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Abstract

We address a range of schedulability analysis problems for multiprocessor real-time systems. As
most of these problems are NP-complete and no efficient solutions have been so far proposed,
we tackle these problems by employing mathematical optimization combined with the dynamic
pruning of the solution search space. We show that such an approach results in solving algorithms
of a significantly lower time and space complexity compared to other state-of-the-art solutions. In
the best case, the complexity can be reduced from exponential down to just linear.

We use the pruning approach to solve a range of schedulability analysis problems. We first
derive an exact schedulability test for sporadic real-time tasks, scheduled by Global Fixed Priority
(GFP). Our test is faster and less memory consuming, compared to all previously known exact
tests. We achieve such results by pruning the state space through employing such constraints as
i) a sufficient schedulability condition, ii) the length bound for the longest release sequence to
be considered, iii) critical job release instants, iv) an optimized clock transition between checked
system states, as well as others.

We also extend the test to continuous-time schedulers (e.g. an event-driven scheduler, which
is opposed to a tick-driven scheduler), discarding the assimption of discrete time and integer task
parameters, by employing linear programming methods combined with the search space pruning,
instead of naive enumeration methods.

Another considered problem is the schedulability analysis of compositional multiprocessor
real-time systems. Our solution is based on solving a set of mixed-integer non-convex optimization
problems. Due to their high complexity, no existing solver could efficiently determine a solution.
To make solving possible, we first prune the solution search space, exploring the theoretical insides
of the scheduling problem, and then employ an adequate optimization solver over a reduced search
space, so that it quickly finds an optimal solution. The resulted search space is so narrow, that
approximate solvers perform almost as good as exact ones: in most cases an approximate solver
finds a true global optimum, but significantly faster compared to an exact solver.

All solutions have been implemented in C++ and Matlab environments, and they are publicly
available.
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Resumo

Nesta dissertação focamos um conjunto de problemas de análise de escalonamento para sistemas
de tempo-real baseados em plataformas multi-processador. Uma vez que estes problemas apresen-
tam uma complexidade NP-complete e considerando a não existência de soluções verdadeiramente
eficientes, abordamos estes problemas através de uma estratégia de optimização matemática com-
binada com uma eliminação progressiva (dynamic pruning) do conjunto solução. Provamos que
esta estratégia permite reduzir a complexidade espacial e temporal dos algoritmos quando com-
parada com outras alternativas recentes. Deste facto resulta que, no melhor caso, a complexidade
pode ser decrementada de um grau exponencial até um linear.

Usamos a estratégia de eliminação progressiva para resolver uma série de problemas de análise
de escalonamento, nomeadamente, para conseguir um teste de escalonabilidade exacto para tarefas
esporádicas e de tempo-real, escalonadas com Global Fixed Prioriy (GFP). O teste de escalonabil-
idade conseguido é mais rápido e mais eficiente em termos de memória utilizada quando com-
parado com todos os outros testes já propostos. Este resultado é conseguido através do processo
de eliminação progressiva do conjunto de estados, considerando os seguintes requisitos: i) uma
condição de escalonabilidade suficiente; ii) o limite para o maior período de sequência de tarefas
a ser considerado; iii) os instantes críticos de início de cada tarefa; iv) uma transição de relógio
optimizada entre os estados verificados do sistema e restantes estados.

Nesta dissertação também estendemos o teste referido acima para escalonadores de tempo con-
tínuo (um escalonador baseado em eventos em vez de instantes temporais), descartando a premissa
da necessidade de parâmetros de tarefas inteiros e de tempo discreto, utilizando para isso métodos
de programação linear combinados com a estratégia de eliminação progressiva já referida, em vez
de métodos de enumeração.

A análise de escalonamento de sistemas de tempo-real, multi-processador e compostos foi tam-
bém estudada nesta tese. A solução proposta é baseada na resolução de um conjunto de problemas
de optimização não convexos. Devido à grande complexidade inerente a este tipo de sistemas, não
foi possível até hoje determinar uma solução de uma forma eficiente. Nesse sentido, propomos
uma abordagem que começa por eliminar progressivamente o conjunto de soluções, explorando as
premissas teóricas deste tipo de problemas, e depois procurando a sua solução já com um conjunto
de soluções menor. Após este processo de eliminação, o conjunto de soluções é tão diminuto que
a aplicação de métodos aproximados quer exactos resulta de forma extremamente semelhante em
termos de eficiência.

Todas as propostas foram implementadas em C++ e em MATLAB e encontram-se disponíveis.
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Chapter 1

Introduction to Real-time Scheduling

The key property of a real-time system is time predictability: the operations in such a system must

be performed within a strictly defined time. A correct behaviour of a real-time system depends

not only on the logical correctness of performed actions, but also on the time at which they are

performed. Real-time systems are present in many application areas, such as industial control,

avionics, telecommunications, stock trading platforms, and others (Davis and Burns, 2011a).

A real-time system is defined by its workload, an execution platform, and a scheduling algo-

rithm.

A real-time workload is modeled by a set of periodic or sporadic tasks T = {τ1, . . . ,τn},
wherein each task τi = (Ci,Di,Pi) is characterized by an execution time Ci, a relative deadline Di,

and a period Pi for a periodic task τi, or a minimum interarrival time Pi between jobs for a sporadic

task τi (Liu and Layland, 1973).

Tasks in T release an infinite sequence of jobs. The first job for each task τi ∈ T can be

released at an arbitrary time. (We call such a time instant as the activation time of τi.) If task τi is

periodic, then it releases another job at every Pi time units starting from the release instant of its

first job. If instead τi is sporadic, then it releases another job at an arbitrary time, but not earlier

than Pi time units after the release time of its previous job.

Figs. 1.1 and 1.2 provide the examples of release scenarios for task τ = (2,4,5), with Fig. 1.1

assuming that task τ is periodic, and Fig. 1.2 assuming that τ is sporadic. Task τ is set to release

its first job at time t = 0.

The graphical notation presented in Fig. 1.3 is used throughout this manuscript. An upward

arrow denotes the release of a job, and a downward arrow denotes the completion of a job. A

dashed line denotes the deadline of a job, and a dashed upward arrow denotes the earliest possible

release of the next job, in case of a sporadic task. Finally, a grey block denotes the amount of

resource allocated to a job (a resource unit corresponds to one CPU time unit).

A job of task τi is completed after receiving Ci resource units. A deadline of a job is Di time

units after its release time; each job must be completed by its deadline, otherwise a job is said to

miss its deadline.
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Figure 1.1: Release scenario for a periodic task τ =(2,4,5)
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Figure 1.2: Release scenario for a sporadic task τ =
(2,4,5)

-	the	release	of	a	job	

-	the	comple1on	of	a	job	

-	the	deadline	of	a	job	

-	the	earliest	possible	release	
		of	a	consecu1ve	job	
		for	a	sporadic	task	

-	allocated	resource	
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Figure 1.3: Graphical notation
for a resource schedule (used
throughout the manuscript)

We assume that tasks have constrained deadlines, such that Di ≤ Pi. We also restrict jobs to

execute upon one processor at a time; no concurrent execution of the same job is allowed.

An execution platform is modeled by the number of processors m available to execute jobs.

Each processor has an equal execution speed. We consider a multiprocessor system with m > 1.

A scheduling algorithm is used to allocate processors to pending jobs, with a job said pending

if it is waiting for execution. When the number of pending jobs exceeds the number of processors,

a scheduler prioritises pending jobs by a certain rule, and allocates processors to the m highest

priority jobs. Many scheduling algorithms are available, such as fixed priority (FP) or the earliest

deadline first (EDF).

A comprehensive taxonomy of real-time systems is provided by Davis and Burns (2011a).

1.1 Global FP and EDF schedulers

We consider two scheduling algorithms, global fixed priorities (GFP) and global earliest deadline

first (GEDF). Term “global” means that jobs are allowed to migrate between various processors.

A job can preempt the execution of other lower priority jobs. We consider no migration or pre-

emption costs. Unless stated otherwise, we consider discrete-time scheduling, that is scheduling

decisions are taken at discrete time instants t ∈ N0 with N0 = {0,1,2, . . .}. We next describe how

job priorities are determined in case of GFP and GEDF.

For GFP, each task has a pre-defined fixed priority. We assume that tasks in T are sorted by

decreasing priorities, meaning that task τi has a higher priority than τi+1. At any time instant, GFP

allocates processors to the m highest priority jobs, while the remaining jobs are suspended from

execution.

In Fig. 1.4 we provide an example of a GFP schedule for a sporadic T with parameters re-

ported in Table 1.1, which is scheduled upon m = 2 processors. Note that at time t = 2, the number
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τ1
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Figure 1.4: GFP schedule
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Figure 1.5: GEDF schedule

i Ci Pi Di

1 3 8 8
2 2 4 4
3 4 7 7

Table 1.1: Task set parameters
(sporadic)

of pending jobs exceeds the number of processors (3 pending jobs, but only two processors); the

processors are allocated to jobs of higher priority tasks τ1 and τ2.

Unlike GFP with pre-defined fixed priorities for tasks, GEDF prioritises jobs dynamically over

time, by assigning higher priorities to jobs with earlier deadlines. Fig. 1.5 provides an example

of a GEDF schedule, for T with parameters listed in Table 1.1, scheduled upon 2 processors.

Observe that at time t = 2, when the number of pending jobs exceeds the number of processors,

GEDF allocates processors to tasks τ2 and τ3, instead of tasks τ1 and τ2, as in case of GFP depicted

in Fig. 1.4.

1.2 Schedulability analysis

For a real-time system, all jobs should meet their deadlines. A system is said schedulable, if all

job deadlines are guaranteed to be met, for any legal scenario of job releases; otherwise a system

is said unschedulable.

To check if a system is schedulable, a schedulability test is used. Various schedulability tests

exist, which can be exact, sufficient, or necessary, depending on their accuracy in provisioning the

resource demand by a system.

An exact test correctly defines all schedulable and unschedulable systems, meaning that a

system T is schedulable if and only if it satisfies such a test. However, an exact schedulability test

for a multiprocessor system is considered to be an NP-hard problem. No efficient exact test has

been derived so far, which can be applied to systems with realistic task parameters (see evaluation

in Section 2.5.3). Thus, sufficient and necessary tests have been also introduced.

A sufficient schedulability test overestimates the system demand for resource. If system T

meets a sufficient test, then such T is indeed schedulable. If however T fails a test, it is not

known if T is schedulable or not. Existing sufficient tests are pessimistic, meaning that many of

systems, although violating a sufficient test, are schedulable (see evaluation in Section 2.5.3).
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Unlike a sufficient test, a necessary test underestimates the system demand for resource. Each

T , violating a necessary test, is unschedulable. If however T meets a test, it is not known if T

is schedulable or not.

The computational complexity of sufficient and necessary schedulability tests is significantly

lower compared to exact tests. In fact, there are various sufficient and necessary tests of polynomial

and pseudo-polynomial complexity (in the number of tasks in T ), while existing exact tests are

strongly exponential.

Necessary and sufficient tests can be used supplimentary to reduce the computation time of

an exact test (see Section 2.5.1.2), by pruning the search space for the worst-case scenario of job

releases.

Baker and Baruah (2009) have shown that GFP and GEDF are sustainable schedulers, that is

the schedulability of sporadic tasks remains in case task execution times are reduced, or/and task

periods are increased.

1.3 Discrete and continuous-time scheduling

We distinguish discrete and continuous-time scheduling. Below we describe the key difference

between these cases.

If time is discrete, then jobs and scheduling decisions are taken at discrete time instants only,

t ∈ N0. If instead time is continuous, then jobs can be released at an arbitrary time t ∈ R+
0 .

Schedulability for discrete time can be checked by a direct enumeration of all possible scenar-

ios for job releases for a system, as the number of feasible release scenarios in this case is finite

(over a certain finite time interval). Such an approach however cannot be applied to continuous

time, as the number of release scenarios becomes infinite. Note that it is not yet known if the

schedulability of a system for discrete time implies the schedulability for continuous time (Baruah

and Pruhs, 2010).

On another side, the schedulability analysis is expected to have a higher computational com-

plexity, compared to continuous time, due to a larger number of integer-valued parameters. This is

due to the fact that the computational complexity of a problem increases drastically with a number

of integer-valued parameters.

Another argument in favor for the continuous-time analysis is that most of real-time operating

systems are event-driven, rather than tick-based, e.g. Linux, QNX, RTEMS, what corresponds to

a case of continuous-time scheduling.

In this work we consider both cases, discrete and continuous-time scheduling. Unless stated

otherwise, time is assumed discrete.

1.4 Open problems in real-time scheduling

There are multiple opened problems in real-time scheduling. One of them is an exact schedu-

lability test for multiprocessor systems. Although pseudopolynomial-time exact schedulability
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tests exist for a uniprocessor platform (Liu and Layland, 1973; Joseph and Pandya, 1986; Bini

and Buttazzo, 2004), the available exact tests for a multiprocessor platform are highly time and

memory-consuming, and they become intractable for systems with realistic task parameters.

The main difficulty in deriving an exact schedulability test for a multiprocessor system is a lack

of understanding for the worst-case release scenario for jobs. Most of the exact tests enumerate

directly all feasible release scenarios, assuming that time is discrete, and these tests become in-

tractable even for systems with a few tasks only. In fact, schedulability analysis for multiprocessor

systems is considered as an NP-hard problem.

Hence, many research works focused on necessary and sufficient tests instead, which however

significantly underestimate and overestimate the system demand for processing capacities. For

example, a state-of-the-art sufficient test by Guan et al. (2009) fails to identify more than half

of schedulable task sets, under certain settings. The pessimism of sufficient tests is expected to

increase further, when applied to more general cases, such as compositional real-time systems,

systems with precedence constraints between tasks, or DAG tasks.

In Section 2 we propose an exact schedulability test for sporadic tasks, which outperforms the

state-of-the-art tests in terms of computation time.

In addition, we address another important problem - schedulability analysis for compositional

scheduling. In Section 3, we first derive an exact worst-case resource allocation scenario for a

range of multiprocessor resource models, and then we explore it to derive a tigher and faster

schedulability test.

1.5 Search space pruning

Below we briefly introduce the idea of a search space pruning, which is extensively used in later

sections.

Consider a problem of finding an optimal solution over a given set of candidate solutions. An

optimal solution is the one satisfying a certain optimality criteria. The aim of pruning is to reduce

the computation time for a problem, by shrinking the search space for a solution. Pruning excludes

all those candidates from the analysis, which violate a certain necessary condition for an optimal

solution. Such a necessary condition for an optimal solution is assumed to be given.

We illustrate graphically the idea of pruning in Fig. 1.6, considering the problem of an exact

schedulability test. T = {τ1, . . . ,τk} represents a set of sporadic tasks under the analysis, with

tasks in T sorted by decreasing priorities, and scheduled by GFP. We test the schedulability of the

lowest-priority task τk.

Fig. 1.6(a) represents an infinite set of feasible release scenarios for T , denoted by LR. In

Fig. 1.6(a), each grey circle corresponds to a certain release sequence. Schedulability test aims to

determine the existence of such a case R∗ ∈ LR, that a job of task τk misses its deadline.

We next prune LR. Davis and Burns (2011b) have proved the sufficiency of considering only

those release scenarios, wherein task τk releases a job simultaneously with at least one more task.

Thus, LR can be reduced into L′R, by excluding all release scenarios violating such a condition.
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Figure 1.6: A schematic illustration of a search space pruning for an exact schedulability test

Such L′R is depicted in Fig. 1.6(b), where light grey circles with dashed boundaries denote the

cases violating the condition of Davis and Burns (2011b). Observe that the worst-case R∗ remains

in L′R. Note however that L′R remains infinite.

Another pruning condition is derived later in Section 2. According to it, the length of consid-

ered release sequences should not exceed the sum of task deadlines. Such a condition allows to

reduce L′R into L′′R, which is schematically depicted in Fig. 1.6(c). Observe that L′′R is finite, thanks

to such a pruning condition.

To achieve an efficient pruning, the employed pruning constraints should provide a good bal-

ance between their computation time and the size reduction of the solution search space. We

elaborate the idea of pruning in later sections.

1.6 Thesis

We evaluate the following thesis:

A range of schedulability analysis problems for real-time multiprocessor systems can be effi-

ciently addressed by using a method of a search space pruning.

Our approach is evaluated for an exact schedulability analysis and compositional analysis of

real-time multiprocessor systems. In the best case, the exponential runtime complexity of the

state-of-the-art solutions is reduced to linear, thanks to pruning.

1.7 Contributions

We derive several methods for the schedulability analysis of multiprocessor real-time systems, by

exploring the idea of a search space pruning. Our contributions include:



1.7 Contributions 7

(a) An exact schedulability test for GFP disrete and continous-time scheduling, which is faster

and less memory consuming compared to other state-of-the-art exact tests (Section 2).

(b) A set of necessary conditions for the GFP worst-case execution scenario, which are:

(a) the maximum length of a schedule, which is bounded by the sum of task deadlines

(Section 2.5.1.1);

(b) conditions for a critical release instant for a job, generalizing the analysis of Davis and

Burns (2011b) (Section 2.5.1.3);

(c) a necessary unschedulability condition, generalizing the analysis of Baruah (2007)

(Section 2.5.1.2);

(d) a job interference condition, requiring each job in a schedule to interfere with some

lower priority job (Section 2.5.1.1);

(e) an optimized clock transition between checked system states (Section 2.5.1.4).

(c) A set of necessary conditions for the worst-case execution scenario independent of a schedul-

ing policy. These conditions include i) the condition for interfering jobs (Section 2.5.1.1),

and ii) a necessary unschedulability condition (Section 2.5.1.2).

(d) The analysis of the pessimism of the state-of-the-art sufficient schedulability tests (Sec-

tion 2.5.3.3).

(e) The formulation of an exact schedulability test for GFP continuous-time scheduling, by

using linear programming (LP, Section 2.6) and constraint programming (CP, Section 2.7).

We also derive several methods for compositional scheduling, including:

(a) A generalized multiprocessor periodic interface model (GMPR), which generalizes the other

state-of-the-art periodic interface models (Sections 3.5 and 3.5.4).

(b) The analysis of efficiency of the state-of-the-art interface models in abstracting the resource

requirements of real-time components (Sections 3.4 and 3.9).

(c) The worst-case resource allocation scenarios for multiprocessor interface models, consider-

ing both identical replenishment periods (Section 3.5.2), and arbitrary replenishment periods

(Section 3.5.4) for concurrent supplies.

(d) A faster sufficient schedulability test for real-time compositional scheduling, extending the

sufficient test by Bini et al. (2009) (Section 3.6).

(e) A method for solving mixed-integer non-convex optimization problems by pruning dynam-

ically a solution search space (Sections 3.7.2 and 3.7.3).

(f) A method to schedule a set of component interfaces at an inter-component level (Sec-

tion 3.8).

All solutions are implemented in C++ and Matlab environments, which are publicly available.
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1.8 Outline

The remainder of the manuscript is organized as follows.

In Section 2 we propose a faster exact schedulability test for sporadic tasks scheduled by GFP.

In particular, in Sections 2.1-2.4 we motivate a need for an exact schedulability test, and provide a

background information on it. In Section 2.3 we introduce a formal notation to model release and

completion sequences for tasks, resource schedules, etc. Our major contributions are described

in Section 2.5, where we derive a set of methods for a faster exact schedulability test, including

a necessary unschedulability condition, condition for a critical release instant, an optimized clock

transition between checked system states, etc. Finally, in Section 2.5.3 we report the evaluation

results, showing the runtime reduction for an exact test thanks to our improvements, as well as

analyzing the pessimism of the available sufficient tests.

