 10 - OWL object properties.

Object Property Inverse Domain Range

hasCreator
1
 isCreatorOf

Session

Member

hasProject
1
 isProjectOf Project

hasUser
1
 isUserOf User

hasData isDataOf Data

hasFeature
1
 isFeatureOf

Data

Feature

hasActivity
2
 isActivityOf Activity

hasEvent
2
 isEventOf Event

hasDevice
1,2

 isDeviceOf Device

hasDirect2User
2
 isDirect2UserOf Direct2User

hasError
2
 isErrorOf Error

hasExecute
1,2

 isExecuteOf Execute

hasTerminate
1,2

 isTerminateOf Terminate

hasInstallation
1,2

 isInstallationOf Installation

hasUninstallation
1,2

 isUninstallationOf Uninstallation

1
 Functional property.

2
 Inverse functional properties.

Table 11 - OWL data properties.

Data Property Domain Range Description

hasArchitecture

Device

String Device OS Architecture (e.g. “64”)

hasCity String Device City (e.g. “Porto”)

hasCountry String Device Country (e.g. “Portugal”)

hasRegion String Device Region (e.g. “Porto”)

hasIP String Device IP (Internet Address)

hasLanguage String Device OS Language (e.g. “pt-PT”)

hasLatitude String Device Latitude (Geographic location)

hasLongitude String Device Longitude (Geographic location)

hasOS String Device OS (e.g. “Windows 7”)

hasResolution String Device Resolution (e.g. “1024x748”)

Implementation

 69

hasDeviceID String Device Identification (e.g. device serial number)

hasDataID

Data

Decimal Session data ID. Each data point stored in iUSE has a unique

number ID.

hasCategory String Identifies a category of data. Is used to categorize data

points of type “Event”, “Activity”, “Error”, “Log”, “Direct2User”.

hasEmail Member String Member registered email.

hasSource

Error

String Error source.

hasStackTrace String Error Stack Trace.

hasURL Direct2User String Direct2User URL that the user visited.

hasVersion Project String Project runtime Version defined via Client API.

hasID - String Generic ID.

hasDt
-

Datetime Generic datetime. Can be used to define a point in time, or

start of a time period.

hasDtEnded
-

DateTime Generic datetime. Can be used to define the end of a time

period (Session or Activity)

hasDuration - Decimal Generic time duration in seconds.

hasLabel - String Generic description.

hasMessage - String Generic message.

hasToken - String Generic client unique identifier (Session, User)

Note: All data properties are “Functional”

Implementation

 70

5.4 Dashboard

In this section screenshots of the prototype will be commented. Figure 33 shows the

structure of the dashboard menu and the orientation for touch devices. The structure of the menu

will be created so the user doesn’t have to navigate on small menus and sub-menus. The menu

will follow a network inspiration with options grouped by category and moved to the corners,

where it is easier to select when used in a tablet or touch device.

Figure 34 shows an overview of the Hierarchical Model and its zooming behavior (details

on demand). The use of color creates a cluster from where patterns can be viewed.

Figure 33 - Menu.

Figure 34 - Hierarchical Model.

Implementation

 71

The next figures show the visualization models of Networks together with the Radial

Convergence. The interface provides the ability to zoom out models in order to focus attention

either on network or radial convergence. Legend works as a bar chart providing indications

about the color coding and scale. Figure 35 shows the network adapting to the selection of a

node. Nodes not connected to the reference node are dimmed out, outbound links are dashed

and link strength detail is visible. All networks follow the same visual representation.

Figure 36 - Networks.

Figure 35 - Networks (Selected Node)

Implementation

 72

Network topologies are used to show error patterns and to view their most likely causes

(see Figure 37). iUSE processes the last 5 events before an error occurred and represents their

frequency and relationships together with device properties (OS, Architecture and Language)

that may have caused the error.

To test the prototype, the method of Talk-Aloud protocol was used (see Usability testing).

The listed report concludes that the three visual models, their mappings and coding were well

understood. It identifies that when interacting with networks, the user entered a much higher

engagement state. Complex networks are intriguing and stimulating.

Figure 37 - Error analysis using networks.

