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Abstract

This work analyses a model for a hydro-electric system where some power stations

have reversible turbines. The goal is to optimize the profit of power production while

meeting the system’s associated restrictions.

This problem is formulated as an optimal control problem. A further analysis of such

formulation leads us to write the problem as a particular case of an abstract problem of

minimizing a quadratic non-definite functional, subject to linear and cone constraints.

The abstract formulation highlighted a relevant feature of our hydro-electric problem:

the minimum does not corresponds to an isolated minimizer.

For the abstract problem, and motivated by the particular case, new sufficient con-

ditions of optimality are deduced for local minimizers and for local directional mini-

mizers. A main feature of these new sufficient conditions is that they cover the case

when the minimizer is not isolated. We also directly deduce sufficient conditions of

optimality for the problem of hydro-electric system.

The cases of systems with one and two power stations are analyzed in detail, applying

numerical and analytical tools. Existence results, necessary and our new sufficient

conditions, as well as the particular properties of the problems are used, leading to a

comprehensive analysis of the solution of the problem.

Since the objective function associated to the problem is nonconvex, several local

minimums may exist. Global optimization methods are necessary to get a global

optimal solution. In this work two different approaches, involving a Chen-Burer

algorithm and a projection estimation refinement method, are discussed and compared.
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Resumo

Neste trabalho, consideramos um modelo para um sistema hidroelétrico onde algumas

das centrais possuem turbinas reversíveis. O objectivo é optimizar o lucro da produção

de energia, tendo em consideração as restrições associadas ao sistema.

Este problema pode ser formulado como um problema de controlo ótimo. Uma análise

mais aprofundada desta formulação leva-nos a escrever o problema como um caso

particular de um problema abstrato de minimização de uma funcional quadrática não

definida, sujeita a restrições lineares e cónicas.

Para este problema abstrato e motivados pelo caso particular, deduzimos novas con-

dições suficientes de otimalidade para minimizantes locais e minimizantes direcionais

locais. Uma particularidade destas novas condições suficientes é que cobrem o caso de

minimizantes não isolados, presentes no problema do sistema hidroelétrico. Para este

problema deduzimos diretamente condições suficientes de otimalidade.

Os casos particulares de sistemas com uma e duas estações hidroelétricas são analisados

em detalhe, aplicando ferramentas numéricas e analíticas. Resultados de existência,

condições necessárias e as novas condições suficientes, bem como propriedades par-

ticulares do problema, permitem uma análise mais completa da solução ótima do

problema.

Como a função objectivo associada ao problema é não convexa, podem existir vários

mínimos locais. Métodos de optimização global são considerados para se obter uma

solução ótima global. Duas abordagens diferentes, envolvendo um algoritmo de Chen-

Burer e um método de estimação de projeção, são discutidas e comparadas.
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Chapter 1

Introduction

Water is becoming a scarce and valuable resource, with population and consumption

rising, and the concern for a good use of it is more evident nowadays. The way that

we use water to produce energy must be effective and efficient to maximize its benefit.

The management of interconnected reservoir systems in a river is of particular impor-

tance if there is also the possibility of reusing the water in a situation of drought. This

may be implemented in modern reversible hydro-electric power stations, which are

associated with reservoirs in a cascade structure, where it is possible both to turbine

water to downstream to produce electric power and to pump from downstream to refill

an upstream reservoir.

Hydro-electric systems with multi-reservoirs in cascade have attracted the attention of

many researchers in different contexts (see, for example, [24] and references therein).

Different methods were applied and/or developed to solve the problem of management

of these systems. Optimization and predictive control techniques (see, e.g. [28,36]) as

well as stochastic approaches (see, e.g. [25]), considering uncertainties in power prices

and water inflows, are frequently used. In this work we take a deterministic model and

we use optimal control techniques. Optimization of quadratic non-definite functions

subject to linear and cone constraints will also be under attention.

In an academic training in REN - Redes Energéticas Nacionais a model was developed

to represent a real hydro-electric system, taking into account the physical and technical

characteristics of the system. Associated to this model, it was considered as objective,

the maximization of the selling profit of electric energy production. The problem was

considered in the framework of optimal control theory and it was numerically solved.

Several numerical simulations addressing different scenarios were undertaken. Results

of this work were published in [23,41,42].

1



2 CHAPTER 1. INTRODUCTION

The purpose of this thesis is to analyze the problem addressed in the above work, with

more detail and using analytical optimal control tools. Due to the complexity of the

model involved, it was decided to consider a simplified version of it. This simplified

version intends to retain the main characteristics of the original model. It is still

a model for a hydro-electric system where some power stations are equipped with

reversible turbines.

The problem is analyzed in the framework of optimal control theory. The fluxes of

water to turbine or pump on each power station are associated to control variables

and the water volumes in reservoirs are the state variables. The objective is to find

the turbined/pumped water flows and the corresponding volumes in the reservoirs

that maximize the profit of selling the energy produced by the system. It is still a

challenging problem since besides the constraints on the control, it also involves pure

state constraints. Furthermore, the cost function is non-convex which contributes to

increase the complexity of the problem.

To carry out an analytical study of the problem, we start by getting some knowledge of

its optimal trajectory profile. This is achieved with the use of an optimization software,

which allows us to obtain a numerical solution for the optimal control problem.

To validate the numerical solution, necessary and sufficient conditions of optimality

are called for. In some cases it is observed that the numerical solution has an irregular

behavior over a certain timeframe, making us wary of the possibility that the solution

for the problem may be not unique. In fact, we conclude to be in presence of an infinity

of minimizers leading to the same objective value. The minimizer is not an isolated

minimizer. Classical sufficient conditions of optimality involve hypothesis which are

not satisfied by non isolated local minimizers. Our problem can be interpreted as

an infinite dimensional optimization problem with a non convex quadratic functional

subject to linear and cone constraints. Quadratic forms play an important role in

the calculus of Variations (see, e.g., [2, 22]) and particular attention is paid to the

Legendre condition, a condition associated to the second variation of the functional

to be optimized and involving derivatives of order two with respect to the derivative

argument. Here we have a quadratic form depending on the trajectories only and not

on their derivatives. However both the trajectories and the derivatives are subject to

some geometric constraints. The theory of infinite-dimensional quadratic functionals

is closely related to second-order sufficient optimality conditions for optimal control

problems, and have been studied by many authors (see, for example, [2, 21, 22, 33,

37]). In general, these results are deduced under very restrictive hypotheses which

hardly can be verified in many problems. Motivated by our problem and in particular
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by the presence of non isolated minimizers we deduce new sufficient conditions of

optimality for an abstract problem with quadratic functional subject to linear and cone

constraints. Local minimizers and also directional minimizers are under attention. To

our knowledge the treatment of sufficient conditions for directional minimizers is new.

Since the cost function associated to our problem is a non-convex function there may

exist several local minima with different cost values. Global optimization methods are

necessary to obtain a global solution. Here, we present two different approaches with

the purpose of finding the global solution for the problem under consideration. These

approaches are based on the Chen-Burer algorithm (see [12] and references therein)

and on a projection estimation refinement method (see [7]).

1.1 Outline of the Thesis

This thesis is organized as follows:

Chapter 2 is dedicated to a description of the problem. A generic complex model

for a hydro-electric system, in optimal control context, is presented. We identify the

variables, the constraints and the objective function. The model presented is then

simplified and a new formulation for the hydro-electric system problem is considered.

This simplified model will be the focus of this thesis. Special cases are formulated: a

system with one power station and with two power stations in cascade.

The classical optimal control problem and some fundamental and basic tools for

its treatment are presented in chapter 3, namely, existence results and necessary

conditions of optimality.

From mathematical point of view, the problem associated with the hydro-electric power

system can be seen as a problem of minimizing a quadratic non-definite functional

subject to linear and cone constraints. A key feature of this problem is the possible

existence of minimizers which are not isolated. In chapter 4 new sufficient conditions

of optimality, for local minimizers and also for directional minimizers, are proposed.

These conditions cover the case of non-isolated minimizers. The results of this chapter

constitute the main contribution of the thesis. They are published in [17,18].

In chapter 5 we analyse with detail particular cases of the problems presented in

chapter 2. Taking into account the profile of numerical solutions, obtained with

available software, we apply some mathematical tools to validate such solutions. More

specifically, results on existence of solution and necessary conditions of optimality
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in the form of the maximum principle of Pontryagin (PMP) are applied. The new

sufficient conditions of optimality, developed in chapter 4, are then considered and the

proof that the solution found is in fact a local minimum follows.

Here, we illustrate the importance of combining numerical and theoretical tools to solve

an optimization problem. In many cases, the numerical methods alone do not give

assurance that the obtained candidate is a solution to the problem. However, those

methods supported by analytical results, sufficient conditions and analysis of particular

properties of the problem, can be all together essential for a rigorous treatment of the

problem.

In chapter 6 numerical methods with the goal of achieving global solutions, are under

attention. After discretization of our problem, we obtain a problem of minimization of

an indefinite quadratic form subject to linear constraints, to which we apply two

different approaches. In the first approach, the Chen-Burer algorithm is directly

applied and we obtain a candidate for the global solution of the problem.

In the second approach, we use a specific structure of the cost function and construct

a projection of the set of feasible solutions on a relevant subspace, reducing in this

way the dimension of the problem. The Chen-Burer algorithm is then applied to the

projected low-dimensional problem, solving it faster than in the first approach. In the

end of the chapter, we discuss and compare the two approaches. A brief overview of

these results are published in [8], and they will appear with more detail in a paper

submitted for publication ( [9]).

Finally, chapter 7 concludes this thesis, with a summary of the main contributions of

this work and a description of suggestions for future research.

1.2 Main contributions

• A model, which intends to keep some main characteristics of a hydro-electric
system is created. Such model is analyzed in the context of optimal control

theory;

• Optimal solutions for the problem of maximizing the profit of energy sale, con-
sidering systems with one and two power stations in cascade, are obtained;

• The optimal control problem of hydro-electric power production is treated with
analytical tools;
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• Sufficient conditions of optimality for the abstract problem of minimizing an

infinite-dimensional quadratic functional subject to linear and cone constraints

are derived. Such conditions are deduced for local minimizers and local direc-

tional minimizers;

• Sufficient conditions are derived for the problem of management of hydro-electric
system;

• Periodicity properties of the solution for the case of periodic price, are investi-
gated;

• For the system with one power station, it is proven that the presence of a

reversible turbine always improves the profit;

• A global solution to the problem of hydro-electric power production is obtained,
using a new and faster method. Such method focuses on global optimization

techniques and on projection estimation refinement methods, which ultimately

seeks to reduce the dimension of the problem.
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Chapter 2

Problem Presentation

A control problem for a cascade of hydro-electric power stations is presented in this

chapter. Several technical and physical constraints are associated to the hydro-electric

system. This turns the problem very complicated and a simplified model, which intends

to keep the main characteristics of the original problem, is defined. This model is

examined for the cases of a system with one power station and two power stations in

cascade.

2.1 Hydro-electric resources in cascade

When observing hydro-electric systems, we can distinguish power stations with dif-

ferent configurations. To characterize a hydro-electric power station it is necessary to

identify:

• storage capacity. In our case, we consider reservoirs, i.e., natural or artificial
water storages which in general are used to regularize flows, produce energy,

supply water, etc;

• hydraulic configuration. The stations can be in a cascade system or they may be
hydraulically independent from each other. In a cascade, a set of hydro-electric

power stations are connected through a net of water flows. The stations are both

hydraulically and electrically connected;

7
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• the following characteristics of the station:

⋄ turbining - the power station can convert kinetic into mechanical energy

through the fall of water which activates the turbines and converts that

energy into electric energy;

⋄ pumping - the power station has the possibility to reverse the turbine and
pump water from a downstream to an up-stream reservoir, increasing in

this way the volume of the reservoir upstream;

⋄ discharging - this ability allows to ensure the security of the reservoirs.
When the water level is in the limit of the reservoir, the station releases

water without producing energy and without costs or earnings.

