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ABSTRACT

The reduction of the power loss generated in mechanical transmissions and the use of low friction biode-
gradable lubricants has been attracting considerable attention in recent times. Therefore, it is necessary to 
develop methods to test and evaluate the performance of such lubricants and compare them with conven-
tional ones.

In this sense, a Four-Ball Machine was modifi ed allowing the test of rolling bearings. A 51107 thrust 
ball bearing was used to test two different greases and the corresponding base oils. Friction torque and 
operating temperatures were continuously monitored to quantify the power loss and the heat evacuation 
for each lubricant tested. Copyright © 2010 John Wiley & Sons, Ltd.
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INTRODUCTION

The internal friction torque occurring in rolling bearings is of major concern, since the main function 
of rolling bearings is to transmit load at very low friction. Thus, the importance of understanding 
internal friction in rolling bearings becomes relevant when energy saving and bearing performance 
optimization are required.

There are two major friction sources inside a bearing: the friction occurring in the contact between 
the rolling elements and rings and the friction due to the lubricant fl ow between the bearing elements 
(rings, rolling elements and cage). Both energy loss mechanisms are highly dependent on the grease 
ability to generate an effi cient lubricant fi lm between the bearing surfaces.1

Biodegradable greases start to become an option to replace conventional greases in rolling bearing 
lubrication. Two main reasons explain this: (i) environmental awareness and (ii) the high mechanical 
and chemical performance of bio-greases. However, the behaviour of biodegradable greases is 
not yet well known, mainly in terms of rolling bearing wear and power loss. Consequently, new 
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experimental methods and analytical tools have to be developed to compare the tribological and 
energetic behaviour of these new biodegradable greases with reference ones.

Many designs of grease tribo-testing equipment have been developed, mainly by bearing and grease 
manufacturers (Timken, SKF, Hoffmann, etc.). Some are carried out on bench-mounted apparatus 
and other in actual machines.2 The results obtained are normally used to study the friction, wear and 
properties of the lubricating greases. The most commonly used tests to evaluate the grease specifi ca-
tions were studied and standardized by the American Society for Testing and Materials.3 However, 
new methods are developed and added to give more information about the grease behaviour during 
lubrication, such as rheological tests.

Several research studies on the grease lubrication mechanisms have been done on single contact 
confi gurations where the rolling element ring contact is simulated by a ball on a fl at disc.4,5 The major 
advantage of this simple geometry is the possibility to accurately measure fi lm thickness using optical 
methods. The main drawback is the large difference in timescale between successive over-rolling and 
the impossibility to simulate the true lubricant fl ow, the lubricant feed and the loss mechanisms occur-
ring inside the bearing. Moreover, the large centrifugal forces acting on the grease in the bearing 
cannot be simulated in these instruments.6

The main purpose of this paper is to describe the procedures developed and applied to perform a 
rolling bearing test using a conventional Four-Ball Machine (Cameron-Plint TE 82/7752). The fi rst 
part of the paper will present the main modifi cations made on the machine and describes the bearing 
test procedures developed in order to obtain reliable friction and temperature measurements. An 
assembly using a 51107 thrust ball bearings is tested as an example. The second part will illustrate 
the kind of results that can be obtained to study and understand the friction behaviour when different 
types of greases are used to lubricate rolling bearings.

EXPERIMENTAL ASSEMBLY

The rolling bearing tests were performed using a modifi ed Four-Ball machine, where the four-ball 
arrangement was replaced by a rolling bearing assembly, as shown in Figure 1. The example is for a 
thrust ball bearing. This new assembly was developed to test different types of rolling bearings lubri-
cated with oil or grease.

Rolling bearing assembly

The mounting phases for each test are the following (see Figure 1).

I. The lower race (3) is fi tted on the spacer (2) with J6/p5 tolerance. This set (3 + 2) is fi tted on 
the bearing house (1) with H6/j5 tolerance. The tight fi t used among these parts of the group 
(A) ensures that there is no relative motion between them.

