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Abstract: This study proposes the simulation of PEM fuel cell polarization curves using artificial neural networks 
(ANN). Fuel cell performance can be affected by numerous parameters, namely, reactants pressure, 
humidification temperature, stoichiometric flow ratios and fuel cell temperature. In this work, the influence 
of relative humidity (RH) of the gases, as well as gases and fuel cell temperatures was studied. A 
feedforward ANN with three layers was applied to predict the influence of those parameters, simulating the 
voltage of a fuel cell of 25 cm2 area. Different ANN models were tested, varying the number of neurons in 
the hidden layer (1 to 6). The model performance was evaluated using the Pearson correlation coefficient 
(R) and the index of agreement of the second order (d2). The results showed that feedforward ANN can be 
used with success in order to obtain the optimal operating conditions to improve PEM fuel cell performance. 

1 INTRODUCTION 

Fuel cells are an innovative alternative to current 
power sources with potential to achieve higher 
conversion efficiencies thus reducing the 
environmental impact. In particular, the proton-
exchange membrane (PEM) fuel cells are today in 
the focus of interest as one of the most promising 
developments in power generation with a wide range 
of applications in transportation and in portable 
electronics. Although prototypes of fuel cell vehicles 
and residential fuel cell systems have already been 
introduced, their cost must be reduced and their 
efficiencies enhanced.  

To achieve optimal fuel cell performance, it is 
critical to have an adequate water balance to ensure 
that the membrane remains hydrated for sufficient 
proton conductivity, while cathode flooding and 
anode dehydration are avoided (Baschuk and Li, 
2000; Biyikoglu, 2005). Water content of the 
membrane is determined by the balance between 
water production and three water transport 
processes: electro-osmotic drag of water (EOD), 
associated with proton migration through the 
membrane; back diffusion from the cathode; and 
diffusion of water to/from the oxidant/fuel gas 
streams. Understanding the water transport in the 

PEM is a guide for materials optimization and 
developments of new Membrane Electrode 
Assemblies (MEA’s).  

Mathematical modelling and simulation are 
needed as tools for design optimization of fuel cells. 
In this work, the effect of anode/cathode relative 
humidity, reactants temperatures and fuel cell 
temperature on the performance of a PEMFC with 
multiserpentine flow channels is studied and the 
results are compared to the predictions of an 
artificial neural networks (ANN) based model. ANN 
is a statistical model that is applied in different 
fields, such as, process control, optimization, 
medical diagnosis, decision making, signal and 
speech processing (Gupta and Achenie, 2007; Nagy, 
2007; Uncini, 2003). ANN models are characterized 
by a set of processing neurons with an activation 
function that are distributed in layers (input, hidden 
and output layers). One of the problems of the 
training step is the overfitting. A high number of 
iterations lead to decrease the error in the training 
set, but the achieved model presents a large error 
when applied to a new set. A method often applied 
to solve this problem is the early stopping (Nguyen 
et al., 2005; Özesmi et al., 2006). Using this method, 
the data should be divided into three sets (Chiang et 
al., 2004): (i) the training set,  used to determine the 
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Figure 1: Schematic representation of the experimental set-up. 

model parameters; (ii) the validation set, used to 

evaluate the performance of ANN model during the 

training step and to stop it when the validation error 

starts to increase; and (iii) the test set, used to 

evaluate the ANN performance when applied to a 

new set. Some studies applying ANN models to fuel 

cells can be found in recent literature (Ogaji et al., 

2006; Saengrung et al., 2007; Ou and Achenie, 

2005). Ogaji et al. (2006) applied these models to 

simulate the performance of solid oxide fuel cells 

ANN presented great accuracy. Saengrung et al. 

(2007) tried to predict the performance of a 

commercial proton exchange membrane using two 

ANN models. Both models presented successful 

predictions of the stack voltage and current of the 

fuel cell. Ou and Achenie (2005) compared the 

performance of ANN and two hybrid models for 

predicting the voltage of proton exchange membrane 

fuel cells. The models presented similar 

performance.  

