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Abstract

The human body is composed of interacting physiological systems whose actions are not always
predictable. A healthy system is characterized by the self-adjusting capacity to respond to internal re-
quirements and/or external influences. The analysis of mathematical approaches capable to deal with
concepts of complexity, chaos and fractality are of importance to better understand the information con-
tained in physiological signals (nonstationary and nonlinear time series). This notion contradicts that of
traditional homeostatic mechanisms of control, whose goal is to maintain a constant baseline. Pathologic
states and aging are associated with the breakdown of fractal correlations. There are evidence of com-
plexity loss in lifethreatening conditions, either marked by transitions to periodic dynamics, associated
with excessive order or for breakdown of organization, similar to uncorrelated randomness. The output
of the mathematical measures can be of practical diagnostic and prognostic use.

The central aspect of this thesis is exploring complexity analysis methodology in medical and decision
making research by providing a mathematical background (and software) to deal with the biological data.

One of the most explored physiological interactions, in the past few years, have been the dynamics
of the heart rate assessed through the acquisition of the electrocardiogram (ECG) and cardiotocogram
(CTG) signals. In Chapter 2 the main methods used to characterize the variability human heart rate
(HRV) are reviewed.

The use of measures based on complexity to assess observer disagreement, almost always present in
chaotic scenarios of physiological interactions, is other objective of this thesis (Chapter 3). On Section
3.1 is presented a generalization, for more than two observers, of the information-based measure of
disagreement (IBMD). The IBMD, an observer disagreement measure, based of Shannon’s notion of
entropy, uses logarithms to measures the amount of information contained in the differences between
observations. The software created to allow easy assess of observer (dis)agreement measures, a website
and a R package, are explored no Section 3.2.

Two conceptually different complexity measures: the entropy, a probabilistic approach and the com-
pression, an algorithmic approach are explored on Chapter 4. The entropy using the approximate
entropy (ApEn) and sample entropy (SampEn) measures and the Kolmogorov complexity through differ-
ent compressors, as the Lempel-Ziv, the bzip2 and the paq8l, were applied to a set of heart rate signals
with the goal of characterizing different pathologies. The first application of these measures in this thesis,
Section 4.1, was on the analysis of fetal heart rate (FHR). The results presented on this section validate
the notion of, although less used, compressors can be effectively used, complementary to entropy indices,
to quantify complexity in biological signals.

The multiscale entropy (MSE) approach capture the information “hidden” across multiple spatial
and temporal scales obtaining better results in the analysis of dynamics systems and characterizing
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pathologies. On Section 4.2 this approach is modified and the multiscale compression is proposed. In
this approach the coarse-grained procedure used to create a new time series for each scale maintains but
the calculation of entropy values is replaced by the estimation of the compression rate. This new measure
was successfully applied to two data sets: 1) a data set with 40 white-noise and 40 pink-noise time series;
2) a data set of cardiac interbeat interval time series from forty-three congestive heart failure patients
and seventy-two healthy subjects.

The low correlation between the two complexity approaches (entropy and compression) obtained
in the results of Sections 4.1 and 4.2 reinforce the importance of considering different measures to
assess different physical and physiologic time series. On Section 4.3 the two complexity approaches are
explored challenging complexity from different viewpoints and trying to understand the complementary
information that can be derived from both, providing a more comprehensive view of the underlying
physiology.

The utility of many of the methods created or used to assess HRV is not exclusive to that purpose.
Diabetes mellitus (DM) is one of the world’s most prevalent medical conditions affecting tens of millions
worldwide. On Chapter 5 some traditional HRV methods, as Poincaré maps, MSE and detrended
fluctuation analysis (DFA) were used with success to assess continuous glucose monitoring (CGM) data
acquired during several days. On Section 5.1 a new visualization tool - glucose-at-glance - based on
the Poincaré maps and colorized by density, is presented as an easy and quick way to facilitate the
assessment of data complexity acquired by CGM systems. On Section 5.2 the long and short term glucose
fluctuation were assessed and described, by using MSE and DFA, as well as the consistent complexity-loss
in the CGM time series from patients with diabetes.

In conclusion, this thesis provides several contributions, based on the complexity concept, towards the
measurement of disagreement and the evaluation of physiological signal. The confined number of signals
in each dataset is a thesis limitation, and thus the obtained results should be supported with further
clinical testing. Our findings may be useful in developing and testing mathematical models of physiologic
regulation in health and disease.
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Resumo

O corpo humano é composto por sistemas fisiológicos interactivos cujas acções nem sempre são pre-
visíveis. Um sistema saudável é caracterizado pela sua adaptabilidade, a capacidade de se auto-ajustar
em resposta a influências internas e/ou externas. A anáise de abordagens matemáticas capazes de lidarem
com conceitos de complexidade, caos e fractalidade são de extrema importância para melhor entender a
informação contida em sinais fisiológicos (séries temporais não-estacionárias e não-lineares). Esta noção
contradiz a tradicional noção de homeostase biológica, cujo objectivo é manter um constante equilíbrio.
Estados patológicos ou de envelhecimento são associados a perda de correlações fractais. Há evidência de
decréscimo de complexidade em situações de risco de vida, quer caracterizadas por dinâmicas periódicas,
associadas com excessiva ordem quer com a quebra organizativa similar a aleatoridade não correlacionada.
O resultado de medidas matemáticas pode ajudar ao diagnóstico ou prognóstico dessas mesmas condições.

O aspecto central desta tese é explorar o conceito de complexidade no contexto da investigação clínica
proporcionando uma base de conhecimentos matemáticos (e software) capaz de lidar com dados biológicos.

Uma das interações fisiológicas mais investigadas é a dinâmica da frequência cardica acessivel através
da aquisição de electrocardiogramas (ECG) e cardiotocogramas (CTG). No Capítulo 2 são revistos os
métodos mais utilizados, nos últimos anos, para a caracterização da variabilidade da frequência cardiaca
(VFC) humana.

O uso de medidas de complexidade para avaliar a concordância entre observadores, quase sempre pre-
sente em cenário de interações fisiológicas pertencentes ao domínio caótico, é outro dos objectivos da tese
(Capítulo 3). Na Secção 3.1 é apresentada a generalização, para mais do que dois observadores, da me-
dida information-based measure of disagreement (IBMD). A medida de discordância IBMD, baseada na
noção de entropia proposta por Shannon, utiliza logaritmos para medir a quantidade de informação con-
tida na diferença entre observações. O software criado para facilitar o c�lculo de medidas de concordância
(ou discordãncia) � explorado na Secção 3.2.

Duas medidas de complexidade conceptualmente diferentes: a entropia, uma abordagem probabilistica
e a compressão, uma abordagem algorítmica são investigadas no Capítulo 4. A entropia usando as
medidas: approximate entropy (ApEn) e sample entropy (SampEn) e a complexidade de Kolmogorov
através de diferentes compressores, como são exemplo o Lempel-Ziv, o bzip2 e o paq8l, são aplicados a
um conjunto de sinais de frequência cardíaca com o objectivo de caracterizar diferentes patologias. A
primeira aplicação destas medidas nesta tese, Secção 4.1, foi na análise de batimento cardíaco fetal.
Os resultados provenientes deste estudo validaram a noção que, embora menos usados, os compressores
devem ser considerados, complementaremente aos índices de entropia, para quantificar sinais biológicos.

O método Multiscale Entropy (MSE) consegue avaliar a informação contida nas dinâmicas de sinais
fisiológicos “encobertas” nas múltiplas escalas espaciais e temporais, obtendo melhores resultados na
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análise de sistemas dinâmicos e na caracterização de algumas patologias. A ideia principal da Secção 4.2
é extender este método à compressão, ou seja, manter a criação de escalas através de uma metedologia
de coarse-grained mas de seguida calcular o valor da taxa de compressão em substituição do valor de
entropia. Esta nova medida foi aplicada com sucesso em dois conjuntos de dados: 1) 40 séries temporais
de ruído branco e 40 séries temporais de ruído fractal; 2) 43 séries temporais de frequência cardíca de
pacientes com insuficiência cardíaca congestiva e 72 séries temporais the sujeitos saudáveis.

A baixa correlação entre as tuas abordagens (entropia e compressão) obtidas nos resultados das
Secções 4.1 e 4.2 sugerem que, embora ambas tentem quantificar o conceito de complexidade, cada
uma procura diferentes padrões e comportamentos. Estes resultados realçam a importância de considerar
diferentes medidas para avaliar diferentes séries temporais. Na Secção 4.3 os diferentes pontos de vista
das duas abordagens são exploradas tentando perceber que informação complementar provém do uso de
cada uma das abordagens.

A utilidade de muitos dos métodos criados ou usados para avaliar a variabilidade da frequência cardíaca
não é exclusiva desse propósito. Diabetes é uma das doenças com maior prevalência mundial que afecta
milhares de pessoas e a sua incidência tem vindo a aumentar a uma taxa alarmante devido à sua associação
com a obesidade. No Capítulo 5 alguns dos métodos de variabilidade de frequência cardíaca, como o
mapas de Poincaré, a MSE e a detrended fluctuation analysis (DFA) são usado com êxito na avaliação de
dados obtidos através de monitorização contínua da glicose (MCG) durante vários dias. Na Secção 5.1
uma nova ferramenta de visualização - glucose-at-glance - baseada nos mapas de Poincaré e colorizado
pela densidade, é apresentada como uma forma fácil e rápida de avaliar os dados complexos adquiridos.
Na Secção 5.2 as fluctuações de longo e curtos prazo da glicose são analisadas e descritas, usando os
métodos MSE e DFA, assim como a perda de complexidade nos sinais MCG de pacientes com diabetes.

Em conclusão, esta tese contribui com diversas metodologias, baseadas no conceito de complexidade,
no sentido de avaliar discordância entre observadores e a dinâmica de sinais fisiológicos. O número
reduzido de séries temporais dos diversos conjuntos de dados são uma limitação da tese e portanto os
resultados devem ser verificados com futuros testes clínicos. As conclusões aqui presentes poderão ser
úteis para desenvolver e testar métodos matemáticos que ajudem a regulação fisiológica na saúde e na
doença.
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Nothing in life is to be feared, it is only to be understood.
Now is the time to understand more, so that we may fear
less.

Marie Curie

1. Introduction

The human body is composed of several interacting physiological systems whose actions are not always
predictable. The traditional notion of physiological systems with homeostatic mechanisms of control [1],
whose goal is to maintain a constant baseline, is now contradicted by concepts of chaos, fractality and
complexity supporting the theory of a healthy physiological system characterized by a self-adjusting
capacity which degrades with pathologic states or aging [2].

In everyday parlance, chaos implies a state of confusion or disorder, a total lack of organization. In
science, however, the term chaos [3] refers to a mathematical approach dealing with systems that are fully
describable, but which generate random-appearing outputs under certain conditions. Chaos theory deals
with the patterns in the time evolution of a system that has sensitivity to initial conditions, i.e., small
differences between two sets of initial conditions can lead to huge discrepancies at later times. This mix
of rule (determinism) and unpredictability (stochasticity) appears to be pervasive in nature, influencing
cloud patterns, ocean currents and the flow of blood through branching blood vessels. Edward Lorenz,
an MIT mathematician and meteorologist, and a pioneer in this field, pithily defined chaos as occurring
“when the present determines the future, but the approximate present does not approximately determine
the future [4].”

A concept closely related to chaos is that of fractality, introduced by Mandelbrot [5–7]. Fractal
mathematics can be use to describe many branching or folded forms in biology, both in physiology (e.g.,
lungs, kidneys, blood vessels, brains, intestines) and in the diversity of life (forest, trees, flowers, plants,
certain weather systems) [8–10]. The concept also applies to the output of complex systems that lack a
characteristic scale. The main idea of fractality is that patterns look similar (in form or statistically) to
themselves on different scales of magnification.

On the other hand, complexity define the amount of structured information of each system. Shannon
demonstrated how the information within a signal could be quantified with absolute precision [11] as
the amount of unexpected data contained in the message (designated ‘entropy’). Subsequently, the
Kolmogorov complexity was proposed to quantify information on individual objects as the size of its
smallest representation [12]. The Shannon information theory measures the average information from a
random source, unlike Kolmogorov complexity that presents a form of absolute information [13].

Current knowledge suggests that the quantification and classification of physiologic signal dynamics
contribute to a better understanding of the underlying physiology observed through time course. In
the past decades the concern (and consequent improvement) with data collection techniques has been
growing, in particular with the acquisition of information during a continuous period of time. The
amount of data available is expanding, the quality and the refinement (higher frequency sampling) are
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improving and the access to new medical information is now possible. A good example is that of heart
rate dynamics assessment through the acquisition of the electrocardiogram (ECG) and cardiotocogram
(CTG) signals [14]. Accordingly, the RR intervals, the heart rate (HR) and the fetal heart rate (FHR) are
three of the most analyzed signals in research. Concepts of chaos, complexity, fractality, among others
have been used as support to numerous nonlinear measures proposed over time [14–16]. Also, several
studies indicate a reduction of fractality and complexity in pathological situations [16–24]. These results
may lead to improvements in the pathologies assessment and in the treatment monitorization.

The utility of many of the methods created or used to assess heart rate variability (HRV) is not
exclusive to that purpose. Diabetes mellitus (DM) is one of the world’s most prevalent medical conditions
affecting tens of millions worldwide and because of its association with obesity, the incidence of type 2
DM is increasing at an alarming rate. Recently, a continuous glucose monitoring (CGM) technology, with
sensors implanted subcutaneously for about a week, has been used in clinical practice. However, the time
series derived from CGM recordings remain a largely untapped source of dynamical information.

The difficulty of establishing a “gold standard” measure or even a set of characteristics/values that
can describe a pathology or an event, comes, many times, from the disagreement between the observers.
Plesk and Greenhalgh [25] conjectured components of health care as belonging to the simple, the complex
or the chaotic domains based on the certainty-agreement diagram introduced by Stacy [26], Figure 1.1.

Figure 1.1: The certainty-agreement diagram from [25].

Traditional health problems, with low uncertainty, are generally located in the simple domain. In these
scenarios it is reasonable to use linear models and uncomplicated protocols to guide clinical diagnosis
and decisions. The complex domain is represented by dynamic systems and their interactions. In this
domain the use of non-linear models and mining of patterns may be a helpful way to deal with higher
levels of complexity. In the chaos domain (high uncertainty and disagreement) no information is directly
visible from the interaction of the systems.

A robust measure of agreement becomes essencial to assess the interpretation of diagnostic tests and
clinical decisions specially belonging to the complex or the chaotic domains. Inconsistent results are
obtained when assessing observer agreement with most of the measures proposed [27]. In the particular
case of continuous variables the limits of agreement (LA) and the intra-class correlation coefficient (ICC)
are two of the most used measures despite their limitations. Recently a new measure, the information-
based measure of disagreement (IBMD) [28], was introduced as a useful tool for comparing the degree of
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observer disagreement. However, the proposed IBMD assesses disagreement between two observers only.
A similar problem arises for categorical variables where the observer agreement has been assessed using
the kappa statistics [29] and the raw agreement indices (RAI) [30].

1.1 Objectives

The central aspect of this thesis is exploring measures of complexity and fractality in medical research
and decision making. In order to do so, more specific aims were proposed.

• as one of the most explored physiological interactions has been the dynamics of the heart rate, this
thesis aims to review how human heart rate variability has been characterized;

• other objective of this thesis is to continue to explore the use of measures of complexity to assess
observer disagreement almost always present in chaotic scenarios of physiological interactions;

• this thesis also aims to provide the mathematical background to deal with the biological complexity
via the exploitation of measures as entropy and compression, in physiological signals as HR and
CGM data.

1.2 Outline

Chapter 2 presents a review of the main nonlinear methods used, in the past few years, to characterize
human heart rate dynamics, one of the most explored physiological interactions.

As observer disagreement is frequently found in the complex physiological interactions on Chapter
3 the state of the art of observer agreement measurement is review. A generalization for more than
two observers of the IBMD, an observer disagreement measure based of Shannon’s notion of entropy,
is presented on Section 3.1. To help health care professionals and biostatisticians when performing
observer agreement studies an intuitive web-based software system was created. The website facilitate
an easy application of several statistical agreement measures strategies to their own data. An R package
obs.agree was also developed for an easy computation of observer agreement measures. This software
package provides an easy way to calculate the RAI for categorical and the IBMD for continuous variables.
On Section 3.2 both platforms are explored and an application of the two functions included in the
obs.agree package as well the interpretation of the results obtained are presented.

On Chapter 4 the differences between the entropy and compression as complexity measures of heart
rate dynamics are evaluated. The first application of these measures (Section 4.1) was on the analysis of
fetal heart rate (FHR). The results presented on this section validate the notion that compressors can be
effectively used, complementary to entropy indices, to quantify complexity in biological signals, specifically
in FHR analysis. The main ideia on Section 4.2 is to extend the multiscale entropy approach [22] to
compression. The new multiscale compression method maintains the coarse-grained procedure to create
a new time series for each scale but the calculation of entropy values is replaced by the estimation
of the compression rate. This new measure was successfully applied to two datasets: a dataset with 40
white-noise and 40 pink-noise time series and another dataset of cardiac interbeat interval time series from
forty-three congestive heart failure (CHF) patients and seventy-two healthy subjects. The low correlation
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between the two complexity approaches (entropy and compression measures) obtained in the results of
Sections 4.1 and 4.2 suggest that although the two measures try to quantify the concept of complexity,
each one of them is looking for different patterns/behaviors. These findings reinforce the importance of
considering different measures to assess the different physical and physiologic time series. On Section
4.3 the two complexity approaches are explored challenging complexity from different viewpoints and
trying to understand the complementary information that can be derived from both, providing a more
comprehensive view of the underlying physiology.

On Chapter 5 some traditional HRV methods, as Poincaré maps, multiscale entropy (MSE) and
detrended fluctuation analysis (DFA) were used with success to determine the different dynamics of
glucose fluctuations in health and disease, during several days. On Section 5.1 a new visualization tool
- glucose-at-glance - based on the Poincaré maps and colorized by density, is presented as an easy and
quick way to facilitate the assessment of data complexity acquired by CGM systems. The long and short
term glucose fluctuation were assessed and described, as well as the consistent complexity-loss in the CGM
time series from patients with diabetes. These results, presented on Section 5.2, support consideration
of a new framework, dynamical glucometry, to guide mechanistic research and to help assess and compare
therapeutic interventions.

Finally, the thesis ends with a general discussion and the conclusion (Chapter 6).
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Declare the past, diagnose the present, foretell the future.

Hippocrates

2. Non-Linear Methods

The dynamics of the heartbeat are one of the most analyzed physiological interactions [1]. Many
mathematical methods were proposed and have been used for evaluate the heart rate variability. These
measures have been successfully applied in research to expand knowledge concerning the cardiovascular
dynamics in healthy as well as in pathologic conditions. However, they are still far from clinical medicine.

The review presented in this chapter focus on the most used nonlinear methods to assess the heart
rate dynamics based on concepts of chaos, fractality and complexity.

In everyday parlance, chaos implies a state of confusion or disorder, a total lack of organization. In
science, however, the term chaos [2] refers to a mathematical approach dealing with systems that are
fully describable, but which paradoxically generate random-appearing outputs under certain conditions.
Chaos theory deals with the patterns in the time evolution of a system that has sensitivity to initial
conditions, i.e., small differences between two sets of initial conditions can lead to huge discrepancies at
later times.

The term ‘fractal’�, first introduced by Mandelbrot [3], is a geometric concept related to, but not
synonymous with, chaos [4, 5]. A fractal is an object composed of subunits (and sub-subunits) that
resemble the larger scale structure, a property known as self-similarity. The property self-similarity or
scale invariance means that the details of the structures are similar, but not necessarily identical, when
zooming at different resolutions. A fractal organization is flexible, and breakdown of this scale invariance
may lead to a more rigid and less adaptable system with either random or highly correlated behavior
of heart rate dynamics [6]. The definition of fractal goes beyond self-similarity per se to exclude trivial
self-similarity and include the idea of a detailed pattern repeating itself. As mathematical equations,
fractals are usually nowhere differentiable [3]. A key feature of the class of fractals seen in biology is a
distinctive type of long-range order [7]. Although fractals are irregular, not all irregular time series are
fractal. The self-similarity of the systems fluctuations can be observer when analyzed over different time
scale, as seconds, minutes or hours.

The complexity is a property of every system that quantifies the amount of structured information.
Shannon demonstrated how the information within a signal could be quantified with absolute precision [8]
as the amount of unexpected data contained in the message (designated ‘entropy’).

2.1 Heart Rate

The electrocardiogram (ECG) records the electrical impulses generated by the polarization and de-
polarization of cardiac tissue and translating into a waveform used to measure the rate and regularity of
the cardiac cycle. A typical ECG tracing of the cardiac cycle (heartbeat) consists of a P wave, a QRS
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complex, a T wave, and a U wave (Figure 2.1). The focus of this chapter will be in the QRS complex,
in particular, in the methods developed and used to analyze RR interval time series - a set of the time
interval between two consecutive R waves (peaks).

Figure 2.1: Schematic diagram of normal sinus rhythm for a human heart.

The normal sinus rhythm is now known by having a complex behavior that degrades with disease [9].
Two of the most studied heart pathologies are the congestive heart failure (CHF) and the atrial fibrilla-
tion (AF). The former is characterized by a period 1-type dynamics while the latter present a random,
disorganized temporal structure (Figure 2.2).

Figure 2.2: Representative RR time series from a healthy subject (top panel); a pathological breakdown
of fractal dynamics, leading to single-scale period (CHF) (middle panel) and an uncorrelated randomness
(AF) (bottom panel).

Let’s start by considering some notation used in this chapter. We define a time series as a set of N
consecutive data points X = {x(i), i = 1, ..., N}, where, in this case, each point will represent the value
of a RR interval. From the original time series X, let’s define the vectors Xτ

m(i) as:

Xτ
m(i) = (x(i), x(i+ τ), x(i+ 2τ), . . . , x(i+ (m− 1) ∗ τ)) (2.1)

with i = 1, . . . ,K, where K = [N − (m− 1) ∗ τ ], m is the embedding dimension and τ is the embedding
lag. The chose of the appropriate embedding parameters is extremely important. The next two sections
describe briefly some approaches used to estimate these parameters.



13 Non-Linear Methods

ESTIMATION OF MINIMUM EMBEDDING DIMENSION (m)

For the estimation of the smallest sufficient embedding dimension many algorithms were proposed.
One of the most used method is the ‘false nearest-neighbors’ algorithm proposed by Kennel et al. in
1992 [10]. The algorithm identifies the number of ‘false nearest neighbors’, points that appear to be
nearest neighbors of every point in the phase space due to a small embedding dimension value. An
appropriate embedding dimension can be determined by examining how the number of false neighbors
changes as a function of dimension, i.e., when the number of false nearest neighbors drops to zero, we
have embedded the time series into proper dimensional space. The limitation of this method relies on the
subjective definition of false neighbor [11]. To overcame this limitation Cao proposed new method [11].
After reconstruct the vectors and the time delay embedding, similar to the idea of the false neighbor
method, the quantity a(i,m) is defined as:

a(i,m) =
∥Xm+1(i)−Xm+1(n(i,m))∥

∥Xm(i)−Xm(n(i,m))∥
(2.2)

with i = 1, . . . , N −mτ , where ∥.∥ is a measurement of Euclidean distance defined as:

∥Xm(k)−Xm(l)∥ = max0≤j≤m−1|x(k + jτ)− x(l + jτ)| (2.3)

n(i,m) is an integer in the range 1 ≤ n(i,m) ≤ N −mτ such that Xm(n(i,m)) is the nearest neighbor
of Xm(i) in the m dimensional reconstructed phase space. A quantity E(m), which is the mean value of
all a(i,m) is computed as

E(m) =
1

N −mτ

N−mτ∑
i=1

a(i,m) (2.4)

This averaging process removes the subjectivity involved with fixing threshold and tolerances of the
false nearest neighbor method. To investigate its variation from m to m+ 1, E1(m) is define as:

E1(m) =
E(m+ 1)

E(m)
(2.5)

It is found that E1(m) stops changing when it is greater than some value mo if the series comes from
an attractor; then mo + 1 is the minimum embedding dimension. However, in practice it is difficult to
resolve whether the E1(m) is slowly increasing or has stopped changing if m is sufficiently large. To solve
this problem, another quantity is determined that is useful in distinguishing deterministic signals from
stochastic signals

E∗(m) =
1

N −m

N−m∑
i=1

|x(i+mτ)− x(n(i,m) +mτ)| (2.6)

and its variation from m to m+ 1 as

E2(m) =
E∗(m+ 1)

E∗(m)
(2.7)

For random data, future values are independent of past values and E2(m) will be equal to 1 for any
m, whereas for deterministic signals E2(m) is related to m, so it cannot be a constant.
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TIME DELAY EMBEDDING ESTIMATION (τ)

Various approaches have been proposed for estimation of an appropriate time delay. The most used
two are the autocorrelation function and the average mutual information function (AMI) [12]. In the
former, the value for which the autocorrelation function (C(τ)) first passes through zero (τ) is searched.