Conclusions and Future Work

 73

Chapter 6

Conclusions and Future Work

Conclusions and Future Work

 74

6.1 Objectives Accomplishment

This thesis intended to achieve three main goals: The first one was to create a high-fidelity

prototype, using state of the art visualization models and technology, likely to evolve into a

working product, which could then be used in the context of organizations; secondly, the project

was considered as an opportunity to grow as a professional in areas where personal knowledge

was sparse or even null. As a desktop business software developer, web technologies were not a

priority for many years, so the selection of the state of the art web technologies related to the

Semantic Web, HTML5, SVG and Web Audio were the opportunity to develop new skills; lastly,

there was a personal interest in information visualization and the urge to develop and explore

new models of visualizing complex information. The selected visual models showed to be

efficient for the task of Visual Analyzing Runtime Intelligence Data.

The research on the domain of Runtime Intelligence requirements, the proficiency in new

web technologies and the integration of innovative aspects in the domain of Runtime

Intelligence encourage the author about iUSE as a starting point of a simple but powerful Visual

Analytics tool.

6.2 Future Work

The project addressed several aspects of Runtime Intelligence services, from Client to

Server services to Visual Analytics that focused on network visualizations as a tool to detect

usage patterns and relationships in data. In order to be a fully functional product, iUSE needs to

embrace the richness of time dimension, either in the proposed models or with the more

traditional trend graphics (e.g., line charts), and to provide a broader range of analytics and

enhance existing ones with further usability testing. As an example, in order to find error

workflows and the most likely reproduction steps, a tree with branches representing the order in

which the user navigates in the application would help seeing the sequence of steps.

In Visual Analytics requirements, many scalability objectives were documented but not

implemented in the prototype - multi-monitor support is an example that could be additional

innovation to Runtime Intelligence services. It is technically possible to implement by using

web sockets as the communication channel between independent and isolated browser windows

that could then work as an extension to each other. Other scalability objectives like semantic

zoom were implemented in the hierarchical view by showing more detailed information while

zooming to child packs. Semantic zoom will be a valuable addition to implement details on

Conclusions and Future Work

 75

demand and reduce clutter on network visualizations. For example, in dense network

visualizations the user could zoom-in using the mouse or touch, and while the network scaled

up, more information would be displayed.

The proposed network model has high processing requirements for the client’s browser,

because of its physics engine and graphical fidelity. The browser needs to support the most

recent HTML5 specifications and be able to use GPU acceleration so that more dense

visualizations are fluid. To minimize performance degradation on denser networks, browser

multithreading is a possible and recommended enhancement. This would benefit the audio

synthesizer, because the physics engine runs on parallel with the audio generator on the same

browser thread. Performance tests with denser networks resulted in poor frame rate when some

visual elements were used, such as SVG filters and dashed lines. This is expected to become less

of a problem in a near future with the growing support for hardware acceleration in web

browsers.

The defined architecture of iUSE and the adoption of a cloud computing platform, such as

Windows Azure enable the creation of asynchronous services that can scale to handle more

demanding mining algorithms and process more information. Runtime Intelligence data has an

interesting feature: the collected data is a snapshot in time that doesn’t change; therefore it can

be used to provide prepared information. For example, a worker’s role running on the cloud

computing could mine and prepare data at 00:00 each day, so the next working day data is ready

for rendering. Also, because HTML5 specification includes local storage, client browsers could

store received data that feed visualizations, and reused it each time an analytical task is needed,

with no server requests. The user could then refresh data on demand.

In conclusion, the prototype revealed interesting analytical features of network topologies

in the domain of Runtime Intelligence and, because it is built on standard and evolving web

technologies, future enhancements will inevitably benefit iUSE.

References

 77

References

Allemang, D., & Hendler, J. A. (2008). Semantic Web for the Working Ontologist - Effective

Modeling in RDFS and OWL (2nd ed.). (Elsevier, Ed.) Morgan Kaufmann.

Andrew W. Donoho, David L. Donoho, & Miriam Gasko. (1988). MacSpin: Dynamic Graphics

on a Desktop Computer. Computer graphics & Applications, 58.

Ankerst, M. (2000). Visual Data Mining. Visual Data Mining, Dissertation (Ph.D. thesis).

Faculty of Mathematics and Computer Science, University of Munich.

Ankerst, M. (December de 2002). The perfect Data Mining Tool: Automated or Interactive?

ACM SIGKDD Explorations Newsletter, pp. 110-111.

Berners-Lee, T. (March de 2009). Tim Berners-Lee on the next Web. Obtido em 30 de June de

2013, de TED: http://www.ted.com/talks/tim_berners_lee_on_the_next_web.html

Bertin, J. (1984). Semiology of Graphics: Diagrams, Networks, Maps. ESRI Press (November 1,

2010).

