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In this article, we present and discuss first-order necessary conditions of optimality for a very general

class of nonlinear impulsive dynamic control systems whose dynamics are given in the form of measure

driven differential inclusions and whose trajectories are subject to both state constraints and endpoint

constraints.

Minimize h(x(0), x(1))

subject to dx(t) ∈ F (t, x(t))dt + G(t, x(t))dµ(t) ∀t∈[0, 1]

(x(0), x(1)) ∈ C ⊂ IRn × IRn

l(t, x(t)) ≤ 0 ∀t∈[0, 1]

dµ ∈ K

where h : IRn × IRn → IR, and l : [0, 1]× IRn → IRq are given functions, F : [0, 1]× IRn → P(IRn), and

G : [0, 1] × IRn → P(IRn×q) are given set-valued maps, K ⊂ C∗([0, 1];K) is the set of control measures

supported on [0, 1] with range in a given set K ⊂ IRq, and C ⊂ IRn × IRn is closed.

This control paradigm can be regarded as an idealization of systems with fast and slow dynamics. This

is pertinent to important classes of systems with multi-phase missions or reconfigurable dynamics for

which the switching between different “productive” activities represented by slow dynamics are modeled

by fast dynamics.

Note that, if we consider F (t, x) := {f(t, x, u) : u ∈ Ω} and G(t, x) := {G(t, x, u) : u ∈ Ω}, where

the measurable function u plays the role of the conventional control taking values in a given compact

set Ω ⊂ IRm, then it is not difficult to see that this paradigm encompasses impulsive optimal control

problems where dynamics are specified by controlled differential equations. Moreover, the dependence of

the singular dynamics on the “conventional” control constitutes an interesting challenge with practical

implications. This issue is partially addressed in [12]. This optimal control problem has also been

considered in [9], but the stated optimality conditions are of different character.

The relationship between hybrid - systems whose evolution is defined by the interaction of time-driven

and event-driven discrete dynamics - and impulsive systems has addressed in [4, 5]. The importance of

the former is due to the emergence of the so-called networked systems. To better understand the extent

to which the measure driven differential paradigm enables the composition of dynamic control systems,

property at the crux of hybrid automata, a popular model for hybrid systems, just consider x = col(y, z),

a certain index set A, and Z = {zα : α ∈ A}, and note that the impulsive system




ẏ = f(y, z, u), u ∈ Ω

dz = g(y, z)dµ
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encompasses a hybrid system specified by a collection of conventional systems

{ẏ = fα(y, u), u ∈ Ω : α ∈ A},

where fα(y, u) := f(y, zα, u), and A is a given discrete or continuum set, being the evolution of the

variable α dictated by a transition automaton.

The stated necessary conditions optimality are in the form of both an Hamiltonian inclusion and a

maximum principle providing a complete characterization of both optimal and singular - notably that

“during” jumps - optimal evolutions of the state trajectory. For this, the solution concept plays an

important role. Here, we extend the one discussed in [11]. The basic idea of this solution concept consists

in stretching the time variable on the support of the control measure and in filling in the “gaps” of the

graph of trajectory of bounded variation by arcs that satisfy the singular (with respect to the Lebesgue

measure) dynamics. Thus, the completion of the graph of a trajectory of bounded variation requires a

time reparameterization so that the flow of the new time variable reflects, at each moment, the sum of

the contributions of the original time and of the control measure variation. In particular, this yields the

emergence of nonzero measure intervals whenever there is a discontinuity in the state trajectory, thus

enabling the definition of an “equivalent” trajectory solution to an auxiliary conventional differential

inclusion.

The presented necessary conditions of optimality are derived in the context of nonsmooth analysis

and, in this sense, they extend those derived in [11] in that state constraints are, now, included, and

nondegeneracy is ensured through the additional compatibility, regularity and controlability assumptions.

The conditions involve an adjoint equation in the form of a measure driven differential inclusion with

a boundary condition reflecting the effect of the cost function as well as endpoint constraints as well as

state constraints at the initial and the final times. The solution concept for the adjoint equation is exactly

the one adopted for the dynamics of the given control system. Moreover, the definition of the singular

component of the Hamiltonian has to be interpreted in a “path-valued” sense on the support of the

atomic component of the control measure. The characterization of the optimal control measure involves

two additional maximum conditions: one for the atomic and another for the continuous components of

the optimal control measure. Moreover, the consideration of state constraints adds some complexity on

the representation of the conditions since a measure in the multiplier emerges on the points of the time

interval where the state constraints become active.

Nondegenerate first-order necessary conditions of optimality have been derived in [2]. The fact that

a free time impulsive control problem with state constraints, besides the control constraints and the

nonlinear equality and inequality endpoint state constraints, is considered in this reference brings in not

only a lengthier statement of the conditions but also much more complex technical issues in their proof

whose methods rely strongly on [1]. A key issue of this result is the nondegeneracy of the obtained

conditions. However, the hypotheses assumed on the data of the control problem are smoother than

those of (P ), and the dynamics are given by a controlled differential equation, for which the vector fields

multiplying the control measure depend on the time and state variables only.

A fixed-time optimal control problem without state or control constraints with dynamics similar to

those in [2] satisfying even smoother assumptions is considered in [3], where first-order and second-order

necessary conditions of optimality are derived. One important point in this work is that second-order
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information is used in order to select, from all those satisfying the first-order conditions, a subset of

multipliers so that nondegeneracy is ensured, thus, dispensing with any a priori normality assumptions.
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