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Abstract

Data collection is a powerful application in scenarios where mobile and static agents work towards
a common goal. Mobile and vehicular ad hoc networks (M/VANETs) are a steadfast platform over
which such applications can be built. Static nodes interact with the M/VANET as data sinks that
provide access to cloud-based services, or as sensor nodes that regard the mobile network as a
dependable communication backhaul. The relevance of our target application – data collection
applications over ad hoc networks with mobile and static nodes – motivates the development of
network design solutions addressing scenario characterization, infrastructure planning and net-
work operation. Our thesis aims to show that the design of such solutions can be improved by the
use of measurements and datasets from the target scenario.

The development of wireless applications requires an accurate characterization of the electro-
magnetic signal propagation. Empirical channel models aim to capture the behaviour of propaga-
tion from measurements of received signal strength and distance between wireless terminals. We
address the problem of path loss model parameter estimation in presence of erroneous distance
measurements, in particular those obtained from the GPS positions. Our main conclusion is that
the path loss model can be estimated with a reasonable accuracy from unreliable distances, pro-
vided that the measurements are taken at distances beyond a few standard deviations of the GPS
positioning error. In case the maximum communication range does not allow such large distances,
we provide a method to correct the erroneous channel model. Field experiments were undertaken
to collect measurement data in order to validate our approach.

In a number of scenarios, static sensor nodes can harness vehicular backhauls for collecting
data to a base station. Sensors and backhaul gateways can be interfaced by static communication
hubs, and network designers can use mobility and connectivity datasets from the target scenario
to place hubs ensuring service requirements and minimizing resources. We address the challenge
of placing communication hubs over large areas (e.g. at city scale) and driven by infrastructure-
to-vehicle (I2V) service requirements, alongside constraints of other nature. Our solution strategy
involves an model of I2V transfers estimation over large areas that builds on an experimental
characterization of throughput and data transfers at the target scenario. Our placement strategy
attains less 20% hubs than sensor nodes, and estimates of our model of I2V data transfers fall
within one order of magnitude of measurements collected on site.

The operation of protocols for data collection can harness base station-centric strategies such
as beaconing. Protocols that set up structured routes (such as spanning trees) from beaconing are
bound to suffer degraded performance as routing information at the nodes becomes outdated. We
study an opportunistic design so that traffic does not become restrained to rigid routes. Given
that link-level reliability becomes impractical, network coding is introduced to provide reliability.
We set up a simulation framework over real-world connectivity traces and carry out extensive
design-space exploration and benchmarking against a reference structured protocol. Our results
support a number of design recommendations for a network coding-based protocol, and clarify the
conditions in which our solution exhibits better resilience to routing information degradation.
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Resumo

A coleção de dados é uma aplicação importante em cenários em que agentes móveis e estáticos
trabalham para um objectivo comum. As redes sem fios ad hoc móveis e veiculares (M/VANETs)
são uma plataforma robusta sobre a qual se podem construir tais aplicações. Os nós estáticos
interagem com a M/VANET como recetores finais dos dados da rede ad hoc e encaminhando os
mesmos para serviços na Internet, ou como nós de sensorização que vêem na rede ad hoc móvel
uma plataforma de comunicação eficaz. A importância da nossa aplicação-alvo – coleção de
dados em redes ad hoc com nós móveis e estáticos – motiva o desenvolvimento de soluções de
planeamento de redes orientadas à caracterização do cenário-alvo, planeamento de infrastrutura e
operação da rede. Esta tese procura mostrar que o desenho destas soluções pode ser melhorado
através do uso de medições e dados do cenário-alvo.

O desenvolvimento de aplicações que operam sobre redes sem fios exige uma descrição precisa
da propagação do sinal electromagnético. Os modelos de canal empíricos capturam o comporta-
mento da propagação num dado cenário a partir de medições de potência recebida e de distância
entre terminais. Nós abordamos o problema da estimação dos parâmetros do modelo de atenu-
ação de propagação (path loss) na presença de medições de distâncias incorrectas, em particular
distâncias obtidas a partir de estimativas de posição GPS. A nossa principal conclusão é que os
parâmetros do modelo de atenuação podem ser estimados com precisão razoável a partir de dis-
tâncias incorretas, com a cautela de que as medições são obtidas a distâncias superiores a alguns
desvios-padrões do erro de precisão do GPS. Para os casos em que o alcance máximo de comu-
nicação não permite tais distâncias, providenciamos um método para corrigir o modelo de canal
incorreto. A nossa abordagem foi validada com dados obtidos em experiências de campo.

Num conjunto de cenários, nós estáticos de sensorização poderão utilizar redes ad hoc ve-
iculares para transportarem os dados recolhidos até uma estação-base. O interface entre os nós
estáticos e veiculares pode ser assegurado por nós sem fios agregadores de comunicações (hubs),
e os arquitectos da rede podem usar dados de mobilidade e conectividade do cenário-alvo para
planear a localização desses nós agregadores observando requisitos de serviço e economizando
recursos. Nós abordamos a tarefa de planear a localização desses nós agregadores estáticos em
áreas amplas e guiada por requisitos de serviço nas ligações entre nós estáticos e veículos, a par
de outros requisitos de diferente natureza. A nossa estratégia de solução envolve um modelo de
estimação dos dados transferíveis em ligações entre nós estáticos e veículos em larga escala e que
se baseia numa caracterização experimental da taxa de transmissão e volumes transmitidos obtida
no cenário-alvo. O nosso procedimento para planeamento da localização utiliza menos 20% nós
agregadores do que nós de sensorização, e as estimativas do nosso modelo de transferências de da-
dos entre nós estáticos e veículos estão dentro de uma ordem de magnitude em relação a medições
tiradas nos locais.

Na operação de um protocolo de coleção de dados de nós móveis e estáticos para uma estação-
base, a sinalização iniciada pela estação-base é uma estratégia simples para indicar a direção para
a referida estação. Protocolos que estabelecem rotas estáticas (p.e. árvores mínimas) a partir de
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sinalizações periódicas poderão sofrer desatualização da informação de roteamento, resultando
numa degradação de performance. Nós estudamos um desenho de protocolo baseado em rotea-
mento oportunístico, para evitar a restrição a rotas rígidas. Visto que a fiabilidade de conexões
entre nós vizinhos se torna impraticável, a codificação em rede é introduzida para providenciar
fiabilidade entre nó de origem e estação-base. Nós montámos uma plataforma de simulação sobre
dados de conectividade obtidos de uma plataforma veicular, e conduzimos uma exploração do es-
paço de desenho e comparação com um protocolo de referência. Os nossos resultados suportam
uma variedade de recomendações práticas para o desenho de protocolos baseados em codificação
em rede para cenários de mobilidade, e clarificam as condições em que a nossa solução exibe
melhor resistência contra a degradadação de informação de roteamento.
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Chapter 1

Introduction

We discuss in this chapter the motivation for the work of this thesis, its technical scope, and

resulting contributions. The outline of the document concludes the chapter.

1.1 Motivation and Scenarios

In a multitude of human or robotic situations, a group of mobile and static agents works towards

a common goal. A commanding agent or center can carry out coordination in real-time or process

monitorization for later actuation. In both cases, it is paramount that the commanding agent ac-

quires an accurate representation of the involved processes and agents. Dependable information

systems, and in particular data collection mechanisms, play a vital role in this task. Data collec-

tion systems equip the commanding agent or center with the necessary information to issue orders

according to the current situation and/or actuate over a scenario in a way that best serves the end

goal.

Such information systems are facilitated, in mobile groups, by modern ad hoc communication

technologies and protocols. A steady and relentless improvement in autonomy and processing

power of embedded devices, and in channel and network capacity attainable by current wireless

technologies, has been paving the way for mobile and vehicular ad hoc networks – M/VANETs.

Given the real-world relevance of data collection and the emergence of platforms that support

this functionality, it is of clear interest to advance the state-of-the-art and address open technical

challenges in this realm.

The generic scenario we target is any setting where the following three types of nodes co-exist:

(i) mobile nodes, such as vehicles, people, boats or UAVs, equipped with wireless transceivers

that allow for device-to-device ad hoc communication; (ii) infrastructural base stations or sinks,

deployed in the scenario and forwarding collected data to a local or remote commanding agent;

(iii) static nodes with limited communication capabilities and that may or may not perform a

communication-related task (e.g. sensing). We focus on the IEEE 802.11 standards as the base

technology of the addressed ad hoc networks. We now illustrate three specific scenarios that

were motivated by projects under which the work of this thesis was carried out. In the following
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descriptions, we will identify potential applications that data collection can support, and identify

the subjacent ad hoc network structure that data collection mechanisms can be built on.

Forest Firefighting

Firefighting has claimed the life of 61 people over the course of 10 years in Portugal [1]. Of these,

23 deaths were in the context of forest scenarios or heading to the site. From actual discussions

with the professionals, we learned that firefighters deployed at fire fronts are organized in teams

of five elements and a team commander, assigned to a fire truck. The commanding officer stays

by the truck monitoring the situation, and the team members that move in to attack the fire assume

one of two sets of functions: some elements carry the hose to the fire front, and other elements

provide support or scout the surrounding area. Firefighters on the terrain might be subject to

heavy smoke, hot temperatures, dense foliage and uneven terrain, eventually leading to some team

members inadvertently straying from each other or running into high-stress situations.

Data collection tools can contribute for the team commander to learn the overall situation of

the team members and issue orders accordingly. For example, gathering the location and vital

signals in real-time from individual firefighters allows the commanding officer to identify stress

situations and prevent accidents due to excessive fatigue. Additional information can come from

sensor nodes dropped in the fire front during the last airtank fly-by. By learning the propagation

vectors of the fire in real-time, the team commander can position the team and put down the fire

as quickly as possible.

To collect this information, the firefighters carry mobile devices to record their vital signs and

transmit it wirelessly. Equipments such as smartphones or embedded devices with WiFi (IEEE

802.11b/g/n) capabilities may double as graphical interface for body area network sensors, team

members status or fire evolution vectors. Vehicles act as data sinks with powerful WiFi routers,

providing the on-site commanding officer with the received information or relaying it to a com-

mand center via a more powerful communication technology (e.g. WiMax, satellite). The sensor

nodes, deployed in an ad hoc or planned fashion and also featuring WiFi technology, can integrate

with the firefighters into a single mesh network, or use the firefighters as data couriers in case

communication to neighbouring sensors is erratic or inexistent. Figure 1.1 presents a depiction of

this scenario, in which the firefighters carry embedded transceivers to reach the commander at the

base station and the static nodes.

Urban Services

It is envisioned that the Internet of Things (IoT) paradigm will bring considerable efficient im-

provement to the operation of a city, with estimates of potential economic impact reaching US$

1.7 trillion [2]. Big data and information systems will play a crucial role in supporting the en-

visioned services [3], many of which are mobility-related. There is a variety of applications and

services leveraging on large-scale data collection in urban context. The characterization of traffic

flow in the main arteries can be used by the municipality’s traffic department to increase fluidity
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Figure 1.1: A forest firefighting scenario.

and prevent jams. The WiFi services in public transports can collect the origin and destination of

users, and the public transportation authority can use these to assess travel demand with higher

precision and reassign routes or bus frequency. Collecting the usage level of garbage bins allows

the waste disposal department to recompute garbage collection routes and minimize truck wear.

Drawing on a particular instance, the IoT-based smart city platform UrbanSense, in Porto,

includes a set of weather stations to record air quality (NO2, O3), meteorology (wind vane and

speed, rain gauge) and life quality (noise, luminosity, UV radiation) metrics. These stations have

been placed throughout the city with the goal of capturing episodes of anomalous variations in

the observed metrics as well as creating long-term spatial and temporal descriptive models of the

measured processes. Acquired data can be processed to obtained meaningful insights of the city’s

climate, alert the municipality’s environment and life quality department when critical levels are

reached, and motivate urban policy or design options to improve the dwellers’ quality of life.

A data collection strategy is necessary to support the collection of sensor data from disparate

locations.

Some city services depend on dedicated fleets (e.g. garbage collection, public transporta-

tion) that can be equipped with vehicular communication capabilities to form a mobile network.

On-board units (OBU) installed in the vehicles and road-side units (RSU) deployed throughout

the city, both equipped with DSRC/IEEE 802.11p standard, enable vehicle-to-vehicle (V2V) and

vehicle-to-infrastructure (V2I) communication. WiFi access points (IEEE 802.11b/g/n) hosted

by OBUs of some fleets (buses, in particular) benefit passengers while also being available to

external clients. Road-side clients may connect opportunistically to the mobile access points to

off-load relevant information, which is then routed to the corresponding command centers (e.g.

public transportation authority, waste disposal and/or environment departments). If no real-time

connection is available or the data is not time-sensitive enough, store-and-forward networking and

services can be supported by the OBUs. An example scenario is shown in Figure 1.2, containing

examples of data-producing equipments (garbage bins, weather stations, interactive ad boards),

and wireless-enabled nodes such as outdoor access points and vehicular hotspots.
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Vehicular nodes

Static nodes 

Base station

Figure 1.2: An urban scenario.

Port Operation

The revenue of container ports and ships is directly associated to its operational efficiency [4]. As

a consequence, a considerable body of operations research addresses the minimization of vessel

turnaround time at a port [5]. Vessel turnaround times depend on an efficient real-time resource

allocation for container loading and unloading. In this perspective, it is necessary that the trucks

that carry containers between loading areas of the premises (from and to ships, trains or road-legal

trucks), know exactly where to head next for loading or unloading. This motivates the need for a

command center and a communication network that supports a real-time information system.

Both container trucks and ships can be equipped with on-board units for V2V and V2I com-

munication. With this setup, ships can transmit information to the trucks about the load they are

carrying, expecting or prepared to load off onto the trucks. Road-side units installed throughout

the premises link the vehicular network and the command center, which in turn can produce an

assignment of trucks to handle the docked ships and issue those commands.

The relevant information from the DSRC-enabled mobile and static nodes can be routed within

the multi-hop inter-vehicle communication towards the road-side unit, and then forwarded to the

command center. This particular port scenario offers as much opportunities as hindrances to the

operation of a data collection protocol. Wide areas of water allow for unobstructed communica-

tion, whereas the ever-changing walls of metal containers through which the trucks move incur in

high multipath. A protocol that aims to collect data from trucks to the road-side units must cope

with the variety of paths available at any given time. Refer to Figure 1.3 for visualization of this

scenario, in which data from vehicular and static nodes must reach the base station.

1.2 Thesis Scope and Claim

We can formalize the object of analysis of this thesis in the following manner:

Data collection over ad hoc networks with mobile and static nodes
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Figure 1.3: A container port scenario.

After having motivated the relevance of such application in the previous section, we now

discuss potential technical advances on network design and operation and focus on the particular

challenges this thesis addresses. We restrict ourselves to existing physical and data link layers,

particularly IEEE 802.11b/g/n. Our target application can be broken down into three building

blocks, which in turn raise challenges in three aspects of network design and planning:

Application Network Design

Ad Hoc Networks → Scenario Characterization

Mobile and Static Nodes → Infrastructure Planning

Data Collection → Network Operation

We discuss the nature and challenges of each facet of network design mentioned above, and

identify a specific research topic that sets the scope of the work and contribution in this thesis.

1. Ad Hoc Networks→ Scenario Characterization

An ad hoc network presumes the existence of a networking application on top of ad hoc links –

links that can be initiated between wireless devices without intervention of a support infrastructure.

At the physical layer, these data layer links are substantiated by electromagnetic propagation over

wireless device-to-device channels. The response of such channels may vary from scenario to

scenario due to various factors such as the existence or not of obstacles, reflective surfaces and

sources of electromagnetic noise.

Propagation over wireless channels can be described by empirical models generated from mea-

surement data. Such models are relevant as they inform the application designer of the commu-

nication range and propagation behaviour in a particular scenario, therefore constituting an im-

portant aspect of network design and planning. Empirical channel models typically break down

propagation into two distinct phenomena: large-scale attenuation over distance (e.g. the path loss,
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dual-slope and two-ray ground models) and small-scale fading (described as random processes

following Rayleigh, Gaussian or Weibull distributions). Given that the model parameters are esti-

mated from measurement data, two different settings may result in different parameter values for

the same model.

Therefore, we identify the following research topic:

Propagation models for device-to-device channels

2. Mobile and Static Nodes→ Infrastructure Planning

In the scenarios being addressed, we assume the co-existence of mobile and static nodes that

are wireless-enabled. The static nodes produce data that can be collected by vehicular nodes,

delivered at a road-side unit and forwarded to a backend server. Assuming freedom to place the

static nodes, an important aspect of network design hinges on judicious infrastructure planning, as

service requirements must be guaranteed while resources may be saved with efficient placement

strategies.

Strategies for static node placement driven by I2V service rely on models of I2V data transfers.

In turn, such models must build on a characterization of transfer rates and volumes, with respect to

distance and speed, between terminals drawn from measurement data taken at the target scenario.

The models thus created can be used to predict and/or estimate I2V service over a large area and

support the static node placement application.

The second research topic in this thesis is:

I2V service characterization and static node placement

3. Data Collection Application→ Network Operation

The data collection application itself is carried out by upper-layer protocols, as a collection proto-

col encompasses functionalities from the routing and transport layers. In fast changing topologies,

such protocols have to cope with mobility-induced challenges such as additional packet loses due

to volatile links and packet mis-routings.

Protocol development by means of simulation is often based on artificial mobility traces or

models and generic propagation models. The use of propagation, mobility and connectivity data

from the target scenario may improve considerably the evaluation and efficiency of the protocol

when applied in the real-world.

The final research topic we address in this thesis is:

Data collection protocols over dynamic topologies
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Thesis Claim

In all three aspects of network design, we observe that characterizing the scenario by means of

measurement data is crucial to improve the operation and planning of the network and infrastruc-

ture to support the target application. In summary, we can claim that:

• Scenario Characterization: An accurate characterization of the wireless propagation at the

target scenario allows to build better performing protocols.

• Infrastructure Planning: The use of datasets and/or measurements from the target sce-

nario is instrumental towards a planning solution that is not underperforming nor over-

dimensioned.

• Network Operation: Measurement data from the scenario, such as mobility or connectivity

traces, may support the development of protocols to cope with fast-changing topologies.

The statement of this thesis draws from the transversal line of reasoning delineated throughout

the previous claims:

The design and planning of network operation and infrastructure

can be improved through the use of measurement data from the scenario.

1.3 Research Challenges and Thesis Contributions

The research topics identified in the previous section determined the initial lines of work pursued

in this thesis. As each line of work advanced, the seminal objectives evolved into concrete research

challenges that posed innovative and pertinent problems in the light of the state-of-the-art of the

corresponding field. We now go through the scope and rationale of each research challenge that

we identified and tackled in the course of this thesis, and the contributions that resulted from each

line of work.

Propagation Models for D2D Channels – Impact of Erroneous Positioning

We conducted field measurements to estimate model parameters of a device-to-device channel in

a forest setting, for the purpose of describing wireless propagation in such setting and support

protocol development. The necessary dataset is created by pairing contemporaneous position es-

timates and RSSI samples from one or both terminals. The position estimates were acquired with

the Global Positioning System (GPS), which has steadily become the standard tool of the wire-

less modelling community to obtain location estimates due to its simplicity of use and wide-spread

availability. However, we note that the Global Positioning System does not provide absolutely cor-

rect estimates at all times, and a crucial aspect driving the accuracy of GPS position estimates is the

equipment quality. High-precision devices, with errors in the range of centimeters, are expected
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to cost thousands of Euros, whereas lower-end GPS chipsets and software, such as those found

in most consumer-electronics products (laptops, smart phones and lower-end GPS receivers), can

be expected to have errors in the range of tens of meters. The impact of this uncertainty has been

often disregarded in the measurement methodology of experiments to obtain datasets for model

parameter estimation.

We set out to understand exactly how position errors impact the model extracted from the

measurement pairs that use GPS, in what conditions can the largest errors be expected, and what

can be done to prevent or mitigate a posteriori these errors. Overall, our contributions on device-

to-device channel estimation using GPS are the following:

• a model of the impact of GPS positioning errors on ranging and path loss model estimation;

• a method to improve path loss estimation using only GPS distances;

• guidelines for designing measurement campaigns for path loss model estimation that reduce

the impact of GPS errors.

This work, discussed in Chapter 3, has been published at IEEE Transactions on Wireless Com-

munications [6].

I2V Service Characterization – Static Node Placement driven by I2V Service

Mobile and vehicular ad hoc networks are bound to interact with static elements, as depicted in

the scenarios of Section 1.1. These may be infrastructural (road-side) or temporarily-deployed

elements, and may serve or not a communication purpose. With the ever-growing number of

communication-capable vehicles and wide-spread use of personal devices, the use case of static

units that regard mobile nodes and networks as dependable communication platform to reach

the Internet is becoming a reality. Vehicular fleets in which nodes take pre-defined routes with

known frequency further increase their dependability and reliability as a communication backbone.

During the development of a vehicular-based collection solution for urban road-side sensors, we

characterized infrastructure-to-vehicle (I2V) communication by evaluating throughput and data

volume performance of wireless links between mobile and static terminals, and studied how speed

and distance impact their performance. We soon realized that the performance of I2V links and

service by the vehicular network depends greatly of a careful and thorough placement planning

of the road-side client nodes, and that this task implies innovative challenges. In the academic

community, the RSU placement problem is mostly motivated in the perspective of the RSU as

gateway to a large number of vehicular nodes. Our scenario addresses a slightly different take on

this, as the RSU must maximize the I2V data volumes transferred to any vehicular node, which

may not necessarily require strategies to reach large sets of nodes.

We developed a support framework that carries out road-side client node placement driven by,

among other requirements, quality of service by a vehicular network. For this particular purpose,

we created a procedure to estimate the data volumes that can be transferred in I2V links at potential
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deployment locations. Our contributions on vehicular-infrastructure wireless interaction are the

following:

• characterization of I2V connectivity between a road-side static wireless client and a fleet of

access point-equipped public buses;

• formulation of a minimal placement problem for road-side client nodes and proposal of a

solution strategy applied to a real-world scenario;

• a method to obtain a city-scale estimation of transferrable data volumes in I2V connections;

• validation of the placement solution against a real-world deployment in Porto.

This work is described in Chapter 4. The initial characterization experiments at a prototype

DCU were published at ACM MobiCom 2015 Workshop on Challenged Networks [7], and the

subsequent placement strategy has been through a first round of reviews in a submission to ACM

Transactions on Sensor Networks [8].

Data Collection in Dynamic Topologies – Design-Space of a Network Coding Protocol

The last line of work in this thesis tackles the network operation perspective to support our target

application. In a scenario of base station-driven collection from mobile/vehicular nodes, we hy-

pothesize that an opportunistic protocol is a better fit for data collection than a protocol with fixed

routes. We explore the use of wireless broadcast and probabilistic forwarding to propel the data

packets towards the base station, and of network coding as a end-to-end reliability mechanism in

the absence of link-wise reliability. We expect that, in the absence of link-level retransmissions,

the additional packets produced by the wireless broadcast/opportunistic forwarding mechanisms

will contribute to the requirement that enough coded packets reach the base station.

We developed a framework protocol for data collection in mobility scenarios that allows to

carry out extensive design-space exploration of the forwarding and network coding mechanisms,

shedding light over what works and what does not, and in what conditions. Our contributions are

the following:

• An identification of the design and parameter aspects that a network coding protocol implies,

and an analysis of the existing literature on those design aspects;

• Performance evaluation of the protocol under alternative implementations, by means of sim-

ulation over real-world connectivity traces;

• Performance comparison against a benchmark structured protocol, CTP.

