
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

A Trading Agent Framework Using
Plain Strategies & Machine Learning

João Pedro Araújo Santos

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Ana Paula Rocha

Co-supervisor: Rui Gonçalves

July 18, 2014

A Trading Agent Framework Using Plain Strategies &
Machine Learning

João Pedro Araújo Santos

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Doctor A. Augusto de Sousa

External Examiner: Doctor Luís Paulo Reis
Supervisor: Doctor Ana Paula Rocha
July 18, 2014

Resumo

O mundo das mercados de apostas desportivas (trading) está em constante crescimento e com isso
as pessoas estão a tentar melhorar os resultados do seu trading usando agentes automáticos de trad-
ing. Em analogia com os mercados financeiros, as operações de compra e venda são substituídas
por apostas a favor e contra (Back and Lay respetivamente).

Esta tese descreve uma framework para ser usada no desenvolvimento de agentes automáticos
de trading nos mercados da Betfair, utilizando uma interface de programação escrita em Java.
A Betfair processa mais de cinco milhões de transações diárias (como fazer uma aposta) que
representa mais do que todas as trocas feitas nas bolsas de ações Europeias combinadas. A Betfair
está disponível 24 horas por dia, 7 dias por semana. Neste trabalho foram desenvolvidos dois
agentes de trading, DealerAgent e HorseLayAgent, de acordo com a framework supra mencionada.

Os agentes mencionados atuam nos mercados "Para Ganhar" em corridas de cavalos do Reino
Unido. Usam estratégias planas em conjunto com métodos de machine learning para melhorar os
seus resultados de lucro/perda. Os agentes desenvolvidos foram submetidos a testes de viabilidade
usando dados dos mercados "Para Ganhar" de corridas de cavalos do mercado de apostas Betfair,
de Janeiro, Fevereiro e Maço de 2014.

i

ii

Abstract

The world of online sports betting exchange (trading) is growing every day and with that people
are trying to improve their trading by using automated trading. In analogy to the financial markets
the buy and sell operations are replaced by betting for and against (Back and Lay).

This thesis describes a framework to be used to develop automated trading agents at Bet-
fair sports markets using a Java programming interface. Betfair processes more than five million
transactions (such as placing a bet) every day which is more than all European stock exchanges
combined. Betfair is available 24 hours a day 7 days a week. For this thesis were developed two
trading agents, DealerAgent and HorseLayAgent, accordingly with the presented framework.

The agents mentioned above act on To Win horse racing markets in United Kingdom. They
use plain strategies together with machine learning methods to improve the profit/loss results. The
developed agents were submitted to viability tests using data from Betfair To Win horse racing
markets from January, February and March of 2014.

iii

iv

Acknowledgements

I would like to acknowledge the tireless effort made by Eng. Rui Gonçalves that, with its endless
knowledge about online trading, helped me reaching the end of this journey.

Also, Dra. Ana Paula Rocha had a very important role guiding me with her opinions and
expertise in thesis development.

Finally, I have to thank to my parents, sister and friends that always encouraged me to pursue
my goals and be what I’ve always wanted to be, an Engineer.

vi

Contents

1 Introduction 1
1.1 Objectives . 2
1.2 Problem Description . 2
1.3 Structure . 4

2 State of the art 5
2.1 Trading Mechanisms . 5

2.1.1 Scalping . 5
2.1.2 Swing . 6
2.1.3 Trailing Stop . 6
2.1.4 Dutching . 7
2.1.5 Dealer . 7

2.2 Trading Tools . 8
2.2.1 Market Feeder Professional . 8
2.2.2 Gruss Software . 10
2.2.3 Bet Angel . 11
2.2.4 BFExplorer . 13
2.2.5 JBet . 14
2.2.6 Comparison . 17

2.3 Machine Learning Packages . 18

3 Framework 25
3.1 Description . 25

4 Implementation 29
4.1 Dealer Agent . 29

4.1.1 The Plain Strategy Stage . 29
4.1.2 Trading Mechanism Dealer . 30
4.1.3 Machine Learning Stage . 33

4.2 Horse Lay Agent . 38
4.2.1 The Plain Strategy Stage . 38
4.2.2 The Machine Learning Stage . 40

5 Testing and Results 43
5.1 Dealer Agent . 43
5.2 Horse Lay Agent . 45

6 Conclusions and future work 49
6.1 Future Work . 49

vii

CONTENTS

References 51

A Dealer GUI 53

B Trading Tools 55

viii

List of Figures

1.1 Ladder data example of a runner in the market [Lim14c] 3

2.1 Simplified graph schema for a Back->Lay scalp implementation. [RGP13] 6
2.2 Simplified graph schema for a Back->Lay Trailing-Stop implementation. [RGP13] 7
2.3 Schematic representation of Dealer mechanism 8
2.4 Guided user interface of MarketFeeder Professional [Sof05b] 9
2.5 Ladder interface of MarketFeeder Professional [Sof05b] 10
2.6 Ladder interface of Bet Angel [Ang14] . 12
2.7 Dutching interface of Bet Angel [Ang14] . 13
2.8 Soccer Mystic interface of Bet Angel [Tra12] 14
2.9 Tennis trader interface of Bet Angel [Ang14] 15
2.10 Guided user interface of BFExplorer, simple betting [Bel14a] 15
2.11 Ladder interface of BFExplorer, multiple selections [Bel14a] 16

3.1 Schematic representation of framework . 27

4.1 Class structure of dealer trading mechanism . 30
4.2 Portion of the data to train the machine learning model in RapidMiner 36
4.3 Learn process created in RapidMiner . 36
4.4 Rules generated as result of the learning process of model in RapidMiner 37
4.5 Testing process created in RapidMiner . 37
4.6 Results of testing the model with pre selected testing data (March 2014) in Rapid-

Miner . 38
4.7 Procees of exporting model to external file to be used by DealerAgent 39
4.8 Project structure of HorseLayAgent model in RapidMiner software 41

5.1 Dealer Agent results with plain strategy (without model) for entire month of March
of 2014 . 44

5.2 Dealer Agent results with rule induction classifier for entire month of March of
2014 (train set: January and February of 2014) 44

5.3 Horse Lay Agent results of plain strategy laying at 2 on horses with odd above 3
at race start from from January 15th to January 30th of 2014 (train set: December
15th of 2013 to January 14 of 2014) . 46

5.4 Horse Lay Agent results of laying at 3 on horses with odd above 6 at race start
with and without rule induction classifier from from January 15th to January 30th
of 2014 (train set: December 15th of 2013 to January 14 of 2014) 46

5.5 Horse Lay Agent results of laying at 4 on horses with odd above 6 at start of the
race with and without rule induction classifier from January 15th to January 30th
of 2014 (train set: December 15th of 2013 to January 14 of 2014) 47

ix

LIST OF FIGURES

5.6 Horse Lay Agent combining 5.4 and 5.5 . 47

A.1 Dealer GUI presenting statistics from execution of one trading mechanism dealer 53

B.1 Ladder of JBet, with various analysis real-time graphics, to track trades made by
agents . 56

x

List of Tables

2.1 Comparison between trading softwares . 17
2.2 Comparison between machine learning models 23

4.1 Hyper parameters for Rule Induction classifier for the final refinement of Dealer
machine learning model . 38

4.2 Hyper parameters for Rule Induction classifier for the final refinement of Horse-
LayAgent machine learning model . 41

xi

LIST OF TABLES

xii

Abbreviations

API Application Programming Interface
BF Betfair
FEUP Engineering Faculty of Oporto University
FPS Updates of prices (frames) per second
GUI Graphical User Interface
PL Profit/Loss
SL Stoploss
TS Trailing Stop
WEKA Waikato Environment for Knowledge Analysis
WOM Weight of Money

xiii

ABBREVIATIONS

xiv

Glossary

Back Bet in favour of a selection (runner).
Betting Exchange Entity that trade contracts on future events [FVN10].
Greenup Generate equal profit on all selections, regardless of the outcome [Sof05a].
In-Play The event has already started (is live) and not finished yet.
Ladder Graphical interface used to trade that gives the trader an in depth perspective

of the market [Tra14b].
Lay Bet against a selection (runner).
Liquidity Quantity of money in circulation.
Machine Learning A general inductive process that automatically builds an automatic text clas-

sifier by learning, from a set of preclassified documents, the characteristics of
the categories of interest. [Seb02]

Plain Strategy Strategy to be used for trading, by an agent, before implementing machine
learning methods [Reb10]. A negative plain strategy is the one that has a pre-
dicted negative profit/loss results in long term. On the other hand, a positive
one has a predicted positive profit/loss results.

Runner One selection of the market.
Stoploss Condition to minimize losses.
Stopprofit Condition to establish a maximum profit.
Trading Mechanism Buy and sell process after market forecasting.
Weight of Money Quantity of money on each side (Back and Lay). Used to determine whether

or not a price is going to lengthen or shorten. [Tra14a].

xv

Chapter 1

Introduction

Any person who is interested in sports events certainly also has his own opinions about the results,

formations, moments of the game amongst others. And since it is this way, why not monetize this

opinions and try to turn them profitable? This is the reason why there is now the online better

(also called punter) concept. These are people available to invest some of their own money to,

hopefully, have some profit with it. Usually, the greater the risk the greater the profit.

Typically, a punter starts on a betting house like, the most known, Bwin [Lim14b], Betclic

[Lim14a] amongst others. The bets made are called "simple bets" and are made against the house,

where after an event analysis and the bet matched by the house, the better will have to wait until

the end of the market (it could be football or tennis games, horse racing, etc.) to make a profit.

What happens a lot of times with this kind of bets is that the punters can not predict events in a

long term (e.g. final score of a game) and they can change their opinion during the game. Since

they already placed a bet, they can only hope that the initial analysis is correct and that they profit

from what they predicted even if it is against the event tendency.

This led to appearence of online trading. Being a trader is like being an investor in the stock

markets, but instead of betting in favor of a company they bet in favor of a team, a player, a horse,

etc. As in any stock market, the price of the entity is always changing and being controlled by all

the traders working on that market. In this case if you bet in favor of a team, for example to win, it

means that someone else believed that the same team wouldn’t be able to win the game. In online

trading, the bets are made against other traders instead of betting against the house as it happens

in the "simple bets".

By 2004, Betfair [Lim14d] was the world’s largest betting exchange, with more than 50,000

people placing bets each week on the many events the website features. Elections, major horse

races, golf tournaments, and soccer matches inevitably trade more than 3,7 million Euros at a time.