C(τ) =
1

N − τ

N−τ∑
i=1

(x(i)− x̄)(x(i+ τ)− x̄) (2.8)

In the latter, let pi be the probability to find a time series value in the ith interval of the partition, let
pij(τ) be the joint probability to find a time series value in the ith interval and a time series value in the
jth interval after a time τ , i.e., the probability of transition in τ time from the ith to the jth interval.
The average mutual information function is

S(τ) = −
∑
ij

pij(τ)ln
pij(τ)

pipj
(2.9)

The value τ chosen is the first one that minimizes the quantity S(τ).
The AMI seems to be preferred in nonlinear time series analysis since it measures a general dependence

of two variables while the autocorrelation function looks for the linear independence.

2.2 Poincaré Plot

The Poincaré plot (PP), also known as a return or delay map, allows assessing the heartbeat dynam-
ics based on a simplified phase-space embedding. The PP is a two-dimensional graphic (scatter plot)
in which each RR interval, x(i), is plotted as a function of the previous RR interval, x(i − 1). The PP
analysis is an emerging quantitative-visual technique, whereby the shape of the plot provides summary
information on the behavior of the heart [13, 14]. For a healthy heart, the cloud of points presents a
comet shape oriented along the line of identity, the cardiac heart failure dynamics are characterized by a
stretched elliptical shaped cloud of pointst also along line of identity, in the AF case the cloud of points
present a more circular shape, similar to what happens with white noise time series. (See Figure 2.3)

Figure 2.3: Poincaré plot for each of the time series presented in Figure 2.2. The left panel represents a
normal sinus rhythm, the middle panel data from a CHF patient and the right panel the AF case. Note
that the axis value are different in the three cases.

A number of techniques were developed attempting to quantitatively summarize the plot’s geometric
appearance. The geometrical descriptors, as the ellipse fitting technique, the histogram techniques and
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correlation coefficient, are the most popular in the clinical and HRV literature [15]. The dispersion of
points along the line-of-identity is thought to indicate the level of long-term variability and measured by
the standard deviation denoted by SD2 [16]. On the other hand, the dispersion of points along the per-
pendicular to the line of identity reflects the level of short-term variability is measured by SD1 [14, 17, 18].

The standard deviation of the RR intervals, denoted by SDRR, is often employed as a measure of
overall HRV. It is defined as the square root of the variance of the RR intervals, where the mean RR
interval is here denoted by E[X].

SDRR =
√
E[X2]− E[X]2 (2.10)

The standard deviation of the successive differences of the RR intervals, denoted by SDSD, is an
important measure of short-term HRV. It is defined as the square root of the variance of the sequence
∆X(i) = x(i)− x(i+ 1)�

SDSD =
√
E[X2]− E[∆X]2) (2.11)

Note that E[∆X] = 0 for stationary intervals. This means that SDSD is equivalent to the root-mean-
square of the successive differences, denoted RMSSD.

The geometric indices obtained by fitting an ellipse to the Poincaré plot are dependent of the standard
time domain HRV indices. The width of the Poincaré plot is a linear scaling of the most common statistic
used to measure short-term HRV, the SDSD index. In fact, the width of the Poincaré plot correlates
with other measures of short-term HRV [14, 19].

SD12 = V ar(
1√
2
X(i)− 1√

2
X(i+ 1)) =

1

2
V ar(∆X) =

1

2
SDSD2 (2.12)

SD22 = 2SDRR2 − 1

2
SDSD2 (2.13)

Two simple generalizations of the Poincaré plot, lagged Poincaré plots and higher-order Poincaré plots,
can also be encountered in the literature. In lagged Poincaré plots x(i) is plotting against x(i+c), where c

is some small positive value. In general, the plot is still clustered around the line-of-identity. However, the
length and width of the plot are altered as the lag is increased. Considering the standard Poincaré plot to
be of first order, the second order Poincaré plot is a 3D scatter-plot of the triples (x(i), x(i+1), x(i+2)).
There are three orthogonal views of the shape of this plot, resulting in 2D projections onto each of the
coordinate planes (x(i), x(i+1)), (x(i+1), x(i+2)) and (x(i), x(i+2)). The first two views are equivalent
to the standard Poincaré plot and the third is the lag-2 Poincaré plot. This idea can be extended into
higher dimensions, with the projections of the plot onto coordinate planes being lagged Poincaré plots.
So, an order c Poincaré plot is geometrically described by the set of lagged Poincaré plots up to and
including lag c [15].

The Poincaré plot is a powerful tool for graphically representing the summary statistics but also for
beat-to-beat structure. Non-geometric techniques, such as scanning parameters [16, 20–23] and image
distribution measures [24], are likely to be measuring independent, nonlinear information on the intervals.
However, they are not nearly as popular as the “linear” Poincaré plot measures in the literature [15].
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2.3 Recurrence Plot Analysis

The recurrence plots (RPs) method was introduced, in 1987 by Eckmann et al. [25], to visualize
the recurrence of dynamical systems in a phase space. In this method a K×K recurrence matrix is
constructed where the matrix whose elements RMi,j are defined as:

RMi,j = Θ(r − ∥Xτ
m(i)−Xτ

m(j)∥) (2.14)

with i, j = 1, . . . ,K, where r is a threshold distance, ∥.∥ is the Euclidean distance, and Θ(.) is the
Heaviside function. This means that, if two phase space vectors Xτ

m(i) and Xτ
m(j) are sufficiently close

together then RMi,j = 1; otherwise is RMi,j = 0. The RP is the representation of the matrix RM as a
black (for ones) and white (for zeros) image.

A crucial parameter of a RP is the threshold distance, r. If r is too small, there may be almost no
recurrence points and we cannot learn anything about the recurrence structure of the underlying system.
On the other hand, if r is chosen too large, almost every point is a ‘neighbor’ of every other point,
which leads to a lot of artifacts [26]. Several criteria for the choice of the distance threshold r have been
proposed: a few percent of the maximum phase space diameter [27], a value which should not exceed 10%
of the mean or the maximum phase space diameter [28, 29], or a value that ensures a recurrence point
density of approximately 1% [30]; another approach is to choose r according to the recurrence point
density of the RP by seeking a scaling region in the recurrence point density [30] or to take into account
that a measurement of a process is a composition of the real signal and some observational noise with
standard deviation σ [31]. One of most used approach uses a fixed number of neighbors for every point
of the trajectory, called the fixed amount of nearest neighbors (FAN) [25]. In this approach ri changes
for each state Xτ

m(i) to ensure that all columns of the RP have the same recurrence density. Using this
neighborhood criterion, ri can be adjusted in such a way that the recurrence rate (REC) has a fixed
predetermined value [26].

To quantify different properties of the temporal evolution of a system, such as stability, complexity,
and the occurrence of epochs of chaos vs. order in the behavior of the system several measures were
developed [28, 32–34] and are known as recurrence quantification analysis (RQA). These measures are
based on the recurrence point density and the diagonal and vertical line structures of the RP. The
most important structures for RQA are diagonal and vertical lines, briefly described in the following
two subsections. Diagonals reflect the repetitive occurrence of similar sequences of states in the system
dynamics and express the similarity of system behavior in two distinct time sequences. Verticals result
from a persistence of one state during some time interval.

THE PARAMETERS EXTRACTED FROM THE RM BASED ON DIAGONAL LINES

Here are presented five parameters (DET,L,Lmax, DIV and Entropy) used to characterize the in-
formation contained in the diagonal line. Considering P (l) as the histogram of the length of diagonal
lines.
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• Determinism (DET ) is the ratio of recurrence points that form a diagonal structure

DET =

∑N
l=lmin

lP (l)∑N
l=1 lP (l)

(2.15)

• Average diagonal line length (L)

L =

∑
l = lminN lP (l)∑N

l=lmin
P (l)

(2.16)

Note that the threshold lmin excludes the diagonal lines that are formed by the tangential motion
of the phase space trajectory. The choice of lmin has to take into account that the histogram P (l)

can become sparse if lmin is too large, and, thus, the reliability of DET decreases.

• Maximal length of a diagonal (Lmax), or its inverse, the divergence (DIV ),

Lmax = max liNl
i=1 and DIV =

1

Lmax
(2.17)

where Nl =
∑

l≥lmin
P (l) is the total number of diagonal lines.

• Entropy refers to the Shannon entropy of the probability p(l) = P (l)
Nl

to find a diagonal line of
length l.

Entropy = −
N∑

l=lmin

p(l) · ln (p(l)) (2.18)

The entropy reflects the complexity of the RP in respect of the diagonal lines, e.g. for uncorrelated
noise the value of entropy is rather small, indicating its low complexity.

THE PARAMETERS EXTRACTED FROM THE RM BASED ON VERTICAL LINES

Considering that the total number of vertical lines of the length v is given by P (v), the measures
based on vertical lines are:

• Laminarity (LAM), the ratio between the recurrence points forming the vertical structures and the
entire set of recurrence points, is analogous to DET applied to vertical lines:

LAM =

∑N
v=vmin

vP (v)∑NR

v=1 vP (v)
(2.19)

LAM will decrease if the RP consists of more single recurrence points than vertical structures.

• The average vertical line length (trapping time – TT) estimates the mean time that the system will
abide at a specific state or how long the state will be trapped.

TT =

∑N
v=vmin

vP (v)∑NR

v=vmin
P (v)

(2.20)
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The maximal vertical line of the matrix (Vmax), analogously to the standard measure Lmax (Nv is
the absolute number of vertical lines).

Vmax = max ({vl}Nv

l=1) (2.21)

In contrast to the RQA measures based on diagonal lines, these measures are able to find chaos–
chaos transitions [33]. Hence, they allow for the investigation of intermittency, even for rather short and
non-stationary data series. Furthermore, since for periodic dynamics the measures quantifying vertical
structures are zero, chaos–order transitions can also be identified.

2.4 Fractal Dimension

A fractal dimension (FD) is a statistical index of how detail a pattern changes with the scale at which
it is measured. The FD emerges to provide a measure of how much space an object occupies between
Euclidean dimensions. The FD of a waveform represents a powerful tool for transient detection. The
higher the FD, the more irregular the signal is, i.e., the more self-similar the signal will be.

From the several algorithms available to calculate the FD of a time series, the three most common
are the box-counting dimension [35] and the algorithms proposed by Katz [36] and Higuchi [37, 38].

Box Counting Dimension

The main idea of the box counting method is to analyze complex patterns by breaking signal into
smaller and smaller pieces, typically “box”-shaped, and analyzing the pieces at each scale. The minimum
number of elements of a given size (ε), necessary to fully cover the curve (S), of dimension d is counted
(Nε).

Nε(S) ∼
1

εd
as ε → 0 (2.22)

As the size of the element approaches zero, the total area covered by the area elements will converge to
the measure of the curve. This way, the FDB can be estimated via a box-counting algorithm as proposed
by Barabasi and Stanley [35] as follows:

FDB = −limε→0 
ln Nε(S)

ln ε (2.23)

Katz

The fractal dimension (FDK) of the waveform representing the time series is estimated using Katz
method [36] as follows:

FDK =
log L
log d (2.24)

where L is the total length of the curve calculated as the sum of the distance between the successive data
points and d is the diameter or planar extent of the curve, estimated as the distance between the first
point and the point in the sequence that gives the farthest distance. For the signals that do not cross
themselves it can be expressed as d = max (dist(x(1), x(i))), i = 2, . . . , N, where dist(x(i), x(j)) is the
distance between the ith and jth points on the curve.
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Higuchi

The Higuchi’s method [37, 38] it is a very efficient algorithm to calculate the FD of a curve and it has
been increasingly used for the analysis of time series. For a time series expressed by x(i), i = 1, . . . , N ,
new series Xm

r are obtained as follow:

Xm
r = (x(m), x(m+ r), x(m+ 2r), . . . , x(m+

[
(N −m)

r

]
r)),m = 1, . . . , r (2.25)

where [.] denotes the Gauss notation, m and r are integer that indicate the initial time and the time
interval, respectivetly.

The length of the new series Xm
r is defined as:

Lm(r) =


[N−m

r ]∑
i=1

|x(m− ir)− x(m+ (i− 1))|

× N − 1

[N−m
r ]r

 1

r
(2.26)

The length of the L(r) for the time interval r is obtained by averaging all the subseries lengths Lm(r)

that have been obtained for a given r value.
If L(r) is proportional to r−D, the curve describing the shape is fractal-like with the dimension D.

Thus, if L(r) is plotted against r, on a double logarithmic scale (ln 1r , ln L(r)), the points should fall on
a straight line with a slope equal to −D. The coefficient of linear regression of the plot is taken as an
estimate of the fractal dimension of the epoch. Applying the above relation implies the proper choice of
a maximum value of r for which the relationship L(r) ∝ r−D is approximately linear.

2.5 Detrended Fluctuation Analysis

Detrended fluctuation analysis (DFA) quantifies intrinsic fractal-like (short and long-range) correlation
properties of dynamic systems [39]. This technique is a modification of root-mean-square analysis of
random walks applied to nonstationary signals [40].

First, the time series (of length N) is integrated. Then, the integrated time series is divided into
Nn windows of equal length n. In each window of length n, a least-squares line is fitted to the data.
The y-coordinate of the straight-line segments are denoted by yn(k). Next, the integrated time series is
detrended, yn(k), in each window. The root-mean-square fluctuation of this integrated and detrended
series is calculated using the equation:

F (n) =

√√√√ 1

N

N∑
k=1

[y(k)− yn(k)]2 (2.27)

This computation is repeated over all time scales (box sizes) to characterize the relationship between
F (n), the average fluctuation, and the box size, n. Typically, F (n) increases with window size according
to F (n) ∝ nα. The α exponent can be viewed as an indicator of the “roughness” of the original time
series: the larger the value of α, the smoother the time series.

If α ≃ 0.5, the time series represents uncorrelated randomness (white noise);
if α ≃ 1 (1/f noise), the time series has long-range correlations and exhibits scale-invariant properties;
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if α ≃ 1.5, the time series represents a random walk (Brownian motion).

In this context, 1/f-noise can be interpreted as a compromise or “trade-off” between the complete
unpredictability of white noise and the much smoother “landscape” of Brownian noise.

Usually the DFA method involves the estimation of a short-term fractal scaling exponent α1 and a
long-term scaling exponent α2.

DFA as such is a monofractal method, but multifractal analysis also exists [166]. In the early 1990s an
improved multifractal formalism, the wavelet transform modulus maxima (WTMM) method [41, 41–44],
has been developed. The multifractal analysis describes signals that are more complex than those fully
characterized by a monofractal model, but requires many local and theoretically infinite exponents to
fully characterize their scaling properties. The multifractal DFA (MF-DFA) [45, 46] consist in five steps
that do not require the modulus maxima procedure. The first two steps are identical to the monofractal
DFA procedure. Since the length N of the series is often not a multiple of the considered time scale n,
the same procedure is repeated starting from the opposite end. Thereby, the integrated time series, yn(k)
- the fitting polynomial in segment k, was detrend in the 2Nn segments obtained by determination of
χ2-functions (variances), for each k from 1 to Nn:

Fn
k =

√√√√ 1

n

n∑
i=1

[y[(k − 1)n+ i]− yk(i)]2 (2.28)

while for k from Nn + 1 to 2Nn the corresponding variances are defined as:

Fn
k =

√√√√ 1

n

n∑
i=1

[y[N − (k −Nn)n+ i]− yk(i)]2 (2.29)

The fitting procedure can be linear, quadratic, cubic, or higher order polynomials (MF-DFAm - the
mth order of the MF-DFA) [39, 47, 48]. A comparison of the results for different orders of the MF-DFA
allows one to estimate the order of the polynomial segment trends in the time series [45, 48].

The fourth step is the average over all segments to obtain the qth order (the index variable q can take
any real value) fluctuation function:

Fq(n) =

[
1

2Nn

2Nn∑
k=1

[Fn
k
2]q/2

]1/q

(2.30)

For q = 2, the standard DFA procedure is retrieved. We are interested how this q-dependent fluctuation
function depends on the time scale n for different values of q hence, stages 2 till 4 must be repeated for
several time scales n.

Determine the scaling behavior of the fluctuation functions by analyzing log–log plots Fq(n) versus n

for each value of q. If such a scaling exists ln Fq(n) will depend linearly on ln n, with h(q) as the slope.
For stationary time series h(2) is identical with the Hurst exponent, HE (see section below) and h(q) is
said to be the generalized HE. A monofractal time series is characterized by unique h(q) for all values
of q. The generalized HE, h(q), of MF-DFA is related to the classical scaling exponent ϕ(q) through the
relation

ϕ(q) = qh(q)− 1. (2.31)
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A monofractal series with long-range correlation is characterized by linearly dependent q order exponent
ϕ(q) with a single HE. Multifractal signal have multiple HE and ϕ(q) depends non-linearly on q [49].

2.6 Hurst Exponent

Initially defined by Harold Edwin Hurst [50, 51] to develop a law for regularities of the Nile water
level, the Hurst exponent (HE) is a dimensionless estimator used to evaluate the self-similarity and the
long-range correlation properties of time series. Unlike others nonlinear dynamic features, the HE does
not involve state space reconstruction. There is a straightforward relationship between the HE and the
fractal dimension FD, given by FD = E +1−HE, where E is the Euclidean dimension, which for time
series is 1 obtaining there relationship FD = 2−HE [52].

The oldest description of the HE is defined in terms of the asymptotic behavior of the rescaled range
(a statistical measure of the variability of a time series) as a function of the time span of a time series as
follows:

E

[
R(N)

S(N)

]
= CNH as N → ∞ (2.32)

where S(N) is the standard deviation, C an arbitrary constant and the range R(N) is defined as the
difference between the maximum and the minimum values of a given time series.

There are many algorithms to estimate the HE parameter. The most immediate one is derived from
the definition. First, the time series of length N is subdivided into segments of length T . Then the
ratio R/S is computed for each segment and the average, for all segment, is calculated. These steps
are repeated for several values of T . The HE can be estimated as the slope of the regression line
produced by the log-log graph. The HE can also be computed using the periodogram (Pxx), which is
an approximation of the power spectral density (PSD) [53]. The Bartlett’s method [54] (the method of
averaged periodograms [55]) or it modification, the Welch method [56] are the most used method for,
in practice, estimating power spectra density. As in the previous method the time series of length N is
divided in segments of length T . In the Bartlett’s method for each segment, the periodogram is computed
using the discrete Fourier transform, then the squared magnitude of the result is calculated and divided
by T . Average the result of the periodograms above for the data segments. The averaging reduces the
variance, compared to the original N point data segment. [54, 57] The Welch method differs since it
allows the segments of the time series of each periodogram to overlap. Once the PSD is estimated it is
possible to determine β parameter as the slope of the straight line fitted using least squares.

log ((Pxx(f)) = −βlog (f) + C (2.33)

And, the computation of HE index is straightforwardly using the relation:

β = 1 + 2HE (2.34)

Other increasingly used approach is related with the DFA method (described in the previous section).
The α exponent is related to the HE parameter by [58]: α = 1 + HE. The advantages of DFA over
conventional methods (periodogram and R/S method) are that of permit the detection of long-range
correlations in time series with non-stationarities, and also avoids the spurious detection of apparent
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long-range correlations that are an artifact of non-stationarity [7, 40].

The HE may range between 0 and 1 and can indicate:

0 < HE < 0.5, that time series has long-range anti-correlations;

HE = 0.5, that there is no correlation in the time series;

0.5 < HE < 1, that there is long-range correlations in the time series.

HE = 1, that the time series is defined self-similar, i.e., it has a perfect correlation between increments.
However, the literature on HR variability conventionally uses the term self-similarity even if HE differs
from [59].

2.7 Correlation Dimension

To analyze the complexity of a system, usually a transition from the time domain to the phase space
is needed. The correlation dimension (CD), one of the most widely used measures of fractal dimension,
can be considered as a measure for the number of independent variables needed to define the total system
in phase space [60].

For each vector X1
m(i), the relative number of vectors X1

m(j) for which d[X1
m(i), X1

m(j)] ≤ r, where r

is referred as a threshold tolerance value is computed as:

Cr
m(i) =

number of d[X1
m(i), X1

m(j)] ≤ r

N −m+ 1
∀j (2.35)

The distance function is defined as:

d[X1
m(i), X1

m(j)] =

√√√√ m∑
k=1

(X1
m(i, k)−X1

m(j, k)2 (2.36)

where X1
m(i, k) and X1

m(j, k) refer to the kth element of the series X1
m(i) and X1

m(j), respectivetly.
The probability that two chosen points are close to each other with distance smaller than r, is computed
by averaging Cr

m(i) over i:

Cr
m =

1

N −m+ 1

N−m+1∑
i=1

Cr
m(i) (2.37)

The Cr
m index is computed for increasing values of the embedding dimensions m (usually, here, the

embedding dimension varies between 2 and 30 [61]) and the slopes of the log-log plot are determined,
obtaining a sequence of d(m). As m increase, d(m) tends to a constant value of saturation, which is the
CD value [62]. Grassberger and Procaccia [63] showed that correlation dimension (CD) can be obtained
from:

CD = lim
r→0

lim
N→∞

 log C
r
m

log (r) (2.38)

In practice this limit value is approximated by the slope of the regression curve (log (r), log Cr
m). [64]

Other approach to estimate the CD value is the Levenberg-Marquardt method [65]. The exponential
model for the d(m) values is d(m) = CD(1 − r−km), where CD and k are the parameters of the curve,
where the former represents the asymptotic value of the curve when m → ∞, and the latter is the
exponential constant.



23 Non-Linear Methods

2.8 Entropies

Shannon introduced the first notion of entropy (Shannon entropy - SE) to measure how the information
within a signal can be quantified with absolute precision as the amount of unexpected data contained in
the message [8, 66].