In this work we focus on a cascade where some of the hydro-electric power stations

can have reversible turbines. Discharging is not considered.

2.2 The Model

In this section, we present a model (based on [23,41,42]) for a cascade of hydro-electric

power stations where some of the stations have reversible turbines.

The dynamic behavior of the system is introduced in the model through differential

equations. These equations relate two types of variables:

• the volumes of each reservoir, Vi(t). These are the state variables;

• the water flows, ui(t). These are the control variables, which have a direct impact

on the process, affecting the state variables in a prefixed way.

Here, i is the index that identifies the reservoir and t is the instant of time.

The following picture illustrates two reservoirs associated to a hypothetical system of

hydro-electric power stations in cascade.
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Figure 2.1: Generic cascade mechanism considering reversible turbines

At instant t, the hydro-electric power station i can be described in terms of the

following variables:

Zi(t) – water level in reservoir i;

hi(t) – head in reservoir i;

Vi(t) – volume of water in reservoir i;

Ai – incoming flow to reservoir i (e.g. rain);

ui(t) – water flow in station i, from pumping or turbining action.

The water level in the reservoir i, Zi(t) is given by the following expression:

Zi(t) = Z0
i + αi

(

Vi(t)

V 0
i

− 1

)βi

,

where
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V 0
i – minimum water volume in reservoir i;

Z0
i – nominal water level (meters above sea level) in reservoir i;

αi, βi – positive parameters.

At instant t and for each reservoir i, the following dynamic equation is taken to be

valid

V̇i(t) = Ai − ui(t) +
∑

m∈Mi

um(t),

where Mi is the set of indices for upstream reservoirs immediately before reservoir i.

The variation of the water volume in a reservoir depends of the incoming flow and

depends on the total amount of water turbined or pumped. This means that the

stations depend on each other. So, all the decisions taken for one reservoir shall be

taken under a global vision, since it has impact along the cascade. This turns the

analysis of the problem quite difficult.

The hydro-electric power station is subject to physical and technical limitations (con-

straints or restrictions). The set of constraints defines the domain of admissible

controls for the problem.

In each reservoir, the water storage must be between a minimum and a maximum

level,

Zmin
i ≤ Zi(t) ≤ Zmax

i ,

and the water flow must be between a minimum and a maximum value

ζi
(

hi(t)− h0
i

)

− u0P
i ≤ ui(t) ≤ u0T

i

(

hi(t)

h0
i

)1/2

,

where

u0T
i – amount of nominal turbined water in the station i;

u0P
i – amount of nominal pumped water in the station i;

ζi – pumping coefficient in the station i;

h0
i – nominal heads of the reservoir i.

In particular, when the power station i only turbines, the minimum value allowed for

ui is zero.
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Given a system of hydro-electric power stations, we have as objective to manage the

energetic resources that exist in an efficient way, bearing in mind the price of energy

during the time horizon considered. The quality and performance of the decisions

undertaken are measured by an objective function. The objective is to maximize the

profit obtained with buying/selling the electricity consumed/produced. Such objective

function is represented by:

max

T
∫

0

c(t)

(
∑

i∈I

ri(t)

)

dt,

where

I – total number of reservoirs in the cascade;

c(t) –economic value of electric energy in the market at instant t;

T – length of the time horizon;

ri(t) – value of power produced/consumed by the station i

ri(t) is described by

ri(t) =







9.8 ∗ ui(t) ∗
(
hi(t)−∆hT

i (t)
)
∗ µT

i ∗ (1− φprog
i ) ∗ (1− φcint

i ) ∗ (1− φfort
i ) if ui(t) ≥ 0

9.8 ∗ ui(t) ∗
(
hi(t)−∆hP

i (t)
)
∗ 1/µP

i ∗ (1− φprog
i ) ∗ (1− φcint

i ) ∗ (1− φfort
i ) if ui(t) < 0.

Here

∆hT
i (t) = ∆h0T

i

(
ui(t)

u0T
i

)2

, ∆hP
i (t) = ∆h0P

i

(
ui(t)

u0P
i

)2

and

∆h0T
i – head loss in reservoir i at instant t for turbining;

∆h0P
i – head loss in reservoir i at instant t for pumping;

µT
i – global efficiency of the reservoir i, when it turbines;

µP
i – global efficiency of the reservoir i, when it pumps;

φprog
i , φfort

i , φcint
i – rates of availability and maintenance.

A sequence of decisions determined essentially by choices of ui(·), that optimize the

objective function, satisfying the constraints of the problem, is called an optimal

control policy.
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2.2.1 Example - Problem with 2 reservoirs in cascade

The next picture (Fig. 2.2) illustrate a problem with 2 reservoirs.

�

���

��

�

��

�

Figure 2.2: Scheme of a cascade with two hydro-electric power stations

Each station has a volume associated, Vi(t), i = 1, 2, as well as a turbined or pumped

water flow, ui(t), i = 1, 2.

Only the station 1 is reversible, it has the ability to turbine downstream, with energy

production and consequent profit for the company, as well as, the ability to pump

water upstream, resulting power consumption and cost for the company.

The station 2 has only the ability to turbine downstream.

The respective optimal control problem can be written in the form:
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max

∫ T

t=0

c(t)

(
2∑

i=1

ri(t)

)

s.t. V̇1(t) = A1 − u1(t),

V̇2(t) = A2 + u1(t)− u2(t),

Vi(0) = Vi(T ), i = 1, 2

Zi(t) = Z0
i + αi

(
Vi(t)

V 0
i

− 1

)βi

, i = 1, 2

h1(t) = Z1(t)−max {Z2(t), ξ1} ,

h2(t) = Z2(t)− ξ2,

ζ1
(
h1(t)− h0

1

)
− u0P

1 ≤ u1(t) ≤ u0T
1

(
h1(t)

h0
1

) 1

2

,

0 ≤ u2(t) ≤ u0T
2

(
h2(t)

h0
2

) 1

2

,

Zmin
i ≤ Zi(t) ≤ Zmax

i , i = 1, 2

where t ∈ [0, T ].

In attachments A and B, we can find a table with the meaning of all the variables and

parameters of this model, as well as, an example of possible data that can be used

here.

2.3 Simplified Model

The model presented in the last section revealed very difficult to deal with, using

analytic tools. The treatment of the problem with such a complex objective function

and time-dependent control constraints is a very hard task to accomplish. Because of

that we start by considering a simplification of that model. We try to maintain the

main characteristics of the original model. The objective function is simplified and

the upper and lower bounds for the controls will now be fixed.
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The new model has shown to be a very stimulating problem from mathematical point

of view, and until the end of this work we do not come back to the original one.

An outline of the simplified model is now described.

For a cascade of N hydro-electric power stations, the dynamics of water volumes,

Vk(t), k = 1, N , are described by the following control system

V̇k(t) = Ak − uk(t) +
∑

m∈M(k)

um, k = 1, N, (2.1)

where M(k) is the set of indices of reservoirs upstream from the reservoir k (immedi-

ately up).

Set V (·) = (V1(·), . . . , VN(·)) and u(·) = (u1(·), . . . , uN(·)). The controls u(t) =

(u1(t), . . . , uN(t)) are the turbined/pumped flows of water for reservoirs 1, N at time

t, and constants Ak are the incoming flows, k = 1, N . V (t) = (V1(t), . . . , VN(t))

constitute the state variables.

The equation (2.1) is called water balance equation (see, e.g., [34]).

The state variables and the control variables satisfy the following technical constraints:

Vk(0) = Vk(T ), Vk(t) ∈ [V m
k , V M

k ], uk(t) ∈ [um
k , u

M
k ].

The constants V m
k and V M

k , k = 1, N , stand for the minimum and maximum water

volumes imposed; the constants um
k and uM

k , k = 1, N , are the imposed minimum and

maximum turbined/pumped water flows.

The equality Vk(0) = Vk(T ) is called periodic constraint and it ensures, in particular,

that the reservoir k does not spend all the water on the period [0, T ]. Also, and under

similar conditions, on a period of time that would follow, the optimal solution would

repeat itself.

The objective is to find optimal controls ûk(·) ∈ L∞([0, T ],R), space of measur-

able function u : [0, T ] → R, essentially bounded, and respective volumes V̂k(·) ∈
AC([0, T ],R), space of absolutely continuous function V : [0, T ]→ R, which maximize

the profit of selling energy. The objective function is given by:

J(u(·), V (·)) =
N∑

k=1

∫ T

0

c(t) uk(t)

(
Vk(t)

Sk

+Hk −
Vj(k)(t)

Sj(k)

−Hj(k)

)

dt. (2.2)
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where j(k) is the index associated to the (unique) downstream reservoir, which receives

water from reservoir k.

Here, c(·) is the price of the energy and the expression multiplied by c(t) represents

potential energy. Hk and Sk, k = 1, N , are the liquid surface elevation and the area

associated to each reservoir k. For simplicity, it is assumed that the reservoirs have

cylindric form and that the gravity constant is equal to one. It is also assumed that all

the potential energy is converted into electric energy. The following picture illustrates

the case of 2 power stations.

��

��

�
�

��

Figure 2.3: System with two power stations

The model of section 2.2 and the new one must be close to each other, and for this,

the parameters (um
k , uM

k , Hk, Sk) will be reasonably chosen (for details see appendix

C).

Using (2.1), the objective function (2.2) can be equivalently written as

N∑

k=1

∫ T

0
c(t)



−V̇k(t) +Ak +
∑

m∈M(k)

um(t)



×
(
Vk(t)

Sk
+Hk −

Vj(k)(t)

Sj(k)
−Hj(k)

)

dt. (2.3)



16 CHAPTER 2. PROBLEM PRESENTATION

Lemma 2.3.1. The following equality holds:

∫ T

0

N∑

k=1

c(t)




Vk(t)

Sk

∑

m∈M(k)

um(t)− uk(t)
Vj(k)(t)

Sj(k)



 dt = 0.

Proof. If m ∈M(k), then k = j(m). Moreover j(k) is empty or has only one element.

Therefore we have

∫ T

0

N∑

k=1

c(t)




Vk(t)

Sk

∑

m∈M(k)

um(t)− uk(t)
Vj(k)(t)

Sj(k)



 dt =

=

∫ T

0

c(t)





N∑

m=1

∑

k=j(m)

Vk(t)

Sk

um(t)−
N∑

k=1

Vj(k)(t)

Sj(k)

uk(t)



 dt

=

∫ T

0

c(t)





N∑

k=1

∑

m=j(k)

Vm(t)

Sm

uk(t)−
N∑

k=1

Vj(k)(t)

Sj(k)

uk(t)



 dt

=

∫ T

0

c(t)

(
N∑

k=1

Vj(k)(t)

Sj(k)

uk(t)−
N∑

k=1

Vj(k)(t)

Sj(k)

uk(t)

)

dt = 0.

This completes the proof. �

The notation BV ([0, T ],R) is used for the space of bounded variation functions

f : [0, T ]→ R. We assume that c(·) ∈ BV ([0, T ],R), c(·) is right-continuous and
c(0) = c(T ).

Without changing the notation for the objective function J , we convert the maximiza-

tion problem into a minimization one. Integrating (2.3) by parts and using Lemma

2.3.1, we obtain the following problem:

(P ) min J(u(·), V (·)) =−
N∑

k=1

[

Ak

Sk

∫ T

0

c(t)Vk(t)dt+
1

2Sk

∫

]0,T ]

V 2
k (t) dc(t)

+
(

Hk −Hj(k)

)

∫

]0,T ]

(

Vk(t) +
∑

m∈M (k)

Vm(t)

)

dc(t)

+
(

Hk −Hj(k)

)



Ak −
∑

m∈M (k)

Am





∫ T

0

c(t)dt

]

,
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s.t. V̇k(t) =Ak − uk(t) +
∑

m∈M(k)

um(t), a.e. t ∈ [0, T ]

Vk(0) =Vk(T ),

Vk(t) ∈[V m
k , V M

k ], ∀ t ∈ [0, T ]

uk(t) ∈[um
k , u

M
k ], a.e. t ∈ [0, T ], k = 1, N.