[DPSW05] It has the biggest traders base and it is where there is more money flowing than in any

other betting exchange, like Betdaq [Int14].

In order to be a good trader in live events it is important to bo very fast, due to the fact

that markets are always changing. It is also essential to use a good trading software as the ones

described in 2.2 instead of a simple web interface, as it is the case of Betfair, where market updates

1

Introduction

are considerably slower. If the trader wants an even faster way to trade, with the advantage of doing

it automatically, the solution is automatic trading strategies (therefore called agents). These agents

represent the trader on markets since they react to market changes in the way that he predifined,

with a stable and well-defined set of preferences and actions depending on the clarity of the market

[TZ88].

1.1 Objectives

The main goal of this thesis is to present a framework (chapter3) suitable for develop trading

agents. This framework enables trading agents to improve the profit/loss results, by combining

plain strategies together with machine learning methods. As a proof of concept, two examples

of trading agents in horse races, are implemented and presented during this work. They were

developed using the high level interface called JBet (section 2.2.5). This programming interface

is written in Java and eases the development process of an agent, eliminating the direct commu-

nication layer with Betfair API’s at the same time that offers essential trading mechanisms that

any good trader needs, such as trailing-stop, dutching, open trade, close trade, swing and scalp-

ing (section 2.1). The agents were submitted to several tests in different stages (defined on the

framework) and both the results and conclusions are also presented in this thesis.

1.2 Problem Description

Betfair betting exchange includes markets, e.g. tennis match or horse race. On each market there

are runners, e.g. horses in a horse race. On runners the Back/Lay bets are placed. Back bet means

that the runner will win, Lay bet that it will lose. Fig. 1.1 illustrates the classical view of a runner

in the market. In the middle column at green is the price scale. The price can also be referred as

odd. Bets are placed on a given price, which represents the chances of the runner win. E.g. the

price 2.0 is a 50% of chances (1/2 = 0.5), price 1.01 is a 99% of chances (1/1.01 = 0.99), 1000

is a 0.1% of chances (1/1000 = 0.001). On the left side, next to the prices column, in pink is the

amount column formed by the Lay bets. On the right side, the column in blue, next to the prices

column, is the amount column formed by the Back bets. The first and fifth column represent our

own unmatched bets. In this case (Fig. 1.1) we have the following bets placed (but not matched

yet):

• Lay of 10.00C at 4.30 (Lay 10@4.3)

• Back of 10.00C at 4.70 (Back 10@4.7)

• Back of 5.00C at 4.60 (Back 5@4.6)

The last column on the right, in gray, is the volume column which represents the amount

matched at every price of the ladder since the market was open. If a bet is placed at a price that

"the market" is willing to buy, the bet will be matched at the best price offered. For example, in the

2

Introduction

market state of Fig. 1.1 if a Back bet 15@4.4 is placed (on the blue side) it will match 8.00@4.5

and 2.00@4.4 , and will leave the remaining 5.00@4.4 unmatched (waiting for someone to buy

with a Lay bet). The traded volume information will be updated. This is how the prices move in

the market. Since this bet was matched at two different prices, the global matched price of this bet

can be calculated using equation 1.1.

Figure 1.1: Ladder data example of a runner in the market [Lim14c]

PriceAverage =
∑

n
n=1(Pricen ×Amountn)

∑
n
n=1(Amountn)

(1.1)

If a Back is placed above the best offer in the market (4.5 in Fig. 1.1), for example 15@4.9, it

will stay in the market unmatched and, so for, waiting to be matched. The same happens to a Lay

bet if it is placed at a lower price than the best offer (counter bet waiting to be matched). Only

unmatched or partial unmatched bets can be canceled. The profit of a Back bet is calculated using

equation 1.2 and the liability (in case of loss) of a Back bet is the amount of the bet itself.

Pro f itBackBet = AmountBack× (PriceBack−1) (1.2)

The liability or amount in case of loss of a Lay bet is given by equation 1.3 and the profit is

the amount of the bet itself. Basically the Lay is the "mirror" of Back.

LiabilityLayBet = AmountLay× (PriceLay−1) (1.3)

Using combinations of Back/Lay it is possible to assure profit (or loss) before the end result

of an event, using the price movement on the runner (odd variation). Example of a trade where it

is not need to know end result of an event to have secure profit:

3

Introduction

• Back of 2.00e at 2.12 (Back 2@2.12) Matched

• Lay of 2.00e at 2.10 (Lay 2@2.1) Matched

For a bet to be matched it must become the best offer in the market and it has to be purchased with

a counter bet. When the runner is a winner, then the profit (Back bet) – loss (Lay bet) is:

2 × (2.12 - 1) – 2 × (2:10 - 1) = 2.24 × 2.20 = 0.04

When the runner is a looser, then the profit (Lay bet) – loss (Back bet) is:

2–2=0

Notice that if we have this kind of Back/Lay bet combination, on the same runner with the

same amount at different prices, there will be profit (if the Back price is higher than the Lay price)

or loss (if the Back price is lower than the Lay price) only if the runner in question wins the event.

If any other runner wins the event and the combination of a Back/Lay bets have the same amount,

the profit/loss will be 0. To distribute the profit/loss equal for all runners (outcomes) the amount

of the bet used to close the trade must be recalculated. This process is called "do the greening"

or "hedging". If a Back position is open on the market, the amount to close the position with the

corresponded Lay bet is calculated using equation 1.4.

CloseAmountLay =
PriceOpenInBack
PriceLayToClose

×AmountOpenInBack (1.4)

If a Lay position is open on the market, the amount to close the position with the corresponded

Back is calculated using equation 1.5.

CloseAmountBack =
PriceOpenInLay

PriceBackToClose
×AmountOpenInLay (1.5)

1.3 Structure

Besides the introduction, this report has 4 more chapters. In chapter 2 the state of the art is ap-

proached with descriptions of trading tools, trading mechanisms and machine learning packages

wich can be applied with the framework. Chapter 3 describes the proposed trading agent frame-

work, enhancing its main modules. In chapter 4 it is shown the implementation of two trading

agents in the horse racing scenario and in chapter 5 it is presented the tests made and results

that these two trading agents achieved. Finally, in chapter 6 are presented some conclusions and

pointed out directions to pursue in future work.

4

Chapter 2

State of the art

In this chapter are presented, in 2.1, some well known trading mechanisms used by traders. In 2.2

are presented some existing tools that improve trading speeds at the same time that make available

some of the trading mechanisms of 2.1. Finally, in 2.3, are presented and explained the machine

learning packages wich can be used during the implementation of this work.

2.1 Trading Mechanisms

Traders are constantly using trading mechanisms that represents a buy and sell process after market

forecasting. The most common ones are Scalping, Swing, Trailing Stop and Dutching. The next

sections will describe all of the already existent trading mechanisms and a new one with name

Dealer.

2.1.1 Scalping

Scalping is short term trading. A scalping trader looks to make lots of small profits, which in

time add up. Scalping relies on lots of active participants in the market. Scalping works better in

markets with high liquidity. The concept is simple, if a back bet is matched at a certain price, a

lay bet must be placed right in the next lower price, or, if a lay bet is matched at a price a back bet

must be placed right in the next higher price in the ladder to make profit. The profit/loss is equal to

the difference, or spread, between the Back and Lay price. The Betfair betting exchange is an ideal

place to trade in this way. Mainly in horse racing because there is high liquidity being matched in

these markets, in particular just before the start of the race. Scalping the market means trading in

the market tick by tick. One tick is one step in the prices scale of the ladder. For example if a Back

at 2.12 is placed, one successful scalp will close the position with Lay at 2.10 (one tick down). If

a trade starts with a back it means that the price was forecast to go down. If it is predicted to go

up the scalp starts with a Lay bet.

Figure 2.1 represents the state machine used to process one Back->Lay scalping (prediction

for the prices to go down). One Lay->Back scalp will be a "mirror" of this state machine. The

Price Back Request- PBR is the price where the agent enters the market. If the prices already

5

State of the art

Figure 2.1: Simplified graph schema for a Back->Lay scalp implementation. [RGP13]

moved [PBR <> PBN] when the order reach the scalp module (the start state), it will assume the

opportunity was lost (the prices already went down) or the prices went in the wrong predicted

direction (up) so it ends the process without doing nothing. Otherwise [PBR == PBN], opens

position on the market with a Back bet. After the bet is ordered to be placed, if the bet was not

matched it will end the trade (canceling the bet) because it will assume the prices already move

down, while the order was reaching the Betfair server, and the opportunity was lost. Otherwise

it will try to close the position placing a Lay bet. If the price goes one tick down it will close

the trade with profit. If the price does not move it will wait. If the price goes up it will close in

"emergency" with loss.[RGP13]

2.1.2 Swing

The swing mechanism is very similar to the scalping. The main difference is the number of

ticks the prices have to move in order to enter the close state (profit or loss close). On the swing

mechanism it is possible to define the offset number of ticks to close in profit and the offset number

of ticks to close in loss. If the prices stay inside this interval offset (up and down) it does nothing.

Swing with offset of 1 tick for profit and offset of 1 tick for loss is the same as scalping. [RGP13]

2.1.3 Trailing Stop

The trailing-stop mechanism is used when the agent is looking to catch a much broader trend in

a market but wants to retain a stop loss condition if the trend starts to turn. After a position is

open in the market (open bet is matched), the close bet is placed with a tick offset behind, and

moves only when the price moves in the predicted direction. Eventually the price will move in the

6

State of the art

Figure 2.2: Simplified graph schema for a Back->Lay Trailing-Stop implementation. [RGP13]

reverse direction reaching the close bet. Figure 2.2 represents the state machine used to process

this method, for the price prediction to go down (Back to open -> Lay to close). The state "Place

Lay N Ticks Above PBN", being N the tick offset to follow the price, is repeated when [PBP >

PBN] the runner price moves in the predicted direction (down). If [MAL == CAL] the close bet is

completely matched, it means the price went in the reverse direction (up) and reach the close bet,

closing the trade. [RGP13]

2.1.4 Dutching

Dutching consists in backing several selections in an event so that no matter which wins, the

returns are the same. Dutching is a method used to divide stake over a number of selections in

an event so that the same amount is won irregardless of which selection wins. This technique is

useful when there are two or more outcomes you wish to back and have a specific amount to stake.

