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Abstract

This paper reports an experience on the applicaifofuzzy reasoning to the fast assessment of yimardic
security of an isolated power system with high wpwmver penetration. The inference method is a Tiakag
Sugeno type system with a small number of rulemiged for each specific learning set by a staddaethod
included in the MATLAB Fuzzy Logic Toolbox. The netdology is demonstrated in a contingency studién
network of Crete that showed good results in tisé set. The paper discusses some implementatioesisnd
possible future developments of the approach.

1. Introduction

Conventional dynamic security assessment of poystesis is always a very time consuming
analysis, unacceptable for real time applicati@ns.the other hand, the foreseen increase of
penetration of wind power in isolated systems caly de done if there is a fast way to
evaluate security, due to the rapid changing canditof the system, to the high possibility of
sudden wind power losses and to the impact of stiatit and similar situations.

These two facts lead to the development of a numobgrattern recognition and machine

learning approaches to this and similar problemdyolamic security assessment, namely k-
Nearest Neighbor classifiers [1], Artificial Neursletworks [2], Decision Trees [3], Fuzzy

Nearest Prototype classifiers [4] and Kernel Regijoes Trees [5]. A paper describing the

application of the latter methodology to the netwof Crete is presented in this Workshop
[6]. The approach proposed in this paper belongaitoe category of methods.

Note that the main issue is a classification pnoblgiven a specific operating point (which is

the present operating point) and some possible contingencyggdar outage, sudden loss of

wind power, short-circuit, etc.) we want to know;lne, if the situation is secure or insecure,
regarding the contingency. Of course, several ngeticies must generally be considered in
order to get a global evaluation of the presentasibn, which leads to the necessity of
multiple studies like the one previously described.

Two approaches may be used regarding the clag®ficaroblem: direct classification of the
operating state, or inference of the value of samdex or important variable, then used for
classification. Some of the techniques can worlhwither philosophy. In the present case,
frequency is a very important variable, and bGth and df/dt,.x values constitute usual
security indices [6] that lead straightforward teci$ion rules based on thresholds to their
values. In section XXX of this paper, the two agmioes are used and results are compared.

In this paper, we are not going to describe theadyn security assessment problem, or the
way it is solved when execution time is not an ésstihose aspects can be seen in the
companion paper [6], where the technical detailiefgeneration of the learning and test sets
are also addressed. We will only mention, in secttoXXX, the necessary information
needed to analyze the example.
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Most of the paper is devoted to the analysis ofetkemple and results, but a summary of the
methodology and fuzzy inference systems is givethenext section. After the case study,
the paper concludes with some indications of futleeelopments and lines of work.

Preliminary

2. Methodology

As mentioned previously, the approach presentetienpaper is based on the same general
concept of the other pattern recognition or mackeaening techniques, that is:

1. Generate a great number of operating points (OP), assuring diversity,
randommess, etc.;

2. Divide randomy the OP in two sets (learning set, test set);

3. Use the Learning Set to train the classifier (or estimtor),
m nimzing the training error;

4. Use the Test Set to check the generalization capability of the
classifier (test error).

This is well-known [7], but some comments are ngsapsto fix terminology for the rest of
the paper. In the first step, different operatirigagions are generated and analyzed regarding
dynamic security, in a very time consuming simulatiprocess. Each OP is therefore
characterized by a number of attributes (variabisally available in the control center: p.ex.
load, real and reactive generated power, spinngsgrve, etc.), and by the indices or
calculated variables that resulted from the sinnutaprocess (in this casksn, as mentioned
earlier).

In the training process, selection of the rele\atributes can be made in different ways. We
used a single ranking method based on the septyabilmeasure

F= | Moo ™ ,uinseo| / (0ot T,eer)» Choosing the attributes with significant (greptBr except
when they are strongly correlated with variablesvmusly chosen. The selected attributes are

used as the input of the training process, whike tbrresponding value dfin (or the
classification of the OP, if direct classificatimmwanted) is the output.