The Renyi entropy, a generalization of the Shannon entropy, is a family of functions of order q (Rq)
defined as:

Rq =
1

1− q
ln

∑
 i

p(x(i))
q (2.39)

where p(x(i)) is the probability of X = x(i). The particular case when q = 1, the Shannon entropy is
obtained:

SE = −
∑
 i

p(x(i)) · log (p(x(i))) (2.40)

The conditional entropy [67] (CE) assesses the amount of information carried by the current RR
sample when m − 1 past samples of RR are known. The CE represents the difficulty in predicting the
future values based on past values of the same time series. When the future values of RR are completely
predictable, given past values, the CE value is 0. If the past values of RR are not helpful to reduce the
uncertainty associated with future RR values the value of CE is equal to SE. In the approach introduced
by Porta [67] the RR time series is recoded. The RR intervals are sorted into ξ equally spaced bins and
the values inside each bin are substituted with an integer ranging from 0 to ξ − 1 coding the specific
bin, obtaining a new time series Xξ = {Xξ(i), i = 1, . . . , N} . The patterns are constructed using the
technique of the delayed coordinates as Xξ

m(i) = (Xξ(i), Xξ(i− 1), . . . , Xξ(i−m+ 1)). The conditional
entropy (CE) of RR is defined as:

CEm = −
∑N−m+1

i=1

[
p
(
Xξ

m(i)
)
·
∑N−m+1

i=2

[
p
(
Xξ(i)|Xξ

m−1(i− 1)
)
· log

(
Xξ(i)|Xξ

m−1(i− 1)
)]]

(2.41)

where p(Xξ(i)|Xξ
m−1(i− 1)) is the conditional probability of Xξ(i) given previous m− 1 samples.

Since the percentage of patterns found only once grows monotonically towards 100% with m, CE

always decreases toward 0 with m independently of the type of RR dynamics. In order to prevent the
artificial decrease of the information carried by RR given m past samples, solely related to the shortness
of the data sequence, the corrected conditional entropy (CCE) is defined as [67–69]:

CCE(m) = CE(m) + SE(1) · perc(Xξ
m). (2.42)

where Xξ
m = {Xξ

m(i), i = 1, . . . , N−m+1} are the series of the patterns that can be constructed from
Xξ, perc(Xξ

m) represents the fraction of patterns found only once in Xξ
m with 0 ≤ perc(Xξ

m) ≤ 1 and

SE(m) = −
∑
i

p(Xξ
m(i)) · log

(
p(Xξ

m(i))
)

(2.43)

The CCE(m) decreases towards 0 only in case that RR is perfectly predictable given past RR values,
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it remains constant when past RR values are not helpful to predict future RR, and it exhibits a minimum
when past RR values are only partially helpful to predict RR. The minimum of CCE,CCEmin represents
the minimum amount of information carried by RR given its own past values: the larger this value, the
larger the amount of information carried by RR, the smaller the predictability of RR based on its own
past values.

The Approximate Entropy (ApEn), proposed by Pincus [70], exhibits a good performance in the
characterization of randomness even when the data sequences are not very long. In order to calculate
the ApEn the new series of vector of length m - embedding dimension - are constructed X1

m. Similar to
CD, for each vector X1

m(i), the value Cr
m(i), where r is referred as a tolerance value, is computed as:

Cr
m(i) =

number of d[X1
m(i), X1

m(i)] ≤ r

N −m+ 1
∀j (2.44)

Here the distance function used is defined as:

d[X1
m(i), X1

m(j)] = maxk=1,…,m|x(i+ k − 1)− x(j + k − 1)| (2.45)

Next, the average of the natural logarithm of Cr
m(i) is computed for all i:

Φr
m =

1

N −m+ 1

N−m+1∑
i=1

ln(Cr
m(i)) (2.46)

Since in practice N is a finite number, the statistical estimate is computed as:

ApEn(m, r) =

 Φr
m − Φr

m+1 for m > 0

−Φr
1 for m = 0

The choice of the embedding dimension parameter m was already discussed in the begging of this
chapter. In the particular case of the ApEn, the most common value is m = 2. Regarding parameter
r several approaches are used. Pincus [70, 71] recommends values between the 10% and 25% of the
standard deviation of the data, hence obtaining a scale invariant measurement. The approach [72, 73]
of choose a fixed r value was also used with success. However, the values of entropy in these case are
usually highly correlated with the time series standard deviation. Lu et all [74] showed that ApEn values
vary significantly even within the defined range of r values and presented a new method for automatic
selection of r that corresponds to the maximum ApEn value.

The Sample Entropy (SampEn) was introduced, with the same objective as ApEn, to evaluate biolog-
ical time series, particularly the heart rate time series. The authors highlighted two draw-backs in ApEn

properties, stating that ‘First, ApEn is heavily dependent on the record length and uniformly lower than
expected for short records. Second, it lacks relative consistency. That is, if ApEn of one dataset is higher
than that of another, it should, but does not remain higher for all conditions tested’ [75]. In order to
overcome these limitations, the group proposed a new family of statistics, SampEn(m, r), which, among
other differences, eliminates self-matches.

For the SampEn [75] calculation the same parameters defined for the ApEn, m and r are required.
Considering A as the number of vector pairs of length m+1 having d[X1

m(i), X1
m(j)] ≤ r, with i ̸= j and
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B as total number of template matches of length m. The SampEn is defined as:

SampEn = −ln A
B

(2.47)

Traditional entropy-based algorithms quantify the regularity of a time series. The multiscale en-
tropy [76, 77] (MSE) approach, is inspired on Zhang’s proposal [78], considers the information of a
system’s dynamics on different time scales. The multiscale method can be separate in two parts. The
first one is the construction of the time series scales: using the original signal, a scale, s, is created from
the original time series, through a coarse-graining procedure, i.e, replacing s non-overlapping points by
their average. The second step concerns the calculation the value of entropy for each time series scale.
The most used entropies in this approach are the ApEn and the SampEn. The information of the
different time scales is clustered in the complexity index (CI) defined as the area under the MSE curve
obtained by plotting the entropy value as a function of scale [76, 77]. This approach extend the entropy
concept of regularity to a concept of fractality.

2.9 Lyapunov exponent

The Lyapunov exponent (LE) is a measure of the system dependence to the initial conditions but also
quantifies the predictability of the system [79]. A system embedded in an m-dimensional phase space has
m Lyapunov exponents. The value of LE increases, corresponding to lower predictability, as the degree
of chaos becomes higher; a positive Lyapunov exponent is a strong indicator of chaos [80–82] therefore,
the computation only of the largest Lyapunov exponent (LLE) is sufficient for assess chaos. The LLE is
most commonly used in nonlinear analysis of physiological signals [83–85].

There are many algorithms available to estimate both LE and LLE [82, 86–91]. The method proposed
by Rosenstien et al [88] is one of the most used since it is robust against data length. The algorithm
looks for the nearest neighbor of each point, on the trajectory. The distance between two neighboring
points at instant n = 0 is defined by

di(0) = minXτ
m(j) ∥ Xτ

m(j)−Xτ
m(i) ∥ (2.48)

where ∥ · ∥ is the Euclidean norm. This algorithm imposes constraint that nearest neighbors are tempo-
rally separated at least by mean period of the time series. The LLE is then estimated as the mean rate
of separation of nearest neighbors, i.e., we can write

dj(i) ≈ Cj e
λ1i(∆t) (2.49)

where Cj is the initial separation. Taking logarithm on both sides we obtain

ln (dj(i)) = ln Cj + λ1i(∆t) (2.50)

it represents a set of approximately parallel lines, where the slope is roughly proportional to the LLE. In
practice, the LE is easily and accurately estimated using a least-squares ∆t to the “average” line defined
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by
y(n) =

1

∆t
⟨ln di(n)⟩ (2.51)

where ⟨·⟩ denotes the average over all values of i. This last averaging step is the main feature that allows
an accurate evaluation of λ even when we have short and noisy data set.

Another widely used method was proposed by Wolf et al. [82] in 1985, where the calculation of the
LLE is based on the average exponential rate of divergence or convergence of trajectories which are
very close in phase space. Contrary to the Rosenstien method, in the Wolf’s method a single nearest
neighbor is followed and repeatedly replaced when its separation from the initial trajectory grows beyond
a certain threshold. However, this strategy do not take advantage of all the available data [88]. Another
disadvantage of Wolf’s method is the requirement of an appropriate selection of parameters, not only the
time delay and embedding dimension, but also a maximum and minimum scale parameters, an angular
size and trajectory evolution time [82, 92].

2.10 Numerical Noise Titration

The Numerical Noise Titration (NNT ) [93, 94] method provides a robust numerical test of chaos and
a relative measure of chaotic intensity, even in the presence of significant noise contamination. Comparing
with the Lyapunov exponent (LE), described above, the LE fails to specifically distinguish chaos from
noise and, unless the data series used are longish and free of noise, cannot detect chaos reliably.

The NNT method can be divided into 4 sections: modeling, nonlinear detection (NLD), numerical
noise titration and decision tool.

1. Modeling

In the noise titration method every data segment are first analyzed by using a discrete Volterra au-
toregressive to calculate the predicted time series ycalci . Briefly, the Volterra–Wiener algorithm [95]
produces a family of polynomial (linear and nonlinear) autoregressive models with varying memory
(κ) and dynamical order (d) (i.e. d = 1 for linear and d > 1 for a nonlinear model), optimally fitted
to predict the data.

ycalci = a0 + a1x(i− 1) + a2x(i− 2) + · · ·+ aκx(i− κ) + aκ+1x(i− 1)2+

aκ+2x(i− 1)x(i− 2) + · · ·+ aMx(i− κ)d

=
M−1∑
m=1

amzm(i) (2.52)

where M = (κ+d)!
κ!d! is the total dimension and the coefficients am are recursively estimated using the

Korenberg algorithm [96].

2. Nonlinear detection (NLD)

The goodness of fit of a model (linear vs. nonlinear) is measured by the normalized residual sum
of squared errors:

ε(κ, d)2 =

∑N
i=1(y

calc
i (κ, d)− x(i))2∑N

i=1(x(i)−X)2
(2.53)



27 Non-Linear Methods

with X = 1
N

∑N
i=1 x(i) and ε(κ, d)2 represents a normalized variance of the error residuals. The

best linear and nonlinear models is the model that minimizes the Akaike [97] information criterion:

C(r) = logε(r) +
r

N
(2.54)

where r ∈ [1,M ] is the number of polynomial terms of the truncated Volterra expansion from a
certain pair (κ, d).

3. Numerical noise titration

The NLD is used to measure the chaotic dynamics inherent in the RR series by means of numerical
noise titration as follows:

i If linear, then there is insufficient evidence for chaos.

ii If nonlinear, it may be chaotic or non-chaotic. To discriminate these possibilities, add a small
(<1% of signal power) amount of random white noise to the data and then apply NLD again
to the noise corrupted data. If linear, the noise limit (NL) of the data is zero and the signal
is non-chaotic.

iii If nonlinearity is detected, increase the level of added noise and again apply NLD.

iv Repeat the above step until nonlinearity can no longer be detected when the noise is too high
(low signal-to-noise ratio). The maximum noise level (i.e. NL) that can be added to the data
just before nonlinearity can no longer be detected, is directly related to the LE.

4. Decision tool.

According to this numerical titration scheme, NL > 0 indicates the presence of chaos, and the value
of NL gives an estimate of relative chaotic intensity. Conversely, if NL = 0, then the time series
may be non-chaotic, but it is also possible that the chaotic component is already neutralized by the
background noise. Therefore, the condition NL > 0 provides a simple sufficient test for chaos.

2.11 Symbolic Dynamics

The concept of symbolic dynamics goes back to Hadamard [98] and allows a simplified description of
the dynamics of a system with a limited amount of symbols. For HRV analysis, the underlying theoretical
concept is used in a rather pragmatic way. The main idea is to encode, according to some transformation
rules, RR intervals and their changes into a few symbols of a certain alphabet. Subsequently, the dynamics
of that symbol string are quantified, providing more global information regarding heart rate dynamics.
Two techniques introduced, by Voss et al. (1996) [99] and Porta et al. (2001) [69], are the most used
ones.

According to the symbolic dynamics approach described by Voss et al., the series of RR intervals are
transformed into an alphabet of 4 symbols: 0, 1, 2, 3, depending on how much single RR intervals differ
from the mean. The transformation rules proposed is presented in next equation, where µ is the mean RR
intervals and α is a special scaling parameter (usually equal to 0.1). In this transformation, the symbols
‘‘0’’ and ‘‘2’’ indicate a small, ‘‘1’’ and ‘‘3’’ encode a large difference from the mean.
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0 : µ < x(i) ≤ (1 + α) · µ (2.55)

1 : (1 + α) · µ < x(i) < ∞ (2.56)

2 : (1 + α) · µ < x(i) ≤ µ (2.57)

3 : 0 < x(i) ≤ (1 + α) · µ (2.58)

This method studies the probability distribution of words with three successive symbols from the
alphabet to characterize symbol strings. In this way, one obtains 64 (43) different word types (bins).
There are several parameters that characterize symbolic strings, here we described:

• forbidden words (FORBWORD) – the number of word types that occur with a probability less than
0.001; A high number of forbidden words reflect a reduced dynamic behavior in time series, and
vice versa.

• Measures of complexity

– Shannon entropy – Shannon entropy computed over all word types: a measure of word-type
distribution complexity;

– Renyi entropy 0.25 – Renyi entropy with a weighting coefficient of 0.25 computed over all
word-types, predominately assessing the words with low probability;

– Renyi entropy 4 – Renyi entropy with a weighting coefficient of 4 computed over all word-types,
predominantly assessing words with high probabilities.

• wpsum - wpsum02 is measured as the percentage of words consisting of the symbols ‘0’ and ‘2’ only
and the wpsum01 is the percentage of words containing only the symbols ‘1’ and ‘2’. According to
the meaning of the symbols, high values for wpsum02 indicate low complexity of heart rate time
series, while high wpsum13 indicates higher complexity.

Voss et al also developed a modified approached of SymD for low or high variability. In this approach
the RR intervals time series are transformed in a symbolic string using a simplified alphabet consisting
only of symbols ‘0’ or ‘1’, where the symbol ‘0’ stands for a difference between two successive beats lower
than a special limit and the symbol ‘1’ represents those cases where the difference exceeds this special
limit. As time limits, 2, 5, 10, 20, 50, and 100 ms have been proposed, however, the limit 10 ms is the
most used one since has been shown to be most useful according to hierarchical cluster and stepwise
discriminant function analyses [100]. The low variability parameter is measured as the probability of
occurrence of sequences containing six consecutive marks of “0” (plvar) whereas the high variability
parameter (phvar) is calculated as the probability of sequences of six consecutive marks of “1”. Taken
together, in this model an increase of ‘‘000000’’ sequences, resulting in increased values of plvar, and a
decrease in ‘‘111111’’ sequences, leading to reduced values of phvar, indicate reduced system complexity.

In the symbolic analysis according to the approach described in Porta et al (2001) [69], briefly, the RR
series was first transformed into a sequence of symbols using a coarse graining approach based on a uniform
quantization procedure. The full range of the series was spread over ξ symbols, with a resolution given by
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Xmax−Xmin

ξ , where Xmax and Xmin are the maximum and the minimum of the series. After quantization,
the RR series became a sequence Xξ = {Xξ(i), i = 1, . . . , N} of integer values ranging from 0 to ξ−1

where the Xξ series are transformed into a ξm subseries Xξ
m(i) = (Xξ(i), Xξ(i− 1), . . . , Xξ(i−m+ 1))

with i = m, . . . , N , using the technique of the delayed coordinates [101]. The values of m and ξ have
to be small in order to avoid too large a number of possible patterns: for applications over short data
sequences (250-300 samples), the best compromise has been shown to be ξ = 6 and m = 3 (216 possible
patterns) [69]. To reduce the number of patterns without losing information, all the patterns were grouped
without any loss into four families according to the number and types of variations from one symbol to
the next one. The pattern families were as follows:

1. patterns with no variation (0 V, all the symbols were equal);

2. patterns with one variation (1V, two consecutive symbols were equal and the remaining one is
different);

3. patterns with two like variations (2 LV, the three symbols formed an ascending or descending ramp);

4. patterns with two unlike variations (2 UV, the three symbols formed a peak or a valley).

The indexes 0V%, 1V%, 2 LV% and 2 UV% are computed as the percentages of occurrence (number of
times that a pattern Xξ

m(i) belonging to a specific family was found and divided by N−m+1 (multiplied
by 100) of these families. Since the sum of all symbolic parameters is equal to 100% (i.e., 0V% + 1V%
+ 2LV% + 2UV% =100%), 0V% and 2UV% can increase or decrease at the expense of 1V% and 2LV%
[102].

2.12 Mutual Information

The mutual information (MI) measure is widely used to describe the mutual dependence of the two
variables. In heart rate studies the MI reflects the probability of finding a given time-series value in one
interval and the probability of finding the same value in another interval after the delay time τ . In the
case of independence between the two MI is zero and greater otherwise.

Two new time series are constructed as Y (i) = x(i+τ) and Z(i) = (x(i), x(i+τ), . . . , x(i+(m−1)τ)).
The mutual information function (MIF) [103, 104] depend on four parameters: the length of the original
time series, N ; the embedding dimension, m; the distance parameter r and the delay parameter τ . From
MIF we can simply get the (average) uncertainty on x(i + τ) remaining if (x(i),…, x(i + (m − 1)τ)) is
known.

MIFY Z(m, r,N, τ) = SEY − SEY |Z = SEY + SEZ − SEY Z =
∑
ij

sij log2 
sij
piqj

(2.59)

where sij represents the joint probability distribution and the corresponding marginal distributions
are pi =

∑
j sij and qi =

∑
i sij of the y– and z–series, respectively.
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Measure what can be measured, and make measurable
what cannot be measured.

Galileo Galilei

3. Generalized Measure for Observer
Agreement

Disagreement on the interpretation of diagnostic tests and clinical decisions remains an important
problem with potential research, clinical and medico-legal consequences [1]. In the past years some
measures were proposed [2–7], as also the use of more than one measure [8], trying to quantify this
notion but problems arise when comparing the degree of observer agreement among different methods,
populations or circumstances. The inconsistent results obtained when assessing observer agreement, as
the particular case of the two widely used measures, the limits of agreement (LA) and the intra-class
correlation coefficient (ICC) [9], appears to be the main reason of the lack of a “gold-standard” measure.
Recently a new measure, the information-based measure of disagreement (IBMD) [10], based on the
amount of information contained in the differences between two observations was introduced. However,
it was proposed to assess disagreement between only two observers. The generalized measure to include
more than two observers is presented on the first section of chapter [11].

On Section 3.2 two platforms to help health care professionals and biostatisticians when performing
observer agreement studies are presented. An intuitive web-based software system was created to facilitate
an easy application of several statistical agreement measures strategies to their own data. A R package
obs.agree was also built to provide an easy way to assess agreement (or disagreement) among multiple
measurements for the same subject by different observers. The package includes two different measures
considered adequate to assess the agreement among multiple observers allowing their comparability across
populations: the Raw Agreement Indices (RAI) [3] for categorical data and the IBMD for continuous
data.

Of note, the work developed in this chapter resulted in a publish article, a website, a R package and
an article submitted.
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3.1 Information-Based Measure of Disagree-
ment for more than two observers: a
useful tool to compare the degree of ob-
server disagreement

Abstract

Background: Assessment of disagreement among multiple measurements for the same subject by
different observers remains an important problem in medicine. Several measures have been applied to
assess observer agreement. However, problems arise when comparing the degree of observer agreement
among different methods, populations or circumstances.
Methods: The recently introduced information-based measure of disagreement (IBMD) is a useful tool
for comparing the degree of observer disagreement. Since the proposed IBMD assesses disagreement
between two observers only, we generalized this measure to include more than two observers.
Results: Two examples (one with real data and the other with hypothetical data) were employed to
illustrate the utility of the proposed measure in comparing the degree of disagreement.
Conclusion: The IBMD allows comparison of the disagreement in non-negative ratio scales across
different populations and the generalization presents a solution to evaluate data with different number of
observers for different cases, an important issue in real situations.

A website for online calculation of IBMD and respective 95% confidence interval was additionally
developed. The website is widely available to mathematicians, epidemiologists and physicians to facilitate
easy application of this statistical strategy to their own data.

Background

As several measurements in clinical practice and epidemiologic research are based on observations
made by health professionals, assessment of the degree of disagreement among multiple measurements
for the same subjects under similar circumstances by different observers remains a significant problem
in medicine. If the measurement error is assumed to be the same for every observer, independent of
the magnitude of quantity, we can estimate within-subject variability for repeated measurements by the
same subject with the within-subject standard deviation, and the increase in variability when different
observers are applied using analysis of variance[1]. However this strategy is not appropriate for compar-
ing the degree of observer disagreement among different populations or various methods of measurement.
Bland and Altman proposed a technique to compare the agreement between two methods of medical mea-
surement allowing multiple observations per subject [2] and later Schluter proposed a Bayesian approach
[3]. However, problems arise when comparing the degree of observer disagreement between two different
methods, populations or circumstances. For example, one issue is whether during visual analysis of car-
diotocograms, observer disagreement in estimation of the fetal heart rate baseline in the first hour of labor
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is significantly different from that in the last hour of labor when different observers assess the printed
one-hour cardiotocography tracings. Another issue that remains to be resolved is whether interobserver
disagreement in head circumference assessment by neonatologists is less than that by nurses. To answer
to this question, several neonatologists should evaluate the head circumference in the same newborns
under similar circumstances, followed by calculation of the measure of interobserver agreement, and the
same procedure repeated with different nurses. Subsequently, the two interobserver agreement measures
should be compared to establish whether interobserver disagreement in head circumference assessment
by neonatologists is less than that by nurses.

Occasionally, intraclass correlation coefficient (ICC), a measure of reliability, and not agreement [4] is
frequently used to assess observer agreement in situations with multiple observers without knowing the
differences between the numerous variations of the ICC [5]. Even when the appropriate form is applied to
assess observer agreement, the ICC is strongly influenced by variations in the trait within the population
in which it is assessed [6]. Consequently, comparison of ICC is not always possible across different
populations. Moreover important inconsistencies can be found when ICC is used to assess agreement [7].

Lin’s concordance correlation coefficient (CCC) is additionally applicable to situations with multiple
observers. The Pearson coefficient of correlation assesses the closeness of data to the line of best fit,
modified by taking into account the distance of this line from the 45-degree line through the origin [8–
13]. Lin objected to the use of ICC as a way of assessing agreement between methods of measurement,
and developed the CCC. However, similarities exist between certain specifications of the ICC and CCC
measures. Nickerson, C. [14] showed the asymptotic equivalence among the ICC and CCC estimators.
However, Carrasco and Jover [15] demonstrated the equivalence between the CCC and a specific ICC
at parameter level. Moreover, a number of limitations of ICC, such as comparability of populations
and its dependence on the covariance between observers, described above, are also present in CCC [16].
Consequently, CCC and ICC to measure observer agreement from different populations are valid only
when the measuring ranges are comparable [17].

The recently introduced information-based measure of disagreement (IBMD) provides a useful tool
to compare the degree of observer disagreement among different methods, populations or circumstances
[18]. However, the proposed measure assesses disagreement only between two observers, which presents
a significant limitation in observer agreement studies. This type of study generally requires more than
just two observers, which constitutes a very small sample set.

Here, we have proposed generalization of the information-based measure of disagreement for more
than two observers. As sometimes in real situations some observers do not examine all the cases (missing
data), our generalized IBMD is set to allow different numbers of examiners for various observations.

Methods

IBMD among more than two observers

A novel measure of disagreement, denoted ‘information-based measure of disagreement’ (IBMD), was
proposed [18] on the basis of Shannon’s notion of entropy [19], described as the average amount of
information contained in a variable. In this context, the sum over all logarithms of possible outcomes
of the variable is a valid measure of the amount of information, or uncertainty, contained in a variable
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[19]. IBMD, use logarithms to measures the amount of information contained in the differences between
two observations. This measure is normalized and satisfies the flowing properties: it is a metric, scaled
invariant with differential weighting [18].