Before the rise of betting exchanges, dutching was sometimes used as an elaborate way to lay (bet

against) a selection by backing everything else. [Ace13]

2.1.5 Dealer

The dealer mechanism, represented in figure 2.3, consists in backing and laying at the same time

and waiting that both positions are matched returning a profit. The tick difference between back

and lay is always defined by the trader. The higher this offset the higer are the profits. As a

security measure, there are two stoploss possibilities (one for back and other for lay) that will

enter in action as soon as the market odd reaches any of these stoploss points. At this moment,

7

State of the art

the remaining unmatched position will be canceled and there will be an attempt to minimize loss

closing the position with remaining unmatched value at current market best price. This technique

has best results in markets with a lot of uncertainty that become very volatile.

Figure 2.3: Schematic representation of Dealer mechanism

2.2 Trading Tools

We used the term trading tools to refer software utillities that allow users to create transactios at

betting exchanges. This section describes some of the trading tools most used by the community

of online trading.

2.2.1 Market Feeder Professional

MarketFeeder Pro is a betting application for BetFair oriented for automated trading. It combines

all the usual tools a BetFair bettor needs with unique applications for scheduled, preprogrammed

tasks. [Sof05b] Its main functionalities are:

• Test mode

• Update interval up to 0.3 seconds

8

State of the art

Figure 2.4: Guided user interface of MarketFeeder Professional [Sof05b]

• Auto-greenup

• Auto-dutching

• Ladder

The test mode alows users to define a ficitious amount for its betting account and utilize it for

making simulation bets. This is useful for testing a new plain strategy whose efficiency is not yet

known.

At online betting and trading, specially on live markets, is extremly important to have the least

possible refreshing rates. The 0.3 seconds update interval offered by MarketFeeder Pro is enough

to users have the odds in synchronization with the market.

The auto-greening up (close all positions in market) functionality is a basic yet essential one

that most traders use constantly. Even Betfair introduced this functionality on its web interface

under the name of Cash Out[Lim13]. It allows traders to automatically greenup, or in other words,

generate equal profit on all selections, regardless of the outcome [Sof05a]. For exemple, if a user

opens a back position at 1.10 with a stake of 10.00e and choose to greenup when the odd of that

market is at 1.09 he will have a profit of one tick resulting in 0.09e.

In Figure 2.4 it is possible to see how MarketFeeder Pro interface looks like. In its most basic

form it is very similar to Betfair web interface but with lower refresh rates. It includes a market

navigator on the left side, market contents on centre with possible selections and odd values (blue

9

State of the art

Figure 2.5: Ladder interface of MarketFeeder Professional [Sof05b]

to back a selection and pink to lay selection) and configuration options both of the market and

software at top of the window.

In Figure 2.5 is presented the ladder interface of MarketFeeder Pro. This is the most commonly

graphical interface used by traders, as it allows to have, in only one place, how much money is

currently waiting to be matched on each odd, what is the odd value for back and lay at that moment

and the weight of money.

2.2.2 Gruss Software

Gruss Software is an alternative software to the Betfair site. It allows traders to place bets more

efficiently and develop their own strategies.[Sof10]

This software allows its users to:

• Greening

• Dutching

• Use a ladder

• Bet with tick offset with stop loss

• Trigger bet from an Excel spreadsheet

GrussBet is probably the most basic software here described because it has the minimum

functionalities needed for successful trading. It is also the cheapest software, so it is ideal for any

rookie that is starting in the trading world not having to spend a lot of money even before start

winning it at trading.

10

State of the art

It has a programming interface through Excel that allows the trader to create triggered bets

accordingly to market values. These values are copied into a Excel spreadsheet one time at each

second and using Excel capabilities is possible to bet if some odds hit any designated value or

use any other kind of conditions with these copied values. For any rookie is an ideal tool to start

entering the world of automated trading but its flexibility is limited.

2.2.3 Bet Angel

Bet Angel is probably the most used software by professional traders at Betfair.

Sports trading began getting popular in 2004. Back then, Betfair was the leading betting

exchange. Whoever wanted to trade sports and buy or sell betting odds, had to register an account

with Betfair. As sports bettors gradually converted into sports traders, it became apparent that they

would need help to maintain their edge against the fierce opposition. [Mak14]

That help came in the form of speed. Traders need speed to be successful in trading, and

especially if they are scalping. [Mak14] This speed enables traders to work on live markets like

football or horse races and always be in synchronization with market giving them a tremendous

advantage over traders that simply use the web interface of Betfair that refreshes its prices at a

lower rate than Bet Angel does.

Bet Angel main features are:

• Practice mode

• Dutching & Bookmaking

• Excel spreadsheet integration

• Cash-out

• Tennis mathematical model

• Football mathematical model

What really differentiates Bet Angel from other trading softwares is in first place its user

interface that is accessible to everyone but at the same time has everything on its place making

it easy and fast to reach every functionality. The second main functionality is to have time a

mathematical model to be applied on tennis and soccer. These are separate mathematical models

for odd prediction over time during in play events. As the names suggest, Soccer Mystic is for

soccer markets and Tennis trader for tennis markets.

Figures 2.6 and 2.7 show how the ladder user interface, repectively, and dutching user interface

are presented to traders. It is possible to open multiple ladders that can be of extreme importance

on markets like horse racing allowing to open one ladder for each runner we are interested trading

in. Dutching interface is also very simple but extremely powerful as with just clicking the selec-

tions we want to dutch in, is possible to make a complete dutch bet without have to worry with

manual calculations of odds and stakes.

11

State of the art

Both tennis and and soccer mathematical models offer traders a set of data and analysis that

otherwise is impossible to get by just looking at the markets. Both offer a odd prediction model

that tries to predict where odds will be if some events occur on the game. This way is possible to

better assess the risk that trader is assuming even before making the bet. Of course this is only an

indicative tool because is a prediction that may not be right. It is more of a guiding tool to help

traders. Figures 2.8 and 2.9 present how the user interfaces for Soccer Mystic and Tennis trader

are respectivly. Figure 2.8 is possible to see the odd prediction of match odds market when the

Home team (Manchester United) scores the first goal of the game at minute 20th. It is possible to

simulate up to 6 goals and see odd predictions on match odds, over/under, correct score and total

goals markets. Figure 2.9 shows the functionality that enables a trader to check the probability

that each of the players have to win the match (altough, it is possible to check the probability to

win only the set). The column "Predicted Odds" ipresents the most interesting information as it

tells the trader what the odds will be if any of the events described in the rows happens. This way

the trader can focus his energies on trying to predict what will happen in the game, leaving the odd

prediction to Bet Angel with this Tennis trader.

Figure 2.6: Ladder interface of Bet Angel [Ang14]

12

State of the art

Figure 2.7: Dutching interface of Bet Angel [Ang14]

2.2.4 BFExplorer

The BFExplorer is not only a betting or trading platform for betfair, but also the platform that can

be used to automate betting and trading systems. [Bel14a]

The Bfexplorer PRO offers three types of user interface for bet placing, the market grid view

similar to the user interface on betfair web pages (Figure 2.10), the selection list view (“ladder”)

user interface for placing, updating and cancelling bets (Figure 2.11), and BFExplorer Trader for

multi selection trading on the list view interface (Figure 2.11).

After a bet is placed at betfair market, the selection where the bet was made is automatically

added into the Watched selections window where it is possible to see the price/odds movement

and traders’ current position. If the trader want to close the position (trade out with equal profit),

simply click on Profit button, or on the Close position in the Watched Selections window.

It is possible to monitor as many markets as the trader want, quickly switching among them

through Watched Selection window or Market list.

The application offers a set of Bet Wizards for placing bets when preset criteria are met,

bet wizards for placing a bet and closing position, backing or laying all selections, back or lay

dutching.

As this application is used by traders, it offers trading strategies for any of mentioned user

interface components and extensive bot script support both by built-in bots or customizable bot

scripts. This unique feature allows the trader to write their own bot scripts in Visual Basic or

13

State of the art

Figure 2.8: Soccer Mystic interface of Bet Angel [Tra12]

C# programming languages. For users who are not familiar with any programming language the

Bfexplorer offers a Bot Executor with Bot Criteria Editor which can be used to setup different

scenarios for bet placing or trading by utilizing all offered bots (including customize bots). Such

bot criteria is then used on the selection when needed, just by clicking on the start bot toolbar

button or for fully automated solutions which can run on the Trade Opportunity Lookup service.

The application supports the Excel automation as well. Bfexplorer offers any available information

the trader can get from betfair, presenting the market data on charts where is possible to see

the price/odds movement and weight of money in time, traded and available volume and market

statistics. [Bel14b]

2.2.5 JBet

JBet is a state of the art Java software framework developed at Department of Informatics En-

gineering in School of Engineering, Porto University (FEUP) used to create trading agents for

betfair.

JBet is the base software on wich this work was developed. It is a complex and powerful set

of function calls to Betfair API in Java. JBet allows developers to interact with Betfair in a higher

level making possible to develop agents without too much effort. JBet has already some trading

mechanisms implemented. Each trading mechanism inside JBet is a set of predefined actions that

14

State of the art

Figure 2.9: Tennis trader interface of Bet Angel [Ang14]

Figure 2.10: Guided user interface of BFExplorer, simple betting [Bel14a]

15

State of the art

Figure 2.11: Ladder interface of BFExplorer, multiple selections [Bel14a]

should happen when it is triggered, independently of the market on wich it is used. The trading

mechanisms already developed are the following:

• Open

• Close

• Swing

• Dutching

• Trailing-stop

• Scalping

The working principles of each one of these trading mechanisms are detailed at 2.1. The

innovation present at this piece of software is that it creates a high-level interface in Java for users

to develop their own agents, without having to handle and know Betfair API from scratch. JBet

also includes a simulation mode to test agents.

At the moment there is not a user friendly GUI available, manily because this library is in-

tended to be used by programmers that are comfortable with Java language, altough there is a

ladder with read-only purposes to maintain track of trades created by agents. An example of this

ladder is shown in figure B.1. For this thesis, JBet was extended with a new trading mechanism

(Dealer of section 2.1.5) using the existent interfaces.

16

State of the art

2.2.6 Comparison

Programming
Interface

Expansion Capability
(Flexibility)

Replay
Simulation

Mode
Documentation

Market Feeder
Pro

Proprietary
scripting
language

Medium True Weak Good

Gruss Bet Excel Medium False False Medium
Bet Angel Excel/Triggers Weak False Weak Good

BF Explorer Visual Studio Good False Weak Good
JBet Java Good True Good Weak

Table 2.1: Comparison between trading softwares

Table 2.1 presents the most important features to be compared among the trading tools de-

scribed in previous section. These features include the existence of a programming interface,

expansion capability of each of the softwares compared, replay capacity, simulation mode and

documentation.