Bostock, M. (2011). D3: Data-Driven Documents. Obtido em 30 de June de 2013, de

http://mbostock.github.io/d3/talk/20111018/#0

Deleuze, G., & Guattari, F. (1972-80). Capitalisme et Schizophrénie. Paris: Les Editions de

Minuit.

Denny, M. (2004). Ontology Tools Survey, Revisited. Obtido de

http://www.xml.com/pub/a/2004/07/14/onto.html

Dix, G. E. (2007). A taxonomy of clutter reduction for information Visualization. IEEE

Transactions on Visualization and Computer Graphics, 1216–1223.

Dondis, D. A. (1974). A Primer of Visual Literacy. MIT Press.

Eick, S. G., & Karr, A. F. (2002). Visual Scalability. Journal of Computational and Graphical

Statistics, 22-43.

Gruber, T. R. (1993). A Translation Approach to Portable Ontology Specifications. Knowledge

Acquisition(5), 199-220.

References

 78

Holst, S. (2011). Application Analytics: Why Is the Developer Always the Last to Know? Obtido

em 30 de June de 2013, de

http://visualstudiomagazine.com/Articles/2011/07/01/pfven_App-

Analytics.aspx?Page=1

Keim, D. A., Kohlhammer, J., Ellis, G., & Mansmann, F. (Edits.). (2010). Mastering The

Information Age - Solving Problems with Visual Analytics. Eurographics Association.

Keim, D. A., Mansmann, F., Schneidewind, J., & Ziegler, H. (5-7 de July de 2006). Challenges

in visual data analysis. Information Visualization, IV.

Köhler, W. (1947). Gestalt Psychology. New York: Liveright.

Lewis, C. H. (1982). Using the "Thinking Aloud" Method In Cognitive Interface Design. IBM.

Lima, M. (2011). Visual Complexity: Mapping Patterns of Information. New York: Princeton

Architectural Press.

Michael Bostock, Vadim Ogievetsky, & Jeffrey Heer. (2011). D3: Data-Driven Documents.

IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis).

Moere, A. V. (s.d.). Obtido em 30 de June de 2013, de Information aesthetics:

http://infosthetics.com/

MSDN. (2 de 5 de 2013). How To Choose Between SVG and Canvas. Obtido de

http://msdn.microsoft.com/en-us/library/ie/gg193983(v=vs.85).aspx

Niggemann, O. (2001). Visual Data Mining of Graph Based Data. 392-396. Germany:

University of Paderborn.

Ruddle, R, Brodlie, K., & Dimitrova, V. (2002). Communication, visualisation and interaction.

University of Leeds, School of Computing.

Sachinopoulou, A. (2001). Multidimensional Visualization. Technical Research Centre of

Finland. VTT Publications.

Shneiderman, B. (1996). The eyes have it: A task by data type taxonomy for information

visualizations. IEEE Symposium on Visual Languages, 336–343.

Spenc, R. (2007). Information Visualization - Design for Interaction (2nd ed.). Pearson

Education Limited.

References

 79

Sperber, D., & Wilson, D. (1995). Relevance: Communication and Cognition.

Oxford/Cambridge: Blackwell Publishers.

Thomas, J. J., & Cook, K. A. (2006). A Visual Analytics Agenda. IEEE Computer Graphics

and Applications, 54, 10-13.

Tufte, E. R. (1990). Envisioning Information. Cheshire: Graphics Press.

Tufte, E. R. (1997). Visual Explanations: Images and Quantities, Evidence and Narrative.

Graphics Press.

Tufte, E. R. (2001). The Visual Display of Quantitative Information (2nd ed.). Graphics Pr.

Uschold, M., & Gruninger, M. (1996). Ontologies: principles, methods and applications. The

Knowledge Engineering Review, 11(2), 93-136.

Weaver, W. (October de 1948). SCIENCE AND COMPLEXITY. American Scientist, 36(4),

536-544.

Wurman, R. S. (2000). Information Anxiety (2nd ed.). New York: Que.

Usability testing

 80

Appendix A

Usability testing

The method of Talk-Aloud protocol (Lewis, 1982) was used to gather data from iUSE

usability tests. The test was directed to a software developer of a LOB organization interacting

for the first time with iUSE. He was instructed about the domain of the application he was going

to test and the requirements of the Talk-Aloud protocol and then asked to perform the following

tasks:

NOTE: iUSE Visual Analytics Dashboard was set to its menu page.

1. Enter the option “Product Data”

a. Q: What are the trends in data usage?

b. R: The user correctly identified the most frequent collected data by referring to

the larger circles. But, although the mouse suggested interaction by

highlighting the circles on mouse over, the user never initiated interaction

other than mouse over to read tooltips. Clicking the circle would have initiated

a zoom to show details.