Here, M (k) is the set containing the indices corresponding to all upstream reservoirs

appearing in cascade before reservoir k.

2.3.1 Particular cases

In this work, we analyze with detail two particular cases, of one and two power stations

in cascade.

Consider the case of a system with one power station with reversible turbines. The

Alqueva dam in Guadiana, a river in south of Portugal, is an example of that. The

Alqueva dam constitutes one of the largest dams and artificial lakes, 250km, in Western

Europe.

Figure 2.4 illustrates the case of a unique station which is reversible.

Figure 2.4: Scheme of a system with 1 power station
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For this particular case problem (P ) takes the form:

(P1) min −
[
A1

S1

∫ T

0

c(t)V1(t)dt +H1

∫

]0,T ]

V1(t)dc(t) +
1

2S1

∫

]0,T ]

V 2
1 (t)dc(t)

+ A1H1

∫ T

0

c(t)dt

]

,

s.t. V̇1(t) = A1 − u1(t), a.e. t ∈ [0, T ]

V1(0) = V1(T ),

V m
1 ≤ V1(t) ≤ V M

1 ∀ t ∈ [0, T ],

um
1 ≤ u1(t) ≤ uM

1 , a.e. t ∈ [0, T ].

Take the time horizon divided into two intervals, [0, τ ] and [τ, T ]. The price c(t) is

defined as

c(t) =

{

c1, t ∈ [0, τ [∪{T}
c2, t ∈ [τ, T [,

(2.4)

where c1, c2 are positive constants.

This price function reflects a two different demand periods. A high price for the energy

corresponds to a high demand of energy and inversely, a low price corresponds to a

low demand of energy.

With this particular price function, problem (P1) can be written as :

(P1C) min − A1c1
S1

∫ τ

0

V1(t)dt−
A1c2
S1

∫ T

τ

V1(t)dt+
c2 − c1
2S1

V 2
1 (0)−

c2 − c1
2S1

V 2
1 (τ)

+H1(c2 − c1)V1(0)−H1(c2 − c1)V1(τ)− A1H1(τc1 + (T − τ)c2),

s.t. V̇1(t) = A1 − u1(t), a.e. t ∈ [0, T ]

V1(0) = V1(T ),

V1(t) ∈ [V m
1 , V M

1 ], ∀ t ∈ [0, T ]

u1(t) ∈ [um
1 , u

M
1 ], a.e. t ∈ [0, T ].

By state augmentation techniques, we can additionally reformulate the above problem

into Mayer form (see [10]). In fact, if
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W1(t) =V1(t+ τ), t ∈ [0, τ ],

Z1(t) =

∫ t

0

V1(t)dt, t ∈ [0, τ ], (2.5)

Z2(t) =

∫ t

0

W1(t)dt, t ∈ [0, τ ],

the problem (P1C) can be equivalently written as:

(P1M) min − A1c1
S1

Z1(τ)−
A1c2
S1

Z2(τ) +
c2 − c1
2S1

V 2
1 (0)−

c2 − c1
2S1

W 2
1 (0)

+H1(c2 − c1)V1(0)−H1(c2 − c1)W1(0)− A1H1(τc1 + (T − τ)c2),

s.t. V̇1(t) = A1 − u1(t), a.e. t ∈ [0, τ ],

Ẇ1(t) = A1 − w1(t), a.e. t ∈ [0, τ ]

Ż1(t) = V1(t), a.e. t ∈ [0, τ ] (2.6)

Ż2(t) = W1(t), a.e. t ∈ [0, τ ]

V1(0) = W1(τ),

V1(τ) = W1(0),

Z1(0) = Z2(0) = 0,

V1(t),W1(t) ∈ [V m
1 , V M

1 ], ∀t ∈ [0, τ ]

u1(t), w1(t) ∈ [um
1 , u

M
1 ], a.e. t ∈ [0, τ ].



20 CHAPTER 2. PROBLEM PRESENTATION

The case of a system with 2 reservoirs in cascade is similar. Take A2 = 0. We have in

this case, the following formulation for problem (P ):

(P2) min −
[
A1

S1

∫ T

0

c(t)V1(t)dt + (H1 −H2)

∫ T

0

V1(t)dc(t)

+
1

2S1

∫ T

0

V 2
1 (t)dc(t) +H2

∫ T

0

(V2(t) + V1(t)) dc(t)

+
1

2S2

∫ T

0

V 2
2 (t)dc(t) + A1H1

∫ T

0

c(t)dt

]

,

s.t. V̇1(t) = A1 − u1(t), a.e. t ∈ [0, T ]

V̇2(t) = u1(t)− u2(t), a.e. t ∈ [0, T ]

Vi(0) = Vi(T ),

Vi(t) ∈ [V m
i , V M

i ], ∀ t ∈ [0, T ]

ui(t) ∈ [um
i , u

M
i ], a.e. t ∈ [0, T ], for i = 1, 2.

Considering the price function c(t) given by (2.4), we can write problem (P2) as:

(P2C) min − A1c1
s1

∫ τ

0

V1(t)dt−
A1c2
s1

∫ T

τ

V1(t)dt+H1(c2 − c1)V1(0) +
c2 − c1
2s1

V 2
1 (0)

−H1(c2 − c1)V1(τ)−
c2 − c1
2s1

V 2
1 (τ) +H2(c2 − c1)V2(0) +

c2 − c1
2s2

V 2
2 (0)

−H2(c2 − c1)V2(τ)−
c2 − c1
2s2

V 2
2 (τ)− A1H1(τc1 + (T − τ)c2),

s.t. V̇1(t) = A1 − u1(t), a.e. t ∈ [0, T ] (2.7)

V̇2(t) = u1(t)− u2(t), a.e. t ∈ [0, T ]

Vi(0) = Vi(T ),

Vi(t) ∈ [V m
i , V M

i ], ∀ t ∈ [0, T ]

ui(t) ∈ [um
i , u

M
i ], a.e. t ∈ [0, T ], for i = 1, 2.
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Based on similar definitions forWi(t) and Zi(t), i = 1, 2 (see (2.5)), the optimal control

problem (P2C) can be rewritten in the Mayer form:

(P2M) min − A1c1
s1

Z1(τ)−
A1c2
s1

Z2(τ) +H1(c2 − c1)V1(0) +
c2 − c1
2s1

V 2
1 (0)

−H1(c2 − c1)W1(0)−
c2 − c1
2s1

W 2
1 (0) +H2(c2 − c1)V2(0) +

c2 − c1
2s2

V 2
2 (0)

−H2(c2 − c1)W2(0)−
c2 − c1
2s2

W 2
2 (0)− A1H1(τc1 + (T − τ)c2),

s.t. V̇1(t) = A1 − u1(t), a.e. t ∈ [0, τ ]

Ẇ1(t) = A1 − w1(t), a.e. t ∈ [0, τ ] (2.8)

V̇2(t) = u1(t)− u2(t), a.e. t ∈ [0, τ ]

Ẇ2(t) = w1(t)− w2(t), a.e. t ∈ [0, τ ]

Ż1(t) = V1(t), a.e. t ∈ [0, τ ]

Ż2(t) = W1(t), a.e. t ∈ [0, τ ]

Vi(0) = Wi(τ),

Vi(τ) = Wi(0),

Zi(0) = 0,

Vi(t),Wi(t) ∈ [V m
i , V M

i ], ∀t ∈ [0, τ ]

ui(t), wi(t) ∈ [um
i , u

M
i ], a.e. t ∈ [0, τ ], for i = 1, 2.

These different formulations for the same problem will be used in the thesis according

to convenience. The Mayer form (2.6) and (2.8), for instance, is necessary to apply

the software we use to get the numerical results.
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Chapter 3

Background notes

The optimal control theory emerge in the early to mid 1950’s, in response to several

engineering and economic problems. This theory grew rapidly and nowadays it is

recognized as an important tool for the treatment of problems that occur in such

diverse fields as medicine, ecology, economics and electric power production.

The optimal control theory can be seen as a generalization of the calculus of variations.

It gives mathematical methods to derive control policies for a given system, in such a

way that a certain optimality criterion is achieved.

This theory is grounded on two main ideas. The dynamic programming with the

associated optimality principle, introduced by Bellman, and the maximum principle

introduced by Pontryagin and his collaborators ( [38]).

The maximum principle of Pontryagin (PMP) which is seen by many authors as the

main result in optimal control theory, provides a set of necessary conditions for local

optimality. In general, these conditions are not sufficient. If an existence theorem

is applied and guarantees that a solution exists, then all the candidates that satisfy

the necessary conditions could be compared and the optimal global solution could

be chosen. However, to obtain all the candidates from the necessary conditions, can

be a hard or even impossible task. Such necessary conditions can be very complex,

essentially when constraints on the state and control are involved. To guarantee that

a candidate is in fact an optimal solution, at least in a local sense, sufficient conditions

of optimality can be of particular relevance.

In this chapter, we will present a classic optimal control problem and we will discuss

some fundamental and basic tools for the problem with state constraints. For a more

extensive study about these topics see [3, 10,14, 15,20,22, 26,31,32,44,45,47,48].

23
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3.1 Optimal Control Problem

Optimal control problems can appear with different formulations, depending on the

form of the cost function, the time domain (continuous/discrete), the type of con-

straints and the type of variables.

Here, we don’t give an exhaustive list of all the possibilities but we focus on the

problem we are interested in. For more details see [10], [11] and [26].

An optimal control problem requires:

• a mathematical model of the system to be controlled;

• a cost function in a certain form (Mayer, Lagrange or Bolza);

• the specification of all constraints to be satisfied by states and controls;

• the specification of all boundary conditions on states;

• the statement of what variables are free.

In control theory a main object is a dynamic system that we consider here to be given

by ordinary differential equations:

ẋ = f(t, x(t), u(t)) a.e. t ∈ [S, T ], (3.1)

where f : [S, T ]× R
n × R

m → R
n. The control function u(·) : [S, T ] → R

m is usually

subject to some constraint

u(t) ∈ U(t), a.e. t ∈ [S, T ] (U(t) ⊆ R
m).

The state variable x(·) is an absolutely continuous function, with values in R
n. Con-

straints on this variable can also be considered, for example, constraints at the initial

time and at the final time (endpoint constraints)

(x(S), x(T )) ∈ C,

and/or pure state constraints

h(x(t)) ≤ 0, ∀ t ∈ [S, T ].
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The optimal control theory is a very useful tool to deal with continuous time opti-

mization problems of the following form:

(OCP ) min J(x(·), u(·)) = g(x(S), x(T )) +

∫ T

S

L(t, x(t), u(t))dt,

s.t. ẋ = f(t, x(t), u(t)), a.e. t ∈ [S, T ]

u(.) ∈ U(t), a.e. t ∈ [S, T ]

(x(S), x(T )) ∈ C,

h(x(t)) ≤ 0, ∀ t ∈ [S, T ],

where g : Rn × R
n → R, L : R × R

n × R
m → R, f : [S, T ] × R

n × R
m → R

n and

h : Rn → R. U is a multifunction with U(t) ⊂ R
m, t ∈ [S, T ] and C ⊂ R

n × R
n is a

closed set.

The objective functional (performance criterion) may be specified in Bolza form:

J = g(x(S), x(T )) +

∫ T

S

L(t, x(t), u(t))dt,

or in Mayer form:

J = g(x(S), x(T )),

or in Lagrange form:

J =

∫ T

S

L(t, x(t), u(t))dt.

Mayer and Bolza problem formulations are theoretically equivalent.