Concerning the programming interface, each software has it own programming interface. The

most robust are JBet and BFExplorer because offer the possibility to use a real programming

language with a lot of documentation, Java by JBet and Visual Basic and C# by BFExplorer.

MarketFeeder Pro offers a proprietary scripting language and Gruss Bet and Bet Angel only offers

the possibility to create triggers using Excel spresdsheets.

Only BFExplorer and JBet are truly flexible allowing anyone to develop it’s own trading agents

with the advantage for JBet that the most important trading mechanisms are already developed and

ready to be used, like scalping, dutching, swing among others, explained in section 2.1.

Regarding replay capacity, the clear winner is JBet as it allows to have limitless replay allowing

this way to test strategies with unlimited past data for better future predictions. MarketFeeder Pro

also have a replay functionality but is somewhat limited. It is called TimeWarp and only allows to

replay with a limited ladder leaving some action on markets outside (Betfair log files).

Only GrussBet has no simulation mode, but only JBet does this simulation the way it is sup-

posed to be. Other softwares simulation modes do not account for market liquidity. This means

that if someone is using simulation mode at, for example BF Explorer, and place a back bet with

500e it will be matched even if only 10e are available on market to match that back bet. So, sim-

ulation on this softwares are for purely test plain strategies with low value stakes. On the opposite

side, JBet does this the right way. Using the 500e back bet example, only 10e will be matched

and the remaining 490e will continue waiting to be matched. This way, it is not only possible to

test plain strategies, but also the evolution of that strategies with increasing stakes and assess if it

a short or long term strategy.

Documentation is good in all softwares but JBet. It is a product in development and documen-

tation needs more work because can be a little difficult to start programming using JBet and not

have a way to know how it works. All other softwares have a reasonably good documentation.

17

State of the art

2.3 Machine Learning Packages

This thesis uses machine learning techniques in order to optimize the results of the trading agents

developed using the JBet interface described in 2.2.5.

There are many machine learning software available in the market and the well known are

probably RapidMiner created by the company with the same name [Rap14], WEKA (Waikato

Environment for Knowledge Analysis) developed by Waikato University in New Zeland [Uni14b]

and Encog made by Heaton Research [Res13].

Due to the documentation availability, ease of use with a very intuitive interface for model

creation, model quantity to be used and export of these models for later integration in JBet code

already developed by its creators (Department of Informatics Engineering in School of Engineer-

ing, Porto University) the choice for this thesis was the RapidMiner software. Anyway, every

model developed during this work using RapidMiner can also be created in any other machine

learning software with an adaptation of the exported model for integration with JBet.

In this work, it is only consedered supervising learning, wich is a kind of learning that is done

through the analysis of historical data. The historical data includes a set of examples (by now

called ExampleSet). Each example contains a situation or input (described by a set of attributes)

and the associated result or output (the class to be learned).

Next paragraphs describe some of the existing supervising learning models included in the

Rapid Miner software, suitable to be used in the optimization of the results of the trading agents

considered in this work. It is important to mention that the description of the classifiers was taken

from [AH12].

Decision Tree
Generates a Decision Tree for classification of both nominal and numerical data.

A decision tree is a tree-like graph or model. It is more like an inverted tree because it has

its root at the top and it grows downwards. This representation of the data has the advantage

compared with other approaches of being meaningful and easy to interpret. The goal is to

create a classification model that predicts the value of a target attribute (often called class or

label) based on several input attributes of the ExampleSet. In RapidMiner an attribute with

label role is predicted by the Decision Tree operator. Each interior node of tree corresponds

to one of the input attributes. The number of edges of a nominal interior node is equal

to the number of possible values of the corresponding input attribute. Outgoing edges of

numerical attributes are labeled with disjoint ranges. Each leaf node represents a value of

the label attribute given the values of the input attributes represented by the path from the

root to the leaf.

Decision Trees are generated by recursive partitioning. Recursive partitioning means re-

peatedly splitting on the values of attributes. In every recursion the algorithm follows the

following steps:

18

State of the art

• An attribute A is selected to split on. Making a good choice of attributes to split on

each stage is crucial to generation of a useful tree. The attribute is chosen depending

upon a selection criterion usually based on the statistically significance of the attribute.

• Examples in the ExampleSet are sorted into subsets, one for each value of the attribute

A in case of a nominal attribute. In case of numerical attributes, subsets are formed

for disjoint ranges of attribute values.

• A tree is returned with one edge or branch for each subset. Each branch has a descen-

dant subtree or a label value produced by applying the same algorithm recursively.

In general, the recursion stops when all the examples or instances have the same label value,

i.e. the subset is pure. Or recursion may stop if most of the examples are of the same label

value. This is a generalization of the first approach; with some error threshold. However

other halting conditions can be considered, such as:

• There are less than a certain number of instances or examples in the current subtree.

This can be adjusted by using the minimal size for split parameter.

• No attribute reaches a certain threshold. This can be adjusted by using the minimum

gain parameter.

• The maximal depth is reached. This can be adjusted by using the maximal depth

parameter.

Pruning is a technique in which leaf nodes that do not add nothing significantly meaningful

to the discriminative power of the decision tree are removed. This is done to convert an

over-specific or over-fitted tree to a more general form in order to enhance its predictive

power on unseen datasets. Pre-pruning is a type of pruning performed parallel to the tree

creation process. Post-pruning, on the other hand, is done after the tree creation process is

complete.

Random Forest

This operator generates a set of a specified number of random trees i.e. called a random

forest. The resulting model is a voting model of all the trees.

The representation of the data in form of a tree has the advantage compared with other

approaches of being meaningful and easy to interpret. Each interior node of the tree cor-

responds to one of the input attributes. The number of edges of a nominal interior node is

equal to the number of possible values of the corresponding input attribute. Outgoing edges

of numerical attributes are labeled with disjoint ranges. Each leaf node represents a value of

the label attribute given the values of the input attributes represented by the path from the

root to the leaf.

19

State of the art

Rule Induction
This operator learns a pruned set of rules with respect to the information gain from a given

set of examples (ExampleSet). The Rule Induction operator works similar to the propo-

sitional rule learner named ’Repeated Incremental Pruning to Produce Error Reduction’

[Coh95]. Starting with the less prevalent classes, the algorithm iteratively grows and prunes

rules until no positive examples are left or the error rate is greater than 50%.

Rule Set learners are often compared to Decision Tree learners. Rule Sets have the ad-

vantage to be easier to understand, representable in first order logic (easy to implement in

languages like Prolog) and prior knowledge can be added easily. The major disadvantages

of Rule Sets were that they scaled poorly with training set size and had problems with noisy

data. The RIPPER algorithm (which this operator implements) pretty much overcomes these

disadvantages. The major problem with Decision Trees is overfitting i.e. the model works

very well on the training set but does not perform well on the validation set. Reduced Error

Pruning (REP) is a technique that tries to overcome overfitting. After various improvements

and enhancements over the period of time REP changed to IREP, IREP* and RIPPER.

This operator uses two phases: the growing phase and the prunning phase. In the growing

phase, for each rule greedily conditions are added to the rule until it is perfect (i.e. 100%

accurate). The procedure tries every possible value of each attribute and selects the condition

with highest information gain. In the prune phase, for each rule any final sequences of the

antecedents is pruned with the pruning metric p/(p+n).

k-Nearest Neighbor
This operator generates a k-Nearest Neighbor model from the input ExampleSet. This model

can be a classification or regression model depending on the input ExampleSet.

The k-Nearest Neighbor algorithm is based on learning by analogy, that is, by comparing a

given test example with training examples that are similar to it. The training examples are

described by n attributes. Each example represents a point in an n-dimensional space. In

this way, all of the training examples are stored in an n-dimensional pattern space. When

an unknown example is given, a k-nearest neighbor algorithm searches the pattern space for

the k training examples that are closest to the unknown example. These k training examples

are the k "nearest neighbors" of the unknown example. "Closeness" is defined in terms of a

distance metric, such as the Euclidean distance.

The k-nearest neighbor algorithm is amongst the simplest of all machine learning algo-

rithms: an example is classified by a majority vote of its neighbors, with the example being

assigned to the class most common amongst its k nearest neighbors (k is a positive integer,

typically small). If k = 1, then the example is simply assigned to the class of its nearest

neighbor.The same method can be used for regression, by simply assigning the label value

for the example to be the average of the values of its k nearest neighbors. It can be useful

to weight the contributions of the neighbors, so that the nearer neighbors contribute more to

the average than the more distant ones.

20

State of the art

The neighbors are taken from a set of examples for which the correct classification (or, in

the case of regression, the value of the label) is known. This can be thought of as the training

set for the algorithm, though no explicit training step is required.

The basic k-Nearest Neighbor algorithm is composed of two steps: Find the k training

examples that are closest to the unseen example and take the most commonly occurring

classification for these k examples (or, in the case of regression, take the average of these k

label values).

Naive Bayes
This operator generates a Naive Bayes classification model.

A Naive Bayes classifier is a simple probabilistic classifier based on applying Bayes’ theo-

rem (from Bayesian statistics) with strong (naive) independence assumptions. A more de-

scriptive term for the underlying probability model would be ’independent feature model’.

In simple terms, a Naive Bayes classifier assumes that the presence (or absence) of a partic-

ular feature of a class (described by an attribute) is unrelated to the presence (or absence) of

any other feature. For example, a fruit may be considered to be an apple if it is red, round,

and about 4 inches in diameter. Even if these features depend on each other or upon the

existence of the other features, a Naive Bayes classifier considers all of these properties to

independently contribute to the probability that this fruit is an apple.

The advantage of the Naive Bayes classifier is that it only requires a small amount of train-

ing data to estimate the means and variances of the variables necessary for classification.

Because independent variables are assumed, only the variances of the variables for each

label need to be determined and not the entire covariance matrix.

Neural Net

This operator learns a model by means of a feed-forward neural network trained by a back

propagation algorithm (multi-layer perceptron). This operator cannot handle polynominal

attributes.

The coming paragraphs explain the basic ideas about neural networks, need-forward neural

networks, back-propagation and multi-layer perceptron.

An artificial neural network (ANN), usually called neural network (NN), is a mathematical

model or computational model that is inspired by the structure and functional aspects of

biological neural networks. A neural network consists of an interconnected group of arti-

ficial neurons, and it processes information using a connectionist approach to computation

(the central connectionist principle is that mental phenomena can be described by intercon-

nected networks of simple and often uniform units). In most cases an ANN is an adaptive

system that changes its structure based on external or internal information that flows through

the network during the learning phase. Modern neural networks are usually used to model

complex relationships between inputs and outputs or to find patterns in data.