This work is presented in Chapter 5 and a publication is under preparation.

We conclude this section by discussing the relationship between the contributions of each

structural line of this thesis and the design of networks for data collection over ad hoc networks

with mobile and static nodes. As visible in Figure 1.4, the first two parts of thesis (Propagation
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Figure 1.4: Role and relationship of contributions and components towards network design

Modelling and Static Node Placement) improve relevant aspects of the scenario description that

can later be fed to simulation tools to develop tailored protocols.

1.4 Thesis Structure

The remainder of this document is as follows. In Chapter 2, we review the relevant literature for

the work presented in this thesis. In Chapter 3, we analyze the impact of errors inflicted by the

Global Positioning System in position estimates used for parameter estimation of device-to-device

channel models. We start Chapter 4 by characterizing I2V links in an urban setting, and evolve to

a discussion about the requirements that the placement of a platform of static nodes, wishing to

rely on vehicular fleets for data transport to the cloud, must observe. In Chapter 5, we describe

a data collection protocol that pairs opportunistic routing and network coding, and benchmark it

against state-of-the-art protocols over real-world mobility traces. Finally, in Chapter 6, we draw

some final remarks and sketch future lines of work.



Chapter 2

Related Work

This chapter is dedicated to presenting the state-of-the-art on the research topics discussed earlier.

In Section 2.1, we review the existing channel models of electromagnetic propagation. The litera-

ture on characterizing infrastructure-to-vehicle (I2V) links and service is reviewed in Section 2.2.

In Section 2.3, we provide a revision of the literature on routing and data collection techniques in

M/VANETs and WSNs. Some final remarks are drawn in Section 2.4.

2.1 Path Loss Models for Wireless Propagation

We start by reviewing the existing literature concerning empirical models for wireless communi-

cation channels and their estimation from experimental data. Afterwards, the operation of GPS

and its use in such campaigns is discussed.

2.1.1 Channel Models and Measurement Campaigns

The log-distance path loss model [9] is one of the most widely used models to describe the behav-

ior of radio wave propagation. A relevant improvement on the simple path loss model is the Two-

Ray Ground model [10], that takes into account signal reflection in the ground. Small-scale fading

is often modelled by means of well-known distributions, such as Gaussian [11], Weibull [12] and

Nakagami [13]. The associated path loss exponent and fading distribution parameters are esti-

mated from empirical measurements. Many of the works on propagation and channel modelling

address outdoor communication between a mobile user and a base station, which is usually tall

or positioned in a high location. This is the case in [14], which presents path loss, scattering and

multipath delay statistics for digital cellular telephony, measured in urban context with distances

in the range of 1.5 to 6.5 kilometers. The channel models in [15] are estimated for the 5.3 GHz

range in urban mobile communications, with distances up to a few hundred meters.

There is a wide body of work regarding vehicular channel model proposals and measurement

campaigns in vehicular environments. The work of [16] provides a good overview on existing

models for vehicular channel and propagation models. In [13], the authors report V2V narrow-

band channel measurements in the 5.9GHz DSRC band, in suburban environment. The authors

11
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fitted the collected measurements with single and dual slope log-distance path loss models. Also

at the 5.9 GHz band, the authors of [17] conduct car-to-car measurements with wideband channels

(20MHz) in rural, highway and urban environments. The authors use a regular log-normal path

loss model for the urban scenario, whereas for the rural and highway a two-ray ground model is

used. The authors of [18] carry out measurements to obtain the impulse response of the channel

and derive time-varying components. In [19], the authors carry out vehicle-to-vehicle measure-

ments in four scenarios: highway, rural, urban and suburban scenarios. The authors arrive to the

similar observation that the urban data is best characterized by a simple power law, whereas the

rural follows a two-ray ground model. The authors of [20] present the interesting result, support

by experimental data, that the application of simplified two-ray ground path loss models to vehic-

ular simulations yields no significant increased value with respect to the free-space model, in most

cases. A more sophisticated model, the two-ray interference model, is proposed for more accurate

description of V2V communication.

A number of works address specifically the impact of obstructions in vehicular communica-

tion, in which a common strategy consists in proposing separate models for the line-of-sigh (LOS)

and non-line-of-sight (NLOS) conditions. The authors of [21] propose a 5.9 GHz NLOS path loss

and fading model specifically for intersections and estimated from field measurements. Commu-

nication under LOS is modelled by a log-distance model, whereas for NLOS it is modelled by a

geometry-based model that takes into account the distances. Vehicular obstructions have also been

shown to impact significantly V2V communications [22] in a manner that had not been captured

previously in channel models. The authors of [23] propose a geometry-based model to incorporate

the impact of vehicular obstructions. The model is developed using realistic datasets and validated

against experimental measurements.

2.1.2 Overview and Application of GPS to Measurement Campaigns

The Global Positioning System (GPS) [24] has become one of the most widely used technologies

for obtaining positioning information in outdoor scenarios. The system itself is composed by a

Master Ground Control Station and a constellation of satellites revolving around the Earth. The

satellites continuously send a signal that user equipment on the Earth surface can receive. The

signal contains a code, called ephemeris, that carries the identification, clock, orbit and position in

orbit of the satellite. The distance to the satellite, called pseudo-range, is proportional to the phase

shift between the received signal and an internally-generated replica. If ephemeris and distance

information are available for four or more satellites, the user location can be triangulated.

The accuracy of GPS is affected mainly by two factors: the geometry of the satellites visible to

the user, and the quality of the pseudo-range estimates. Concerning the geometry of the satellites,

a good distribution of the satellites in the sky will minimize the space of possible user locations.

Regarding the pseudo-range estimates, they are affected by a variety of errors that are caused by

the user equipment and the GPS system. On the user equipment side, the quality of the receiver

defines the precision with which the phase shift between the received code and the internally-

generated replica can be measured. Causes external to the equipment are the attenuation of the
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satellite signal by the ionosphere and troposphere, and the noise and multipath effects caused by

the environment surrounding the equipment. On the GPS system side, the validity of the data

contained in each satellite’s ephemeris slowly fades with time. Consequently, as time passes, it

becomes increasingly outdated and prone to cause larger errors. Moreover, the satellite clock may

experience shifts, which also induce errors.

Some empirical studies address the performance and accuracy of consumer-grade GPS re-

ceivers in forest settings. In [25], six commercial receivers in the range of $150 to $320 (values of

2005) were tested in static conditions. Measurements were taken in open sky, under young forest

canopy, and under closed forest canopy. For the later scenario, the reported values of average

positioning error vary between 2.7 and 11.4 meters, depending on the device. The work in [26]

provides an updated version of these results, but only for two devices and under heavy canopy

conditions. Reported values for the average positioning error were 4.0 and 6.9 meters. Studies

about GPS position accuracy in smart phones are scarce. One example is the work of [27], which

analyses the location accuracy of the iPhone obtained from different information sources (GPS,

cell ID, WiFi) in different settings (rural and urban, and indoor).

In the measurement campaigns reviewed in the previous section, the user/base-station cam-

paigns [14, 15] used the map-based method is used to determine the distances precisely. Recent

work has addressed the impact of GPS errors in parameter estimation from crowdsourced data

in cellular links and coverage estimation [28]. The VANET propagation studies we reviewed

[13, 17, 18, 19, 20, 21, 22, 23]. report the use of GPS for distance calculation. The work described

in [21], that addresses the particular scenario of intersections (and thus deals with short ranges

and inter-vehicle distances), report that the vehicle positioning was improved with the car sensors

and map matching. The authors of [19] refer that GPS position estimates result in inaccurate dis-

tances when the actual distance between terminals is small, which confirms our conclusion. Only

two of the mentioned works [13, 18] report having used Differential GPS and the WAAS (Wide

Area Augmentation System). This system uses additional information when available to improve

the accuracy of the GPS estimates to sub-meter precision. The remainder of the works does not

address the reality of GPS errors and their impact in model estimation.

2.1.3 Discussion

In the context of device-to-device propagation modelling, we observe that the current literature re-

ports extensive use of the Global Positioning System (GPS) for obtaining position estimates. GPS

is one of the most widely used positioning technologies, but it is subject to numerous sources of er-

rors that affect its position estimates. We verify that most recent works addressing characterization

of wireless device-to-device channels in M/VANETs fail to account the impact of GPS positioning

errors in the estimation of the path loss model. This motivates the work done in Chapter 3.



14 Related Work

2.2 I2V Link and Service Characterization

We start by reviewing the literature regarding the link level characterization of channels in the

context of terminals with relative speed between them. We proceed to discuss tools for estimating

data volume transfers from road-side static clients to vehicular nodes and for optimal placing of

those road-side nodes.

2.2.1 Link-Level Characterization of V2X Channels

We will focus on IEEE 802.11a/b/g-based V2I and I2V communication, as it is the context of our

work in Chapter 4. Most V2I/I2V studies using this technology address the specific application of

providing Internet access to mobile nodes. Typical driving scenarios explored in these studies are

urban, suburban and highway, with particular incidence for the last one [29, 30]. Some works also

study the association time to Access Points (APs) and IP assignment time [31, 32, 33]. To study

IEEE 802.11a/b/g-based V2I communication, the authors of [29] equipped a car with a IEEE

802.11 a/b/g WIFI client and placed an AP in the middle of a two-kilometer highway stretch.

UDP and TCP measurements were performed with different payload sizes, transmission rates and

vehicle velocities. At a velocity of 120km/h, UDP throughput reached up to 35 Mbits per second

(Mbps) for payload sizes of 1250 bytes, during a 400 meter long stretch centered at the server.

Results for other velocities are similar, showing that speed has little impact in throughput. The

authors of [30] also address V2I in an highway scenario. Throughput and PLR between a mobile

node and a fixed node using the IEEE 802.11b standard are evaluated at speeds of 80, 120 and

180 km/h, over all distances at which a connection exists. The IEEE 802.11b standard is used and

UDP and TCP streams are tested, alternating the fixed node and the mobile node as senders. The

authors report a 200 meter window around the fixed node in which link throughput can reach the

nominal value and PLR can be almost to zero, if the mobile node is sending (close to 5 Mbits/s).

Transmitted data volume was 9 MBytes. The work described in [32] also uses IEEE 802.11b for

V2I communication and reports similar values. The authors set up a fixed AP in a radiation-free

zone (desert) and evaluate AP range, association times, packet losses (using UDP) and throughput

of UDP, TCP and web traffic connections, for a range of velocities (5, 15, 25, 35, 55 and 75 miles

per hour). A data volume of 6.5 MBytes is reported at 75 miles per hour. It is concluded that

speed has little impact on packet loss and throughput, and that the main factor limiting transfered

data volumes is the connection lifetime, which is lower for higher speeds. The authors of [31]

also tested V2V and V2I communication using IEEE 802.11b in a radiation-free zone (desert). A

V2I experience is described in which a vehicle is moving circularly with respect to a fixed AP at

different radius, at speeds up to 130 km/h. It is observed that packet loss rates, jitter and number

of retransmissions at the MAC layer remain close to zero.
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2.2.2 Placement Strategies Driven by Large-Scale I2V Service Estimation

The discussion in this section is two-fold. We first discuss works or models that aim at large

scale characterization or estimation of service quality between mobile and infrastructural nodes.

Afterwards, we address the literature placement strategies for road-side nodes and for coverage of

target points.

Regarding the first topic, the work described in [33] presents a large-scale study (9 cars, 290

hours) on the feasibility of using domestic and commercial AP to provide Internet access. Personal

cars were fitted with IEEE 802.11 clients that would search for APs and would, when possible and

progressively, attempt association, IP assignment, and Internet connection. Results include con-

nection duration and setup latency, impact of speed on AP association and connection duration,

and packet losses in the link between AP and client. The work presented in [34] presents a theo-

retical evaluation of the capacity and coverage of various technologies (cellular and vehicular) to

support infrastructure-to-vehicle communication at large scale. The work of [28] discusses cov-

erage estimation from cellular towers within the scope of Minimization Drive Tests (proposed by

3GPP), that seek to crowdsource user RSSI and position samples to support propagation estima-

tion. The authors of [35] describe CARM, an algorithm to generate RSSI maps from crowdsensed

datasets. The authors identify as a major problem the lack of calibration (or error model of) of

RSSI sample values from devices of different makes. The algorithm attempts to estimate simulta-

neously the parameters of unknown RSSI measurement error model and signal propagation model.

Regarding the problem of optimal placement for road-side clients to bridge pre-deployed sen-

sor units and a vehicular network, discussed in the Chapter 4, it is relevant to review the placement

literature on two research areas: sensing coverage/sensor placement in sensor networks, and road-

side unit placement in vehicular networks. In the field of wireless sensor networks, coverage prob-

lems are broadly classified into area coverage, point coverage, and barrier coverage problems [36].

Our problem can be seen as an instance of point coverage problems, in which a placement solu-

tion for a set of sensors that covers a set of target points must be found. The most common goal

is network cost minimization [37], i.e., to minimize the number of sensors (to be located also at

vertices) necessary to cover the set of target points. The authors of [37] model the problem as

an Integer Linear Programming (ILP) problem and solve it using a LP solver, which may be a

computation-demanding task for large fields [38]. An alternative way of solving the network cost

minimization ILP problem is by equating it to the combinatorial set-cover problem [39], known

to be NP-hard but for which greedy heuristics may provide near-optimal solutions. The works

in [40, 41] propose greedy algorithms that take into account sensor imprecision and the presence

of occasional obstacles. In [38], the authors propose a greedy algorithm to handle the existence

of multiple types of sensors with different cost and range, and in [42] algorithms that approximate

the optimal solution within some δ are presented.

In the context of vehicular networks, the goal of optimal RSU placement is to find a placement

solution that optimizes the performance of some V2I or I2V communication metric while mini-

mizing the number of RSUs.Common target metrics are probability of V2I contacts [43], number
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of V2I contacts and their duration [44, 45], delay in reporting an event [46, 47], or the average

trip time at city-scale provided by an information dissemination system [48]. In [44], the authors

address RSU placement (at intersections only) for information dissemination addressing maxi-

mization of the number of contacts between vehicle and RSU and service time by the RSU. The

problem is formulated as a Maximum Coverage Problem (MCP), and real-world traces are used

for performance comparison. The work presented in [45] extends this approach by discretizing

the city into finer-grained cells and defining migration ratios among them, obviating the need to

know the trajectory of every single vehicle as in [44]. Using realistic vehicle traces, the authors

of [43] discretize the city in zones and compute the transition probabilities of vehicles between

zones. In [48], the authors propose a VANET-based traffic information system for minimizing trip

times. RSU placement is performed by a genetic algorithm from a pool of tentative locations, in

which the fitness function assesses the reduction in the mean vehicular trip times. The authors

of [49] present topological metrics to assess the centrality of a node in a graph and select the best

nodes for RSU placement. A quantitative comparison using simulations is presented.

2.2.3 Discussion

Regarding the work presented in Chapter 4, we looked into the existing state-of-the-art on V2X

channel characterization, application-driven service quality by vehicular networks, and strategies

for placement of road-side static clients. On the first point, there is a large body of work regarding

the characterization of V2I/I2V communication, detailing in particular the impact of speed and

distance on throughput of such channels. Regarding the characterization of the service quality

provided by a vehicular backhaul to road-side static nodes is object of a smaller set of literature.

We contribute to these fields by undertaking I2V measurements between a road-side WiFi client

and a large-scale vehicular network that: (i) corroborate the literature conclusions regarding the

impact of speed on throughput; and (ii) present the attainable data volumes in a real-world sce-

nario of vehicular data collection. Regarding the last topic, we tackle a system design problem

concerning the placement of the road-side clients in a way that: (i) optimizes service by the ve-

hicular network; and (ii) guarantees service to an end-system (a monitoring platform). This topic

has been studied in the fields of vehicular networking (as the road-side unit placement problem)

and wireless sensor network (as the optimal coverage problem). In spite of the wide body of work

in both fields, we did not find a work that addresses placement of data aggregation/relay units

constrained by distance to static clients (the sensor units). We provide a formulation in which a

geographical constraint limits potential locations within a service range to the static clients. We

also introduce a procedure to obtain a city-scale data volume characterization using real-world

datasets from vehicular traces and a measurement campaign.

2.3 Data Collection Protocols

In the context of our work on data collection over dynamic topologies described in Chapter 5,

we provide a review of the state-of-the-art data collection protocols in the fields of mobile ad hoc
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and sensor networks, as well as protocols that use network coding. A brief background and some

operational aspects of network coding are provided, and an overview on opportunistic routing

protocols concludes the section.

2.3.1 Related Work on Protocols

Unicast routing protocols for mobile networks are broadly classified according to the timeliness

and opportunity of route discovery [50]. Protocols are called pro-active if nodes actively share

link-state information in order to keep an updated global or partial representation of the network.

The second category are reactive protocols, in which case route discovery is triggered upon re-

quest. Other categories listed in [51] include hybrid, location-aware and multipath. Some of

the most relevant source-initiated on-demand routing protocols are the Ad hoc On-Demand Dis-

tance Vector (AODV) [52], the Dynamic Source Routing (DSR) [53] and the Temporally Ordered

Routing Algorithm (TORA) [54]. Some examples of table-driven protocols are the Destination-

Sequenced Distance Vector (DSDV) [55], the Optimized Link State Routing (OLSR) [56] and

the Wireless Routing Protocol (WRP) [57]. Concerning protocols oriented specifically for data

collection in MANETs, we found little work. A survey on urban vehicular sensing platforms can

be found in [58], in which some high-level architectures for pervasive sensing over VANETs are

described, such as MobEyes [59]. In this case, nodes produce meta-data and opportunistically

distribute it up to a maximum number of hops. The protocol COL [60] presents a more routing-

oriented approach to data gathering in VANETs. COL allows any node to request data from its

neighbours within a pre-defined range. Nodes build a local and temporal representation of the

paths to any other node and validate it periodically by sharing that data with other neighbours.

Back off-based Per-hop Forwarding (BPF) [61] is also a data gathering protocol for VANETs that

uses wireless broadcast transmissions and geographical location. Packets carry the location of the

sending node and of the destination, and receiving nodes, when attempting to seize the medium to

broadcast the packet, compute a back-off time that is proportional to their distance to the destina-

tion.

Wireless Sensor Networks (WSNs) [62] are networks of wireless-enabled sensor nodes that

monitor environmental data (e.g. temperature, humidity) over a target area (e.g. a forest or a

building). The application motivating most WSNs protocols is information gathering. Due to the

static nature of WSNs, route discovery is made very sparsely in time. A typical categorization of

WSN data collection protocols includes cluster-based (or hierarchic), location-based (geographic),

and flat routing. The operation of cluster-based protocols is based on the aggregation of nodes in

clusters and election of cluster heads. Some examples are Low-Energy Adaptive Clustering Hier-

archy (LEACH) [63], Power-Efficient Gathering in Sensor Information Systems (PEGASIS) [64]

and Threshold-sensitive Energy-Efficient Network (TEEN) [65]. In geographic protocols, nodes

are assumed to be location-aware. Relevant geographical protocols in WSNs are Minimum Energy

Communication Network (MECN) [66], Geographic Adaptive Fidelity (GAF) [67] and Geograph-

ical and Energy-Aware Routing (GEAR) [68]. Flat protocols assign all nodes the same relevance.
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Some examples are Sensor Protocols for Information via Negotiation (SPIN) [69], the Directed

Diffusion [70], and the Collection Tree Protocol (CTP) [71].

From the presented classes of protocols, a WSN flat protocol can be a good candidate for

application in M/VANET scenarios. Most M/VANETs tend to be organized in flat hierarchies,

thus cluster-based protocols do not bring particular advantages. Geographical routing protocols

are a powerful approach for MANETs, but face the problem that minimum-distance wireless com-

munication may not be possible or be sub-optimal regarding delivery rates and energy consump-

tion [72]. The principle of CTP is to set up a minimum-cost routing tree from the base station to

every source node. The routing gradient is the number of expected transmissions, ETX, at link

level. CTP assumes the existence of a link quality estimator to learn the single-hop ETX of a node

to its neighbours. The ETX of a root node is 0, whereas the ETX of a node is the ETX of its par-

ents plus the ETX of its link to its parent. To set up the minimum-cost tree, base stations advertise

themselves periodically as tree roots. CTP advertisements, called beacon frames, carry the ETX

field of the forwarder node. From all the advertisements a node receives from its neighbours, it

chooses the neighbour with the smallest ETX as a parent, as it identifies the minimum-cost route

to the base station.

There are some data collection protocols using network coding. An hybrid approach is pro-

posed by SenseCode [73], which performs opportunistic coding on top of an existing routing

structure, such as the minimum-cost routing tree created by CTP. Nodes can overhear packets and

code them with their own, therefore propagating linear combinations of their own packets and

overheard packets. This results in additional redundancy as, if links suddenly fail, some of the in-

formation from upstream nodes might still be recovered. Regarding performance, the SenseCode

authors report an improvement over CTP performance, and state that systematic coding achieves

a reliability similar to full-coding while consuming less resources. In [74], a network coding-

based protocol for collecting energy consumption data from wireless-enabled energy meters to

base stations is proposed. Packet forwarding is performed over a pre-computed shortest path

routes. Measurements are taken every 15 minutes and nodes retransmit the same data periodically

until a new measurement takes place; the scale of the simulation scenario (123 nodes) motivates

this option. A performance evaluation is performed by comparing against reference protocols and

varying the density of households and the reliability threshold. These two works constitute the

main references to the work described in Chapter 5.

2.3.2 Opportunistic Forwarding Protocols and Strategies

A taxonomy of opportunistic protocols for vehicular routing is provided in [75]. Opportunistic

protocols do not confine their operation to identifying and maintaining a single path between

source and destination. In the Extremely Opportunistic Routing (ExOR) [76], once the source

broadcasts its packet, nodes run a protocol to determine the subset of nodes that received it, and

the node from this subset that is closer to the destination broadcasts the packet. The Opportunistic

Routing in Ad Hoc Networks (OPRAH) [77] protocol uses a route request and route reply to

identify the minimum hop count route from source to destination, as in AODV. Nodes can forward
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a packet if their hop count to destination is inferior than to packets’ current hop count. The

Resilient Opportunistic Mesh Routing (ROMER) [78] protocol uses a credit-based system. Costs

are assigned to links, and a credit is assigned to a packet at creation time and in excess of the

minimum cost to reach the destination. A packet can travel through a paths as long as it as credit.

Given its natural match to the multicast application, network coding finds in opportunistic pro-

tocols and forwarding a natural partner. One of the first works to explore the conjunction of the

two concepts in wireless mesh networks, for inter-session flows, was COPE [79]. COPE is not a

routing protocol per se, but a network module that sits between the MAC and IP layer of each node

and explores coding opportunities in packet flows. The MAC-independent Opportunistic Routing

and Encoding (MORE) [80] protocol uses a similar concept, although oriented for intra-flow ses-

sions, and merges it with the fundamental idea of ExOR. The source creates N coded packets

that are linearly independent combinations of its N data blocks. Moreover, in each packet, a list of

nodes that could participate in forwarding the packet is included. The Coding-aware Opportunistic

Routing (CORE) [81] protocol extends MORE to optimize the forwarding and coding decisions in

the presence of multiple flows. Each source broadcasts its coded packets, and the subset of receiv-

ing nodes for each broadcast is identified. From these, it is identified the node that can perform

the coding operation and transmission that will be the most beneficial for all destinations.

2.3.3 Background on Network Coding

We now provide a brief review of the base concepts and seminal literature on network coding. Net-

work coding was first suggested in the seminal paper by Ahlswede et al. [82]. The work addresses

the particular scenario of a point-to-point communication network in which one or more sources

multicast their data to multiple sinks thorough intermediate nodes. The authors prove, through an

information-theorethic approach, that the minimum of the individual max-flow bounds from each

source to the destination nodes can be achieved by employing coding at the intermediate nodes.