II. The upper race (5) is mounted on the shaft adapter (6) with P5/j6 tolerance, also to prevent 
relative motion between them, composing the group (B).

III. To prevent contamination by external particles resulted from the mounting operations 
(groups A and B), and also to remove the oil fi lm protection of the bearing package, the 
groups A and B and the rolling elements and cage (4) are washed with solvent in an ultrasonic 
bath.

IV. Rolling bearing lubrication:
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IVa. Bath oil lubrication: The oil level should reach the centre of the lowest rolling element 
when the bearing is stationary.1 For the thrust ball bearing 51107, the oil volume required 
is approximately 14 ml. During this operation the rolling elements and cage (4) are 
already on the lower race (3) and the thermocouples (III, IV) should be assembled on 
the bearing house (1), preventing oil leakage through the thermocouple holes.

IVb. Grease lubrication: The grease should be applied by an amount that will replenish the 
bearing without causing churning and heat generation. As a general rule, when starting 
up only the bearing should be completely fi lled, while the free space in the housing 
should be partly fi lled with grease.1 A pre-defi ned volume of 2 cm3 was determined by 
the geometry of the bearing house (3), since the grease excess (for values above 2 cm3) 
between the rolling bearing (C) and bearing house (1) can contribute to the friction 
torque increase and heat generation. This grease volume fi lls completely the rolling 
bearing.

Figure 1. Schematic view of the thrust rolling bearing assembly.
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The total amount of grease is spread out on the races, on the rolling elements and on the 
cage with a graduate syringe, making a line on the races and fi lling the spaces between rolling 
elements and the cage, as can be observed on Figure 2.

At this stage, the rolling elements and cage (4) are set on the lower race (3) and the ther-
mocouples (III, IV) are mounted.

V. To complete the assembly of the upper set (UP), the retainer (7), the cover (8) and the ther-
mocouples I and II are mounted.

VI. The lower set (LW) was previously assembled (and does not need to be reassembled for each 
test), and is composed by six connection pins (10 and 12) clamped to the torque cell protecting 
plates (9 and 13) and a torque cell (11). The lower plate (9) is mounted on the lower non-
rotating shaft of the Four-Ball Machine, which applies the load to the bearing. The three lower 
pins (12) assure that there is no relative rotation. The three upper pins (10) are used to connect 
the UP to the lower set (UP → LW) preventing any relative rotation. The thermocouple V is 
permanently mounted on the protecting plate (9).

VII. The fi nal phase is to install UP and LW into the Four-Ball Machine. First, UP is connected to the 
rotating shaft, and then the LW is mounted below. The conjunction will be locked by the lower 
shaft of the Four-Ball Machine, which is moved up to apply the load.

The bearing assembly permits to test four types of rolling bearings, including thrust ball bearings, 
tapered roller bearings, angular contact ball bearings and cylindrical roller thrust bearings. The geo-
metrical limitations imposed by the Four-Ball Machine and by the bearing housing, allow a maximum 
bearing outer diameter of 56.0 mm and a maximum width of 14.3 mm. Table I shows the different 
types of rolling bearings that might be tested and the corresponding dimensions and references. 
Depending on the bearing type, items (2) and (6), shown in Figure 1, must be replaced.

Operation

In operation, the load (P) is applied on the lower plate (12) and the rotational speed (n) is transmitted 
to the shaft adapter (6), which is connected to the drive shaft of the machine (see Figure 1). The 

Figure 2. Grease lubrication of the thrust rolling bearing.
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rotating motion is conducted through the upper race (5) to the rolling elements and cage assembly 
(4). The motion generates the bearing internal friction torque, which is transmitted through the lower 
race (3) to the bearing house (1), to the upper plate (9) and to the torque cell (11), which are all 
clamped together.

During the test, the rolling bearing assembly is submitted to continuous forced air convection by 
two fans, having 38 mm in diameter and running at 2000 rpm, evacuating the heat generated during 
bearing operation.