We can recast Bolza form into Mayer form by means of a process called state augmen-

tation. An additional state variable xl is defined, the augmented state variable being

now x̃ = (xl, x). By introducing an additional differential equation

ẋl(t) = L(t, x(t), u(t)) xl(S) = 0

it is possible to replace the integral term in the cost by xl(T ).

Feasible pair or feasible process

A control function u(·) such that u(t) ∈ U(t), a.e. t ∈ [S, T ] is called feasible for

problem (OCP), if the response x(·, x0, u(·)), solution of (3.1) when x(S) = x0,

is defined on the interval S ≤ t ≤ T , and u(·) and x(·, x0, u(·)) satisfy all the

constraints of the problem in this time interval. The pair (u(·), x(·)) is then
called a feasible pair or feasible process.
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Optimal solution

(û, x̂) is an optimal solution for problem (OCP) if (û, x̂) is an admissible process

that minimizes the cost over all admissible processes.

Strong local minimum

An admissible process (û, x̂) is called a strong local minimum for the optimal

control problem if,

∃ǫ > 0, ∀(u, x) admissible, ‖x− x̂‖ < ǫ⇒ J(x̂(·), û(·)) ≤ J(x(·), u(·)).

3.1.1 Existence of solution

The following theorem is adapted from [26] (Theorem 4 and Corollary 1 of chapter

4.2) for the case of fixed time interval.

We denote by C1 the space of continuously differentiable functions.

Theorem 3.1.1.

Consider the nonlinear process in R
n

ẋ = f(t, x, u), where f : R1+n+m → R
n is C1.

The data are as follows:

1. The initial and final sets X0 and X1 are fixed, nonempty, compact sets in R
n.

2. The control restraint set Ω(t, x) is a nonempty, compact set, varying continuously

in R
m for (t, x) ∈ [S, T ]× R

n.

3. The state constraints are (possibly vacuous) h1(x) ≥ 0, h2(x) ≥ 0, · · · , hr(x) ≥
0, a finite or infinite family of constraints, where h1, h2, · · · , hr are real con-

tinuous functions on R
n.

4. The family F of admissible controllers consists of all measurable functions u :

[S, T ] → R
m such that each u(t) has a response x(t) on S ≤ t ≤ T steering

x(S) ∈ X0 to x(T ) ∈ X1 and u(t) ∈ Ω(t, x(t)), h1(x(t)) ≥ 0, h2(x(t)) ≥
0, · · · , hr(x(t)) ≥ 0.
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5. The cost for each u ∈ F is

C(u) = g(x(T )) +

∫ T

S

f 0(t, x(t), u(t))dt+ max
S≤t≤T

γ(x(t))

where f 0 : R1+n+m → R is a C1 function, and g(x) and γ(x) are continuous in

R
n.

Assume

(a) The family F of admissible controllers is not empty.

(b) There exists an uniform bound, |x(t)| ≤ b on [S, T ] for all responses x(t) to

controllers u ∈ F .

(c) The extended velocity set

V̂ (t, x) = {(f 0(t, x, u), f(t, x, u))|u ∈ Ω}

is convex in R
1+n for each fixed (t, x).

Then there exists an optimal controller û(t), S ≤ t ≤ T , in F , minimizing C(u).

This result is easily generalized for the case where g depends also on x(S). In this

case, we can reformulate the problem in such a way that g(x(S), x(T )) will depend

only on the final state. For that, it is enough to add a new state variable z ∈ R
n, such

that ż(t) = 0 and define new initial and final sets

X̄0 = {(x, z) : x ∈ X0, x = z} ⊂ X0 ×X0

X̄1 = {(x, z) : x ∈ X1, z ∈ X0}

Observe that g(z(T ), x(T )) = g(z(S), x(T )) = g(x(S), x(T )).

3.1.2 Pontryagin’s maximum principle for OCP with state cons-

traints

The existence theorem of the previous section may guarantee that an optimal solution

exists. In that case, the optimal process is among all the processes that satisfy
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the necessary conditions of optimality. Theorem 3.1.2 of the next page presents the

Maximum Principle for the following optimal control problem (PG) with pure state

constraints.

(PG)







Minimize g(x(S), x(T ))

subject to

ẋ(t) = f(t, x(t), u(t)), a.e. t ∈ [S, T ]

hi(t, x(t)) ≤ 0, ∀ t ∈ [S, T ], i = 1, r

u(t) ∈ U(t), a.e. t ∈ [S, T ]

(x(S), x(T )) ∈ C,

where g : Rn × R
n → R, f : [S, T ] × R

n × R
m → R

n, and hi : [S, T ] × R
n → R,

U : [S, T ] R
m is a multifunction and C ⊂ R

n × R
n is a closed set.

Since the optimal control problem (PG) includes pure state constraints, it requires

the introduction of multipliers that are Borel measures. The norm of a measure µ is

denoted by ‖µ‖T.V. =
∫

[S,T ]
µ(dt) where T.V. means the total variation of the measure.

The support of a measure µ, denoted by supp{µ}, is the smallest closed subset A ⊂
[S, T ], such that for all relatively open subsets B ⊂ [S, T ] \A, we have µ(B) = 0. For

more details about this topics see [19,39].

Denote by H the unmaximized Hamiltonian:

H(t, x, p, u) = p · f(t, x, u).

Theorem 3.1.2 that follows is a version of Theorem 9.5.1 from R.B. Vinter [47], for

the case where g and h are continuously differentiable and C is convex.

Let C ⊆ R
n be a nonempty, convex set, and c ∈ C. Then the Normal Cone to C at

c, denoted by NC(c), is defined as

NC(c) = {p ∈ R
n : 〈p, x− c〉 ≤ 0, ∀x ∈ C}.

For details, see [43].

We use the notation GrU for the graph of a set-valued map U and B for the closed

unit ball in R
n centered in the origin. The product L × B denotes the σ-algebra
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generated by the Lebesgue subsets L of [a; b] and the Borel subsets of R.

Theorem 3.1.2.

Let (û, x̂) be a local minimizer for (PG). Assume that, for some δ > 0, the hypotheses

(H1) to (H4) are satisfied, namely:

H1: f(·, x, ·) is L × B measurable for fixed x. There exists a Borel measurable

function k(·, ·) : [S, T ]× R
m → R such that k(t, u(t)) is integrable and

|f(t, x, u)− f(t, x′, u)| ≤ k(t, u)|x− x′|

for all x, x′ ∈ x̂(t) + δB, u ∈ U(t), a.e.;

H2: Gr U is L ×B measurable;

H3: g is continuously differentiable on (x̂(S), x̂(T )) + δB;

H4: h is continuously differentiable and there exists Ki > 0 such that

|hi(t, x)− hi(t, x
′)| ≤ Ki|x− x′| for all x, x′ ∈ x̂(t) + δB, t ∈ [S, T ].

Assume furthermore that

S1: f(t, ·, u) is continuously differentiable on x̂(t)+δB, for all u ∈ U(t), a.e.t ∈ [S, T ]

Then, there exist p ∈ AC([S, T ],Rn), λ ≥ 0, and a nonnegative Borel measure µ

satisfying

(i) (p, µ, λ) 6= 0,

(ii) the adjoint equation:

−ṗ(t) = Hx(t, x̂(t), q(t), û(t)) a.e.

(iii) the transversality condition:

(p(S),−q(T )) ∈ λ∇g(x̂(S), x̂(T )) +NC(x̂(S), x̂(T )),
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(iv) the Weierstrass condition:

H(t, x̂(t), q(t), û(t)) = max
u∈U(t)

H(t, x̂(t), q(t), u) a.e.

(v) supp{µi} ⊂ Ii(x̂),

where q(t) =







p(t) +
∫

[S,t[

r∑

i=1

∇xhr(t, x)µr(ds) t ∈ [S, T [

p(T ) +
∫

[S,T ]

r∑

i=1

∇xhi(t, x)µi(ds) t = T

and Ii(x̄) = {t ∈ [S, T ] : hi(t, x̄(t)) = 0}

The function p is called the adjoint function and λ the cost multiplier.

Remark 1 :

It is a simple matter to see that we may assume that λ ∈ {0, 1} ( If (p, λ, µ) serves as
a set of multipliers then, for any a > 0, (ap, aλ, aµ) also serves).

Remark 2 :

If problem (PG) is in Bolza form, i.e., the cost function contains an added integral

term

∫ T

S

L(t, x(t), u(t))dt, then the necessary conditions take the same form, applied

with H replaced by H(t, x, p, u) = p · f(t, x, u)− λL(t, x(t), u(t)).

This can easily be deduced using a state augmentation technique. Define ż(t) =

L(t, x(t), u(t)), z(0) = 0, add this new variable and constraint to the problem and

express the integral term on the cost as z(T ). Application of the Theorem 3.1.2 to this

reformulation gives the result.



Chapter 4

Sufficient conditions

In this section we propose a set of sufficient conditions of optimality for the control

problem of a cascade of hydro-electric power stations set out in section 2.3. Its

abstract formulation leads us to the consideration of infinite-dimensional quadratic

functionals subject to linear and cone constraints. Classical sufficient conditions of

optimality are validated under hypotheses that fail when local minimizers are not

isolated. Here, sufficient conditions of optimality for local minimizers and also for

directional minimizers are established for the abstract problem. These conditions

depart from classical ones since they apply to non-isolated local minimizers if some

additional conditions are satisfied. To our knowledge the treatment of sufficient

conditions for directional minimizers is new.

Taking advantage of the particular structure of the problem of hydro-electric systems

under consideration, we then deduce sufficient conditions of optimality for that prob-

lem.

We shall use the following notations: the closure of a set A, the orthogonal complement

of a subspace S, the adjoint of a linear operator B and the dual space of a normed

linear space Y are denoted by clA, S⊥, B∗ and Y ∗, respectively. If L is a linear map,

then kerL stands for the kernel of L; L2([0, T ],R) represents the space of measurable

functions f : [0, T ]→ R, whose square is integrable. Given a normed linear space X,

BX represents the closed unit ball centered in the origin of the space.

31
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4.1 Local minima of quadratic functionals subject to

cone constraints

Let X be a Hilbert space, Y and Z be normed spaces, K ⊂ Z be a closed and convex

cone, V : X → X, A : X → Y , and C : X → Z, be linear bounded operators, and

v ∈ X be a vector. The operator V is symmetric. Consider the following minimization

problem (Q):

(Q) min J(x) =
1

2
〈x, V x〉+ 〈v, x〉, s.t. x ∈ Ω = {x ∈ X | Ax = 0, −Cx ∈ K}.

We say that x̂ ∈ Ω is a (local) minimizer point for problem (Q) iff there exists ǫ > 0

such that J(x) ≥ J(x̂), for all x ∈ Ω ∩ (x̂+ ǫBX).

We will also use the concept of directional minimizer. The point x̂ ∈ Ω is a directional

minimizer point iff, for all w satisfying x̂+hw ∈ Ω, for all h ∈ [0, hw] where hw is some

positive constant, there exists ǫw > 0 such that J(x̂+ hw) ≥ J(x̂), for all h ∈ [0, ǫw].

Our aim is to deduce sufficient conditions assuring that zero is a local minimizer for

problem (Q). Set L = kerA ∩ kerC. Assume the two following hypotheses:

(H1) 〈p, V p〉 ≥ 0, ∀ p ∈ L;

(H2) there exist y∗ ∈ Y ∗ and z∗ ∈ Z∗ such that A∗y∗ + C∗z∗ + v = 0.