In [83], it is shown that linear coding, in which intermediate nodes perform linear combinations

of received packets before forwarding them, suffices to achieve the optimum in the multicast sce-

nario. An algebraic approach to network coding and an algorithm to compute the solutions if the

full network topology is known is proposed in [84]. The concept of random linear network coding

(RLNC) is introduced and explored in [85]. The performance of RLNC has been deeply studied

and is dependent on a variety of factors, especially in multicast scenarios [86].

One of the most fundamental examples of network coding is the multicast application in the

butterfly network. In this network, source S intends to send packets p1 and p2 to destinations

D1 and D2. S transmits packets p1 and p2 to nodes X and W respectively. Nodes X and W then

broadcast the received packet, with node D1 receiving p1, node D2 receiving p2, and node Y re-

ceiving both packets. Whereas in a normal routing scheme turns would be necessary for Y to

relay packetsp1 and p2 sequentially, using coding Y can perform a linear combination of both

packets and send it immediately. In the simplest form, the linear combination may be a XOR.

After Z has relayed the linear combination to the two destinations, both D1 and D2 can retrieve

the missing packet by performing a XOR with the already received packet. In order to achieve
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Figure 2.1: Butterfly network.

full packet delivery, the destination (or destinations) must receive N linearly independent (l.i.)

combinations of the N original packets of the source (or sources). Each linearly independent com-

bination available at the destination can also be refered to as degree of freedom, a term motivated

by the algebraic/geometric nature of network coding.

In Random Linear Network Coding (RLNC), an extension of the previous approach, coding

coefficients are associated to each packet when coding operations take place at a given node,

chosen randomly from a Galois field (or finite field) GF(2q). The value of q defines the size of

the Galois Field or, in other words, the range of available coefficients to use. Typical values of q

in the literature are 1, 2, 4 or 8, leading respectively to 2, 4, 16 or 256 available coefficients. As a

strategy to keep complexity and memory requirements low, native or coded packets are aggregated

into groups of manageable size according to a specific criteria (typically interval of creation) [87].

Such groups are called generations and only packets belonging to the same generation may be

mixed.

In a network coding protocol, the packet payload must be shared by the application data and

the coefficient vector. The coefficient vector is a vector of identification elements for each data

block contained in the payload. The triplets contain source node id, sequence number of data block

and associated coefficient, (src, seqnr, coeff). There are two strategies to store the coefficient

vector: on-demand or pre-assigned slots. In the first case, the triplets are stored on-demand in

the packet payload, requiring all meta-data fields to be explicitly stored and added everytime a

new data block is coded with the coded payload. In the pre-assigned case, a vector of coefficient

placeholders, with the size of the number of the data blocks per generation, is reserved in the packet

payload. The data blocks of each node are assigned a position in that vector; the coefficients of

the data blocks present in that packet are stored at the respective locations. The selection of one

of the two strategies must account for a number of impacting parameters: generation size, number

of nodes, target coding density and Galois Field size [88].

2.3.4 Discussion

We reviewed the existing literature on routing protocols for M/VANETs, in terms of structured

and opportunistic protocols. The bulk of data collection protocols, both from the wireless sensor

networking and the mobile/vehicular ad hoc networking areas, relies on structured protocols, or
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protocols that form well defined routes between source(s) and destination(s). Opportunistic pro-

tocols offer an alternative strategy by exploring a range of routes available at which moment. The

pairing of opportunistic forwarding and network coding strategies has been proposed earlier, but

a extensive design exploration over real-world mobility traces has, to best of our knowledge, not

been reported. The work of Chapter 5 contributes substantially to increase the body of knowledge

in this area.

2.4 Final Remarks

We presented the state of the art on the relevant fields for this thesis, namely on channel mod-

elling between devices terminals, characterization of I2V links and service and placement of road-

side static nodes, and on data collection protocols operating in mobile/vehicular ad hoc networks.

These specific research topics stem from the network design aspects identified in the previous

chapter, and underlie the contributions of the following chapters. The discussions at the end of

each subsection motivate the contributions in the light of the existing literature.
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Chapter 3

Propagation Models for D2D Channels
and Impact of Erroneous Positioning

Ad hoc mesh networks can be set up to provide communication where infrastructure support is

unavailable or not dependable. An important tool in the design of wireless protocols is the chan-

nel model, that provides an estimation-based relationship between device-to-device distance and

received power. There are various types of propagation models with different degrees of accuracy

and complexity and considering specific details about the environment, but generic models such

as the log-distance path loss model are more useful as they are applicable to a wider range of sce-

narios. Futhermore, in the perspective of application designers, the communication range is the

most relevant information for protocol development, for which the log-distance path loss model

suffices. The estimation of the path loss model parameters involves undertaking measurement

campaigns, in which the received signal strength readings are taken at known distances from the

transmitter. The distance between the mobile devices is oftentimes obtained from the Global Posi-

tioning System, a feature that many portable devices nowadays are equipped with. This facilitates

estimation of path loss model parameters in settings where exact distances are difficult to obtain

or unavailable. However, we observed that the GPS positioning, particularly in lower-end devices,

is prone to errors. Devices with errors in the range of centimeters are expected to cost thousands

of Euros, whereas in consumer electronic products errors can reach tens of meters. The GPS po-

sitioning errors have a negative impact in distance estimation and in turn diminish the accuracy of

the estimated propagation model.

In the context of a practical use-case – ad-hoc communication in a forested environment among

smart phones using WiFi –, we conducted field measurements in a forest scenario to estimate

model parameters of a device-to-device channel between mobile devices. This use-case is moti-

vated by a feasibility study for a smart phone-based information system for firefighters [89]. The

distance between terminals was obtained in two different ways: position estimates of the Global

Positioning System, and centimeter-accurate distance measurements from a laser range meter.

In addition to obtaining model parameters for propagation in forest environments, we used our

dataset to address the problem of quantifying the impact of erroneous GPS position estimates in

23
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the estimation of the path loss model. After analyzing the impact of GPS positioning errors on the

estimation of the range between devices and consequently on the estimated propagation model,

we derive guidelines for the design of future device-to-device path loss measurement campaigns,

and propose a practical method to correct those errors based on Monte Carlo simulations. The

conclusions we present are applicable to any outdoor scenario, provided that a good estimate of

the standard variation of the GPS positioning error is available.

Our main contributions are as follows:

1. a model of the impact of GPS positioning errors on the ranging and path loss model estima-

tion;

2. a method to improve path loss estimation using only GPS distances;

3. guidelines for designing measurement campaigns for path loss model estimation that reduce

the impact of GPS errors.

The remainder of this chapter is organized as follows. In Section 3.1, we review channel

models for the particular setting we address, a forest scenario. In Section 3.2, we describe the

methodology for channel data collection and modeling, and present results using real-world mea-

surements. In Section 3.3, we discuss the impact of GPS errors on the path loss model estimation.

In Section 3.4, we provide guidelines for measurement data collection and a path loss model pa-

rameter retrieval methodology. In Section 3.5, a overview of the obtained results is presented.

This work was done in collaboration with Dr. Traian Emanuel Abrudan and has been published

in the IEEE Transactions on Wireless Communications journal [6]. The text of this chapter was

adapted from that article with minor modifications.

3.1 Related Work on Forest Channel Models

We provide a review on channel models for forest environments, the setting on which the experi-

ments described in this chapter took place. A comprehensive survey of empirical path loss models

for forested environments may be found in [90]. Typically such models are additive with respect

to the free space path loss model [91]. The modified exponential decay (MED) model [92] is

the basis for most empirical models concerning propagation in forests. MED uses the formula

A = α f β dγ , where the extra attenuation A is given in dB, and f identifies the signal frequency

and d the tree depth. Parameters α , β and γ may be estimated from measured data. Given the

wide variety of factors affecting propagation in forests (such as tree species, disposition of the

trees, foliation), it is very difficult to find an universal set of values. The contribution of the var-

ious empirical models found in literature is to propose values that aim to be the most general

possible, but these are strongly conditioned by the scenario in which data was obtained. Table 3.1

lists some of those models and corresponding parameter values. There is also a family of models

based on the modified gradient model, such as the Maximum Attenuation (MA) [93] and Nonzero

Gradient (NZG) [93] models. These models require additional parameters that are specific to the
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Model Note α β γ

Weissberger [92] 0 < d < 14m 1.33 0.284 0.588
14 < d < 400m 0.45 0.284 1

ITU [95] d < 400m 0.2 0.3 0.6

COST 235 [96] Not foliated 26.6 -0.2 0.5
Foliated 15.6 -0.009 0.26

FITU [97] Not foliated 0.37 0.18 0.59
Foliated 0.39 0.39 0.25

Table 3.1: Parameters for various empirical models based on the MED model. f is set in GHz for
the Weissberger model, and MHz for all others; d is in meters for all models.

measurement geometry and/or methodology. Both modified exponential decay and modified gra-

dient models describe essentially propagation through canopies or at canopy-level. In [94], the

authors analyze propagation at trunk level. Based on an extensive data set, the log-distance path

loss model is shown to be the most accurate of existing models. An improved version of this

model is proposed by incorporating scenario-specific parameters, namely tree density and trunk

diameter. In summary, existing models for propagation in forests are tightly dependent on the

particular conditions in which measurements take place. The application scope of our approach is

not limited to forests, so we opted not to use such specialized models and use the more general

log-distance path loss model.

Concerning measurement campaigns in forests, a large number of works, such as [98] and [99],

focus on the propagation of GSM signals, in the 1900 MHz band. Propagation studies on the 2.4

GHz band are usually related to wireless sensor networks, which use lower transmission power

and thus have limited range compared to typical WiFi or VANET communications [100]. None

of these works clarifies which distance measuring method was used, nor account for distance

measurement errors or for their impact on the accuracy of the estimated model. The only factor

deemed relevant is the range of distances.

3.2 Measurement Collection and Parameter Estimation

We model the received signal power using a log-distance path loss model, whose formula in the

logarithmic domain is given by

ρ[dBm](d) = ρ0−10 α log
(

d
d0

)
+Xρ , (3.1)

where ρ is the received signal strength (in dBm units) at an arbitrary distance d from the transmit-

ter, and ρ0 is the received signal strength at reference distance d0 in the far field (typically 1 meter).

The logarithmic signal strength measurements ρ are affected by normal fading, Xρ ∼N (0,σρ).

In the following discussion, the term RSSI (Received Signal Strength Indicator) refers to the dis-

crete readings of the received signal power ρ that are typically delivered by the drivers of wireless

interface cards. The values of parameters α , ρ0 and σρ for each specific scenario are estimated



26 Propagation Models for D2D Channels and Impact of Erroneous Positioning

Figure 3.1: Experimental setting.

using distance-RSSI data pairs obtained in a measurement campaign, and then calculating the line

that best fits the data.

A laser-beam range meter could be used to determine the distances, but that would require

line-of-sight between devices. A more practical solution is to record the coordinates obtained

from the GPS receiver incorporated in the devices at different test distances, along with RSSI.

However, since GPS positions contain errors, this solution requires a clearer understanding of how

GPS-based distances affect the estimation of path loss model parameters, compared to the case

when the actual distances are used.

In the remainder of this section, we explain the methodology we used to collect measure-

ment sets of RSSI and distance data (Subsection 3.2.1) and present the results on path loss model

estimation in the presence of GPS errors (Subsection 3.2.2).

3.2.1 Data Collection Methodology

We divided our measurement campaign into two phases. The first phase consisted of collecting

pairs of RSSI and GPS measurements at known distances, to study the impact of GPS errors.

In the second phase, we collected only RSSI and GPS samples. Measurements were taken in a

forested area where the majority of trees were stone pines (Pinus pinea). The height of the devices

was considerably lower than the bottom of the canopies (~1.5 m vs. ~6 m). The ground between

transmitter and receiver was mostly covered with grass and small weeds. Most readings were taken

in line-of-sight, or with a small number of tree trunks between receiver and transmitter. A small

subset of the readings was taken with vegetation in-between, specifically bushes and smaller trees,

most of them slightly taller than a human. Their density ranged from a single plant to a compact

set of these. Figure 3.1 shows the various settings. The measurement equipment consisted of three

standard, off-the-shelf, consumer electronics smart phones: one Samsung Galaxy Nexus S to act

as access point (AP), which we call Device A, and two Samsung Galaxy Nexus to act as mobile

receivers, referred to as devices B1 and B2. All models ran Android OS, and ran an application

that stored GPS and WiFi RSSI values obtained from the Android APIs.

In the first phase of the measurements (henceforth called Phase 1 ), we placed device A at a

fixed location, on top of a tripod of 1.5 meters, and set it in AP mode. This device periodically

sent beacons announcing its presence to devices that aspired to join its network. It also recorded

GPS measurements at a rate of 1 Hz. We then sequentially placed devices B1 and B2 together
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Figure 3.2: Spatial arrangement of measurements.

at several pre-defined distances from device A. For convenience, we call these distances “true

distances”. Their values were 0, 1, 2, 4, 8, 16, 32 and 64 meters, and we verified them in loco

using a laser range meter. We chose these specific distances because they are equally spaced in

logarithmic scale. At each true distance, we held devices B1 and B2 at a height of 1.5 meters, and

each device recorded roughly 3 minutes of GPS and RSSI data, at an average rate of one GPS

measurement every second and one RSSI measurement every two seconds. We repeated the same

procedure for four radials roughly 45 degrees apart, as shown in Figure 3.2a. Device A recorded

GPS measurements during the entire duration of each radial.

In the second phase of the measurements (henceforth called Phase 2 ), we again placed device

A at a fixed location, set it in AP mode and activated it to record GPS measurements. We held

devices B1 and B2 at a height of 1.5 meters next to the AP and initiated the recording application,

collecting pairs of RSSI and GPS coordinates with the same frequencies as in Phase 1. We then

carried them away from device A, following a zig-zag path that oscillated around each radial within

a 45◦ angle approximately. We repeated the same procedure for the other three radials. Device

A recorded constantly GPS coordinates during each radial measurement. Figure 3.2b shows the

corresponding spatial arrangement.

3.2.2 Path Loss Model Parameter Estimation

From the data collected in Phase 1 of the measurements, we obtain a set of GPS coordinates

and RSSI values for each true distance. We compute the distances by pairing, via time-stamp,

the coordinates recorded by device A and each device B (B ∈ {B1,B2}), and applying the Great

Circle distance formula. This formula allows accurate computation of distances between points

in a sphere whose positions are defined by decimal degrees. For convenience, we call distances
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Phase Model ρ0 α σρ

1st True -42.63 2.22 5.64
GPS -24.82 3.00 9.56

2nd GPS -42.86 2.13 7.34

Table 3.2: Model parameters derived from true and GPS distances using the Least Squares Esti-
mator.
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Figure 3.3: Measured RSSI data and “true” path loss model compared to literature models. See
Table 3.1 for references.

calculated in this manner “GPS distances”. During the analysis of the data, we found large clus-

ters of consecutive, repeated GPS coordinates. We conclude that this range of commercial-grade

devices may tend to fix on a set of coordinates if they do not detect significant movement for some

time, in order to save energy. We substituted these clusters by a single measurement, to which we

associated the median of the RSSI values of that cluster.

It is now possible to compute the parameters of the path loss model using two different data

sets from Phase 1. In one case, we pair the RSSI measurements with the actual distances (obtained

with a laser range meter). We call this the “true model”. In the other case, we pair the RSSI values

with the GPS distances, and we call this the “GPS model”. Equations (3.2) and (3.3) describe both

models as follows:

ρ(d) = ρ0−10 α log(d)+Xρ , (3.2)

ρ(d) = ρ̃0−10 α̃ log(dGPS)+Yρ . (3.3)

We perform regression over the two data sets using the Least Squares (LS) estimator which, for the

true model, is also the maximum likelihood estimator. The parameters obtained from the measured

data are shown in Table 3.2.

In Figure 3.3, our estimated model is shown against models proposed in literature. While for

small distances the literature models are consistent with our data, they stray at larger distances. As
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Figure 3.4: Path loss models using the Least-Squares estimator. The true distances are marked by
vertical dashed lines.

mentioned in Section II, most models reported in literature focus on propagation through canopies.

For large distances, the extra-attenuation factor of the canopy models, which grows exponentially

with distance, takes the overhand in the total attenuation. Given that our measurements were taken

mostly in line-of-sight, with a very few occasional trunks or canopies between devices, our data

does not show the effect of the additional attenuation, being best fitted by the log-distance path

loss model. This explanation is supported also by the results in [94].

The GPS model exhibits overestimated parameter values α , ρ0 and σρ compared to the true

model. Figure 3.4a shows both models derived from Phase 1 measurement data. It also depicts the

RSSI measurements at the distances provided by the GPS measurements, to give further insight on

how their positions on the RSSI-distance plane condition the regression method. In Section 3.3,

we provide a model for the erroneous distances, and analyse in more detail the impact of GPS

errors on distance estimation.

As for the Phase 2 measurement data (see Figure 3.4b), for which the exact distance was not

recorded, we observe fairly different parameters when compared with the GPS model in the first

phase (see Figure 3.4a). We expected them to be more similar, because both are computed using

error prone GPS distances. However, unaccounted factors, such as user mobility, may explain this

behavior. In the second phase of the measurements, more states of the channel fading are being

captured due to the obstruction by trees, the user’s body, and different device orientations.

3.3 Distance Estimation in Presence of GPS Errors

After discussing the previous motivating example, we now address the problem of estimating the

distance between two GPS-equipped devices from error prone coordinates. Towards this end,

we developed a model to describe the GPS positioning errors. This model will help explain the

difference between the true path loss model and the GPS path loss model.
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Following the characterization of GPS positioning errors and their sources in Section 2.1.2,

we separate positioning errors into systematic and non-systematic errors, depending on the nature

of the error source. Systematic errors affect all receivers within a certain area in similar man-

ner, and hence are modelled as an identical position bias for all receivers. They are caused by

atmosphere, quality of GDOP and ephemeris errors. Non-systematic errors are random in their

nature, affecting each receiver and each measurement in a unique way. They are caused mainly

by pseudo-range errors, multipath propagation, receiver noise, clock jitters and numerical errors.

Based on this distinction, we now present a model for the error that affects distances computed

from GPS coordinates. In this discussion, we assume local Euclidean coordinates, given that the

scale of the distances we are using is small enough for the curvature of the Earth to be neglected.

Our GPS position error model (see Figure 3.5) accounts for the distinction between the two types

of errors mentioned earlier. Systematic positioning errors are modeled as a bias vector with respect

to the actual position that is equal for all devices. Non-systematic positioning errors are modeled

independently for each Euclidean coordinate as zero-mean circularly symmetric Gaussian random

variables.

Given the exact Euclidean coordinates of the two terminals A and B, (xA,yA) and (xB,yB) re-

spectively, the Euclidean coordinates corresponding to the measured GPS positions may be written

as

(xA,GPS,yA,GPS) = (xA,yA)+(bx,A,by,A)+(εx,A,εy,A),

(xB,GPS,yB,GPS) = (xB,yB)+(bx,B,by,B)+(εx,B,εy,B),

where the errors εx,A, εy,A, εx,B, εy,B ∼ N (0,σGPS) are assumed to be mutually independent,

and σGPS is the standard deviation of the GPS positioning errors in each coordinate (x,y). The

aggregated systematic errors along each axis are equal for both terminals, i.e., bx,A = bx,B and

by,A = by,B, effecting a translation of the terminal positions with no impact on the distance, as

shown in Figure 3.5. For simplicity, we choose the local two-dimensional Euclidean system of

coordinates with the origin centered at the exact location of device A, and with the abscissa-axis

pointing in the direction of the device B, i.e., (xA,yA) = (0,0) and (xB,yB) = (d,0). Therefore,

the expression of the GPS-based Euclidean distance between A and B reduces to

dGPS =
√

(εyA + εyB)
2 +(εxA + εxB +d)2. (3.4)

Consequently, dGPS follows a Rice distribution with the location parameter being the actual dis-

tance d, and the scale parameter
√

2σGPS, i.e., dGPS ∼ Rice(d,
√

2σGPS). The probability density

function (p.d.f.) of the GPS distances given the actual distance is

p(dGPS|d) =
d

2σ2
GPS

exp
(

d2
GPS +d2

4σ2
GPS

)
I0

(
d ·dGPS

2σ2
GPS

)
, (3.5)

where I0(·) is the zero-order modified Bessel function of first kind.
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Figure 3.5: Characterization of the measured GPS distances.

Next, we provide a simple method to estimate the variance of the GPS error in each coordinate.

The advantage of the proposed method is that the true coordinates of A and B are not required, the

true distance being sufficient. Some receivers provide reliability information on the estimated po-

sition that can be used, for example, in a weighted LS estimation of the path loss model. Here, we

assume that such information is unavailable, and we estimate an overall “average” reliability of the

GPS position estimates. The second raw moment of the Rice distribution, µ ′2, can be analytically

related to the variance of the GPS coordinates as

µ
′
2 , E

[
d2

GPS
]
= 4σ

2
GPS +d2. (3.6)

Empirically, the second raw moment of the GPS-based distances µ ′2 can be obtained from the

measured data by simply averaging the squared GPS distances. However, there are multiple true

distances di. We compute the empirical second raw moment for each of the true distance, µ ′2(di),

and use LS to estimate the overall variance of the GPS coordinates

σ̂2
GPS =

1
4N

N

∑
i=1

µ
′
2(di)−d2

i . (3.7)

Finally, we compare the histogram of the measured GPS distances obtained in Phase 1 with

the Rice p.d.f. predicted by our model for each true distance. Figure 3.6 shows the normalized

histograms of the GPS-based distances (dotted lines), and the Rice p.d.f. corresponding to that true

distance d ∈ {1,2,4,8,16,32,64} (solid lines). The true distance at which we took the respective

GPS measurements is marked by a thick vertical solid line. Our model proves able to predict

the major trends of the data. The overall standard deviation for GPS coordinates estimated using

Equation (3.7) is σ̂GPS = 10.09 meters. It may be noticed that for very small distances, i.e., d�
3
√

2σGPS≈ 42 meters1, the GPS distances are overestimated by far, i.e, the mode of the Rice p.d.f.

corresponds to a value much larger than the true distance. For larger distances, i.e., d > 3
√

2σGPS,

the Rice p.d.f. is very close to a normal p.d.f. with the mode slightly larger than the true distance.

In conclusion, we observe that GPS errors hamper significantly the distance estimation between

two devices if the actual distance is smaller than 3
√

2σGPS.

1The factor
√

2 appears due to the fact that the scale parameter of the standard Rice p.d.f. would be σGPS, whereas in our case, it
is
√

2σGPS. The factor of three corresponds to the ratio d/σGPS for which a standard Rice p.d.f. can be approximated by a Gaussian
p.d.f..
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Figure 3.6: Normalized histograms of the GPS distances measured at each true distance.

3.4 Coping with Distance Errors in Path Loss Model Estimation

The error model for GPS distances introduced in the previous section can be used to improve

path loss model parameter estimation. In Subsection 3.4.1, we detail the process by which GPS

errors condition the estimation of the model parameters, and use this analysis to learn how can

measurement campaigns be designed in order to mitigate the impact of such errors. Then, in

Subsection 3.4.2, we provide a method based on Monte Carlo simulations to retrieve the true

model parameters from measurements affected by GPS errors.