Torque cell

In order to preserve the torque cell and to simplify the mounting/dismounting operations, the torque 
cell is positioned between two circular steel plates (see Figure 1).

A piezoelectric torque cell KISTLER® 9339A, whose characteristics are shown in Table II, was 
selected to measure the bearing internal friction torque. The piezoelectric sensors ensure high accuracy 
measurements even when the friction torque generated in the bearing is very small compared to the 
measurement range available.

When a mechanical excitation is applied to the torque cell, the piezoelectric crystals change the 
electrical current. The current variation is very small and, thus, must be augmented and conditioned 
using an amplifi er KISTLER® 5015A. The output signal is displayed and registered by the virtual 
instrument running in a computer.

The main restriction of the piezoelectric sensors is the undesirable changes of the output signal, 
called drift.7 This phenomenon happens as the result of two variable parameters: the temperature 
gradient and the measurement time. To avoid the drift effects in the measurements, a specifi ed testing 
and measuring procedure has been developed.

Table I. Types of rolling bearings that can be tested in the modifi ed Four-Ball Machine.

Dimensions Dynamic load Limit speed Reference

d D H C
(mm) (mm) (mm) (kN) (rpm)

Thrust ball bearings
17 30 9 11.14 12 000 51103
35 52 12 19.90 7 500 51107

Cylindrical roller thrust bearings
17 28 9 11.20 8 500 81102 TN
35 52 12 29.00 5 600 81107 TN

Angular contact ball bearings
17 40 12 11.00 22 000  7203
20 47 14 13.30 18 000  7204

Tapper roller bearings
15 42 14,25 22.40 18 000 30302 J2
17 40 13,25 19.00 18 000 30203 J2
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Thermocouples

Seven K type thermocouples with measurement range among −40°C and 200°C and sensibility of 
41 μV °C−1 are used to monitor the bearing operating temperatures. All thermocouples are positioned 
in strategic locations in order to measure the lubricant and bearing housing temperatures, so that the 
lubricant viscosity and the heat evacuated through the bearing housing can be calculated with reason-
able precision. Two of these thermocouples (VI and VII) are used to record the temperatures of the 
air fl ow surrounding the bearing house and the room temperature, respectively.

Software

The developed virtual instrument was based on a LabView® platform to operate, to monitor and to 
control the test system. This software works in a Pentium 4 with 2.8 GHz and 1 GB of RAM. The 
user interface is shown in the Figure 3.

TEST PROCEDURE

The test procedure is constrained by several factors, in particular, the operating limits of the Four-Ball 
Machine and the torque cell characteristics.7 The operating conditions imposed by the Four-Ball 
Machine allow tests with axial load and rotational speed up to 7000 N and 5500 rpm, respectively.

The drift effect from the torque cell, as described before, requires short periods of time (120 s) 
under stabilized temperatures (±2°C) to make the torque measurements.

After a visual inspection of the assembly in the Four-Ball Machine, the test is ready to start and 
the following procedure was used.

• For grease tests and before starting each test, a running-in period is always carried out, with an 
axial load of 1000 N and rotational speed varying from 100 rpm to 2000 rpm during 5 min to 
accommodate the grease.

• With the machine in off position, the desired load is applied (in the example 7000 N) and the 
rotational speed set to the required value (100 rpm, for example); the fans are turned on to submit 
the rolling bearing assembly to a continuous forced air convection.

• Turn on the machine and run the software to start the data acquisition. The operating temperatures 
rise continuously until stabilization is reached.

Table II. Technical characteristics of the torque cell.

Reaction Torque Sensor — KISTLER® (Type 9339A)

Measuring range N m −10 to +10
Overload N m −12/+12
Sensitivity pC/N m ≈−460
Tensile/compression force, max. kN −5/+12
Side force, max. kN 1.5
Bending moment N m 15
Operating temperatures °C −40 to +120
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• When the temperatures are stabilized, the machine is turned off and immediately restarted again 
together with the torque measurement.