In addition, in Sections 2.6 and 2.7 we propose an exact schedulability test for GFP continuous-

time scheduling, by using linear programming methods (LP), and constraint programming meth-

ods (CP).

Then, in Section 3, we apply pruning optimization to a different type of scheduling - composi-

tional multiprocessor scheduling. First, in Sections 3.1-3.4 we motivate a need for compositional

scheduling, and review the concepts and notations related to our work. In Section 3.5 we introduce

a generalized multiprocessor periodic interface model (GMPR), and then, in Sections 3.6 and 3.7,

we derive an algorithm to compute GMPR, by using linear programming combined with a dy-

namic pruning of a solution search space. For completeness, in Section 3.8 we briefly describe a

method for scheduling GMPR interfaces between themselves. Finally, in Section 3.9 we evaluate

the efficiency of GMPR in abstracting the resource demands, compared to other state-of-the-art

models.

The formal proofs for theorems are provided in Appendix A.



Chapter 2

An Exact Schedulability Test for
Global Fixed Priorities (GFP)

2.1 Motivation

Guan et al. (2009) have derived a sufficient schedulability test for multiprocessor real-time sys-

tems, which in average outperforms all other existing sufficient tests. To understand the need for an

exact schedulability test, we thoroughly evaluated the performance of Guan’s sufficient test against

the exact test of Bonifaci and Marchetti-Spaccamela (2012), and in certain cases, its pessimism

exceeds 50%: more than half of those task sets, reported by Guan’s test as unschedulable, are in

fact schedulable. However, due to high computation time and memory consumption, Bonifaci’s

exact test becomes intractable even for small systems.

We next propose an improved exact schedulability test, by deriving a set of pruning methods

for the state space determined by Bonifaci. We consider a set of sporadic tasks T = {τ1, . . . ,τn}
scheduled by GFP upon m processors, with tasks in T sorted by decreasing priorities. For each

task τi = (Ci,Di,Pi), parameters Ci, Di, Pi are assumed to be integers, as well as deadline Di is

constrained to Di ≤ Pi. Scheduling decisions are taken at discrete time instants N0 = {0,1,2, . . .}.
In addition, we propose two exact tests for continuous-time scheduling, based on linear pro-

gramming (LP), and constraint logical programming (CP).

2.2 Related works

The first exact schedulability test has been proposed by Baker and Cirinei (2007), for several

discrete-time schedulers. To check whether a given system is schedulable, the authors solve a

reachability problem in a finite state transition graph: the algorithm traverses such a graph until it

either finds a state with a violated deadline, or all feasible states are confirmed schedulable.

Bonifaci and Marchetti-Spaccamela (2012) improved significantly the test of Baker and Cirinei

(2007). They have also refined the complexity bounds for the exact test, showing that it has

polynomial space complexity, rather than exponential, as reported in Baker and Cirinei (2007).

9
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An efficient C++ implementation for Bonifaci’s test is publicly available1. As our work strongly

relies on Bonifaci and Marchetti-Spaccamela (2012), Section 2.4 will provide more details on that

work.

Another exact test was proposed by Geeraerts et al. (2013), using formal verification methods.

Both the test of Bonifaci and Marchetti-Spaccamela (2012) and the test of Geeraerts et al. (2013)

apply to most of online discrete-time schedulers, such as GFP and GEDF, and allow tasks with

arbitrary deadlines. Sun and Lipari (2014) have instead derived a test specifically for GFP, by

using a linear hybrid automaton.

Finally, Guan et al. (2007) proposed a test for strictly periodic tasks with arbitrary offsets,

scheduled by GFP, which uses the model-checking techniques from the theory of formal verifi-

cation. However, in multiprocessor scheduling, the scenario with periodic activations is not the

worst-case for sporadic tasks, and an exact test for sporadic tasks must analyze a significantly

larger number of legal release sequences.

Our evaluation has shown that the test of Bonifaci and Marchetti-Spaccamela (2012) for GFP

is faster, when compared to the exact tests using a timed automaton, that is by Geeraerts et al.

(2013), and Sun and Lipari (2014). Such a conclusion is based on comparing running times

reported in Geeraerts et al. (2013), Sun and Lipari (2014) against our evaluation reported in Sec-

tion 2.5.3. The runtime gain of Bonifaci’s test increases noticeably for task sets with a larger

number of tasks, and a larger range of task periods. For example, while Geeraerts’ test is con-

strained to task periods not exceeding 6-8, Bonifaci’s test can deal with larger task periods up to

40.

We have also made some initial evaluation of constraint programming and global optimization

methods (such an optimization problem can be formulated through the notation proposed in Sec-

tion 2.3), but the resulted runtime was much longer than for Bonifaci’s test. For these reasons, we

have chosen Bonifaci’s test as an initial ground to apply our improvements. Anyway, we remark

that all runtime reduction techniques derived in this work can be applied to any other existing exact

test for GFP.

2.3 Definitions

To represent the possible scenarios of job releases, we define the release sequence R as a set of n

functions

R = {r1(t), . . . ,rn(t) | t ∈ N0},

wherein each function ri : N0 → {0,1} is such that ri(t) = 1 if τi releases a job at time t, and

ri(t) = 0 otherwise.

1http://www.iasi.cnr.it/~vbonifaci/software.php

http://www.iasi.cnr.it/~vbonifaci/software.php
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The release sequence R is said legal if the constraint on the job minimum interarrival times is

met, that is:
∀i = 1, . . . ,n, ∀tr, t ′r ∈ N0, tr < t ′r,

ri(tr) = 1 ∧ ri(t ′r) = 1 ⇒ t ′r− tr ≥ Pi,
(2.1)

where tr, t ′r represent two arbitrary release instants for τi in R.

Also, we define the finishing sequence F as a set of n functions

F = { f1(t), . . . , fn(t) | t ∈ N0},

wherein each function fi : N0→ {0,1} is such that fi(t) = 1 if a job of τi is completed at time t,

and fi(t) = 0 otherwise.

Set Q is defined by

Q = {q1(t), . . . ,qn(t) | t ∈ N0},

wherein each function2 qi : N0 → {0,1} indicates if τi has a pending job at time t (in the run

queue), defined by:

qi(t) =
t

∑
t ′=0

ri(t ′)−
t

∑
t ′=0

fi(t ′). (2.2)

A schedule is represented by a set S of n functions

S = {s1(t), . . . ,sn(t) | t ∈ N0},

with si(t) = 1 if any processor among the m available ones is allocated to τi over time [t, t + 1),

and si(t) = 0 otherwise. With these notations, GFP schedule S is formally defined by

si(t) = 1 ⇔ qi(t)> 0 ∧
i−1

∑
`=1

q`(t)< m, (2.3)

as well as the indicator function fi(t) of the finishing time for τi is defined by

fi(t) = 1 ⇔

∃tr < t : ri(tr) = 1 ∧
t−1

∑
t ′=tr

si(t ′) =Ci ∧ si(t−1) = 1
(2.4)

Fig. 2.1 illustrates an example of a GFP schedule of T = {τ1,τ2,τ3}. Below the schedule, we

list the respective values for R, F , Q, and S, where the i-th row corresponds to task τi, and the j-th

column corresponds to time instant t = j−1.

Time instants tr, tc are said to be the release and completion times of the same job of τi, if the

2We assume that no deadline miss has occurred by time t, meaning that τi has at most one pending job, due to
Di ≤ Pi
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τ1
τ 2
τ 3

Nota%on:(
job$release$
job$comple-on$
job$preemp-on$

resource$
alloca-on$

R : 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0

t0 2 4 6 8

F : 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0 0

Q : 0 1 1 1 0 0 0 0 0
0 0 1 1 0 0 1 1 0
1 1 1 1 1 1 0 0 0

S : 0 1 1 1 0 0 0 0 0
0 0 1 1 0 0 1 1 0
1 1 0 0 1 1 0 0 0

Figure 2.1: GFP schedule

following conditions hold:

ri(tr) = 1 ∧ fi(tc) = 1 ∧
tr

∑
t=0

ri(t) =
tc

∑
t=0

fi(t), (2.5)

meaning that i) some job of τi is released at time tr, ii) some job of τi is completed at time tc, and

iii) the number of τi releases over time [0, tr] equals to the number of τi completions over time

[0, tc].

We define the schedulability of T as follows.

Definition 1 (Schedulability of T ). Let LR denote all legal release sequences of task set T ,

satisfying (2.1). T is said schedulable upon m processors, if for any R ∈ LR, all jobs of task τi,

i = 1, . . . ,n, meet their deadlines:

∀R ∈ LR, ∀i ∈ {1, . . . ,n}, ∀(tr, tc), tc− tr ≤ Di, (2.6)

where tr, tc are the respective release and completion times for the same job of τi, defined by (2.5).

2.4 Background on exact schedulability tests

Bonifaci and Marchetti-Spaccamela (2012) analyzed the schedulability of sporadic tasks by travers-

ing a finite non-deterministic state transition graph, searching for a state with a violated deadline.
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As our work aims at improving their approach, next we revisit the main ideas behind Bonifaci’s

work Bonifaci and Marchetti-Spaccamela (2012).

At a given time t, the state of the set of tasks is modeled by

(
ci,di, pi

)n
i=1 ∈ N3n

0 , (2.7)

where ci ∈ {0, . . . ,Ci} is the remaining execution time of τi pending job at t, if any; di ∈ {0, . . . ,Di}
is the remaining time until its deadline; and pi ∈ {0, . . . ,Pi} is the remaining time until the earliest

release of the next job of τi.

For tasks with implicit deadlines Di = Pi, we can reduce the definition of a system state above

by excluding parameter di: (
ci, pi

)n
i=1 ∈ N3n

0 ,

as di = pi always. Such an optimized representation of a state allows to reduce the amount of

memory consumed by an algorithm for traversing a state transition graph.

A state transition graph for T is constructed as follows (see also Fig. 2.2). Each state in

the graph represents a system state (ci,di, pi)
n
i=1 at a given time t. The initial state is (0,0,0)n

i=1,

meaning that no job has been yet released.

The state transition law, which governs the transition from state g = (ci,di, pi) at time t to the

next state g′ = (c′i,d
′
i , p′i) at time t +1, is the following:

g′ ∈ G′ ⇐⇒


c′i = ci− si(t)+ ri(t +1)Ci

d′i = max(di−1,0)+ ri(t +1)Di

p′i = max(pi−1,0)+ ri(t +1)Pi,

(2.8)

where G′ is a set of all successors for g at time t +1. In the equation above, si(t) is the schedule

function of τi uniquely determined by the system state g through (2.3), and ri(t +1) represents the

release function (the “input” to the system) satisfying (2.1); that is

pi−1 > 0 ⇒ ri(t +1) = 0

pi−1 = 0 ⇒ ri(t +1) ∈ {0,1}.
(2.9)

State (c′i,d
′
i , p′i)

n
i=1, at time t, is a scheduling failure state, if some job misses its deadline:

c′i− ri(t)Ci > d′i − ri(t)Di, (2.10)

with ri(t) defined by (2.9). This condition is true when the remaining execution time for a job

(LHS of (2.10)) exceeds the remaining time until its deadline (RHS of (2.10)). ri(t)Ci, ri(t)Di are

subtracted to correctly consider the case when the deadline of a job of τi coincides to the next

release of τi.

Once the scheduling failure state is encountered, the algorithm reports unschedulability of T ,

and terminates. If instead all feasible states have been checked, and no failure state has been
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Algorithm 1 Exact schedulability test
1: procedure EXACTSCHEDULABILITYTEST

2: V ← /0 . initialize V
3: G← (0,0,0)n

i=1 . initialize G
4: while G 6= /0 do
5: g← Dequeue(G)
6: compute G′ for g . from Eq. (2.8)
7: for each g′ ∈ G′ do
8: if g′ 6∈V then
9: if ∃i, (2.10) holds then . deadline miss

10: return Unschedulable
11: end if
12: V =V ∪{g′}
13: G = Enqueue(G,g′)
14: end if
15: end for
16: end while
17: return Schedulable
18: end procedure

detected, then T is reported schedulable.

Algorithm 1 implements Bonifaci’s test using breadth-first search (Cormen et al., 2009). It

maintains two additional data structures: V is a set of checked states at previous iterations, and G

is a FIFO queue, containing states for further examination.

Algorithm 1 works as follows. Set V of checked states is initially empty, and queue G contains

only the initial state g0 = (0,0,0)n
i=1. At the first iteration of the while loop, the algorithm removes

g0 from G, and computes set G′ of successors for g0 using (2.8). Then, each state g′ ∈G′ is checked

for a deadline miss (line 9), added to a list of checked states V (line 12), and added to queue G, to

examine the g′ successors at further iterations.

At each iteration of the while loop, the algorithm removes the first state g from queue G

(line 5), and computes set G′ of successors for g (line 6). Each state g′ ∈ G′ that has not been

checked yet (that is g′ 6∈V ), is checked for a deadline miss, and added to V and G.

The algorithm terminates when queue G becomes empty, meaning that all feasible system

states have been examined.

A higher runtime efficiency of Bonifaci’s Algorithm 1 compared to other exact tests is mainly

thanks to condition in line 8: each system state in a graph is checked only once. However, the same

approach cannot be applied directly to tests using a timed automaton, due to specifics of a timed

automaton. One solution has been proposed by Geeraerts et al. (2013), who derived a so called

simulation relation technique for a timed automaton, but it does not seem to be more efficient than

Bonifaci’s approach.

Anyway, Algorithm 1 has exponential time and polynomial space complexity, and it might not

terminate in a reasonable time even for small T . According to our evaluation, Bonifaci’s test is
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Table 2.1: Bonifaci’s test: Task set example

i Ci Pi Di

1 2 3 3
2 1 4 4
3 3 5 5

capable to deal with up to 5–6 tasks scheduled upon 2 processors, considering very small range of

task periods, not exceeding 40.

Consider T with parameters reported in Table 2.1, to be scheduled by GFP upon m = 2

processors. In Fig. 2.2 we report the fragments of the state transition graph for such T . The total

number of distinguishable states in the full graph is 191.

0,0, 0( )
0,0, 0( )
0,0, 0( )

2,3,3( )
0,0, 0( )
0,0, 0( )

0,0, 0( )
1, 4, 4( )
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2,3,3( )
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3,5, 5( )
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0,0, 0( )
0,0, 0( )

…"t = 0

…"
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…"

…"
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…"
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…"

Nota%on:(
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c3, p3,d3( )
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"between"states"

⎫
⎬
⎭
system"
state"

…" branches"
omi2ed"

job"is"
released"

processor"
is"allocated"

1,2, 2( )
0,3, 0( )
3, 4, 4( )

…"

0,1, 0( )
0,0, 0( )
0,0, 0( )

0,1, 0( )
0,2, 0( )
2,3,3( )
…"

Figure 2.2: State transition graph

For the same T , our test checks 12 states only, instead of 191, in one sixth of the running

time relative to the test of Bonifaci and Marchetti-Spaccamela (2012), and the efficiency of our

test increases for larger task sets.

2.5 An exact schedulability test using state space pruning

We next derive an improved exact schedulability test, exploring the idea of the state space pruning.

The test checks schedulability of task τk, assuming that τ1, . . . ,τk−1 are schedulable. Although we
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consider GFP scheduler, most of the proposed improvements can be easily extended for other

schedulers, such as GEDF.

2.5.1 Pruning constraints

Below we present a set of pruning methods, listed in the order of their decreasing complexity.

2.5.1.1 Job interference

We first show that, when analyzing schedulability of task τk, we can safely ignore any job of a

higher-priority task τi, i < k, that causes no interference to any lower-priority tasks τi+1, . . . ,τk.

Let us define job interference as follows.

Definition 2 (Job interference). Let Ji denote an arbitrary job of τi, with release and completion

times denoted by tr and tc respectively. Job Ji is said to interfer with a lower priority job J` of τ`,

` > i, if at some time t ∈ [tr, tc) a processor is allocated to Ji, but not to J`:

∃` > i, ∃t ∈ [tr, tc) :

si(t) = 1 ∧ q`(t) = 1 ∧ s`(t) = 0,
(2.11)

with si(t), q`(t) defined by (2.3), (2.2).

We clarify this definition on an example. Let T = {τ1, . . . ,τ4} be scheduled upon m = 2

processors. Consider the release sequence R for T as depicted in Fig. 2.3(a), and suppose that we

analyze schedulability of task τ4. Job J1,1 of τ1 interferes with job J3,1 of τ3 at time t = 2, as (2.11)

holds:

s1(2) = 1 ∧ q3(2) = 1 ∧ s3(2) = 0.

Instead, job J3,1 does not interfere with J4,1, as (2.11) is violated. By removing such non-

interfering jobs, we can produce a different arrival sequence that does not affect the schedule of

task τ4. Let us transform R, depicted in Fig. 2.3(a), into R′, by erasing all jobs of task τi, i < 4,

which do not interfere with lower priority jobs. These jobs are J2,2, J3,1, and J3,2. Observe that the

amount of resource available for τ4 in R′ is the same as in R.

The next theorem generalizes such an observation.

Theorem 1. Assume that τ1, . . . ,τk−1 are schedulable. Let R = {r1(t), . . . ,rk(t)} be any legal re-

lease sequence for T , and let Ji,t denote the τi job, released at time t. Let R′ be a new release

sequence that excludes all jobs of task τi from R, i < k, which violate the interference condi-

tion (2.11):
R′ ={r′1(t), . . . ,r′k(t)} :

r′i(t) =

{
1, if ri(t) = 1 and (2.11) holds for Ji,t

0, otherwise
,

i = 1, . . . ,k−1,

r′k(t) = rk(t).

(2.12)
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τ1

t0 12

τ 2
τ 3

J2,1 J2,2
J1,1

J3,2J3,1
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R,  S :

2 4 6 8 10

τ1

t0 12

τ 2
τ 3

J2,1
J1,1

J4,1τ 4

′R ,  ′S :
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(a) A legal release sequence R for T

τ1

t0 12

τ 2
τ 3

J2,1 J2,2
J1,1

J3,2J3,1
J4,1τ 4

R,  S :

2 4 6 8 10

τ1

t0 12

τ 2
τ 3

′J2,1
′J1,1

′J4,1τ 4

′R ,  ′S :

2 4 6 8 10

(b) Transformed released sequence R′ for T

Figure 2.3: Schedule transformation for Theorem 1 by excluding non-interfering jobs

Then, an arbitrary job of task τk misses its deadline in R iff it misses its deadline in R′.

The proof of Theorem 1 is provided in Appendix A.1. Although the proof is provided for GFP

scheduler, it can be generalized for any other work-conserving scheduler, such as GEDF.

According to Theorem 1, the worst-case release sequence for τk is among those satisfying the

following condition.

Corollary 1. Let Rreduced
T denote all legal release sequences for T , wherein each job of τi, i =

1, . . . ,k− 1, interfers with a lower priority job, as defined by (2.11). τk is schedulable for each

legal R, satisfying (2.1), iff τk is schedulable for each R′ ∈ Rreduced
T .

We next apply Corollary 1 to reduce the computation time of Algorithm 1. Let us extend the

definition of a system state (2.7) at time t to(
ci,di, pi,bi

)k

i=1
,

where bi is boolean, such that bi(t) = 1 iff τi has a pending job at t, and that job has interfered

with a lower priority one by time t inclusive (meaning that condition (2.11) holds for that τi job at

some time t∗ ≤ t).