N was defined as the number of cases and xij as observation of the subject i by observer j. The
disagreement between the observations made by observer pair 1 and 2 was defined as:

IBMD =
1

N

N∑
i=1

log2(
|xi1 − xi2|

max{xi1, xi2}
+ 1) (3.1)

We aim to measure the disagreement among measurements obtained by several observers, allowing
different number of observations in each case. Thus, maintaining N as the number of cases, we consider
Mi, i = 1, .., N , as the number of observations in case i.

Therefore considering N vectors, one for each case, (x11,…, x1M1),…, (xN1,…, xNMN ) with non-negative
components, the generalized information-based measure of disagreement is defined as:

IBMD =
1

N∑
i=1

(
Mi

2

) N∑
i=1

Mi−1∑
j=1

Mi∑
k=j+1

log2(
|xij − xik|

max{xij , xik}
+ 1) (3.2)

with the convention |0−0|
max{0,0} = 0.

This coefficient equals 0 when the observers agree or when there is no disagreement, and increases to
1 when the distance, i.e. disagreement among the observers, increases.

The standard error and confidence interval was based on the nonparametric bootstrap, by resampling
the subjects/cases with replacement, in both original and generalized IBMD measures. The bootstrap
uses the data from a single sample to simulate the results if new samples were repeated over and over.
Bootstrap samples are created by sampling with replacement from the dataset. A good approximation
of the 95% confidence interval can be obtained by computing the 2.5th and 97.5th percentiles of the
bootstrap samples. Nonparametric resampling makes no assumptions concerning the distribution of the
data. The algorithm for a nonparametric bootstrap is as follows [20]:

1. Sample N observations randomly with replacement from the N cases to obtain a bootstrap data set.

2. Calculate the bootstrap version of IBMD.

3. Repeat steps 1 and 2 a B times to obtain an estimate of the bootstrap distribution.

For confidence intervals of 90–95 percent B should be between 1000 and 2000 [21, 22]. In the results the
confidence intervals were calculated with B equal to 1000.

Software for IBMD assessment

Website

We have developed a website to assist with the calculation of IBMD and respective 95% confidence
intervals [23]. This site additionally includes computation of the intraclass correlation coefficient (ICC).
Lin’s concordance correlation coefficient (CCC) and limits of agreement can also be measured when
considering only two observations per subject. The website contains a description of these methods.
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PAIRSetc software

PAIRSetc [24, 25], a software that compares matched observations, provide several agreement mea-
sures, among them the ICC, the CCC and the 95% limits of agreement. This software is constantly
updated with new measures introduced on scientific literature, in fact, a coefficient of individual equiv-
alence to measure agreement, based on replicated readings proposed in 2011 by Pan et al. [26, 27] and
IBMD, published in 2010, were already include.

Examples

Two examples (one with real data and the other with hypothetical data) were employed to illustrate
the utility of the IBMD in comparing the degree of disagreement.

A gymnast’s performance is evaluated by a jury according to rulebooks, which include a combination
of the difficulty level, execution and artistry. Let us suppose that a new rulebook has been recently
proposed and subsequently criticized. Some gymnasts and media argue that disagreement between the
jury members in evaluating the gymnastics performance with the new scoring system is higher than that
with the old scoring system, and therefore oppose its use. To better understand this claim, consider
a random sample of eight judges evaluating a random sample of 20 gymnasts with the old rulebook,
and a different random sample of 20 gymnasts with the new rulebook. In this case, each of the 40
gymnasts presented only one performance based on pre-defined compulsory exercises, and all eight judges
simultaneously viewed the same performances and rated each gymnast independently, while blinded to
their previous medals and performances. Both scoring systems ranged from 0 to 10. The results are
presented in Table 3.1.1.

Visual analysis of the maternal heart rate during the last hour of labor can be more difficult than
that during the first hour. We believe that this is a consequence of the deteriorated quality of signal and
increasing irregularity of the heart rate (due to maternal stress). Accordingly, we tested this hypothesis
by examining whether in visual analysis of cardiotocograms, observer disagreement in fetal heart rate
baseline estimation in the first hour of labor is lower than that in the last hour of labor when different
observers assess printed one-hour cardiotocography tracings. To answer this question, we evaluated the
disagreement in maternal heart rate baseline estimation during the last and first hour of labor by three
independent observers.

Specifically, the heart rates of 13 mothers were acquired, as secondary data collected in Nélio Men-
donça Hospital, Funchal for another study, during the initial and last hour of labor, and printed. Three
experienced obstetricians were asked to independently estimate the baseline of the 26 one-hour segments.
Results are presented in Table 3.1.2. The study procedure was approved by the local Research Ethics
Committees and followed the Helsinki declaration. All women who participate in the study gave informed
consent to participate.
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Table 3.1.1: Performance of 40 gymnasts, 20 evaluated by eight judges using the old rulebook and 20 by
the same judges using the new rulebook

ID gymnast Rulebook Judge 1 Judge 2 Judge 3 Judge 4 Judge 5 Judge 6 Judge 7 Judge 8
1 Old 7.10 7.20 7.00 7.70 7.10 7.10 7.00 7.30
2 Old 9.30 9.70 8.90 9.60 8.60 9.50 9.60 9.70
3 Old 8.90 8.80 8.10 9.30 8.50 8.10 7.60 8.70
4 Old 8.00 8.10 7.30 8.70 7.50 8.70 7.40 9.50
5 Old 9.10 9.00 8.20 9.00 8.20 9.50 7.80 8.00
6 Old 9.10 9.20 8.30 9.10 7.90 8.90 9.00 9.20
7 Old 8.90 9.00 7.70 9.00 8.00 9.40 8.00 7.70
8 Old 8.30 8.70 8.10 8.90 7.80 9.20 7.80 9.30
9 Old 9.30 9.40 8.20 9.40 8.80 9.30 9.20 9.80
10 Old 9.40 9.80 9.40 9.70 9.10 10.00 9.30 9.60
11 Old 7.70 8.70 7.60 9.00 7.70 8.50 7.70 7.70
12 Old 9.20 9.70 8.50 9.60 8.60 9.90 9.70 7.40
13 Old 7.40 7.30 7.10 7.90 7.10 7.40 7.00 7.50
14 Old 8.40 8.90 7.40 8.60 7.80 8.10 7.40 8.90
15 Old 7.40 7.60 7.10 8.10 7.20 7.60 7.10 8.80
16 Old 9.80 9.90 9.20 9.80 9.30 10.00 9.40 9.60
17 Old 9.60 9.60 9.50 9.80 9.10 9.90 9.40 9.90
18 Old 9.60 9.80 9.50 9.80 8.80 9.90 9.80 9.20
19 Old 8.50 9.20 7.80 9.30 7.90 9.00 7.70 9.70
20 Old 7.10 9.50 8.80 9.40 8.50 9.60 7.90 8.50
21 New 6.50 8.20 6.60 9.80 7.50 7.80 6.10 5.10
22 New 7.00 9.70 7.60 9.60 8.30 6.90 6.70 8.60
23 New 7.50 8.60 6.60 7.80 9.50 8.10 6.20 7.60
24 New 8.50 9.00 8.10 7.00 8.30 9.40 6.70 8.00
25 New 9.70 8.10 7.50 6.80 7.70 8.60 8.30 7.40
26 New 8.00 9.10 7.40 9.30 8.30 9.70 6.00 9.90
27 New 7.80 9.70 7.00 9.70 8.70 10.00 9.60 9.50
28 New 9.30 7.90 8.20 7.80 6.30 7.40 6.10 7.20
29 New 7.10 9.80 8.10 9.50 6.30 9.40 8.90 6.50
30 New 8.90 9.30 7.90 6.80 8.20 9.10 7.90 6.80
31 New 9.30 9.80 8.80 6.60 8.50 9.80 7.40 9.90
32 New 7.90 8.20 6.70 9.40 7.60 6.10 7.40 7.10
33 New 7.60 8.50 6.40 8.50 9.20 7.80 6.20 9.40
34 New 8.60 8.90 6.50 9.00 7.70 9.10 6.50 7.10
35 New 8.80 7.20 8.80 9.30 8.40 9.30 6.90 8.60
36 New 8.40 9.30 7.50 8.70 7.90 9.60 7.90 7.90
37 New 7.50 8.00 7.20 8.40 7.40 7.20 9.10 9.20
38 New 9.70 9.80 9.50 9.80 9.00 9.90 9.40 9.60
39 New 8.50 9.20 8.70 9.30 7.00 9.70 8.30 8.00
40 New 7.30 8.70 7.20 8.10 7.30 7.30 7.10 7.20
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Table 3.1.2: Estimation of baseline (bpm) in 26 segments of 13 traces (13 segments corresponding to the
initial hour of labor and 13 to the final hour of labor) by three obstetricians

Mother ID Segment Obstetrician 1 Obstetrician 2 Obstetrician 3
1 Initial hour 80 80 80
2 Initial hour 65 66 70
3 Initial hour 65 66 70
4 Initial hour 63 67 65
5 Initial hour 82 83 85
6 Initial hour 75 76 75
7 Initial hour 80 81 85
8 Initial hour 84 85 80
9 Initial hour 100 102 105
10 Initial hour 82 82 80
11 Initial hour 67 65 70
12 Initial hour 75 74 87
13 Initial hour 70 70 70
1 Last hour 78 75 75
2 Last hour 90 90 100
3 Last hour 70 67 70
4 Last hour 70 65 65
5 Last hour 87 87 90
6 Last hour 72 73 75
7 Last hour 75 75 75
8 Last hour 100 98 100
9 Last hour 110 108 110
10 Last hour 103 103 100
11 Last hour 80 80 100
12 Last hour 98 100 100
13 Last hour 70 70 65
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Results

Hypothetical data example

Using IBMD in the gymnast’s evaluation, we can compare observer disagreement and the respective
confidence interval (CI) associated with each score system.

The disagreement among judges was assessed as IBMD = 0.090 (95% CI = [0.077; 0.104]) considering
the old rulebook and IBMD = 0.174 (95% CI = [0.154; 0.192]) with new rulebook. Recalling that the
value 0 of the IBMD means no disagreement (perfect agreement), these confidence intervals clearly indi-
cate significantly higher observer disagreement in performance evaluation using the new scoring system,
compared with the old system.

Real data example

The disagreement among obstetricians in baseline estimation, considering the initial hour of labor,
was IBMD = 0.048(95% CI = [0.036; 0.071]), and during the last hour of labor, IBMD = 0.048(95% CI =
[0.027; 0.075]). The results indicate no significant differences in the degree of disagreement among ob-
servers between the initial and last hour of labor.

Discussion

While comparison of the degree of observer disagreement is often required in clinical and epidemiologic
studies, the statistical strategies for comparative analyses are not straightforward.

Intraclass correlation coefficient is several times used in this context, however sometimes without
careful in choosing the correct form. Even when the correct form of ICC is used to assess agreement,
its dependence on variance does not always allow the comparability of populations. Other approaches to
assess observer agreement have been proposed [28–33], but comparative analysis across populations is still
difficult to achieve. The recently proposed IBMD is a useful tool to compare the degree of disagreement
in non-negative ratio scales [18], and its proposed generalization allowing several observers overcomes an
important limitation of this measure in this type of analysis where more than two observers are required.

Conclusions

IBMD generalization provides a useful tool to compare the degree of observer disagreement among
different methods, populations or circumstances and allows evaluation of data by different numbers of
observers for different cases, an important feature in real situations where some data are often missing.

The free software and available website to compute generalized IBMD and respective confidence
intervals facilitates the broad application of this statistical strategy.
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3.2 Facilitating the evaluation of agreement
between measurements

Abstract

Background: Several measures have been applied to assess agreement in epidemiologic studies.
However, problems arise when comparing the degree of observer agreement among different methods,
populations or circumstances.

Objective: The project endeavors to create an intuitive Web-based software system, available to
mathematicians, epidemiologists and physicians that facilitate easy application of several statistical agree-
ment measures strategies to their own data. An R package obs.agree was also developed for an easy
computation of observer agreement measures.

Methods: In order to make the website easily available in several platforms (from mobile devices as
well as regular laptops) we used the responsive design approach. To implement this design, HTML5 and
the library bootstrap which includes both CSS and javascript modules for graphic response were used.
We use the programing language R to implement two recent functions for measuring agreement: the raw
agreement indices (RAI) to categorical data and information-based measure of disagreement (IBMD) to
continuous data, and made it available as an R package.

Results: There is now widely available a website where mathematicians, epidemiologists and physi-
cians can easily evaluate and compare the results of several measures of agreement. There is also available,
from the Comprehensive R Archive Network, a new R package obs.agree to assess the agreement among
multiple measurements for the same subject by different observers.

Conclusions: Comparison of the degree of observer disagreement is often required in clinical and
epidemiologic studies. However, the statistical strategies for comparative analyses are not straightforward
and software for RAI and IBMD assessment is lacking. The website and package have the potential to help
health care professionals and biostatisticians when performing observer agreement studies, as it provides
an easy way to calculate raw agreement indices to categorical data and information-based measure of
disagreement to continuous variables.

Introduction

Assessment of agreement among multiple measurements for the same subject by different observers un-
der similar circumstances remains an important problem in medicine and epidemiology. Several measures
have been applied to assess observer agreement based on the data type.

When assessing agreement on discrete data the Cohen’s Kappa coefficient is one of the most widely
used (there are more than one R package that includes this measure). It was proposed by Cohen [1] �as the
proportion of chance-expected disagreements which do not occur, or alternatively, it is the proportion
of agreement after chance agreement is removed from consideration.� However, it has some inherent
limitations, in particular not always very low values of Kappa reflect low rates of overall agreement since
Kappa coefficient is affected by prevalence and by imbalance in the table’s marginal totals [2, 3]. Uebersax
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presented the generalized raw agreement indices (RAI) [4, 5] overcoming the concerns with the Kappa
measure.

Considering continuous data, Bland and Altman [6] proposed a technique to compare the agreement
between two methods of medical measurement allowing multiple observations per subject; and later
Schluter [7]proposed a Bayesian approach. However, problems rise when comparing the degree of observer
agreement among different methods, populations or circumstances. The Intraclass correlation coefficient
(ICC) is a measure of reliability, and not agreement. However, it is often used for the assessment of
observer agreement in situations with multiple observers [8]. The ICC is strongly influenced by variations
in the trait within the population in which it is assessed. Consequently, comparison of this value is not
possible across different populations [9]. Lin objected to the use of ICC as a way of assessing agreement
between methods of measurement, and developed the Lin’s concordance correlation coefficient (CCC).
However, a number of limitations of ICC, such as comparability of populations, are also present in
CCC [10]. Recently a new approach was introduced, the information-based measure of disagreement
(IBMD) [11, 12] that assesses disagreement allowing different number of observers for different cases.
The IBMD allows comparison of the disagreement in non-negative ratio scales of different populations.

We developed a website [13] to assist with the calculation of several agreement measures, namely:
the IBMD and respective 95% confidence intervals, the ICC, CCC and limits of agreement can also be
measured. The website contains a description of these methods.

During the development of the site we build R implementations of the RAI and of IBMD measures,
now available in the R package obs.agree . These two measures are adequate to assess the agreement
among multiple observers allowing their comparability across populations.

Methods

Disagreement website

The purpose of the website [13] is to make widely available to mathematicians, epidemiologists and
physicians, and to facilitate easy application, several statistical agreement measures strategies to their
own data. To achieve this goal one of the central points of the website was to have a calculator available so
users could actually see how the measures works, and even compare it’s results to other known measures
such as CCC or ICC. One of the requirements for the website was that it should be usable from mobile
devices as well as regular laptops, this was the main reason why we used the responsive design approach.
To implement this design, HTML5 and the library bootstrap [14] which includes both CSS and javascript
modules for graphic response were used. The website’s backend is implemented in PHP5. Since the site
is composed of a series of static content pages and a single interactive page were the calculator itself is,
to decrease the amount of duplicate code the PHP template engine Smarty [15] was used. In Illustration
1 we present the responsive design for various display aspects.

Illustration 1: Responsive Design for various display aspects. TopLeft:320x480, Top right:786x1024,
bottom: 1280x600

One of the concerns in any website with user input is the validation of the data entered. Given
its importance, we decided to implement the validation both on the frontend and the backend. The
reason for this double validation is because the backend functionalities could potentially be used directly
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Table 3.2.1: Data for measuring agreement between two raters on dichotomous ratings

Rater2
+ −

Rater1 + a b
− c d

through some library (like urllib from python), so even though the data passes the frontend’s validations
it is processed again at the backend. The frontend validation is done by javascript functions, and provides
the user with an immediate response to the data as it’s being entered, for example with hints as to why
a particular calculator cannot be used for the data set entered. The backend validation is done by PHP
functions before the data is accepted and passed into each of the calculators chosen by the user. Since
this is an open website and we could never guarantee the complete anonimization of the data entered,
so we chose to use a clear communication. All data is sent to the server in clear text and no security
mechanisms like SSL certificates are used, and so no data at all is permanently recorded.

obs.agree package

Several R (R Development Core Team 2012) packages are available on the Comprehensive R Archive
Network (CRAN) [16] to evaluate observer agreement. In this section we describe the package obs.agree [17],
which includes two measures adequate to assess the agreement among multiple observers allowing their
comparability across populations. The raw agreement indices (RAI) are more suitable for categorical
data, whereas the information-based measure of disagreement (IBMD) is more adequate for continuous
data.

RAI is a group of measures composed by an overall agreement index and specific agreement indices
for each rating categories, considering the proportion of agreement between two raters on dichotomous
ratings as shown in Table 3.2.1.

The most frequently used overall proportion of agreement index is simply PO = a+d
N . The proportions

of specific agreement for each category, positive (PA) and negative (NA) are [18]:

PA =
2a

2a+ b+ c
and NA =

2d

2d+ b+ c
.

The generalized case of the raw agreement indices allow any number of raters, making polytomous
ratings (either ordered category or purely nominal), with potentially different numbers of raters for each
case.

Let C be the number of rating categories. Define njk = n1k, n2k, ..., nCk as the number of ratings of

category j in case k, with j = 1, ..., C, for all k = 1, ...,K and nk =
C∑

j=1

njk the number of observers of

case k. The number of total agreements (Sj) and possible agreements (Spossj) in each category j are

Sj =

K∑
k=1

njk(njk − 1) and Spossj =

K∑
k=1

njk(nk − 1).

Thus, the specific agreement index to a category j is the total number of agreements on category j
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divided by the total number of opportunities for agreement on category j,

Psj =
Sj

Spossj
.

The overall agreement index, the proportion of observed agreement regardless of category, (PO) is

the total number of actual agreements, O =
C∑

j=1

Sj , divided by the total number of possible agreements,

Oposs =
K∑

k=1

nk(nk − 1),

PO =
O

Oposs
.

Another description and examples can be found in [5].

IBMD, was proposed in [11] based on Shannon’s notion of entropy [19]. Its main intuition is to
consider the logarithm of the differences between two observations as a measure of the disagreement
between the observers. This measure is normalized and satisfies the following properties: it is a metric,
scaled invariant with differential weighting.

The IBMD measures the disagreement among measurements obtained by several observers, allowing
different number of observations in each case. It is appropriate for ratio-scale variables with positive values
and ranges from 0 (no disagreement) to 1. Consider N as the number of cases, and Mi, i = 1, · · · , N , as the
number of observations in case i. Therefore considering N vectors, one for each case,(x11, · · · , x1M1), · · ·
, (xN1, · · · , xNMN

) with non-negative values, the generalized information-based measure of disagreement
is defined as:

IBMD =
1

N∑
i=1

(
Mi

2

) N∑
i=1

Mi−1∑
j=1

Mi∑
k=j+1

log2(
|xij − xik|

max{xij , xik}
+ 1) (3.3)

with the convention |0−0|
max{0,0} = 0. This coefficient is 0 when the observers agree or when there is no

disagreement, and increases to 1 when the distance, i.e. disagreement among the observers, increases.
The standard error and confidence interval was based on the nonparametric bootstrap, by resampling

the subjects/cases with replacement, in both original and generalized IBMD measures. The bootstrap
uses the data from a single sample to simulate the results as if new samples were repeated over and over.
Bootstrap samples are created by sampling with replacement from the dataset. A good approximation
of the 95% confidence interval can be obtained by computing the 2.5th and 97.5th percentiles of the
bootstrap samples. Nonparametric resampling makes no assumptions concerning the distribution of the
data. The algorithm for a nonparametric bootstrap is as follows [20]:

1. Sample N observations randomly with replacement from the N cases to obtain a bootstrap data
set.

2. Calculate the bootstrap version of IBMD.

3. Repeat steps 1 and 2 B times to obtain an estimate of the bootstrap distribution.

For confidence intervals of 90− 95 percent B should be between 1000 and 2000 [21, 22]. In the package,
the confidence interval is calculated, by default, with B equal to 1000.
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Results

Disagreement website

At the initial web-page the user can insert the data either directly in the specific box or upload a
txt file. Each tuple of observations must be in a different row and the observations can be space or tab-
delimited, an example is given in order to facilitate this process. After the data is introduced the user
can choose which measure to calculate besides the IBMD, namely he can choose between One-way ICC,
Two-way ICC, CCC and Bland and Altman. Notice that, if the data is not fitted to a given measure
its name will appear strikethrough and will not be given as a valid option. The user can press the
calculate button, the data is then sent to the backend, included in the request will be the calculators to
be applied to the data. The data goes through some preprocessing to ensure it’s compatible with the
calculators indicated in the request. If the data is confirmed to be valid it is written to a temporary file.
Any calculator that rejects the data will output an error message that explains why the data was not
valid. If the data is valid the temporary file is used in a script dynamically generated that calls the R
implementation of the calculator. Then, finally, the result of the R routines implementing each measure
will be presented in the standard R format.

obs.agree package

The observer agreement package, obs.agree , includes two functions for measuring agreement: RAI to
categorical data and IBMD to continuous data. It can be used for multiple raters and multiple readings
cases. As required for any package in the Comprehensive R Archive Network the obs.agree [17] package
includes documentation with some examples on how to calculate the measures.

Categorical data: cardiotocographic traces classification

The package obs.agree includes an artificial data set ctg, in the form of a matrix containing 151 car-
diotocographic traces classified as patologic (3), suspect (2) or normal (1) by 18 clinicians with different
level of experience: 6 interns (E1), 6 clinicians (E2) and 6 experts (E3). Nine of them (3 interns, 3
clinicians and 3 experts) classified the traces based on a guideline (GL1) different from the other nine
(GL2).

The first step is to load the package.
R> library(obs.agree)

Then load the dataset ctg.
R> data(ctg)

Each row of the matrix corresponds to a cardiotocographic trace classified by 18 clinicians (columns
of the matrix). The first 9 observers classified according to guideline 1 (GL1) and the last 9 according to
guideline 2 (GL2).
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R> colnames(ctg)

[1] "GL1_E1_O1" "GL1_E1_O2" "GL1_E1_O3" "GL1_E2_O1" "GL1_E2_O2" "GL1_E2_O3"

[7] "GL1_E3_O1" "GL1_E3_O2" "GL1_E3_O3" "GL2_E1_O1" "GL2_E1_O2" "GL2_E1_O3"

[13] "GL2_E2_O1" "GL2_E2_O2" "GL2_E2_O3" "GL2_E3_O1" "GL2_E3_O2" "GL2_E3_O3"

To assess if following one guideline the clinicians agree more than with the other, just compute the
RAI to each guideline.