Note that the classical sufficient conditions of optimality in the classic Lagrangian

theory and in the general mathematical programming problem (see, e.g., [22, 35])

impose the inequality 〈p, V p〉 ≥ (const)‖p‖2, p ∈ L. This guarantees that zero is an

isolated local minimizer. In this work, we deal with possibly non-isolated minima and,

as a consequence, we need a weaker condition. The non-negativity of the quadratic

functional 〈p, V p〉 on the subspace L alone does not guarantee that zero is a local

minimum, and we shall also assume that one of the following additional conditions is

satisfied:

(C0) 〈z∗, Cq〉 < 0, for all q such that q ∈ L⊥ ∩ kerA, −Cq ∈ K and q 6= 0;

(Cγ) there exists γ > 0 such that 〈z∗, Cq〉 ≤ −γ‖q‖, for all q satisfying q ∈ L⊥∩kerA
and −Cq ∈ K.
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Lemma 4.1.1. Assume (H1) and (H2). Let x = p+ q ∈ kerA, where p ∈ L and

q ∈ L⊥. Then, the following inequality holds:

J(x) ≥ −〈z∗, Cq〉+ 〈q, V p〉+ 1

2
〈q, V q〉.

Proof. Indeed, we have

J(x) =
1

2
〈x, V x〉+ 〈v, x〉.

From this and condition (H2) we obtain

J(x) = −〈z∗, Cq〉+ 〈q, V p〉+ 1

2
〈p, V p〉+ 1

2
〈q, V q〉.

Condition (H1) implies

J(x) ≥ −〈z∗, Cq〉+ 〈q, V p〉+ 1

2
〈q, V q〉.

This completes the proof. �

Proposition 4.1.1. Assume (H1) and (H2). In addition,

(a) if condition (C0) is satisfied, then, for all x ∈ kerA and −Cx ∈ K, there exists

ǫ > 0 such that the inequality J(tx) ≥ 0 holds, whenever t ∈ [0, ǫ] (i.e., 0 is a

local directional minimizer for (Q)).

(b) if condition (Cγ) is satisfied, then, for all x ∈ kerA and −Cx ∈ K, there exists

ǫ > 0 such that the inequality J(x) ≥ 0 holds, whenever ‖x‖ ≤ ǫ (i.e., 0 is a local

minimizer for (Q)).

Proof. Write x = p+ q, where p ∈ L and q ∈ L⊥. Since x and p are in kerA, also

q ∈ kerA. From Lemma 4.1.1 and condition (C0) we have

J(tx) ≥ −t〈z∗, Cq〉+ t2〈q, V p〉+ t2

2
〈q, V q〉 > 0,

whenever t > 0 is sufficiently small. This completes the proof of (a).

From Lemma 4.1.1 and condition (Cγ) we have

J(x) ≥ −〈z∗, Cq〉+ 〈q, V p〉+ 1

2
〈q, V q〉 ≥ ‖q‖

(

γ − ‖V ‖
(

‖p‖+ ‖q‖
2

))

> 0,
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whenever ‖x‖ is sufficiently small. This completes the proof of (b). �

Example 4.1.1. There are directional minimizers that are not minimizers.

Indeed, let X = L2([0, 1],R) and consider the problem

min J(x(·)) =−
∫ 1

0

x(s)ds−
∫ 1

0

x2(s)ds, s.t. x(s) ≤ 0.

Let Z = X, K = {z(·) ∈ L2([0, 1],R) | z(s) ≥ 0, s ∈ [0, 1]}, A = 0, C = I, and

L = {0}. Condition (C0) is satisfied with z∗ ≡ 1. By Proposition 4.1.1, zero is a local

directional minimizer. Consider the sequence

xn(s) =

{

−√n, s ∈ [0, 1/n]

0, s ∈ ]1/n, 1].

Obviously, ‖xn(·)‖L2
= 1 and J(txn(·)) = t

(
1√
n
− t

)

≥ 0, only if t ≤ 1√
n
. �

Lemma 4.1.2. LetM ⊂ X be a closed subspace, and letN ⊂ X be a finite-dimensional

subspace. Then dim
(

M ∩
(

M⊥ +N
))

< +∞.

Proof. Let N = Lin{e1, . . . , en}. Denote by πM(y) the orthogonal projection of y ∈ X

onto M . Set pi = πM(ei), i = 1, n. Consider x ∈ M ∩
(

M⊥ +N
)

. Then, there exist

ξ1, . . . , ξn ∈ R and q ∈M⊥ such that

x = q +
n

∑

i=1

ξiei.

Since

x = πM(x) =
n

∑

i=1

ξiπM(ei) =
n

∑

i=1

ξipi,

we see that any x ∈M ∩
(

M⊥ +N
)

is a linear combination of vectors p1, . . . , pn. �

Proposition 4.1.2. Assume in problem (Q) that Z = R
n,K = R

n
+, and z

∗ > 0. Then,

condition (Cγ) is satisfied.

Proof. Since (kerC)⊥ = imC∗ is a finite-dimensional subspace, from Lemma 4.1.2 we

see that the subspace

kerA ∩ L⊥ = kerA ∩ cl
(

(kerA)⊥ + (kerC)⊥
)

= kerA ∩
(

(kerA)⊥ + (kerC)⊥
)
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is finite-dimensional. Suppose that there exists a sequence qj ∈ kerA∩L⊥, −Cqj ∈ K,

|qj| = 1 such that 〈z∗, Cqj〉 ↑ 0. Without any loss of generality, qj converges to a vector
q0. Obviously q0 ∈ kerA ∩ L⊥, −Cq0 ∈ K, 〈z∗, Cq0〉 = 0, and |q0| = 1. Since z∗ > 0,

we have Cq0 = 0, i.e., q0 ∈ kerA ∩ kerC = L. Therefore we have q0 ∈ L ∩ L⊥ = {0},
a contradiction. �

Return to problem (Q) in its more general setting. Denote by K∗ the conjugate cone

of cone K. Consider functionals z∗j ∈ K∗, j = 1, n. Set ξj(x) = 〈C∗z∗j , x〉 and

ξ(x) = (ξ1(x), . . . , ξn(x)).

Assume that Y = R
m and that the problem has now the following special form:

min J(x) =
1

2
〈ξ(x), V ξ(x)〉+ 〈v, ξ(x)〉,

s.t. Aξ(x) = 0,

− Cx ∈ K.

Here V : Rn → R
n, A : Rn → R

m and v ∈ R
n.

Consider an auxiliary finite-dimensional majorant problem

min J(ξ) =
1

2
〈ξ, V ξ〉+ 〈v, ξ〉, s.t. Aξ = 0 and ξ ≤ 0.

Proposition 4.1.3. Assume that the following conditions are satisfied:

1. 〈p, V p〉 ≥ 0, p ∈ kerA,

2. there exist y∗ ∈ R
m and z∗ ∈ R

n such that A∗y∗ + z∗ + v = 0 and z∗ > 0.

Then, ξ = 0 is a local minimizer for the auxiliary problem, and x = 0 is a local

minimizer for the original problem.

Proof. From Proposition 4.1.2 we see that ξ = 0 is a local minimizer for the auxiliary

problem. Let x be an admissible point for the original problem. If the norm of x is

sufficiently small, then |ξ(x)| is also small. Moreover, the inclusion −Cx ∈ K, implies

the inequality ξ(x) ≤ 0. Therefore ξ(x) is an admissible point for the auxiliary problem

and J(x) ≥ 0. �
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Example 4.1.2. Consider the problem

min

∫ 1

0

x(t)dt−
(∫ 1

0

x(t)dt

)2

s.t. x(t) ≥ 0.

Zero is a local minimizer.

Indeed, set X = Z = L2([0, 1],R), C = I, z∗ = 1, and

ξ(x) =

∫ 1

0

x(t)dt.

Obviously ξ = 0 is a solution to the problem

min ξ − ξ2, s.t. ξ ≥ 0.

�

We shall deal now with the problem

min J(x) + 〈g, x〉, s.t. x ∈ Ω,

where g ∈ X.

Proposition 4.1.4. Assume that there exist ǫ > 0, y∗ ∈ Y ∗ and z∗ ∈ K∗ such that

1. A∗y∗ + C∗z∗ + g = 0,

2. J(x) ≥ 0, x ∈ Ω ∩ ǫBX .

Then, J(x) + 〈g, x〉 ≥ 0 whenever x ∈ Ω ∩ ǫBX .

Proof. Indeed, if x ∈ Ω ∩ ǫBX , then we have

J(x) + 〈g, x〉 ≥ 〈g, x〉 = −〈Cx, z∗〉 ≥ 0.

This completes the proof. �

The second condition in Proposition 4.1.4 can be deduced from Proposition 4.1.3, for
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example. Indeed, consider the problem

min I(x) =
1

2
〈ξ(x), V ξ(x)〉+ 〈v, ξ(x)〉+ 〈g, x〉,

s.t. Λξ(x) = 0, Ax = 0 and − Cx ∈ K.

The following result is an immediate consequence of Propositions 4.1.3 and 4.1.4

Proposition 4.1.5. Assume that there exist ǫ > 0, y∗ ∈ Y ∗, and z∗ ∈ K∗ such that

1. A∗y∗ + C∗z∗ + g = 0,

2. conditions of Proposition 4.1.3 are satisfied.

Then, I(x) ≥ 0 whenever x ∈ Ω ∩ ǫBX .

The following example shows that, if the second condition of Proposition 4.1.3 is not

satisfied, then there can exist local directional minimizers that are not local minimizers.

Example 4.1.3. Consider the problem

min

∫ 1

0

φ(s)ds− φ2(1),

φ̇ = x, φ(0) = 0 and φ(s) ≥ 0.

Zero is a local directional minimizer, but not a local minimizer.

The problem can be written in the following form:

min J(x(·)) =
∫ 1

0

∫ s

0

x(r)drds−
(∫ 1

0

x(s)ds

)2

,

∫ s

0

x(r)dr ≥ 0.

Here, X = L2([0, 1],R), Z = C([0, 1],R), Z∗ = BV ([0, 1],R), A = 0, C = −
∫ s

0
,

K = {z(·) ∈ C([0, 1],R) | z(s) ≥ 0, s ∈ [0, 1]}, L = {0}, and condition (C0) is satisfied

with z∗ = dµ(s) = ds. Indeed, if

∫ s

0

q(r)dr ≥ 0 and q(·) 6= 0, then ∃ s ∈ [0, 1] :

∫ s

0

q(r)dr > 0,
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because ∫ s

0

q(r)dr = 0, s ∈ [0, 1],

implies q(·) = 0. By Proposition 4.1.1, zero is a local directional minimizer. Consider

the sequence

xn(s) =

{

0, s ∈ [0, 1− 1/n[√
n, s ∈ [1− 1/n, 1].

Obviously, ‖xn(·)‖L2
= 1 and J(txn(·)) =

t

n

(
1

2
√
n
− t

)

≥ 0, only if t ≤ 1

2
√
n
. �

Zero is a local directional minimizer for this problem but it is not a local minimizer.

In the next section the optimal control problem (P ) presented in section 2.3 is con-

sidered, and sufficient conditions for local directional minimizers and also for local

minimizers are derived.

4.2 Sufficient Conditions of optimality for problem (P )

Motivated by the previous considerations, we deduce sufficient conditions of optimality

for the problem of hydro-electric power stations.

Recall the formulation of problem (P ):

(P ) min J(u(·), V (·)) =−
N∑

k=1

[

Ak

Sk

∫ T

0

c(t)Vk(t)dt+
1

2Sk

∫

]0,T ]

V 2
k (t) dc(t)

+
(

Hk −Hj(k)

)

∫

]0,T ]

(

Vk(t) +
∑

m∈M (k)

Vm(t)

)

dc(t)

]

+
(

Hk −Hj(k)

)



Ak −
∑

m∈M (k)

Am





∫ T

0

c(t)dt

]

,

s.t. V̇k(t) = Ak − uk(t) +
∑

m∈M(k)

um(t), a.e. t ∈ [0, T ]

Vk(0) = Vk(T ),

Vk(t) ∈ [V m
k , V M

k ], ∀ t ∈ [0, T ]

uk(t) ∈ [um
k , u

M
k ], a.e. t ∈ [0, T ].
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First, we deduce sufficient conditions for a local directional minimizer.