3.4.1 Guidelines for Selecting the Measurement Distances

In this section, we provide a selection policy concerning the distances at which measurements

should be taken to mitigate the impact of GPS errors. We start by explaining the mechanism by

which GPS errors impact parameter estimation using a linear regression method. In the previous

section, we have seen that GPS distances tend to over-estimate small true distances. Consequently,

for such distances, the RSSI values are paired with GPS distances larger than those at which we

actually took them. This causes the distance-RSSI data pairs to be shifted to right side of the

distance-RSSI plane. Due to this phenomenon, the estimated line departs from the true model,

resulting in the GPS model. For large distances, the GPS distances are closer to the true distances.

The corresponding distance-RSSI pairs are not shifted significantly, and therefore the perturbation

they introduce in the path loss model estimation is little. Figure 3.7 illustrates the perturbed data,

the mean and standard deviations for the RSSI-GPS distances pairs taken at each true distance,

and the true and GPS models.

Based on this knowledge, a simple approach to improve the model estimation is to take more

measurements at large distances, since those are less affected by GPS errors. Table 3.3 shows the
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Figure 3.7: Error metrics for the data measured at each true distance.

Model d [m] ρ0 α σρ RMSE [dBm]
True 1...64 -42.63 2.22 5.64 -

Range

1...64 -24.82 3.00 9.30 11.70
2...64 -25.20 3.06 9.32 11.03
4...64 -26.27 3.05 9.31 10.19
8...64 -24.63 3.17 9.37 11.00
16...64 -30.85 2.85 9.27 7.18
32...64 -38.44 2.44 9.36 2.55

Table 3.3: Model parameters and Root Mean Square Error (RMSE) if using the measurements
taken at subsets of the true distances.

regression using only measurements taken at different subsets of the true distances d, where d ∈
{1,2,4,8,16,32,64}. We keep the maximum true distance constant, while varying the minimum

true distance to be considered. We observe that, as we restrict the data set to the measurements

taken at larger true distances, the estimated model tends to the true model. From our data sets,

the largest distances available are 32 and 64 meters. Although the condition d > 3
√

2σGPS ≈ 42

meters (see Section 3.3) is satisfied just approximately for the lower distance, the corresponding

estimated GPS model is the closest to the true model.

This conclusion allows us to propose guidelines for the selection of the distances at which

measurements should be taken. If the communication range allows, the measurements should be

taken at true distances larger than 3
√

2σGPS. Otherwise, the model derived from the GPS distances

needs to be corrected. A correction method is provided in the next section.

3.4.2 Retrieving the True Model from Imprecise Distances

In many practical scenarios, true distance measurements are not available and GPS distances need

to be used instead. This is the typical case when the GPS positioning that comes embedded in

wireless devices and RSSI measurements from the wireless driver are used to derive a channel

model. Note that direct estimation of the true distances from the GPS distances is not possible due
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to the insufficient number of i.i.d. samples that are taken at a fixed distance, especially in mobile

scenarios. Therefore, we propose a simulation-based method2 to improve the path loss model

estimation. The essence of this method lies in the fact that the RSSI samples used for estimating

both the true and the GPS model are the same. This equality is shown in the following equations.

ρ(d) = ρ0−10 α log(d) (3.8)

ρ(d) = ρ̃0−10 α̃ log(dGPS) (3.9)

Both equations hold in Least Squares sense, and therefore fading variance needs not to be in-

cluded. As we assume that only GPS distances were recorded during the measurements, we can

only compute the parameters of the GPS model ρ̃0 and α̃ . Our method consists of defining a

set of known reference distances, which are then perturbed according to the GPS error model of

Section 3.3. The resulting simulated GPS distances are mapped into RSSI samples using the GPS

model obtained from the measured data. Using the equality between (3.8) and (3.9), we pair the

simulated RSSI values with the reference distances. By applying a regression method, we are

able to retrieve corrected path loss parameters α and ρ0 that are closer to the true model than if

erroneous distance measurements had been used.

A crucial aspect of this procedure is the selection of the set of known reference distances.

As seen in the previous subsection, the quality of the model parameters output by the regression

method is very much affected by the distribution of the measured data with respect to the corre-

sponding true distances. Therefore, we use Monte Carlo simulation to generate a set of simulated

true distances d̂i that resemble the actual true distances di as closely as possible. This ensures

that the estimated model is correct. Our method consists of selecting the simulated true distances

in such a way that the corresponding erroneous distances d̂GPSi resemble the compound p.d.f.

p(dGPSi |di) associated with the measured GPS distances dGPSi . We use the direct and inverse cu-

mulative distribution function (c.d.f.) methods [101, Sec. 3.3] for this purpose. The direct c.d.f.

method maps samples taken from a random variable X with some proposal distribution pX(x) into

a uniformly distributed random variable U ∼U (0;1) using the c.d.f. of X as transformation func-

tion (by the uniform transformation theorem [101, Sec. 3.3.1]). Then, the inverse c.d.f. method

maps U into a random variable Y that follows a target distribution pY (y) using the inverse c.d.f. of

Y as transformation function (by the inverse transformation theorem [101, Sec. 3.3.1]). In other

words, pX(x) is used as a proposal distribution in order to sample from pY (y). In our case, we

use this procedure to sample from a proposal compound distribution of simulated erroneous dis-

tances δ̂GPSi in a way that the distribution of the transformed samples matches the compound p.d.f.

p(dGPSi |di) corresponding to the measured GPS distances dGPSi . In the end, our procedure outputs

a set of simulated true distances d̂i paired with a set of simulated GPS distances d̂GPSi whose dis-

tribution matches the one of the measured GPS distances. However, given that the mapping of the

true distances di into GPS distances dGPSi is not bijective, there is no guarantee that the distribution

2Our attempt to derive a closed-form, or iterative estimator for the path loss model parameters (e.g. maximum likelihood) led
to intractable calculations. Many of the Rice p.d.f parameters have complicated expression (e.g. moments are expressed in terms of
Laguerre polynomials), and the expression of the density itself contains a Bessel function.
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1. Generate initial reference distances: δ̂i ∼U (0,maxi dGPSi), i = 1, . . . ,N

2. Simulate the GPS errors: δ̂GPSi ∼ Rice(δ̂i,
√

2σGPS)

3. Transform the resulting distances: δ̂GPSi −→ vi = PD(δ̂GPSi)∼U (0,1)

4. Transform vi −→ d̂GPSi = P−1
V (vi)∼ p(dGPSi |di)

5. Transform the uniform true distances to the simulated true distances: d̂i = P−1
V (PD(δ̂i))

6. Return: simulated true distances d̂i and the simulated GPS distances d̂GPSi

Table 3.4: The sampling procedure that generates samples from the p.d.f. of the measured GPS
distances, and the corresponding simulated true distances pairs.

of the true distances will be reproduced exactly.

We now describe the procedure in more detail. We start by generating an initial set of ref-

erence distances uniformly distributed between zero and the maximum GPS distance recorded,

i.e., δ̂i ∼ U (0,maxi dGPSi), i = 1, . . . ,N. We then perturb each reference distance δ̂i according

to a Rice p.d.f. with the location parameter δ̂i and the scale parameter
√

2σGPS, i.e., δ̂GPSi ∼
Rice(δ̂i,

√
2σGPS). The standard deviation σGPS is the one computed from the empirical data in

Section 3.3, using Equation (3.7). We then map the samples δ̂GPSi of the proposal distribution to

a standard uniform random variable vi ∼U (0,1), using the c.d.f. of the samples themselves (by

the uniform transformation theorem). We denote the corresponding direct c.d.f. transformation

δ̂GPSi −→ vi, by PD(·). Then, we map the samples vi to the target distribution of the measured GPS

distances by using the inverse c.d.f. method, with the corresponding transformation vi −→ d̂GPSi ,

denoted by P−1
V (·), where PV (·) is the empirical c.d.f. of the measured GPS distances. We obtain

the simulated true distances by applying the same direct and inverse transformations to the original

uniformly distributed reference distances δ̂i. The sampling procedure is summarized in Table 3.4.

This approach is able to approximate the true model parameters with good accuracy. Figure 3.8

shows the histograms of the path loss parameters α and ρ0 estimated by 10000 independent runs

of the Monte Carlo simulations. Based on the shape of the histogram, we assumed a normal

distribution for the estimation error, and the confidence intervals were computed accordingly. The

standard deviation for the estimated path loss exponent α̂ is around 0.1, whereas for the estimated

reference RSSI ρ̂0 is around 2dB. The true model parameters lie between one and two standard

deviations with respect to the mean of the distribution of the estimated parameters. Table 3.5

presents the true model parameters and the mean values for the parameters estimated by the Monte

Carlo simulations. Although the procedure does not guarantee retrieval of the exact true model

parameters, it provides considerable improvement over the GPS model parameters.
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Figure 3.8: Histograms of occurrences for the α̂ and ρ̂0 values in 10000 runs of the Monte Carlo
simulation. Thick vertical line corresponds to true value.

Model ρ0 α

True -42.63 2.22
Mean of MC runs -39.51 2.04
GPS -24.82 3.00

Table 3.5: The true model parameter values, the mean of the estimated parameters obtained from
the Monte Carlo simulation, and the parameters derived from plain GPS distances.

3.5 Final Remarks

We addressed the topic of propagation modelling in device-to-device channels. We carried out

field measurements to estimate the parameter values of the log-distance path loss model in a forest

environment between two mobile devices. Distance between terminals was collected using the

in-built low-end GPS receiver of the mobile devices, which can reach up to tens of meters. We

proceeded to analyse the impact of positioning and distance errors on the estimation of a path

loss model, using consumer-electronics (smart phones) communicating in the 2.4 GHz ISM band.

We conclude that distances obtained from GPS measurements lead to the overestimation of the

communication range, and show that this is caused by the distance errors that result from GPS

inaccuracy. We modeled the impact of position errors on the distance estimation and provide

guidelines for the selection of the distances at which measurements should be taken for path loss

model parameter estimation. As a rule of thumb, if the communication range is sufficiently large,

the measurements should be taken at distances larger than 3
√

2σGPS. Otherwise, the path loss

model derived from error prone GPS distances has to be corrected. A simulation-based method to

correct the model estimated from erroneous distances was provided.



Chapter 4

I2V Service Characterization and Static
Node Placement Driven by I2V Service

In a variety of distributed systems and applications involving equipments with sensors deployed

over different locations, the data produced by the various equipments must be gathered at a back-

office. If available, existing wireless backhauls, either fixed (i.e. infrastructural) or vehicular, can

be explored for this purpose. We envision that dedicated road-side communication hubs are neces-

sary to aggregate the data produced by nearby sensor units and forward it to the backhaul gateways

(e.g. WiFi access points). In cases in which the sensor equipments are not equipped with wireless

transceivers, communication hubs need to be deployed in a dedicated installation campaign. A

placement process must occur prior to deployment, in which deployment sites for the hubs are

identified under constraints related to the I2V service and other relevant factors while seeking for

minimizing the number of hubs. This infrastructure planning task allows network designers to

guarantee the collection service to the sensor equipments while using resources judiciously. A

particular challenge of the placement process is the estimation of I2V data tranfers throughout

all potential deployment locations to evaluate if the service requirements of the target applica-

tion are meet. Given the unfeasibility of carrying out measurements at all potential locations, we

can develop extrapolation models of I2V service based on the characterization of I2V links. This

characterization can be obtained from a few dedicated measurement campaigns.

On a first stage, we carried out an experimental characterization of the wireless connectivity

between the vehicular network and a road-side wireless client, in the city of Porto. Under the scope

of the smart city platform PortoLivingLab, the city has been equipped with the vehicular network

BusNet – a deployment of on-board units (OBUs) in the public bus fleet –, and a platform of small-

footprint weather sensing stations named UrbanSense. We deployed a prototype (called Data

Collection Unit – DCU) that encompassed a weather station as data producer and a communication

hub atop a traffic light pole of a major street. Over the course of approximately one month,

we characterized the duration and bandwidth of the wireless links between the communication

hub and buses’ OBUs using UDP streams. Daily connection time reached almost one hour on

weekdays, resulting in a transferable daily volume in the order of 4+ Gigabytes. We also measured

37
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the buses’ speed and position, and found speed to have little correlation with throughput.

On a second stage, we addressed the placement process and estimation of I2V service. The

selection of deployment for the communication hubs must take into account constraints relating to

end-system equipments, logistic aspects (e.g. utility availability), and communication service by

available backhauls (fixed or vehicular). We propose a decision support framework that produces

a placement solution for communication hubs taking into account those restrictions and seeking

minimization of the number of hubs. We formulate a minimization problem and propose a solution

strategy that encompasses two steps: identify potential deployment locations, and find a minimal

set of deployment locations. The second step maps the problem of finding the minimal set of hubs

into an instance of the Set Cover problem, and a heuristic is proposed to solve it. To support the

framework regarding I2V service, we developed a procedure to estimate and predict data transfers

in I2V links at city-scale, using historical position traces of the vehicular nodes and a throughput-

distance model obtained from our initial measurement campaign.

Finally, we provide an example application of the framework to a real-world deployment in

the city of Porto, Portugal. The target end-system to be served are the full set of weather station

units of UrbanSense, with 73 planned deployments and 22 actual deployments, to be installed at

the municipality traffic lights and served by the BusNet on-board APs and the municipality-owned

network of outdoor APs. Through parameter-space exploration using the dataset of 73 tentative

locations, we find that by, sharing hubs over multiple equipments, the number of required hubs is

20% less than the number of serviceable equipments, for a range between equipment and hub of

300 meters. We also compare the quality of the placement output by the framework against the

actual end-system deployment. For hubs serviced by the fixed backhaul, we observed that close

to 60% of the deployed hubs are located up to 100 meters of a solution location, and 87.5% had

good or sufficient WiFi service. For locations served by the vehicular backhaul, we conclude that

our model of I2V data transfers estimates data volumes measured in the field to within a order and

a half of magnitude and accurately ranks locations according to relative performance.

• A measurement campaign of I2V WiFi communications between nodes of a vehicular net-

work and a prototype road-side unit deployment.

• Formulation of a minimization placement problem for road-side communication hubs that

serve pre-placed equipments, depend on existing wireless backhauls and have logistic re-

quirements, and a two-step solution strategy for this problem.

• A method to obtain a city-scale estimation of transferable data volumes in I2V connections,

and discussion on the impact of incurring assumptions caused by limited availability or

granularity of input datasets.

• Evaluation of quality of the framework placement against an actual deployment and of

service estimates against field measurements, through application of the framework to a

medium-sized European city scenario (Porto, Portugal).
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The remainder of this chapter is organized as follows. In Section 4.1, the PortoLivingLab

smart city platforms – UrbanSense and BusNet – are presented. Section 4.2 presents a character-

ization of I2V WiFi communications in an urban testbed, composed of a vehicular network and a

prototype road-side unit deployment. In Section 4.3, we describe a decision support framework

for communication hub placement, in terms of an optimization problem formulation and solution

strategy for the DCU placement problem. In Section 4.4 we describe a procedure to obtain a city-

wide characterization of I2V data volumes. Results of our framework for example input datasets

and respective quality evaluation are presented in Section 4.5. Finally, in Section 4.6 we draw the

main conclusions of our analysis.

The first part of this work – the initial measurement campaign at a prototype DCU described

in Section 4.2 – has been published in the ACM MobiCom Workshop on Challenged Networks

2015 [7]. The remainder – the decision support framework for communication hub placement –

has been submitted to the ACM Transactions on Sensor Networks [8]. The text of this chapter was

adapted from those two articles with minor modifications.

4.1 Background on PortoLivingLab Platforms

In this section we provide background information about the smart city platform PortoLivingLab,

a large-scale IoT-based multi-source sensing platform deployed in Porto, Portugal, and the two

sub-infrastructures that motivated and supported the work presented in the chapter. The two in-

frastructures are the city-scale sensing platform UrbanSense [102], and the vehicular network

BusNet [103], comprising of 600 vehicular nodes (400 of which buses) equipped with WiFi and

DSRC. Relevant inputs from the partners of PortoLivingLab are also described.

UrbanSense aims to perform comprehensive monitoring of environmental parameters at se-

lected locations of the city and subsequent storage and processing of sensor data at a backend

server. The components of the platform are the following:

• sensor units: a collection of weather and air quality sensors;

• communication hubs: wireless-enabled devices that collect data from multiple sensor units

and forward their data;

• backend server: central repository of the data collected by all sensor units, located in the

cloud;

• communication backbone: infrastructure through which the data of all sensor units reaches

the backend server.

The end-to-end communication architecture of UrbanSense is shown in Figure 4.1.

In the scope of the Urbansenseplatform, we often refer to co-located sensor units/hubs as Data

collection units (DCUs). The sensor units incorporates ten sensors addressing weather metrics

(wind vane and speed, rain gauge, thermometer, hygrometer), air quality (particles meter, O3,

NO2) and life quality (luminance meter, sonometer, solar UV radiation), that produce a sample
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DCU (co-located with sensor unit)
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Figure 4.1: Architecture of sensing platform. Arrows indicate data collection flow.

every 15 minutes. The communication hubs in the Urbansense platform is equipped with a WLAN

interface that can be configured to connect to infrastructural or vehicular backhauls. In the case

of vehicular backhauls, the hub constantly scans the wireless medium for hotspot advertisements

from buses. When a connection is established, data from the local database is transferred to the

vehicular AP. The hubs also bookkeeps in a local database which data is in transit, and does not

erase it until acknowledged by the backend server.

In operational terms, the first stage of deployment of the UrbanSense platform comprised 22

DCUs deployed throughout the city, progressively and starting from mid-2015. Since then, three

DCUs had to be removed due to excessive wear and corrosion, specifically those deployed near the

sea. Regarding produced data volume, sensor units are currently configured to sample all sensors

every 15 minutes. A packet containing all sensor data of an interval of 15 minutes takes the size

of 818 bytes. Over the course of one hour, this translates into 26.18 kbits, into 628.22 kbits over

an day, and 4.39 Mbits over the course of week.

The vehicular network BusNet is a large-scale privately-operated deployment of on-board units

(OBUs) in Porto’s public bus fleet (400+ buses) and road-side units (RSUs) that interface OBUs

and the Internet. OBUs are embedded computing devices equipped with a GPS receiver and

modules for 3G, WiFi (IEEE 802.11 b/g/n) and DSRC (IEEE 802.11p) communication. The

DSRC technology enables OBU-to-OBU and OBU-to-RSU communication within the vehicular

network. The WiFi interface advertises a hotspot to which passengers and external clients can

connect. Internet-access is provided via the 3G interface or the DSRC interface, directly to RSUs

if possible or using delay-tolerant services. The GPS position of all OBUs is recorded every τ = 15

seconds and later transmitted to a backend server of the service operator. RSUs are infrastructural

routers deployed at strategic locations of the city, equipped with DSRC antennas and a wired

connection to a fiber-optics ring. Sensor data from UrbanSense reaching any RSU is forwarded to

the backend server. Additional detail about the vehicular technology deployed in Porto buses can

be found in [104].

The municipality, also a partner of PortoLivingLab, provided access to utility facilities for

equipment installation and power supply, specifically traffic lights, and granted use of the cost-

free infrastructural access points Porto Digital that are connected to the Internet via a metropolitan
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Figure 4.2: Spatial configuration of stopping opportunities at prototype DCU site.

Figure 4.3: West-bound, prototype DCU, and East-bound view respectively

fiber ring. Location of traffic light and free access points served by the city fiber ring were made

available by the municipality. There are 290 traffic lights and 63 outdoor infrastructural APs

available. Our dataset does not discriminate individual traffic light poles, but only indicates the

geographical center of intersection the traffic lights are associated to.

4.2 Experimental I2V Characterization in an Urban Testbed

We performed an experimental characterization of the wireless connectivity between a prototype

DCU and the nodes of the vehicular network BusNet. We describe next the experiment setting

and methodology, present the obtained measurements in Section 4.2.2, and discuss some insights

about site features obtained from additional processing in Section 4.2.3.

4.2.1 Experiment Description

Our experiments involved a DCU deployed at a street of our city where substantial bus traffic

exists. The co-located sensor unit/communication hub was placed on a traffic light pole, at a

height of approximately 4.5 meters, from where it draws electrical power. This pole is located

roughly in the middle of a 600-meter long straight stretch of road, one-way and three lanes wide,

with no curves or loss of line-of-sight for at least 300 meters in both directions. Variation in

elevation amounts to 9 meters over that 600 meters stretch (less than 1◦ slope). Figures 4.3 shows

the DCU installation and the street from the DCU point of view.

There are three bus routes going through the street where the DCU is located. This site features

multiple stopping opportunities for buses: the traffic light where the DCU is placed, a bus stop at

approximately 100 meters towards West and a cross-roads with traffic lights, at 125 meters in the

other direction. At the cross-roads, three distinct bus routes pass on the perpendicular street, on
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both ways. The only stopping opportunity with line-of-sight to the DCU for those buses is at the

cross-roads’ traffic lights. Night bus routes (0am-6am) only exist on the perpendicular street.

We now describe our measurement setup and its operation during the experiment. The mea-

surements are managed by an application-level script at the DCU. In our setup, the IP of the

DCU is assigned dynamically by the OBUs’ access points. The script monitors the DHCP client

(dhclient) service as it continuously waits for an IP assignment. The instant at which a new IP is

detected is tagged as the beginning of the connection. To speed up the process of IP acquisition,

the DHCP client parameters initial-interval and backoff-cutoff were set to to the min-

imum possible, 1 and 2 seconds respectively. The script then initiates a GPS query to the OBU

and link quality measurements in a sequential fashion. The end of the connection is identified

via timeout, when a query for new GPS data or a session of link quality measurements became

unresponsive for 5 seconds. We do not have the information, in real or deferred time, to associate

an OBU’s MAC/IP address to specific routes.

We perform unidirectional (DCU to OBU) UDP link quality measurements. We use the tool

Iperf [105] to generate load traffic (i.e., attempts to use the full bandwidth of the link) for a period

of one second in each measurement. At the end of the Iperf measurement session, measured

throughput, packet loss ratio and jitter for that second is reported. The Iperf client resides on the

DCU and the Iperf server at the OBU. The GPS information of the bus is obtained via a query at

application-level to the OBU, and contains time, longitude, latitude and speed of the bus. We pair

a new set of GPS and Iperf measurements approximately every 2-3 seconds during the period the

connection is alive. The MAC address of the associated AP is also stored.

This experiment took place during 25 days, starting in August 19 and ending in September 12

of 2014. During this period, our equipment was the sole user of the OBUs’ APs.

4.2.2 Measurement Data Analysis

We describe the pre-processing and analysis performed to our measurements. The obtained raw

samples were pre-processed to remove invalid or corrupt measurements. We observed that Iperf

provides some anomalously large throughput values. Our measurements record throughput only

at the application level and, even if the expectable drop in throughput due to IP/UDP overhead is

disregarded, in no circumstance values higher than the physical layer’s maximum nominal bit rate

(55 Mbits/s for IEEE 802.11g) can be expected, which was the case. We filtered the measured

samples depending on whether their value exceeded the physical layer’s nominal bit rate. On the

set of samples below 55 Mbits/s, we observed by histogram analysis that frequency of samples

above 30 Mbits/s is null. This accounts for the expectable overhead and corroborates the validity

of the selected samples. Regarding analysis of connections, we use the stored MAC addresses to

identify the beginning and end instants, and quantify the duration. In case two consecutive sets of

samples associated to the same MAC address are apart by more than 60 seconds, we consider those

to be two independent connections. Total transferred data volume for a connection is estimated by

multiplying the total connection time and the average throughput for that connection.
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Figure 4.4: Empirical CDFs over all measured samples and identified connections.