R> RAI(ctg[,1:9]) #Guideline 1

$Subjects

[1] 151

$Observers

[1] 9

$Overall_agreement

value ( 2.5% - 97.5% )

1 0.5123596 0.4809971 0.5466795

$Categories

[1] 1 2 3

$Specific_agreement

value ( 2.5% - 97.5% )

1 0.5197044 0.4504645 0.5867110

2 0.4115406 0.3714993 0.4531956

3 0.6045769 0.5477483 0.6605998

R> RAI(ctg[,10:18]) #Guideline 2

$Subjects

[1] 151

$Observers

[1] 9

$Overall_agreement

value ( 2.5 % - 97.5 % )

1 0.6196469 0.5858345 0.6535072

$Categories

[1] 1 2 3

$Specific_agreement

value ( 2.5 % - 97.5 % )

1 0.6055118 0.5325463 0.6689757

2 0.6183014 0.5664239 0.6677420

3 0.6342293 0.5643657 0.6952517



61 Facilitating the evaluation of agreement between measurements

The results show that, considering a significance level of 5%, with guideline 2 there is significantly
more overall observer agreement than with guideline 1. With guideline 2 there is also significantly more
observer agreement in the category 2 (suspect) than with guideline 1. In other words, with guideline 1
if an observer rates a tracing as suspect the probability that another observer will also rate that tracing
as suspect is 0.62 with a 95% confidence interval between 0.57 and 0.67. With guideline 2, if an observer
rates a tracing as suspect, the probability that another observer will also rate that tracing as suspect is
lower (0.41 with a 95% confidence interval between 0.37 and 0.45).

We can also examine if, using guideline 1, the experts agree more than the interns do. In this case,
consider a 90% confidence interval.

R> RAI(ctg[,7:9],0.9) #experts using GL1

$Subjects

[1] 151

$Observers

[1] 3

$Overall_agreement

value ( 5 % - 95 % )

1 0.5122494 0.4657684 0.55902

$Categories

[1] 1 2 3

$Specific_agreement

value ( 5 % - 95 % )

1 0.5500000 0.4691222 0.6271914

2 0.3754045 0.3154125 0.4342984

3 0.6148867 0.5365760 0.6790361

R> RAI(ctg[,1:3],0.9) #interns using GL1

$Subjects

[1] 151

$Observers

[1] 3

$Overall_agreement

value ( 5 % - 95 % )

1 0.5122494 0.4676841 0.5607199

$Categories

[1] 1 2 3

$Specific_agreement

value ( 5 % - 95 % )

1 0.5865922 0.5150606 0.6503687
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2 0.3131673 0.2462568 0.3751591

3 0.6254826 0.5453785 0.6963772

These results show that, considering a significance level of 10%, with Guideline 1 the observer agree-
ment among experts is not significantly different from the observer agreement among interns in the
tracings classified as normal, suspect or pathological.

Continuous data: Gymnasts new rulebook

Consider the following situation: a jury evaluates a gymnast’s performance according to a given
rulebook. Suppose that a new rulebook has been recently proposed and subsequently criticized. Some
gymnasts and media argue that disagreement among the jury members in evaluating the gymnastics
performance with the new scoring system, or rulebook, is higher than that with the old scoring system,
and therefore oppose to its use. The scores used to assess the gymnastics performance are a continuous
variables. The package obs.agree includes a data set gymnasts with the scores of 20 gymnasts evaluated,
by a set of 8 judges, according to the old rulebook and the scores of other 20 gymansts evaluated by the
same 8 judges but using the new rulebook. Using IBMD, one can compare observer disagreement and
the respective confidence interval (CI) associated with each score system.

We begin by loading the package.

R> library(obs.agree)

Then load the dataset gymnasts which has 40 gymnasts and 8 judges.

R> data(gymnasts)

Data should be in a data frame with 40 rows and 9 columns with column names ”rulebook”, ”judge1”,...,
”judge8”.

R> head(gymnasts)

Rulebook Judge.1 Judge.2 Judge.3 Judge.4 Judge.5 Judge.6 Judge.7 Judge.8

1 Old 7.1 7.2 7.0 7.7 7.1 7.1 7.0 7.0

2 Old 9.3 9.7 8.9 9.6 8.6 9.5 9.6 9.7

3 Old 8.9 8.8 8.1 9.3 8.5 8.1 7.6 8.7

4 Old 8.0 8.1 7.3 8.7 7.5 8.7 7.4 9.5

5 Old 9.1 9.0 8.2 9.0 8.2 9.5 7.8 8.0

6 Old 9.1 9.2 8.3 9.1 7.9 8.9 9.0 9.2

Call the function in its simplest form IBMD(data). In this case the confidence interval will be, by
default, 95%. To compare the two rulebooks run:
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R> IBMD(gymnasts[1:20,2:9])

$subjects

[1] 20

$observers

[1] 8

$IBMD

value ( 2.5 % - 97.5 % )

1 0.09269632 0.07838681 0.1064475

R> IBMD(gymnasts[21:40,2:9])

$subjects

[1] 20

$observers

[1] 8

$IBMD

value ( 2.5 % - 97.5 % )

1 0.1740529 0.1526705 0.1923382

The gymnasts’ opposition to the new scoring systems was supported by the results; actually the
disagreement among judges was significantly higher when the judges use the new scoring system to
evaluate the gymnast’s performance than when the judges use the old scoring system.

Discussion

Often health researchers need to assess the agreement among multiple measurements for the same sub-
ject by different observers under similar circumstances, or a new method with an existing one, to evaluate
if these methods can be used interchangeably or the new method can replace the established one. Bland
and Altman proposed the use of a graphical method to plot the difference scores of two measurements
against the mean for each subject. The intuition is that if the new method agrees sufficiently well with
the old, the old may be replaced. There are several published clinical studies evaluating agreement
between two measurements using Bland and Altman analysis. The original Bland and Altman paper
has more than 11 500 citations, a convincing evidence of its importance in medical research. The main
reason for this impact is its simplicity of evaluation and interpretation. However, problems appear when
comparing the degree of observer agreement among different methods, populations or circumstances. To
overcome these problems the raw agreement indices (RAI) to categorical data and information-based
measure of disagreement (IBMD) measures have been introduced. Nevertheless, the statistical strategies
for comparative analyses are not straightforward and software for RAI and IBMD assessment is lacking.

The website and package introduced in this paper have the potential to help health care professionals
and biostatisticians when performing observer agreement studies, as it provides an easy way to calculate
raw agreement indices to categorical data and information-based measure of disagreement to continuous
variables. Given its simplicity we anticipate that it may also become an important and widely used tool
within health researchers.
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Conclusion

Comparison of the degree of observer disagreement is often required in clinical and epidemiologic
studies. However, the statistical strategies for comparative analyses are not straightforward and software
for RAI and IBMD assessment is lacking. Both RAI and IBMD provide useful tools to compare observer
disagreement among different methods, populations or circumstances and allow evaluation of data by
different numbers of observers for different cases, an important feature in real situations where some data
are often missing. RAI are a very important descriptive statistics, composed by two type of measures:
the overall proportion of agreement and the proportions of specific agreement for each rating categories.
The IBMD measure, recently introduced in [11] and generalized in [12], is based on Shannon’s notion of
entropy [19] considering the logarithm of the differences between two observations as a measure of the
disagreement between the observers.

The website and package have the potential to help health care professionals and biostatisticians when
performing observer agreement studies, as it provides an easy way to calculate raw agreement indices to
categorical data and information-based measure of disagreement to continuous variables.
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The only way to control chaos and complexity is to give
up some of that control

Gyan Nagpal, Talent Economics: The Fine Line Between
Winning and Losing the Global War for Talent

4. Complexity Measures Applied to
Heart Rate Signal

Conventional linear mathematical methods fail to describe biological systems belonging to the complex
and chaotic domains. Different approaches based on chaos and complexity concepts have been success-
fully considered. Shannon demonstrated how the information within a signal could be quantified with
absolute precision as the amount of unexpected data contained in the message (designated entropy) [1].
On the other hand, Kolmogorov complexity was proposed to quantify information on individual objects as
the size of its smallest representation [2]. In this chapter we explore the applicability of these two concep-
tually different complexity measures: entropy, a probabilistic approach and compression, an algorithmic
approach. The entropy using the approximate entropy (ApEn) [3] and sample entropy (SampEn) [4] and
the Kolmogorov complexity through different compressors, as the Lempel-Ziv [5], bzip2 [6] and paq8l [7],
were applied to a set of heart rate signals with the goal of characterizing different pathologies.

The first section of this chapter addresses the challenge of assessing the dynamics of fetal heart rate
(FHR) signals from fetuses born with neonatal acidemia using nonlinear indices. The analysis of a FHR
signal represents a noninvasive tool for evaluating the fetal condition. The information obtained may
provide important auxiliary information to clinicians in the diagnostic of the fetal state and help in
consequent clinical decisions in life-threatening situations, particularly in the minutes prior to delivery.
It is shown in this section that compressors can be effectively used as an alternative (or complementarily)
to the widely used entropy measures to quantify complexity in biological signals.

The complex fluctuations present on physiological signals contain information about the underlying
dynamics across multiple spatial and temporal scales. The Multiscale Entropy (MSE) [8] approach was
proposed to enhance these multiscale features of a time series. Briefly, the multiscale entropy comprise
two steps: 1) the creation of a new time series for each scale through a coarse-grained procedure applied
to the original time series; 2) the calculation of the entropy value of each of the coarse-grained time series.
In the second section of this chapter an extension of the multiscale approach to compression is proposed.
This new approach maintains the coarse-grained procedure but replace the latter step by a compression
measure.

The low correlation between the two complexity approaches obtained in the results of the two sections
previously described, suggest that each one of them is looking for different patterns/behavior. On the
third section of this chapter the complexity is explored from different viewpoints and the properties of
the different approaches is investigated.

Of note, the work developed in this chapter resulted in two published articles.
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4.1 Entropy And Compression: Two Mea-
sures Of Complexity

Abstract

Rationale, aims and objectives Traditional complexity measures are used to capture the amount
of structured information present in a certain phenomenon. Several approaches developed to facilitate
the characterization of complexity have been described in the related literature. Fetal heart rate (FHR)
monitoring has been used and improved during the last decades. The importance of these studies lies
on an attempt to predict the fetus outcome, but complexity measures are not yet established in clinical
practice. In this study, we have focused on two conceptually different measures: Shannon entropy, a prob-
abilistic approach, and Kolmogorov complexity, an algorithmic approach. The main aim of the current
investigation was to show that approximation to Kolmogorov complexity through different compressors,
although applied to a lesser extent, may be as useful as Shannon entropy calculated by approximation
through different entropies, which has been successfully applied to different scientific areas.
Methods To illustrate the applicability of both approaches, two entropy measures, approximate and
sample entropy, and two compressors, paq8l and bzip2, were considered. These indices were applied to
FHR tracings pertaining to a dataset composed of 48 delivered fetuses with umbilical artery blood (UAB)
pH in the normal range (pH ≥ 7.20), 10 delivered mildly acidemic fetuses and 10 moderate-to-severe aci-
demic fetuses. The complexity indices were computed on the initial and final segments of the last hour
of labour, considering 5- and 10-minute segments.
Results In our sample set, both entropies and compressors were successfully utilized to distinguish fe-
tuses at risk of hypoxia from healthy ones. Fetuses with lower UAB pH presented significantly lower
entropy and compression indices, more markedly in the final segments.
Conclusions The combination of these conceptually different measures appeared to present an improved
approach in the characterization of different pathophysiological states, reinforcing the theory that en-
tropies and compressors measure different complexity features. In view of these findings, we recommend
a combination of the two approaches.

Introduction

Researchers and clinicians recognize that many unsolved medical problems, as the prediction of fetal
outcome, are due to the application of conventional mathematics methods to describe biological complex
systems [1]. More recently, a different approach based on non-linear dynamics, chaos and complexity has
been considered, which recognizes irregularity, subjectivity and uncertainty as intrinsic and fundamen-
tal [2].

Complexity is a property of every system that quantifies the amount of structured information. Shan-
non demonstrated how the information within a signal could be quantified with absolute precision [3]
as the amount of unexpected data contained in the message (designated ‘entropy’). Subsequently, the
Kolmogorov complexity was proposed to quantify information on individual objects as the size of its
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smallest representation [4]. The Shannon information theory measures the average information from a
random source, unlike Kolmogorov complexity that presents a form of absolute information [5].

Increasing use of entropy in medicine has accompanied theoretical improvements over the years. In
1991, Pincus suggested the use of Approximate Entropy (ApEn) to classify complex systems [6]. Following
its application to quantify the creation of information in a time series, ApEn has since been used in the
analysis of a wide range of signals, such as electroencephalography (EEG) and electrocardiography (ECG).
The sample entropy (SampEn) concept appeared later in 2000 with the objective of reducing the ApEn
bias [7], and was subsequently employed in the analysis of biomedical signals. In 2004, Ohmeda [8]
developed an anaesthesia EEG analyser with an entropy module that calculates the characteristics of
the biosignal with analysis of time-frequency balanced spectral entropy. The index, based on EEG and
electromyography (EMG) activity (Entropy), is an indicator of the hypnotic effects of propofol, thiopental,
isoflurane, sevoflurane and desflurane [9]. In 2002, Costa et al. [10] proposed the multiscale entropy (MSE)
technique applicable in the analysis of physiologic time series.

Compression is a measure of system complexity, but has been used to a lower extent in the analysis
of biomedical signals. Many types of compressors exist. Traditionally, the different available compressors
are divided in two classes, specifically, lossless and lossy compressors. With lossless compression, every
bit of data originally in the file remains after the file is uncompressed, whereas in lossy compression, the
file is reduced by permanently eliminating certain information, particularly redundant information. The
Lempel-Ziv is a compression algorithm introduced in 1977 [11], used as a measure of complexity in EEG
and ECG. Jean-Loup Gailly and Mark Adler subsequently developed gzip [12], which is a combination of
Lempel-Ziv and Huffman coding [13]. Julian Seward developed bzip2 using the Burrows–Wheeler block
sorting text compression algorithm[14] and Huffman coding. PAQ is a series of lossless data compressors
that uses a context-mixing algorithm. PAQ8L was released on 8 March 2007 by Matt Mahoney [15].

Cardiotocography is a technical means of recording the heart rate of the fetus (FHR) and uterine
contractions, and is widely used for fetal monitoring during labour. The value of cardiotocography lies
in its ability to predict newborn outcomes. Timely prediction of newborn outcome in the intrapartum
period, that is, immediately before delivery, may lead to a decrease in perinatal mortality and morbidity.
The FHR is measured in beats per minute and an external sensor attached on the mother’s abdomen
acquires it. FHR alterations are used to evaluate the fetal health condition and allow the obstetrician
to intervene to prevent potential compromise and irreversible damage. However, studies have shown
significant differences in inter- and intra-observer in FHR analysis and interpretation [16–18]. On the other
hand, new signal processing and pattern recognition techniques have paved the way towards automated
approaches.

One of the most widely accepted measures of newborn outcome is umbilical artery blood (UAB) pH,
as it represents an active measure of fetal oxygenation. A low UAB pH indicates the presence of acidemia
occurring during labour and delivery, presenting higher risk of perinatal death or neurological injuries
from hypoxia [19].

In the particular case of fetal heart rate (FHR) tracings, several entropy measures have been widely
used to detect different pathologies. ApEn and SampEn statistics are the most used entropy metrics,
followed more recently by MSE. Despite the successful application of Lempel-Ziv and gzip compressors to
FHR tracings to detect pathologies, compressors have been used only to a limited extent in the analysis
of biological signals to date [20, 21].
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In the current study, we aimed to show that compression can be effectively applied as an alternative
measure of complexity to the widely used entropy in biological signals. An example of FHR tracings was
applied to demonstrate the utility of these non-linear indices [22].

Methods

Complexity is a property of every system that quantifies the amount of structured information. The
quantification of information within a signal may be achieved using entropy or compression [7–9]. In this
section, we briefly describe the entropy and compression approaches and their related indices as well as
the dataset composed by FHR tracings used to evaluate the two approaches.

Entropy

In 1948, Shannon introduced the first approach for measuring ‘information’ [3]. This new measure,
known as Entropy (Shannon entropy), attempts to determine how random a message is expected to be
within a given distribution, and takes into account the minimum number of bits to transmit a message
from a random source of known characteristics through an error-free channel (Grunwald, P. D. & Vitanyi,
P. M. B unpublished data).

Let X be a random variable, taking values in Y with distribution P (X = x) = px. The Shannon
entropy of the random variable X is given by

H(X) =
∑
x∈Y

pxlog
1

px

The logarithm is base 2, so that entropy is measured in bits and lim
x→0

logx = 0; and thus, traditionally
it is conventioned that 0log0 = 0.

With the goal of ‘quantification of the amount of regularity in (heart rate) time-series data’, Pincus pre-
sented the ApEn statistic in 1991 [6]. It can be estimated through the family of statistics ApEn(N,m, r),
given N points, and is approximately equal to the negative average natural logarithm of the conditional
probability that two sequences similar for m points remain similar within tolerance, r, at the next point.
Accordingly, a low ApEn value is associated with high degree of regularity.

SampEn was introduced in 2000 with the same objective as ApEn by Richman and Moorman [7] to
evaluate biological time series, particularly heart rate. The authors highlighted two draw-backs in ApEn
properties, stating that ‘First, ApEn is heavily dependent on the record length and uniformly lower than
expected for short records. Second, it lacks relative consistency. That is, if ApEn of one dataset is higher
than that of another, it should, but does not remain higher for all conditions tested’ [7]. In order to
overcome these limitations, the group proposed a new family of statistics, SampEn (m, r), which, among
other differences, eliminates self-matches.

Regarding the necessary parameters to the evaluation of ApEn and SampEn, Pincus and Gold-
berger [23] concluded that m = 2, r values between 0.1 and 0.25 of the standard deviation and N

value of 10m, or preferably 30m, will yield statistically reliable and reproducible results. In the particular
case of FHR analysis, segments of 5 or 10 minutes (i.e. 600 or 1200 points for 2 Hz sampling) are adequate
and can make a difference in sensitivity and specificity [22], since in smaller segments some patterns may
not be detected, whereas in larger segments some patterns may get lost.
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Compression

In 1958 [24], Kolmogorov connected the dynamic systems theory with information theory. Based on
his work, Sinai [25] introduced the Kolmogorov–Sinai entropy that generalizes the probabilistic definition
of entropy, allowing the use of entropy in time-series data.

The ‘algorithm information theory’ was proposed years later independently by Solomonoff in 1960/1964
[26, 27], Kolmogorov in 1965 [4] and Chaitin in 1969 [28], which considers the amount of information in
an object as the length of the smallest description of the object. The Kolmogorov complexity attempts
to answer how ‘random’ an individual object is in terms of the number of bits necessary to describe it.

In [29] Kolmogorov claimed ‘The ordinary definition of entropy uses probability concepts, and thus
does not pertain to individual values, but random values, i.e. probability distributions within a given
group of values’.

The Kolmogorov complexity of a finite object is defined as the length of its shortest effective description
(Gr’́unwald, P. D. & Vitányi, P. M. B unpublished data). This measure is not computable, but can be
easily approximated using compressors. Good results were obtained using this approach in different areas,
including languages tree, genomics, optical character recognition, literature [30], music [31], computer
virus and Internet traffic analysis [32] and FHR anomaly detection [21]. In fact, Keogh [33] showed that
when clustering heterogeneous data and anomaly detection in time sequences, the compression approach
outperforms every known data-mining method.

In 1952, Huffman [13] developed an algorithm to use a short bit stream for characters that appear
more often. In 1977, Ziv and Lempel introduced the Lempel-Ziv algorithm based on ‘the concept of
encoding future segments of the source output via maximum-length copying from a buffer containing
the recent past output’ [11]. Recently, the Lempel-Ziv algorithm has been widely used in the field of
medicine. However, numerous compressors can be used with the same purpose.

The main point of data compression is the encoding of information using fewer bits than the original
data. Gailly and Adler created the first version of gzip [12], representing a combination of Lempel-Ziv
and Huffman coding. Seward developed bzip2 [14] in 1996, which was more effective than Lempel-Ziv and
gzip, but considerably slower. A similar compressor was successfully used in 2006 to cluster FHR [21].
PAQ8 [15] represents a series of lossless compressors with the world’s highest compression ratio. PAQ8L,
based on Dynamic Markov compression [34], was released in 2007. We believe that these compressors
can be successfully used in the medical field as well.

Example of fetal heart rate

Most clinical decisions in the intrapartum period, in countries with the best maternal and perinatal
indicators, are strongly based on FHR monitoring [16, 18, 19]. However, conventional visual analysis
of FHR recordings suffers from unacceptable intra- and inter- observer variation [17–19]. To overcome
this shortcoming, computer systems for bedside analysis of FHR recordings have been developed [35].
These systems have provided important progresses in FHR monitoring, but there is still room for their
improvement, namely using methods for complexity analysis of FHR variability [20, 22], which remains
one of the most challenging tasks in the analysis of FHR recordings [17, 19, 36].

In this study, we analysed 68 FHR intrapartum traces consecutively selected from a pre-existing
database of term singleton gestations, with at least 60 minutes of tracing. Of the 68 cases, 48 delivered
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Table 4.1.1: Median, first quartile (Q1) and third quartile (Q3) of complexity measures of fetal heart rate
tracings from moderate-to-severe acidemic (MSA), mildly acidemic (MA) and normal (N) fetuses in the
final 5-minute segments

MSA MA N
Median (Q1, Q3) Median (Q1, Q3) Median (Q1, Q3) P

Entropy
ApEn(2,0.1) 0.585 (0.525, 0.733) 0.738 (0.686, 0.774) 0.682 (0.555, 0.739) 0.207
ApEn(2,0.15) 0.496 (0.291, 0.738) 0.642 (0.561, 0.792) 0.607 (0.490, 0.702) 0.304
ApEn(2,0.2) 0.351 (0.251, 0.553) 0.582 (0.469, 0.795) 0.516 (0.420, 0.627) 0.044
SampEn(2,0.1) 0.476 (0.325, 0.658) 0.598 (0.540, 0.985) 0.541 (0.402, 0.615) 0.149
SampEn(2,0.15) 0.309 (0.172, 0.636) 0.459 (0.403, 0.632) 0.434 (0.320, 0.549) 0.338
SampEn(2,0.2) 0.231 (0.172, 0.307) 0.369 (0.308, 0.637) 0.341 (0.256, 0.404) 0.036
Compression
paq8l 234.0 (211.0, 279.0) 355.0 (306.0, 393.0) 335.0 (293.5, 372.5) 0.009
bzip2 283.5 (270.0, 382.0) 444.0 (404.0, 501.0) 426.5 (362.5, 488.0) 0.017
Further details on the complexity measures may be found in the Entropy and Compression sections.
Boldfaced numerals correspond to P values < 0.05.

Table 4.1.2: Median, first quartile (Q1) and third quartile (Q3) of complexity measures of fetal heart rate
tracings from moderate-to-severe acidemic (MSA), mildly acidemic (MA) and normal (N) fetuses in the
final 10-minute segments

MSA MA N
Median (Q1, Q3) Median (Q1, Q3) Median (Q1, Q3) P

Entropy
ApEn(2,0.1) 0.533 (0.376, 0.611) 0.837 (0.727, 0.930) 0.751 (0.604, 0.877) 0.003
ApEn(2,0.15) 0.392 (0.298, 0.541) 0.687 (0.667, 0.907) 0.613 (0.506, 0.739) 0.002
ApEn(2,0.2) 0.328 (0.243, 0.403) 0.593 (0.553, 0.662) 0.516 (0.408, 0.613) 0.001
SampEn(2,0.1) 0.342 (0.234, 0.397) 0.682 (0.534, 0.815) 0.572 (0.375, 0.678) 0.009
SampEn(2,0.15) 0.215 (0.152, 0.316) 0.498 (0.425, 0.770) 0.422 (0.286, 0.522) 0.002
SampEn(2,0.2) 0.194 (0.114, 0.238) 0.398 (0.349, 0.489) 0.317 (0.226, 0.406) 0.002
Compression
paq8l 511.0 (452.0, 537.0) 648.5 (570.0, 692.0) 592.0 (515.5, 647.5) 0.019
bzip2 658.5 (616.0, 719.0) 814.0 (726.0, 850.0) 716.0 (667.5, 814.0) 0.032
Further details on the complexity measures may be found in the Entropy and Compression sections.
Boldfaced numerals correspond to P values < 0.05.

fetuses with UAB pH in the normal (N) range (pH ≥ 7.20), 10 delivered with UAB pH between 7.10
and 7.20, mildly acidemic (MA) fetuses and 10 moderate-to-severe acidemic (MSA) fetuses with UAB
pH ≤ 7.10. All traces were resampled at a frequency of 2 Hz after pre-processing, based on an algorithm
described in previous studies. A more detailed description of the data and pre-processing algorithm is
presented in [22].