The transition law (2.8) is extended for bi(t) accordingly. An initial state is (0,0,0,0)k
i=1 with

bi = 0. For state (ci,di, pi,bi)
k
i=1 at any time t ≥ 0, the value of bi is computed by

bi =


1, if si(t) = 1∧ (∃` < i : q`(t) = 1∧ s`(t) = 0)

1, if bpreci = 1 ∧ qi(t) = 1 ∧ ri(t) = 0

0, otherwise

, (2.13)
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where bpreci corresponds to the preceeding state. In the definition above, bi = 1 iff τi interfers with

a lower priority job at time t (that is the first condition), or τi job, pending at time t, has interfered

with a lower priority job prior to time t (that is the second condition).

We can determine if a job is non-interfering only after analyzing its entire execution. There-

fore, we can check if (2.11) holds only when job completes in a state transition graph. Below we

update the transition law (2.8) accordingly, by excluding from the analysis every state with jobs

that violate (2.11).

Suppose that state (ci,di, pi,bi)
k
i=1 at time t is such that

∃` < k : c` = 1 ∧ s` = 1 ∧ b` = 0,

with s` computed by (2.3). Due to Corollary 1, we can safely discard a schedule with such a state

from the analysis, because condition (2.11) is violated for τ`: c` > 0 means that τ` has a pending

job at time t, b` = 0 means that that τ` job does not interfer with any lower priority job by time

t +1 inclusive, and c` = 1∧ s` = 1 means that τ` job will be completed by time t +1.

Then, the transition law (2.8) for state g is optimized by adding a pruning constraint

∀g′ ∈ G′, ∀i < k : c′i = 1 ∧ s′i = 1 −→ b′i = 1, (2.14)

where g′ = (c′i,d
′
i , p′i,b

′
i) is a successor for g, with G′ defined by (2.8).

We next provide an example, to illustrate the efficiency of constraint (2.14) in pruning the

state space. Consider T with parameters reported in Table 2.1, scheduled upon m = 2 processors.

Fig. 2.4 depicts a reduced state transition graph for such T , thanks to (2.14). Another example,

for the same T , is depicted in Fig. 2.5(b), where we compare the performance of constraint (2.14)

to other pruning constraints derived later in this work. For each pruning constraint, we specify the

remaining number of states in a pruned graph. A more thorough evaluation of constraint (2.24) is

provided later in Section 2.5.3.

Thanks to Theorem 1, we can bound the length of the longest release sequence for the schedu-

lability analysis as follows.

Corollary 2. When analyzing the schedulability of task τk, it is sufficient to test only the schedules

of length not exceeding t̄, with t̄ defined by any of the following equations (the equations below

assume that time is continuous):

t̄ =
k

∑
i=1

Di (2.15)

t̄ = max(C1, . . . ,Cm) +
k

∑
i=m+1

Di (2.16)

t̄ = max(C1, . . . ,Cm) +
k−1

∑
i=m+1

Ri + Dk, (2.17)

where Ri denotes the worst-case response time for task τi, if known, otherwise we set Ri = Di.
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Figure 2.4: Pruned state transition graph by constraint (2.14) of interfering jobs.

If time is assumed discrete, then the equations for t̄ above are reduced further to

t̄ =
k−1

∑
i=1

(Di−1) + Dk

t̄ = max(C1, . . . ,Cm)−1 +
k−1

∑
i=m+1

(Di−1)+Dk (2.18)

t̄ = max(C1, . . . ,Cm)−1 +
k−1

∑
i=m+1

(Ri−1) + Dk, (2.19)

Note that Corollary 2 applies to constrained-deadline tasks, scheduled by GFP scheduler only.

Bounds (2.15)-(2.16) originate the schedules depicted in Figs. (2.6(a)) and (2.6(b)). Observe

that (2.15) does not depend on the number of available processors, and it applies to both the

uniprocessor and multiprocessor cases. Instead, bounds (2.16) and (2.17) explore the number of

available processors m, and they are tighter compared to (2.15).

The formal proof for Corollary 2 is provided in Appendix A.2.

2.5.1.2 Sufficient schedulability condition

Next, we prune the state space G′ for Algorithm 1 through applying a sufficient schedulability

condition. In fact, if a sufficient schedulability condition holds for some system state, then this

state cannot lead to a failure state, and thus we do not need to examine its successors.

At time t, let state (ci,di, pi)
k
i=1 be such that ck > 0, meaning that τk has a pending job at time

t, with remaining execution time ck and a deadline at time t +dk.
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(d) Pruning by constraint (2.25) for a critical release
instant of Davis and Burns (2011a)

Figure 2.5: The comparison of the performance of pruning constraints. Considered task parame-
ters are reported in Table 2.1. The hatched area denotes the states pruned by the respective pruning
constraint
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Figure 2.6: An upper bound t̄ for the length of the longest schedule, satisfying Corollary 1. The
figures assume discrete time

Reusing the analysis of Baruah (2007), the amount of resource allocated to τk over time [t, t +

dk) is at least

dk− Īk, (2.20)

where Īk is the upper bound on interference, caused by τ1, . . . ,τk−1 on τk, computed by (see

Fig. 2.7)

Īk =
W
m
, (2.21)

with the maximum aggregated workload W for τ1, . . . ,τk−1 computed by

W =
k−1

∑
i=1

W i

W i = min(ci,dk)+ `iCi +min(Ci,∆i),

(2.22)

with

`i = max
(

0,
⌊

dk− pi

Pi

⌋)
and ∆i = dk− pi− `i Pi. (2.23)
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Figure 2.7: Maximized job interference according to Baruah (2007)

If the lower bound (2.20) on supply allocated to τk is not lower than τk remaining demand ck,

that is dk− Īk ≥ ck, then τk is guaranteed schedulable. Thus, Algorithm 1 needs to examine the

successor states for (ci,di, pi)
k
i=1, only if

dk− Īk < ck. (2.24)

Fig. 2.5(c) illustrates the performance of pruning constraint (2.24) for a task set T with param-

eters reported in Table 2.1. A more detailed evaluation of (2.24) is provided later in Section 2.5.3.

We have chosen condition (2.24) due to its low computation time. However, many other tests

could be used instead of (2.24)3, and their performance remains to be analysed. Another advantage

of condition (2.24) is that it applies to any other scheduler, such as GEDF, after extending the

summation in (2.22) for i = 1, . . . ,n, and i 6= k. Note however that a tighter pruning constraint of

a higher computation cost will not necessarily outperform a less accurate pruning constraint of a

lower computation cost.

2.5.1.3 Critical release instant

Davis and Burns (2011b) have shown that the worst-case execution scenario for a job of task τk

occurs when that job is released at such time t (rk(t) = 1), when all m processors are occupied by

higher priority tasks τ1, . . . ,τk−1 (that is ∑
k−1
`=1 q`(t) ≥ m), but there is at least one processor idle

3Davis and Burns (2011a) provide a thorough survey of existing sufficient tests.
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Table 2.2: Critical release instant: Task set example

i Ci Pi Di

1 3 6 6
2 4 6 6
3 2 3 3
4 - 12 12

during the preceeding time interval [t−1, t) (that is ∑
k
`=1 q`(t−1)< m):

rk(t) = 1 ⇒
k−1

∑
`=1

q`(t)≥ m ∧
k

∑
`=1

q`(t−1)< m, (2.25)

with q`(t) defined by (2.2), and q`(t) = 0 extended for t < 0. Further details can be found in

Theorem 1 of Davis and Burns (2011b).

To illustrate the performance of pruning constraint (2.25), in Fig. 2.5(d) we depict a reduced

state transition graph for a task set T with parameters reported in Table 2.1, thanks to (2.25).

We next adapt such an approach to restrict the release times for τ1, . . . ,τk−1. We first provide

an example. Consider T = {τ1, . . . ,τ4} with parameters reported in Table 2.2, scheduled upon

m = 2 processors. We analyze schedulability of τ4.

Fig. 2.8(a) depicts a legal release sequence for T , denoted by R. In such R, job J1,2 of τ1

causes no interference to other jobs until time 10. Observe also that, after releasing J1,2 at time

8, τ1 cannot release another job until the deadline of a job of τ4 at time 13. Then, without any

optimistic assumption, we can safely postpone the release of J1,2 until time 10, as depicted in

Fig. 2.8(b).

The same reasoning does not apply, however, to job J3,1 of τ3: Delaying the release of J3,1

might potentially affect the release time of consequtive J3,2 (due to the constraint on the minimal

time separation P3), and J3,2 in turn affects schedulability of τ4.

We next formalize the discussion above. For an arbitrary release sequence R, let time t be such

that:

(a) τk has a pending job at time t: qk(t) = 1;

(b) τi, with i < k, releases a job at time t: ri(t) = 1;

(c) τi cannot release another job until τk’s deadline:

Pi−Dk +(t− tr)≥ 0, (2.26)

where tr denotes the release time for τk job, pending at time t.
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Figure 2.8: Critical release instants

At such t, there should be at least m+1 pending jobs for τ1, . . . ,τk:

∀t, i < k :


qk(t) = 1

ri(t) = 1

Pi−Dk + t− tr ≥ 0

⇒
k

∑
`=1

r`(t)> m. (2.27)

The efficiency of (2.27) in pruning the state space is higher for lower ratios Pk/Pmin, with Pmin =

mini=1,...,k−1 Pi; that is due to presence of (2.26) in (2.27).

The release times for τ1, . . . ,τk−1 can be constrained further, by exploring their periods P1, . . . ,Pk−1.

Recall release sequence R′, depicted in Fig. 2.8(b). At time 8, no job is released by τ1, . . . ,τ3, al-

though each of them could; the next job is only released 2 time units later, at time 10. To maximize

interference on τ4, we can transform R′ into a new R′′, by shifting 2 time units left all release in-

stants for τ1, . . . ,τ3, occurred after time 8, as depicted in Fig. 2.8(c). Clearly, interference on τk

cannot decrease due to such a transformation.
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Figure 2.9: Optimized clock transition ∆t: cases

Thus, we require that each R satisfies the condition

k−1

∑
i=1

pi(t)> 0, ∀t (2.28)

in order to exclude case ∑
k−1
i=1 pi(t) = 0, when each τ1, . . . ,τk−1 can release another job, but none

of them does.

Note that, while conditions (2.25) and (2.27) for a critical release instant apply to GFP sched-

uler only, condition (2.28) applies to any other scheduler, such as GEDF, after extending the sum-

mation in (2.28) for i = 1, . . . ,n, and i 6= k.

We do not provide a formal proof for constraints (2.27) and (2.28). Such a proof can be con-

ducted by analogy to the proof of Theorem 1 in Davis and Burns (2011b), which results in (2.25).

We conclude that set G′ of successor states, defined by transition law (2.8), can be pruned

further, by adding constraints (2.25), (2.27), (2.28).

A detailed evaluation of pruning constraints (2.25), (2.27), (2.28) is provided later in Sec-

tion 2.5.3.

2.5.1.4 Optimized clock transition

To avoid unnecessary check for a deadline miss at every time instant, we next propose an optimized

clock transition between checked system states.

Let g = (ci,di, pi)
k
i=1 denote an arbitrary system state. Suppose that condition (2.10) for a

failure state does not hold for g, that is

ci ≤ di, i = 1, . . . ,k. (2.29)

We next analyze the following cases for g: either at most m jobs are pending, or more than m jobs

are pending, where m is the number of available processors.
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Suppose first that at most m jobs are pending for state g, that is the following condition holds:

k

∑
i=1

min(ci, 1) ≤ m,

with ci ≥ 1 if τi has a pending job, and ci = 0 otherwise.

For such g, as the number of pending jobs does not exceed the number of processors, and

condition (2.29) holds, then no deadline miss will occur, until another job is released (see also

Fig. 2.9(a)). The next earliest job release will occur only ∆t time units later, with ∆t defined by

∆t =
(

min
i=1,...,k

pi

)
1
, (2.30)

where (x)1 denotes max(1,x). Thus, for state g with at most m pending jobs, the next state to be

checked is ∆t time units later.

Suppose instead that more than m jobs are pending at state g. Let ∆t denote the remaining

time until the next system event occurs, such as job release, completion, or deadline (see also

Fig. 2.9(b)):

∆t =

(
min

i=1,...,k
(ci > 0 ? ci : pi)

)
1
, (2.31)

with a conditional operator (ci > 0?ci : pi) returning ci, if ci > 0, and pi otherwise.

Let g′ = (c′i,d
′
i , p′i)

k
i=1 denote any successor state for state g, which is ∆t time units later, with

∆t defined as above. If any of intermediate states between g and g′ is a failure state, then g′ is a

failure state as well. Thus, we can discard all intermediate states between states g and g′ from the

analysis, without making any optimistic assumption.

We conclude that an optimized clock transition ∆t between system states is computed by (2.30)

and (2.31):

∆t =


(

min
i=1,...,k

pi

)
1
, if

k

∑
i=1

min(ci,1)≤ m(
min

i=1,...,k
(ci > 0 ? ci : pi)

)
1
, otherwise.

(2.32)

The transition law (2.8) is updated accordingly, by replacing clock increment “1” in (2.8), (2.9)

by ∆t:
(c′i,d

′
i , p′i)

k
i=1 ∈ G′ ⇐⇒


c′i = (ci− si(t)∆t)0 + ri(t +∆t)Ci

d′i = (di−∆t)0 + ri(t +∆t)Di

p′i = (pi−∆t)0 + ri(t +∆t)Pi

i = 1, . . . ,k

(2.33)
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where g′ = (c′i,d
′
i , p′i). ∆t and si(t) are defined by (2.32), (2.3), and ri(t +∆t) satisfies (2.1):

pi−∆t > 0 ⇒ ri(t +∆t) = 0

pi−∆t = 0 ⇒ ri(t +∆t) ∈ {0,1}

2.5.2 Test procedure

The optimized procedure for an exact schedulability test is as follows. In Algorithm 1, we replace

the state transition law (2.8) by (2.33), as well as incorporate pruning constraints (2.14), (2.24), (2.25),

(2.27), (2.28) into (2.33).

A thorough evaluation of the improved test is provided in Section 2.5.3, confirming its signif-

icantly lower runtime and memory consumption, compared to the test of Bonifaci and Marchetti-

Spaccamela (2012).

2.5.3 Evaluation

We finally evaluate the performance of the exact schedulability test, presented in Section 2.5.2.

The test is implemented using C++ libraries, by extending Bonifaci’s tool. The implementation of

our test is publicly available4.

The experiments are conducted on a hardware platform with the following specifications:

- Processor: Intel Core i7-4710MQ CPU @ 2.5GHz

- Operating memory (RAM): 15,50 GB 1600 MHz

- System type: 64-bit

- Operating system: Ubuntu 14.04 LTS

2.5.3.1 Task set generation

Sporadic task sets T = {τi = (Ci,Pi)} with implicit deadlines Di = Pi are randomly generated by

specifying the number of tasks n, the total task set utilization UT , the maximum individual task

utilization Umax, and the range for task periods [Pmin,Pmax].

The minimum period Pmin is randomly taken from range [3;10], and all task periods are gen-

erated such that the specified ratio Pmax/Pmin holds. Task execution times Ci are chosen by solving

4www.cister.isep.ipp.pt/docs/CISTER-TR-150503

www.cister.isep.ipp.pt/docs/CISTER-TR-150503


28 An Exact Schedulability Test for Global Fixed Priorities (GFP)

Table 2.3: Key parameters: default values

Settings
Number of processors, m 2 3

Number of tasks, n 5 7

Task set utilisation, UT 1.6 2.2

Maximum individual task utili-
sation, Umax

0.6 0.6

Minimum task period, Pmin [3, 10] [3, 10]

Ratio between the maximum and
minimum task periods, Pmax/Pmin

4 4

the following linear integer optimization problem, using CPLEX:

minimize

∣∣∣∣∣UT −
n

∑
i=1

Ci/Pi

∣∣∣∣∣+ |Umax−Ci∗/Pi∗ |

subject to

0 <Ci < Pi, i = 1, . . . ,n∣∣∣∣∣UT −
n

∑
i=1

Ci/Pi

∣∣∣∣∣≤ δUT UT

|Umax−Ci∗/Pi∗ | ≤ δUmaxUmax

Ci/Pi ≤ Ci∗/Pi∗ , i = 1, . . . ,n,

where Ci, i = 1, . . . ,n, are integer optimization variables, |x| denotes the absolute value of x, and

index i∗ corresponds to task τi∗ having the maximum utilization Umax; i∗ is randomly taken from

range [1, . . . ,n].

We allow a relative deviation δUT = 1.5% between the specified value U and the actual tasks

utilization ∑
n
i=1 Ci/Pi, as well as deviation δUmax = 2.5% between the specified value Umax and the

actual maximum task utilization maxi=1,...,n Ci/Pi.

We randomly generate task sets for parameters reported in Table 3.3. In each experiment, one

key parameter varies, while the rest are left equal to the default values in Table 3.3.

The choice for parameter values is constrained by a hardware limitation of 16 Gb of operating

memory. UT is chosen such that the pessimism of the sufficient test by Guan et al. (2009) is

maximized (that is the case when usage of an exact test makes more sense). For a thorough

evaluation, the pessimism of Guan’s test is analyzed for varying UT as well.
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2.5.3.2 Experiments: Runtime reduction

We first compare the runtime of our test against Bonifaci’s test5, for m = 2. Figs. 2.10(a), 2.10(b)

report an average runtime for a varying number of tasks n, and for a varying ratio Pmax/Pmin of task

periods; the depicted results consider only those task sets, determined as schedulable. We confirm

a significantly lower computation time of our test, which allows to analyze task sets with larger n

and Pmax/Pmin. However, runtime complexity remains exponential in n.

The second experiment is conducted for m = 3. The average runtime for our test is reported in

Figs. 2.10(c), 2.10(d). For such settings, Bonifaci’s test requires more than 16 Gb of memory in

most cases, so that the comparison to our test is infeasible. In 5% of cases, our test exceeds 16 Gb

as well, and those cases are discarded.

To analyze contribution of each of pruning constraints (2.12), (2.24)-(2.33) into the runtime re-

duction of our test, we have conducted a series of additional experiments. The results are reported

in Figs. 2.12(b)-2.12(d), for m = 2. The plotted size reduction is computed by

reduction(x) =
N(x) excluded

N
,

where N is the number of states checked by the algorithm employing all pruning constraints (2.14),

(2.24), (2.25)-(2.28), (2.33), and N(x) excluded is the number of states checked by the same algorithm

excluding the pruning constraint (x).

Despite of the polynomial space complexity, our evaluation shows that the required system

memory for our algorithm (as for all other existing exact tests) increases significantly with the

number of tasks and their periods. For example, for task sets comprised of just 10 tasks, and their

periods not exceeding 40, the required memory already exceeds 16 GB in most cases.

2.5.3.3 Experiments: Comparison of exact and sufficient tests

To motivate the need for an exact test, we also evaluate the pessimism of Guan’s sufficient test Guan

et al. (2009), which in turn outperforms most of other existing sufficient tests6. The experiments

are conducted when varying n and UT , for both m = 2 and m = 3. The results are reported in

Figs. 2.11(a)-2.11(d). We confirm a significant pessimism of Guan’s test, exceeding 50% under

certain settings. However, our evaluation is limited to very small task sets, due to the high memory

consumption of the exact test.

5We speeded-up the original code available at http://www.iasi.cnr.it/~vbonifaci/software.php by
a factor 10–20 times, by recompiling it at optimized settings.