2. Enter the option “Data Workflow”

a. Q: What is the most executed activity?

b. R: Again, by looking to the network, the user easily identified the most

executed activity “calculate”. In this case the user naturally initiated

exploration by interacting with the network nodes. Also, he felt comfortable

with the Radial Convergence and made an initial exploration. But his primary

visual model of exploration was the network.

c. Q: After starting an application, what is the event or activity more frequently

used by the community?

Usability testing

 81

d. R: In this case the user was pointed to the “execute” node because there was

no sufficient information in the UI to elucidate about the purpose of the

“execute”. After that, the user successfully identified inbound and outbound

links and determined the strongest connection from “execute”.

e. Q: Do you see any errors? What is the most frequent error?

f. R: The user responded “it must be the red node!” Then he was asked if there

was any clue on the UI that indicated how the errors should look like. He

wasn’t able to find the legend that showed the color coding, although well

visible at the top right corner. The problem here seemed to be full engagement

with the network that prevented him from notice the legend.

3. Enter the option “Error Workflow” and identify the “Unauthorized” error and state:

a. Q: What is the most likely source of error?

b. A: Again, the user easily found the node and identified the stronger link

connecting to the error node.

c. Q: In what environments are they occurring?

d. R: The user inferred the device nodes by label name “e.g., Windows 7” and the

overall network structure. Didn’t need the legend.

Conclusions:

 When interacting with the Hierarchical View the user had some difficult in identifying

that he could zoom in by clicking the circles, but understood and analyzed the model

easily. A simple “click to zoom” message or icon will mitigate this issue.

 When interacting with networks the user entered a much higher engagement state. He

understood the mappings and coding easily. The exception was in noticing the legend.

To mitigate this, when a user interacts with a node, the legend associated with the node

class could show some highlight, at least during the first interactions.

 The Radial Convergence mechanics was well understood.

Personas

 82

Appendix B

Personas

iUSE is a specialized system aiming a specific group of users. In order to obtain a more

profound knowledge of those users and to improve the design of the system, the concept of

Persona (Cooper, 1999) was built. Each persona is an archetypal user, based on real people

(stakeholders from a company that develops LOB desktop software) – a Software Developer, a

Research & Development Manager, a Product Manager and a Customer Service Manager:

 Luís (Software Developer) - Luís is a software architect of 38 years old who is working

as a software developer for a company specialized in LOB applications widely

deployed as desktop applications. As a “common components manager” he helps in

developing complex systems, in different development platforms, that are integrated

by other teams. Those components are the basis for a wide range of products and

therefore quality must be at the top of Luís’s priorities. Regardless the commitment to

development best practices, after product release, Luís lacks a reliable communication

channel that effectively provides him data concerning quality issues, in order to

proactively address them and reduce impact on the installed base. Quality issues, such

as unhandled software exceptions, are reported to the company’s product support by

users. When reported issues escalate to R&D, frequently lack context information, and

therefore Luís consistently asks for the same questions: What is the Operating System?

Is it a 64 or 32 bit OS? What regional settings are being used? When the problem fails

to be replicated internally, it is necessary to access customer’s running environment

and if necessary create a specific version, in order to locally track the steps that

reproduce the error and analyze the exception stack trace or log other context data.

 Joaquim (R&D Manager) - Joaquim is a 45 years old R&D manager. One of his

primarily tasks is to make decisions based on the company’s goals. For that matter he

needs actionable data in which to rely. The software company has to cope with an

enormous and heterogeneous usage and different desktop environments from all its

users. As systems evolve and new operating systems reach user’s desktops,

development investments have to be balanced with user’s installed base and questions

must be asked, such as: Can we stop supporting Windows XP? How many active

Personas

 83

clients would that affect? Can we integrate more sophisticated and demanding

hardware solutions? What’s the hardware stack of our users?

 Carlos (Product Manager) - Carlos is responsible for managing the product catalog

and feature set. He faces a daily difficulty in measuring how core features are used by

customers. Such information is vital to prioritize development efforts and answer some

of Carlos’s questions: Can we drop this specific feature? Are users aware of the

importance of the feature? Are users updating to the new version? Presently, Carlos

relies on the licensing model to obtain information about users. A license includes

user’s information (i.e., fiscal number, address) and application information (i.e.,

version, functional level and modules). Based on these data, he can assume some

information concerning user’s main functional requirements, but he cannot infer how

user is using those modules, or how each of the individual features is being used. In

short, he lacks a survey about community feature usage patterns.