Results

The non-linear methods, entropy (ApEn and SampEn) and compression (paq8l and bzip2), were
calculated in the first and last 5 and 10 minutes of the tracings. The median and interquartile (IQ)
range, as well as the statistical significance of the non-parametric Kruskal–Wallis test, are presented in
Tables 4.1.1 and 4.1.2.

The mean running times for entropy (ApEn), paq8l compressor and bzip2 compressor in 10-minute
segments were 4.2, 0.9 and 0.006 seconds, while those in 5-minute segments were 1.2, 0.5 and 0.003
seconds, respectively.
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Table 4.1.3: Comparison of the complexity measures computed in the initial and final minutes of fetal
heart rate tracings with respect to moderate-to-severe acidemic (MSA), mildly acidemic (MA) and normal
(N) fetuses

Initial versus final 5 minutes Initial versus final 10 minutes
MSA MA N MSA MA N

Entropy
ApEn(2,0.1) 0.074 0.028 <0.001 0.050 0.017 <0.001
ApEn(2,0.15) 0.386 0.203 <0.001 0.028 0.386 <0.001
ApEn(2,0.2) 0.285 0.386 <0.001 0.017 0.028 <0.001
SampEn(2,0.1) 0.059 0.114 <0.001 0.005 0.009 <0.001
SampEn(2,0.15) 0.285 0.169 <0.001 0.005 0.203 <0.001
SampEn(2,0.2) 0.203 0.203 <0.001 0.005 0.022 <0.001
Compression
paq8l 0.114 0.878 0.272 0.878 0.541 0.024
bzip2 0.575 0.333 0.001 0.241 0.139 <0.001
Values provided in the table correspond to P values of the Mann–Whitney test.
Further details on the complexity measures may be found in the Entropy and Com-
pression sections.
Boldfaced numerals correspond to P values < 0.05.

Considering the outcome MSA and the last 5-minute segments, entropy measures tend to have less
discriminatory power (lower areas under the ROC curve ranging from 0.584 to 0.705) than compressors
(areas under the ROC curve between 0.773 and 0.797). Considering the last 10-minute segments, entropy
measures tend to have greater discriminatory power (higher areas under the ROC curve ranging from
0.797 to 0.855) than compressors (areas under the ROC curve between 0.676 and 0.699).

A comparison between the initial and final 5 minutes of FHR tracings was performed for each com-
plexity measure and each group of fetuses (MSA, MA and N). The same procedure was performed for
comparison between the initial and final 10 minutes of FHR tracings, and significance results of the
non-parametric Mann-Whitney test are presented in Table 4.1.3.

As expected, SampEn was highly correlated with ApEn, with the correlation coefficient ranging be-
tween 0.928 and 0.955 (for similar values of r). Moreover, the two compressors were highly correlated with
a correlation coefficient of 0.888. However, the correlation values between the considered compression
and entropy metrics were lower, ranging between 0.316 and 0.414.

Figure 4.1.1 depicts a non-linear relationship between entropy (ApEn) and compression measures
(paq8l). The correlation coefficient between ApEn (2,0.15) and paq8l for all cases was 0.414, and the
same measure for the MSA, MA and N groups were 0.648, 0.219 and 0.214, respectively. Similar results
were obtained with other possible combinations in the final 5- and 10-minute segments. Despite both being
complexity measures, the poorcorrelation between them shows that entropy and compression are using
algorithms that seek and emphasize different characteristics and patterns of each time series. Therefore,
the combination of both measures may improve the classification of a FHR tracing.
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Figure 4.1.1: Scatterplot of indices ApEn(2,0.15) and paq8l for the final 5-minute segments, comparing
normal fetuses (∗), mildly acidemic fetuses (•) and moderate-severe acidemic fetuses (⋄).

Conclusions

We have shown that entropy and compression measures allow for the characterization of different
pathophysiological conditions of the fetus - distinguishing fetuses at risk of hypoxia from their healthy
counterparts and between different stages of labour - through the analysis of the FHR signal.

The use of compression as a measure of complexity has rarely been applied in the analysis of biological
signals. However, we have shown that compressors can be effectively used as an alternative to the widely
used entropy measures to quantify complexity in biological signals.

By using entropy and compression approaches, one can quantify different features of a system com-
plexity, as shown by the low/moderate correlations between the entropy and compression measures.
Accordingly, further research is required in order to study the different complexity features captured by
either entropy or compression, as well as in exploring different combinations of the two strategies.

The small computational time associated with both measures, particularly the compressors, allows for
considering their inclusion in existing FHR monitoring systems. In this way, the information on the fetus
complexity obtained from the FHR signal may provide important auxiliary information to clinicians, in
the diagnostic of the fetal state and help in consequent clinical decisions.
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4.2 Multiscale Compression: an Effective Mea-
sure of Individual Complexity

Abstract

Complexity is a property that reflects the amount of structured information in a given system. Kol-
mogorov complexity and Shannon entropy are conceptually different complexity measures. The main aim
of this work is to show that, for dynamic signals, the use of a multiscale approach combined with an ap-
proximation to Kolmogorov complexity through different compressors may be as useful as the multiscale
entropy calculated by approximation through different entropies. We explore these approaches in two
data sets: a data set with 40 white-noise and 40 pink-noise time series and another data set of cardiac
interbeat interval time series from forty-three congestive heart failure (CHF) patients and seventy-two
healthy subjects. The dispersion value between the two complexity measures shows the importance of
considering different measures to different physical and physiologic time series.

Lead Paragraph

Plesk and Greenhalgh [1] conjectured elements of health care as belonging to simple, complex and
chaotic domains. Traditional health evidence lies in the simple domain (high agreement and certainty)
usually associated to predictable linear actions, evidence based guidelines. In the chaos domain (low
certainty and agreement) no information is visible from the interaction of the systems; however, there
may be emergence and creativity and one should look deeply for intrinsic patters. Several measures
have been developed trying to measure the information contained in physical and physiological systems
belonging to the complex and chaotic domains. The multiscale approach is based on the observation
that the output of complex systems generally shows structures with long-range correlations on spatial
and temporal scales. These multiscale features are ignored by conventional complexity measures. In this
work we compare two conceptually different measures of complexity, in conjunction with the multiscale
approach: the entropy and the Kolmogorov complexity.

Introduction

Solomonoff [2, 3], Kolmogorov [4] and Chaitin [5, 6] independently defined the complexity of an object
as the length of the shortest program that produces the object. This individual complexity measure
is usually known as Kolmogorov complexity or algorithmic information theory. A binary string that
contains many long runs of the same bit will be highly compressible and therefore have a low Kolmogorov
complexity, whereas a binary string that is generated using fair coin flips will have a high Kolmogorov
complexity (with high probability). Practical applications of Kolmogorov complexity (in the sense of real,
runnable computer programs) have emerged only in recent years. By approximating the Kolmogorov
complexity by realworld compressors, one can transform the theoretical notion into applications that
work better than one would expect. The Shannon entropy [7] of a random variable X is a measure of its
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average uncertainty. It is the smallest number of bits required, on average, to describe x, the output of
the random variable X. Several approximations to the entropy, the Approximate (ApEn) [8] and Sample
(SampEn) [9] entropy, has been traditionally used to quantify the amount of information/complexity
carried by a physiological signal such as heart rate and its deterministic dynamics.

The Multiscale Entropy (MSE) [10], consider the information contained in multiple scales obtained
better results in the analysis of dynamics systems. Summarily, the SampEn is calculated for each coarse-
grained time series derived from the original time series. So, multiscale entropy is looking for the sufficient
statistic using as model the different scales. Kolmogorov complexity and Shannon entropy are conceptu-
ally different measures. However it is a well knows result that, for any recursive probability distribution,
the expected value of Kolmogorov complexity equals its Shannon entropy, up to a constant. The main
aim of this work is to show that, for dynamic signal, the use of multiscale approach combined with an
approximation to Kolmogorov complexity through different compressors may be as useful [11] as the
multiscale entropy calculated by approximation through different entropies, which has been successfully
applied to different scientific areas [10, 12].

Methods

It is well know that Kolmogorov complexity is not computable, however we can approximate it by
using standard compressors. The main point of data compression is the encoding of information using
fewer bits than the original data. Several compressors were developed in last 40 years, each one with
distinct properties suitable for different data sets. In this work we use two lossless compressors: the gzip
compressor [13] one of the most used everyday compressor and paq8l [14], one of the best compressors at
this moment, based on Dynamic Markov compression.

Multiscale entropy (MSE) was introduced in 2002 [10], the key innovation was to representing the
information of a system’s dynamics on different time scales. The multiscale method can be separate in
two parts. The first one is the construction of the time series scales: using the original signal, a scale,
s, is created from the original time series, through a coarse-graining procedure, i.e, replacing s points by
their average. The second step concerns the calculation the value of entropy for each time series scale. In
this work we use the Sample Entropy (SampEn) with the parameters m = 2andr = 15%of the standard
deviation of the signal. The complexity index (CI) is the area under the MSE curve obtained by plotting
the entropy value as a function of scale. More details can be found in [10, 12].

We extend this idea to other measure of information namely compression, i.e., we consider different
scales however we calculate the compress ratio 1 of the reduced time series instead of computing its
entropy, thereby introducing the multiscale compression (MSC). For this purpose we use the compressors
gzip and paq8l.

In the first section of results we study the behavior of multiscale compression in a set of white and
pink noise time series. The white noise is a randomly generated signal that has equal power in any band
of a given bandwidth. The pink noise, also called “1/f noise”, is a signal with a frequency spectrum linear
in logarithmic space, i.e., the power spectral density is inversely proportional to the frequency. These
time series are completely orthogonal, and this is the main reason why we start our study of multiscale

1Naturally, as the size of the time series decrease the size of its compression also decreases. The most natural way to
avoid this problem is to consider the compression rate (CR = Size Compress file / Size Original file) instead of the value of
compression, i.e., the percentage of compression.
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compression with them. Then we analyze the differences between subjects with congestive heart failure
and healthy subjects using the same data-set as in [12].

Results

White and Pink Noise

We created 40 normalized time series, with 2500 point each, for each type of noise. Figure 4.2.1 has
an example of each. Figure 4.2.2 displays the compression rate at different scales in both time series. The

Figure 4.2.1: White and Pink noise examples

value of compression rate, for both compressors, for the white noise (blue circles in the figure) decreases
through the scales while the behavior for pink noise (red stars) with both compressors the value increases
when the scale factor increases but not in different ways. The results of MSE corroborate the fact that
pink noise contains complex structures across all scales, unlike white noise (figure 4.2.3).

Figure 4.2.2: Multiscale compression (MSC) analysis of white and pink noise. Each panel display the
results of gzip and paq8l, respectively. The blue circles represent the white noise and the red stars
represent the pink noise.Values are presented as means ± 2*standard error.
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Figure 4.2.3: Multiscale entropy (MSE) - SampEn(2,0.10*sd) - analysis of white and pink noise. The
blue circles represent the white noise and the red stars represent the pink noise.

Congestive Heart Failure vs Healthy subjects

In this section the MSC is applied to cardiac interbeat interval time series from 43 congestive heart
failure (CHF) patients and 72 healthy subjects, using the same data-set as in [10, 12]. We start analyzing
the sleeping periods. As figure 4.2.4 shows the compression rate of both interbeat interval time series

Figure 4.2.4: Multiscale compression rate, using gzip and paq8l, analysis of interbeat interval time series
during sleep derived from CHF patients and healthy subjects. Values are given as means ± 2*standard
error. The blue circles represent the healthy subjects and the red stars represent the CHF patients.

increases a little, similar to pink noise, suggesting the presence of complex structures in these time series.
In [12] the sleeping period was also analyzed with one difference that was the division of healthy subjects
in young and elderly. In figure 4.2.5 the different of behavior in interbeat interval time series from healthy
and from CHF patients is clear.

The dynamic associated to the two methods, MSC and MSE, is similar however the MSC presents
a better separation between the two groups. The complexity indexes for entropy (CSampEnI) and for
different compressors (CcompressorI), for the 20 scales, are significantly different for the two groups
(p − values < 0.005 and < 0.001, respectively). The Pearson correlation coefficient between these two
measures (CSampEnI and CcompressorI) is 0.34 (significantly different from 0, p− value < 0.001).

Considering the 24 hours recordings we performed the same analysis.
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Figure 4.2.5: Multiscale SampEn(2,0.15*sd) analysis of interbeat interval time series from healthy subjects
(blue circles) and from CHF subjects(red stars). Values are given as means ± 2*standard error.

Figure 4.2.6: Dispersion between the complexity index computed using the MSE curve or the MSC curve
for each one of the compressors. The Pearson correlation coefficient between these two measures is 0.34
(significantly different from 0, p − value < 0.001). The blue circles represent the healthy subjects and
the red stars represent the CHF patients.

Figure 4.2.7: Multiscale compression (MSC) gzip and paq8l analysis of interbeat interval time series
derived from CHF patients and healthy subjects for 24h. Values are given as means ± 2*standard error.
The blue circles represent the healthy subjects and the red stars represent the CHF patients.
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Analyzing figure 4.2.7 one can see a good separation and different dynamics for initial scales among
the two groups, as in the sleeping periods.

In [12], these traces were also analyzed and compared with Atrial Fibrillation (AF) subject. Fig-
ure 4.2.8 show that the entropy also has different behavior across scale for each group. However, the
distinction between the two groups is worst.

Figure 4.2.8: Multiscale analysis of interbeat interval time series from healthy subjects, CHF subjects
and from AF subjects. [12]

Once more the dynamics associated with MSC and MSE presents a better separation between the two
groups. The complexity indexes for entropy (CSampEnI) and for different compressors (CcompressorI), for
the 20 scales, are significantly different for the two groups (p−values < 0.005 and < 0.001, respectively).
See figure 4.2.9.

Figure 4.2.9: Dispersion graph between the CI compute from the MSE curve and from the MSC curve for
different compressors. The Pearson correlation coefficient between these two measures (CSampEnI and
CcompressorI) is 0.32 (significantly different from 0, p− value < 0.001).

Discussion

In this work, it is not our purpose to present a new method but join two successful ones: the coarse-
grained method used in MSE and compression as a measure of complexity. The multiscale analysis has
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been successfully applied in the analysis of dynamic systems specially when associated with entropy.
Compression is also a useful complexity measure, measuring different properties, the combination of the
two can be specifically important in medicine where there are many dynamic systems whose behavior is
unknown.
In correlated and uncorrelated noises the compression rate and the entropy have similar behavior across
the scales. This behavior, support the idea that both are complexity measures and that the multiscale
approach, independently of the complexity measure used, can be very useful to distinguish data. The pink
noise with the entropy measure remains constant across the scales while the compression rate increases.
Contrary to white noise behavior that, in both measures, as expected after a coarse-graining procedure,
decreases while scales increases.

The multiscale approach allows the analysis of features present in time series structures with long-
range correlations on multiple spatial and temporal scales. The MSE and MSC methods show that
healthy dynamics are the more complex, compatible with the concept that physiologic complexity is
fundamentally related to the adaptive capacity of the organism. On the other hand, pathologic dynamics
are associated with either increased regularity and decreased of variability, sustained a breakdown of
long-range correlations and loss of information [15]. Although both methods present a similar dynamic
and the same tendency (higher values of CI in healthy subjects) the distinguish power and the dispersion
values are quite different between the two complexity measures. This shows the importance of considering
different measures to different physical and physiologic time series.
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4.3 Compression vs Entropy: on the char-
acterization of the nonlinear features of
physiological signal

Abstract

Conventional linear mathematic methods fail to describe biological systems belonging to the complex
and chaotic domains. Different approaches based on chaos and complexity concepts have been successfully
considered. In this work we addresses the challenge of assessing the dynamics of fetal heart rate (FHR)
signals from fetuses born with neonatal acidemia using nonlinear indices. The analysis of a FHR signal
represents a noninvasive tool for evaluating the fetal condition. The information obtained may provide
important auxiliary information to clinicians, in the diagnostic of the fetal state and help in consequent
clinical decisions in life-threatening situations, particularly in the minutes prior to delivery.

The most widely used complexity measures in the literature are approximations to the entropy, namely
Sample Entropy or Approximate Entropy. In this work we challenge complexity from a different viewpoint,
namely approximation to the mathematical sound notion of Kolmogorov complexity. One of the main
objective of this work is also to understand the complementary information that can be derived from
These different approaches, providing a more comprehensive view of the underlying physiology.

We start by studying the usefulness of approximations of entropy and Kolmogorov complexity to deal
with the biological complexity of FHR. We achieve it, showing that the correlations between the entropy
values and the compression ratio are not significative different of 0. This is a strong evidence that despite
the two approaches quantify the complexity of a trace they probe different characteristics of this. Finally
we give some strong evidence regarding the characteristics of the FHR traces that each of the complexity
measures explore, namely short and long term variability.

Introduction

The human body is constituted by several interacting and auto-adjusting physiological systems whose
actions one can not always predict. The behavior of the physiological systems determining the functioning
of the body is based on a complex adjustment of various variables according to internal requirements and
external influences. Any physiological mechanism evolves along well-assigned temporal scales. The study
of this complex physiology needs mathematical approaches capable to deal with concepts of information,
complexity. In addition, there is a growing amount of data that indicate a reduction of complexity during
pathological situations, suggesting that the use of these complexity measures may characterize pathology.

In this paper we study the usefulness of approximations of entropy and Kolmogorov complexity to deal
with the biological complexity. This approach challenges complexity from different viewpoints and tries
to understand the complementary information that can be derived from different approaches, providing
a more comprehensive view of the underlying physiology.

To approximate the Komogorov complexity we use some well known compressors, namely lzma, bzip2
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and paq8l and to approximate the theoretical valued of the entropy we use the Sample Entropy (SampEn),
an improvement of the Approximate Entropy (ApEn), designed to evaluate biological time series, par-
ticularly the heart rate signal.

To better ilustrate our results we use a dataset of 128 traces of fetal heart rate (FHR). Cardiotocogra-
phy is used to assess the fetal wellbeing, by the record of the fetal heart rate and the uterine contractions.
Computer analysis of cardiotograms provides quantifying parameters that are difficult to assess by the
human eye, and overcomes low agreement among clinicians in FHR analysis. Carditotocography seems
to be a clinical procedure inserted in a complex system, with a non-linear behavior.

Methods

Entropy

Information theory quantifies the a priori uncertainty about the results of an experiment. Classical
information theory originated in Shannon’s paper “A mathematical theory of communication”[1], where
the author defined the notion of entropy and showed that it corresponded to the amount of information
associated with any given statistical event.

The Shannon entropy of a random variable X is defined as:

H(X) = −
∑
 i

p(x(i)) · log (p(x(i))) (4.1)

where p(x(i)) = P{X = x(i)}.
Traditionally, when studying physiological signals, one can not compute the exact value of the entropy

as we do not know the underlying distribution, however we can approximate it. To estimate the Shannon
entropy – H(X) – of a distribution X, in general, requires the knowledge of the entire distribution X,
that could potentially require exponentially many samples from x.

The Approximate Entropy (ApEn), proposed by Pincus [2], tries to approximate of the entropy
and exhibits a good performance in the characterization of randomness (or regularity) of physiological
data. In order to calculate the ApEn, a new series of vector of length m is constructed as follows:
Xi = (x(i), x(i + 1),…, x(i + m − 1)), i = 1, . . . , N − m + 1. For each vector Xi, the value Cm

i (r) is
computed as:

Cm
i (r) =

number of d[Xi, Xj ] ≤ r

N −m+ 1
∀j (4.2)

where r is referred as a tolerance value to be pre-define and the distance function used is defined as:

d[Xi, Xj ] = maxk=1,...,m|xi+k−1 − xj+k−1| (4.3)

Next, the average of the natural logarithm of Cm
i (r) is computed for all i:

Φm(r) =
1

N −m+ 1

N−m+1∑
i=1

ln(Cm
i (r)) (4.4)

Since in practice N is a finite number, the statistical estimate is computed as:
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ApEn(m, r) =

 Φm(r)− Φm+1(r) for m > 0

−Φ1(r) for m = 0

The Sample Entropy (SampEn) [3] was introduced, as an improvement of the ApEn measure, to
evaluate biological time series, particularly the heart rate signal. For the SampEn calculation the same
parameters defined for the ApEn, m and r are required. Considering A as the number of vector pairs of
length m+ 1 having d[Xi, Xj ] ≤ r, with i ̸= j and B as total number of template matches of length m.
The SampEn is defined as:

SampEn = −ln A
B

(4.5)

In other words the SampEn is the negative natural logarithm of the conditional probability that
templates of a certain length (m) that match pointwise, within a tolerance threshold (r), also match if
the template increases one point (length m+ 1).

The multiscale entropy [4, 5](MSE) approach, extend the entropy concept of regularity to a concept
of fractality considering the information of a system�s dynamics on different time scales. The multiscale
method comprise two parts: 1) the construction of the time series scales: using the original signal, a scale,
s, is created through a coarse-graining procedure by replacing s consecutive points by their average; 2)
the computation of the entropy index for each time series scale. The MSE curve is obtained by plotting
the entropy value as a function of scale.

Kolmogorov Complexity

Algorithmic information theory was proposed in the 60’s, independently by Kolmogorov, Solomonoff
and Chaitin [6–9]. This quantity is now known as Kolmogorov complexity and is defined as the length of
the shortest program that can produce a given string x, denoted as K(x). Unlike entropy, this quantity
depends exclusively on the string, and not on the probability with which it is sampled from some given
distribution. As such, Kolmogorov complexity measures the intrinsic information in a given string which
for some application is more useful than entropy.

We saw that to evaluate the entropy one in general requires knowledge of the entire distribution and
so typically we approximate it. The Kolmogorov complexity seems even worse, as it also well known to
be uncomputable. However in practice, one can often estimate K(x) reasonably well by compressed file
size, when x is fed to a standard compression algorithm such as gzip.

In 2004/2005, a new method for data clustering using compression was introduced in [10], based
on a similar method first used in mitochondrial genome phylogeny [11]. It is feature-free, there are no
parameters to tune, and no domain-specific knowledge is used. Good results where obtained applying it
on different areas: languages tree, genomics, optical character recognition, literature [10], music [12], and
computer virus and internet traffic analysis [13]. This method is extremely powerful and general. It can
mine patterns in completely different areas, there are no domain-specific parameters to set, and it does
not require any background knowledge. Its performance in clustering heterogeneous data and anomaly
detection in time sequences has been shown to outperform that of every known data-mining method in
a massive recent study [14].
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Physiological Signal: An Application

The assessment of fetal heart rate (FHR) variability is extremely important in obstetric care to assure
the fetal well-being. Some pathologies as fetal hypoxia, congenital heart anomalies and fetal tachycardia
can cause decreased variability [15]. Traditionally, in this area, two measures of variability are used. The
short-term variability (STV) a measure of the oscillations of the FHR between consecutive points and
the long-term variability (LTV) representing slower oscillation in heart rate.