The scope of this work is the application of an 

ANN model to predict fuel cells polarization curves  

and verify the feasibility of this application. 

2 EXPERIMENTAL SYSTEM 

A schematic drawing of the experimental apparatus 

used in this work is shown in Figure 1 

Pure hydrogen (humidified or dry) as fuel and air 

(humidified or dry) as oxidant are used. The pressure 

of the gases is controlled by pressure regulators 

(Air- Norgreen 11400, H2 - Europneumaq mod. 44-

2262-241) and the flow rates are controlled by flow 

meters (KDG – Mobrey).  

The reactants humidity and temperatures are 

monitored by adequate humidity and temperature 

probes (Air – Testo, H2 – Vaisala). The 

humidification of air and hydrogen gases is 

conducted in Erlenmeyer flasks by a simple 

bubbling process. To control the humidification 

temperature, each Erlenmeyer flask is thermally 

isolated and surrounded by an electrical resistance 

(50 W/m) activated by a Osaka OK 31 digital 
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temperature controller. The same procedure is 

applied along the connecting pipes from the 

humidification point up to the entrance of the fuel 

cells to guarantee the temperature stabilization of 

each reacting gas flow, as well as to control the 

operating temperature of the fuel cell. For the 

measurement and control of the cell electrical 

output, an electric load reference LD300 300W DC 

Electronic Load from TTI is used. This device could 

work with five different operating modes: 

- Constant current – two possibilities were 

available, 0 to 8 A (with 1 mA resolution) and 0 to 

80 A (10 mA resolution), with a precision of 0.2 

%+20 mA; 

- Constant voltage – two possibilities were 

available, Vmin up to 8 V (1 mA resolution) and 

Vmin up to 80 V (10 mA resolution (were V min is 

10 mV for low power situation and 2 V for 80 A). 

Precision is 0.2 %+2 digits; 

- Constant power – the available power range 

goes from 0 till 320 W, with a precision of 0.5 %+2 

W; 

- Constant conductance - operating range from 

0.01 up to 1 A/V (1 A/V resolution) and from 0.2 up 

to 40 A/V (resolution of 0.01 A/V) with a precision 

of 0.5 %+2 digits; 

- Constant resistance – operating range from 0.04 

up to 10  (0.01  resolution) and from 2 to 40  

(with 0.1  resolution) with a precision of 0.5 %+2 

digits. 

This load was connected to a data acquisition 

system composed by Measurement Computing 

boards installed in a desktop computer. The used 

data acquisition software was DASYLab. 

In the present work, all the components of the 

PEMFC were “in house” designed, with exception 

of the MEA. A Dupont Nafion 111 MEA with 25 

cm2 active surface area is used. The channels 

configuration used for the anode and cathode flow 

channels (multiserpentine design) is represented in 

Figure 2. Channels depth is 0.6 mm for anode side 

and 1.5 mm for cathode side. 

 

Figure 2: Flow channels configuration and dimensions. 

3 ANN MODEL 

In this study, a feedforward ANN with three layers 

was applied to predict the voltage (V) of a PEM fuel 

cell. The input variables (see Figure 3) were: Anode 

Relative Humidity (RHa), Cathode Relative 

Humidity (RHc), Anode flow rate Temperature (Ta), 

Cathode flow rate Temperature (Tc), Cell 

Temperature (Tcell) and Current Density (CD). 

Hyperbolic tangent and linear functions were used as 

activation functions in hidden and output neurons, 

respectively. The objective function was the 

minimization of the mean squared error of the 

training data. The early stopping method was 

applied and the data was divided into three sets 

(training – 124 data points; validation – 25 data 

points; and test – 38 data points). Different ANN 

models were tested, varying the number of neurons 

in the hidden layer (1 to 6). For each structure, 100 

runs were performed. The best ANN model 

corresponded to the minimum error in the training 

and validation data. The model performance was 

evaluated using the Pearson correlation coefficient 

(R) and the index of agreement of the second order 

(d2) (Sousa et al., 2007). 