6We have implemented Guan’s test following an optimized procedure in Davis and Burns (2011a)

http://www.iasi.cnr.it/~vbonifaci/software.php
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Figure 2.10: Evaluation: runtime of exact tests
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Figure 2.11: Evaluation: performance of Guan’s sufficient test
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Figure 2.12: Evaluation: comparison of performance of pruning constraints (logarithmic scale)

2.6 An exact schedulability test for continuous-time schedulers
using linear programming (LP)

The fundamental assumption behind the exact schedulability test proposed in Section 2.5.2 is that

scheduling decisions can only be taken at discrete time instants N0 = {0,1,2, . . .}. However, the

assumption of discrete time, rather than continuous, significantly complicates the problem, as

no efficient methods, except enumeration-based ones, exist for dealing with discrete parameters.

Aiming at deriving a faster test, we next relax the assumption of discrete time, allowing scheduling

decisions to be taken anytime, and then employ linear programming (LP) methods to our test.

2.6.1 Schedule model

Let us first determine the length of the longest release sequence to be examined by the test, for

continuous-time scheduling. For this, the bound (2.18) is extended by assuming no time granular-

ity as follows:

t̄ = max
`=1,...,m

C`+
n

∑
i=m+1

Di. (2.34)
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Let t1, . . . , tp denote time instants in [0, t̄ ], when scheduling events occur, that is some job is

released or completed. Assume that p is fixed, and t1, . . . , tp are continuous variables, such that

t j < t j+1, tp−1 < t̄ ≤ tp (2.35)

Next, the definitions of sequences R, F , S, originally defined in Section 2.3, are adjusted as

follows. Let R = [ri, j] be the matrix of releases, with i = 1, . . . ,n and j = 1, . . . , p, such that ri, j = 1

if τi releases a job at time t j, and ri, j = 0 otherwise. Also, the matrix of finishing times F = [ fi, j]

is such that fi, j = 1 if any τi job is completed at time t j, and fi, j = 0 otherwise. Finally, S = [si, j]

is such that si, j = 1 if τi is scheduled over time [t j, t j+1), and si, j = 0 otherwise.

Valid matrices (R,F,S) must satisfy the following constraints. First, some job is released or

completed, at each t j:

n

∑
`=1

ri, j +
n

∑
`=1

fi, j ≥ 1, i = 1, . . . ,k, j = 1, . . . , p. (2.36)

Also, release instants of τi must be separated by at least Pi time units. Let t`(i, j) denote the

latest release instant of τi, preceeding time instant t j (that is t`(i, j) < t j), so that index `(i, j) is

defined by

`(i, j) = max{x : x < j, ri,x = 1}. (2.37)

Then, the constraint for consecutive releases of τi is

ri, j = 1 ∧
j−1

∑
j′=1

ri, j′ > 0 ⇒ t j− t`(i, j) ≥ Pi, i = 1, . . . ,k, j = 1, . . . , p, (2.38)

where condition ∑
j−1
j′=1 ri, j′ > 0 holds if τi has released a job prior to time t j exclusive.

GFP scheduler allocates a processor to a job of τi when and only when the number of higher

priority jobs, that is of tasks τ1, . . . ,τi−1, is less than the number of processors m:

si, j = 1 ⇔ qi, j = 1 ∧
i−1

∑
`=1

q`, j < m, i = 1, . . . ,k, j = 1, . . . , p, (2.39)

where qi, j ∈ {0,1} indicates if τi has a pending job at time t j
7, and is defined by:

qi, j =
j

∑
`=1

ri,` −
j

∑
`=1

fi,`.

A job of τi completes execution by time it receives Ci resource units. Considering that the

aggregated amount of resource allocated to task τi over an arbitrary time interval [t`(i, j), t j) is

7We assume that τi has at most one pending job over time [t`(i, j), t j), due to Di ≤ Pi and no deadline miss occurred
by time t j−1 inclusive.
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computed by
j−1

∑
`=`(i, j)

si,` (t`+1− t`),

the constraint for τi job completion is as follows:

fi, j = 1 ⇒
j−1

∑
`=`(i, j)

si,` (t`+1− t`) =Ci ∧ si, j−1 = 1,

fi, j = 0 ⇒
j−1

∑
`=`(i, j)

si,` (t`+1− t`)<Ci ∨qi, j−1 = 0

(2.40)

with functions qi, j−1 and `(i, j) defined as above.

Observe that all constraints (2.35)–(2.40) are linear in variables t1, . . . , tp.

With a given number p of time instants t1, . . . , tp, when scheduling decisions are taken, and

given matrices (R,F,S), let Tp denote the set of all cases (t1, . . . , tp), satisfying constraints (2.35)–

(2.40).8 We say that matrices (R,F,S) are feasible if and only if

Tp 6= /0. (2.41)

The constraint above can be checked by any LP solver, typically in polynomial time.

2.6.2 Procedure of the test

We are now ready to adapt Bonifaci’s Algorithm 1 to continuous-time scheduling, using the nota-

tion described above.

Recall the state transition graph introduced in Section 2.4. Let us adjust the definition (2.7) of

a system state g at time t j to

g = {(ci,di, pi)
k
i=1, T j} (2.42)

with set T j ⊂R j of cases (t1, . . . , t j) defined as above, and parameters ci, di, pi expressed as linear

functions in variables t1, . . . , t j:

ci =

(
j

∑
`=1

ri,`

)
Ci−

j−1

∑
`=1

si,` (t`+1− t`) (2.43)

di =
(
t`(i, j)+Di− t j

)
0 (2.44)

pi =
(
t`(i, j)+Pi− t j

)
0 , (2.45)

with t`(i, j) defined by (2.37).

It follows that state g is a failure state for τk, if

T j
⋂
{ck > dk} 6= /0, (2.46)

8In fact, region Tp is a p-dimentional polytope, defined as an intersection of linear constraints (2.35)–(2.40) in
variables t1, . . . , tp.
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meaning that exists such a case (t1, . . . , t j) ∈ T j, that some job of τk misses its deadline The con-

straint above can be checked by any LP solver, by solving a linear feasibility problem in variables

t1, . . . , t j.

Algorithm 1, for discrete-time scheduling, assumes that values of parameters ci, di, pi are

always known, so that it is possible to check if two states (ci,di, pi)
k
i=1 and (c′i,d

′
i , p′i)

k
i=1 are

equal. We instead have redefined ci, di, pi as linear functions (2.43)-(2.45) in continuous vari-

ables (t1, . . . , t j) ∈ T j, so that parameters ci, di, pi are not fixed to any specific values, but rather

defined by a j-dimentional polytope in t1, . . . , t j, which is bounded by constraints (2.43)-(2.45).

Thus, we next need to decide on how to compare two graph states using such a notation.

Let G= {g`} denote an arbitrary set of states, with each state denoted by g`= {(c`i ,d`
i , p`i )

k
i=1, T`

j`}.
We say that state g = {(ci,di, pi)

k
i=1, T j} is contained in set G (what is denoted by {g} ⊆ G), if

for each case (t1, . . . , t j) ∈ T j, there exists such a state g` ∈G, that has parameters c`i , d`
i , p`i equal

to ci, di, pi respectively, for each i = 1, . . . ,k:

{g} ⊆G ⇐⇒

∀(t1, . . . , t j) ∈ T j

∃g` ∈G, ∃(t`1, . . . , t`j`) ∈ T`
j` :

ci = c`i ∧ di = d`
i ∧ pi = p`i , i = 1, . . . ,k

(2.47)

We do not yet have an efficient mechanism for checking the constraint above; we keep it as a future

work. Note that the constraint above is essential for deriving a fast schedulability test, as it allows

to reduce the space complexity of the test from exponential to just polynomial. More details on

space complexity are provided in Section 2.4.

To reduce the complexity of the test further, we also employ pruning constraints (2.12), (2.24)-

-(2.28): originally derived for discrete-time, these constraints directly apply to continuous-time

scheduling as well.

The resulted procedure for schedulability test is reported in Algorithm 2. It recursively checks

for all values p ≥ 1, until condition (2.35) holds (line 13), and determines the existance of such

a case (R,F,S), satisfying (2.41), (2.12), (2.24)-(2.28) (lines 13, 14), that condition (2.46) for

a deadline miss holds (line 15). If such a case is found, then the test terminates immediately,

reporting unschedulability of τk. If instead (2.46) never holds, then τk is reported schedulable.

Although not yet been implemented, such a test is expected to have a better scalability, com-

pared to the test described in Section 2.5.2, as it only checks release scenarios for T with distin-

guishable orders of job arrivals, rather than checking all possible legal release scenarios.

2.7 An exact schedulability test using constraint programming (CP)

Another way to analyze schedulability of T , instead of solving the LP problems formulated in

Section 2.6, is to use constraint programming (CP) methods (Marriott and Stuckey, 1998). The

major difference of constraint programming from mathematical programming is the support of
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Algorithm 2 Schedulability test for τk

1: procedure EXACTSCHEDULABILITYTEST

2: R,F,S←
[

/0
]

. initialize to empty matrices
3: compute t̄ . from Eq. (2.34)
4: RECURSE(1,R,F,S)
5: terminate τk is schedulable
6: end procedure

7: procedure RECURSE(p,R,F,S)
8: for ∀i≤ k, ∀(rip, fip,sip) : rip, fip,sip ∈ {0,1} do
9: R = appendColumn(R,{rip}k

i=1)
10: F = appendColumn(F,{ fip}k

i=1)
11: S = appendColumn(S,{sip}k

i=1)
12: compute Tp . from Eq. (2.36)-(2.40)
13: if Tp∩{tp−1 < t̄ ≤ tp} 6= /0 then . due to (2.35)
14: if (2.12), (2.24)-(2.28) hold then . pruning
15: if (2.46) holds then . deadline miss
16: terminate τk is unschedulable
17: end if
18: RECURSE(p+1,R,F,S)
19: end if
20: end if
21: end for
22: end procedure

logical constraints, along with traditional arithmetic constraints. Below we will show that usage

of logical constraints significantly simplifies the modeling of schedulability analysis problems.

Constraint programming is an emerging domain of operations research, and its efficiency has

been already confirmed on a range of scheduling problems, such as those in process manufactur-

ing. A wide range of CP solvers is available, e.g. GECODE and IBM CP Optimizer.

Below we briefly formulate an exact schedulability analysis problem using constraint pro-

gramming.

First we define boolean function equals(x,y) as

equals(x,y) =

{
1, if x = y,

0, otherwise
. (2.48)

We recall that it is sufficient to test schedulability of T = {τ1, . . . ,τn} over time interval [0, t̄ ],

with t̄ defined by (2.34):

t̄ = max
`=1,...,m

C`+
n

∑
i=m+1

Di. (2.49)

Let p denote the number of scheduler invocations over time interval [0, t̄ ]. The value of p can

be bounded by

p ≤ p ≤ p̄
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Figure 2.13: Bounds for the number of scheduler invocations p. Upward arrow denote job release,
downward arrow denotes job completion

with

p = min
i=1,...,n

⌈
t̄
Pi

⌉
and p̄ = 2

n

∑
i=1

⌈
t̄
Pi

⌉
(2.50)

In the equation above, the upper bound p̄ originates the execution scenario depicted in Fig. 2.13(a),

when release and completion instants for jobs of τ1, . . . ,τn are all distinguishable (in other words,

none of them coincides to any other), yielding the maximum number of scheduler invocations.

Instead, the lower bound p originates the scenario depicted in Fig. 2.13(b), when the number of

coinciding release and completion instants for τ1, . . . ,τn is maximized, minimizing the number of

scheduler invocations.

It follows that a set of sporadic tasks T = {τ1, . . . ,τn} is schedulable by GFP upon m proces-

sors, if and only if the following constraint programming problem is infeasible:

∃ p ∈{p, . . . , p̄}, (t1, . . . , tp) ∈ Rp, R ∈ LR, S ∈ LS, F ∈ LF

∃ i = 1, . . . ,n, j = 1, . . . , p−1, k = j+1, . . . , p

−→ hi( j,k)(tk− t j)≤ Di,

(2.51)

with its parameters defined as follows:

(a) p ∈ {p, . . . , p̄} is the number of time instants, at which scheduling decisions happen, with

p, p̄ defined by (2.50), and t1, . . . , tp represent time instants, when scheduling decisions are

made, with t j < t j+1.

(b) R = [ri, j] is a binary matrix, representing a release sequence, with i = 1, . . . ,n and j =

1, . . . , p, such that element ri, j = 1 if τi releases a job at time t j, and ri, j = 0 otherwise. LR

denotes all legal matrices R, defined by

R ∈ LR ⇐⇒



{
∆ti, j = 0

ri, j ∈ {0,1}{
∆ti, j > 0

ri, j = 1 ⇒ ∆ti, j ≥ Pi

, i = 1, . . . ,n, j = 1, . . . , p, (2.52)

where ∆ti, j = 0 if τi has not released any job prior to time t j, and ∆ti, j > 0 represents time
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passed since the previous release of τi by time t j, defined by

∆ti, j =
j−1

∑
k=1

ri,k

(
1−

k−1

∑
`=1

ri,`

)
0

(
t j−

[
tk +

(
j−1

∑
`=1

ri,`−1

)
Pi

])
.

According to definition (2.52), R is legal if and only if time separation between any consec-

utive releases of each τi is Pi.

(c) S = [si, j] is a binary matrix, representing a resource schedule, such that si, j = 1 if a processor

is allocated to τi over time interval [t j, t j+1), otherwise si, j = 0. LE denotes all legal GFP

schedules for T , defined by

E ∈ LE ⇐⇒



si, j = 1 ⇔


j

∑
`=1

ri,` >
j

∑
`=1

fi,` (E1)

i−1

∑
`=1

s`, j ≤ m−1 (E2)

si, j = 0, otherwise

i = 1, . . . ,n, j = 1, . . . , p

, (2.53)

meaning that a processor is allocated to τi at time t j if i) τi has a pending job at time t j

(corresponds to constraint (E1)), and ii) the number of processors allocated to higher priority

tasks does not exceed m−1 (corresponds to constraint (E2)).

(d) F = [ fi, j] denotes a binary matrix, representing a finishing sequence, such that element

fi, j = 1 if some job of τi is completed at time t j, and fi, j = 0 otherwise. LC denotes all legal

matrices F for given R, defined by

F ∈ LF ⇐⇒


fi, j = 1 ⇔ supplyi( j) =Ci

fi, j = 0 ⇔ supplyi( j)<Ci

i = 1, . . . ,n, j = 1, . . . , p

, (2.54)

where supplyi( j) represents the amount of resource allocated to the pending job of τi, which

has the earliest release time compared to other pending jobs of τi at time t j−1 (if any), from

its release time to time t j, computed by

supplyi( j) =
j−1

∑
k
fi(k, j) si(k, j),

where

(a) fi(k, j) = 1 if τi releases a job at time tk, which is incomplete at time t j−1, and has the

earliest deadline compared to other τi pending jobs at time t j−1, otherwise fi(k, j) = 0,
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defined by

fi(k, j) = ri,k equals

(
k−1

∑
`=1

ri,`,
j−1

∑
`=1

fi,`

)
.

(b) function si(k, j) computes the amount of resource allocated to a job of τi, released at

time tk, over time interval [tk, t j), defined by

si(k, j) =

j−1

∑
`=k

ei,` (t`+1− t`)× equals

(
j−1

∑
p=1

ri,p,
`

∑
p=1

ci,p

)
.

(e) hi( j,k) is a boolean function, such that hi( j,k) = 1 if and only if τi releases some job at time

t j, which is respectively completed at time tk, defined by

hi( j,k) = ri, j fi,k equals

(
j

∑
`=1

ri,`,
k

∑
`=1

fi,`

)
. (2.55)

Feasibility of the CP problem (2.51) can be checked by a CP solver, such as GECODE or IBM

CP Optimizer. In case the problem (2.51) has no feasible solution, then task set T is schedulable,

otherwise T is unschedulable.

2.8 Summary

We evaluated the pessimism of the state-of-the-art sufficient schedulability tests for GFP, and

confirmed its relevance. Then, to reduce the limitations of the existing exact tests - these are high

computation time and memory consumption -, we derived a set of improved exact tests, exploring

the idea of pruning of the analyzed state space.

The first test extended the work of Bonifaci and Marchetti-Spaccamela (2012), by using a set

of pruning methods for shrinking the state space. The evaluation confirmed our test to be the

fastest and the least memory consuming compared to all other existing exact tests, although the

exponential time and polynomial space complexity remains, as for Bonifaci’s test.

Another test is designed for continuous-time scheduling, e.g. an event-driven scheduler, which

is opposed to a tick-driven scheduler. Although has not been yet implemented, such a test is

expected to have a significantly lower time and space complexity, due to usage of polynomial-

time linear programming solvers, rather than using enumeration-like methods only.

The third test we proposed is formulated by means of a constraint programming (CP) problem,

with the use of logical constraints. The resulted CP problem can be solved by using a CP solver,

such as GECODE or IBM CP Optmizer.

The derived models are easily adjustable for more general task models, such as DAG tasks, or

hierarchical scheduling.



Chapter 3

Schedulability Analysis of
Compositional Real-time Systems

Another problem we consider is the schedulability analysis of compositional multiprocessor real-

time systems. Despite of hardness of such a problem, we succeed to provide a solving algorithm

of a linear runtime complexity, in an average case, thanks to derived tight pruning methods for the

solution search space.

3.1 Motivation

Reusing application code is driven by the need to shorten the overall design time, and typically

software components are developed in isolation, possibly by different developers. During the in-

tegration phase, all components are bound to the same hardware platform. Clearly, the integration

must be performed in such a way that the properties of components are preserved even after the

composition is made.

In real-time systems, the key property that has to be preserved during the integration phase

is time predictability: a real-time application (or component) that meets all its deadlines when

designed in isolation should also meet all deadlines when it is integrated with other applications on

the same hardware platform. This property is often guaranteed by introducing an interface between

the application and the hardware platform. Then the application is guaranteed over the interface,

and the hardware platform must provide a virtual platform that conforms with the interface -

a compliant virtual platform. The scheduling problem over a virtual platform is often called a

hierarchical scheduling problem. In fact, each application task itself may contain another entire

application in a hierarchical fashion.

The benefit of using an interface-based approach is significant. During the design phase the

interface of an application is computed such that all timing requirements of the application are

met. Then, during the integration phase the interfaces of all applications are bound to the same

hardware platform. As a result, the interface allows to hide an internal complexity of an individual

application, and this property is essential in the development of large-scale real-time systems.

39
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Typically, interfaces, allowing the composition of real-time applications, specify details about

the amount of resource that has to be provided by a compliant virtual platform. This information

can be described with a varying degree of detail. For example, a very simple interface for a virtual

processor can be just a fraction of the allocated time.

With the broad diffusion of multiprocessors, hierarchical scheduling problems have recently

started to be considered over hardware platforms that provide a concurrent resource supply. The

formulation of interface models for multiprocessors, however, requires the introduction of a new

dimension: the degree of concurrency. This additional characteristic of the interface makes the

problem to be addressed more challenging.

The problem in selecting the appropriate interface model is to find the best trade-off between

accuracy and simplicity of the interface. A simple interface is intuitive and easy to use, but it

tends to cause a significant pessimism in the resource abstraction. On the other hand, an accurate

interface minimizes the pessimism, but is more complex in use, and it can be very difficult to

compute. In this paper we propose a simple interface that is a generalization of the one previously

proposed by Shin et al. (2008). Our novel approach keeps the simplicity of that interface while

reducing significantly the pessimism in terms of the needed resource.