• After the torque measurement (120 s), maintain the rotational speed on and wait until the tem-
peratures stabilize.

• Stages IV and V are repeated three times to get three measurements of the friction torque in the 
same conditions.

To measure the friction torque for other rotational speeds, the procedures described above should 
be repeated for each desired rotational speed. One extra procedure is taken when the friction torque 
is to be known at different rotational speeds: the tests should be always conducted from the lowest 
to the highest rotational speeds.

The friction torque value (for each rotational speed and load) is the average value of the three 
measurements taken during the 30th to 90th seconds from the period of 120 s. This is because in the 
fi rst 30 s, there is a transition from the starting torque to the operating friction torque, and in the last 
30 s, sometimes, a slight drift effect is noticed.

Figure 3. User LabView® interface to operate, to monitor and to control the system.
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The drift effect is graphically represented in Figure 4, which shows the friction torque and operating 
temperature measured during a test of a 51107 thrust ball bearing, lubricated with mineral based grease 
under axial load of 5000 N and for a rotational speed of 1500 rpm.

The drift effect is clearly understood when torque curve T1 (continuous measure of friction torque 
and temperature during 100 min) is compared with torque curves T2, T3 and T4 (obtained using the 
procedure mentioned above). The torque measurement T1 is severely affected by the thermal drift in 
Zone I (torque decrease due to temperature increase), and the temporal drift in Zone II (torque increase 
with time at constant operating temperature). The output signal variation is not linear and not repro-
ducible from test to test, so it cannot be eliminated in a systematic or automatic way.

When using piezoelectric torque cells, the torque should be measured during short periods of time 
at a stabilized temperature, as in the procedure implemented. In this way, the differences between the 
measured values, for the same operating conditions, are very small (see Figure 4).

At the end of each test, lubricant samples can be obtained and analysed through ferrographic tech-
niques to quantify and evaluate the wear occurred in the rolling bearing.

Torque measurement repeatability

During each test with a given lubricant (see paragraph 4), that is, at constant speed, constant load and 
constant temperature, the torque was recorded three times, showing very high repetitiveness, as pre-
sented in Table III.

The maximum differences between the measured torque values were 12.6% in the case of the grease 
base oils (BO-MG1 and BO-EG2) and 3% in the case of the fully formulated greases (MG1 and EG2). 
The average values of those differences were 6.7% in the case of the base oils and 1.5% in the case 
of the greases. The values of the rolling bearing speed presented in parenthesis on Table III are related 
to the rotational speed at which the maximum difference was detected.

Figure 4. Friction torque and lubricant temperature (51107 Thrust Ball Bearing, n = 1500 rpm, 
Fa = 5000 N).
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Test repeatability

The tests performed at 1000 rpm and 2000 rpm were repeated three times using a new thrust rolling 
bearing and fresh lubricant and the corresponding results showed a very good repetitiveness. Table 
IV presents the statistical analysis of the torque measurements in each test, at each speed.

In general, the amplitude (R) of the torque measurements was smaller in the case of the bearings 
lubricated with fully formulated greases than in the case of those lubricated with the corresponding 
base oils. It can also be observed that the amplitude of the torque measurements was higher in the 
tests performed at 1000 rpm, except for the case of the bearings lubricated with bio-grease EG2 where 
the opposite trend occurred.

In all tests, the standard deviation of the torque measurements was very similar and almost inde-
pendent of the lubricant nature, of the lubricant type and of the rotational speed.

TESTED LUBRICANTS

As a demonstration of the rolling bearing test capacity using the modifi ed Four-Ball Machine, two 
fully formulated greases, MG1 and the EG2, and the corresponding base oils, BO-MG1 and BO-EG2, 
were tested. MG1 is a commercial mineral based grease and lithium thickener and EG2 grease is 
formulated with ester base oil and thickened with lithium, calcium and polyurea. The physical char-
acteristics of the tested greases are presented in Table V.