We consider a data set composed by 182 FHR traces from healthy fetus collected between the 36th

and 38th gestational week. Prematurity decreases variability, however variability should be normal after
32 weeks [16]. The dataset was collected in Hospital de São João, Porto, Portugal and then analyzed by
Omniview-SisPorto®, a central fetal monitoring viewing system, producing some clinical features. In this
work we focus our attention on the percentage of abnormal STV and LTV. In the Omniview-SisPorto®,
an abnormal STV point is defined whenever the difference between two adjacent FHR values are less
than 1 bpm. On the other hand, a point with abnormal LTV is identified when the difference between
maximum and minimum values of a sliding 60-sec window centered on it does not exceed 5 bpm [17].
However, there is no universal consensus on these definitions.

Figure 4.3.1: Compression Rate using three different compressors (A) lzma, (B) bzip2 and (C) paq8l for
the fetal heart rate time series without (◦) and with (×) abnormal LTV groups. The complexity rate is
significantly (p-value << 0.001) lower in the group with presence of abnormal LTV comparing with the
other group. Symbols with error bars represent mean and SD values, respectively.

Using nonlinear method such as SampEn and the compression rate we can significantly (p-values
< 0.005 and << 0.001, respectively) distinguish fetus with or without percentage of long term variability
(Figures 4.3.1 and 4.3.2).

All the 182 FHR traces presented a percentage of abnormal STV higher than 50%. The six com-
plexity indices, based on entropy and compression, are significantly higher (p-values for compressors
<< 0.001 and for SampEn < 0.001, respectively) for tracings in which this percentage is higher than 80
(Figures 4.3.3 and 4.3.4).

Despite the two approaches quantify the complexity of a trace they probe different characteristics of
the data. The correlations between the entropy values and the compression ratio are not significative
different of 0. In figures 4.3.5 and 4.3.6 we display the scatter-plot between the SampEn (m = 2, r = 0.20)
and the three compression ratios. We used SampEn as it optimizes the separation between the groups,
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Figure 4.3.2: SampEn using m = 2 three r thresholds (A) r = 0.10, (B) r = 0.15 and (C) r = 0.20
for the fetal heart rate time series without (◦) and with (×) abnormal LTV groups. The entropy in the
pathologic group was significantly (p-value < 0.005) lower in the group with presence of abnormal LTV
comparing with the other group. Symbols with error bars represent mean and SD values, respectively.

Figure 4.3.3: Compression Rate using three different compressors (A) lzma, (B) bzip2 and (C) paq8l for
the fetal heart rate time series without (◦) and with (×) abnormal STV groups. The complexity rate is
significantly (p-value << 0.001) lower in the group with presence of abnormal STV > 80% comparing
with the other group. Symbols with error bars represent mean and SD values, respectively.

similar arguments where use to choose the threshold for (r) values.

The absence of correlation between the two approaches raised the central question for this work: which
features of the FHR traces are SampEn and the compressors exploring? So, one should look for a better
understanding of these approaches behavior in the assessment of correlations and in the presence of noise.
To do so, for each fetal heart time series we create two new time series: a noisier adding white noise
(with mean 0 and standard deviation 1) and a randomized by shuffling the order of all the points of the
original time series. For each of the new time series we compute the six complexity measures.

Examining the results of figures 4.3.7 and 4.3.8 it seems that time series with noise or random have
higher complexity than the original FHR time series. However, analyzing the results in different time
scales by applying the multiscale approach, combined with all six different measure, to the three sets of
time series we observe that the entropy decreases for the noisier and randomized time series.
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Figure 4.3.4: SampEn using m = 2 three r thresholds (A) r = 0.10, (B) r = 0.15 and (C) r = 0.20
for the fetal heart rate time series without (◦) and with (×) abnormal STV groups. The entropy in
the pathologic group was significantly (p-value < 0.001) lower in the group with presence of abnormal
STV > 80% comparing with the other group. Symbols with error bars represent mean and SD values,
respectively.

Figure 4.3.5: Dispersion between the SampEn (r = 0.20) and each one of the complexity rates (A) lzma,
(B) bzip2 and (C) paq8l. The Pearson correlation coefficient between the measures was not significant.
The solid circles represent the healthy group (absence of abnormal LTV) and the crosses represent the
ones with presence of abnormal LTV.

Discussion

In the classification of short and long term variability of the FHR traces both complexity measures
successfully distinguish the two groups however the compression measures give the best separation. The
non significant correlation between the entropy and compression approaches suggest that each one can
quantify different features of a system. These findings reinforce the importance of considering different
measures assessing physiologic time series.

The SampEn measure has been widely used to assess the complexity in physiological data. Despite
that, a limitation of the entropy measures relates to the fact that they are parametric measures, and thus
their results vary according to the parameters chosen (vector length m, tolerance value r and number
of points of the time series). Actually, if r is chosen as a fixed value the results obtained are highly
correlated with the time series amplitude (SD). To assess the data correlations independently of the time
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Figure 4.3.6: Dispersion between the SampEn (r = 0.20) and each one of the complexity rates (A) lzma,
(B) bzip2 and (C) paq8l. The Pearson correlation coefficient between the measures was not significant.
The solid circles represent the group with percentage of abnormal STV lower or equal to 80% and the
crosses represent the ones with percentage of abnormal STV higher than 80%.

Figure 4.3.7: Compression Rate using three different compressors (A) lzma, (B) bzip2 and (C) paq8l for
the original fetal heart rate time series (•), for the noisier time series (□) and for the randomized time
series (∗).

Figure 4.3.8: SampEn with m = 2 and three r thresholds (A) r = 0.10, (B) r = 0.15 and (C) r = 0.20
for the original fetal heart rate time series (•), for the noisier time series (□) and for the randomize time
series (∗).
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Figure 4.3.9: Multiscale compression rate using three different compressors (A) lzma, (B) bzip2 and (C)
paq8l for the original fetal heart rate time series (•), for the noisier time series (□) and for the randomize
time series (∗). Symbols with error bars represent group mean and SD values, respectively.

Figure 4.3.10: Multiscale SampEn using m = 2 three r thresholds (A) r = 0.10, (B) r = 0.15 and (C)
r = 0.20 for the original fetal heart rate time series (•), for the noisier time series (□) and for the
randomize time series (∗). Symbols with error bars represent group mean and SD values, respectively.

series amplitude, a common choice is to use the r value as a percentage of the standard deviation of
the time series. This choice has the advantage of being equivalent to normalizing the time series to unit
variance and zero mean à prior, but the results still depend on the percentage r chosen.

The dictionary (number of unique values) of the time series to be analyze is of extremely importance
in the use of these measures. The entropy, due to the use of threshold r allow a certain flexibility when
comparing two signals. However, attention is specially needed when computing entropy in discrete time
series. In compression measures a small difference in the decimal values can produce totally different
final results, as we showed when introducing noise to the original time series. To reduce the impact of
this limitation we round the values of all time series to three decimal places.

The presence of noise in a fractal-like time series can reproduce misleading results. By using entropy
measures, if the noise is superior to the threshold (r) chosen, the values obtained are higher than the ones
from the original time series. Using the multiscale approach, in a few scales the noise is “eliminated”
and the results of both time series became similar. In contrast, using compression measures the values
obtained when analyzing the noisier time series after introduced white noise with SD = 1 to the original
ones are approximately 10% (0.10) superior. When doing the multiscale approach both time series present
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the same behavior but the difference between the two slightly decreases with the decrease of noise in both
time series.

The process of randomized a time series eliminate the correlations between consecutive values. The
compression ratio values, on the first scale, are higher for the randomized than the original time series.
Using the multiscale approach, the behavior of the two set of data appears to be different. The randomized
time series maintains or slightly increase through the scales (similar to fractal noise) while the original
time series increases their value through the scales. The entropy values for randomized time series are
much higher than the original and the noisier time series. However, this values are not representative
of higher complexity of uncorrelated time series associated with healthier systems. The entropy value of
the randomized time series decreases when the scales increases similar to the white noise behavior.

We believe that the differences in the behavior of the two measures relates with presence of noise is
due to the fact of the SampEn is looking for short term correlations in contrast with the compressors
that probe short and long term fluctuations.

Conclusion

The values of Kolmogorov complexity, an algorithmic approach, approximated by compressors were
compared to entropy ones, a probabilistic approach, by using the SampEn measure. The findings pre-
sented on this section validate the notion that compressors, despite less frequent, can be effectively
used, complementary to entropy indices, to quantify complexity in biological signals, specifically in FHR
analysis.

The results obtained suggest that while the entropy measure probe essentially the short term corre-
lations (by using m = 2) the compressors also assess the long term correlations. The use of multiscale
entropy combine with these measures improve the performance of both allowing to more accurately ex-
amine the fractal dynamics present in the physiological signals and to distinguish the “real” dynamics
from the presence of noise.

The strengths and limitation of both measure should be take into consideration either before applying
or when interpreting the results.
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Learn from yesterday, live for today, hope for tomorrow.
The important thing is to not stop questioning.

Albert Einstein, Relativity: The Special and the General
Theory

5. Non-Linear Models To Assess Con-
tinuous Glucose Monitoring Data

The applicability of many of the methods proposed or used to characterize heart rate variability are
not solely for that purpose and may be adapted to the analysis of other time series.

Diabetes mellitus (DM) is one of the world’s most prevalent medical conditions affecting tens of mil-
lions worldwide. Recently a continuous glucose monitoring (CGM) technology, used in the management
of patients with DM, provides serial measures of glucose levels for about a week [1]. Contemporary
management focuses on lowering mean blood glucose values toward a normal range, but largely ignores
the dynamics of glucose fluctuations [2]. The time series derived from CGM recordings remain a largely
untapped source of dynamical information.

In this chapter some of the well defined methods, commonly used on heart rate analysis, were used to
explore and analyze these “new” CGM time series. On the first section a new method, termed glucose-at-
a-glance, is presented to visualize and analyze CGM outputs that may facilitate the clinical assessment
of short and long-term glucose variability. The new method is based on density delay maps (Poincaré
plots) [3] and enhance by adding a color scheme that represents different levels of density of the data
points.

On the second section we go a step forward and using multiscale entropy (MSE) [4] analysis, we
quantified the complexity of the temporal structure of the CGM time series from a group of elderly
subjects with type 2 DM and age-matched controls. We also show that the fluctuations in CGM values
sampled every 5 minutes are not random.

The findings support extending the conventional notion of a discrete therapeutic target to considerat-
ing of a new framework, dynamical glucometry, which should enhance complexity of glucose fluctuations
and not just lower mean and variance of blood glucose levels.

Of note, the work developed in this chapter resulted in two published articles.
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5.1 “Glucose-at-a-Glance:” New Method to
Visualize the Dynamics of Continuous
Glucose Monitoring Data

Abstract

The standard continuous glucose monitoring (CGM) output provides multiple graphical and numerical
summaries. A useful adjunct would be a visualization tool that facilitates immediate assessment of both
long- and short-term variability. We developed an algorithm based on the mathematical method of delay
maps to display CGM signals in which the glucose value at time ti is plotted against its value at time
ti+1. The data points are then color-coded based on their frequency of occurrence (density). Examples of
this new visualization tool, along with the accompanying time series, are presented for selected patients
with type 2 diabetes and non-diabetic controls over the age of 70 years. The method reveals differences
in the structure of the glucose variability between subjects with a similar range of glucose values. We
also observe that patients with comparable hemoglobin A1c (HbA1c) values may have very different
delay maps, consistent with marked differences in the dynamics of glucose control. These differences
are not accounted by the amplitude of the fluctuations. Furthermore, the delay maps allow for rapid
recognition of hypo- and hyperglycemic periods over the full duration of monitoring or any subinterval.
The glucose-at-a-glance visualization tool, based on colorized delay maps, provides a way to quickly assess
the complex data acquired by CGM systems. This method yields dynamical information not contained
in single summary statistics, such as HbA1c values, and may also serve as the basis for developing novel
metrics of glycemic control.

Introduction

Continuous glucose monitoring (CGM), used in the management of patients with diabetes mellitus,
provides serial measures of glucose levels. The standard CGM report includes multiple graphical and
numerical summaries. We introduce a new method, termed glucose-at-a-glance to visualize and analyze
CGM outputs that may facilitate the clinical assessment of short and long-term glucose variability.

The new method is based on density delay maps, which display the value of a variable at time ti versus
its value at time ti+1. Up to the present, the primary biomedical application of traditional delay maps
has been in the research analysis of heart rate time series [1–4], where they are referred to as Poincaré
plots. In addition, two parameters of delay maps, quantifying the local and global time series’ standard
deviations (abbreviated SD1 and SD2), have been proposed for the analysis of CGM data [5, 6]. Here,
we adapt and expand the delay map approach in new directions to allow for visualization of CGM data
by adding a color scheme that represents different levels of density of the data points. To our knowledge,
such colorized delay maps have not been previously used to help display and summarize CGM data.

Complementary to hemoglobin A1c (HbA1c) measurements, the gold standard in assessing recent
glycemic control, and to currently used CGM statistic summaries, the density delay maps provide rapidly
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accessible information about actual glucose dynamics. This information relates both to the temporal
“structure” of serum glucose variability and the duration of periods of hypo/hyperglycemia.

Methods

Clinical data

To illustrate the visualization method, we used previously acquired CGM data from elderly subjects
over the age of 70 years without diabetes (unpublished data) and with type 2 diabetes, who had been
enrolled in clinical studies by the Joslin Geriatric Diabetes Research Group. The glycemic status of
the diabetic subjects varied widely, as reflected in their HbA1c values. The CGM data were obtained
using the iProTM system version 1 or 2 (Medtronic, Inc., Minneapolis, MN) set at a sample rate of 1
measurement every 5 minutes. The studies had been approved by the Institutional Review Board at the
Joslin Diabetes Center [7, 8].

Colorized delay map

The algorithm for constructing the “glucose-at-a-glance” plots comprises 2 basic sequential steps: (1)
constructing a delay map, and (2) color coding this map.

Delay Map Construction
The CGM data, used here consists of glucose measurements sequentially acquired at 5-minute intervals.
The delay map is simply a plot of the ith glucose value versus its (i+ 1)th value.

Delay Map Colorization
Each data point in the delay map (representing two consecutive CGM measurements) is assigned a color
according to its density, calculated using a standard nonparametric technique [9, 10].
In the implementation used here, the color spectrum (given by the vertical bar on the right side of the
graphs) ranges from a dark red-brown to a dark blue, where the former represents the most frequently
occurring pairs of glucose values (Gi, Gi+1) and the latter the least frequently occurring ones. Additional
technical details are provided in the Appendix, including an explanation of how these maps can be used
to calculate the percentage of time that consecutive glucose values are within a given range (sub-region)
of the delay map.

The delay map also provides insight into the structure of the variability of the CGM measurements.
For example, uncorrelated outputs, such as white noise, yield delay maps with the appearance of circularly,
symmetric scatter plots. In contrast, the delay maps of correlated output variables representing processes
with feedback control show more complex patterns, as described below.

Results

To illustrate the basic principles of this methodology, we present original CGM time series and their
respective colorized delay maps. For demonstration purposes, we show examples of data obtained from
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the following individuals: 2 non-diabetic subjects (Fig. 5.1.1), 3 patients with diabetes with HbA1c values
of 9.4% (Fig. 5.1.2), and 3 patients with diabetes with HbA1c values of 7.1% (Fig. 5.1.3).

The maps from both the non-diabetic subjects and the patients with diabetes have a stretched elliptical
shape, a finding indicating that a given glucose value is followed (or preceded) by one of similar magnitude.
The width of the ellipse measured perpendicularly to the diagonal line reflects the amplitude of the short-
term (5 min in these cases) glucose fluctuations. Delay maps for measures 10 min far apart would have
a slightly larger width. In fact, the width will increase as the time delay between consecutive glucose
values expands.

Figure 5.1.1: The left panels (a and b) present the glucose time series for 2 non-diabetic elderly subjects
(82 and 76 years, respectively). The right panels (c and d) present their respective colorized delay maps,
where the brown color indicates the most frequent pairs of glucose values and the blue color the least
frequent ones. The insets display the traditional monochromatic delay maps.

Figure 5.1.2: The left panels (a, b and c) show the glucose time series for three patients (76, 72 and 72
yrs, respectively) with 9.4% HbA1c values. The right panels (d, e and f) show their colorized delay maps.

To illustrate what the typical shape of the delay map is for a random sequence, we randomized the time
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Figure 5.1.3: The left panels (a, b and c) present the glucose time series for three patients (73, 77 and
73 yrs), all with 7.1% HbA1c values. The right (d, e and f) panels present their colorized delay maps.

series from healthy subjects by shuffling the order of the glucose values. The time series for the randomized
signals and their respective colorized density maps are presented in Fig. 5.1.4. Note the dramatic change
in the shape of the delay map that becomes much more circular. This change is consistent with the fact
that a given value is likely followed or preceded of another of (unrelated) magnitude.

Figure 5.1.4: The left panels (a and b) show the randomized glucose time series values for the 2 non-
diabetic subjects, shown in Figure 5.1.1. The right panels (c and d) show their colorized delay maps.

In the “real-world” examples shown here, as expected, the glucose values of healthy subjects fluctuate
within a relatively narrow range (50-150 mg/dL). The delay maps for these healthy subjects show small,
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well-circumscribed zones of increased density, representing “preferred” glucose values (Fig. 5.1.1). The
glucose time series for the patients with type 2 diabetes present larger elliptical patterns, covering higher
ranges of values compared to their healthy counterparts. Selected examples of the effect of noise on these
delay maps are also presented in the Appendix.

Furthermore, patients with comparable HbA1c values can exhibit very different glucose fluctuation
patterns. Note that in Figs. 5.1.2 and 5.1.3, the axes of the colorized delay maps cover a wider range
of values than those observed in healthy subjects (Fig. 5.1.1). By way of comparison we present, in
Fig. 5.1.5, the delay maps for the same two non-diabetic subjects using the wider axes (50 - 400 mg/dL).

Figure 5.1.5: Colorized delay maps of time series of two non-diabetic subjects. Note that the difference
between these panels and those presented in Figure 5.1.1 is the use of expanded axes ranges (50-400
mg/dL).

An apparent limitation of the density delay map method, as described here, is the fact that it does
not give information about the time of occurrence of any given point (representing a consecutive pair of
values). To add such information, a “point-and-click” adjunct can be incorporated which maps any point
of interest in the delay map onto the original colorized time series (Fig. 5.1.6).

Figure 5.1.6: Example of a dynamic view of one of the colorized delay maps (Figure 5.1.3f) showing how
the point-and-click option can be used to link any point on the delay map to its location on the original
CGM time series.



113 Glucose-at-a-Glance

Discussion

The “glucose-at-a-glance” visualization tool is a new way to display the complex, frequently sampled
data acquired by CGM systems. The motivation is to enhance and facilitate assessment of glucose
dynamics. Of note, the colorization based on the frequency of occurrence of sequential glucose values is
of key importance in enriching the information provided by monochromatic delay maps (insets, Fig. 5.1.1).
As described above, the latter have been widely used by investigators probing heartbeat dynamics [2–4]
and suggested for exploring CGM data [5, 6]. To our knowledge, however, neither the colorized density
maps, nor the point-and-click adjunct connecting these maps with the glucose time series (Fig. 5.1.6),
have been previous introduced.

The analysis presented here, based on the density delay map method, shows that the differences
in the glucose dynamics of non-diabetic subjects and patients with diabetes are encoded both in the
amplitude of the analyte fluctuations and their temporal structures. In particular, the colorized delay
maps of non-diabetic subjects show relatively small brown-yellow zones corresponding to sustained periods
of stable glucose levels. In contrast, the patients with diabetes often show a single or multiple enlarged
“smeared out� brown-yellow zone indicating the absence of a stable baseline or the presence of multimodal
instabilities, such that the glucose values appear to oscillate between different “attractors.� Finally, this
new visualization tool provides information complementary to the HbA1c values. As discussed above, the
range and the structure of glucose variability may be very different for patients with comparable HbA1c
values. The clinical implications of this graphically depicted instability remain to be determined.

Future Directions

The translational utility of the colorized delay map (“glucose-at-a-glance�) method as a general vi-
sualization tool in both types 1 and 2 diabetes mellitus will require clinical testing. The method may
also inform more basic work on models of glucose control in health and disease, since the output of such
models should replicate the graphical representations shown here. We note that for this presentation,
we used the shortest delay provided by a commercial system, corresponding to a sampling rate of 5-min.
One can use longer delays depending on clinician preferences. For this demonstration, we also used the
entire time series. However, the method can be applied to any segment of interest (e.g., daytime glucose
values) provided that a reasonable number of points (of the order of 50 or more) is available. We did
not have access to longitudinal studies. However, we anticipate that the colorized density delay map will
change over time, depending on therapeutic interventions, diet, and so forth. Finally, the use of this class
of density delay maps to develop and test new quantitative metrics of variability also requires prospective
evaluation.

Conclusions

The “glucose-at-a-glance� visualization tool, which is based on colorized delay (Poincar�) maps, pro-
vides a way to facilitate the assessment of complex data acquired by CGM systems. This method yields
dynamical information not contained in single summary statistics, such as HbA1c values, and may serve
as the basis for developing novel metrics and models of glycemic control.
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Appendix

Color-coding algorithms

In this implementation, we arbitrarily divided the interval of the density values into 9 equally spaced
bins, each of which is assigned a different color according to a preselected chromatic scheme. In each
figure the values next to the color bar legend represent the upper density value for each bin. The delay
maps presented in this article were created in R [11] using the functions smoothScatterCalcDensity and
densCols from the open source software package grDevices. The number of bins used was 250, and the
bandwidth was calculated using the smoothScatterCalcDensity default formula.

Delay map: sub-region analysis

One can also quantify properties of selected subregions of the delay maps. As an example, consider two
consecutive glucose values, 129 and 153 mg/dL, corresponding to points A and B in Figure 5.1.7a. The
value 129 occurs 7 times and the value 153 occurs 9 times. Given that the original recording comprised
1000 data points, the relative-frequency of these values is 0.007 and 0.009, respectively. However, these
values occur sequentially (Figure 5.1.7b) only 1 time, resulting in a relative-frequency of 0.001 (dark
blue) for pair (A, B). To calculate the amount of time that pairs of consecutive measurements occur in a
given region, we simply add the frequency of occurrence of each of the points that lie in that preselected
region of interest. For example, the percentage of time that the glucose values of the subject depicted
in Figure 5.1.7c is in the highlighted region (>250 mg/dL) is 22. As a more general example, consider
that there were a region X in Figure 5.1.7c with 10 red-brown data points, 5 green, and 2 yellow. Taking
into consideration the color bar legend with the percentage time for individual points, the estimated
percentage time in that region X would be (10 ∗ 0.035) + (5 ∗ 0.019) + (2 ∗ 0.023) = 0.491.

Figure 5.1.7: The top panel (a) display a part of the time series from one of the patient with diabetes
(same as shown in Figure 5.1.2b). Two consecutive points, A and B are selected for illustration purpose.
The bottom left panel (b) presents the delay map for the entire time series for the same subject and shows
the location of the pair (A, B). The proposed method also allows for computation of the percentage of
time that two consecutive glucose measurements are within a given selected range (e.g., gray sub-region
presented in the bottom right panel).
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Effect of Noise on Delay Maps

To help analyze the effect of noise of any source on the delay map method, we show examples of delay
plots for one healthy subject and for two patients with diabetes before and after adding Gaussian white
noise (mean = 0 and variance = 5 mg/dL) to the original data (Fig. 5.1.8). This degree of noise has only
a minimal effect on the plots.