3.2 Contributions

To analyze schedulability of compositional multiprocessor systems, we first introduce the gener-

alized multiprocessor periodic resource (GMPR) interface. GMPR generalizes the MPR model

of Shin et al. (2008), as well as other periodic interface models, reducing their pessimism while

remaining to be simple.

To analyze schedulability over GMPR, we determine the worst-case resource allocation pat-

terns over it, allowing both, identical or different periods for each virtual processor. As a schedula-

bility test, we reuse the sufficient test of Bini et al. (2009). We first improve this test by minimizing

its runtime, and then, based on it, we compute GMPR by solving a set of non-convex mixed-integer

optimization problems.

To make solving of such complex optimization problems possible, we derive a set of tight

pruning constraints for the solution search space, so that an adequate optimization solver could

quickly find an optimal solution. In the end, we succeed to reduce the exponential runtime com-

plexity of GMPR computation to just linear.

To confirm a reduced pessimism of GMPR, we have implemented the solution in the Matlab

environment.

3.3 Related works

The problem of composing real-time applications is certainly not new. There actually have been

numerous contributions in this area. Being fully aware of the impossibility to provide a full cover-

age of the topic, we describe in this section the works that, to our best knowledge, are more related
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to ours.

One of the first contributions to address the isolation of applications using resource reser-

vations was published in (Parekh and Gallager, 1993). In that paper the authors introduced the

Generalized Processor Sharing (GPS) algorithm to share a fluid resource according to a set of

weights. Mercer et al. (1994) proposed a more realistic approach where a resource can be allo-

cated based on a required budget and period. Later on, Stoica et al. (1996) introduced the Earliest

Eligible Virtual Deadline First (EEVDF) for sharing the computing resource, and Deng and Liu

(1997) achieved the same goal by introducing a two-level scheduler (using EDF as a global sched-

uler) in the context of multi-application systems. Kuo and Li (1999) extended the approach to a

Fixed Priority global scheduler. Kuo et al. (2000) extended their own work (Kuo and Li, 1999) to

multiprocessors. However, in those approaches the authors made very stringent assumptions such

as not considering task migration and restricting to period harmonicity. Those assumptions restrict

the applicability of the proposed solution.

Moir and Ramamurthy (1999) proposed a hierarchical approach, where a set of P-fair tasks can

be scheduled within a time partition provided by another P-fair task (called “supertask”) acting as

a server. However, the solution often requires the weight of the supertask to be higher than the

sum of the weights of the served tasks (Holman and Anderson, 2006).

Many independent works proposed to model the service provided by a uni-processor through

a supply function. Feng and Mok (2002) introduced the bounded-delay resource partition model.

Almeida et al. (2002) provided timing guarantees for both synchronous and asynchronous traffic

over the FTT-CAN protocol by using hierarchical scheduling. Lipari and Bini (2003) derived

the set of virtual processors that can feasibly schedule a given application. Shin and Lee (2003)

introduced the periodic resource model also deriving a utilization bound. Easwaran et al. (2007)

extended this model allowing the server deadline to be different from its period. Fisher and Dewan

(2009) proposed an approximation algorithm to test the schedulability of a task set over a periodic

resource.

More recently, some authors have addressed the problem of specifying an interface for appli-

cations executed upon multiprocessor systems, providing appropriate tests to verify schedulability

of applications over that interface.

One of such works is described in (Leontyev and Anderson, 2008), where the authors proposed

to use only the overall bandwidth requirement w as interface for soft real-time applications. The

authors propose to allocate a bandwidth requirement of w onto bwc dedicated processors, plus an

amount of w−bwc provided by a periodic server globally scheduled onto the remaining processors.

An upper bound of the tardiness of tasks scheduled on such an interface was provided.

Shin et al. (2008) proposed the multiprocessor periodic resource model (MPR) that specifies

a period, a budget and maximum level of parallelism of the resource provisioning. Khalilzad

et al. (2012) later extended the MPR model, relaxing the assumption of fully synchronized virtual

processors. Since our work is a generalization of the MPR, in Section 3.4.2 we describe the MPR

in greater details.
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Chang et al. (2008) proposed to partition the resource available from a multiprocessor by a

static periodic scheme. The amount of resource is then provided to the application through a

contract specification.

Bini et al. (2009) proposed the Parallel Supply Function (PSF) interface of a virtual multipro-

cessor. This interface is designed to tightly capture the amount of resource provided by a virtual

platform for very general supply mechanisms, which are not necessarily periodic. In their ap-

proach the authors do not reason on how to compute the interface parameters that guarantee the

schedulability of a real-time application.

Lipari and Bini (2010) described an entire framework for composing real-time applications

running over a multiprocessor. However, their proposed interface was extremely trivial.

Burmyakov et al. (2012) extended the multiprocessor periodic resource model (MPR) by spec-

ifying the minimal budgets for each level of parallelism. However, the assumption of integer bud-

get values made the problem to compute an interface hardly tractable, even for a task set with a

low utilization.

3.4 Background on compositional scheduling

In the past, there have been some proposals for multiprocessor interfaces. This section illustrates

three of them (Leontyev and Anderson, 2008; Shin et al., 2008; Bini et al., 2009). The inter-

faces are ordered by their increasing complexity and, consequently, by increasing accuracy of the

guarantee test for applications running over the interface.

3.4.1 The multiprocessor bandwidth interface (MBI)

Leontyev and Anderson (2008) proposed to use only the overall bandwidth requirement w (using

their original notation) as an interface for soft real-time tasks. Being a multiprocessor interface,

it is well acceptable to have w > 1. To schedule a task set, the authors proposed to allocate a

bandwidth requirement of w onto bwc fully dedicated processors, plus the bandwidth of w−bwc
provided by a periodic server globally scheduled onto the remaining processors (see Fig. 3.1).
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Figure 3.1: MBI: the worst-case resource pattern

We refer the interface model of Leontyev and Anderson (2008) as the multiprocessor band-

width interface (MBI) and denote it as

〈w,Π〉,
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where w is the interface bandwidth and Π is the server period. Initially designed for soft real-time

tasks, the MBI model can easily be extended for hard real-time systems. The advantage of the

MBI is its simplicity and the reduced pessimism in the resource abstraction compared to many

other existing models.

At the same time, there is a strong limitation of the MBI model as it requires bwc fully dedi-

cated processors. In a general case of the compositional scheduling, such a requirement cannot be

always guaranteed by a virtual execution platform, for extended periods of time. To overcome this

limitation, other different interface models have been introduced, as described in the next sections.

3.4.2 The multiprocessor periodic resource model (MPR)

The multiprocessor periodic resource model (MPR) (Shin et al., 2008) is another simple resource

abstraction. Its definition is given below.

Definition 3. A Multiprocessor Periodic Resource model (MPR) is modeled by a triplet

〈Π,Θ,m〉,

where Π is the time period and Θ is the minimal resource supply provided within each time interval

[kΠ,(k+ 1)Π), with k ∈ N0, by at most m processors at a time. Often we also say that m is the

concurrency (or the degree of parallelism) of the interface. The utilization of a MPR interface is

the ratio Θ

Π
.

Since a MPR interface fixes only the aggregated parameters Π, Θ and m of the supply pattern,

any feasible allocation of Θ resource units per time period Π with a parallelism m should preserve

the schedulability of the underlying task set. It is then necessary to find the worst-case resource

allocation for the MPR. Generalizing the result of Shin et al. (2008), derived for a case of integer

Θ, the worst-case scenario for an arbitrary Θ is the one depicted in Fig. 3.2, where time instant 0

denotes the beginning of the worst-case interval. Note that in the MPR case the contribution of

each processor to the interface is Θ/m every period Π.
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Figure 3.2: MPR: the worst-case resource pattern. Instant 0 denotes the beginning of the worst-
case interval.
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Table 3.1: An example of a task set.

i Ci Ti Di

1 1 30 30
2 4 40 40
3 11 50 50
4 15 60 60

3.4.3 Comparison of MBI and MPR resource interfaces

The MBI model dominates MPR in terms of overall resource required to schedule an application:

over the same time interval, MBI requires at most as much resource as MPR. However, unlike

MBI, an MPR interface can be also provided over a platform in which the processors are not fully

available (possibly due to the coexistence with other applications already consuming resource). In

fact, by increasing the interface parallelism m, the requirement Θ/m on each processor decreases,

making it possible to fit an interface on partially available platforms.

We illustrate this by an example. Consider a task set with the parameters reported in Table 3.1,

to be scheduled by global EDF (GEDF) over a virtual platform. To compute interfaces, we apply

the schedulability test of Lipari and Bini (2010), which is described in details later in Section 3.6.

By setting the server period to Π= 20, we determine that the minimal MBI interface, guaranteeing

the schedulability of the task set, requires 26 resource units every Π, while the MPR of the same

concurrency m = 2 requires at least 30.8 units (see Fig. 3.3).
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Figure 3.3: Comparison of MBI and MPR resource interfaces

Let us now increase the MPR concurrency to m = 3. We immediately obseve a reduction of

resource to be provided by each virtual processor, from 15.4 to 11.4 units. For m = 5, the resource

fraction decreases further to 10.4. Notice, however, that the overall resource Θ increases with m.
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3.4.4 The parallel supply function (PSF)

The parallel supply function (PSF) was proposed by Bini et al. (2009) to characterize the resource

allocation in hierarchical systems executed upon a multiprocessor platform. This interface is de-

signed to tightly capture the amount of resource provided by a virtual platform for very general

supply mechanisms, which are not necessarily periodic. As a drawback it is certainly quite com-

plicated to be handled. Without entering into all the details of the definition (that can indeed be

found in (Bini et al., 2009)), we recall here the basic concepts.

Definition 4. The Parallel Supply Function (PSF) interface of a multiprocessor resource is com-

posed by the set of functions {Yk}m
k=1, where m is the number of virtual processors and Yk(t) is the

minimum amount of resource provided in any interval of length t with a parallelism of at most k.

The function Yk(t) is called the level-k parallel supply function.

To clarify this definition we propose an example. Consider that in the interval [0,11] the

resource is provided by three processors according to the schedule drawn in gray in Fig. 3.4.

10 2 3 4 5 6 7 8 9 10 11

Figure 3.4: An example of a resource allocation scenario for PSF computation

In this case Y1(11) = 10 because there is always at least one processor available in [0,11] ex-

cept in [8,9]. Then Y2(11) = 16; that is found by summing up all the resources except one with

parallelism 3 (provided only in [4,5]). Finally, Y3(11) = 17; that is achieved by summing all the

resources provided in [0,11]. In general, the parallel supply functions are also computed by sliding

the time window of length t and by searching for the most pessimistic scenario of resource alloca-

tion. This minimization is somehow equivalent to the one performed on uni-processor hierarchical

scheduling (Feng and Mok, 2002; Lipari and Bini, 2003; Shin and Lee, 2003) for computing the

supply function of a virtual resource.

Since the PSF can be computed for any possible resource allocation scheme, it is possible to

compute it also for the MPR interface. The computation of the PSF interface {Yk}m
k=1 of a MPR

enables the adaptation of schedulability tests developed over a PSF interface to a MPR interface.

More details about the schedulability test will be provided in Section 3.6.

3.5 The generalized multiprocessor periodic resource (GMPR) model

The main drawback of the MPR interface is that it may require more computational capacity than

needed, and therefore it has an undesirable level of pessimism in terms of resource allocation.

Consider the task set with the parameters as depicted in Table 3.2, to be scheduled by global EDF

(GEDF) over the MPR interface. In that table, for each task we provide its execution time, Ci, its

period, Ti, and its deadline, Di.
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Table 3.2: An example of a task set.

i Ci Ti Di

1 6 40 40
2 13 50 50
3 29 60 60
4 27 70 70

After setting the period of the interface Π= 15, we compute a MPR interface 〈Π,Θ,m〉 that can

guarantee the task set. To check the schedulability, we reuse the PSF-based test proposed by Bini

et al. (2009) (see Section 3.6 for details). Based on this test, we determine that the minimum

feasible value of resource units to guarantee the schedulability is Θ = 39. Notice that there is quite

a significant gap between the utilization of the interface Θ

Π
= 2.6 and the utilization of the task set

∑i
Ci
Ti
= 1.28.

As we will show in greater detail in the next sections, our proposed interface requires only 34

resource units per period, meaning that it has a utilization of 34
15 = 2.267 for the given example.

3.5.1 Definition

The main reason for the pessimism of the MPR is that the worst-case of the supply (Fig. 3.2) must

be very conservative, if the only information in the interface is that an overall budget Θ is provided

every Π. We propose to rectify this problem, as described below.

Definition 5. We define the Generalized Multiprocessor Periodic Resource interface model (GMPR)

as

〈Π,{Θ1, . . . ,Θm}〉,

where Π is the time period and Θk is the minimal resource supply provided within each time

interval [`Π,(`+ 1)Π), ` ∈ N0, with a degree of parallelism of at most k. The values of Θk must

satisfy the following constraints for any k = 1, . . . ,m (for convenience we denote Θk = 0, k ≤ 0):

0≤Θk−Θk−1 ≤Π

Θk+1−Θk ≤Θk−Θk−1.
(3.1)

We assume that the interface parameters Π and Θ1, . . . ,Θm belongs to R.

The “degree of parallelism” of a resource supply at a time instant t, is the number of proces-

sors providing the resource at that instant. For example, an application which may have at most

` threads in parallel will not ever benefit from having a resource provided by `+ 1 processors

simultaneously. Hence, for such an application, it does not make sense to have Θ`+1 strictly larger

than Θ`, since the extra amount of resource Θ`+1−Θ` is provided at a too high parallelism that

the application never exhibits.

The motivation for the constraints in Definition 5 is the following:
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• Θk ≥Θk−1, because the overall supply at higher parallelism cannot decrease;

• Θk−Θk−1 ≤Π, because the increment of supply at parallelism k (that is Θk−Θk−1) cannot

exceed the length of the period;

• Θk+1 −Θk ≤ Θk −Θk−1, because the increment of supply at parallelism k + 1 (that is

Θk+1−Θk) should not exceed the increment of supply at parallelism k (that is Θk−Θk−1).

Otherwise some of the supply provided at parallelism k + 1 must instead be available at

parallelism k.

Θ2
Θ3

Θ3 −Θ2

Π

0 ≤Θ3 −Θ2 ≤ Π

Θ2 −Θ1

Θ3 −Θ2 ≤Θ2 −Θ1

Θ3 −Θ2

Figure 3.5: GMPR definition: the graphical interpretation

Fig. 3.5 illustrates an example of a resource supply over a GMPR interface with Π= 6, Θ1 = 5,

Θ2 = 9, and Θ3 = 12.

A valid GMPR interface should guarantee the schedulability of a task set: any resource allo-

cation compliant with the GMPR specification has to guarantee that all task deadlines are met.

The proposed GMPR interface model generalizes both MPR and MBI. In fact, a MPR interface

〈Π,Θ,m〉 is equivalent to a GMPR 〈Π,{Θ1, . . . ,Θm}〉 with

Θk =
k
m

Θ, k = 1, . . . ,m,

and a MBI interface 〈w,Π〉 is equivalent to a GMPR with

Θk = k Π, k = 1, . . . ,bwc

Θdwe = wΠ.

3.5.2 Parallel supply functions of GMPR

To borrow the schedulability tests developed over the PSF interface (Bini et al., 2009), we compute

the parallel supply functions {Yk(t)}k=1,...,m for the GMPR specification.

Burmyakov et al. (2012) proposed to compute the PSF using a classical approach in hierarchi-

cal scheduling. In that work the authors considered the worst-case scenario of the resource supply

(depicted in Fig. 3.6) and defined supplyk(t) as the amount of resource available in [0, t] by at most

k concurrent processors (see Fig. 3.6). Then, the PSF Yk(t) was computed as

Yk(t) = min
t0∈T

(supplyk(t + t0)− supplyk(t0)) ,
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Figure 3.6: GMPR: the worst-case resource pattern (top) and the definition of the supplyk(t) func-
tion (bottom) proposed by Burmyakov et al. (2012).

with T = {Θi−Θi−1|i = 1, . . . ,k} being the set of time instants at which the supply by some

processor ends.

Instead of the above mentioned approach, we now propose a significantly more efficient

method to compute the Parallel Supply Functions Yk(t). We stress that this method is also ap-

plicable to the classical problems of hierarchical scheduling over a single processor (Lipari and

Bini, 2003; Shin and Lee, 2003), as PSF is a generalization of the uni-processor supply function.

To compute the PSF Yk(t), let us first introduce an auxiliary function sk(t) over t ∈ [0,Π].

We define sk(t) as the overall amount of resource provided over the pattern of Fig. 3.7, in a time

interval [0, t]. The function sk(t) has the property, formulated in the next lemma.

Lemma 1. Let sk : [0,Π]→ R be defined as

sk(t) =
k

∑
i=1

(t− (Π− (Θi−Θi−1)))0 . (3.2)

Then, for any values t1, t2 ∈ [0,Π], we have

sk(t1)+ sk(t2)≥ 2sk

(
t1 + t2

2

)
. (3.3)

Proof. Consider the resource allocation over the time interval [t1, t2] of Fig. 3.7. Time instant

t = t1+t2
2 is the middle of this interval. Due to the alignment of the resource blocks to the right

side, the resource in [t1, t1+t2
2 ] does not exceed the resource in [ t1+t2

2 ; t2]. It follows that

sk

(
t1 + t2

2

)
− sk(t1) ≤ sk(t2)− sk

(
t1 + t2

2

)
,

what leads us to (3.3).
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Figure 3.7: Properties of GMPR supply function sk(t)

The next theorem determines the worst-case scenarios of the resource supply which are then

used to compute Yk(t).
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Figure 3.8: GMPR: the worst-case resource patterns Seven and Sodd

Theorem 2. The worst-case amount of resource provided over a GMPR interface 〈Π,{Θ1, . . . ,Θm}〉
in an arbitrary time interval of length t is the minimum among the resources provided in [− t

2 ,
t
2 ]

by any of the two patterns Seven and Sodd depicted in Fig. A.4.

The proof of Theorem 2 is provided in Appendix A.3.

Theorem 2 determines that the worst-case pattern for the resource supply of a GMPR interface

is either Sodd or Seven. The next corollary uses such a result to compute the PSF of a GMPR

interface.

Corollary 3. The PSF function Yk(t) for GMPR is computed as

Yk(t) = min
(

Y even
k (t),Y odd

k (t)
)
, (3.4)
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where Y even
k and Y odd

k denote the resource provided by the patterns Seven and Sodd depicted in

Fig. A.4, computed as

Y even
k (t) = peven Θk +2

k

∑
i=1

(reven−Π+Θi−Θi−1)0 (3.5)

peven = 2
⌊ t

2Π

⌋
(3.6)

reven =
1
2
(t− peven Π) (3.7)

and

Y odd
k (t) = podd Θk +2

k

∑
i=1

(
rodd−Π+Θi−Θi−1

)
0

(3.8)

podd = 2
⌊

t−Π

2Π

⌋
+1 (3.9)

rodd =
1
2

(
t− podd Π

)
. (3.10)

As an example, in Fig. 3.9 we depict supply functions {Y1(t), . . . ,Y4(t)} for GMPR 〈7,{6,11,15,17}〉.
At the bottom of the figure we also depict the worst-case resource patterns orginating these func-

tions.