Additionally, estimated transferred data volumes per day were not consistent throughout the

experiment period. The operation of our setup was interrupted on day 21 for the delay tolerant

communication experiment, and due to malfunction on 22 and 23 of August, and from 5 to 9 of

September. Other interruption periods, namely day 25 of August and 3 of September, may be

associated to external problems such as disruptions in the WiFi service operation, in the public

authority vehicles operation and/or in road traffic. We restricted our dataset to a period of stable

operation, between August 26 and September 4 (indicated in Figure 4.5 by the grey length bar).

For this period we obtained 5351 samples and identified 1743 connections to buses.

An analysis of the measured data after pre-processing is now presented. The empirical cumu-

lative distribution of throughput is presented in Figure 4.4a. The mean throughput considering all

samples is 12.82 Mbits/s and the respective standard deviation is 3.78 Mbits/s. The cumulative

distribution of measured jitter is presented in Figure 4.4c. The mean is 2.627 ms and the standard

deviation is 2.628ms. Figure 4.4b depicts the ECDF of the packet loss rate. Packet loss was zero

in 72.82% of the samples. The ECDF of connection duration is shown in Figure 4.4d. The mean

connection time is 21.38 seconds and the standard deviation is 17.39 seconds.

The transferred data volume and total connection time per day is shown in Figure 4.5. We

highlight the apparent correlation between the daily data volume and the daily total contact time

visible in the figure. The Pearson’s correlation test provided a correlation coefficient of 0.965

between contact time and transferred data volume for all individual connections, and of 0.99 for

the daily totals. The total daily data volume can reach close to 5 Gigabytes (see days 1 and 2 of

September). Daily total data volumes on the weekend of August 30-31 are smaller than in week

days. The average measured number of connections per day was 86.5 on weekend and 124.3 on

week days, and the average connection time was 18.7 and 21.9 seconds respectively. A smaller

number of connections on weekends is consistent with less scheduled passing-bys, whereas faster
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Figure 4.5: Average data volume transferred per day, over all days. Length bar indicates period of
stable operation.
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Figure 4.6: Average data volume, number of connections and number of scheduled bus passing-
bys per hour for weekdays of stable period. Confidence intervals of 95%1.

connections may be caused by less traffic and/or less passengers.

The hourly average data volume per hour during weekdays of the stable period, the number of

contacts averaged per number of days and the number of scheduled bus passing-bys, are shown in

Figure 4.6. An apparent trend is that data volumes transferred during the night period (11pm-7am)

are lower than those of peak hours (7am-10am and 4pm-8pm). We hypothesize that this is related

to the corresponding number of measured connections/scheduled passing-bys. Despite correlation

values with hourly data volume not being very strong (Pearson coefficient of 0.562 for the number

of connections and 0.663 for the number of scheduled passing-bys), the curves exhibit similar

shapes. Regarding the relation between the number of measured connections and of scheduled

passing-bys, recall that, as described in Section 4.2.1, there are two sets of routes passing within

range of the DCU with different stopping opportunities. The number of scheduled passing-bys

shown in Figure 4.6 include both sets. Pearson coefficient between both metrics is 0.829.

The impact of distance and speed on throughput is presented in Figures 4.7a and 4.7b. The

measured throughput decays as the distance between terminals increases, which indicates lower

signal-to-noise ratios caused by a decay in received power (as modeled by the line-of-sight path

loss model). Samples at distances of 110 and 130 meters have usually velocity zero. These

distances are coincidental with the nearby bus stop and cross-roads. Regarding speed, throughput

showed little variation over the whole range of measured velocities, which is consistent with the
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Figure 4.7: C.I.s of throughput binned by distance and speed.

existing results [29, 30, 32]. Note that higher speeds are typically recorded at closer distances.

The main takeaways are the following: (i) daily connection time reached almost one hour on

weekdays, resulting in a transferable daily volume in the order of 4+ Gigabytes; and (ii) the buses’

speed was found to have little correlation with throughput, which is in line with the conclusions in

the literature.

4.2.3 Discussion on Site Selection

With the available dataset, we looked further into understanding the characteristics of opportunistic

connectivity that impact the most the total transferable data volume at a potential DCU deployment

site. Colloquially, we ask if larger hourly data volume transfers are achieved at sites where few

but long connections occur (near a bus stop), or in sites where connections are numerous but short

(a major road without traffic lights or bus stops).

From the results presented earlier, we observed that transferred data volumes were highly

correlated, according to the respective large Pearson coefficient, with connection duration, per

instance and per day. This seems to indicate that locations with the largest daily total connection

times should be favoured. Also, throughput measurements present negligible influence of speed

and exhibited a small variance over the whole range of velocities recorded. We conclude that

connections with buses moving at urban speeds support similar throughput as with stopped buses,

indicating that locations with few stopping opportunities may sustain high daily data volumes.

Additional insight was obtained from analysis over hour-long segments. We selected the

hourly number of contacts (nrconn), the hourly average throughput (thr_avg) and the hourly

average of connection duration (dur_avg) as potential features to provide indication about the

hourly total transferred data volume (tdv). We computed nrconn, thr_avg and dur_avg from

the data of the stable operation period, totalling 223 observations, and calculated their correlation

with tdv; results are shown in Table 4.1. The number of connections of a site, nrconn, exhib-

ited the highest correlation to tdv, indicating that locations with a large number of connections

1C.I.s for hours 1 and 2 omitted due to lack of statistical significance.
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Method thr_avg dur_avg nrconn
Pearson 0.288 0.577 0.828
Kendall 0.205 0.463 0.683
Spearman 0.306 0.635 0.846

Table 4.1: Correlation of tdv and selected features.

Crit. thr_avg dur_avg nrconn
AIC 0.305 1.527e-49 1.437e-88

Table 4.2: p-values for selected predictors. Inclusion/exclusion criteria was Akaike Information
Criterion.

to buses are preferential. Multiple regression analysis further supported this conclusion. We in-

put tdv as the variable to be modelled and, as predictors, nrconn, thr_avg and dur_avg. We

used stepwise regression and constrained it to finding a linear model without predictor interactions

within 20 rounds. The p-values at the last round are presented in Table 4.2. The best predictor

is the hourly number of connections, nrconn. Again, a large number of connections seems to

be preferential over a large average connection duration. Incidentally, this particular result ended

up not being used in the work described in the remainder of this chapter, but left an open-ended

hypothesis to be validated in future measurement campaigns.

4.3 Decision Support Framework for Communication Hub Placement

We now present our decision support framework for hub placement. An optimization formulation

that incorporates real-world limitations as constraints is presented next. A solution strategy that

outputs a placement solution for communication hubs is described in Section 4.3.2.

4.3.1 Problem Statement

We formulate the optimization problem that sits at the core of our decision support framework, the

Min-Hub Problem . A mathematical formulation of Min-Hub Problem is shown in Problem 1.

We refer to the system/platform that the hubs must serve as end-system, and composing nodes

that produce data as sensor units S. The set of communication hubs is referred to as P. A potential

hub location associated to a particular sensor unit si is referred to as pi. A single hub may serve

multiple sensor units. The location of a single unit for an arbitrary class (locations or units) is

indicated by xi with a superscript indicating the respective class (e.g. for sensor unit, xs
i ). Exception

applies to potential placement locations, referred simply as xi.

The cost function we use is the minimization of the number of necessary communication hubs

while serving the maximum possible number of sensor units. The Min-Hub Problem encompasses

a number of constraints and inputs that are categorized into four classes, that we introduce next.
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Figure 4.8: Application scenario for communication hubs and depiction of some technical as-
pects constraining hub placement (e.g. deployment range to sensor units, communication range to
gateways).

The mathematical formulation of the listed constraints is found in Problem 1, and Figure 4.8 pro-

vides graphical support of how some of the constraints relate physically to each other. Throughout

this discussion, superscripts f and v identify the fixed and the vehicular backhauls respectively.

• End-system: we define that sensor units produce a fixed amount vmin of data over an arbi-

trary period of time (constraint c1), and the number of communication hubs must be equal

or inferior to the number of sensor units (constraint c2). The location of the sensor units (S)

is used in constraint c3.

• Logistic: we incorporate the possibility that hubs require a power supply (and/or other

utilities) for operation and that, given that hubs may have to be installed in outdoor spaces,

that their deployment is constrained to authorized locations. Thus, hubs must be deployed at

logistic locations, where: (a) necessary utilities are available; and (b) permission is granted.

In addition, logistic locations should be up to a maximum distance to sensor units that a

communications link can be established. Formally, we define an input dataset of logistic

locations U, and eligible locations must be within a maximum deployment range rd to each

sensor unit (xs
i ,y

s
i ) (constraint c3). The data transfers attainable by a hub deployed at one of

these logistic locations must be sufficient to serve all associated sensor units (constraint c4).

• Communication: we assume the existence of both fixed and mobile backhauls, i.e. com-

posed of static and mobile APs respectively. Due to their different nature (even among

backhauls of the same type), it can be necessary to define backhaul-specific constraints and

inputs. The fixed backhaul encompasses a set of access point locations A, and in the cur-

rent formulation, an isotropic unit disk of radius rc is used to model service availability

(more accurate models can be used if available). Thus, we set the constraint that a tentative

deployment location xi must be within wireless communication range rc of an access point

(constraint c5). The vehicular backhaul requires data volumes transfered in I2V connections

at the potential location xi to support all served sensor units (constraint c6). A model of I2V
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Problem 1: Min-Hub Problem

minimize
|S|

∑
i

c f
i ·q

f
i + cv

i ·qv
i

subject to: vs
i ≥ vmin, ∀ i (c1)
|P| ≤ |S| (c2)
xi ∈ U,d(xs

i ,xi)< rd ∀ i (c3)
vi ≥ vmin · |cover(xi,xs

i )|, ∀ i (c4)

q f
i =

{
1, if { xa ∈ A : d(xi,xa)< rc } 6= /0
0,otherwise

(c5)

qv
i =

{
1, if Mv(xi)≥ vmin · |cover(xi,xs

i )|
0,otherwise

(c6)

c f
i = f f (user-defined criteria),cv

i = f v(user-defined criteria) (c7)

Notes: d(xi,x j) indicates Euclidean distance between elements xi and x j; cover(xi) = {si :
d(xi,xs

i ) < rd}, i.e., function cover(xi,xs
i ) outputs the set of sensing units si within deployment

range of a potential deployment location.

data transfers MV is used to estimate service by the vehicular backhaul; its generation is

described in Section 4.4.

• User-defined: the user-defined costs shown in constraint c7 include any relevant constraints

that are not of technical nature concerning the backhauls (although similar costs may be

defined for logistic aspects). These may be service fees of a commercial backhaul and

existence of particular institutional partnerships. The user-defined costs c are represented as

outputs of functions f (user-defined criteria) and may take arbitrary values.

In the light of formal definitions just presented, we refine the definition of our cost function

that is formalized in Problem 1. We seek to minimize the sum, over the set of sensor units to be

served, of a viability factor q and a cost factor c per communication backhaul for each potential

location xi. The viability factor q summarizes whether a potential deployment location meets the

technical constraints (end-system, deployment and communication), and thus can only take binary

values. The user-defined cost factor c incorporates non-technical constraints.

4.3.2 Solving Strategy

The solution strategy of our framework has two stages:

1. Produce a set of locations where hub deployment is possible from the input datasets. If

possible, compute also a ranking of such tentative locations.

2. Find a subset from the set of potential deployment locations that optimizes the cost function.
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Figure 4.9: Decision support system for site selection.

Figure 4.9 describes the workflow of the decision support framework, system as it will be discussed

throughout this section.

4.3.2.1 Identifying Potential Locations

In this stage, we seek to identify the logistic locations that are viable for deployment – that are

within deployment range rd and can be served by at least one of the backhauls.

We review the necessary inputs for the first stage of the solving procedure: (i) sensor locations

S; (ii) logistic locations U; (iii) locations of fixed access points A; (iv) the map of I2V data

transfers MV. We first identify the logistic locations U that are within rd meters of any sensor unit

S. The process is done by computing the Euclidean distance and thresholding, and the output set

is referred to as the logistic-viable locations Us. With this step, constraint (c3) (hub must be co-

located with logistic location) is observed. We further narrow down viable locations independently

for each backhaul. Regarding the fixed backhaul, given the use of an isotropic unit-disk to model

service availability (as discussed in the previous section), we apply the same approach to identify

logistic locations U within communication range rc of the access points A. By intersecting the

resulting logistic locations with Us, the logistic-viable locations serviceable by fixed backhaul Uf

can be obtained. Constraint (c5) is meet if there is at least one AP in range of a Us for a given

si. As for the vehicular backhaul, we must identify the logistic-viable locations Us that support

sufficient I2V data transfers to serve covered sensor units, thus meeting constraint (c6). The map

of I2V data transfers MV, whose generation is detailed in Section 4.4, is used for this purpose,

producing set Uv (logistic-viable locations serviceable by the vehicular backhaul).

Formally, the procedure for can be summarized as follows.

Step 1: Us = {ui : {s j ∈ S : d(xs
j,ui)< rd , ∀ j} 6= /0 } (4.1)

Step 2: Uf = Us∧{ui : {a j ∈ A : d(xa
j ,ui)< rc, ∀ j} 6= /0 } (4.2)

Step 3: Uv = Us∧{ui : Mv(ui)> vmin · |cover(ui,us
i )|} (4.3)

where cover(ui,us
i ) is the set of sensor units serviceable by logistic location ui.
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Figure 4.10: Solution workflow for Min-Hub Problem.

In the context of our mathematical formulation, we wish to compute the viability factor q for

each element of set of logistic-viable locations. For this purpose, for each i = 1...|Us|, a binary

value ‘one’ is assigned to qv and/or q f if the logistic location can be served by the vehicular and/or

fixed backhaul respectively, or ‘zero’ otherwise.

Ultimately, the final output of this stage is the set of logistic-viable locations that can be served

by one or either backhaul.For some input parameter values, it may occur that not all sensor units

are serviceable by a hub – i.e., constraint (c1) is not observed for all sensor units. In such circum-

stances, we discard the sensor units that are not assigned a hub location. In the following step,

constraint (c2) is thus applied only to sensor units that can be served.

4.3.2.2 Minimum Cost Problem

After logistic locations have been classified as viable under one or more communication backhauls,

we address the task of minimizing the number of communication hubs. Our solution procedure for

this stage is composed of three distinct steps, and the associated workflow is shown in Figure 4.10.

The procedure is applied independently to the two backhauls.

We note that the deployment range rd defines a circle around each sensor unit where a hub

must be deployed; we refer that that area as the deployment region of a sensor unit. We tackle

the problem by leveraging the insight that hubs can only be shared if the deployment regions of

two or more sensor units have a common area. We start by applying a clustering algorithm to

identify all deployment regions that overlap and aggregate the respective sensor units into sets.

Then, we evaluate if the shared deployment regions contain fixed or vehicular backhaul-served

logistic locations and remove those that do not respect this condition. After this step, we are faced

with an instance of the Set Cover problem, an optimization problem known to be NP-hard [106].

A reduction proof of this identity can be found in Appendix A. We compute a solution using an

greedy heuristic, and then search the selected sets of shared deployment regions for the logistic

location with the largest data volume transfer to find a hub placement location. In Figure 4.10,

the steps in the “Geographical Domain” or the “Set Domain” columns are those that work over
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geographical information (distances or coordinates) or over sets of sensor unit associations (sets)

respectively.

In the first step, we identify the sets of sensor units that have common areas in their deploy-

ments regions. Two sensor units share deployment areas if the Euclidean distance between both

is less than 2rd and if served by the same communication backhaul. We identify all sets of sensor

units that respect this rule. The respective shared deployment areas are filtered to evaluate their

viability for hub placement: if the area area does not have any logistic location, it is not eligible

and thus excluded. We refer to the subset of sensor units that have valid shared deployment areas

as So ⊆ S. For the complementary subset, i.e., the set of sensor units that do not have a shared area

with another sensor unit that are eligible for hub placement, the closest logistic-viable location is

selected. The output of this step is a collection C of all sets C of sensor units that have shared

overlap areas:

C =
{

C : C = {so
i , ...,s

o
k : so ∈ So, i 6= ... 6= k, di∩ ...∩dk 6= /0}, |{i, ...,k}| ≥ 2

}
(4.4)

where di is the deployment region of sensor unit so
i , d = {(x,y) : d((xso

i ,yso
i ),(x,y)) ≤ rd}. Each

set in C is assigned a cost ci equal to the cost of the associated backhaul: c f or cv. Note that each

set of C is binded to a specific hub that is to be shared by all sensor units in that set. We refer to

the set of shareable hubs as Po.

The second step of our solution hinges on the realization that our current problem is an instance

of the Set Cover problem [39]. The objective of this optimization problem is, for a set of elements

e ∈ E and a collection of sets f ∈F , seek a collection G ⊆F of disjoint sets that contains all

elements e. Our current problem maps into the Set Cover problem with little differences. The

universe of elements E being the set of sensor units that have shared deployment areas So and

the collection F being the collection of associations of sensor units that can share a hub C. To

minimize the number of necessary hubs, we are faced with the problem of finding the minimal

collection of sets C*⊆C that covers all sensor units so without repetitions. The requirement of not

repeating sensor units in the solution sets is addressed by requiring that the solution sets C* must

be disjoint. Although this requirement is not part of the original Set Cover formulation, it does

not alter the nature of the problem fundamentally. Greedy heuristics (among others) have been

proposed to solve the Set Cover problem [107]. We use a weighted greedy algorithm, presented in

Algorithm 1, to search for the elements of C that have the largest cardinality.

The third and last step of our solution is now performed. The output of the previous heuristic

is a set of selected elements C*⊆C that provide a solution to the Set Cover problem. The logistic

locations associated to those sets of sensor units so are selected for deployment.

4.4 City-scale Characterization of I2V Data Volume Transfer

We propose a procedure to produce a city-scale model (or map) of estimated data transfers in

I2V connections MV. The fundamental design principle of this procedure is that transferable
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Algorithm 1: Greedy Algorithm
Data: C
Result: C*
R = sort_by_cardinality(C)
E = /0
C* = /0
while E 6= So do

Cmax_card = /0
for i = 1 to |R| do

if |Ri|> |Cmax_card | · ci ∧ (∀ r ∈ Ri : r ∩ E = /0) then
Cmax_card = Ri

end
end
C* = {C*, Cmax_card}
R = R \Cmax_card
E = E ∪ Cmax_card

end

data volume, at a given distance and over a period τ , can be approximated by the product of two

elements:

1. throughput at given distance;

2. contact time with vehicular nodes at that distance.

An important aspect affecting the design and accuracy of the I2V data transfer model is the tight

dependency on the available datasets. For our procedure, we assume the existence of following

datasets and models:

• measurement pairs of throughput and distance for IEEE 802.11b/g/n links;

• mobility traces or model of the vehicular nodes;

• vehicular terminal selection and connection setup latency models.

We see as reasonable to assume the existence of the two datasets in a vehicular network, as they

entail only that GPS and WiFi are available in the OBUs. We describe next the input datasets and

models and required pre-processing, the procedure to build the model of I2V data transfers MV,

and discuss limitations of the model in terms of source, impact and dataset.

4.4.1 Inputs and Procedure for Model Generation

We model connectivity range and data transfers in 802.11b/g/n links at a given distance with an

unit disk model. The model can use global or location-specific values obtainable from throughput-

distance measurement pairs. We define a function ζ (d((xz,yz),(x,y)) where d is the Euclidean

distance between the coordinates of a micro-cell of interest z, (xz,yz), and the coordinates (x,y) of

an arbitrary micro-cell, that outputs the value of throughput ζ measured for the range of distances
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to which d belongs. Eq. 4.5 presents the mathematical formula of this unit disk model. The

communication range rc indicates the maximum distance at which communication can occur. With

this model, we incur in the assumption of isotropic radiation.

ζ (d) =


ζ1, ru,0 < d ≤ ru,1

ζ2, ru,1 < d ≤ ru,2

...

ζn, ru,n-1 < d < ru,n

(4.5)

The second input, the mobility traces, should correspond to GPS entries of OBUs of the ve-

hicular network that operates as wireless backhaul. For convenience in computation, we discretize

the raw traces both spatially and temporally. In spatial terms, we broke down the city map into

a grid and respective cells are called “micro-cells”. The exact coordinates of all relevant infras-

tructural elements (e.g. traffic lights, infrastructural APs, etc.) are mapped into coordinates of this

grid. Temporally, the dataset may be discretized in periods τ , again for ease of use. The resulting

“map of presence time” MT keeps a binary value regarding the existence of at least one OBU at a

micro-cell with coordinates x at time interval t, for all micro-cells.

We introduce two model abstractions to address limitations of the aforementioned datasets.

Note that we estimate I2V transfers for the subset of micro-cells where communication hubs can

potentially be installed. If, for a given micro-cell, multiple OBUs are within communication range

rc, a vehicular terminal selection model is necessary to decide which OBU is the hub connected to.

Currently, we define that the hub always connects to the closest OBU. Furthermore, the time in-

terval that each OBU passes within rc of the tentative deployment location (referred to as presence

time) does not account for the latency in connection setup. We define a connection setup latency

model as a time period ε that reflects setup latency and is subtracted from the overall presence

time, resulting in the actual connection time. We are currently assuming said ε to be null. The

selected model implementations are motivated in the following subsection.

Overall, the calculation of the data volume v transmitted between a micro-cell z and the ve-

hicular network, over the course of a pre-defined time period (τ · Γ) is as follows. For each time

interval ti of set {1, ...,Γ}, we extract from MT the coordinate of the closest micro-cell that con-

tains record of an OBU at that instant ti, xclosest(ti), and calculate its distance to z, d(xz,xclosest(ti)).

The data volume v(x) is then approximated by the sum of the product of the throughput corre-

sponding to d(xz,xclosest(ti)) (drawn from the unit disk model), over all time intervals {1, ...,Γ},
and the time resolution τ .

vz(d) = τ

Γ

∑
i

ζ ( d(xz,xclosest) ), (4.6)

Figure 4.11 describes the process of transferable data volume for a hub located in a specific micro-

cell.



54 I2V Service Characterization and Static Node Placement Driven by I2V Service

Throughput up to range R3 = 13Mbits/s

Throughput up to range R2 = 15Mbits/s

Throughput up to range R1 = 17Mbits/s

Micro-cell with potential hub location

Micro-cells over which 
contact time is summed
(usually coincide with roads)

Figure 4.11: Computing data volume for a micro-cell.

4.4.2 Discussion on Model Accuracy

We discuss the assumptions of the model, their impact, and how they stem from the accuracy and

granularity of the available datasets. They are:

1. isotropic radio propagation (i.e., communication is assumed equal in all directions within

fixed range rc);

2. null connection setup latency (i.e, presence time of an OBU equals actual contact time with

the hub and no time is spent in connection setup);

3. preferential connection to the closest vehicular terminal (i.e., hub is always connected to the

closest OBU).

The three assumptions may concur to an over-estimation of the actual transferable data volume of

a micro-cell.

The impact of an isotropic propagation assumption with a fixed communication range rc is

two-fold: (i) the value selected for rc may be inaccurate and even differ based on orientation;

(ii) it may account for data transfers with OBUs that are not in line-of-sight due to buildings or

other obstacles. The incorporation of topological information (e.g. Open Street Maps [108]) or

the use of a connectivity map (as discussed in [109]), if available, may alleviate the impact of this

assumption.

The second assumption ignores the the overhead time ε spent in the association and IP assign-

ment process. This latency is dependent of implementation-dependent and circumstantial factors.