Figure 5.1.8: The panels on the left show the delay maps for the original CMG data and those on the
right display the delay maps for the CMG data with white noise (mean=0 and variance=5 mg/dL). Each
row represents a different subject. The plots in the first row were constructed using data from one of
the healthy subjects (presented in Figure 5.1.1a). the plots in the other two rows were constructed using
data from patients with diabetes (same as those shown in Figures 5.1.2c and 5.1.3b). The added noise
does not have a prominent effect on the graphs.
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5.2 Dynamical Glucometry: Use of Multi-
scale Entropy Analysis in Diabetes

Abstract

Diabetes mellitus (DM) is one of the world’s most prevalent medical conditions. Contemporary
management focuses on lowering mean blood glucose values toward a normal range, but largely ignores
the dynamics of glucose fluctuations. We probed analyte time series obtained from continuous glucose
monitor (CGM) sensors. We show that the fluctuations in CGM values sampled every 5 minutes are not
random. Next, using multiscale entropy (MSE) analysis, we quantified the complexity of the temporal
structure of the CGM time series from a group of elderly subjects with type 2 DM and age-matched
controls. We further probed the structure of these CGM time series using detrended fluctuation analysis
(DFA). Our findings indicate that the dynamics of glucose fluctuations from control subjects are more
complex than those of subjects with type 2 DM over time scales ranging from about 5 min to 5 h. These
findings support consideration of a new framework, dynamical glucometry, to guide mechanistic research
and to help assess and compare therapeutic interventions, which should enhance complexity of glucose
fluctuations and not just lower mean and variance of blood glucose levels.

Patients with type II diabetes mellitus (DM) need to closely monitor their blood glucose
levels to manage the disease and help avoid its associated problems. Continuous glucose
monitoring (CGM) systems were introduced into clinical practice approximately a decade
ago. Using a sensor inserted under the skin, these systems provide glucose lev- els in tissue
fluid at 5 min intervals for up to a week. The information extracted from these recordings
for clinical use is primarily based on measures of the mean and range of glucose variability.
One opportunity to improve our understanding and therapy of this highly prevalent disease
is by looking for information encoded in the dynamical structure of glucose fluctuations.
In this study, using techniques from statistical physics and nonlinear dynamics, we probed
the multiscale complexity of glucose fluctuations obtained with CGM devices from elderly
subjects with type II DM and from non-diabetic control subjects. We found that the glucose
fluctuations in the patients with DM were significantly less complex compared to those in
control subjects. Furthermore, we found that this loss of complexity could not be accounted
for simply by changes in the average or range of glucose values. These findings are of interest
because they raise the possibility of using information in glucose time series (“dynamical
glucometry”) in both laboratory and clinical settings. In particular, these findings support
the concept that diagnostic and therapeutic assessments should not only take into account
the mean and variance of glucose values but also measurement of properties related to their
fluctuations over multiple time scales.
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Introduction

Blood glucose control, central to physiologic fuel regulation, involves the complex interplay of hormones
(e.g., insulin and glucagon), food intake, muscle activity, liver and fat cell function, among multiple other
factors [1]. Type 2 diabetes mellitus (DM) is marked by hyperglycemia due to tissue resistance to
insulin and to relative insufficiency of insulin secretion. The disease affects tens of millions worldwide.
Complications include stroke, heart attack, blindness, limb loss, neurologic dysfunction and kidney failure.
Because of its association with obesity, the incidence of type 2 DM is increasing at an alarming rate.
Current management relies on diet and exercise as well as drugs that lower blood sugar toward a normal
range, including insulin therapy [2]. However, type 2 DM remains a major challenge in terms of prevention
and effective treatment.

The most widely used way of guiding day-to-day therapy is with blood glucose measurements obtained
by finger sticks. In addition, the hemoglobin A1c (HbA1c) blood test provides information about glucose
levels over the preceding several months [1, 2]. A more recent and minimally invasive modality uses
continuous glucose monitoring (CGM) technology, with sensors implanted subcutaneously for about a
week [2]. However, the time series derived from CGM recordings remain a largely untapped source
of dynamical information. In clinical practice, the CGM indices of interest are primarily based on
calculations of the percentage of time above and below given thresholds, range and average values of blood
glucose. In a small number of research studies [3–6], which investigated glucose dynamics using detrended
fluctuation analysis (DFA), no differences were noted between diabetic and non-diabetic subjects on
relatively short (5-60 min) time scales.

This communication advances an alternative statistical physics approach to the analysis of CGM time
series, primarily based on a complexity measure termed multiscale entropy [7]. The overall goal of this
study is to extract information about the nature of physiologic vs. pathologic glucose control from CGM
recordings. The specific hypotheses are that: 1) the noisy-appearing fluctuations in blood glucose levels
in non-diabetic control subjects are complex, not random, and exhibit correlations over multiple time
scales and; 2) blood glucose fluctuations are less complex in patients with type 2 DM compared with
non-diabetic subjects.

Methods

We retrospectively analyzed CGM data from 18 patients with type 2 DM and 12 elderly control
subjects without DM, enrolled in studies (approved by the Institutional Review Board) conducted at the
Joslin Diabetes Center by the Geriatric Diabetes Research Group (Table 5.2.1). The CGM data were
obtained using the iPro™ system version 1 or 2 (Medtronic, Inc., Minneapolis, MN), set at a sampling
rate of one measurement every 5 min. The duration of the recordings varied between two and four days,
therefore, the time series comprised between approximately 550 and 1100 CGM values. All patients with
diabetes were on an insulin regimen with/without additional oral anti-diabetic agents. Fig. 5.2.1 shows
selective CGM time series from a control subject and a patient with type 2 DM.

Results, unless otherwise stated, are reported as means ± standard deviation (SD). Group values
were compared using a two-tailed, non-parametric (Mann-Whitney) test. Statistical significance was
set at a p-value < 0.05. Coefficients of determination, r2, derived from the linear regression of the
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Variables Non-diabetic Type 2 DM
n 12 18
Gender (M/F) 3/9 6/12
HbA1c (%) 5.6± 0.2 6.8± 0.8
Age (yrs) 79.3± 5.0 76.0± 5.0
BMI (lb/in2) 25.8± 6.93 31.0± 7.0

Table 5.2.1: Characteristics of control subjects and patients with type 2 DM. Data are expressed as mean
± SD.

dynamical variables (complexity index and α-exponent) against standard clinical measures of glucose
control (HbA1C, means and SD of CGM time series) were computed.

Results

To assess whether the short-term (5-min) fluctuations in CGM time series were solely attributable
to uncorrelated noise (instrumental and other), we first compared the structure of the time series of
the differences between consecutive glucose values, termed first difference time series, with that of their
shuffled surrogate time series [8] (Fig. 5.2.2). If the former were less entropic than the latter, one would
infer that the structure of the original first difference time series was not random and, consequently, that
there was information in the short-term CGM fluctuations.
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Figure 5.2.1: Time series of blood glucose derived from the continuous glucose monitoring (CGM)
recordings of a non-diabetic control subject (a) and a patient with type 2 diabetes (b). The inset is a
magnification of a 24-h data segment.

Thus, for each first difference time series, we generated 100 surrogate time series, obtained by shuffling
the order of the data points in the original series. To quantify entropy, i.e., the degree of irregularity of
the time series, we used the sample entropy (SampEn) algorithm [9]. SampEn is a conditional probability
measure quantifying the likelihood that if a sequence of m consecutive data points matches (within a
tolerance r) another sequence of the same length, then the two will still match when their length increases
from m to m + 1 data points. Here, SampEn was calculated with standard parameter values [9] m = 2

and r = 0.15. Regular and/or periodic time series have (theoretically) zero entropy and uncorrelated
random time series have maximum entropy, whose value depends on the time series length [9].

Of note, using a percentage of a time series’ SD as the r value for the computation of SampEn is
equivalent to normalizing the time series to unit variance and zero mean prior to the computation of



121 Dynamical Glucometry: Use of Multiscale Entropy Analysis in Diabetes

0 200 400 600 800 1000
Data point number

-10

-5

0

5

10

G
lu

co
se

 (
m

g/
dL

)

0 200 400 600 800 1000
-10

-5

0

5

10 (a)

(b)

Figure 5.2.2: Time series of the differences between consecutive blood glucose values derived from the
CGM recording of a control subject (a) and a surrogate signal (b) obtained by shuffling the temporal
order in which these difference values appear.

SampEn. Therefore, differences in SampEn are not attributable to differences in the mean or SD of the
signals.

Figure 5.2.3 shows that for each control subject, the 100 shuffled surrogate time series were consistently
more entropic than the original first difference time series. Qualitatively similar results were obtained for
the first difference time series of patients with type 2 DM.
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Figure 5.2.3: Sample entropy (SampEn) values for the first difference time series (solid circles) of non-
diabetic control subjects and their shuffled surrogate (open circles) time series (n=100/subject).

These findings support the hypothesis that the short-term fluctuations in CGM values are not random.
Accordingly, we next investigated the question of whether the glucose fluctuations over a range of time
scales were more complex in control vs. diabetic subjects. For this purpose, we employed the MSE method
[7, 10–12], which quantifies the degree of irregularity of a time series over a range of time scales. Briefly,
the method comprises three steps: (1) use the original signal to derive a set of time series representing
the system’s dynamics on different time scales through a coarse-graining procedure, (2) calculate sample
entropy (SampEn) [9] for each coarse-grained time series, and (3) compute a complexity index, defined
here as the sum of SampEn values over a pre-defined range of scales. The coarse-grained time series for
scale i is obtained by averaging the data points inside consecutive non-overlapping windows of length i

slided over the original time series. The MSE curves are obtained by plotting the SampEn values for the
coarse-grained time series as a function of scale. In this study, given the length of the recordings and the
fact that glucose values were recorded every 5 min, we explored scales 1 to 6, where scale 1 corresponds
to 5 min and scale 6 to 30 (5×6) min. With m = 2 (m+1 = 3), the SampEn values of the coarse-grained
time series for scale 6, probe glucose fluctuation patterns that range from 60 (2× 30) to 90 (3× 30) min.
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The complexity index derived from the MSE analysis of the glucose dynamics on scales 1 to 6
(Fig. 5.2.3) was significantly higher (p < 0.004) for the non-diabetic than the diabetic group (Fig. 5.2.5,
left panel). On time scales ranging from 1 to 12, the complexity index remained significantly higher
(p < 0.007) for the non-diabetic than the diabetic group. Since the number of data points in the coarse-
grained time series for scale 12 is only half of that in the coarse-grained time series for scale 6, we used a
less restrictive r value (0.25) in this analysis to avoid spuriously high entropy values due to the occurrence
of none or very few matches. The results obtained are independent of differences between the two groups
in the mean and SD values of the CGM time series.
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Figure 5.2.4: Multiscale entropy (MSE) analysis of glucose time series for the non-diabetic (n=12) and
diabetic (n=18) groups. Symbols represent the mean values of entropy for each group at each scale and
the bars represent the standard deviation (SD).
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Figure 5.2.5: Complexity index and DFA α-exponent (time scales > 1 h) for the non-diabetic and
diabetic groups. Symbols with error bars represent mean and SD values, respectively.

To further characterize the dynamics of CGM time series and, in particular, to investigate their long-
range correlation properties, we computed the fractal scaling exponents using the detrended fluctuation
analysis (DFA) method [13]. Briefly, the algorithm, a modified root mean square analysis of a random
walk, quantifies the relationship between F (n), the root mean square fluctuation of an integrated and
detrended time series, and the observation window size, n. F (n) increases with window size according
to F (n) ∝ nα. If α = 0.5, there are no correlations and the signal is white noise, i.e., uncorrelated
randomness. If 0.5 < α < 1, the signal exhibit long-range temporal correlations. For the special case
when α ≃ 1 (1/f noise), the time series exhibits scale-invariant properties. If α = 1.5, the time series
represents a random walk (brown noise). α values ≥ 1.5 are associated with strong trends (“black noise”).
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For time scales shorter than one hour, there were no significant difference between the α-exponents of
CGM time series from diabetic (1.87 ± 0.29) and non-diabetic subjects (1.86 ± 0.22). These results are
consistent with those previously reported [3, 4] and indicate that the structure of the CGM time series on
short time scales is very smooth and characterized, primarily, by monotonically increasing or decreasing
trends. In contrast, we found that for time scales larger than one hour, (Fig. 5.2.5, right panel), the
α-exponents were significantly (p < 0.0001) lower (1.19 ± 0.13), and closer to 1, in control subjects than
in patients with type 2 DM (1.42 ± 0.09), respectively. These results indicate that the dynamics of
glucose control in non-diabetic subjects over the specified range is fractal, i.e., time-invariant, whereas in
this group of subjects with type 2 DM it is not different from brown noise.

Next, we investigated the relationship between the two dynamical variables of interest, the complexity
index and the DFA α-exponent, and three clinical (static) measures of glucose control, HbA1c, mean and
SD values of CGM time series (Table 5.2.2). We found significant correlations between higher glucose
complexity indexes and lower (i.e., better) values of standard clinical measures of diabetes control (lower
HbA1c and lower mean and SD of CGM glucose levels). We also found significant correlations between
higher DFA α-exponents (i.e., those closer to 1.5 or brown noise) and poorer indexes of clinical glucose
control. Alternatively stated, the DFA α-values closer to 1 were associated with better clinical control.
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Figure 5.2.6: Linear regression of dynamical (complexity index (scales 1 to 6) and DFA α-exponent for
time scales > 1 h) against clinical (HbA1c, mean and SD values of the CGM time series) measures of
glucose control. Statistical summaries are presented in Table 5.2.2.

Variables m r2 p value
CI vs HbA1c -0.796 0.19 1.5× 10−2

CI vs mean -0.030 0.33 8.3× 10−4

CI vs SD -0.054 0.34 6.6× 10−4

α vs HbA1C 0.110 0.39 2.3× 10−4

α vs mean 0.003 0.41 1.3× 10−4

α vs SD 0.006 0.52 < 10−5

Table 5.2.2: Slope m, coefficient of determination, r2, and the two-tail p value [14] derived from the
linear regression of the dynamical variables, complexity index and DFA α-exponent for time scales > 1
h, against three clinical measures, HbA1c, mean and SD values of the CGM time series.
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Discussion

Our study is notable for a number of reasons. We find that the short-term fluctuations in serum
glucose are not white noise (uncorrelated randomness), as shown by the analysis summarized in Fig. 5.2.3.
Previous attempts to analyze the dynamical structure of the CGM time series on time scales < 1h using
DFA failed to discriminate between diabetic and non-diabetic groups. This apparent lack of sensitivity
may be due to the confounding influence of certain types of nonstationarities on DFA computations [15].

We report, for the first time to our knowledge, that the complexity of the CGM time series is signifi-
cantly higher for the non-diabetic than the diabetic subjects, using MSE analysis. From a mathematical
point of view these results indicate that the degree of irregularity of the CGM time series is higher for
the non-diabetic than the diabetic group, across a physiologically wide range of time scales (5–−90 min).
The reduction in complexity with diabetes cannot be attributed to higher CGM values or higher SD of
the CGM time signals. From a biologic point of view, these results, albeit part of a small, retrospective
analysis, are consistent with the complexity-loss framework of disease and aging [10–12, 16], that subtends
the notion that a breakdown in underlying physiologic control mechanisms results in less complex, i.e.,
either more random or more periodic, output signals.

Assessment of the nature of the correlations in the CGM time series, using DFA, on time scales larger
or equal to one-hour, confirms and extends previous findings [3] of a significant increase in the α-exponent
towards that of brown noise (1.5) with type 2 DM. These results are consistent with a loss of fractality
in the dynamics of CGM signals. Furthermore, our findings are based on 2-4 day recordings, not solely
on a single day of CGM data as previously reported [3].

Dynamical and conventional assays of glucose control are complementary. Higher complexity indices
and fractal exponents (close to 1) were correlated with more salutary clinical measures of both short
and long term glucose control, i.e., lower glucose mean and SD values and lower HbA1c. However, the
correlations were modest, consistent with the fact that dynamical and the widely used clinical measures
are likely not redundant.

Current therapeutic strategies focus almost exclusively on glucose lowering by searching for molecular
“targets” involved in increasing sensitivity to insulin or insulin release by the pancreas. Our findings
support extending the conventional notion of a discrete (pathway or signaling) therapeutic target to
include the overall control “system as target.” For example, two interventions may reduce blood glucose
to a similar extent; however, one may do so by restoring healthy multiscale dynamics, the other may fail
to do so. We would anticipate that the former might be preferable than the latter and that dynamical
glucometry, defined here as the mathematical analysis, derived from statistical physics and complex
systems, will help uncover “hidden” information in serum glucose time series of basic and clinical value.

We note that CGM time series obtained with greater precision and with higher sampling frequency
than those available here may provide more information about glucose control in health and disease.
The sampling rate employed in current clinical CGM studies obviates the possibility of probing glucose
dynamic on scales shorter that 5 min, which earlier studies suggested are physiologically important [17,
18].

Future prospective studies may also help address additional questions, including: are serum glucose
fluctuations in younger healthy subject more complex than in healthy elderly? Is loss of complexity asso-
ciated with increased comorbidity related to multiorgan dysfunction? The concomitant use of continuous
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heart rate monitoring in assessing diabetic therapeutics might add additional information about neuro-
autonomic function. Multimodal serial measurements of insulin and other molecular regulators involved
in physiologic fuel control could also contribute important information.

Finally, our findings may be useful in developing and testing mathematical models of physiologic fuel
regulation in health and disease.
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The scientist is not a person who gives the right answers,
he’s one who asks the right questions.

Claude Lévi-Strauss

6. General Discussion and Conclusions

Clinical research is in constant evolution. The development of new technologies brought new data, new
data brought new information, new information raised questions and answering these questions can help
clinicians with patient management. The importance of this thesis relies in the latter step. The access
to physiological control systems information, such as blood pressure, heart rate (HR), brain electrical
activity and gait, measured on a moment-to-moment basis - that is, the access to the continuous behavior
of physiological systems rather than their average value over some time period - led to the establishment
of new mathematical concepts and methods allowing the detection of inherent dynamics of these systems.

Numerous nonlinear measures were proposed over time to analyze physiological time series fluctuations
exploring concepts of chaos, complexity (randomness and correlation), fractality (self-similarity) and
time irreversibility (symmetry), among others [1–3]. Previous studies consistently proved the loss of
complexity [2, 4–10] and alterations of the fractal dynamics [11–16] in aging and disease.

The focus of this thesis is on the concept of Complexity, in particular in the two complexity mea-
sures: entropy and compression applied to physiological time series analysis. The interdisciplinarity of
applying complexity theory approaches to biomedicine should be supported with the idea that no single
measure should be used to assess the physiologic systems dynamics. Indices obtained from nonlinear
methods combined with those of traditional linear ones (time- and frequency-domain), can provide useful
information to a clinician leading to a better patient management.

The disagreement between clinicians (observers), aggravated by the growing information available, can
be a setback when assessing a new index/measure to describe a pathology or an event. For this reason,
the use of the appropriate measures to assess observer agreement is of extremely importance. In this
work two measures of agreement, the information-based measure of disagreement (IBMD) [17, 18] and
the raw agreement indices (RAI) [19], are proposed to evaluate both continuous and categorical data,
respectively. Also two software platforms, a website an a R package were developed to facilitate the
measures estimation.

One of the most studied physiological dynamics are the cardiovascular dynamics [3]. The HR fluctua-
tions have been subject of a number of studies, as their relates with aging and disease. With that in mind,
we compared the well known and described measures of entropy: the approximate entropy (ApEn) [20]
and the sample entropy (SampEn) [21] with the “new” compression ratio metric, applied to human (fetal
and adult) heart rate time series (Chapter 4).

Among the existent family of entropy measures, the ApEn and the SampEn, proposed to quantify
the predictability of HR time series, are two of the most used in the analysis of physiological time series.
In fact, ApEn is fundamentally a “regularity” statistics, does not quantify the fractal scaling behavior
of a time series [1]. The SampEn, presented as an improving of the ApEn measure, was considered
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the most adequate entropy measure for biological systems [22]. A limitation of these measures relates
to the fact that they are parametric measures, and thus their results vary according to the parameters
chosen (vector length m, tolerance value r and number of points of the time series - see Chapter 2
for details). Actually, if r is chosen as a fixed value the results obtained are highly correlated with the
time series amplitude (standard deviation). To assess the data correlations independently of the time
series amplitude, a common choice is to use the r value as a percentage of the standard deviation of
the time series. This choice has the advantage of being equivalent to normalizing the time series to unit
variance and zero mean à priori, but the results still depend on the percentage r chosen. The number of
points of a time series to compute the SampEn should be larger than approximately 750 [21]. This can
be a limitation when analyzing time series with low frequency sampling. Attention is also needed when
comparing results from time series with total number of points of different order of magnitude.

In this work, we showed that both entropy and compression measures allow for the characterization
of different pathological conditions supporting the notion of complexity decreasing in disease. Another
main finding of this thesis is that of using entropy and compression approaches can quantify different
features of a system complexity despite both try to quantify the time series complexity.

The use of compression as a measure of complexity has rarely been applied in the analysis of biological
signals. However, compressors can be effectively used as an alternative to the widely used entropy
measures to quantify complexity in biological signals [23]. The use of compressors has the advantages
of not require a minimum of data and can be compute easily and efficiently. Other advantage of using
compressors is the possibility of quantifying complexity in another type of data as sound, image and
video. The best compressor to assess the dynamics of physiological time series is yet to be established.
Future studies should address the questions of which are the strengths and limitations of each compressor
and if their applicability is preserved in different types of data. During this work we also tried to use a
measure known as logical depth that combines the size of the compression with the running time of the
compressor. The results were not promising so we did not explore this line further.

One of the problems of applying, in a clinical context, the measures widely studied in other scien-
tific fields is owed to the existing noise on the everyday clinical data. The multiscale entropy approach
(MSE) [24] probes long-range correlations of the time series adding information to the entropy measure
transforming a “regularity” metric into a fractal complexity metric. Although this approach was orig-
inally applied combined with entropy, the application goes far beyond and can be extended to several
others measures. On Section 4.2 the multiscale approach was successfully combined with measures of
compression in the assessment of HR dynamics. The multiscale approach, due to its property of captur-
ing the information across multiple spatial and temporal scales, in particular due to the coarse-grained
procedure, can work as a filter and in a few scales some noise is reduced and the values obtained by the
measures are “adjusted”. The multiscale approach permit to distinguish noisy data from data collected
from a patient with a pathology or from a healthy subject. The number of scales depends on the number
of data points from the original time series. In the case of entropy, the coarse-grained time series obtained
in the maximum scale should have more than 200 points. This can be a limitation of MSE when analyzing
short time series.

The utility of the nonlinear methods presented or used to assess heart dynamics is not, generally,
restricted to the analysis of these time series. On Chapter 5 some methods previously used to explore the
heart beat dynamics were successfully applied to the analysis of continuous glucose monitoring (CGM)
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time series. The increase of information available to the clinicians led to a growing concern with the
rapid and easy visualization and assessment of the data available. Here was proposed a new visualization
method based on delay maps and enhanced by adding color representing levels of density [25]. Also
in this chapter the results of exploring the metrics of MSE and detrended fluctuation analysis (DFA)
applied to CGM data are consistent with the complexity-loss framework of disease and aging. The
method’s universality have to be tested carefully and the results should be thoroughly interpreted. Future
prospective studies may also help to address additional questions of the methods applicability in different
physiological time series.

In conclusion, this thesis provides several contributions towards the measurement of disagreement and
the evaluation of complexity in physiological signal. The confined number of signals in each dataset is a
thesis limitation, and thus the obtained results should be supported with further clinical testing. Finally,
our findings may be useful in developing and testing mathematical models of physiologic regulation
in health and disease. The degree of complexity in physiological dynamics should be considered as a
therapeutic target in addition to the current ones.
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