21

State of the art

A feed-forward neural network is an artificial neural network where connections between

the units do not form a directed cycle. In this network, the information moves in only one

direction, forward, from the input nodes, through the hidden nodes (if any) to the output

nodes. There are no cycles or loops in the network.

Back propagation algorithm is a supervised learning method which can be divided into two

phases: propagation and weight update. The two phases are repeated until the performance

of the network is good enough. In back propagation algorithms, the output values are com-

pared with the correct answer to compute the value of some predefined error-function. By

various techniques, the error is then fed back through the network. Using this information,

the algorithm adjusts the weights of each connection in order to reduce the value of the error

function by some small amount. After repeating this process for a sufficiently large number

of training cycles, the network will usually converge to some state where the error of the

calculations is small. In this case, one would say that the network has learned a certain target

function.

A multilayer perceptron (MLP) is a feed-forward artificial neural network model that maps

sets of input data onto a set of appropriate output. An MLP consists of multiple layers

of nodes in a directed graph, with each layer fully connected to the next one. Except for

the input nodes, each node is a neuron (or processing element) with a nonlinear activation

function. MLP utilizes back propagation for training the network. This class of networks

consists of multiple layers of computational units, usually interconnected in a feed-forward

way. In many applications the units of these networks apply a sigmoid function as an acti-

vation function. In this operator usual sigmoid function is used as the activation function.

Therefore, the values ranges of the attributes should be scaled to -1 and +1. This can be

done through the normalize parameter. The type of the output node is sigmoid if the learn-

ing data describes a classification task and linear if the learning data describes a numerical

regression task.

Linear Regression

This operator calculates a linear regression model from the input ExampleSet.

Regression is a technique used for numerical prediction. Regression is a statistical measure

that attempts to determine the strength of the relationship between one dependent variable

(class) and a series of other changing variables known as independent variables (regular

attributes). Just like Classification is used for predicting categorical labels, Regression is

used for predicting a continuous value. For example, we may wish to predict the salary of

university graduates with 5 years of work experience, or the potential sales of a new product

given its price. Regression is often used to determine how much specific factors such as

the price of a commodity, interest rates, particular industries or sectors influence the price

movement of an asset.

22

State of the art

Linear regression attempts to model the relationship between a scalar variable and one or

more explanatory variables by fitting a linear equation to observed data. For example, one

might want to relate the weights of individuals to their heights using a linear regression

model.

This operator calculates a linear regression model. It uses the Akaike criterion for model

selection. The Akaike information criterion is a measure of the relative goodness of a fit of

a statistical model. It is grounded in the concept of information entropy, in effect offering

a relative measure of the information lost when a given model is used to describe reality.

It can be said to describe the tradeoff between bias and variance in model construction, or

loosely speaking between accuracy and complexity of the model.

Input Types Output Types Normalization Human Comprehension
Rule Induction Nominal/Numerical Nominal Not Needed Yes
k-NN Nominal/Numerical Nominal/Numerical Not Needed No
Naive Bayes Nominal/Numerical Nominal/Numerical Not Needed No
Decision Tree Nominal/Numerical Nominal Not Needed Yes
Random Forest Nominal/Numerical Nominal/Numerical Not Needed No
Neural Net Numerical Numerical Needed No
Linear Regression Numerical Numerical Needed No

Table 2.2: Comparison between machine learning models

Table 2.2 summarizes the main differences between the models explained in this section. The

parameters compared are important on the context of the development of our trading agents using

the framework described in this thesis because the data will be transfered from an agent to the

model and then the model will be exported to integration in the same agent. For this reason, is

important to compare the Input Types, Output Types and Normalization. Human Comprehension

is important to eventually do a manual check for possible errors in analysis.

23

State of the art

24

Chapter 3

Framework

In this chapter will be described a framework used to create trading agents that uses plain strategies

combined with machine learning. Machine learning is included to improve the base plain strategy.

Athough it is important to keep in mind that if a plain strategy has clearly negative results, the

machine learning stages defined on the framework will not help turning that negative results into

profit. Following the steps described is possible to have a consistent and secure methodology to

develop this type of agents.

3.1 Description

Figure 3.1 schematically represents the base framework for all the agents developed during this

thesis. At start, a plain strategy (see definition at glossary) is tested in simulation mode, to verify

its viability. A clear negative plain stategy is not helpful. For most of the traders it will not be al-

ways clear when some strategy has a positive or negative tendency mainly because it is extremelly

complicated to make evaluations in the long run. As any trader knows, this evaluations are es-

sential to assess how a strategy behaves. Eventually, after testing the strategy in simulation, some

parameters of it could be subject to changes to better adapt to market changes. This empirical

refining of parameters is important to find out the best parameter adjustment to mimize loss or

increase profit in the plain strategy defining stage. If needed, the cycle of testing and refining is

restarted until the results of plain strategy are acceptable.

The next phase is the reuse or creation of new data from original market data that is suitable

to train and test the model to be created. This data could be raw data from markets like time of the

day, number of selections, amongst others, or could be new data calculated using raw data, that

better suits the model testing. For this framework, this data is the output of the agent running with

only the plain strategy. This data (a table with examples for modelation) is then divided in two

parts, one for training the model and other to test it.

After this division is complete, the next step is to create the model with any of the machine

learning packages described in section2.3.

25

Framework

The model is now created, so is time to first train it and then test it, using the previously created

data. Possibly, the results will allow for some improvement after a first iteration, so, as done with

the plain strategy, there is a need to refine model parameters, also called hyper parameters. This

empirical refinement of hyper parameters will, in theory, improve model responses and the cycle

of testing and refinement could be done until the model gives the best possible results.

It is now time to integrate the model trained and tested into the plain strategy. Before every

major decision point, the agent should use the model to ask if the plain strategy should be applied

or not at that moment in the market. In sport events markets, usually this decision points are the

entry or not on respective market. But in theory, this decision points could be anything that the

trader wants, be it at wich time close the position on market or even the stake to be used depending

on market values.

After testing again the plain strategy filtered with the model created on machine learning stage,

the results should be better than it was without the model integration. Be it the loss reduction or

profit increase, the goal is achieved. It is now time for the developer to decide if he wants to go

into real mode, with real money, or restart the whole cycle again with a new plain strategy. The

most common and obvious decision is that if the whole product has profit, it should be passed

to real mode, with the reserve that on betting exchanges nothing is guaranteed and all strategies

could possibly be obsolete at some point in time.

26

Framework

Figure 3.1: Schematic representation of framework

27

Framework

28

Chapter 4

Implementation

In this secion will be explained how two trading agents that follows the framework presented in

section 3 were implemented using JBet. Also, to create them, was necessary to develop a new

trading mechanism that extend JBet functionalities, whose implementation will also be described.

4.1 Dealer Agent

According to Oxford Dictionary, a dealer is "a person who buys and sells goods" [Uni14a]. The

first and most common synonym for "dealer" is trader. So in this context, we can assume that

every trader that work on Betfair and other beting exchanges are dealers. This is true, regardless

of the nature of the trader, wether it be a person or an automated trading mechanism. From the

market perspective, everyone is an entity that open and close positions (buy and sell) and its nature

is not relevant.

4.1.1 The Plain Strategy Stage

The implemented agent follows a plain strategy for pre-live horse racing. It tries to take advantage

of the market fluctuations (around an axisOdd) before each race start, placing a back and a lay

simultaneously, and try to close with profit by matching both in a time frame. If it is not successful,

a stoploss will be triggered and will try to close with loss at best price available.

When agent is running, it will enter on horse races with more than 4 horses and at least one

of that horses has the odd above 6.0 and lower than 12.0. These are horses that are not favourites

to win the race, but at the same time have a suitable liquidity to be traded on. When remaining

time to the start of the race is less than 5 minutes, the agent will create a dealer for each one of the

horses filtered before.

To create a dealer agent with JBet, that followed the principles described in section 2.1.5, it

was necessary to create a trading mechanism inside JBet that followed those rules. This allows

that, from now on, every JBet agent can use a dealer by simply invocate that trading mechanism

not being dependent of the plain strategy and markets where it is used used, wether it be for horses,

football, car racings, etc.

29

Implementation

Figure 4.1: Class structure of dealer trading mechanism

In Appendix A, figure A.1 shows the DealerAgent GUI with statistics fields resulting from the

execution of one trading mechanism dealer.

4.1.2 Trading Mechanism Dealer

The trading mechanism dealer is a set of predifined actions that, when invocated, will make a back

and a lay bet simultaneously in different odds. This trading mechanism will then wait that both

bets are matched to return a profit. In the case that market has a upward or downward tendency

(making it impossible to match both bets), dealer will then trigger a stoploss condition to avoid

biggers losses.

As any other trading mechinism in JBet, dealer has 3 classes where everything is implemented.

Figure 4.1 shows the class structure of the dealer trading mechanism and names of the three classes

created.

DealerOptions.java
This class implements all the parameters needed to invoke a dealer.

DealerPanel.java
This class implements a graphical user interface to be invoked by agents that use the trading

mechanism dealer. It is used JSwing to create JLabel’s and JComboBox’es allowing users to

easily define DealerOptions.java parameters. If the implemented agent defines itself Deal-

erOptions.java paramenters, it is not necessary to invoke DealerPanel.java.

30

Implementation

Dealer.java
This class implements all the dealer logic, creating necessary open and closing positions.

This class extends the superclass TradeMechanism.java and manages all the listeners sub-

scriptions that implement the TradeMechanismListener.java interface, following an event

based architecture for the Dealer process (or mechanism).

The parameters available to define the DealerOptions.java are shown in listing 4.1 and ex-

plained in detail in the next paragraphs..

1 private double stake;

2 private double axisOdd;

3 private int ticksBackProfit;

4 private int ticksLayProfit;

5 private int ticksLossBack;

6 private int ticksLossLay;

7 private int backOrLayStake;

8 private double percentageOpen;

9 private boolean insistOpen;

10 private boolean useIpKeep;

11 private int waitFramesOpen;

12 private int waitFramesBestPrice;

13 private boolean forceCloseOnStopLoss;

14 private boolean useStopProfifInBestPrice;

15 private boolean goOnfrontInBestPrice;

16 private int delayIgnoreStopLoss;

17 private int waitFramesLay1000;

Listing 4.1: DealerOptions.java parameters available

The trading mechanism dealer will use the values of each of these parameters to act on the

market chosen by the agent and it is mandatory that all parameters have a value assigned for

correct execution of the dealer. To prevent failures, all parameters have a default value. These

default values represent the most common choice, although it is recommended to modify them to

ensure that dealer will execute according to the will of the trader.