3.5.3 GMPR supply bounds

We now propose the lower and the upper bounds for GMPR supply function Yk(t). These bounds

will be exploited later in Section 3.7.3, in order to reduce computation time for GMPR interface.

The supply functions Y even
k (t), Y odd

k (t) defined by equations (3.5), (3.8) can be equally ex-

pressed as
Y even

k (t) = peven Θk +2sk(reven)

Y odd
k (t) = podd Θk +2sk(rodd),

(3.11)

with sk(t) defined by (3.2), and peven, reven, podd, rodd defined by (3.6), (3.7), (3.9), and (3.10),

respectively.

We now observe that the function sk(t) can be lower bounded by the function sk(t) defined as

(see also Fig. 3.10)

sk(t) ≥ sk(t) = (Θk− k (Π− t))0 . (3.12)

Substituting (3.12) into (3.11), we derive the following lower bounds for Y even
k (t), Y odd

k (t)

denoted as Y even
k (t), Y odd

k (t):

Y even
k (t) = peven Θk +2(Θk− k (Π− reven))0 (3.13)

Y odd
k (t) = podd Θk +2

(
Θk− k

(
Π− rodd

))
0
. (3.14)
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Figure 3.9: The PSF (top) and the worst-case supply patterns (bottom) of the GMPR interface
〈7,{6,11,15,17}〉. The bold points indicate the slope change of the PSF functions.

The bounds Y odd
k (t), Y even

k (t) are plotted in Fig. 3.11. Considering equation (3.4) and Fig. 3.11,

we conclude that a valid lower bound for Yk(t) is Y k(t) defined as

Y k(t) =
Θk

Π
t−2

Θk

Π

(
Π− Θk

k

)
. (3.15)

The upper bound Y k(t) for Yk(t) is derived in a similar way. First, we observe that the function

sk(t) is upper bounded by the function sk(t) depicted in Fig. 3.10. Then, substituting the expression

for sk(t) into (3.11), we derive the upper bounds Y even
k (t), Y odd

k (t) for Y even
k (t), Y odd

k (t), and in the

Concur.(
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k
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t
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k
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Figure 3.10: The lower and the upper bounds sk(t) (put underline), s̄k(t) for GMPR supply function
sk(t). The overall supply allocated over [0;Π] is Θk.
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end we determine that

Y k(t) =
Θk

Π
t, (3.16)

as

Y k(t)≥max
(

Y even
k (t), Y odd

k (t)
)
.

3.5.4 Supply functions for GMPR with different processor periods

Until now we assumed that all virtual processors for GMPR have an identical replenishment period

Π. Below we briefly show that Corollary 3 for the worst-case supply is easily extendable to GMPR

with different replenishment periods for virtual processors.

Let us extend definition (5) of GMPR by allowing a different replenishment period for each

virtual processor, that is

µext = 〈{Πk,Θk}m
k=1〉, (3.17)

where Πk denotes the period of the k-th virtual processor. Corollary 3 for such µext is generalized

as follows.

Corollary 4. The PSF function Yk(t) for extended GMPR µext is computed by

Yk(t) =
k

∑
`=1

min
(

yeven` (t), yodd` (t)
)
, (3.18)
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where yeven` (t), yodd` (t) originate from the supply patterns seven` , sodd` , depicted in Fig (put), and

computed by

yeven` (t) = peven` (Θ`−Θ`−1)+2(reven` −Π`+Θ`−Θ`−1)0

peven` = 2
⌊

t
2Π`

⌋
reven` =

1
2
(t− peven` Π`)

and

yodd` (t) = podd` (Θ`−Θ`−1)+2
(

rodd` −Π`+Θ`−Θ`−1

)
0

podd` (t) = 2
⌊

t−Π`

2Π`

⌋
+1

rodd` =
1
2

(
t− podd` Π`

)
Further analysis of GMPR with different processor periods is kept for future work.

3.6 Schedulability over GMPR

The GMPR interface describes the amount of computing resources provided to an application. We

can then formulate a schedulability test over the GMPR.

As schedulability test for the application, we choose the extension of the test by Bertogna et al.

(2009) to the PSF interface developed by Bini et al. (2009). We choose this condition because it

applies to several different application schedulers such as global EDF or global FP, although it

assumes constrained deadline tasks, i.e. for all tasks τi, Di ≤ Ti. While choosing other tests like

the one derived in (Baruah et al., 2010) would be possible, the proposed formulation has the

advantage of highlighting the constraint on the interface. Thanks to the lossless transformation

of a GMPR interface into a PSF (see Section 3.5.2), we can apply directly the schedulability
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condition developed over PSF. Below we report, for completeness, the schedulability condition in

the simpler expression proposed in (Lipari and Bini, 2010).

Theorem 3 (Theorem 1 in (Lipari and Bini, 2010)). A set of sporadic tasks T = {τ1, . . . ,τn}
with constrained deadlines Di ≤ Pi is schedulable on a resource modeled by the PSF functions

Y1(t), . . . ,Ym(t), if ∧
i=1,...,n

∨
ki=1,...,m

kiCi +Wi ≤ Yki(Di), (3.19)

where Wi is the maximum interfering workload that can be experienced by task τi in the interval

[0,Di], defined as

Wi =
n

∑
j=1, j 6=i

(⌊
Di

Tj

⌋
C j +min

{
C j,Di−

⌊
Di

Tj

⌋
Tj

})
, (3.20)

if the application tasks are scheduled by global EDF. Instead if the application tasks are scheduled

by global FP

Wi = ∑
j∈hp(i)

Wji, (3.21)

where hp(i) denotes the set of indices of tasks with higher priority than i, and Wji is the amount of

interfering workload caused by τ j on τi, that is

Wji = N jiC j +min
{

C j,Di +D j−C j−N jiTj
}

(3.22)

with N ji =
⌊

Di+D j−C j
Tj

⌋
.

To better understand the schedulability test over PSF of Theorem 3, we illustrate it graphicly

in Fig. 3.13. In this example we consider a task set T composed by n = 3 tasks. Each task τi has

an amount of interference Wi, properly determined according to the local scheduling algorithm.

For each task τi, we draw a dashed vertical line at t = Di. Along this line we represent the quantity

Wi denoted as a white dot, and the quantities Wi + kiCi, with ki ∈ {1,2,3}, denoted as black dots.

These dots represent the LHS of (3.19). Then we draw the PSF functions Y1(t),Y2(t),Y3(t) as bold

continuous lines. In accordance to condition (3.19), task τi is schedulable if the k-th dot is not

above the Yk, for some k.

Now consider the case depicted in Fig. 3.13(b). In that case T is schedulable as the condi-

tion (3.19) turns valid for k1 ∈ {3}, k2 ∈ {2,3}, and k3 ∈ {1}. In Fig. 3.13(c), instead, we show a

case when τ1 cannot be guaranteed by the test of Theorem 3.

Later we exploit such a schedulability condition to compute the GMPR parameters Θ1, . . . ,Θm

for a given task set.

3.6.1 Simplified schedulability test

The schedulability condition of Theorem 3 has the complexity of O(nm) since it requires to check

if for each task τi ∈ T exists any value ki ∈ {1, . . . ,m} satisfying the inequality (3.19). However,
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Figure 3.13: Graphical interpretation of the PSF-based schedulability test

we can shrink the set of values of ki to be tested without making any pessimistic assumption, by

exploiting a linear upper bounds of the PSF function.

The PSF function Yk(t) can be bounded from above by

Yk(t)≤ kt. (3.23)

Substituting Eq. (3.23) into the condition (3.19), we get kiCi +Wi ≤ kiDi and thus

ki ≥
Wi

Di−Ci
. (3.24)

Considering that ki is integer and by defining ki as

ki =

⌈
Wi

Di−Ci

⌉
, (3.25)

the schedulability condition (3.19) turns into

∧
i=1,...,n

∨
ki=ki,...,m

kiCi +Wi ≤ Yki(Di). (3.26)

3.7 Computation of GMPR using pruning

When an application T = {τ1, . . . ,τn} is given, it is of key importance to select an interface

that can guarantee the timing constraints of the application and, at the same time, requires the

minimal amount of resource. In (Burmyakov et al., 2012) we proposed an algorithm to generate

a GMPR interface for T assuming integer resource parameters. However, this assumption made
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the problem hardly tractable even for a task set with a low utilization. If instead, the interface

parameters are assumed continuous, the problem can be attacked and solved more efficiently.

Consider a set of sporadic tasks T = {τ1, . . . ,τn} locally scheduled by the global EDF or the

global FP scheduler. In this section we describe a method to compute a GMPR interface for T :

For a specified period Π and a parallelism m we find the minimal real-valued resources Θ1, . . . ,Θm

such that T is schedulable over the GMPR 〈Π,{Θ1, . . . ,Θm}〉, according to Theorem 3.

Below, in Section 3.7.1 we compute the minimal necessary parallelism for a GMPR for a given

application. Then, in Section 3.7.2 we compute the GMPR resource Θm, and in Section 3.7.3

we derive a set of techniques to reduce the computation time for Θm. Finally, in Sections 3.7.4

and 3.7.5 we generalize our approach by iteratively computing the resources Θ1, . . . ,Θm for all

levels of parallelism.

3.7.1 Minimal necessary parallelism for GMPR

No valid GMPR interface may exist for an arbitrary small parallelism. Hence, in Theorem 4 we

propose a necessary and sufficient condition for the parallelism of a GMPR, assuming Theorem 3

as schedulability test.

Theorem 4. Consider a set of sporadic tasks T = {τ1, . . . ,τn} locally scheduled by the global

EDF or the global FP. Then there always exists a feasible GMPR interface for T with a paral-

lelism m≥max(k1, . . . ,kn), with ki as in (3.25). However, no GMPR can satisfy the schedulability

condition (3.19) if m < max(k1, . . . ,kn).

Proof. To prove the existence of a GMPR with a parallelism at least m=max(k1, . . . ,kn), we show

that µ = 〈Π,{Π,2Π, . . . ,mΠ}〉 is a valid GMPR interface for T . According to Eq. (3.4), the PSF

functions for µ are

Yk(t) = kt, k = 1, . . . ,m.

The schedulability condition (3.26) over µ turns into

∧
i=1,...,n

∨
ki=ki,...,m

kiCi +Wi ≤ kiDi.

For each τi we set ki = ki, and check that the schedulability of T over µ holds:⌈
Wi

Di−Ci

⌉
Di ≥

⌈
Wi

Di−Ci

⌉
Ci +Wi⌈

Wi

Di−Ci

⌉
(Di−Ci)≥Wi⌈

Wi

Di−Ci

⌉
≥ Wi

Di−Ci
.

Thus, µ = 〈Π,{Π,2Π, . . . ,mΠ}〉 is a valid GMPR for T .
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To prove the other direction of the implication, let us denote, without loss of generality, by

k = max(k1, . . . ,kn) and by ` - task index such that k = k`. If m < k, then the task τ` can never be

guaranteed by (3.26).

According to Theorem 4, we can only compute a GMPR interface for T with a parallelism

m≥max(k1, . . . ,kn).

3.7.2 Computation of GMPR aggregated resource

When designing an interface of a given application, our primary target is the minimization of

the overall resource consumption Θm. Before formulating the interface design as an optimization

problem, let us denote DΘ all feasible resources Θ1, . . . ,Θm satisfying the constraints in Defini-

tion (5) of GMPR, so that:

(Θ1, . . . ,Θm) ∈ DΘ ⇐⇒


0≤Θk+1−Θk ≤Π

Θk+1−Θk ≤Θk−Θk−1

Θk = 0, k ≤ 0.

(3.27)

Then we compute Θm subject to the schedulability test (3.26):

minimize Θm

subject to

(Θ1, . . . ,Θm) ∈ DΘ

∀i = 1, . . . ,n, ∃ki ∈
{

ki, . . . ,m
}

: Yki(Di,Θ1, . . . ,Θk1)≥ kiCi +Wi.

(3.28)

To solve the optimization problem (3.28), we first have to exclude the ∃-quantifiers from

it. Therefore, we propose to solve (3.28) for each possible combination (k1, . . . ,kn), with ki ∈
{ki, . . . ,m}, and then to choose the minimal Θm over all cases. Below we provide a detailed de-

scription of this approach.

Let us denote possible combinations (k1, . . . ,kn) as Km so that

Km =
{
(k1, . . . ,kn)| ki = ki, . . . ,m

}
.

For a specific choice of (k1, . . . ,kn) ∈Km the optimization problem (3.28) turns into

minimize Θm

subject to

(Θ1, . . . ,Θm) ∈ DΘ

∀i = 1, . . . ,n Yki(Di,Θ1, . . . ,Θki)≥ kiCi +Wi

(3.29)
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To solve (3.29), we employ the Matlab optimization toolbox. Let us denote the solution of

(3.29) as Θm (k1, . . . ,kn), if any exists. Then we choose the minimal Θm over Km as

Θm = min
(k1,...,kn)∈Km

Θm (k1, . . . ,kn) . (3.30)

For some combination (k1, . . . ,kn) the optimization problem (3.29) may have no feasible so-

lution. However, from Theorem 4, there exists at least one case (k1, . . . ,kn) ∈Km such that (3.28)

becomes feasible. Hence, the minimum of (3.30) is well defined.

Next, in Section 3.7.3 we propose a method to reduce the run-time of the optimization prob-

lem (3.30) by reducing the search space for the resources Θ1, . . . ,Θm and shrinking the enumera-

tion space Km.

3.7.3 Pruned search space for GMPR resource

To reduce the search space for the GMPR resources Θ1, . . . ,Θm, we first formulate a set of prelim-

inary constraints in Lemma 2.

Lemma 2. All feasible GMPR resources (Θ1, . . . ,Θm)∈DΘ defined by (3.27) satisfy the following

constraints:

j < k ⇒ Θk ≤
k
j

Θ j (3.31)

Proof. Let us decompose Θk as

Θk =
k−1

∑
`=1

(Θ`−Θ`−1)+(Θk−Θk−1) . (3.32)

From (3.27), each feasible case (Θ1, . . . ,Θm) ∈ DΘ satisfies the constraint

Θ`−Θ`−1 ≥Θk−Θk−1 ` < k. (3.33)

Substituting (3.33) into (3.32) gives us

Θk ≤
k

k−1
Θk−1. (3.34)

Applying mathematical induction to the expression above, we get (3.31):

Θk ≤
k

k−1
Θk−1 ≤

k
k−1

(
k−1
k−2

Θk−2

)
≤

k
k−1

k−1
k−2

. . .

(
k− i+1

k− i
Θk−i

)
=

k
k− i

Θk−i

(3.35)

with i = 1, . . . ,k−1.
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Let T be a schedulable task set over a GMPR interface 〈Π,{Θ1, . . . ,Θm}〉 according to con-

dition (3.26). For each task τi, let us denote by k∗i the smallest ki, in {ki, . . . ,m}, for which the

condition (3.26) is true. Below, we compute a reduced search space for the GMPR resources

Θ1, . . . ,Θm by exploiting the lower and the upper bounds for Yk(t) derived in Section 3.5.3:

Yk(t) ≥ Y k(t) =
Θk

Π
t−2

Θk

Π

(
Π− Θk

k

)
(3.36)

Yk(t) ≤ Y k(t) =
Θk

Π
t. (3.37)

Consider a task τi. The test (3.26) is false for any ki < k∗i :

Yki(Di)< kiCi +Wi.

Substituting the lower bound (3.36) for Yk(t) into the condition above, we get the quadratic in-

equality (
2

kΠ

)
Θk

2 +

(
Di

Π
−2
)

Θk− (kCi +Wi)< 0

with a solution

Θk
∗
=

kΠ

4

√(Di

Π
−2
)2

+
8

kΠ
(kCi +Wi)−

(
Di

Π
−2
) ,

Θk < Θk
∗
.

(3.38)

By applying Lemma 2, the constraint above yields the following upper bound for the resource

Θk denoted as Θk:

Θk =



Π, k = k∗i = 1,

min
(

Θk
∗
,Π
)
, k < k∗i , k = 1,

min
(

Θk
∗
,

k
k−1

Θk−1

)
, k < k∗i , k 6= 1,

k
k−1

Θk−1, k ≥ k∗i , k 6= 1.

(3.39)

with Θk
∗ defined by (3.38).

The test (3.26) is true for k = k∗i . Applying the upper bound (3.37) for Yk(t) in (3.26), we get

Θk∗i ≥
Π

Di
(k∗i Ci +Wi) , (3.40)

that, together with Lemma 2, yields the following lower bound for the resource Θk denoted as Θk:
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Θk =


k
k∗i

Θk∗i
, if k < k∗i ,

Π

Di
(k∗i Ci +Wi) , otherwise.

(3.41)

Let us denote the search space for task τi as SΘ(τi,k∗i ) so that

SΘ(τi,k∗i ) =
{
(Θ1, . . . ,Θm)| Θk ≤Θk ≤Θk

}
,

where Θk, Θk are computed according to (3.41), (3.39). The resulting search space for a task set

T is then defined as

SΘ(T ,k∗1, . . . ,k
∗
n) = DΘ

⋂
i=1,...,n

SΘ(τi,k∗i ), (3.42)

where DΘ denotes all feasible GMPR resources Θ1, . . . ,Θm satisfying the constraint (3.27).

Consequently, a case (k1, . . . ,kn) ∈Km is feasible if it results in a non-empty search space

SΘ(T ,k1, . . . ,kn) 6= /0, (3.43)

otherwise it can be excluded from Km. According to our experiments, this approach drastically

reduces the size of Km: the reduction is by more than 99,99% in an average case.

3.7.4 Computation of GMPR resources at lower parallelisms

In Section 3.7.2 we computed the GMPR overall resource Θm, only. To complete the GMPR

specification, we now need to compute the remaining resources Θm−1, . . . ,Θ1, which should be

provided at lower concurrencies.

We propose to compute the resource Θk recursively, after computing the resources Θm, . . . ,Θk+1.

To do so, we simply update the optimization problem (3.28) by setting the objective function to

minimize Θk, and by placing the previously found values for Θm, . . . ,Θk+1 into the optimization

constraints.

In this case, rather than repeating the enumeration of Km to solve the optimization prob-

lem (3.28) for Θk, we can further shrink the enumeration space by considering among the feasible

cases (k1, . . . ,kn) only those ones, which yield the minimal value for Θk+1. Hence the reduced

enumeration space Kk for Θk is given by the equation

Kk ⊆Kk+1 :

∀(k1, . . . ,kn) ∈Kk+1 : Θk+1(k1, . . . ,kn) = Θ
∗
k+1 → (k1, . . . ,kn) ∈Kk,

(3.44)

where Θ∗k+1 denotes the found minimal value for Θk+1.

The computation time for Θk is significantly lower compared to Θk+1, what is due to a shrunk

enumeration space Kk, and a lower number of optimization variables.
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3.7.5 Algorithm to compute GMPR

Finally, we conclude by proposing an algorithm that assigns the minimal GMPR resources Θ1, . . . ,Θm

such that a given task set T is schedulable over an interface. As a schedulability condition, we

choose the one in (3.26). We recall that the period Π and the parallelism m for a searching GMPR

are given.

Step 1: For each task τi compute ki as defined in (3.25).

Step 2: Check whether the necessary condition for m (Theorem 4) is met:

m≥max(k1, . . . ,kn).

If the condition above is violated, report the nonexistence of a valid GMPR interface for T

with a specified m, and terminate the algorithm.

Step 3: Generate the enumeration space Km such that

Km = {(k1, . . . ,kn)| ki = ki, . . . ,m}

satisfying the condition (3.43).