 

 

Figure 3: ANN structure for fuel cell electric voltage 

modelling.  

4 RESULTS 

In this work, the influences of gases relative 

humidity and temperature and cell temperature were 

studied. Additionally, several ANN models were 

tested to predict the voltage using some 

experimental conditions. The early stopping 

methodology was applied to improve the 

generalization of the ANN models obtained. The 

data were divided into three sets: training, validation 

and test. Training and validation sets were used to 

determine the ANN model parameters. The test set 

was used to evaluate the performance of ANN 

model when applied to a new set (not influencing the 

determination of the model parameters). The best 
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model, containing 6 hidden neurons, adjusts very 

well experimental results, as can be seen in Figures 

4 to 8. Accordingly, the performance indexes 

obtained by this statistical model are presented in 

Table 1. The values showed that the achieved ANN 

model is good for predictive purposes. 

Table 1: Performance indexes (R and d2) in training, 

validation and test sets. 

Set Training Validation Test 

R 0.99 0.99 0.91 

d2 1.00 1.00 0.96 

 

Figures 6 and 8 with a Tcell of 333 K and Figure 7 

with a Tcell of 313 K show the performance of the 

model in test set. The remaining figures show the 

performance in the training and validation sets.  

4.1 Influence of the Relative Humidity 
of Reactants Gases 

To study the influence of gases RH, three 

experiments were done: two with only the anode or 

cathode stream humidified and another with both 

gases streams humidified. As can be seen in Fig. 4, 

the best fuel cell performance was achieved when 

both streams were humidified. Relatively to the 

other two experiments, best results were obtained 

when just the anode stream was humidified. In fact, 

the water production occurs at the cathode side. So, 

for these operating conditions, the cathode 

humidification is dispensable.  

 

Figure 4: Experimental and modelling data for dry anode 

or cathode and for both gases humidified, for gases and 

cell temperatures of 298 K. 

4.2 Influence of Cell Temperature and 
Reactant Gases Temperature 

The  influence  of  cell  temperature was studied  for 

two gases humidification temperatures: 298 K and 

333 K and the influence of gases temperature for 

two cell temperatures: 298 K and 333 K. Fig. 5, 6, 7 

and 8 show that the best performance was achieved 

when the cell temperature is the same as the reactant 

gases temperature. So, for all experiments, better 

results were obtained for a cell temperature/gases 

temperature of 298 K and 333 K. If the cell 

temperature is higher than the gases temperature, the 

membrane will dry and the proton conductivity is 

severely affected. If the cell temperature is lower 

than the gases temperature, the membrane will flood. 

Excessive water amounts filling the pores inhibit the 

access to active sites and block the transport of 

gaseous reactants and products.  

 

Figure 5: Experimental and modelling data for different 

cell temperatures, for fully humidified gases at 298 K. 

 

Figure 6: Experimental and modelling data for different 

cell temperatures, for fully humidified gases at 333 K. 

Curiously, in Figures 6 and 7, for lower current 

densities, better results are obtained for Tcell/gases 

temperature of 313 K. For lower current densities, 

the water production in the cathode is lower and, so, 

the introduction of more water improves the cell 

performance. 
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Figure 7: Experimental and modelling data for different 
gases temperatures (fully humidified), for a cell 
temperature of 298 K. 

 

Figure 8: Experimental and modelling data for different 
gases temperatures (fully humidified), for a cell 
temperature of 333 K. 

5 CONCLUSIONS 

The effect of the relative humidity of the gases, and 
of the temperature of the reactant gases and cell on 
fuel cell performance was studied. It was concluded 
that the fuel cell works better with both anode and 
cathode humidified and that the temperature of the 
gases and of the fuel cell should be the same. The 
model developed in this work predicts very well the 
experimental results. This kind of models could be 
used with success for quick predictions of fuel cell 
behaviour. 
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