In the first case, it depends on whether dynamic addressing is used and, if so, on the values assigned

to the DHCP user-configurable timing parameters. An I2V system may use static addressing to

obviate the overhead involved in IP assignment, although at the cost of a tighter integration with

vehicular backhaul. If dynamic addressing is used nevertheless, many DCHP timing parameters

may be varied to obtain smaller connection setup latencies, as we did in prior work [110] for ex-

ample. A circumstantial factor stems from DHCP advertisement messages being missed before

an IP assignment takes place and connection starts. This introduces a random process component
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into the latency duration. Another circumstantial factor is lease re-utilization. Given that it is de-

pendent of a previous connection to the same on-board AP, it introduces additional uncertainty on

the duration of the setup. Given that an universal value or distribution cannot be assumed for this

latency, we opted for a null ε for the purpose of this explanation.

The third assumption results from the model’s uncertainty about which OBU is the commu-

nication hub currently connected to, if multiple are available. If an incorrect OBU is used, the

associated OBU-hub distance will also be incorrect, ultimately leading to an incorrect throughput

value. As mentioned earlier, we currently assume that the connection is always with the clos-

est OBU. More sophisticated models would require estimating terminal selection and connection

maintenance tendencies, which would involve dedicated measurements or simulation.

4.5 Framework Application to a Medium-Sized City and Evaluation

We now present an example application of our framework to a medium size European city: Porto,

Portugal. We introduce the scenario in Porto, and use it as a basis to explore the parameter-space

of our framework and compare a selected placement solution against an actual deployment.

4.5.1 Input Datasets for Framework

We describe the inputs necessary to apply our framework to the scenario of Porto described in

Section 4.1. The location of the sensor units S encompasses 73 planned UrbanSense locations to

be monitored. The set of logistic deployment locations U corresponds to the location of traffic

lights. This dataset was made available by the municipality, and counts 290 traffic lights. Our

dataset does not discriminate individual traffic light poles, but only indicates the geographical

center of intersection the traffic lights are associated to. The set of fixed gateways A concerns the

location of the 63 Porto Digital access points, that the municipality also provided.

The remaining input is the model of estimated I2V data transfers MV specific for Porto, that

must be generated from the model of throughput vs. distance and mobility traces of the vehicular

nodes. The model of throughput with respect to distance was sourced from data of the measure-

ment campaign described in Section 4.2. Regarding the mobility dataset, it corresponds to one

week of GPS traces of the BusNet OBUs, specifically days 12 to 19 of January 2015, provided

by the service operator. The micro-cell size was set to 10 meters tall (in latitude) and 7.5 meters

wide (in longitude), and the resulting grid is 528 micro-cell tall per 1511 micro-cells wide. The

raw dataset was discretized in periods τ of 15 seconds. A “map of presence time” MT was gener-

ated from this dataset, by summing the number of GPS entries recorded at each micro-cell. After

applying the procedure of Section 4.4, the produced estimations of I2V data transfers MV were

limited to locations of utilities U. Although it could be performed for the entire city, we opted to

do so partly because the locations U are the only relevant locations for the problem (i.e., where

hubs can be installed), and partly to limit the computation times involved in the model generation.
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Figure 4.12: Map of transferable data volume for each micro-cell for rc equal to 100 meters.
Diameter of circle is rc meters, face color indicates data volume in grey scale. Map of accumulated
presence time Mt shown in background for geographical reference.

Figure 4.12 presents the map of estimated I2V data transfers MV at the logistic locations, indi-

cated by the circles whose color in gray scale is proportional to our data transfer estimation, and

in background the histogram of “presences” MT of vehicular nodes over the entire period.

4.5.2 Solution Production and Parameter-Space Exploration

We evaluate the gains brought by our framework for a placement of communication hubs to serve

the set of 73 tentative sensor locations, and how the balance of hubs served by each backhaul

changes as the values of the framework parameters are modified. We contextualize the gains

brought by solving the Min-Hub Problem by presenting them against the placement of hubs under

a one-hub-per-equipment policy (i.e., not sharing hubs). We call these results the baseline solution.

We define as independent variables the maximum range for deployment rd and communica-

tion rc and user-defined costs c f and cv enforcing a particular policy; the minimum data volume

to be served vmin is kept fixed. Table 4.3 presents the values used for relevant parameters; un-

derlined values correspond to default values used throughout this discussion. The set of values

chosen for rd aims to model the distances between hub and sensor unit at which an off-the-shelf

wireless communication technology (e.g., ZigBee, Bluetooth or WiFi) could reliably connect the

two terminals, or a wired infrastructure could be installed in an urban environment connecting the

two terminals. The two values chosen for rc provide respectively a conservative and a optimistic

estimations of the maximum range at which WiFi can be expected to operate in urban I2V scenar-

ios. The minimum data volume transfer vmin that must be guaranteed for each sensor unit is kept

fixed at 1 Mbits/week. The value chosen for vmin is aligned with the estimate of the data volume

produced by a sensor unit for a period of a week – as aforementioned, a sensor unit produces

approximately 628.22 kbits over the course of one day, amounting to 4.39 Mbits over the course
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Figure 4.13: Sensor units locations, and solution locations for Min-Hub Problem with rd=300m,
vmin=1 Mbit and preferential used of fixed backhaul.

of one week. The two policies for setting the value of user-defined costs are those discussed at the

end of Section 4.3.1: preferential use of fixed backhaul and preferential use of vehicular backhaul.

An example placement solution for the Min-Hub Problem is shown in Figure 4.13 for rd =

300m, rc = 200m, vmin = 1Mbits and preferential use of the fixed backhaul (c f
i = q f

i ;cv
i = c̄i

f ). For

computability reasons, the values of binary variables c f and cv were approximated by very distant

values (0 as 10−5 and 1 as 105).

4.5.2.1 Baseline Solution

The baseline problem is identical to the Min-Hub Problem, but the requirement of minimizing the

number of hubs is relaxed: each sensor unit is to be served by a dedicated hub. The same cost-

function and constraints of the Min-Hub Problem are used, but we refrain from carrying out the

minimization procedure. Instead, the closest logistic location is associated to each sensor unit. It

may occur that some traffic lights serve more than one sensor unit. We relax constraint (c6) by not

verifying if a given traffic light pole support the I2V volume transfer of all assigned sensor units

(for the vehicular service). This relaxation may lead to inexact solutions but always produces the

minimum number of hubs that can be placed under the one-hub-per-equipment policy for a given

rd (and thus does not result in advantage to the solutions found for the Min-Hub Problem).

A characterization of baseline solutions over a range of rd values is shown in Figure 4.14. For

rc=200 meters, Figure 4.14a shows the maximum number of hubs that can be placed independently

per backhaul (even if serving the same sensor unit), and the aggregated number of served sensor

units (number of sensors units that can be served by one or other backhaul). We observe that,

for both backhauls, an increase in the deployment range rd increases the number of deployable

hubs and thus of served sensor units. The coincidence between the number of served sensor units

and the vehicular backhaul-served sensor units shows that the vehicular backhaul could support

all locations on its own. Three aspects concur to this result: (i) the larger area of coverage of
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Parameter Value

Number of sensor locations S 73
Minimum data volume vmin 1 Mbits
Deployment range rd {50, 150, 200, 250, 300}m
Communication range rc {100, 200}m
User-defined costs c f , cp {fixed-preferential,vehicular-preferential}

Table 4.3: Parameter values.

the vehicular backhaul with respect to the fixed backhaul; (ii) a disparity between the data vol-

ume requirements of UrbanSense sensor units and the estimated I2V data transfers – at most 15

Mbits/week required vs. 10+ Gigabyte/day (see Figure 4.12); and (iii) the estimated I2V data

transfers may in turn be overestimated (as discussed in Section 4.4.2). Figure 4.14b presents the

same metrics for rc=100 meters. The number of fixed backhaul-served hubs decreases with respect

to the case of rc = 200 meters, whereas the number of vehicular backhaul-served hubs does not

vary.

4.5.2.2 Min-Hub Problem Solution

We now evaluate the solutions of our framework for the Min-Hub Problem, again over a range of

rd values (Figure 4.15). Figure 4.15a presents the ratio between the number of placements of the

shared-hub solution over the number of placements of the baseline (one-to-one) solution. It can be

seen that this ratio becomes inferior as rc increases, showing that increasingly larger deployment

radii improve the benefit that hub sharing brings with respect to assigning each sensor unit a dedi-

cated hub. Figure 4.15b breaks down the total number of deployed hubs in the shared-hub solution

per backhaul. It is noteworthy that, for small rd values, the fixed backhaul has more associated

hubs than the vehicular backhaul and, as rd increases, the trend inverts. Due to the policy of prefer-

ential use of fixed backhaul, the maximum number of fixed backhaul-served potential deployment

locations becomes assigned throughout the full range of rd values. However, given the relatively

small number of APs in the city, the number of vehicular backhaul-served locations surpasses the

first as rd increases and more sensor units can be served.

We now look at the impact of selecting a different policy to compute the user-defined costs

(Figure 4.16). Figure 4.15c presents the output of the placement strategy if a policy of preferential

use of the vehicular backhaul is followed. Across the range of rd , the framework assigns all hubs to

be served the vehicular backhaul, and for some deployment radii (e.g. 300 meters) attains a number

of placements inferior to the policy of preferential service by the fixed backhaul. The cause is that

independent solutions for the vehicular and fixed backhauls present an high overlap of serviceable

sensor units, as shown in Figure 4.15b. Finally, we discuss how different communication ranges rc

impact the deployment solution. Figure 4.15d depicts the breakdown of the placement solution for

rc=100 meters. We observe similar trends to those of Figures 4.15b and 4.14b: the fixed backhaul
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Figure 4.14: Solution metrics for a range of rd values, fixed vmin=1 Mbit and rc=200 meters.

has less hubs assigned over all the rd range and, as the value of rd increases, the number of fixed

backhaul-served hubs stabilizes as the vehicular backhaul-served increases.

4.5.3 Solution Evaluation against Real-World Deployment

We compare now selected placements produced by our framework against the UrbanSense de-

ployment in Porto. The UrbanSense platform comprised, in a first stage, 22 co-located sensor

units/hubs (DCUs) deployed at a subset of the recommended 73 tentative locations, installed from

mid to end of 2015. Since then, three DCUs had to be removed due to excessive wear and cor-

rosion, specifically those deployed near the sea. All field deployment locations are shown in

Figure 4.17.

Due to the very different set of constraints that each backhaul encompasses, we perform our

evaluation separately for the fixed (Section 4.5.3.1) and vehicular backhauls (Section 4.5.3.2).

Separate placement solutions have been computed for each case.

4.5.3.1 Service by Fixed Backhaul

We computed a placement solution produced for comparison purposes that takes ample commu-

nication and deployment radius, particularly rc=200 meters and rd = 300 meters, and preference

for the fixed backhaul. The overall solution resulted in 53 placed hubs, of which 23 are served

by fixed backhaul and 30 by the vehicular backhaul. This particular placement solution is also

shown in Figure 4.17. The remainder of this discussion focus only on locations served by the

fixed backhaul. Regarding the UrbanSense deployment, all 22 installations were in range of an

fixed backhaul gateway. Connectivity between server and DCUs was evaluated with a remote

connection.

The metrics used in our comparison between the placement solution and the field deployment

are explained next. The main figure of merit is the ratio of placements used with respect to the all

UrbanSense sites. A placement is considered used if a DCU was deployed up to 100 meters of
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Figure 4.15: Solution metrics for a range of rd values, with default parameter values of rc=200
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Figure 4.16: Solution metrics for a range of rd values, with default parameter values of rc=200
meters, preferential use of fixed backhaul, and fixed vmin=1 Mbit.

the recommended location. Other metrics are related to discarded, re-located, unplanned or non-

operational placements (fully or partially). Discarded placements are framework-recommended

locations where installation was absolutely not possible. A placement is considered re-located if

changed to location farther than 100 meters. Unplanned locations are those where a placement was

not recommended by the framework but a DCU was installed. Finally, unsuccessfully-operated

locations are those suffering of insufficient service from utility or communication infrastructures,

or that have been deactivated due to unforeseen factors. The later metric can only be assessed after

installation, whereas the first four metrics report to a pre-installation stage.

We now evaluate the placement produced by our framework application. Table 4.4 summarizes

the results. With respect to pre-installation metrics, our placement compares to actual deployment

in the following manner:
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Figure 4.17: Locations of placement solution and field deployment in Porto.

• Used placements: of the 22 deployments, 13 DCUs (around 60%) are located at logistic

locations (traffic lights) recommended by the framework.

• Discarded placements: there were four locations where deployment was recommended

but discarded at the planning stage. In two locations the APs lacked wired connection to

the municipality’s fiber ring and were thus nonoperational. The third required an expensive

intervention to install power cables, and the fourth was considered redundant with other

deployments due to the similarity of the monitored area (seaside).

• Re-located placements: six deployments had to be re-located to a location farther than 100

meters than the framework-indicated traffic light, as the municipal services did not deem

those traffic lights suitable for DCU installation.

• Unplanned placements: Three deployed locations were not recommended by the frame-

work, of which two locations refer to buildings of partner institutions where power supply

was available. Of these, one location had no traffic lights nearby; the other location had

nearby traffic lights, but the solution location for that sensing location referred to a differ-

ent set of traffic lights, as a result of the DCU-sharing goal. The third non-recommended

location refers to a test unit.

We observe that reasons for discarded and/or re-located placements were due to insufficient

or out-dated dataset detail from municipal authorities. The unplanned placements did not meet

the constraints imposed to the framework and/or are motivated by constraints not included in our

framework.

As for post-deployment evaluation, we observed after deployment that 19 of the 22 deployed

DCUs had sufficient or good WiFi service. The remaining three DCUs, two of which belonging

to the subset of 13 DCUs deployed at recommended locations, are considered nonoperational

given that there is insufficient WiFi service to sustain data collection. We took a closer look to

the deployment scenario of the two solution-recommended placements to understand what failed

in the framework operation or inputs. Given the wireless nature of the communications links,
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Global Numbers
Fixed backhaul-served placements 23

Deployed DCUs 22

Action w.r.t.

placement solution

Used 13

Discarded 4

Re-located 6

Deployed although not placed 3

Result w.r.t.

placement solution
Insufficient service 2

Table 4.4: Action/outcomes of field deployment with respect to placement for rc=200m, rd=300m
and preferential use of fixed backhaul.

the assumptions made in our framework are likely to have a greater impact than in the utilities

case. The two locations, which we name “Stadium” and “Trindade”, had different reasons causing

insufficient connectivity to nearby APs:

• Stadium: there is a nearby AP, but it has a considerable altitude offset to the DCU that

greatly affects link quality. The solution, which is on-going, is for the municipality services

to tilt the AP antenna. The reason for the framework not to predict insufficient service at this

location (and perhaps not assign this placement) was thus due to outdated or insufficiently

detailed datasets.

• Trindade: it is located close to a municipality AP, but experienced connectivity quality is

poor due to obstructing buildings. This was caused by our assumption of isotropic radiation

within a communication range rc.

Figure 4.18 provides graphical description on these particular sites. The solution found for these

sites was to install a cellular hotspot to provide stable communication. Two DCUs have been

removed due to unforeseen factors, namely excessive wear and corrosion in sea-bordering areas,

and a third due to malfunction.

The framework may be adapted to reflect some of these lessons, such as including altitude

differentials or identify areas where the potential for wear/corrosion is higher. As discussed in

Section 4.4.2, as datasets become more comprehensive, the solution quality also improves.

4.5.3.2 Service by Vehicular Backhaul

We now evaluate the performance of our placement framework for service by the vehicular back-

haul. It is not possible to carry out field tests at all potential deployment locations in the city,

nor test all potential associations of sensor units and hubs. Furthermore, the heuristic used to ap-

proximate a minimal solution for the Min-Hub Problem and its algorithmic performance has been

analyzed previously in the literature [111], and thus we will not evaluate the quality of produced
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(a) Stadium setup. (b) Trindade setup.

Figure 4.18: Framework-recommended locations suffering from insufficient service.

solutions. Thus, we limit our validation to the tool used to perform the placement, the map of I2V

data transfers MV.

The accuracy of MV is evaluated against actual infrastructure-to-vehicle measurements car-

ried out at the DCUs during September of 2016. To avoid any impact of the I2V measurements in

regular bus WiFi service operation, the service operator requested the I2V measurements to be per-

formed with vehicles of the municipal fleet, composed of garbage-collecting and street-cleaning

trucks, and which we designate by CMP vehicles and network. Given this restriction, we com-

puted a new MV specifically for this network by using the GPS traces of the CMP vehicles. Four

DCUs were assigned to this experiment, which we call for convenience as “24 Agosto”, “Bolhão”,

“D. Manuel” and “Combatentes”. Measurement software was installed in ten OBUs of the CMP

network. The experiment ran from September 5th to 25th 2016.

We produced a placement solution that took a communication radius of rc=100 meters, de-

ployment radius of rd = 300 meters, and preference for the vehicular backhaul. The overall

solution resulted in 48 placed hubs, all of which served by the vehicular backhaul. Of the 48

placements produced, two were co-located with UrbanSense DCU locations (“24 Agosto” and

“Combatentes”).

The values obtained in the I2V measurements and the predictions of the model MV are plot-

ted in logarithmic scale, as average of daily totals over the aforementioned days, in Figures 4.19a

and 4.19b for the contact time and transfered data volume respectively The ratios between esti-

mated and measured are also shown on the top of the plots. We observe that, in all four locations,

the estimated transferable data volumes are over-estimated between 12 to 18-fold with respect to

the measurements. It is worthy noting that, despite the error in the absolute value estimation, the

model is able to capture the relative order of the locations in both predicted and measured values.

The discrepancies in the absolute values result from the three assumptions inherent to the cur-

rent version of our procedure to generate the map of I2V data transfers, discussed in Section 4.4.2.

Those are: (i) isotropic radiation; (ii) the DCU is always connected to the closest OBU within

range; and (iii) connection lasts for the entire period an OBU is within range (no connection setup
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Figure 4.19: Comparison between measurements and framework predictions.

latency). The impact of the first assumption cannot be verified without a city-wide wireless prop-

agation map, which we do not have available. The second assumption could not be evaluated due

to the nonexistence of occurrences. We observed no cases of multiple OBUs being simultaneously

within range of a DCU in our dataset, due to the small number of nodes of the CMP network and

the nature of their task (garbage-collection trucks). This also causes this assumption to have a

residual impact in the our estimated values of MV.

The third assumption implies that our procedure to generate MV does not account for latency-

inducing processes such as AP discovery and IP assignment. To evaluate its impact, we compared

with measured and estimated contact times per connection. For each connection, we computed

from the GPS traces the moment the participant OBU comes into communication range of the

DCU and the moment the OBU leaves the range, to estimate the predicted contact time for that

connection. Figure 4.20 plots the CDF of all connections with respect to the ratio of measured

over predicted contact time. We observe that the model over-estimates the contact time in 90%

of the connections, which accounts for explaining the mismatch between measured and estimated

data volumes. The remaining fraction of measured connection times outlasts the respective esti-

mated contact duration, accountable to connections for which the maximum connection range (rc

= 100m) was conservative.

In conclusion, our procedure to model the transferable data volumes provides over-estimated

but reasonably approximate estimates for each potential location in the city. We point out that

our model observes the relative ordering of the locations, which helps identifying which locations

perform better. Some alternatives to improve the model of I2V transfers estimates are discussed

in Section 6.3.
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Figure 4.20: CDF of measured over predicted contact times per connection.

4.6 Final Remarks

We have addressed in this chapter the topic of characterizing wireless links at the data-link layer

between terminals with a relative speed larger than zero, and the challenge of placing road-side

communication hubs that support a sensor equipments deployed at disparate locations. In an

initial stage, an experimental study in an urban testbed with a road-side WiFi-equipped unit and

the buses of a public transportation fleet equipped with on-board WiFi access points allowed us to

characterize the throughput, data volumes, number and duration of connections.

On a second stage, we developed an optimization-based decision support framework to pro-

duce a placement for road-side communication hubs that forward data from pre-placed sensor

equipments via existing wireless backhauls. The placement is constrained by closeness to client

equipments, logistic limitations (e.g. availability of power supply) and existence of wireless links

to backhaul gateways, and it is assumed that a single hub can be serve multiple equipments. The

problem is formulated as an optimization problem with the cost-function of minimizing the num-

ber of hubs that must be deployed. A solution strategy for the minimization aspect of the problem

was devised and relies on a greedy heuristic to solve the Set Cover problem, a known-NP hard

problem into which our minimization problem maps. In order to model the service by vehicular

backhauls in our framework, we developed a model to estimate the transferable data volumes in

I2V links from a dataset that we assume common in fleet operators (mobility traces of the vehicles)

and a model of throughput with respect to distance obtained from a field measurement campaign.

Taking a platform of weather monitoring stations in Porto, Portugal, as an example case, our

framework produces the result that the number of hubs can be 20% inferior than the number of

sensors, if large deployment ranges are allowed. Comparing the placement solution of our frame-

work with a field deployment of 22 equipments, we observe that, for service by an infrastructural

backhaul, almost 60% deployed hubs are located up to 100 meters of a solution location, and

87.5% had good or sufficient WiFi service. For service by a vehicular backhaul, our city-wide

estimation of I2V data volumes estimates the actual data volumes to within a order and a half of

magnitude and accurately ranks locations according to relative performance.
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Chapter 5

Data Collection in Dynamic Topologies
and Design of Network Coding Protocol

In scenarios where data produced by mobile nodes must be collected at a static base station, many-

to-one routing strategies can harness beaconing for faster and more efficient route setup. This

solution consists in having the base station issuing beacon packets regularly that the nodes can

use to set up a routing structure – for example a minimum spanning tree (MST), as done by the

reference Collection Tree Protocol. This strategy is subject to a progressive degradation of the

routing information at the nodes, which in turn may lead to packet mis-routing and losses. We

propose the use of wireless broadcast and opportunistic forwarding to overcome the limitation

of using rigid routes that fade over time in scenarios with dynamic topologies. The option for

wireless broadcast involves abdicating of the link-layer retransmissions, but network coding can

provide an alternative to implement reliability. By allowing nodes to code packets from various

sources and in conjunction with the opportunistic forwarding, we promote data dissemination and

replication across the network so that enough degrees of freedom arrive to the base station.

In this work, we study the design space of a data collection protocol for scenarios with mobility

that builds on periodic beaconing, opportunistic forwarding, and network coding. In addition

to aspects related to routing and reliability, a network coding strategy encompasses a number

of possible configurations relating to coding breadth, coefficient pool size, generation size and

associated payload, and coding policies at intermediate nodes. We build a framework protocol

in a modular fashion to evaluate and compare the performance of alternative configurations of

the protocol, via simulation over connectivity traces obtained from a real-world vehicular testbed.

Finally, we benchmark our proposal protocol against a state-of-the-art structured protocol, the

Collection Tree Protocol, and evaluate its resilience against topology changes.

Our contributions are as follows:

• An identification of the design and parameter aspects that a network coding protocol implies,

and an analysis of the existing literature on those design aspects;

67
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• Performance comparison of alternative implementations of the protocol, by means of simu-

lation using connectivity traces of a real-world vehicular testbed;

• Performance comparison of the various protocol configurations against a benchmark struc-

tured protocol, CTP.

The remainder of this chapter is organized as follows. Section 5.1 motivates the problem with

an analysis over traces and simulation results of a MST protocol from data sourced from a real-

world setting. Section 5.2 overviews the open options in the design of network coding protocol for

data collection, and describes the implementation of structural and modular elements of a frame-

work protocol developed to test different design configurations. Section 5.3 describes the traces

pre-processing and simulation setup, and presents the performance evaluation and comparison of

the various configurations of the protocol. Finally, Section 5.4 draws the conclusions from our

analysis, with practical insights regarding design of a network coding protocol.