EXPERIMENTAL RESULTS

Figures 5 and 6 present the bearing friction torque and operating temperature versus the rolling bearing 
speed, respectively. The axial load was constant and equal to 7000 N and the bearing speed was in 
the range 100 rpm–5500 rpm. The tests were performed with 51107 Thrust Ball Bearings.

Figure 5 shows that the mineral lubricants (MG1 and BO-MG1) always generated higher bearing 
torques than the ester biodegradable lubricants (EG2 and BO-EG2), for the same operating conditions. 
As an example of those differences, Figure 5 shows that for a speed of 1000 rpm and an axial load 
of 7000 N, grease MG1 generated a bearing torque of 176 N mm, while grease EG2 generated a 
bearing torque of 148 N mm, that is, 28 N mm less. For the same operating conditions, BO-MG1 
generated an average torque of 228 N mm, while BO-EG2 generated an average torque of 154 N mm, 
that is, 74 N mm less.

Table III. Average and maximum errors for measured torque values (axial load 7000 N, rotational speed 
100 to 5500 rpm).

Lubricant MG1 BO-MG1 EG2 BO-EG2

Maximum difference [%] @ rotational 
speed [rpm]

2.86 @ 350 7.54 @ 2000 2.94 @ 5500 12.60 @ 5500

Average difference [%] 1.37 4.69 1.40 6.70
Maximum difference [N mm] @ 

rotational speed [rpm]
6.64 @ 350 19.86 @ 350 4.28 @ 350 16.15 @ 350

Average difference [N mm] 1.89 7.56 1.53 6.20
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Table IV. Statistical parameters for measured torque values in three different tests — repetitiveness 
(axial load 7000 N, rotational speed 1000 and 2000 rpm).

Tests

Torque measured (N mm) Statistical parameters

1st 2nd 3rd Average [x ] Amplitude [R] Standard deviation [σ]

Lubricant: MG1 Bearing speed: 1000 rpm
1 166.8 173.7 163.7 168.1  9.95  5.10
2 177.4 172.2 176.5 175.4  5.14  2.74
3 167.0 170.0 157.0 164.7 13.00  6.81

— — — x  = 169.4 R = 9.36 σ = 5.47

Lubricant: MG1 Bearing speed: 2000 rpm
1 154.5 157.0 160.8 157.4  6.31  3.18
2 165.0 152.0 164.0 160.3 13.00  7.23
3 153.0 146.0 147.0 148.7  7.00  3.79

— — — x  = 155.5 R = 8.77 σ = 6.07

Lubricant: EG2 Bearing Speed: 1000 rpm
1 147.2 151.8 150.2 149.7  4.57  2.32
2 146.1 156.0 154.0 152.0  9.92  5.25
3 147.5 156.0 156.5 153.3  9.00  5.06

— — — x  = 151.7 R = 7.83 σ = 1.82

Lubricant: EG2 Bearing Speed: 2000 rpm
1 129.2 130.6 126.5 128.8  4.17  2.11
2 135.1 133.9 141.0 136.7  7.16  3.83
3 135.0 133.0 119.0 129.0 16.00  8.72

— — — x  = 131.5 R = 9.11 σ = 4.49

Lubricant: BO-MG1 Bearing Speed: 1000 rpm
1 244.3 225.5 213.5 227.8 30.85 15.55
2 228.5 222.8 224.7 225.3  5.76  2.93
3 240.5 215.3 214.0 223.3 26.50 14.93

— — — x  = 225.5 R = 21.04 σ = 2.25

Lubricant: BO-MG1 Bearing Speed: 2000 rpm
1 171.5 161.4 157.0 163.3 14.49  7.43
2 178.5 178.1 166.4 174.4 12.08  6.85
3 174.9 179.3 169.6 174.6  9.70  4.86

— — — x  = 170.8 R = 12.09 σ = 6.45

Lubricant: BO-EG2 Bearing Speed: 1000 rpm
1 148.7 163.0 149.8 153.8 14.37  8.00
2 151.4 158.7 144.6 151.6 14.12  7.06
3 167.3 167.7 141.2 158.7 26.52 15.20