3. Fuzzy inference

The use of fuzzy sets as a powerful tool for désogi qualitative or vague quantities lead to
the definition of fuzzyif-then rules that could capture declarations about copracesses ,
forecasting, estimation, classification, etc. Faaraple:

if (load is high) and (reserve is low) then (f., is |ow)

In this rule, “high” and “low” are fuzzy qualifiershat is, fuzzy sets defined in the universe of
discourse of their respective variablesiput: load, reserve andut put: fyn). Figure 1
shows a possible set of qualifiers for reserve.
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Figure 1 — Possible qualifiers for reserve

The contribution of each variable to the rule sgtbrwill be assessed using the corresponding
membership function (fuzzification) and the operdemd” (in this case) will be applied next
to determine the global degree of membership ottresequent (inference). For example, if
the actual load is. 7/ hi gh and reserve i8. 5/ 1 ow, the rule will be fired with strength 0.35,
assuming that we are using the product as “andtabpe (a frequent alternative is tihen
operator).

The inference system will then consist on a setubds that will be fired with different
strengths, according to the inputs and the logiparators present in the rule. In order to
generate the (crisp) result that is really the ougd the system, it is necessary to combine the
conclusions of all the rules (aggregation), andugafy (not necessarily by this order). The
general scheme is shown is figure 2.
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Figure 2 — General scheme of a fuzzy inferenceepyst

This general process may have variants, and camfiemented in many different ways [9],
whose discussion is beyond the scope of this pagerwill now proceed to the particular
type of system we used, the Takagi-Sugeno methajd [1

The basic characteristic of the Takagi-Sugeno emfeg system is that the consequent of the
rules is crisp, defined as a constant (zero-orgstes) or a linear combination of the input
variables (first-order system). So, each rule hasrigp consequent with a degree of
membership that comes from the antecedents, asstance (first-order):

if (load is high) and (reserve is low) then (f,,=48+a*l oad+b*reserve)
werea andb are constants.
The output of the system is just the weighted ayeraf all the consequents. Figure 3 (from

MATLAB) depicts the set of 10 rules of study 3 (ssetion XXX), showing the influence of
each input in each rule.



in3 outl

T E
U

B.7 2

@

3 Al
3

10 48 10.8 -393.9 765

Figure 3 — Graphic description of rules for studiriput: 10, 48, 10.8)

The initial ideas about fuzzy inference systemsnggito] was to use rules that represent
human knowledge and experience, captured by fueggriptions of control variables. This
conducts to interesting approaches in many sitngtibut a more efficient strategy uses a
training process to define the rules and memberfimgtions that minimize some error
measure (vg the RMSE). Significance of the ruled amembership functions is lost, but
results are normally better than with “natural” egaches.

The process of training is based on backpropagasind will not be described here. Details
can be seen in [X] or directly in [jong 93], as weed the adaptive neuro-fuzzy system
(ANFIS) included in the MATLAB toolbox for fuzzy tc.

Note that the Takagi-Sugeno (and other fuzzy imegesystems) can be seen as a very
flexible nonlinear estimator. To illustrate this feature, Figure 4 (from MATLABhows two
surfaces that relate input variables to the outpatudy 3 (see section XXX).

Figure 4 — Estimatef};, as a function of pairs of input variables (stugly 3

Finally, it is to point out that estimation of tbatput for a new OP is very fast, and therefore
suitable for on-line purposes, even in very demagdituations.



4. Case study

The case study presented here is the same thaisgdsin [6], and corresponds to the power
system of Crete projected for the year 2000. It pases several types of oil-fired units and a
meshed 150 kV transmission network. The conventigeaeration system consists of two
major power plants with twenty generating unitsatied. A total of 11 Wind Parks (WPSs)
consisting of 160 Wind Turbines (WTs) with an ifista capacity of more than 80 MW are or
will be installed by the year 2000. However, théadset exploited in this paper corresponds to
a machine loss disturbance, which is not the distoce considered in paper [6].

As a result, in case of faults on some particulad the majority of the wind parks will be
disconnected. Furthermore, the protections of tfes Wiight be activated in case of frequency
variations, decreasing additionally the dynamidisity of the system. This might be caused
by wind fluctuations, conventional unit outagesilfg or other disturbing conditions.

In the reported experiences, we used a zero-oyd&sra.

4.1. Attribute selection and learning set generation

Each operating point was characterized by a séitoél attributes, which included, active
powers produced by wind parks, active power produmeconventional units, their spinning
reserve, wind penetration, wind margin, total actwnd reactive loads and reactive generation
in capacitor banks.

For the Crete case study, the generation of thee skttwas developed by National Technical
University of Athens (NTUA), within the frameworkfahe CARE project. A short
description of the way how this was obtained cafobed in [6].