The current work was done in collaboration with Prof. Daniel Lucani, and a publication is

under preparation.

5.1 Routing Information Lifetime

The application we target is that of multi-hop data collection over an ad hoc network with mobile

and static nodes to a base station. In spite of the wide body of routing for MANETs, this particular

application is base station-centric, and thus it lends itself to the use of beaconing and routes that

follow a minimum spanning tree (MST) configuration. A minimum spanning tree is a minimum

set of paths that emanate from the base station and reach all nodes. Setting up routes over a MST

is a strategy used by a number of data collection protocols, chief amongst which the Collection

Tree Protocol (CTP). In situations where a fixed beaconing rate is used, the routing information

stored at the nodes becomes progressively outdated. As larger intervals between beacons are used,

the impact of the routing information degradation affects the performance of spanning tree-based

protocols.

To provide some insight into this phenomenon, we analyzed the traces and simulated the oper-

ation of this protocol over the connectivity traces of a vehicular network. We evaluated first the rate

of the degradation of the optimal routes from the connectivity traces, and afterwards we studied

the impact in the performance of fixed-beaconing data collection protocols such as CTP by means

of simulation. The vehicular network is installed in container port in Porto, Portugal [112], and

counts 20 container-carrying trucks with on-board units (OBUs) and 7 road-side units (RSUs). The

communication hardware between vehicles and road-side units is IEEE 802.11p/DSRC standard

hardware and stack. The OBUs are programmed to broadcast 10 beacons per second (consuming

a duty cycle of 10%) and registed to beacons from other nodes. In post-processing, the PDR of all

the links available to a node, at any given second, is approximated by the ratio of how many bea-

cons from that neighbour, out of 10, have been received. Figure 5.1 presents the premises where

the vehicular network operates.
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Figure 5.1: Harbour premises.

Parameter Value

Sc
en

ar
io Data prod. bitrate vi 10 KB/s

Data ∆tbeacon Equal to tb

Max transmit rate 2 Mbit/s

Table 5.1: Parameters used in CTP operation simulation.

5.1.1 Rate of Topology Change

We evaluate the rate of topology change by computing the distribution of the duration of minimum

spanning trees in seconds for each RSU independently for a dataset of one week of traces. For

an arbitrary second t of the trace, we verify the duration of the optimal tree at t over subsequent

seconds, even if the tree becomes non-optimal. If the tree of an arbitrary second t+1 is the same as

that t, we do not include the duration of this tree in our sample pool. A tree under analysis becomes

invalid if: (i) one of the links of the tree at t has disappeared; (ii) the number of connectable nodes

by the optimal tree at t +∆t is larger than that of the optimal tree at t; and (iii) the number of

connectable nodes at t and t +∆t is the same, but there are new nodes. If the number of nodes at

t +∆t is smaller than t’s, but existing nodes are still connectable by the tree of t, the tree is still

considered valid.

Figure 5.2 shows the results of this analysis. We can see that 25% of the trees last 3 seconds

or less, and that more than 50% of the trees become invalid after 6 seconds (52% last 6 seconds or

less).

5.1.2 Impact in CTP Performance

After the previous traces analysis, we simulated the operation of CTP with two beaconing intervals

tb– 3 seconds and 6 seconds –, for a single day of traces and the parameters shown in Table 5.1,

All nodes are constant bit rate (CBR) sources, and beacons are broadcast by the RSU carrying a

request for data that must be delivered before the next beacon transmission. The results are shown

in Figure 5.3. It can be seen that the performance of CTP for larger values of tb degrades, as the

overall PDR for beacons/requests transmitted every 3 seconds is superior to that of 6 seconds. This
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Figure 5.3: Decrease in performance of CTP as tb in-
creases.

shows how the performance of minimum spanning tree-based protocols with fixed beaconing may

be impaired by outdated routing information.

5.1.3 Conclusion

These results provide the context and motivation to pursue an improvement over the existing so-

lutions. We propose that the problem can be alleviated, still in the context of a base station-centric

protocol, by harnessing wireless broadcast and opportunistic forwarding for data packet relaying.

This allows to explore more routes that those of the minimum spanning tree and take advantage

of the best available forwarders at any given instant, but turns the use of link-layer retransmis-

sions impractical. An alternative reliability mechanism can be implemented by a network coding

solution, that relies on end-to-end feedback as proposed in [74] and [73] for data collection appli-

cations. We discuss next the structure and design possibilities of such protocol.

5.2 Network Coding Protocol Design Space and Specification

The design of a data collection protocol based on opportunistic forwarding and network coding is

subject to a variety of options and implementations. We created a framework protocol to structure

and systematize the exploration of such design space, following a modular approach that allows

different module implementations to be swapped in and out to produce different protocol config-

urations. The high level structure and design philosophy of the framework protocol is inspired by

the previous work of network coding protocols, as discussed in Section 2.3.

We break down the protocol design and operation into three planes – Routing, Network Cod-
ing and Reliability, for convenience in the following discussion. These planes are supported by

dedicated mechanisms that map into modules of the framework protocol.

• Routing Plane: includes the mechanisms that route packets and manage traffic towards the

base station. These are the Forwarding Engine and Congestion Mitigation.
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• Network Coding Plane: handles the design aspects related to coding, grouped into the

mechanisms of Generation Management and Mixing/Coding, with a number of coding-

related design options.

• Reliability Plane: addresses the performance improvement of the protocol by means of two

mechanisms, Redundancy and Feedback.

In the remainder of this section, we provide an overview the design-space of a network coding

protocol in Subsection 5.2.1, and describe the implementation of the modules and operation of the

protocol in Subsection 5.2.2.

5.2.1 Design Space of a Network Coding Protocol

We review the design-space of the mechanisms associated to each of the aforementioned planes,

and identify a subset of options worthy of evaluation.

5.2.1.1 Routing Plane

Forwarding Policies

In a data collection or point-to-point routing protocols, some of the most widely cost metrics are

the number of hops to the base station and the the number of expected transmissions [113]. Based

on this, we propose to test the following forwarding policies upon reception of a response packet:

• Hop count-based (hop count): forward packets from nodes with a larger hop count.

• End-to-end PDR-based (end-to-end PDR): forward packets from nodes with smaller end-to-

end PDR.

• Mixed policy (mixed policy): forward packets that observe any of the above conditions.

Congestion Mitigation

The issue of congestion in mobile networks has been thoroughly described in [114]. We im-

plemented a contention mechanism at the forwarding module to mitigate congestion. We tested

packet deferral for a period drawn from a uniform distribution. With this mechanism, packets are

held back by the protocol a uniformly distributed random time before relay transmission.

5.2.1.2 Network Coding Plane

Generation Size and Payload Length

The generation size g and the packet payload l must be such that the total data transmitted per node

matches the base station request per generation and node, v. However, the packet payload in a

network coding protocol must shared by the application data and the coefficient vector. Regarding

the coefficient vector storage, we use the on-demand strategy (see Section 2.3.3). To avoid the
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coefficient vector to grow unrestricted and dominate the packet payload, we set a limit rcoeff on the

payload fraction that the coefficient vector can use. All parameters are related by the formula v =

g · lmax · (1−rcoeff ), where lmax bytes is the maximum packet payload.

We evaluate two sets of generation size and useful payload length. The values are discussed

in Section 5.3.1 as they depend on the application requested data.

Galois Field Size

The Galois Field (GF) size affects a number of operational aspects of the protocol, of which we

address two. The first aspect is the probability of creating linearly dependent combinations in

coding operations performed during transit to the sink, eventually leading to data blocks elimina-

tion. Protocols using smaller GF sizes have a larger probability of generating linearly dependent

combinations during network transit [115] with respect to large GF sizes. The impact is on delay

and efficiency – a small GF size will require more time and packets for sufficient d.o.f.s to arrive

at the base station. The second aspect is that the GF also affects the available payload space per

packet and thus, indirectly, the size of the generation. In this case, smaller GF sizes have a smaller

footprint than larger sizes (although we do not test this implication).

We propose to evaluate the protocol performance in two Galois Field sizes: a small – GF(2) –

and a large – GF(28).

Breadth of Coding

The breadth of coding in network coding mechanisms falls into two classes: systematic and non-

systematic (the later also known as full-coding, a term we will favour) [116]. Systematic mode

involves transmitting the initial requested n data blocks unencoded and subsequent transmissions

as lin. ind. combinations of the original n data blocks, whereas full-coding mode involves that

all m packets are sent encoded. The systematic mode serves mostly a reliability purpose, whereas

full-coding allows capacity to be reached in suitable scenarios [117]. Tunable Sparse Network

Coding (TNSC) [118] has been proposed as a dynamic solution that increases the coding density

as time progresses. In [74], this strategy is facilitated by allowing intermediate nodes to decode.

We will focus on the two first alternatives, systematic and full-coding.

Coding Policy and Buffer Size

The coding policy concerns whether intermediate nodes are able to decode packets and produce

novel lin. ind. combinations, or merely capable of recoding received packets. The first option

provides more control over the lin. ind. combinations generated by intermediate nodes, at the cost

of the delay necessary for those nodes to start decoding original data blocks [119]. The second

option requires less resources and processing time at the nodes, but implies a looser control over

the lin. ind. combinations created in the network. Several buffer management policies for network

coding scenarios can be found in the literature. In [120] and [121] three designs for finite memory

buffers are proposed: (i) a simple FIFO buffer; (ii) the accumulator design, in which received
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packets are immediately randomly coded with all stored packets; and (iii) the recombinator design,

in which new combinations are created using received and stored packets selected according to a

uniform distribution. In [121] it is claimed that a single packet per node is sufficient for network

coding to continue to perform optimally. The authors of [73] use the accumulator design and

report that, from their experiments, the buffer size can be of just a few packets.

We test only the recoding policy and the accumulator design, and the buffer size is equal to the

generation size per node.

5.2.1.3 Reliability Plane

Redundancy

For protocol designs using network coding, reliability mechanisms can be proactive or reac-

tive [122]. In addition to the initial M packets, the source can send pro-actively N > M packets

to account for losses during transit. This solution requires some mechanism to compute expected

losses (such as LQE/ETX information).

We propose to test two policies to compute the number of redundant lin. ind. combinations to

be sent and inject them in the network:

• Hop-to-hop redundancy (h2h red): upon producing or receiving a response packet bound to

be relayed, nodes produce a number of additional lin. ind. combinations inversely propor-

tional to the minimum PDR of the links to its neighbours.

• End-to-end redundancy (e2e red): only the source creates redundancy lin. ind. combina-

tions/packets in a quantity inv. proportional to the maximum end-to-end PDR.

Feedback

In a explicit feedback mechanism, the feedback request packet informs which data packets has the

base station received, and nodes refrain from coding received packets in new transmissions [123].

In dense coding scenarios, the feedback information may be reduced to how many d.o.f.s are

missing at the base station [124].

We developed a mechanism named Novelty Ratio to select the instants to send the feedback

packets. A feedback request is sent each time the ratio of innovative packets over total received
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packets rnr during a pre-defined time interval tnr is lower than a some threshold. Figure 5.4 depicts

the operation of this mechanism. We evaluate the performance of the protocol with and without

the Novelty Ratio mechanism.

5.2.2 Protocol Specification

We describe the concrete implementation of the structural elements of the protocol and the mod-

ules that substantiate the mechanisms introduced in the previous section.

Two implementation architectures are discussed, one for the base station and other for the

nodes. Each mechanisms can be implemented by one module (named after the mechanism) or

multiple (which will be detailed), and can be distributed over base station and nodes or at just

one of these. Two data structures support the operation of these mechanisms. Locally-produced

data blocks are kept unencoded in the node, in a specific buffer called local_data. When a node

receives an extraneous packet, it is stored in a buffer for extraneous packets, extraneous_data.

It is assumed that a lower-layer LQE mechanism exists, allowing nodes to learn their neighbours

and link quality to each. Figure 5.5 shows the internal architecture of base station and source, and

the flow of control signals and data.

5.2.2.1 Routing Plane

Periodical beacon transmissions are sent by the module send request at the base station, at

intervals tb. Beacon/request packets carry hop count and accumulated PDR fields. From these,

nodes can learn the neighbours with the smallest number of hops to the sink and the largest PDR

to the sink, at module topology information. Nodes discard their previous neighbour list when

a new beacon is received.

The forwardingmodule enforces the diverse forwarding policies discussed in Section 5.2.1.1.

Response packets carry the last hop’s latest hop count and end-to-end PDR to sink to support the

diverse forwarding policies. The validity of the packet for forwarding is assessed with two tests:

(i) whether lin. ind. combinations from previous generations are present in the payload, and (ii)

if the packet has been seen previously. In the first case, packets with lin. ind. combinations from

a previous generation must be discarded to avoid contamination of the current generation. In the



5.3 Simulation Evaluation using Real-World Traces 75

second case, each packet is assigned a unique identifier uid at production time. Nodes book-

keep received packets and do not relay packets already received as a mechanism to limit packet

transmission.

5.2.2.2 Network Coding Plane

At the base station, the module fetch new data initiates a new generation every tb. The broad-

cast beacons also act as requests for new N data blocks from each mobile node. At the sources,

upon reception of new request packet by module handle request, the contents of local_data

and extraneous_data buffer are discarded to eliminate response packets from the previous gen-

eration. The fetch new data module requests a new batch of N data blocks from the application

and stores those in local_data. The mixing mechanism produces the N lin. ind. combinations

to be sent. At the base station, received packets are stored in a buffer and Gaussian Elimination is

performed to extract the encoded data blocks.

The mixing module performs the packet coding operations, and controls coding density and

combination sources. This mechanism operates on request of the handle request, redundancy

and feedback mechanisms. The mixing mechanism selects the sources from which combinations

should be drawn, namely the local_data and extraneous_data buffers. Currently, all coded

packets receive combinations from both buffers.

5.2.2.3 Reliability Plane

The redundancy module generates additional lin. ind. combinations to inject in the network. New

lin. ind. combinations are created using packets sourced from local_data and extraneous_data.

As discussed earlier, two policies are enforced: hop-to-hop redundancy (h2h red) and end-to-end

redundancy (e2e red). After the initial request and during the generation interval, the base station

sends feedback packets informing how many more d.o.f.s are necessary.

The feedback module implements the Novelty Ratio discussed in Section 5.2.1.3. The thresh-

old ratio for which a feedback request is triggered is denoted by rnr, and the interval over which

the ratio is evaluation is tnr seconds. To prevent excessive load on the network, nodes that have the

required d.o.f.s only reply with a certain probability pfbr.

5.3 Simulation Evaluation using Real-World Traces

In this section, we evaluate the protocol performance in various configurations and against CTP

using simulation over connectivity traces sourced from a real-world testbed. We first describe the

pre-processing performed on the traces and our simulation setup. We then present the design space

exploration that we carried out regarding the protocol performance with various design options.

We also evaluate the performance of a network coding protocol by comparison against CTP and

evaluate if the premise laid out in Section 5.1 holds. Finally, a brief performance characterization

with respect to topology features is presented, in Section 5.3.4.
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Figure 5.6: Topology characterization from connectivity traces

5.3.1 Trace and Setup Description

Traces Pre-Processing

The connectivity traces used in this work were obtained from the container-carrying trucks at the

Leixões harbour, in Porto, Portugal. These traces contain the PDR of the links of each node to

their neighbours with a frequency of one second. We were provided a dataset of one week (from

June 2 to 9, 2014) and extracted the data corresponding to June 3. After analysis of the dataset,

the data from only three of the five RSUs was used.

For convenience, we opted to perform simulations for each RSU independently. For each RSU,

from the total set of traces, we identified the seconds at which there is an active link to the target

RSU (i.e. a link with a PDR larger than 0). For each RSU, we carried out a minimum spanning tree

(MST)-search using Prim’s algorithm for each second. From this result, we identified the nodes

that participate in the MST, and isolated from the raw traces only the links between nodes of that

subset. This information makes up a second of the input trace files that are fed to the simulation.

In total, we obtained 5050 3-second generations for the selected day of traces for all three RSUs.

With the processed connectivity testbed traces, we computed selected metrics per generation

(3 seconds-long) to evaluate the diversity of the wireless topologies occurring in the vehicular

network, in addition to the analysis made in Section 5.1.1 regarding the distribution of the duration

of optimal trees. Figure 5.6a shows us that the pool of topologies with 4 to 13 participant nodes is

approximately evenly distributed. The CDF of the average number of neighbours features a few

values that are more frequent more than the remainder, as seen in Figure 5.6b. The average tree

depth, shown in Figure 5.6c, goes up to one hop in 60% of the cases, with the remainder not going

above 3 hops.

Simulation Setup and Parameters

We use the OmNET++ simulator version 4.3.1 and the MiXiM Framework version 2.2.1. We de-

veloped our protocol in the C++ programming language and implemented it between the network

and application layers. Random number generation was performed using OmNet++ in-built mech-

anism (Mersenne Twister), using the run number as seed. The ARQ mechanism of the MAC layer
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of the IEEE 802.11 standard is used during the operation of CTP, with the maximum number of

retransmissions for ARQ set to 4. The physical layer is a perfect packet erasure channel in which

the packets are received or lost according to a pre-defined probability, the PDR extracted from the

connectivity traces described previously. We use the IEEE 802.11b standard as data link/physical

layer technology at the nodes. The simulation setup fixes the MAC layer bit rate to 2 Mbit/s, and

the maximum payload size supported prior to fragmentation is 2348 bytes. We developed our

own coding engine for GF(28) using logarithmic look-up tables. Our coding engine guarantees

that each of n native packets is coded in at least one coded packet. We developed the decoding

mechanism at the sink, that performs on-the-fly Gaussian Elimination as packets arrive. Presented

results are averaged over 4 runs with different random generator seeds.

There are two application/scenario-driven parameters: the requested data volume per node v

and the interval between beacons tb. We define two data volume requirements to induce heavy and

light load on the network, namely v = 10 kB/s and v = 3 kB/s. The value of tb, as in Section 5.1,

is also evaluated at two values: tb =3 seconds and tb = 6 seconds. The protocol parameters are

discussed next. We define that the maximum payload size lmax of an higher layer datagram to be

equal to the maximum payload size of IEEE 802.11b (thus no fragmentation is allowed). Given

that we use an on-demand coefficient vector (i.e. of variable length), we opted to use fixed sizes

for the payload fraction assigned to data, and the remainder of the packet payload can be fully

used by the coefficient vector (thus implementing the rcoeff discussed in Section 5.2.1.2). The

selected payloads sizes dedicated to coded data are of 1500 and 750 bytes, resulting in 20 and 40

packets/node respectively for v=10KB/s, and 6 and 12 packets/node for v=3KB/s. The parameters

related to the Novelty Ratio feedback mechanism, pfbr, rnr and tnr, were selected empirically. A

list of all parameter values is shown in Table 5.2.

We consider as the main figure of merit to evaluate performance the overall packet delivery

ratio p, the number of unencoded data blocks that were obtained by the sink (either received or

decoded) over the data blocks that were generated at the sources (i.e., triggered by the reception of

a request). To evaluate the effect of each single option at time, we defined a baseline configuration

upon which we vary only the parameter or design option of interest. The underlined values in

Table 5.2 correspond to the baseline configuration.

5.3.2 Design Space Exploration

We present the PDR of the various design- and parameter-space configurations of our protocol. A

brief discussion follows to address a few operational aspects underlying some of the performance

results. We evaluated the following configurations:

1. Data Volume
2. Generation/Payload Size
3. Redundancy and Feedback (reliability mechanisms)

4. Congestion Mitigation
5. Forwarding Policy
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Parameter Value

Scenario/ Data prod. bitrate v 3KB/s, 10 KB/s

Application Beacon interval ∆tb 3s, 6s

Protocol

Forwarding policy hop count, end-to-end PDR, mixed policy

Redundancy policy
· h2h red (hop count)

· e2e red(end-to-end PDR, mixed pol.)

Feedback Novelty Ratio

Payload l / gen. size g 1500B/20, 750B/40

Galois Field (2q) 1, 8

Coding breadth systematic, full-coding

Coding policy re-coding

Buffer size b g

Prob. fb. reply pfbr 0.5

Novelty interval tnr 0.1 s

Novelty threshold rnr 0.2
Table 5.2: Parameter values (parameters for baseline underlined).

6. Redundancy Injection Strategies

7. Galois Field Size

8. Coding Breadth

We leave the analysis of the impact of the inter-beacon interval tb for Section 5.3.3. The full

range of results can be found in Appendix B, including results for energy efficiency (ECDF of

decoded packets over total number of packets transmitted).

5.3.2.1 Performance Results

• Data Volume: The performance of the network coding protocol showed considerable dif-

ference in performance as the data volume requested from the nodes is varied. In Figure 5.7, we

observe the difference in performance as we increase the requested volume from 3KB/s to 10KB/s,

causing additional load on the network.

• Redundancy and Feedback: The impact of the reliability mechanisms – redundancy and

feedback – proposed in Section 5.2.1.3 are shown in Figure 5.8. We observe that both mechanisms

resulted in considerable improvement of PDR. The NC performance improved from around 50%

of generations receiving half of the expected packets, to 60% of generations receiving the entire

generation. The impact is particularly visible in the full-coding mode (see Appendix Figure B.27),

as without any reliability it exhibits very poor performance due to an insufficient number of d.o.f.s

received at the sink (discussed in more detail in the next subsection).
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Figure 5.7: PDR of different data volumes
(light and heavy load).
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Figure 5.8: PDR with and without reliability
mechanisms.
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Figure 5.9: PDR with different genera-
tion/payload sizes.
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Figure 5.10: PDR with and without conges-
tion mitigation under heavy load (10KB/s).

• Generation/Payload Size: Figure 5.9 presents the results for the two sets of parameter

values for the generation and payload size. We observe that smaller payloads/larger generations

yields, in the majority of the generations, a worse PDR performance than the complementary

design solution. We hypothesize that two phenomena concur to this result: (a) there is an higher

overhead involved with medium access and packet processing at nodes; and (b) coding over a

larger coefficient pool promotes more inter-packet dependency when decoding at the base station.

• Congestion Mitigation: Inspection of the protocol performance under large data volumes at

an early design stage showed a large number of collisions. For this reason, we plot the PDR of the

protocol with and without a congestion mitigation mechanism for a large requested data volume

per node (10KB/s) in Figure 5.10 (see Appendix Figure B.11 for lower requested volumes).

• Forwarding Policy: The performance profile of the three forwarding policies discussed

in Section 5.2.1.1 – hop count, end-to-end PDR and mixed policy– is depicted in Figure 5.11. The

hop count policy fares the worst of the three, and the end-to-end PDR policy provides slight overall

improvement over hop count.

• Redundancy Injection Strategies: Figure 5.12 presents the results of the two redundancy

policies, e2e red and h2h red. We observe that the e2e red (transmitting an additional number of
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Figure 5.11: PDR for different forwarding
policies.
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Figure 5.12: PDR for different redundancy in-
jection policies.
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Figure 5.13: PDR for different Galois Field
sizes.
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Figure 5.14: PDR for different coding
breadths.

packets at the sources) outperforms a policy of creating new lin. ind. combinations at intermediate

nodes (h2h red).

•Galois Field size: The two Galois Field sizes evaluated affected the protocol performance in

the way shown in Figure 5.13. As discussed in Section 5.2.1.2, smaller field sizes can potentially

lead to a larger probability of d.o.f.s disappearing during transit. The difference proved not to be

significant.