Step 4: Compute Θm: for each case (k1, . . . ,kn) ∈ Km determine the search space according

to (3.42), solve the optimization problem (3.28), and then choose the minimal Θm over

Km.

Step 5: Compute Θk recursively after computing Θm, . . . ,Θk+1:

(a) Define Kk from Eq. (3.44) so that any (k1, . . . ,kn)∈Kk+1 resulted in the optimal Θk+1

is included into Kk.

(b) Substitute the computed values for Θm, . . . ,Θk+1 into the optimization constraints

of (3.28), and minimize Θk subject to these constraints. Solve the resulting optimiza-

tion problem over Kk, and then choose the minimal Θk.

Step 6: Follow the Step 5 to compute all the resources Θm−1, . . . ,Θ1. In the end, 〈Π,{Θ1, . . . ,Θm}〉
is the sought-for interface for T having the minimized resources Θ1, . . . ,Θm.

Algorithm complexity. The complexity of the algorithm to compute a GMPR interface depends

on the complexity of the optimization problem (3.29). Due to the presence of the PSF function

Yk(t), which is non-convex, the optimization problem (3.29) is non-convex. Although the com-

plexity of such problems remains to be an open problem in the literature, it is generally considered

as exponential, until the opposite is proved (Ausiello et al., 2008). Thus, the resulting complexity

of the proposed algorithm is exponential.

Customized computation of GMPR. We proposed an algorithm to compute a GMPR interface

having the minimized resources Θ1, . . . ,Θm. At the same time, our approach is easily extendable
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for computing a customized GMPR interface, which meets specific user requirements (e.g. a

constraint on the maximum resource fraction to be provided at each concurrency), rather than

simply having the minimized consumed resources. In this case the custom constraints should be

incorporated in the optimization problem (3.29).

3.8 Scheduling GMPR interfaces

Once the resource demand of each component is abstracted by an interface, these interfaces should

be scheduled upon a hardware platform. To schedule GMPR interfaces, we now introduce a notion

of interface tasks. A set of interface tasks for a GMPR interface 〈Π,{Θ1, . . . ,Θm}〉 is comprised

of m implicit-deadline (D = T ) periodic tasks such that:

T ′ = {τ ′1 = (C′1,Π), . . . ,τm = (C′m,Π)}, (3.45)

where the execution time equals to

C′k = (Θk−Θk−1).

(We set Θ0 = 0 for convenience.)

The interface tasks in T ′ have an identical period T equal to the period of a GMPR interface

Π. Clearly, the overall resource demand of T ′ over a period Π is ∑
m
k=1C′k = Θm.

To schedule GMPR interfaces, we first transform each one into interface tasks following (3.45),

and then we employ any suitable policy to schedule the resulting periodic tasks.

The notion of interface tasks supports another important property for hierarchical systems,

which is called composability: by the given GMPR interfaces of child components we can compute

a GMPR interface of a parent component.

3.9 Evaluation

In this section, we compare the amount of resource used by GMPR and MPR to feasibly schedule

randomly generated task sets. For each experiment setting, we compute the minimal GMPR and

MPR interfaces by employing the algorithm described in Section 3.7.5.

The algorithm to compute interfaces and the scenarios of the experiments have been imple-

mented in Matlab, and they are publicly available at https://sites.google.com/site/

artemburmyakov/home/papers.

3.9.1 Task set generation

Synthetic task sets T = {τi = (Ci,Ti)} are randomly generated by specifying the total task set

utilization UT , the maximum individual task utilization Umax, and the ratio between the maximum

and the minimum periods Tmax/Tmin. In our random generation method, the number of tasks in T

https://sites.google.com/site/artemburmyakov/home/papers
https://sites.google.com/site/artemburmyakov/home/papers
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Table 3.3: Key parameters: default values

Parameter Default value

Task set utilization, UT 2.5

Maximum individual task utilization, Umax 0.3

Minimum task period, Tmin 20

Ratio between the maximum and the minimum
task periods, Tmax/Tmin 10

Interface period, Π 20

Parallelism increment, ∆m 3

is not fixed. Instead, it is implicitly determined as the total utilization of T reaches the specified

value UT .

The minimum period Tmin is set to 20 and all task periods are randomly generated so that the

specified ratio Tmax/Tmin is not violated.

3.9.2 Experiments: Resource gain

We evaluate the resource gain of GMPR over MPR for the parameters listed in Table 3.3. In each

experiment, we compare the interfaces utilization as one parameter varies, while the rest are left

equal to the default values reported in Table 3.3.

In each experiment, we randomly generate at least 200 task sets, and then we plot the average

interface utilizations Θm
Π

among these task sets, as well as the relative GMPR gain.

For each generated task set, the interface parallelism is set to

m = mmin+∆m,

where mmin is the minimal parallelism defined by Theorem 4, and the increment ∆m is varied

through the experiments.

The gain of GMPR over MPR is computed as

gainGMPR =
UMPR−UGMPR

UGMPR
,

where UMPR denotes the MPR utilization Θ

Π
, and UGMPR is the GMPR utilization Θm

Π
.

Interface period Π

First, we analyze the GMPR gain for a varying interface period Π. The resulting utilizations of

both GMPR and MPR interfaces are plotted in Fig. 3.14(a). For such settings the average GMPR

gain is in the order of 5–10%, and it increases for the increasing Π.
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The observed trend for gain increase is justified by an expanding search space for the GMPR

resources together with Π, which results in a higher degree of freedom for GMPR over MPR.

In Fig. 3.14(b) we also illustrate the gain variability using a boxplot diagram (McGill et al.,

1979). In this diagram, the central horizontal mark on each box is the median for the observed gain,

the horizontal edges of the box are the 25th and the 75th percentiles, the dashed lines extend to

the most extreme gains covering 99.3% observed cases, and the outliers are depicted individually

as crosses.
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Figure 3.14: Evaluation: GMPR gain for interface period Π

Maximum task utilization Umax

In the next experiment, we explore the dependency of the interface utilization on the weight of indi-

vidual tasks, by varying the maximum task utilization Umax. The results are reported in Fig. 3.15.

The interface utilization is minimal for Umax closer to 0.5–0.6, and it drastically increases for

Umax tending to 0 or 1. We believe that this behavior is influenced by our choice of schedulability

test (Lipari and Bini, 2010) used to compute interfaces.

The GMPR gain itself is maximized for lower Umax, reaching up to 10–15%, and the gain

vanishes as Umax tends to 1.
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Figure 3.15: Evaluation: GMPR gain for maximum task utilization Umax



3.9 Evaluation 65

Task periods ratio Tmax
Tmin

In Fig. 3.16 we provide the experimental results for a varying ratio Tmax/Tmin. The interface utiliza-

tion significantly increases together with the ratio Tmax/Tmin, but the GMPR gain is maximized for

lower Tmax/Tmin, reaching up to 15–25%.
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Figure 3.16: Evaluation: GMPR gain for ratio of task periods Tmax/Tmin

The observed utilization increase for both GMPR and MPR interfaces with respect to Tmax is

justified by the nature of the chosen schedulability test, described in Theorem 3. In fact, for fixed

parameters U and Umax, increasing task periods result in a higher interference of jobs accross

the deadline window (so called “carry-in", defined by equation (3.20)), increasing the overall

utilization of an interface.

Task set utilization UT

We also analyze the gain of GMPR over MPR as the task set utilization UT varies. The results are

depicted in Fig. 3.17. In this case the gain decreases for increasing UT . A reason for such behavior

is that, although the absolute parallelism increment ∆m remains constant, its relative proportion
∆m/mmin decreases (see Fig. 3.17(a)), due to mmin increasing with UT , resulting in a reduced scope

for parallelism.
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Figure 3.17: Evaluation: GMPR gain for task set utilization UT



66 Schedulability Analysis of Compositional Real-time Systems

Parallelism increment ∆m

In the last experiment we analyze the relation between an average utilization of a virtual processor,
Θm
mΠ

, and the parallelism increment ∆m. The results are provided in Fig. 3.18. As expected, an

average utilization of a virtual processor reduces for increasing parallelism of an interface.

0 1 2 3 4 5

0.75

0.8

0.85

0.9

0.95

Parallelism increment,   Δm

VP
 u

til
iz

at
io

n,
   
Θ

m
 / 

(m
 Π

 )

 

 

GMPR
MPR

(a) Average utilization of a virtual processor

0

5

10

15

20

25

30

35

Parallelism increment,   Δm
G

ai
n 

of
 G

M
PR

 o
ve

r M
PR

,  
 %

543210

(b) GMPR gain over MPR

Figure 3.18: Evaluation: GMPR gain for the parallelism increment ∆m

The GMPR gain itself increases together with ∆m. Such a dependency is expectable since an

increased ∆m leads to a higher degree of freedom for GMPR over MPR, allowing a larger margin

to minimize the consumed resource.

We also notice that the utilization of both GMPR and MPR is minimal for ∆m = 0, and it in-

creases with ∆m. This observation confirms the result of Shin et al. (2008) regarding the minimum

utilization of a multiprocessor interface, and moreover, this result looks to be independent of the

schedulability test used to compute an interface.

3.9.3 Experiments: Runtime analysis

In this experiment we analyze a set of performance metrics for the algorithm to compute a GMPR

interface, based on the solution of the resource minimization problem, as described in Section 3.7.

The algorithm has been implemented in the Matlab 2010 environment. The experiment has been

performed on a hardware platform with the following specifications:

• Processor: Intel(R) Core(TM) i7-3630QM CPU @ 2.40 GHz

• Operating memory (RAM): 8,00 GB

• System type: 64-bit

In Tables 3.4, 3.5 and in Fig. 3.19 we report the measured run-time for the GMPR computa-

tion, for a varying number of tasks n and the parallelism m. Although the proposed algorithm to

compute GMPR is considered to have an exponential complexity, the results show a linear increase

of the algorithm run-time over n and m. This result confirms the effectiveness of the search space

reduction mechanism derived in Section 3.7.3.
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Figure 3.19: Evaluation: comparison of computation time for GMPR and MPR. The percentiles
are 25% and 75%.

The computation time for MPR is 2–5 times lower compared to GMPR, what is due to a

simpler PSF function in the optimization constraints of (3.29).

Table 3.4: The performance metrics for m = 5.

n GMPR time, (sec) MPR time, (sec) size of Km size reduction, (times)

1–10 < 10 < 1 1–25 1–50

11–18 1–20 1–10 10–50 102–104

19–25 10–50 1–15 50–120 103–106

26–30 25–100 5–25 100–200 104–107

31–35 50–150 10–50 100–300 105–1010

Table 3.5: The performance metrics for m = 10.

n GMPR time, (sec) MPR time, (sec) size of Km size reduction, (times)

1–10 < 10 < 1 5–50 10–1000

11–18 5–100 1–10 10–100 102–106

19–25 50–250 10–50 50-150 105–109

26–30 100–300 20-100 < 400 108–1013

31–35 100–500 25-150 < 400 108–1016

In addition, we have evaluated the performance of several optimization solvers available in

the Matlab, as they significantly affect the overall run-time of the GMPR computation. Although

the interior-point algorithm finds a more precise solution for (3.29), we have chosen the active-

set algorithm for its 5-100 times faster performance, and its acceptable error which is at most

0.05%, and the failure ratio of at most 2% (in case the active-set fails, we employ the interior-

point instead).
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In Tables 3.4, 3.5 we report the size of the reduced search space Km defined by Eq. (3.43).

In each case, this value corresponds to the number of optimization problems (3.29) to be resolved

in order to determine the minimal GMPR interface. To analyze the efficiency of the search space

reduction algorithm, proposed in Section 3.7.3, we also indicate the relative size reduction of Km

compared to the original search space defined by the schedulability test (3.26). We observe an

exponential size reduction of Km over a number of tasks n and an interface parallelism m.

3.10 Summary

Motivated by the need to save resource, we introduced the Generalized Multiprocessor Periodic

Resource model (GMPR), as an interface of a multiprocessor virtual platform, and proposed a

schedulability test for a set of sporadic tasks over GMPR.

Since GMPR is a generalization of the previously proposed Multiprocessor Periodic Resource

model (MPR, by Shin et al. (2008)), it can consume at most as much as MPR. Our evaluation

confirmed that the resource gain of GMPR over MPR increases together with the period and the

parallelism of an interface. The GMPR gain is especially noticable for task sets with smaller

individual tasks’ utilizations and a shorter range of tasks’ periods.

We also addressed the problem of computing a GMPR interface for a given set of sporadic

tasks, objecting to minimize the overall amount of resource required by an interface. This problem

was modeled as an optimization problem, which turned to be efficiently solvable thanks to the

derived tight lower and upper bounds for the solution search space. Such an approach is easily

extendable to compute a customized GMPR interface, which meets specific user requirements

rather than simply has the minimized consumed resource.

For the future, our primary objective is to explore the flexibility of the GMPR model in deriving

a tighter schedulability analysis, specifically dedicated for it. We also consider extending GMPR

to a case of asynchronous virtual processors with different periods.
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Conclusion

In this work we derived a set of methods for the schedulability analysis of multiprocessor real-

time systems, by exploring the idea of a search space pruning. We have shown that, despite of the

NP-hardness of the considered problems, the pruning of a search space allows to obtain solutions

in a significantly lower computation time, compared to the state-of-the-art approaches. In the

best case, such an approach can reduce the exponential runtime complexity to polynomial or even

linear.

An efficient pruning method should provide a good balance between its computation cost and

the achieved reduction of the search space. A tight pruning constraint of a high computation cost

does not necessarily outperforms a less accurate pruning constraint with a lower computation cost.

All solutions derived in this work significantly outperform the other state-of-the-art approaches,

in terms of computation time and space complexity. These solutions have been implemented in

C++ and Matlab environments, and are publicly available. Our contributions are listed in details

in Section 1.7.

For a future work, we keep the following open problems.

Although an exact schedulability test, derived in Section 2.5, significantly outperforms the

other state-of-the-art tests, it remains intractable for more realistic systems with a larger number

of tasks. Thus, we are searching for more efficient pruning constraints, to reduce the computation

time of the test.

Another open problem is an efficient implementation of an exact schedulability test for event-

driven scheduling, proposed in Section 2.6. The main difficulty is the condition for matching

system states (see Eq. (2.47) in Section 2.6). Without such a condition implemented, the space

complexity of the test jumps from polynomial to exponential, what also results in a significant

increase of runtime. We are currently working on this problem.

For compositional multiprocessor scheduling, addressed in Section 3, it remains unclear how

to choose an interface period Π for the periodic resource models. Another problem is an efficient

computation of the GMPR interface with different periods for virtual processors, introduced in

Section 3.5.4.
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Appendix A

Proofs

A.1 Proof of Theorem 1

The proof of Theorem 1 relies on the following lemma.

Lemma 3. Let R, R′ be release sequences, as defined in Theorem 1. Let S, S′ be resource schedules

for R, R′ respectively, defined by (2.3).

S and S′ have the property:

∀i, t : q′i(t) = 1 −→ si(t) = s′i(t), (A.1)

where q′i(t) is defined by (2.2), and si(t), s′i(t) are defined by (2.3), for S and S′ respectively.

Observe that Lemma 3 does not require feasibility of T .

To proof Lemma 3, we explore definition (2.3) of supply function si(t): τi job gets supply over

time [t, t +1) (that is qi(t) = 1∧ si(t) = 1), iff the number of higher priority jobs at t is less than m

(that is ∑
i−1
`=1 q`(t)< m):

si(t) = 1 ⇔


qi(t) = 1
i−1

∑
`=1

q`(t)< m
, (A.2)

si(t) = 0 ⇔


qi(t) = 0

qi(t) = 1
i−1

∑
`=1

q`(t)≥ m

, (A.3)

∀i, t

where square brace, “[”, denotes logical OR.
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Also, the necessary constraints for values of si(t) are:

si(t) = 1 ⇒
i−1

∑
`=1

q`(t)< m, (A.4)

si(t) = 0 ∧ qi(t) = 1 ⇒
i−1

∑
`=1

q`(t)≥ m, (A.5)

∀i, t

We are now ready to prove the lemma.

Proof. We prove the lemma by contradiction. Suppose that (A.1) is violated for some task τi∗ at

time t∗, that is

∃i∗, t∗ : q′i∗(t
∗) = 1 ∧ si∗(t∗) 6= s′i∗(t

∗). (A.6)

Without loss of generality, let t∗ be the earliest time, when (A.1) is violated, meaning that

∀i, t < t∗ : q′i(t) = 1 → si(t) = s′i(t). (A.7)

As si(t), s′i(t) are boolean, (A.6) might hold in two cases:


si∗(t∗) = 1

s′i∗(t
∗) = 0

q′i∗(t
∗) = 1

(A.8) or


si∗(t∗) = 0

s′i∗(t
∗) = 1

q′i∗(t
∗) = 1

(A.9)

We next show that both cases are infeasible, meaning that (A.6) cannot hold.

Case 1: Substituting (A.4), (A.5) into (A.8), we get that


si∗(t∗) = 1

s′i∗(t
∗) = 0

q′i∗(t
∗) = 1

(A.4)⇒



i∗−1

∑
`=1

q`(t∗)< m

s′i∗(t
∗) = 0

q′i∗(t
∗) = 1

(A.5)⇒


i∗−1

∑
`=1

q`(t∗)< m

i∗−1

∑
`=1

q′`(t
∗)≥ m

,

meaning that exists such a task τi∗∗ , with i∗∗ < i∗, that

q′i∗∗(t
∗) = 1 (A.10)

qi∗∗(t∗) = 0. (A.11)

From (A.10), τi∗∗ has a job at time t∗, in S′. Let J′∗∗ denote that job, and let t ′r∗∗ denote its release

time, such that

r′i∗∗(t
′
r∗∗) = 1. (A.12)



A.1 Proof of Theorem 1 73

As J′∗∗ has not been completed by time t∗, J′∗∗ has not received Ci units of resource by time t∗:

t∗−1

∑
t=t ′r∗∗

s′i∗∗(t)<Ci∗∗. (A.13)

From (2.12), whenever τi∗∗ releases a job in R′, it also releases a job in R. Due to (A.12)

and (2.12),

r′i∗∗(t
′
r∗∗) = 1

(2.12)
=⇒ ri∗∗(t ′r∗∗) = 1,

that is τi∗∗ releases a job at time t ′r∗∗, in R. Let J∗∗ denote that job, as well as tc∗∗ - the completion

time for J∗∗.

Considering (A.11), τi has no job pending at time t∗ ≥ t ′r∗∗ in S, meaning that J∗∗ has been

completed by time t∗. Thus, it follows that:

tc∗∗ ≤ t∗

tc∗∗−1

∑
t=t ′r∗∗

si∗∗(t) =Ci,

what together with (A.13) yields contradiction to (A.7), as

tc∗∗−1

∑
t=t ′r∗∗

si∗∗(t) =Ci
∧ tc∗∗−1

∑
t=t ′r∗∗

s′i∗∗(t)<Ci

implies that

∃t ∈ [t ′r∗∗ , t
∗) : q′i∗∗(t) = 1 ∧ si∗∗(t) 6= s′i∗∗(t) (A.14)

Thus, Eq. (A.8) is infeasible.
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Case 2: Suppose that (A.9) holds. Substituting (A.2), (A.3) into (A.9), we get that


si∗(t∗) = 0

s′i∗(t
∗) = 1

q′i∗(t
∗) = 1

(A.3)⇐⇒




qi∗(t∗) = 0

qi∗(t∗) = 1
i∗−1

∑
`=1

q`(t∗)≥ m

s′i∗(t
∗) = 1

q′i∗(t
∗) = 1

(A.2)⇐⇒




qi∗(t∗) = 0

qi∗(t∗) = 1
i∗−1

∑
`=1

q`(t∗)≥ m

q′i∗(t
∗) = 1

i∗−1

∑
`=1

q′`(t
∗)< m

=⇒



{
qi∗(t∗) = 0

q′i∗(t
∗) = 1

qi∗(t∗) = 1
i∗−1

∑
`=1

q`(t∗)≥ m

i∗−1

∑
`=1

q′`(t
∗)< m

The first case

qi∗(t∗) = 0

q′i∗(t
∗) = 1

is infeasible; the proof is conducted by analogy to Case 1, for Eq. (A.10), (A.11).