Theorem 4.2.1. Let (ûk(·), V̂k(·)), k = 1, N , be a control process. Assume that the

following conditions are satisfied:

1. there exist right-continuous functions pk(·) ∈ BV ([0, T ],R) and

ηk(·) ∈ BV ([0, T ],R), k = 1, N , satisfying

dpk(t) =−
Ak

Sk
c(t)dt−

(

Hk −Hj(k)

)

dc(t)−
∑

l∈M−1(k)

(

Hl −Hj(l)

)

dc(t)

− V̂k(t)

Sk
dc(t) + dηk(t), (4.1)

pk(0) = pk(T );

2. the equality

max
uk∈[u

m
k
,uM

k
],

k=1,N

N
∑

k=1

pk(t)



−uk +
∑

m∈M(k)

um



=
N
∑

k=1

pk(t)



−ûk(t) +
∑

m∈M(k)

ûm(t)





holds;

3. the functions ηk(·), k = 1, N , satisfy the inequalities

dηk(t) ≤ 0, if V̂k(t) = V m
k ;

dηk(t) ≥ 0, if V̂k(t) = V M
k ;

dηk(t) = 0, if V̂k(t) ∈
]

V m
k , V M

k

[

;

4. if dc(t) > 0, then the functions ηk(·), k = 1, N , satisfy the inequalities

dηk(t) < 0, if V̂k(t) = V m
k ; dηk(t) > 0, if V̂k(t) = V M

k ;

5. if V̂k(t) ∈
]

V m
k , V M

k

[

for some k, then dc(t) ≤ 0.

Then, J(û(·) + hū(·), V̂ (·) + hV̄ (·)) ≥ J(û(·), V̂ (·)), whenever (ûk(·) + ūk(·), V̂k(·) +
V̄k(·)), k = 1, N , is an admissible process and h > 0 is sufficiently small.

Note. In equation (4.1) we use the notation dν(t) = f(t) dϕ(t) to express the rela-

tionship ν(t)− ν(0) =

∫

]0,t]

f(t) dϕ(t), this integral being a Lebesgue-Stieltjes integral.
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Furthermore, in conditions 3. - 5. the inequality dν(t) ≥ 0 (≤ 0,= 0), for t ∈ E,

means that
∫

E
f(t)dν(t) ≥ 0 (≤ 0,= 0) for every non-negative continuous function f .

Proof. Let (ûk(·) + ūk(·), V̂k(·) + V̄k(·)), k = 1, N , be an admissible process and let

h > 0 be sufficiently small. Then, we have

∆J =J(û(·) + hū(·), V̂ (·) + hV̄ (·))− J(û(·), V̂ (·))

=−
N∑

k=1

[

h

∫ T

0

Ak

Sk

c(t)V̄k(t) dt+ h

∫

]0,T ]

(

(

Hk −Hj(k)

)

+
V̂k(t)

Sk

)

V̄k(t) dc(t)

+h
∑

m∈M (k)

(

Hk −Hj(k)

)

∫

]0,T ]

V̄m(t) dc(t) +
h2

2Sk

∫

]0,T ]

V̄ 2
k (t) dc(t)



 .

Using (4.1) we get

∆J =
N
∑

k=1



h





∫

]0,T ]
V̄k(t) dpk(t) +

∑

l∈M−1(k)

(

Hl −Hj(l)

)

∫

]0,T ]
V̄k(t) dc(t)−

∫

]0,T ]
V̄k(t)dηk(t)





−h
∑

m∈M (k)

(

Hk −Hj(k)

)

∫

]0,T ]
V̄m(t) dc(t) − h2

2Sk

∫

]0,T ]
V̄ 2
k (t) dc(t)

]

.

Observe that
N∑

k=1

∑

l∈M−1(k)

=
N∑

l=1

∑

k∈M (l)

.

From this we obtain

∆J =
N∑

k=1

[

h

(∫

]0,T ]

V̄k(t) dpk(t)−
∫

]0,T ]

V̄k(t) dηk(t)

)

− h2

2Sk

∫

]0,T ]

V̄ 2
k (t) dc(t)

]

.

Integrating by parts and using periodicity conditions we get

∆J =

N∑

k=1



h

T∫

0

pk(t)



ūk(t)−
∑

m∈M(k)

ūm(t)



 dt −h
∫

]0,T ]

V̄k(t) dηk(t)−
h2

2Sk

∫

]0,T ]

V̄ 2
k (t) dc(t)




 .

Taking into account conditions 2.-5. of the theorem we get ∆J ≥ 0.

This completes the proof. �

Under some additional conditions on the structure of the problem we can prove



4.2. SUFFICIENT CONDITIONS OF OPTIMALITY FOR PROBLEM (P ) 41

sufficient conditions for local minima. Consider a partition of the interval [0, T ],

0 = τ0 < τ1 < . . . < τQ = T . Assume that the price is a piecewise constant function:

c(t) = cq, t ∈ [τq, τq+1[ , q = 0, Q− 1.

(We set cQ = c0.)

Theorem 4.2.2. Let (ûk(·), V̂k(·)), k = 1, N , be a control process. Assume that the

following conditions are satisfied:

1. there exist right-continuous functions pk(·) ∈ BV ([0, T ],R) and piecewise abso-

lutely continuous functions ηk(·), k = 1, N , satisfying

dpk(t) =−
Ak

Sk

c(t) dt−
(

Hk −Hj(k)

)

dc(t)

−
∑

l∈M−1(k)

(

Hl −Hj(l)

)

dc(t)− V̂k(t)

Sk

dc(t) + dηk,

pk(0) = pk(T ),

ηk(t) = νk(t) +

Q
∑

q=1

∆ηk(τq)H(t− τq),

where νk(·) ∈ AC([0, T ],R), ∆ηk(τq) are constants, and H(·) stands for the Heav-
iside step function;

2. the equality

max
uk∈[u

m
k
,uM

k
],

k=1,N

N
∑

k=1

pk(t)



−uk +
∑

m∈M(k)

um



=
N
∑

k=1

pk(t)



−ûk(t) +
∑

m∈M(k)

ûm(t)





holds;

3. the functions νk(·), k = 1, N , satisfy the inequalities

dνk(t) ≤ 0, if V̂k(t) = V m
k , dνk(t) ≥ 0, if V̂k(t) = V M

k ;

dνk(t) = 0, if V̂k(t) ∈
]

V m
k , V M

k

[

,

4. if cq−1 < cq, for some q = 0, Q then, for all k = 1, N , the inequalities

∆ηk(τq) < 0, if V̂k(τq) = V m
k and ∆ηk(τq) > 0, if V̂k(τq) = V M

k ,
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∆ηk(τq) = 0, if V̂k(t) ∈
]
V m
k , V M

k

[
, hold;

5. if V̂k(t) ∈
]
V m
k , V M

k

[
for some k, then dc(t) ≤ 0.

Then, J(û(·) + ū(·), V̂ (·) + V̄ (·)) ≥ J(û(·), V̂ (·)) wherever (ûk(·) + ūk(·), V̂k(·) + V̄k(·)),
k = 1, N , is an admissible process and maxq=0,Q,k=1,N |V̄k(τq)| is sufficiently small.

Observe that the conclusion of this theorem allow us to say that (û(·), V̂ (·)) is a local
minimizer for the problem.

Proof. Let (ûk(·) + ūk(·), V̂k(·) + V̄k(·)), k = 1, N , be an admissible process. Arguing

as in the proof of the previous theorem we get

∆J =
N∑

k=1





∫ T

0

pk(t)



ūk(t)−
∑

m∈M (k)

ūm(t)



 dt−
∫

]0,T ]

V̄k(t) dνk(t)

−
Q
∑

q=0

V̄k(τq)∆ηk(τq)−
1

2Sk

Q
∑

q=0

(cq − cq−1) V̄
2
k (τq)

]

≥ 0, (4.2)

whenever maxq=0,Q,k=1,N |V̄k(τq)| is sufficiently small. �

These sufficient conditions are formulated in terms of bounded variation functions

pk(·). These functions are strictly connected with multipliers qk(·) of the necessary
conditions of section 3.1.2. Moreover, q(·) absorbs in its definition the measure terms
(compare (iv) and (v) of Theorem 3.1.2 with 2. of Theorem 4.2.1 or Theorem 4.2.2).

Assume that the price c(t) is a T -periodic function. We shall show that the T -periodic

extension of a local optimal process on the interval [0, T ] to the interval [0, ST ] is a

local optimal process on this interval. Let S > 1 be an integer. Consider the problem

(PS) min J(u(·), V (·)) =−
N
∑

k=1

[

Ak

Sk

∫ ST

0

c(t)Vk(t)dt +
1

2Sk

∫

]0,ST ]

V 2
k (t), dc(t)

+
(

Hk −Hj(k)

)

∫

]0,ST ]



Vk(t) +
∑

m∈M (k)

Vm(t)



 dc(t)



 ,
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s.t. V̇k(t) = Ak − uk(t) +
∑

m∈M(k)

um(t), a.e. t ∈ [0, ST ]

Vk(0) = Vk(ST ),

Vk(t) ∈
[
V m
k , V M

k

]
, ∀ t ∈ [0, ST ]

uk(t) ∈
[
um
k , u

M
k

]
, a.e. t ∈ [0, ST ], k = 1, N.

Theorem 4.2.3. Let (ûk(·), V̂k(·)), k = 1, N , be a control process satisfying conditions

of Theorem 4.2.1 (Theorem 4.2.2) on the interval [0, T ]. Then, its T -periodic contin-

uation to the interval [0, ST ] is a local directional minimizer (local minimizer) for the

above problem (PS).

Proof. (local directional minimizer)

Take the T -periodic functions on the interval [0, ST ]

V ∗k (t) =







V̂k(t), t ∈ [0, T ]

V̂k(t− sT ), t ∈]sT, (s+ 1)T ],
u∗k(t) =







ûk(t), t ∈ [0, T ]

ûk(t− sT ), t ∈]sT, (s+ 1)T ],

where s = 1, S − 1, k = 1, N .

By hypothesis,

c(t) = c(t− sT ), ∀ t ∈]sT, (s+ 1)T ], s = 1, S − 1

. Define the multipliers

p∗k(t) =







p̂k(t), t ∈ [0, T ]

p̂k(t− sT ), t ∈]sT, (s+ 1)T ],

η∗k(t) =







η̂k(t), t ∈ [0, T ]

η̂k(t− sT ) + η̂k(sT )− η̂k(0), t ∈]sT, (s+ 1)T ],

for s = 1, S − 1, k = 1, N .

To prove that (u∗k(·), V ∗k (·)), k = 1, N is a local directional minimizer for problem (PS),
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we check that all the conditions of the Theorem 4.2.1 are verified, with multipliers

p∗k, η∗k. Let us start with condition 1.. By construction, p
∗
k(·) and η∗k(·) are right

continuous functions and belong to BV ([0, T ],R). Also, for t ∈]sT, (s + 1)T [, with

s = 0, S − 1,

dp∗k(t) =dp̂k(t− sT )

=− Ak

Sk

c(t− sT )dt− (Hk −Hj(k)) dc(t− sT )−
∑

l∈M−1(k)

(Hl −Hj(l))dc(t− sT )

− V̂k(t− sT )

Sk

dc(t− sT ) + dη̂k(t− sT )

=− Ak

Sk

c(t)dt− (Hk −Hj(k)) dc(t)−
∑

l∈M−1(k)

(Hl −Hj(l))dc(t)−
V ∗k (t)

Sk

dc(t)

+ dη∗k(t)

Also,

p∗k(ST ) = p̂k(T ) = p̂k(0) = p∗k(0).

Condition 1. is verified.