• Breadth of coding: The two modes of operation – systematic and full-coding – proved to

have a marginal difference in performance at smaller requested volumes, as visible in Figure 5.14.

The difference in performance is considerably larger as the requested volume increases, as seen

in Appendix Figure B.25. As in the case of the reliability mechanisms, this is due to a higher

inter-packet dependency, as we will discuss in the next subsection.

5.3.2.2 Discussion on Performance

We discuss two particular operational aspects of the previous analysis relating to network coding

and traffic load.
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Figure 5.16: Coding-associated metrics for
coding breadths under heavy load (10KB/s).

It is relevant to note that, in a network coding protocol, even if enough packets arrive to the

base station, not all packets are useful for decoding the generation. We evaluate the impact of the

coding mechanisms in the protocol performance by analyzing the ratio of received-to-requested

and innovative-vs-received packets at the base station. The first ratio is affected by routing and

reliability design options, whereas the second ratio is more dependent on network coding options.

In Figure 5.15, we present the ratios for the protocol configurations with and without reliability

mechanisms (feedback and redundancy). It can be seen that, despite the non-reliability config-

uration exhibiting high ratios of innovative packets (Figure 5.15a), there are not enough packets

arriving to the base station to support a better PDR (Figure 5.15b). A similar behaviour is observed

when we vary the generation and payload sizes towards larger generations and smaller payloads.

We also observed that, as the requested data volume is increased, the selected breadth of coding –

systematic and full-coding modes – begins to play a non-negligible effect on these ratios. This is

due to the higher occurrence of inter-packet dependency that full-coding promotes. In Figure 5.16,

we observe an higher number of sources per packet for the full-coding mode (Figure 5.16a) that

it is not accompanied by an increase in the number of packets received at the base station (Fig-

ure 5.16b).

The load exerted in the network is affected by multiple options, chief amongst which the data

volume requested from the nodes. In Figure 5.17a we observe the increase in the total number

of transmissions averaged over all generations as the requested data volume per node goes from

3KB/s to 10KB/s. As in the previous analysis regarding the impact of network coding options,

we still identify a network load condition at higher data volumes by noticing the inferior ratio of

received-to-requested packets (Figure 5.17b) and the higher ratio of innovative-vs-received (Fig-

ure 5.17c). The impact of the congestion mitigation mechanism is shown in Figure 5.17d for the

higher data volumes, without which the previous metrics would be even worse. The phenomenon

of load being exerted on the network can be also understood from a temporal perspective, by de-

picting at the temporal profile of the reception of the packets at the base station. In Figures 5.18a
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Figure 5.17: Operational metrics for different data volumes.
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Figure 5.18: Temporal profile of packet arrival at base station for various configurations.

and 5.18b, we compare the network traffic over time from the temporal distribution of packet

reception at the base station for a configuration without and with reliability mechanisms respec-

tively. The inclusion of end-to-end reliability spreads packet transmission throughout the entire

generation duration. Finally, in Figure 5.18c, the impact of a larger data volume is observed, with

a large ratio of innovative packets arriving still at the end of the generation interval (tb =3s).

5.3.3 Benchmark and Route Lifetime Analysis

5.3.3.1 Benchmark Against CTP

We now compare the performance of the baseline configuration of the network coding protocol

against a benchmark protocol, the Collection Tree Protocol. Figure 5.19 presents the packet de-

livery ratio for the baseline protocol configuration and CTP. We observe that the CTP and the

network coding protocol have very distinct performance profiles, with the network coding pro-

tocol being consistently better than CTP. The downside is the smaller efficiency of the network

coding protocols, observable in the ECDF of energy efficiency in Figure 5.20.
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Figure 5.19: PDR comparison of CTP and NC
for tb =3 seconds
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Figure 5.20: Energy efficiency comparison of
CTP and NC for tb =3 seconds
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Figure 5.21: PDR comparison of CTP and NC
for different tb under small requested volumes
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Figure 5.22: PDR comparison of CTP and NC
for different tb under large requested volumes.

5.3.3.2 Route Lifetime

Finally, we evaluate the initial premise or our work: the resilience of network coding protocol to

changes in topology occur is better than that of CTP, as tb increases. Figure 5.21 presents the PDR

for the baseline configuration of the network coding protocol and CTP for the two values of tb and

a small requested data volume. We observe that CTP does not suffer significantly with the increase

in tb. It is only when a heavier load is requested that a visible impact can be observed, as seen in

Figure 5.22. The packet delivery ratio of CTP degrades as tb increases from 3 to 6 seconds, while

the network coding protocol incurs in a smaller performance penalty. In conclusion, we observe

that the performance of the network coding protocol hinges on a trade-off between the requested

data volume and the inter-beacon interval.

5.3.4 Impact of Topology Characteristics

We also studied the relationship between topological characteristics and packet delivery ratio, as

some topologies may be more prone to induce additional load than others. Figure 5.23 shows the

PDR of the network coding baseline configuration with respect to a topology metric computed per
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Figure 5.23: PDR for different topology types.

generation (specifically tb =3 seconds), namely the maximum number of neighbours of all nodes.

It can be seen that the performance degrades as the metric value increases, and we are currently

investigating if denser topologies exert excess traffic load in the network.

5.4 Final Remarks

In this chapter we addressed the challenge of designing higher layer protocols, namely routing

and transport, for the purpose of data collection in M/VANET scenarios. Given the limitations of

MST-based protocols such as CTP in base station-centric data collection applications in scenarios

with mobility, we developed a protocol based on opportunistic forwarding and network coding for

this task. A thorough exploration of the design space and a performance comparison against a

benchmark protocol, using simulations over real-world connectivity traces, is carried out.

Our results support the following conclusions. CTP suffers a considerable toll in packet deliv-

ery ratio as larger inter-beacon intervals are used. As for our design space exploration, our results

show that:

• small performance variation among different forwarding policies;

• performance is similar whether the forwarding decision is based on larger PDR or smaller

number of hops to base station;

• the use of packet deferral alleviates congestion induced by a broadcast protocol;

• large packets and small generations perform best;

• a large Galois Field size fares slightly better;

• redundancy and feedback mechanisms are essential for a competitive performance;

• redundancy packets should be injected at sources.
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Comparing to CTP, performance varies considerably with respect to an application-driven pa-

rameter: the requested data volume per node. Finally, a smaller inter-beacon interval tb affects

negligibly the packet deliver ratio of the network coding protocol, therefore outperforming CTP

as initially hypothesized.

Ongoing work focus on understanding the different performance profiles with respect to topol-

ogy aspects (e.g. dense, highly-connected topologies versus sparse, small topologies; rate of vari-

ation among topologies over time; degree of connectivity of the base station; etc). The study of

local and global strategies to find the optimal trade-off between relaying ratios, redundancy packet

creation and paths to explore is also being explored, although it can be foreseen that the complexity

of the protocol may increase.
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Chapter 6

Conclusions

6.1 Contributions

In this thesis, we developed a range of solutions for data collection over ad hoc networks with

mobile and static nodes. Our contributions fall in the scope of network design for this application,

which we further broke down into three aspects: (i) scenario characterization; (ii) infrastructure

planning; and (iii) network operation.

We contributed to improve accurate scenario characterization on the particular field of propa-

gation modelling for device-to-device channels by proposing better methodologies to collect and

process experimental data. In the process of collecting RSSI-distance measurement pairs between

mobile devices or vehicles, GPS is one of the most widely used technologies to obtain position

estimates, but it is subject to numerous sources of errors that affect its position estimates. We

carried out field measurements to collect exact and erroneous position estimates, and evaluate the

difference in the estimated model parameters if one or other dataset are used. We formulate a

model for the error of distances extracted from GPS position estimates. From this study, we pro-

pose best-practice guidelines for measurement campaigns, specifically that measurements should

be taken at distance higher than
√

2σGPS. We also proposed an a posteriori parameter correction

strategy. This work was carried out in collaboration with Dr. Traian E. Abrudan and results have

been published at the IEEE Transactions on Wireless Communications [6].

In the perspective of infrastructural planning, the use of measurement data and datasets from

the scenario can improve the placement of intrafructural nodes and save resources. We addressed

the problem of placing road-side communication hubs that serve nearby sensor nodes by sending

their data to the cloud via urban wireless backhauls. In this problem, a number of practical, end-

system and communication constraints must be observed while seeking the goal of minimizing

the necessary resources. A particular aspect of this process is estimating data transfers from the

road-side nodes to vehicular nodes, for which we contributed with a novel approach for city-wide

estimation of data transfers in I2V links. This model builds on an experimental characterization

of the links between mobile and static terminals. We undertook a campaign to understand I2V

links between a road-side node and a large-scale vehicular network, and how local features of a
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particular location (bus stops, traffic lights) influence the measured values. The solutions produced

by our proposed decision support framework for placement of communication hubs were validated

against an actual platform. Regarding service by infrastructural backhaul, close to 60% of the

deployed DCUs are located up to 100 meters of a framework placement, and 87.5% had good or

sufficient WiFi service. For vehicular backhaul-served DCUs, our model for I2V data transfers

estimation can predict/estimate the actual data volumes up to one order and a half of magnitude.

The initial characterization experiments at a prototype DCU were published at ACM MobiCom

2015 Workshop on Challenged Networks [7], and the subsequent placement strategy has been

through a first round of reviews in a submission to ACM Transactions on Sensor Networks [8].

Our work on the third facet of network design, network operation, addresses the development

and test of protocols for gathering data from an ad hoc network of vehicular and static nodes at

an infrastructural base station. Existing base station-driven collection protocols harness beacon-

ing to set up a minimum spanning routing tree. In a dynamic network, this strategy is subject to

degradation of the routing information at the nodes as the time since the last beacon passes. Our

contribution is the evaluation of an opportunistic forwarding protocol paired with network coding

strategies and identification of the application and design conditions in which it may outperform

existing protocols. We developed a testbed to carry out an extensive exploration of the design

space of the framework protocol over connectivity traces obtained from a real-world scenario.

Our results support a number of practical insights regarding the design of network coding proto-

cols, such as: performance may vary with load on network, which in turn depends on requested

data volume and other mechanisms such as feedback; feedback and reliability are crucial for com-

petitive delivery rates; and redundancy should be injected at the source nodes instead of being

performed during transit to the base station. Comparing against a state-of-the-art beaconing-based

structured protocol (CTP), the network coding protocol fared better against a longer period be-

tween beacons in terms of PDR. This work has been carried out in collaboration with Professor

Daniel E. Lucani and a publication is being completed.

In addition to the core contributions of this thesis, some of the work carried out during this

thesis was developed within the scope of several projects, from where a number of additional

publications resulted but did not fit into this thesis.

• I co-authored an article describing the sensing platform UrbanSense alongside Yunior Luis,

Tiago Lourenço, Carlos Pérez-Penichet, Tânia Calcçada and Ana Aguiar, and that was pub-

lished in the IEEE flagship conference on smart cities, IEEE International Smart Cities

Conference [102], and that won the Best Student Paper award.

• Starting with M.Sc. student André Sá and terminating with M.Sc. student Diogo Guimarães,

alongside Tiago Condeixa from VENIAM and Prof. Dr. Susana Sargento from the Univer-

sity of Aveiro, we developed a data collection solution based on delay tolerant networking

that was showcased as a Demo at the ACM MobiCom 2015, in Paris [125].

• A high-level description of the PortoLivingLab [126] was co-authored by me and João Ro-

drigues, Susana Cruz, Tiago Lourenço, Pedro M. D’Orey, Yunior Luis, Susana Sargento,
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Ana Aguiar and João Barros, and is currently under review at the IEEE Internet of Things

Journal.

• I also co-authored an article describing the work carried out by M.Sc. Leonid Kholkine, in

collaboration with André Cardote from VENIAM and Ana Aguiar, regarding a solution to

the problem of undesired WiFi connections from smartphones to the vehicular access points

of BusNet and that was published in IEEE Vehicular Networking Conference 2016 [127].

• With M.Sc. student Fábio Cunha, we started a prediction model of the transferable data

volumes in I2V contacts from location features such as the number of stopping opportunities

(zebra crossings, traffic lights, bus stops) and range and number of lines-of-sight.

• Finally, the work of Chapters 3 and 5 of this thesis was carried out within the context of

the Vital Responder project. In this context, I developed an algorithm for dynamic building

evacuation system for indoor scenarios and built a demonstrator of this application [128] that

was showcased to the Minister of Science Dr. José Mariano Gago. An advanced version of

this system and a scheme for fast on-the-fly deployment was accepted at a conference with

Luís Pinto, Sérgio Crisóstomo, Traian E. Abrudan, and João Barros [129].

6.2 Limitations

There are a number of limitations that may apply to the contributions of this thesis and reduce

their scope of application.

In Chapter 3, the impact of GPS position estimates in parameter estimation can be alleviated

if the GPS receiver is capable of using historical position estimates (i.e. taken over some time

up to the current instant) for position enhancement. This is not considered within the scope of

our GPS error model, but this behaviour could be modelled by introducing a temporal dimension

to the standard deviation of the GPS error affecting position estimates, σGPS. While the overall

contribution of the work remains, the impact of the position estimates may be diminished as time

progresses up to a point that it no longer causes a noticeable impact.

The work about communication hub placement, presented in Chapter 4, uses a generic de-

ployment range to abstract from a particular technology for the link between sensor unit and com-

munication hub. In our particular application scenario, increasing this range is accompanied by a

growth in the number of served sensors, but in practice a subset of locations may not be able to sup-

port such distances. This issue can be addressed by introducing different deployment ranges and

costs that apply within areas with an adequate resolution. For example, considering the micro-cell

as the atomic spatial element, this strategy would imply that each micro-cell would be assigned a

deployment cost for each one of the pre-placed sensors that are located up to a maximum range.

Defining a maximum range per micro-cell will require incorporating a description of the cityscape

(or any other target environment) in our framework.

Finally, the performance of the structured (MST-based) and opportunistic protocols in Chap-

ter 5 can vary considerably as the scale of the target scenario varies, particularly as the number
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of nodes grows substantially. In the first case, routing information inconsistency is more prone to

occur as the number of nodes and hops increases, as the chances of link break up also increase.

In the second case, given the opportunistic nature of the protocol, congestion mitigation strategies

will play an important role to avoid saturation. A possible solution is to increase the number of

road-side units, in order to minimize the number of hops from any node to a base station. An alter-

native protocol design is to eliminate the route setup phase (in our case provided by the beaconing

mechanism) and apply geographical routing for packet forwarding, e.g. that of [61]. However,

geographical routing has been shown to underperform in some conditions [72].

6.3 Future Work

There are lines of potential evolution in each topic of this thesis.

Regarding the work of Chapter 3, the improvement of position estimates, particularly from

GPS data or other sources, is a thriving research area at this point. Substantial research is going

into the problem of mitigating GPS errors, either by design or post-processing on collected data

solution. It could be evaluated if the knowledge of the actual distances between multiple inexpen-

sive GPS terminals can be used to improve the location estimates from the terminals, following

the approach of [130]. Another research line may seek to understand the impact of erroneous path

loss models on ranging strategies.

The placement procedure for road-side client nodes discussed in Chapter 4 can be improved

by including more accurate datasets and models. There are currently in the literature some relevant

approaches to large-scale modelling of wireless channels and estimation of propagation parame-

ters, for example from crowdsensed datasets [35, 11]. It would be an exciting challenge to improve

the accuracy of our procedure for city-scale estimation of I2V data volumes and compare the re-

sults against the measurements taken by the UrbanSense platform. Also open for further research

are the validation of the number of connections as best predictor of I2V transferred data volumes,

and a more thorough study of association times in I2V connections.

The work described in Section 5, the extensive design space of a opportunistic forward-

ing/network coding protocol, has shown us the wide range performance profiles that can be ex-

pected from such protocol design. There is room to discuss if the additional complexity of a

network coding protocol is worth with respect to simpler protocols. Some recent works have ad-

dressed the performance of network coding in time-varying networks [131], that may add to this

discussion. The co-existence of multiple RSUs poses challenges both for structured and oppor-

tunistic protocols about which routing tree or information should each node use.

As a global future work, we will strive to achieve a full vertical integration of all three as-

pects of network design, as depicted in Figure 1.4. In this thesis, the aspect of network opera-

tion, explored in the third part (Data Collection Protocols), relied on simulation over connectivity

traces. In the future, we aim to carry out protocol simulation over mobility traces (as these are

more general than connectivity traces), incorporate the accurate channel models obtained with our

methodology, and simulate I2V collection service from our framework-recommended placements.



Appendix A

Reduction and Proof of Min-Hub
Problem

Reduction Procedure of Set Cover into Min-Hub Problem

We provide a polynomially time-bounded procedure to reduce the set cover problem to the Min-

Hub problem, and prove the validity of the procedure.

Let us first revisit the Min-Hub and set cover problems.

– Min-Hub problem: A set of communication hubs is to be placed to serve a set of pre-placed

sensor units S. The hubs can serve an arbitrary number of sensor units, as long as hubs are within

rd meters of the sensor units. Each potential hub can be uniquely identified by the set of sensor

units that share that hub. We refer to D as the collection of distinct sets of sensor units that can

share a hub, and we seek as a minimal collection D′ of sets of D that covers all elements in S.

– Set cover problem: Given a universe of elements U and a collection C of subsets of U , we

seek a subset C′ of C that contains all elements in U and is minimal in size.

A strategy to reduce the set cover problem to the Min-Hub problem is now presented.

Procedure for reduction:

Let U=S. Construct C as follows:

1. Set all elements of U (sensor units in S) as elements of C (i.e. we allow hubs to serve a

single sensor unit);

2. Determine all connected components of sensors distanced to any other sensor by 2rd or less.

For each connected component, find the subsets q in which all elements are within less than

2rd from all other elements in the same subset. Add subsets q to C.

3. Repeat step 2 over the subsets q output by the previous step, until no output subset has more

than 2 elements. �
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Proof of NP-hardness of Min-Hub Problem

We now provide a proof of the NP-hardness of the Min-Hub problem. The proof can be broken

down into two steps: (1) showing that the set cover problem is NP-hard; (2) proving that the set

cover problem can be reduced to the Min-Hub problem. Regarding the first point, the set cover

problem was proven to be NP-complete by Karp [106]. We proceed to address the second point.

The premise to be proven is that, if and only if the Min-Hub Problem instance we created is

a ’yes’ instance, the original instance of the set cover problem is a ’yes’ instance. The following

proof is loosely based on Section 8.1 of Kleinberg and Tardos [132].

Proof:

We start by constructing an instance of the Min-Hub problem from an instance of the set cover

problem. Let U = S. We create a collection D of sets of S as follows: label sets of C from 1 to n,

and assign all sets Ci ∈C as sets Di ∈ D. Note that Di ⊆ S for all i. This construction can be made

in polynomial time.

Assuming we have a black box for the Min-Hub problem, the same black box can be run for

this Min-Hub problem instance created from an instance of a set cover problem. We need to show

that, if the created Min-Hub problem instance is a yes instance, then the original set cover problem

instance is also a yes instance. We proceed to do so.

– Let C′ be a collection of sets that constitutes a set cover for U . From our construction, C′

corresponds to a collection D′ of groups of sensor units. We claim that the sets listed in D′ cover

S. Note that any element u of U is an element s in S. Given that C′ is a set cover for U , it follows

that all elements u must be contained in C′. Thus, knowing that C′ corresponds to a collection D′

of subsets of S, D′ contains all s ∈ S.

– Now, let us assume that a hub assignment D′ that associates hubs and sensor units minimally

exists. Since each set in C′ is naturally associated with a set in D, let C′ be the collection of these

sets. Thus, |D′|=|C′|. We claim that at least one set in D′ contains u, for any u. By construction,

U=S and any element u is an element s. The elements of D′ are individual s or sets of s, and thus

correspond to u or sets of u. Thus, D′ must contain at least one instance of each u, for any u.

�



Appendix B

Performance of Network Coding
Protocol over Design Space

Baseline configuration
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Figure B.1: Packet delivery ratio baseline
configuration for large requested data volume
(10KB/s/node).
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Figure B.2: Energy efficiency ratio baseline
configuration for large requested data volume
(10KB/s/node).
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Figure B.3: Packet delivery ratio baseline
configuration for small requested data volume
(3KB/s/node).
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Figure B.4: Energy efficiency ratio baseline
configuration for small requested data volume
(3KB/s/node).
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Forwarding Policies
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Figure B.5: Packet delivery ratio with differ-
ent forwarding policies for large requested data
volume (10KB/s/node).
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Figure B.6: Energy efficiency ratio with differ-
ent forwarding policies for large requested data
volume (10KB/s/node).
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Figure B.7: Packet delivery ratio with different
forwarding policies for small requested data
volume (3KB/s/node).
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Figure B.8: Energy efficiency ratio with differ-
ent forwarding policies c for small requested
data volume (3KB/s/node).

Congestion mitigation
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Figure B.9: Packet delivery ratio with and
without congestion mitigation for large re-
quested data volume (10KB/s/node).
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Figure B.10: Energy efficiency ratio with and
without congestion mitigation for large re-
quested data volume (10KB/s/node).
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Figure B.11: Packet delivery ratio with and
without congestion mitigation for small re-
quested data volume (3KB/s/node).
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Figure B.12: Energy efficiency ratio with and
without congestion mitigation for small re-
quested data volume (3KB/s/node).

Reliability mechanisms
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Figure B.13: Packet delivery ratio with and
without reliability mechanisms for large re-
quested data volume (10KB/s/node).
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Figure B.14: Energy efficiency ratio with and
without reliability mechanisms for large re-
quested data volume (10KB/s/node).
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Figure B.15: Packet delivery ratio with and
without reliability mechanisms for small re-
quested data volume (3KB/s/node).
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Figure B.16: Energy efficiency ratio with and
without reliability mechanisms for small re-
quested data volume (3KB/s/node).
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Redundancy injection policies

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

% decoded/requested packets

F
ra

ct
io

n 
of

 r
ou

nd
s

ECDF of packet delivery ratio

 

 

NC−e2ered
NC−h2hred

Figure B.17: Packet delivery ratio with differ-
ent redundancy injection mechanisms for large
requested data volume (10KB/s/node).
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Figure B.18: Energy efficiency ratio with dif-
ferent redundancy injection mechanisms for
large requested data volume (10KB/s/node).
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Figure B.19: Packet delivery ratio with differ-
ent redundancy injection mechanisms for small
requested data volume (3KB/s/node).
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Figure B.20: Energy efficiency ratio with dif-
ferent redundancy injection mechanisms for
small requested data volume (3KB/s/node).
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Figure B.21: Packet delivery ratio with differ-
ent Galois Field sizes for large requested data
volume (10KB/s/node).
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Figure B.22: Energy efficiency ratio with dif-
ferent Galois Field sizes for large requested
data volume (10KB/s/node).
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Figure B.23: Packet delivery ratio with differ-
ent Galois Field sizes for small requested data
volume (3KB/s/node).
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Figure B.24: Energy efficiency ratio with dif-
ferent Galois Field sizes for small requested
data volume (3KB/s/node).
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Figure B.25: Packet delivery ratio with dif-
ferent coding breadths for large requested data
volume (10KB/s/node).
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Figure B.26: Energy efficiency ratio with dif-
ferent coding breadths for large requested data
volume (10KB/s/node).
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Figure B.27: Packet delivery ratio with differ-
ent coding breadths for small requested data
volume (3KB/s/node).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

% decoded/total transmitted packets

F
ra

ct
io

n 
of

 g
en

er
at

io
ns

ECDF of energy efficiency ratio

 

 

Systematic
Full−coding

Figure B.28: Energy efficiency ratio with dif-
ferent coding breadths for small requested data
volume (3KB/s/node).
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