Suppose that the second case holds:

qi∗(t∗) = 1 (A.15)
i∗−1

∑
`=1

q`(t∗)≥ m (A.16)

i∗−1

∑
`=1

q′`(t
∗)< m (A.17)

Due to (A.16) and (A.17), there exists such a task τi∗∗ , with i∗∗ < i∗, that satisfies the constraints:

qi∗∗(t∗) = 1 (A.18)
i∗∗

∑
`=1

q`(t∗) = m (A.19)

q′i∗∗(t
∗) = 0. (A.20)

Let J∗∗ denote τi∗∗ job, pending at time t∗ in S (there is such a job, due to (A.18)), and let tr∗∗ denote
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its release time:

ri∗∗(tr∗∗) = 1,
t∗

∑
t=tr∗∗

si∗∗(t)<Ci. (A.21)

Observe that J∗∗ interfers with a lower priority job at time t∗: a processor is assigned to J∗∗ at time

t∗ (that is due to (A.18) and (A.19)), and the number of pending jobs at t∗ exceeds m (that is due

to (A.15) and (A.16)). From definition (2.12) of R′:{
ri∗∗(tr∗∗) = 1

(2.11) holds for J∗∗

(2.12)
=⇒ r′i∗∗(tr∗∗) = 1,

meaning that τi∗∗ released a job at time tr∗∗ , in R′. Let J′∗∗ denote that job, and t ′c∗∗ - its completion

time. Due to (A.20), τi∗∗ has no pending job at t∗, in S′, meaning that J′∗∗ has been completed by

time t∗:
t ′c∗∗ ≤ t∗

t ′c∗∗−1

∑
t=tr∗∗

s′i∗∗(t) =Ci

what together with (A.21) contradicts to assumption (A.7):
t ′c∗∗ ≤ t∗

t ′c∗∗−1

∑
t=tr∗∗

s′i∗∗(t) =Ci

∧ t∗

∑
t=tr∗∗

si∗∗(t)<Ci

t ′c∗∗−1

∑
t=t ′r∗∗

s′i∗∗(t) =Ci
∧ t ′c∗∗−1

∑
t=t ′r∗∗

si∗∗(t)<Ci,

meaning that (A.7) is violated:

∃t ∈ [tr∗∗ , t∗) : qi∗∗(t) = 1 ∧ si∗∗(t) 6= s′i∗∗(t)

We conclude that both cases, (A.8) and (A.9), are infeasible, and lemma statement (A.1) holds

always.

We finally prove Theorem 1.

Proof for Theorem 1. Necessity: We first prove that feasibility of R implies feasibility of R′. The

proof is conducted by contradiction. Suppose that exist such R, R′, satisfying (2.12), that R is

feasible, but R′ is infeasible. For R′, let tdm denote the earliest missed deadline for τk; consequently,
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tdm−Dk is the release time of the job missing the deadline:

r′k(tdm−Dk) = 1, (A.22)
tdm−1

∑
t=tdm−Dk

s′k(t)<Ck. (A.23)

Due to (2.12), if τk has released a job at time (tdm−Dk) in R′, then it has also released a job in R:

rk(tdm−Dk) = 1. (A.24)

Due to the assumption that R is feasible,

tdm−1

∑
t=tdm−Dk

sk(t) =Ck, (A.25)

what contradicts to (A.23) due to Lemma 3.

Sufficiency: The sufficiency proof shows that feasibility of R′ implies feasibility of R. Such a

proof is conducted by analogy to the necessity proof, by swapping functions rk(t), sk(t) and r′k(t),

s′k(t) in Eq. (A.22)-(A.25).

The theorem follows.

A.2 Proof of Corollary 2

Let τk denote a task under the schedulability analysis. Let us assume that tasks τ1, . . . ,τk−1 are

schedulable. The length of the longest schedule, satisfying Corollary 1, is less than t̄, computed

by any of the following equations:

t̄ =
k

∑
i=1

Di (A.26)

t̄ = max(C1, . . . ,Cm) +
k

∑
i=m+1

Di (A.27)

t̄ = max(C1, . . . ,Cm) +
k−1

∑
i=m+1

Ri + Dk, (A.28)

where Ri denotes the worst-case response time for task τi.

Eq. (A.26) and (A.27) originate from the release scenarios depicted in Figs. A.1, A.2. (The

figures assume that time is discrete.)

Below we prove each Eq. (A.26)-(A.28).

Let us first introduce a set of auxiliary definitions. Consider an arbitrary release scenario R

for tasks τ1, . . . ,τk, satisfying Corollary 1. For such R, let us define a sequence of interfering jobs

I = { ji1 , . . . , jik∗} as follows:
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D1
D2

Di

Dk

τ1
τ 2
τ i
τ k

…	

Di −1

t = Di −1( )
i=1

k−1

∑ + Dk

Figure A.1: An upper bound t̄ on the length of the longest schedule, satisfying Corollary 1. Such a
bound t̄ does not depend on the number of available processors. The figure assumes discrete time.

(a) Job ji1 is released by task τi1 at time t = 0. If several jobs are released at time t = 0 simul-

taneously, then ji1 has the highest priority among them.

(b) Job ji` of task τi` interferes with a lower priority job ji`+1 of task τi`+1 (with i`+1 > i`), for

` = 1, . . . ,k∗− 1. (Due to Corollary 1, for any job ji` , there should exist such a job ji`+1 .)

If job ji` interferes at different times with different jobs, then ji`+1 is the first interfered job,

and if job ji` interferes with different jobs simultaneously, then ji`+1 has the highest priority

among them.

(c) Job jik∗ is released by task τk, that is ik∗ = k.

To clarify the definition of I above, we provide an example. In Fig. A.3, we depict several

release scenarios for tasks τ1,τ2,τ3, and the respective values for I in each case.

We recall that, when analyzing the schedulability of task τk, it is sufficient to consider only

those release sequences, wherein task τk releases not more than one job. The details are provided

in Corollary 1.

For each job ji` in the definition of I above, let tri` and tci` denote the respective release and

completion times for a job ji` . The following constraints should hold for tri` and tci` :

tri1 = 0 (A.29)

tri`+1
< tci` (A.30)

tci` ≤ tri` +Di` , (A.31)

` = 1, . . . ,k∗−1, k∗ ≤ k.

Constraint (A.29) is because job ji1 is released, by its definition, at time t = 0. Constraint (A.30)

is because job ji` interferes with a job ji`+1 ; the necessary constraint for such an interference is that

job ji`+1 is released before ji` is completed. Finally, constraint (A.31) assumes that job ji` does not

miss its deadline, for any i` < k. (We recall the assumption that tasks τ1, . . . ,τk−1 are schedulable.)

We are now ready to conduct the proofs for (A.26)-(A.28).
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C1

Dk

τ1

τm

τ k

…	

t = max
ℓ=1,...,m

Cℓ + Di −1( )
i=m+1

k

∑

Cm

Dm+1

max
ℓ=1,...,m

Cℓ

max
ℓ=1,...,m

Cℓ −1 Di −1( )
i=m+1

k−1

∑

J1
Jℓ*
Jm

Jm+1

Jk

ℓ* :Cℓ* = maxℓ=1,...,m
Cℓ( )

0

Figure A.2: A tighter upper bound t̄ on the length of the longest schedule, satisfying Corollary 1.
Such a bound t̄ explores the number of available processors m. The figure assumes discrete time.

Proof for Eq. (A.26). Considering (A.29)-(A.31), task τk should release a job before time instant

t = ∑
k−1
i=1 Di. Indeed,

trk
(A.30)
< tcik∗−1

(A.31)
≤ trik∗−1

+Dik∗−1 < tcik∗−2
+Dik∗−1

≤
(

trik∗−2
+Dik∗−2

)
+Dik∗−1 < .. . <

k∗−1

∑
`=1

Di` ,

where trk denotes the activation time for task τk (see the definition of I above), and tri1 = 0 due

to Eq. (A.29). The right-hand side of the inequality above cannot exceed ∑
k−1
i=1 Di, as k∗ ≤ k and

i` < i`+1, meaning that (see also Fig. A.1):

trk <
k−1

∑
i=1

Di.

τ1
τ 2
τ 3

m =1 m = 2 m = 2 m = 2

I = j1, j2, j3{ } I = j1, j3{ } I = j3{ } I = j2, j3{ }

j1
j2

j3 j3 j3 j3

j1 j1 j1
j2 j2 j2

Figure A.3: A sequence of interfering jobs I: cases
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As the deadline for a job of task τk is trk +Dk, the inequality above yields the following bound t̄:

t̄ =
k

∑
i=1

Di.

Eq. (A.26) follows.

The release scenario, originating (A.26), is depicted in Fig. A.1. Observe that (A.26) does not

depend on the number of available processors m.

The following bound is a particular case of (A.26):

t̄ = tri +
k

∑
`=i

D`, (A.32)

where tri denotes the activation time of an arbitrary task τi, i= 1, . . . ,k. The proof can be conducted

by analogy to Eq. (A.26). We will use (A.32) to prove Eq. (A.27).

We are now ready to prove Eq. (A.27).

Proof for Eq. (A.27). Let us redefine jobs I = { ji1 , . . . , jim+1} as follows. Job ji` denotes the first

job released by task τi` , `= 1, . . . ,m+1. Jobs in I are sorted in the order of non-decreasing release

times. If jobs ji` and ji`+1 are released at the same time, then ji` has a higher priority than ji`+1

(that is i` < i`+1). For each job ji` , let time tri` denote its respective release time.

Observe that none of jobs ji1 , . . . , jim experience any interference, until job jim+1 is released.

That is each job ji` , for `≤ m, will be completed in Ci` time units only, if being executed without

a job ji` being released. Then, the release time trim+1
for a job jim+1 should be constrained by

trim+1
< max

`∈{i1,...,im+1}
6̀=max(i1,...,im+1)

C`, (A.33)

otherwise some job ji` , `≤ m, will violate Corollary 1, because job ji` will be completed without

interfering with another job. In the equation above, index max(i1, . . . , im+1) corresponds to a lower

priority job jmax(i1,...,im+1), which is interfered at time trim+1
.

Considering (A.32) and (A.33), t̄ is such that

t̄ = trim+1
+

k

∑
`=max(i1,...,im+1)

D`

< max
`∈{i1,...,im+1}
6̀=max(i1,...,im+1)

C` +
k

∑
`=max(i1,...,im+1)

D`.

(A.34)

We finally show that the right-hand side of the inequality above cannot exceed

max(C1, . . . ,Cm) +
k

∑
`=m+1

D`.
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We prove it by contradiction. Suppose that exists such a case (i1, . . . , im+1), different from

(1, . . . ,m+1), that an opposite holds:

max(C1, . . . ,Cm) +
k

∑
`=m+1

D` < max
`∈{i1,...,im+1}
6̀=max(i1,...,im+1)

C` +
k

∑
`=max(i1,...,im+1)

D`. (A.35)

After rearranging the terms, we get that

max(i1,...,im+1)−1

∑
`=m+1

D` < max
`∈{i1,...,im+1}
6̀=max(i1,...,im+1)

C` − max(C1, . . . ,Cm) , (A.36)

where max(i1, . . . , im+1)>m+1 due to the assumption (i1, . . . , im+1) 6=(1, . . . ,m+1) and i` < i`+1.

As the left-hand side of the inequality above is positive, its right-hand side should be also

positive. It is achieved if

max
`∈{i1,...,im+1}
6̀=max(i1,...,im+1)

C` > max(C1, . . . ,Cm) .

Let `∗ denote the index of a task τ`∗ , such that the left-hand side of the inequality above equals

to C`∗ :

max
`∈{i1,...,im+1}
6̀=max(i1,...,im+1)

C` = C`∗ . (A.37)

These necessary constraints for `∗ follow:

max
`∈{i1,...,im+1}
6̀=max(i1,...,im+1)

C` = C`∗ ⇒ `∗ ≤ max(i1, . . . , im+1)−1

C`∗ > max(C1, . . . ,Cm) ⇒ `∗ ≥ m+1.

(A.38)

Substituting (A.37) into (A.36), we get that

max(i1,...,im+1)−1

∑
`=m+1

D` < C`∗ − max(C1, . . . ,Cm) ; (A.39)

the necessary condition for this is

max(i1,...,im+1)−1

∑
`=m+1

D` < C`∗ ,

which together with constraint (A.38) on `∗ yields the following contradiction:

Dm+1 + . . .+ D`∗ + . . .+ Dmax(i1,...,im+1)−1 < C`∗

D`∗ < C`∗ .
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Thus, the assumption (A.35) is infeasible, and (A.27) holds always.

We finally prove Eq. (A.28).

Proof for Eq. (A.28). For each task τi, with i < k, let Ri denote its worst-case execution time, if

known, otherwise we set Ri = Di. (We assume that each task τi, for i < k, is schedulable.)

In the proof for Eq. (A.26) above, we update Eq. (A.31) by replacing term Di` with Ri` , for

i` < k. Then, repeating the steps of that proof, we confirm that Eq. (A.26) is reduced to

t̄ =
k−1

∑
i=1

Ri + Dk,

and consequently, Eq. (A.32) is reduced to

t̄ = tri +
k−1

∑
`=i

R` + Dk,

where tri denotes the activation time of an arbitrary task τi. Finally, in the proof for Eq. (A.27),

we substitute the equation above into (A.34), instead of (A.32), and we conclude that Eq. (A.28)

holds.

A.3 Proof of Theorem 2
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Figure A.4: Theorem 2: GMPR worst-case resource patterns Seven and Sodd
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Proof. Let supplyk(S, t) denote the resource provided by an arbitrary scenario S in the time interval[
− t

2 ,
t
2

]
(of length t) at concurrency k. We next consider two cases depending on the interval length

t: t ≤Π and otherwise.

We recall that, from Definition 5 of GMPR, there always exists a time instant t∗ such that the

resource provided at concurrency k over each interval [t∗+ (p− 1)Π, t∗+ pΠ], p ∈ Z, equals

to Θk. We refer t∗ as the replenishment instant of a GMPR interface, and the time intervals

[t∗+(p−1)Π, t∗+ pΠ] are its replenishment cycles.

Case 1: t ≤ Π. There always exists a replenishment instant t∗ ∈
[
−Π

2 ,
Π

2

]
such that the

resource provided in both intervals [t∗−Π, t∗] and [t∗, t∗+Π] is Θk each. Let us assume that

t∗ ≥ 0; the proof for t∗ < 0 is done by analogy.

As t∗ ∈ [0, Π

2 ] and t
2 ∈ [0, Π

2 ], the following two cases are possible:

0 ≤ t∗ ≤ t
2
≤ Π

2

0 ≤ t
2
≤ t∗ ≤ Π

2
.

Each of these cases is considered below.

Case 1a: 0≤ t∗ ≤ t
2 ≤

Π

2 . Let us transform the scenario S into S′ by moving left any resource

provided before t∗ and by moving right any resource provided after t∗, as depicted in Fig. A.5.

Since t∗ ∈ [− t
2 ,

t
2 ], such a transformation can only move the resource out of the time interval

[− t
2 ,

t
2 ], so that

supplyk(S, t)≥ supplyk(S
′, t).

Time%interval% Allocated%supply%

−t 2,  t*"# $%

t*,  t 2!" #$

sk t 2+ t
*( )

sk t 2− t
*( )

0 t*

t 2+ t*

t* +Π−t 2 t 2

t 2− t*

sk t 2+ t
*( ) sk t 2− t

*( )

Figure A.5: Case 1(a): 0≤ t∗ ≤ t
2 ≤

Π

2

To analyze the resource supply over S′, we now employ the auxiliary function sk(t) introduced

in Lemma 1. From Fig. A.5, it follows that

supplyk(S
′, t) = sk

( t
2
+ t∗

)
+ sk

( t
2
− t∗

)
.

Applying condition (3.3) to the RHS of the equation above, we get that

supplyk(S
′, t)≥ 2sk

( t
2

)
= supplyk (S

even, t) ,

where Seven is the resource pattern depicted in Fig. A.4.
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Case 1b: 0 ≤ t
2 ≤ t∗ ≤ Π

2 . Let us transform the scenario S into S′ by moving out of the time

interval [− t
2 ,

t
2 ] as much resource as possible (see Fig. A.6), so that

supplyk(S, t)≥ supplyk(S
′, t).

0 t*−t 2 t 2 Π 2t* −Π

sk (t)

Figure A.6: Case 1(b): 0≤ t
2 ≤ t∗ ≤ Π

2

From Fig. A.6, it follows that

supplyk(S
′, t)≥ sk(t) = sk(t)+ sk(0) ≥ 2sk

( t
2

)
= supplyk (Seven, t) ,

where the inequality holds due to Lemma 1.

The proof for t∗ ≤ 0 is done by analogy to cases 1a, 1b. Thus, Seven is the worst-case scenario

for any t ≤Π.

Case 2: t > Π. From any scenario S of resource supply, let us transform it into S′ by moving

left any resource provided before time instant 0 and by moving right any resource provided after

0. Since such a transformation can only move the resource out of the interval, it must again be that

supplyk(S, t)≥ supplyk(S
′, t).

For S′, let us decompose the interval [− t
2 ,

t
2 ] into the three sub-intervals [− t

2 , t
∗], [t∗, t∗+ pΠ],

and [t∗+ pΠ, t
2 ] as shown in Fig. A.7, where t∗ denotes the first replenishment instant after − t

2 ,

and p ∈ N0 is the number of full replenishment cycles in [− t
2 ,

t
2 ].

0 t 2−t 2 t*

k
...
1

t* + pΠ

sk t 2+ t
*( ) sk t 2− t* + pΠ( )( )pΘk

Figure A.7: Case 2: t > Π

It follows that

p ∈
{⌊

t−Π

Π

⌋
,
⌊ t

Π

⌋}
,
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Figure A.8: Comparison of replenishment cycle counters p, peven, podd.

which can also be written as p ∈ {peven, podd} (see Fig. A.8 for a graphical interpretation), with

peven = 2
⌊ t

2Π

⌋
podd = 2

⌊
t−Π

2Π

⌋
+1.

The resource supplyk(S′, t) in the interval [− t
2 ,

t
2 ] is the sum of resource available over the

three considered sub-intervals (see Fig. A.7), so that

supplyk(S
′, t) = sk

( t
2
+ t∗

)
+ pΘk + sk

( t
2
− (t∗+ pΠ)

)
≥ pΘk +2sk

(
t− pΠ

2

)
,

where the inequality holds due to Lemma 1. In case p = peven, then the equation above turns into

supplyk(S
′, t)≥ supplyk(S

even, t),

otherwise, if p = podd, then

supplyk(S
′, t)≥ supplyk(S

odd , t).

Thus, we conclude that no other scenario S exists providing less resource than Seven and Sodd.
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