— — — x  = 154.7 R = 18.34 σ = 3.65

Lubricant: BO-EG2 Bearing Speed: 2000 rpm
1 147.3 143.9 141.6 144.2  5.77  2.90
2 133.8 148.4 147.0 143.3 14.53  8.18
3 130.8 145.0 138.4 138.1 14.16  7.09

— — — x  = 141.9 R = 11.49 σ = 3.32
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At low rotational speed, the greases generated higher bearing torques than the corresponding base 
oils. Such behaviour was observed with the mineral lubricants at 100 rpm and with the ester-based 
lubricants below 350 rpm (see Figure 5).

At higher speeds (n > 100 rpm), the mineral grease MG1 always generated lower bearing torques 
than the corresponding base oil BO-MG1, whatever the rotational speed of the thrust bearing. The 
difference between the bearing torques generated by these two lubricants decreased as the rotational 
speed increased, almost disappearing at 5500 rpm.

In the case of the ester-based lubricants, the behaviour is different. Between 500 rpm and 2000 rpm, 
the bearing torque generated by the ester base oil BO-EG2 is slightly higher than the bearing torque 

Table V. Physical characteristics of the lubricant greases.

Grease designation MG1 EG2

Base oil Mineral Ester
Biodegradability (%) — 60
Toxicity (%) — >45
Viscosity grade (ISO VG) 220 166
Base oil viscosity 40°C (mm2 s−1) 230 91.8
Base oil viscosity 100°C(mm2s−1) 17.5 14.5
LP@60°C × 10−9 (lubricant parameter) 1.770 0.623
NLGI number (DIN 518181) 2 2
Dropping point (°C) 185 >181
Thickener Li Li/Ca-Polyurea
Operating temperature (°C) −20; +130 −30; +120

Figure 5. Bearing friction torque for different bearing speeds (axial load 7000N).
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generated by the grease EG2; however, at 4000 rpm and 5500 rpm, the bearing friction torque gener-
ated by the base oil is signifi cantly smaller than that generated by the grease.

Figure 5 also shows the maximum and minimum values associated with each torque measurement. 
As mentioned above, the repetitiveness of the torque measurements was very good, mainly in the case 
of the tests performed with fully formulated greases.

In general, the 51107 thrust ball bearing generates very small friction torques, since the maximum 
value measured in all tests was 300 N mm. Nevertheless, the piezoelectric torque sensor, although 
being able to measure torques between −10 and +10 N m, was able to measure accurately very small 
torques, which is one of the major advantages of the piezoelectric sensors.

Figure 6 shows that the mineral lubricants (MG1 and BO-MG1) always generated higher bearing 
operating temperatures than the ester biodegradable lubricants (EG2 and BO-EG2), for the same 
operating conditions. At 1000 rpm and for an axial load of 7000 N, the bearing temperatures were 
47°C and 43°C when lubricated with MG1 and EG2 greases, and 55°C and 45°C when lubricated 
with BO-MG1 and BO-EG2 base oils, respectively.

Figure 6 also shows the excellent repeatability of the bearing operating temperature measurements, 
since the differences observed between the results obtained in tests performed with the same lubricant 
and under the same operating conditions was always less then 2°C.

DISCUSSION

Figure 5 shows the friction torque versus the rotational speed. The total friction torque presented the 
sum of four physical sources: rolling, sliding, seal and drag torque losses.8 In the case of the 51107 

Figure 6. Bearing operating temperature for different rotational speeds.
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thrust ball bearing tested only the rolling and sliding friction torques are considered, since seal and 
drag torques are not signifi cant.

The rolling friction torque is mainly dependent on the rotating speed and on the viscosity of the 
grease base oil. Thus, it is not surprising that, at constant speed (e.g. 500 rpm) the friction generated 
by the mineral grease (MG1) is signifi cantly higher than that generated by the ester grease (EG2), 
since the base oil viscosity of MG1 (305.5 cSt @ 35.6°C) is signifi cantly higher than that of grease 
EG2 (126.2 cSt @ 32.8°C).