Stake is the amount of money that dealer will use to open a position on market. As it will

open two positions at the same time, the stake value will be used to open the position defined at

backOrLayStake that can be a BetData.back or a BetData.lay. If the agent defines that the stake

is to be used with a back, the lay stake will be calculated depending on the odds chosen (see

equation 1.4). The odds to open positions are calculated using ticksBackProfit, ticksLayProfit and

axisOdd parameters. Usually, axisOdd is the odd available at that moment to bet on and it is always

updating to reflect market immediatly available odd. Using this odd, dealer will then calculate the

odds to open positions using ticksBackProfit and ticksLayProfit. As an example, if axisOdd is 1.68

and ticksBackProfit and ticksLayProfit have a value of 1, dealer will open two positions at the same

31

Implementation

time backing at 1.69 and laying at 1.67. This means that if the trade is successful and both postions

are matched, the agent will have 2 ticks of profit.

As a security measure, this trading mechaninsm also implements a stoploss functionality. tick-

sLossBack and ticksLossLay represent the ticks to wait until trigger the stoploss. Using the pre-

vious example, and assuming that both ticksLossBack and ticksLossLay have a value of 2, after

backing and laying at 1.69 and 1.67 respectively, dealer will maintain the odds 1.71 and 1.65 in

memory. If the market is in uptrend and reaches 1.71 before matching the lay bet at 1.67 it will

trigger a stoploss cancelling the lay bet at 1.67 and opening a new lay, with recalculated stake, at

market best price, returning in a loss for the agent. This works also if the market is in dowtrend

and its mechanism is similar, but dealer will cancel the unmatched back position and will open a

new one at best price.

The percentageOpen parameter, by default 1.0, represents the required percentage to close the

trade after the initial bet is matched. For example, if percentageOpen is set to 0.5, when the agent

starts a trade and half of the stake is matched, it will move on to the next phase of the dealer.

The insistOpen parameter is used if trader wants the agent to insist open a position even if

the market is suspended. When the market reactivates, the agent will continue trying to open the

previous unmatched position. The useIPKeep parameter is similar to the previous one, and if set

to true, the agent will keep the bets even if the market turns in-play. By default, when a race starts

(turn in-play), all the bets are cancelled.

The waitFramesOpen and waitFramesBestPrice are the parameters that control the time to

wait to match positions. When a trade is started, the two positions waiting to be matched will wait

until the value waitFramesOpen be reached. This value represents the number of frames (updates

of prices from the market, for this agent, 2 FPS) passed since the trade was started. When in

need to close at best price, and in the same way as before, that position will wait the number of

frames represented by waitFramesBestPrice. After the waitFramesBestPrice timeout, the trade

mechanism will close where there is money available on the ladder. It is important to mention that

when the agent starts a trade and the waitFramesOpen time is reached before one of the bets are

matched, both are cancelled and it will not enter the market.

The parameter forceCloseOnStopLoss is used when a stoploss condition is reached and in that

case, agent will not try to close at best price and will close where there is money available to close

the position. This parameter allows for faster closings in case of loss but with a penalty of at least

one tick on the ladder since it does not use waitFramesBestPrice time.

The parameter useStopProfitInBestPrice is useful for volatile markets. If the agent is in state

of closing at best price and this parameter is set to true, it will always close that position on the

original price requested. Even if the price changes to a better one when trying to close at best price,

the agent will maintain the original one. This allows faster closings shortening the exposure time

on market with the risk of loosing potential profit if the market is in favor of the agent forecasting.

goOnFrontInBestPrice is also responsible for shortening the exposure time but in a different way.

If the agent is in the state of closing at best price, and goOnFrontInBestPrice is set to true, the

agent will close one tick below the immediate best offered price and not behind other best offers.

32

Implementation

With the parameter delayIgnoreStopLoss different than 0 (by default delayIgnoreStopLoss =

0), from the moment where a position is opened, the agent will ignore the stoploss functionality

for the number of frames defined, with the objective of waiting for market stabilization. If the

market has an extremely low liquidity (e.g. market goes in-play and all the bets are cancelled), it

is important to ignore stoploss until the market stabilizes (the liquidity fills again).

Finally, when a result becomes impossible, the agent will wait the number of frames defined

by waitFramesLay1000 to try to close in the worst price of the ladder (1000). The probability of

closing here is extremely low so after this time the agent assumes the loss.

4.1.3 Machine Learning Stage

Having already the plain strategy phase completed, with all the parameter optimization and re-

finement possible, is now the moment of apply the Machine Learning process. The start of this

phase, as described in figure 3.1, its the creation of data for the model (train and test evaluation).

This data is created from the executions on simulation mode of DealerAgent while plain strategy.

In the end of each execution of each trading mechanism dealer, it is created one example for the

model. The DealerAgent runs many trading mechanisms (one for each filtered horse on each race)

that creates a set of examples. The data to be created is represented on listing 4.2.

1 private double matchedAtStartMoment;

2 private int runners;

3 private double womDiffAtStartMoment;

4 private double demandAtStartMoment;

5 private double percentDiffBack;

6 private double percentDiffLay;

7 private boolean profit;

Listing 4.2: Fields of the dataset to be created to use in model train and test of DealerAgent

The values of 4.2 were chosen for model creation because they are the ones that better represent

the market and it is with them that the model will choose to enter or not - run the dealer trading

mechanism or not, for that horse.

The market liquidity, represented by matchedAtStartMoment, is the total money traded on the

runner. The lower this value get, there will be less market fluctuations. The number of horses in

race, represented by int runners, is important to evaluate on wich race types there are better results.

These two values (matchedatStartMoment and runners) are directly extracted from market without

any kind of post-processing.

On the contrary, all values presented in this paragraph are the result of post-processing some

of the atomic market values. The first one to be calculated is the weight of money difference of

market - womDiffAtStartMoment. To get to this value it is simply calculated the difference of

weight of money between the present and a near past represented by 30 frames of market. The

line of code where this calculation happens is represented in listing 4.3

33

Implementation

1 ri.womDifAtStartMoment = Utils.getAmountBackFrame(rdAux, 30) -

2 Utils.getAmountLayFrame(rdAux, 0);

Listing 4.3: Calculation of weight of money difference

The demandAtStartMoment represents the difference of demand between the moment a dealer is

started and 30 frames in the past. Theorically, if the demand is greater in present than in the past,

the market tendency is a downward one because there are more entities offering money than the

ones accepting it. In the case of the demand be smaller in the present than it was in the past, the

market has an upward tendency. The ideal range for this value is near zero, point where the market

will be stabilized favouring the matching of both bets made at start of a trading mechanism dealer.

The calculation of demandAtStartMoment is presented in listing 4.4

1 ri.demandAtStartMoment = UtilsCollectData.getAmountMatchedVariationAVGAxisWindow

2 (rdAux, 0, 30, 3);

Listing 4.4: Calculation of demand at start moment

The values percentDiffBack and percentDiffLay are representative of the existence of a support at

immediatly next available odd where the dealer has started. This values represent a percentage

in relation to the available amount waiting to be matched at the next odd relative to where dealer

opened positions. In the case of the value of percentDiffBack be grater than 1.0, there is more

money available on the next odd than in the odd where the bet was made. This evaluation is

important because it represent a possible pressure point meaning that the prices could possible

not pass that odd, avoiding the triggering of stoploss. Obviously, both percentageDifffBack and

percentageDiffLay represents the support on the back and lay bets made by the dealer. Their

calculation is made by the code in listing 4.5.

1 double amountBackN=Utils.getAmountBackOddFrame(rdAux, oddBackN, 0);

2 double amountLayN=Utils.getAmountLayOddFrame(rdAux, oddLayN, 0);

3

4 double amountBack=Utils.getAmountBackOddFrame(rdAux, oddBack, 0);

5 double amountLay=Utils.getAmountLayOddFrame(rdAux, oddLay, 0);

6

7 double percentLay=(amountLay/amountLayN)*100.;

8 double percentBack=(amountBack/amountBackN)*100.;

Listing 4.5: percentageDiffBack and percentageDiffLay calculation

The last value will be the target/label/output field for the machine learning model and it represents

the success or insuccess of a trading mechanism dealer execution. It is a boolean that represents if

there was profit on that dealer execution. In the case of the final profit, in euros, is equal or greater

than zero, the boolean profit will assume the value true.

34

Implementation

The listing 4.6 represents an example of a .csv file generated by DealerAgent. Each line

represents one execution of a trading mechanism dealer. In one race could be executed several

trading mechanism dealers depending on the number of horses with odds between 6.0 and 12.0,

five minutes before the start of the race. However, it is created only one dealer in each eligible

horse.

1 28989.22 10 96.38000000000001 -16.419833333333326 148.73555020653174

11.937690348993959 true

2 25662.33 10 -105.44 -4.901000000000015 14.099754267118284 26.89237334959133 true

3 22386.25 10 48.67999999999999 -27.237666666666666 14.335539613966947

213.80622837370242 true

4 4724.06 15 -7.669999999999998 0.054333333333333185 13.032015065913372

6.583419253828235 true

5 10091.13 15 -52.32 -1.4748333333333326 266.72705314009664 288.51617995264405 false

6 7024.83 6 31.909999999999997 -3.585999999999999 56.50704225352112

24.201286107992242 true

7 7542.65 6 -1.6799999999999926 -2.401333333333333 115.11207060765763

103.48107285524063 false

8 10112.96 6 1.6500000000000057 1.5066666666666673 106.53774089935762

318.1999501371229 false

9 2974.01 12 -7.08 -0.014166666666667046 102.56410256410258 164.03508771929828 true

10 5635.24 12 17.029999999999998 -0.4661666666666671 222.23816355810618

48.68701206529454 false

11 10283.04 9 -63.48000000000002 -3.9181666666666692 562.1270857913366

120.09025010801209 false

Listing 4.6: File generated by a DealerAgent execution with values to use in train and test of model

After the creation of data is completed, they are divided in two parts: one for training and other

for testing and refining the model. In DealerAgent concrete case, the generated data represent

3 months of horse races that are divided in two months for training and one month for testing

(January and February of 2014 for training and March of 2014 for testing).

It is then loaded the training data to RapidMiner software. Figure 4.2 represents the loading

of a part of the training data.

The learning process of model was created using the scheme shown in figure 4.3. It was

created this way, with all datamining classifiers suitable for use (accepting numerical input and

nominal output). The classifier used in this example was Rule Induction as we can see in image

4.3.