Now, let us consider condition 2., i.e.,

max
uk∈[um

k
,uM

k ]
k=1,N

N∑

k=1

p∗k(t)



−uk +
∑

m∈M(k)

um



 =
N∑

k=1

p∗k(t)



−u∗k(t) +
∑

m∈M(k)

u∗m(t)



 ,

On the interval [0, T ] this conditions is satisfied because p∗k(t) = p̂k(t), u∗k(t) =

ûk(t) and u∗m(t) = ûm(t), ∀t ∈ [0, T ]. On the interval [sT, (s+1)T [, for s = 1, (s− 1)T ,

it comes

max
uk∈[u

m
k
,uM

k
]

k=1,N

N∑

k=1

p∗k(t)

(

− uk +
∑

m∈M(k)

um

)

= max
uk∈[u

m
k
,uM

k
]

k=1,N

N∑

k=1

p̂k(t− sT )

(

− uk +
∑

m∈M(k)

um

)

=
N∑

k=1

p̂k(t− sT )

(

− ûk(t− sT )

+
∑

m∈M(k)

ûm(t− sT )

)

=
N∑

k=1

p∗k(t)

(

− u∗k(t) +
∑

m∈M(k)

u∗m(t)

)



4.2. SUFFICIENT CONDITIONS OF OPTIMALITY FOR PROBLEM (P ) 45

and condition 2. is verified.

In [sT, (s + 1)T ], if V ∗k (t) = V̂k(t − sT ) = V m
k then dη̂(t − sT ) ≤ 0 and dη̂(t − sT ) =

dη∗k(t) ≤ 0.

Similar arguments can be applied when V ∗k (t) = V M
k and V ∗k ∈]V m

k , V M
k [, so condition

3. follows.

Conditions 4. and 5. can be deduced also easily since dc(t) = dc(t− sT ).

In this way, we prove Theorem 4.2.3 for the case of local directional minimizer. �

The part of proof concerning local minimizer follows with similar arguments.
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Chapter 5

Examples

In this chapter we analyze the two problems, (P1) and (P2) presented in section 2.3.

We search for a solution, using available software. Taking into account the profile

of the solution given by the numerical tools, we apply some mathematical tools to

validate such solution. More specifically, we use existence results to guarantee that

an optimal solution exists. After that, we verify that the conditions of maximum

principle of Pontryagin for optimal control problem with state constraints, presented

in section 3.1.2, are satisfied. We then apply the new sufficient conditions of optimality

of section 4.2, and in this way the numerical solution is completely validated. For the

particular case of a system with one power station, we also prove that the use of

reversible turbines always improve the profit.

5.1 System with 1 reservoir

Consider problem (P1), for the case with one power station, presented in section 2.3.1,

and its reformulation (P1M) as a Mayer problem (2.6). To help the reading, problem

(P1M) is rewritten below.

(P1M) min − A1c1
S1

Z1(τ)−
A1c2
S1

Z2(τ) +
c2 − c1
2S1

V 2
1 (0)−

c2 − c1
2S1

W 2
1 (0)

+H1(c2 − c1)V1(0)−H1(c2 − c1)W1(0)− A1H1(τc1 + (T − τ)c2),

47
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s.t. V̇1(t) = A1 − u1(t), a.e. t ∈ [0, τ ]

Ẇ1(t) = A1 − w1(t), a.e. t ∈ [0, τ ]

Ż1(t) = V1(t), a.e. t ∈ [0, τ ] (5.1)

Ż2(t) = W1(t), a.e. t ∈ [0, τ ]

V1(0) = W1(τ),

V1(τ) = W1(0),

Z1(0) = Z2(0) = 0,

V1(t),W1(t) ∈ [V m
1 , V M

1 ], ∀t ∈ [0, τ ]

u1(t), w1(t) ∈ [um
1 , u

M
1 ], a.e. t ∈ [0, τ ].

Here, and on what follows, we assume that um
1 < A1 < uM

1 . We start by proving the

existence of solution for this problem.

5.1.1 Existence of solution

The existence theorem, Theorem 3.1.1, presented in section 3.1.1, and the comments

that follow such theorem, can easily be applied to problem (5.1).

The constraints V1(0) = W1(τ), V1(τ) = W1(0) are not addressed in Theorem 3.1.1.

However, to have uncoupled initial and final constraint sets, we can replace the above

constraints by new variables and constraints in the following way:

Ẏ1(t) = 0

Y1(0) = V1(0)

Y1(τ) = W1(τ)

Ẏ2(t) = 0

Y2(0) = W1(0)

Y2(τ) = V1(τ)

The endpoint constraints can now be expressed as (V1(0),W1(0), Z1(0), Z2(0), Y1(0), Y2(0)) ∈
X0 and (V1(τ),W1(τ), Z1(τ), Z2(τ), Y1(τ), Y2(τ)) ∈ X1,

where

X0 = {(x1, x2, x3, x4, x5, x6) ∈ R
6 : V m

1 ≤ x1 ≤ V M
1 , V m

1 ≤ x2 ≤ V M
1 , x1 = x5, x2 =

x6, x3 = x4 = 0} and
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X1 = {(y1, y2, y3, y4, y5, y6) ∈ R
6 : V m

1 ≤ y1 ≤ V M
1 , V m

1 ≤ y2 ≤ V M
1 , y1 = y6, y2 =

y5, L1 ≤ y3 ≤ L2, L1 ≤ y4 ≤ L2}.

Constants L1 and L2 are lower and upper bounds for the objective function when

(Z1(τ), Z2(τ)) ∈ [τV m
1 , τV M

1 ]× [τV m
1 , τV M

1 ]. X0 and X1 are non-empty compact sets.

The control constraint set, Ω = [um
1 , u

M
1 ]× [um

1 , u
M
1 ] ⊂ R

2 is also a non empty compact

set.

The functions associated to the pure state constraints can be defined as

h1(V1,W1) = V M
1 − V1,

h2(V1,W1) = V1 − V m
1 ,

h3(V1,W1) = V M
1 −W1,

h4(V1,W1) = W1 − V m
1 .

All the functions hi(V1,W1), for i = 1, 4 are real continuous functions.

The cost function is a particular case of

C(u) = g(x(S), x(T )) +

∫ T

S

f 0(t, x(t), u(t))dt+ max
S≥t≥T

γ(x(t))

where S = 0, x = (V1,W1, Z1, Z2, Y1, Y2), f
0 = γ = 0 and g(x(S), x(T )) is the objective

function of (P1M), a continuous function in R
6 × R

6.

The family of admissible controllers is not empty, since u1(t) = w1(t) = A1, ∀t ∈ [0, τ ]

and V1(0) = W1(0) = V M
1 , leads to an admissible process for the problem.

The existence of a uniform upper bound for all admissible trajectories is an immediate

consequence of the constraints V1(t),W1(t) ∈ [V m
1 , V M

1 ], ∀t ∈ [0, T ].

Since f 0(t, x, u) = 0, the extended velocity set is

F (x, t) = {(f(t, x, u), 0)|u ∈ Ω}.

For each fixed (t, x) the components of f(t, x, u) = (A1 − u1, A1 − w1, V1,W1, 0, 0)

depend linearly on u and Ω is convex. So, the extended velocity set, F (t, x), is convex
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for each (t, x).

In conclusion, there exists an optimal control û(t), 0 ≤ t ≤ τ , minimizing C(u) among

all admissible controls.

5.1.2 Numerical Results

Problem (5.1) was numerically treated, for particular data, with some software and

interfaces. It was used the optimization package from book [45], as well as, the interface

ICLOCS [16] (http://www.ee.ic.ac.uk/ICLOCS/) and AMPL (http://www.ampl.

com/) which use IPOPT (a software package for large-scale nonlinear optimization).

All these softwares are designed to find (local) solutions of mathematical optimization

problems.

The following data was used:

um
1 = −1 uM

1 = 2 V m
1 = 3 V M

1 = 10 A1 = 1

c1 = 2 c2 = 5 H1 = 3 S1 = 100 τ = 6
(5.2)

Figure 5.1 shows the numerical solution obtained for this problem, with the optimiza-

tion package from [45].

This software is configured to solve optimal control problems in a regime of dialogue

with the computer. The user has the possibility to select the optimization methods

during the optimization process (e.g. simplex, conjugated gradient, Newton’s method),

the possibility of choosing a penalty coefficient (to obtain a feasible solution this

coefficient must be large enough) and the numerical precision of the selected method.
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Figure 5.1: Numerical solution

As we can see in the picture, V1(t) reaches the boundary at an instant t = θ and stays

there until the end. The trajectory W1(t) starts in V M
1 and decreases until attaining

the value V1(0). The control u1(t) pumps until t = θ, being responsible for the increase

of V1(t). After t = θ, it takes the value A1 and V1(t) lies on the boundary. w1(t) is

equal to the maximum value allowed in all the interval [0, τ ].

5.1.3 Necessary conditions of optimality

In a first step, and to consolidate the numeric results described in the previous section,

necessary conditions of optimality were used. These conditions, only necessary, do not

ensure that the given solution is optimal, they merely give more confidence to that

statement. In its turn, the sufficient conditions which we deal with in the next section,

validate completely the solution as locally optimal. So, the results of this section do

not contribute for the final conclusion of optimality, once sufficient conditions are

successfully applied. They are presented as an illustrative way of working out the

information contained in the necessary conditions.

The numerical solution can be expressed as:

V̂1(t) =







V1(0) + (A1 − um
1 )t, t ∈ [0, θ[

V M
1 , t ∈ [θ, τ ],

Ŵ1(t) = V M
1 + (A− uM

1 )t, ∀t ∈ [0, τ ],

û1(t) =







um
1 , t ∈ [0, θ[

A1, t ∈ [θ, τ ],
ŵ1(t) = uM

1 , ∀t ∈ [0, τ ].
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Using the fact that

V̂1(θ) = V M
1 = V̂1(0) + (A1 − um

1 )θ

V̂1(0) = Ŵ1(τ) = V M
1 + (A1 − uM

1 )τ

we get

V M
1 = V M

1 + (A1 − uM
1 )τ + (A1 − um

1 )θ ⇒ θ =
τ(uM

1 − A1)

A1 − um
1

.

We now check that the NCO as stated in Theorem 3.1.2 are satisfied with a set of

multipliers in normal form, i.e. with λ = 1. In this case, condition (i) of this theorem

is trivially satisfied.

Observe that

(V1(0),W1(0), Z1(0), Z2(0), V1(τ),W1(τ), Z1(τ), Z2(τ)) ∈ C = {(y1, y2, y3, y4, y5, y6, y7, y8) :
y1 = y6, y2 = y5 and y3 = y4 = 0} and
NC = {(y1, y2, y3, y4, y5, y6, y7, y8) : y1 = −y6, y2 = −y5 and y7 = y8 = 0}.

According to the NCO there exist absolutely continuous functions pi and regular Borel

measures µi, i = 1, 4 such that

(ii) p1(t) = p1(0)− p3(0)t

p2(t) = p2(0)− p4(0)t

p3(t) = p3(0)

p4(t) = p4(0)

(iii) p1(0) = p2(τ) + µ4{[0, τ ]}+H1(c2 − c1) +
c2 − c1
S1

V̂1(0)

p2(0) = p1(τ) + µ2{[0, τ ]}[−H1(c2 − c1)−
c2 − c1
S1

Ŵ1(0)

p3(0) =
c1A1

S1

p4(0) =
c2A1

S1

(iv)

H(V̂1(t), Ŵ1(t), q(t), û1(t), ŵ1(t)) =

= max
u1,w1∈U

(
c1A1

S1

t− p1(0)− µ2{[0, t[}
)

u1(t) +

(
c2A1

S1

t− p2(0)− µ4{0}
)

w1(t)
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(v)

µ1([0, τ ]) = 0 µ2([0, τ ]) = µ2([θ, τ ])

µ3([0, τ ]) = 0 µ4([0, τ ]) = µ4{0}.

The analysis of these conditions is made successively on subintervals that make up the

whole interval [0, τ ].