In the case of the 51107 thrust ball bearing, the rolling friction torque decreases and the operating 
temperature increases when the operating speed increases, whatever the grease considered (see Figure 
5). This is not surprising, since the tests where run without temperature control, although fresh air, at 
room temperature, was insuffl ated into the test chamber in order to improve heat evacuation through 
forced convection. When speed increases the operating temperature rises and the drop in base oil 
viscosity is much more important than the increase in rotating speed, explaining why the bearing 
friction torque decreases continuously with speed increase.

At 4000 rpm, the operating temperatures of grease EG2 and MG1 are 79.2°C and 94.5°C, respec-
tively, as shown in Figure 6. At those operating temperatures and speed, the viscosity of the corre-
sponding base oils are similar, 24.1 cSt and 20.6 cSt, but the ester-based grease (EG2) generates lower 
friction torque than the mineral grease (MG1), as presented in Figure 5. This behaviour indicates that 
the nature of the base oil (and thus of grease formulation) affects the sliding friction torque inside the 
thrust ball bearing.

At 1000 rpm, the friction torque and the operating temperature generated by the mineral grease 
(MG1) and by its base oil (BO-MG1) are 176 N mm/47°C and 228 N mm/55°C, respectively. Besides 
the differences in viscosity (because of the different operating temperatures) and in lubricant fi lm 
generation (oil vs grease) the main difference is due to the fact that the base oil tested didn’t contain 
additives. This result indicates that the presence of additives and their type (thus, grease formulation) 
affects the sliding torque inside the thrust ball bearing.

Figures 5 and 6 show that the repetitiveness of the bearing friction torques and of the operating 
bearing temperatures was always better with greases than with the corresponding base oils (see also 
Table IV). The main reason for such behaviour is not related to the type of lubricant (grease or oil) 
but to the presence of additives. Greases MG1 and EG2 are fully formulated lubricants while base 
oils BO-MG1 and BO-EG2 did not contain additives, in particular, extreme-pressure and anti-wear 
additives.

For the same operating conditions and constant surrounding temperature, a higher bearing friction 
torque generates higher power loss, higher heat evacuation to the surrounding neighbourhood, and, 
consequently higher bearing operating temperature. Figures 5 and 6 clearly show that higher bearing 
friction torques always correspond to higher operating bearing temperatures, showing that the correla-
tion between these two parameters is excellent.

In Figure 7, the total bearing friction torque is plotted against the rotational speed for a spherical 
roller bearing lubricated with high-viscosity oil, in deep lubrication (oil bath). The three components 
of the bearing torque (rolling, sliding and drag) are also presented. The total frictional torque shown 
in Figure 7 and the torque measurements presented in Figure 5 have the same behaviour and are in 
close agreement with the latest bearing friction model developed by SKF.8

One of the main features of the SKF model is the separation of the true physical friction sources 
in the rolling bearing: rolling, sliding, seals and drag losses, allowing a better understanding of the 
friction in rolling bearings and helping to save energy and optimize bearing performance.
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CONCLUSIONS

• Rolling bearing tests may be conveniently performed using the rolling bearing assembly devel-
oped and manufactured for the Four-Ball Machine, allowing to test several different types of 
rolling bearings submitted to axial loads up to 7000 N and rotational speeds up to 6000 rpm.

• The torque sensor and signal amplifi er, the thermocouples and the LabView® based software 
allow an adequate monitoring of the rolling bearing tests, a precise measurement of the bearing 
friction torque and of the bearing operating temperature.

• The testing procedure ensures a convenient repetitiveness of the bearing friction torque and 
bearing operating temperature measurements.

• The experimental results of the tests performed with 51107 thrust ball bearings, lubricated with 
fully formulated greases and the corresponding base oils, indicate an excellent correlation between 
the bearing friction torque and the bearing operating temperatures.
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