After applying theF measure, attributes 14, 10, 5 and 4 were selextdtie most relevant,
because they have the best value$ @nd not correlated to each other (most of therothe
original attributes are). These attributes corragprespectively to the spinning reserves in
power plants 4 and 2, total active power producgdhe wind parks and active power
produced by wind park number 4.

The F values were obtained assuming that the operabints of the learning set were

separated according to the following decision rule:
if fmn>49 Hz then systemis secure el se systemis insecure

With this hard classification the operating poiatailable in the data set were splited in two
classes (secure/insecure) as described in Table 1.

Table 1 — Generated operating points

L earning set Test set
Secure OP 31 20
Insecure OP 1813 901
Total 1844 921

To ease the interpretation of the results and éguthe OP are ordered from the least to the
greater value ofin.



4.2, First study: direct classification

In the first study, the original learning set waed, with the binary output resulting from the
application of the classification rule. After 10Qpoehs of training, a minimum RMSE of
0.0537 was obtained, as shown in figure 5.
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Figure 5 — Study 1: RMSE evolution during the tiagnphase (100 epochs)

Because we are seeking for a classifier, trainimgjtast errors are more meaningful in terms
of false and missed alarms, as reported in table 2.

Table 2 — Classification results (study 1)

Training Testing
Missed alarms 3 9.7% 7 35%
False alarms 0 0 0 0
Total 3 0.16% 7 0.76%

Although the global results are good, the missadas error is rather excessive, apparently
due to the fact that the number of insecure pamtse Learning set (31) is excessively small.

4.3. Second study: direct classification (modified learning set)

Trying to cope with the difficulty identified in énfirst study, we increased artificially the
number of insecure points in the learning set,dnsaering each one of them three times in a
modified learning set. So, the number of insecuPeil@reased to 93, and the total number of
points changed to 1906). The corresponding reatdtslescribed in table 3:

Table 3 — Classification results (study 2)

Training Testing
Missed alarms 0 0 4 20%
False alarms 1 0.06% 0 0

Total 1 0.05% 4 0.43%




These results, still not satisfactory regardingrthesed alarms error, were obtained after 100
epochs, with a RMSE of 0.0736. A second take wiii pochs originated a smaller RMSE
of 0.0552, but the classification performance didmiprove.
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Figure 6 — Study 2: RMSE evolution during the tiagnphase (500 epochs)

Figure 7 shows the results (first 80 OP) from thierence process in this study, were an
output greater than 0.5 was classified as secumée & value less than 0.5 lead to the insecure
class. Reference classifications obviously takg tre values 0 (insecure) or 1 (secure).
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Figure 7 — Study 2: Correct (-) and estimated @tues of the classification on the Test set (fetai

4.4. Third study: fmin estimation (modified learning set)

To design a fuzzy inference system to estimatevidiee off.i,, we used the inputs of the
modified learning set (as in study 2) with the esponding values df, obtained in the
original analysis, as mentioned in section 4.1.

A number of experiments was performed with différgrarameters’ instances for the
optimization algorithm. Figure 8 shows the evolntiaf the RMSE (until 0.0775) for 1000
epochs training in the selected configuration, dmgt results were obtained when the process
stopped at 250 epochs, although the RMSE is wOr6828).
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Figure 8 — Study 3: RMSE evolution during the tiagnphase (1000 epochs)

This is due to overfitting to the secure pointste learning set, that leads to the increase of
missed alarms, both in the learning and test 3etsle 4 shows the results, again in terms of
classification with the same decision rule menttimesection 4.1.

Table 4 — Classification results (study 3)

Training Testing
Missed alarms 0 0 2 10%
False alarms 5 0.28% 2 0.22%
Total 5 0.27% 4 0.43%

Comparison of correct and estimated valuef,pfor the first 2100 OP of the test set is shown
in figure 9.
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Figure 9 — Study 3: Correct)(and estimated+] values of the classification on the Test settatle

5. Conclusions

Results of the application of fuzzy inference sysdo dynamic security assessment are very
promising, even when only a general purpose packege used to design the system.



However, more extensive tests are certainly needath different learning sets and
contingency situations, in order to draw more de&finonclusions.

Future development of this work include the usditierent types of fuzzy inference systems
(first-order Takagi-Sugeno, different logical ogera, etc.), new training algorithms and new
training philosophies, namely for the direct clésation procedures, with minimization of
the classification error instead of the RMSE.
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