 Ana (Customer Service Manager) - Ana manages customer services oriented teams

which include support and training. The support team is responsible for answering

customer’s technical issues about software and to record any reported quality matter.

The training team provides users with the necessary qualifications to use software

properly (i.e., payroll, accounting), in order to manage their business. Customer

Service Department is also responsible for publishing information about new releases,

training opportunities and other relevant subjects to the customers, using different

channels such as the company’s web page, reseller’s email channel, social networks

like Facebook or Twitter, and so on. Although aware of the importance of this

information, the company has not yet implemented any direct-to-user communication

mechanism.

Stakeholders Survey

 84

Appendix C

Stakeholders Survey

The survey was created and submitted through an online survey platform (SurveyMonkey)

on the 22th of April, 2012, and the main goal was to get a first impression on the importance

software development organizations give to the possibility of having usage information from

their users in general, and in particular the degree of business interest about a first set of usage

properties.

For the matter 14 individuals, representative of a software development organization (Sage

Portugal), were used as a sample – Managers and Developers. From the invited universe 6

responded to all of the questions, 8 didn’t accept the survey invitation. Next is the list of

questions and answers:

Q1: Would you consider important to have a tool capable of analyze and visualize end- user’s

usage of your applications?

Options Responses

Not important 0%

Little important 0%

Very important 100%

Q2: Which of the following do you consider relevant to know about user’s IT equipment?

 Irrelevant
Little

Important
Important Total Average

OS (Version, Service Pack, 32/64bits, Language)
0%
0

16,67%
1

83,33%
5

6

2,83

Memory (Total)
0%
0

50%
3

50%
3

6

2,50

Processor (Name, Type, Frequency, Colors,
32/64bits)

0%
0

66,67%
4

33,33%
2

6

2,33

Screen (Quantity, Main Resolution)
16,67%
1

50%
3

33,33%
2

6

2,17

Geolocation (Country, Region)
0%
0

83,33%
5

16,67%
1

6

2,17

Disk (Total)
16,67%
1

66,67%
4

16,67%
1

6

2,00

.NET Versions Installed
16,67%
1

83,33%
5

0%
0

6

1,83

Machine ID (e.g.: Disk Serial Number)
83,33%
5

16,67%
1

0%
0

6

1,17

http://pt.surveymonkey.com/

Stakeholders Survey

 85

Q3: In what concerns the usage of the application on the client, please evaluate the degree of

importance of the following:

 Irrelevant
Little

Important
Important Total Average

Versions in use
0%
0

0%
0

100%
6

6

3,00

Features used by the client
0%
0

0%
0

100%
6

6

3,00

Features usage flow in the application
0%
0

16,67%
1

83,33%
5

6

2,83

Installed features which were never used
0%
0

33,33%
2

66,67%
4

6

2,67

Number of users running those features
0%
0

50%
3

50%
3

6

2,50

Installations
0%
0

50%
3

50%
3

6

2,50

Uninstallations
0%
0

50%
3

50%
3

6

2,50

Possibility to interact with the user via desktop, in a
predefined context

16,67%
1

33,33%
2

50%
3

6

2,33

License in use
0%
0

83,33%
5

16,67%
1

6

2,17

Analyzing the responses the following deductions were made:

Q1: All respondents clearly stated the importance of knowing how users interact with their

applications, and the relevance of a tool that enables it.

Q2: Although running environment support is decided in advance by software producers,

tracking user’s environment information is vital for planning development investments –

particularly operating system and architecture (32/64 bits) – because of its tight relation to

software development tools. Hardware information features have less business value when

compared to software information like OS. Usually, the importance of the former is mainly for

knowing if development technology can be pushed forward without affecting the installed base.

Hardware features such as screen resolution and machine ID were less voted, but further

discussion about these results suggested they should have higher importance. Screen resolution

could have and immediate benefit to product development, because typically desktop

applications lack display scalability and target fixed resolutions (e.g. 1024x784). Furthermore,

because some license models are per machine, collecting the machine ID would be of business

value when collected together with the license ID (see Q3).

Q3: Overall, all functional requirements were considered useful, but the spotlight was in

product information (version) and feature usage. Any tracking tool must address these needs.

The less voted functional requirement was license ID. But, as previously discussed (Q2

conclusions) license ID when combined with machine ID, in a per machine licensing model,

both become of higher business value (e.g. tracking illegal use of software).