With the RapidMiner process created and the training data prepared, it is time for training

the model. The results are presented in figure 4.4 and are a set of rules that the generated model

will use at the time of testing the data. The test process is presented in figure 4.5. The table 4.1

represents the final values, obtained in phase "refinement of hyperparameters" of the framework,

that are used to train the machine learning model, that uses a Rule Induction classifier.

35

Implementation

Figure 4.2: Portion of the data to train the machine learning model in RapidMiner

Figure 4.3: Learn process created in RapidMiner

36

Implementation

Figure 4.4: Rules generated as result of the learning process of model in RapidMiner

Figure 4.5: Testing process created in RapidMiner

37

Implementation

Criterion Information Gain
Sample Ratio 0.7
Pureness 0.9
Minimal prune benefit 0.1
Local random seed Yes

Table 4.1: Hyper parameters for Rule Induction classifier for the final refinement of Dealer ma-
chine learning model

After execute the test of model, with the previous selected test data (March of 2014), are then

presented the performance values. In figure 4.6 is illustrated the performance values for this test,

and it is possible to see that the percentage of hits was of 52.33%.

Is then necessary to do an export of the model to a file in order to DealerAgent be able to

read it and know when it should or not enter a race according to model. The process of export is

represented in figure 4.7

This model is exported to a .mod file and in DealerAgent.java it is loaded. From this moment

on, whenever the DealerAgent finds a suitable race to be traded on according to the parameters of

the plain strategy, it will ask the model if it should or not enter being the model responsible for the

final decision of trading in a horse or not according to the values presented by the market where

the horse is.

4.2 Horse Lay Agent

This is another agent developed in this thesis scope. This agent also follows the structure of the

framework presented in 3 and acts on horse races of United Kingdom. It tries to take advantage

of the market speculation making a lay bet in non favourite horses, at lower odds than the ones

presented (by that horses) at start of the races.

4.2.1 The Plain Strategy Stage

The plain strategy of this agent is of easy understanding: in live horse markets, create a lay at low

odds in horses that are not favourites and wait that in any moment of the race the lay is matched

by someone else. It is important to note that in a single race several lays can be created, one for

each horse that matches the criteria defined by the plain strategy. In the event that several lays

are created in the same race, as soon as any of these lays is matched, all of the other lays are

immediatly cancelled by the agent. Theorically, if a not favourite horse has his odd at a low value,

Figure 4.6: Results of testing the model with pre selected testing data (March 2014) in RapidMiner

38

Implementation

Figure 4.7: Procees of exporting model to external file to be used by DealerAgent

every other horses will see their odds rising and for that reason is is not probable that two lays

are matched at the sime time. As soon as a lay is matched, the remaining unmatched lays are

cancelled. In summary, the agent will remain with only one lay bet matched in the market, a lay

bet to a horse who was not favourite to win.

The markets where the agent works are only United Kingdom races because this is the place

where usually there is more liquidity in horse races, meaning a greater speculation essential for

the proper functioning of this agent.

The criteria for each agent execution are the following:

• Lay at odd of 2 in horses with initial odd above 3

• Lay at odd of 2 in horses with initial odd above 4

• Lay at odd of 2 in horses with initial odd above 5

• Lay at odd of 2 in horses with initial odd above 6

• Lay at odd of 3 in horses with initial odd above 4

• Lay at odd of 3 in horses with initial odd above 5

• Lay at odd of 3 in horses with initial odd above 6

• Lay at odd of 4 in horses with initial odd above 5

• Lay at odd of 4 in horses with initial odd above 6

• Lay at odd of 5 in horses with initial odd above 6

These are the possible combinations to be tested in a database of horse racing, in simulation

mode. From all of the combinations, the ones that have the best results will be selected to advance

for the next phase of the framework, the machine learning. This processs of choosing the agents

with best results is relative to the "empirical refinement of parameters" in the plain strategy stage

of the framework presented in figure 3.1. The results of this executions are presented in section

5.2. From all of the listed combinations, the ones selected were:

• Lay at odd of 3 in horses with initial odd above 6

39

Implementation

• Lay at odd of 4 in horses with initial odd above 6

All the other combinations were discarded.

In this agent development there was no need to create a specific trading mechanism, unlike in

DealerAgent in 4.1, as the plain strategy is simple. This agent only requires to open a lay position

for each eligible horse, functionality obviously already implemented in JBet.

4.2.2 The Machine Learning Stage

The process of machine learning in this agent is similar to the one already explained in 4.1.3 for

DealerAgent. The only difference are the values created in the HorseLayAgent execution for later

training and testing of the model. This values are:

• Number of horses

• Race liquidity (and not the individual horse liquidity)

• Hour of the day

• Race length

• Profit (output value)

Every one of these values are atomic so they are directly extracted from the market without

the need of post-processing. It is important to note that the liquidity extracted is the one from the

race and not of the horse where the agent works on.

The generated data by the agent is divided in one month for training and two weeks of testing.

The data used for training is between December 15th of 2013 and January 14th of 2014 and the

testing data is between 15 and 30 of January 2014.

The model, similar to the one presented in section 4.1.3 , is then trained and tested with the data

previously created and divided. The model is then exported for integration in HorseLayAgent.java.

The chosen classifier was the Rule Induction although the results using Decision Tree were

very similar. In figure 4.8 is possible to see the project structure in RapidMiner.

From the "refinement of hyper parameters" phase, described in the framework (figure 3.1),

was possible to obtain the best values of each of these parameters for each agent execution. The

4.2 table presents the final values used by the classifier.

The agent will use the model for questioning on wich races it should work on. In the event of

a positive response, the agent then selects the eligible horses and executes the plain strategy.

40

Implementation

Figure 4.8: Project structure of HorseLayAgent model in RapidMiner software

3-6 4-6
Criterion Information Gain Information Gain
Sample Ratio 0.7 0.7
Pureness 0.9 0.9
Minimal prune benefit 0.3 0.1
Local random seed Not using True

Table 4.2: Hyper parameters for Rule Induction classifier for the final refinement of HorseLayA-
gent machine learning model

41

Implementation

42

Chapter 5

Testing and Results

In this section it will be described the results of both developed agents: DealerAgent and Horse-

LayAgent (4.1 and 4.2). Two types of results are discussed: those that are obtained using only

a plain strategy and those obtained with our model. The main objective is to demonstrate the

framework (chapter 3) feasibility.

5.1 Dealer Agent

To start, it is important to mention that all graphics presented in this section were created using

data from March of 2014.

The first step to test framework feasibility is to run the agent with only the plain strategy

(execute plain strategy on simulation mode in figure 3.1). The total profit/loss is presented in

function of number of races traded in figure 5.1.

These results were created after several iterations of empirical refinement of the paramenters

on the plain strategy and executions on simulation mode, as presented in 3.1. As we can observe,

the results were clearly negative. This means that the dealer agent is not efective on the long run

having a clear tendency to loose money. Only on month of March of 2014 the loss was about 35e

and the graph shows that the tendecy is to continue loosing money. In figure 5.2 are presented

the results for DealerAgent, but this time with integration of the rule induction model. The train

set used to train the model were the races that occured between the entire months of January and

February of 2014. The first observation to make is that using the model the total profit/loss was

slighly better. Even though it is a loss, it was smaller than the loss presented in 5.1 (execution of

the agent without the machine learning filter).

There was a positive evolution after applying the machine learning mechanism explained in 3

but DealerAgent does not have a expected positive value in long term [Reb10], even with applying

the machine learning filter. In the worst case, it would be expected that the plain strategy could

have a expected value near zero in order to have a small increase in profits with the application of

the machine learning technique.

43

Testing and Results

Figure 5.1: Dealer Agent results with plain strategy (without model) for entire month of March of
2014

Figure 5.2: Dealer Agent results with rule induction classifier for entire month of March of 2014
(train set: January and February of 2014)

44

Testing and Results

5.2 Horse Lay Agent

In section 4.2 was explained in wich way the empirical refinement of parameters was taking place,

executing one agent for each possible odd combination and in the end select those with the best

results.

In figure 5.3 is possible to see an example of one combination that was a total failure. The

image title is "2-3", wich means that were made lays at odd 2 in horses that in the start of the race

had an odd of above 3.

At the final of the test period, is possible to verify that this agent had a loss of about 150e with

stakes of 10e, that represents a considerable amount of loss for the time period tested (between

15 and 30 of January 2014). Furthermore, is possible to observe in the graphic that, although there

is a positive peak in the beginning, the long term tendecy will be negative and for that reason is

imperative to discard this agent.

In images 5.4 and 5.5 is possible to observe the selected agents according to their results.

The red line represents the execution of the agent only with the plain strategy and the blue line

represents the same agent but this time with the aplication of the model on top of the plain strategy.

The first note to take from images 5.4 and 5.5 is that with model the results improved. This happens

because the agent always asks to model if it should enter a race or not and in races that the model

think that will not have profit, its answer is negative, avoiding some potential loss.

In both cases (5.4 and 5.5) the horses where the lays were made were clearly not favourites

to win that race, with strating odds above 6, but in some moment of the race won advantage over

other competitors and the lays made were matched. Is also important to mention that in both cases,

the agents with only the plain strategy without the model (red lines), the results in the end of the

testing were near zero profit/loss. In image 5.4 is possible to see that the agent with only the plain

strategy was much of the time with a positive profit/loss but in the end of the test period suffered

a loss resulting in a negative but near zero profit/loss.

In image 5.6 is demonstrated the total profit/loss acheived with the two selected agents (5.4

and 5.5) having a final loss of 25e in the plain strategy case, but a 95e of profit when the model

was applied to the plain strategy.

45

Testing and Results

Figure 5.3: Horse Lay Agent results of plain strategy laying at 2 on horses with odd above 3 at
race start from from January 15th to January 30th of 2014 (train set: December 15th of 2013 to
January 14 of 2014)

Figure 5.4: Horse Lay Agent results of laying at 3 on horses with odd above 6 at race start with
and without rule induction classifier from from January 15th to January 30th of 2014 (train set:
December 15th of 2013 to January 14 of 2014)

46

Testing and Results

Figure 5.5: Horse Lay Agent results of laying at 4 on horses with odd above 6 at start of the race
with and without rule induction classifier from January 15th to January 30th of 2014 (train set:
December 15th of 2013 to January 14 of 2014)

Figure 5.6: Horse Lay Agent combining 5.4 and 5.5

47

Testing and Results

48

Chapter 6

Conclusions and future work

The first conclusion to take from this work is that a good plain strategy is essencial to have a

profitable trading agent in long-term. Without it, no agent will be able to generate profit, the

main reason for creating an agent. And as we can see in 5.1 and 5.2, the results with the agents

implemented during this work were not the expected ones.

DealerAgent, in 5.1, shows us that even though a plain strategy may sound good in paper, after

implementing it the results may be completly different. Even without the machine learning stages

described on the framework in 3, the results were negative when it was expected for the profit/loss

to be at least near zero.

With HorseLayAgent in 5.2, the results with only the plain strategy were slightly better than in

DealerAgent. When the machine learning was implemented for HorseLayAgent the results were

even better.

This leads to the second conclusion of this thesis, that after several refinements of the plain

strategy, implementing machine learning techniques to the agent can possibly improve the re-

sults. The two example agents of this work (DealerAngent and HorseLayAgent) shown that the

profit/loss results were better when the machine learning stages defined on the framework were

applied.

It is important to say that, even though both agents were developed to work on horse racing

markets, JBet and its trading mechanisms allow every Java programmer to create its own agents

for any other sports market on Betfair exchange. The most difficult is, with no doubt, finding a

good plain strategy. To find one, it is needed a great knowledge of the target markets and how they

behave in different conditions.

6.1 Future Work

Regarding the agents developed in this work, a greater time frame for training and testing is

needed. DealerAgent possibly has no salvation even if it is trained with more data because the

plain strategy behind is clearly a negative one. The same can not be applied to HorseLayAgent. It

had a positive result after the machine learning implementation with a train set of only one month.

49

Conclusions and future work

If this train set is extended, possibly the model will take better decisions when asked by the agent.

So, for future work, the HorseLayAgent will be tested in more depth.

Obviously, other work to be done in future is the creation of new agents with JBet. The

possibilities to create new agents are virtually infinite. There are many types of markets on Betfair,

and everyone has to find the ones where is more confortable with. The next agent to be developed

can possibly be intended to use in footabll matches. The reasons for this is that in football matches,

specially from England and Spain, there is always a lot of liquidity in circulation.

50

References

[Ace13] AceOdds. A guide to dutching. Available at http://www.aceodds.com/
what-is-dutching.html, 2013. Last accessed: 2014-03-23.

[AH12] Fareed Akthar and Caroline Hahne. Rapid Miner 5: Operator Reference, 2012.

[Ang14] Bet Angel. Bet angel - the ultimate betfair toolkit. Available at http://www.
betfair.com, 2014. Last accessed: 2014-05-30.

[Bel14a] BeloSoft. Betfair trading software. Available at http://bfexplorer.net, 2014.
Last accessed: 2014-05-29.

[Bel14b] BeloSoft. Bfexplorer products. Available at http://bfexplorer.net/
Products.aspx, 2014. Last accessed: 2014-05-29.

[Coh95] W.W. Cohen. Fast effective rule induction. In Proceedings of the Twelfth International
Conference on Machine Learning, pages 115 – 23, San Francisco, CA, USA, 1995.

[DPSW05] Mark Davies, Leyland Pitt, Daniel Shapiro, and Richard Watson. Betfair.com:: Five
technology forces revolutionize worldwide wagering. European Management Jour-
nal, 23(5):533 – 541, 2005.

[FVN10] Egon Franck, Erwin Verbeek, and Stephan Nüesch. Prediction accuracy of different
market structures — bookmakers versus a betting exchange. International Journal of
Forecasting, 26(3):448 – 459, 2010. Sports Forecasting.

[Int14] Ladbrokes International. Betdaq - the people’s betting exchange. Available at http:
//www.betdaq.com, 2014. Last accessed: 2014-06-21.

[Lim13] Betfair Counterparty Services Limited. Betfair cash out. Available at https://
www.betfair.com/sport/cashout, 2013. Last accessed: 2014-05-25.

[Lim14a] Betclic Limited. Bet online with betclic. Available at http://en.betclic.com,
2014. Last accessed: 2014-06-21.

[Lim14b] Electraworks Limited. bwin - bet online. Available at http://www.bwin.com,
2014. Last accessed: 2014-06-21.

[Lim14c] Talented Mavericks Limited. Betfair trading software. Available at http://www.
geekstoy.com/en, 2014. Last accessed: 2014-06-20.

[Lim14d] The Sporting Exchange Limited. Online betting - sportsbook and exchange at bet-
fair.com. Available at http://www.betfair.com, 2014. Last accessed: 2014-06-
21.

51

http://www.aceodds.com/what-is-dutching.html
http://www.aceodds.com/what-is-dutching.html
http://www.betfair.com
http://www.betfair.com
http://bfexplorer.net
http://bfexplorer.net/Products.aspx
http://bfexplorer.net/Products.aspx
http://www.betdaq.com
http://www.betdaq.com
https://www.betfair.com/sport/cashout
https://www.betfair.com/sport/cashout
http://en.betclic.com
http://www.bwin.com
http://www.geekstoy.com/en
http://www.geekstoy.com/en
http://www.betfair.com

REFERENCES

[Mak14] Jim Makos. Bet angel: Sports trading software for betfair and betdaq. Available at
http://jimmakos.com/bet-angel/, 2014. Last accessed: 2014-06-02.

[Rap14] RapidMiner. Rapidminer studio. Available at http://rapidminer.com/
products/rapidminer-studio/, 2014. Last accessed: 2014-06-15.

[Reb10] Paulo Rebelo. Plain strategies with expected positive value. Avail-
able at http://www.paulorebelotrader.com/en/2010/10/06/
plain-strategies-with-expected-positive-value/, 2010. Last
accessed: 2014-05-17.

[Res13] Heaton Research. Encog machine learning framework. Available at http://www.
heatonresearch.com/encog, 2013. Last accessed: 2014-06-15.

[RGP13] Ana Paula Rocha Rui Gonçalves and Fernando Lobo Pereira. High Level Architec-
ture for Trading Agents in Betting Exchange Markets. In Advances in Information
Systems and Technologies SE - 46, volume 206 of Advances in Intelligent Systems
and Computing, pages 497–510. Springer Berlin Heidelberg, 2013.

[Seb02] Fabrizio Sebastiani. Machine learning in automated text categorization. ACM Com-
put. Surv., 34(1):1–47, March 2002.

[Sof05a] WellDone Creative Software. Auto-greenup function. Available at http:
//marketfeeder.co.uk/screenshots/auto-green-up/, 2005. Last ac-
cessed: 2014-06-01.

[Sof05b] WellDone Creative Software. Automated betfair trading software - marketfeeder pro
- triggered automated betting bot. Available at http://marketfeeder.co.uk,
2005. Last accessed: 2014-05-30.

[Sof10] Gruss Software. Betfair betting assistant. Available at http://www.
gruss-software.co.uk, 2010. Last accessed: 2014-04-20.

[Tra12] UK Football Trading. Best betfair trading software - bet an-
gel. Available at http://www.ukfootballtrading.com/
bet-angel-betfair-trading-software/, 2012. Last accessed: 2014-
05-29.

[Tra14a] Betfair Pro Trader. Weight of money. Available at http://www.
betfairprotrader.co.uk/2010/12/weight-of-money.html, 2014. Last
accessed: 2014-06-20.

[Tra14b] Traderline. Grid and ladder interfaces. Available at http://www.traderline.
org/grid-ladder-interfaces, 2014. Last accessed: 2014-06-20.

[TZ88] Richard H. Thaler and William T. Ziemba. Anomalies parimutuel betting markets:
Racetracks and lotteries. volume 2, pages 161–174. 1988.

[Uni14a] Oxford University. Definition of dealer in english. Available at http://www.
oxforddictionaries.com/definition/english/dealer?q=dealer,
2014. Last accessed: 2014-05-01.

[Uni14b] Waikato University. Machine learning group. Available at http://www.cs.
waikato.ac.nz/ml/index.html, 2014. Last accessed: 2014-06-15.

52

http://jimmakos.com/bet-angel/
http://rapidminer.com/products/rapidminer-studio/
http://rapidminer.com/products/rapidminer-studio/
http://www.paulorebelotrader.com/en/2010/10/06/plain-strategies-with-expected-positive-value/
http://www.paulorebelotrader.com/en/2010/10/06/plain-strategies-with-expected-positive-value/
http://www.heatonresearch.com/encog
http://www.heatonresearch.com/encog
http://marketfeeder.co.uk/screenshots/auto-green-up/
http://marketfeeder.co.uk/screenshots/auto-green-up/
http://marketfeeder.co.uk
http://www.gruss-software.co.uk
http://www.gruss-software.co.uk
http://www.ukfootballtrading.com/bet-angel-betfair-trading-software/
http://www.ukfootballtrading.com/bet-angel-betfair-trading-software/
http://www.betfairprotrader.co.uk/2010/12/weight-of-money.html
http://www.betfairprotrader.co.uk/2010/12/weight-of-money.html
http://www.traderline.org/grid-ladder-interfaces
http://www.traderline.org/grid-ladder-interfaces
http://www.oxforddictionaries.com/definition/english/dealer?q=dealer
http://www.oxforddictionaries.com/definition/english/dealer?q=dealer
http://www.cs.waikato.ac.nz/ml/index.html
http://www.cs.waikato.ac.nz/ml/index.html

Appendix A

Dealer GUI

Figure A.1: Dealer GUI presenting statistics from execution of one trading mechanism dealer

53

Dealer GUI

54

Appendix B

Trading Tools

55

Trading Tools

Figure B.1: Ladder of JBet, with various analysis real-time graphics, to track trades made by
agents

56

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Objectives
	1.2 Problem Description
	1.3 Structure

	2 State of the art
	2.1 Trading Mechanisms
	2.1.1 Scalping
	2.1.2 Swing
	2.1.3 Trailing Stop
	2.1.4 Dutching
	2.1.5 Dealer

	2.2 Trading Tools
	2.2.1 Market Feeder Professional
	2.2.2 Gruss Software
	2.2.3 Bet Angel
	2.2.4 BFExplorer
	2.2.5 JBet
	2.2.6 Comparison

	2.3 Machine Learning Packages

	3 Framework
	3.1 Description

	4 Implementation
	4.1 Dealer Agent
	4.1.1 The Plain Strategy Stage
	4.1.2 Trading Mechanism Dealer
	4.1.3 Machine Learning Stage

	4.2 Horse Lay Agent
	4.2.1 The Plain Strategy Stage
	4.2.2 The Machine Learning Stage

	5 Testing and Results
	5.1 Dealer Agent
	5.2 Horse Lay Agent

	6 Conclusions and future work
	6.1 Future Work

	References
	A Dealer GUI
	B Trading Tools