• In [0, θ[:

In this interval we can write

H(V̂1(t), Ŵ1(t), q(t), û1(t), ŵ1(t)) =

= max
u1,w1∈U

(
c1A1

S1

t− p1(0)

)

u1(t) +

(
c2A1

S1

t− p2(0)− µ4{0}
)

w1(t).

We also have û1(t) = um
1 and ŵ1(t) = uM

1 . So, we deduce that

c1A1

S1

t− p1(0) ≤ 0, ∀t ∈ [0, θ[ ⇒ p1(0) ≥
c1A1

S1

θ (5.3)

c2A1

S1

t− p2(0)− µ4{0} ≥ 0 ⇒ c2A1

S1

t− p2(0) ≥ µ4{0} ≥ 0 ∀t ∈ [0, θ[

⇒ p2(0) ≤ 0 (5.4)

• In [θ, τ [:

In this interval we can write

H(V̂1(t), Ŵ1(t), q(t), û1(t), ŵ1(t)) =

= max
u1,w1∈U

(
c1A1

S1

t− p1(0)− µ2{[θ, t[}
)

u1 +

(
c2A1

S1

t− p2(0)− µ4{0}
)

w1.

Since û1(t) = A1, we deduce that

c1A1

S1

t− p1(0)− µ2{[θ, t[} = 0.
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Taking the limit, when t→ τ−, it comes

A1c1
S1

τ − p1(0) = µ2{[θ, τ [}. (5.5)

From (ii), (iii) and (5.4), we can write:

p2(0) = p1(0)−
A1c1
S1

τ + µ2{[θ, τ ]} −H1(c2 − c1)−
c2 − c1
S1

V M
1 ≤ 0. (5.6)

Using the equality (5.5) and (5.6), it comes

µ2{[θ, τ [}+µ2{τ} =
A1c1
S1

τ−p1(0)+µ2{τ} = p2(0)−p1(0)+
A1c1
S1

τ+H1(c2−c1)+
c2 − c1
S1

V M
1

⇒ µ2{τ} = p2(0) +H1(c2 − c1) +
c2 − c1
S1

V M
1 . (5.7)

Also, from (ii) and (iii), we obtain

p1(0) = p2(0)−
A1c2
S1

τ + µ4{0}+H1(c2 − c1) +
c2 − c1
S1

V̂1(0). (5.8)

Using (5.7) and (5.8) we get

µ2{τ}+ µ4{0} =
A1c2
S1

τ +
c2 − c1
S1

(V M
1 − V̂1(0)) + p1(0) > 0

⇒ µ2{τ} and µ4{0} not simultaneously null.

Assuming that µ2 does not have an atom in t = τ (µ2{τ} = 0), we obtain

µ4{0} =
A1τc2
S1

+ p1(0) +
c2 − c1
S1

(V M
1 − V̂1(0))

and

p2(0) = −H1(c2 − c1)−
c2 − c1
S1

V M
1 .

From (5.4), we know that −p2(0) ≥ µ4{0}. Then

p1(0) ≤ −
A1c2τ

S1

+H1(c2 − c1) +
c2 − c1
S1

V̂1(0). (5.9)
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Joining the information from (5.3) and (5.9), we can write

p1(0) ∈
[
A1θc1
S1

; − A1c2τ

S1

+H1(c2 − c1) +
c2 − c1
S1

V̂1(0)

]

.

Taking p1(0) =
A1θc1
S1

, we find a set of multipliers that respect the optimality necessary

conditions:

λ = 1

µ1{[0, τ ]} ≡ µ3{[0, τ ]} ≡ 0

µ2{[0, t[} ≡







0, t ∈ [0, θ[

A1c1
S1

(t− θ), t ∈ [θ, τ ]

µ4{[0, t[} ≡
A1τc2
S1

+
A1θc1
S1

+
c2 − c1
S1

(V M
1 − V̂1(0)), ∀t ∈ [0, τ ]

p1(t) =
A1c1
S1

(θ − t); p2(t) = −H1(c2 − c1)−
c2 − c1
S1

V M
1 − c2A1t

S1

p3(t) =
c1A1t

S1

; p4(t) =
c2A1t

S1

where V̂1(0) = V M
1 + (A1 − uM

1 )τ and θ =
(uM

1 − A1)

A1 − um
1

τ .

Observe that such set of multipliers was found with no particularization of values for

the parameters. This means that if c2 > c1, V̂1(0) is admissible and 0 < θ < τ , there

is always a set of multipliers satisfying the NCO for the admissible solution with the

profile we considered and θ defined as above. In particular for data (5.2) it comes

V̂1(0) = 4 and θ = 3.
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5.1.4 Sufficient conditions of optimality

In chapter 4, sufficient conditions of optimality (Theorem 4.2.2) are developed for the

optimal control problem (P ) presented in section 2.3, with N hydro-electric power

stations in cascade. Here we specify such conditions for our problem with 1 reservoir

and the price c(t) given by (2.4). We verify that these conditions are satisfied for the

reference pair (û(·), V̂ (·)) of the previous sections. The formulation under considera-
tion is now (P1) (equivalent form to (5.1)) rewritten below

(P1) min −
[
A1

S1

∫ T

0

c(t)V1(t)dt +H1

∫

]0,T ]

V1(t)dc(t) +
1

2S1

∫

]0,T ]

V 2
1 (t)dc(t)

]

,

s.t. V̇1(t) = A1 − u1(t), a.e. t ∈ [0, T ]

V1(0) = V1(T ),

V m
1 ≤ V1(t) ≤ V M

1 , ∀ t ∈ [0, T ]

um
1 ≤ u1(t) ≤ uM

1 , a.e. t ∈ [0, T ].

We prove that under some assumptions on the data, the profile of the optimal trajec-

tory, found by numerical results for particular data (see Figure 5.1), is maintained in

a more general setting.

Theorem 5.1.1. Let V m

1
< VM

1
− θ(A1 − um

1
), where

θ :=
uM

1
− A1

A1 − um

1

(T − τ)

and pτ ≤ 0, where

pτ = (c1 − c2)

(

H1 +
V M
1

S1

)

+
c2u

M
1

S1

(T − τ) +
θc1u

m
1

S1

.

Assume that θ < τ . Then, the process (û1 (·), V̂1 (·)), where

û1 (t) =







um
1 , t ∈ [0, θ]

A1, t ∈]θ, τ ]
uM
1 , t ∈]τ, T ]

and V̂1 (t) =







V M
1 + (t− θ) (A1 − um

1 ) , t ∈ [0, θ]

V M
1 , t ∈]θ, τ ]

V M
1 + (t− τ)

(

A1 − uM
1

)

, t ∈]τ, T ]

is locally optimal.
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Proof. Consider the functions

η(t) =







0, t ∈ [0, θ[
c1(t− θ)A1

S1

, t ∈ [θ, τ [

c1(τ − θ)A1

S1

+∆η, t ∈ [τ, T ]

and p(t) =







(θ − t)c1A1

S1

, t ∈ [0, θ[

0, t ∈ [θ, τ [

pτ −
(t− τ)c2A1

S1

, t ∈ [τ, T [

θc1A1

S1

, t = T.

where

∆η = θ
c1A1

S1

+ (T − τ)
c2A1

S1

+
c2 − c1
S1

(V̂1(τ)− V̂1(0)).

If pτ ≤ 0, then, since∆η > 0, the conditions of Theorem 4.2.2 are satisfied. (û1(·), V̂1(·))
is a local minimizer for the problem. Note that, in this case, from (4.2) we have

∆J = J(û(·) + ū(·), V̂ (·) + V̄ (·))− J(û(·), V̂ (·)) ≥ −∆ηV̄1(τ)−
c2 − c1
2S1

V̄ 2
1 (τ) ≥ 0,

whenever V̂1(·) + V̄1(·) is admissible and V̄1(τ) is sufficiently small. �

Note that, the statement of the last theorem is made without particularization of the

values for the parameters. It suffices that the assumptions of the theorem are satisfied,

to validate such optimal solution profile.

5.1.5 Pumping action

In this section we use the equivalent formulation (P1C) (see section 2.3.1) of the

problem (5.1) where the objective function takes the form:

J(u1(·), V1(·)) = H1(c2 − c1)V1(0) +
1

2S1

(c2 − c1) (V1(0))
2 − c1A1

S1

∫ τ

0

V1(t) dt

− c2A1

S1

∫ T

τ

V1(t) dt+H1(c1 − c2)V1(τ) +
1

2S1

(c1 − c2)V
2
1 (τ).

We are assuming that the affluence A1 satisfies um
1 < A1 < uM

1 . For the case A1 = uM
1 ,

it is easy to conclude that the optimal solution is V̂1(t) = V M
1 , ∀t. In this case no

pumping occurs. It would be expected that for values of A1 very close to uM
1 , A1 < uM

1 ,

no pumping would occur also. Here we show that it is not the case. We show that the

use of reversible turbines always improves the profit. This is established in Theorem
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5.1.2. Before that two helping lemmas are deduced.

It is assumed that um
1 < 0 < A1 < uM

1 and τ, c1, c2 are constants such that τ ∈]0, T [
and c1 < c2.

Lemma 5.1.1. If (û1 (·), V̂1 (·)) is an optimal process for problem (P1C) and V̂1 (0 ) = VM

1
,

then V̂1 (t) = VM

1
, for all t ∈ [0 ,T ].

Proof. Let (û1(·), V̂1(·)) be an optimal process for problem (P1C) and V̂1(0) = V M
1 .

Then, for every admissible process (u1(·), V1(·)) satisfying V1(0) = V M
1 we have,

J(u1(·), V1(·)) = H1(c2 − c1)V
M
1 +

1

2S1

(c2 − c1)
(

V M
1

)2 − c1A1

S1

∫ τ

0

V1(t) dt

− c2A1

S1

∫ T

τ

V1(t) dt+H1(c1 − c2)V1(τ) +
1

2S1

(c1 − c2) (V1(τ))
2

≥ H1(c2 − c1)V
M
1 +

1

2S1

(c2 − c1)
(

V M
1

)2 − c1A1

S1

∫ τ

0

V M
1 dt− c2A1

S1

∫ T

τ

V M
1 dt

+H1(c1 − c2)V
M
1 +

1

2S1

(c1 − c2)
(

V M
1

)2
.

If V1(t) < V M
1 on some subset, then the above inequality is strict. Since the inequality

is still valid for (u1(·), V1(·)) = (û1(·), V̂1(·)) and this process is optimal, we obtain
V̂1(t) = V M

1 . �

Lemma 5.1.2. The optimal process (û1(·), V̂1(·)) for problem (P1C) satisfies V̂1(0) < V M
1 .

Proof. Assume that V̂1(0) = V M
1 . Then, by Lemma 5.1.1 we have V̂1(t) ≡ V M

1 .

Moreover, û1(t) ≡ A1.

Consider the family of processes (uy(·), Vy(·)), defined as

uy(t) :=



















um
1 , if t ∈ [0, α[

A1, if t ∈ [α, β[

uM
1 , if t ∈ [β, T [

and Vy(t) :=



















y + (A1 − um
1 )t, if t ∈ [0, α[

V M
1 , if t ∈ [α, β[

V M
1 + (A1 − uM

1 )(t− β), if t ∈ [β, T [

with

α :=
V M
1 − y

A1 − um
1

and β := T − V M
1 − y

uM
1 − A1

,

where V M
1 − y > 0 is small enough to satisfy y > V m

1 and α < τ < β.
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Then, we have

J (uy (·) , Vy (·))− J
(

û1 (·) , V̂1 (·)
)

=

=− c1A1

S1

(

yα + (A1 − um
1 )

α2

2
− V M

1 α

)

− c2A1

S1

(

(

A1 − uM
1

) (T − β)2

2

)

+H1 (c2 − c1)
(

y − V M
1

)

+
1

2S1

(c2 − c1)
(

y2 −
(

V M
1

)2
)

=
c1A1

2S1

α
(

V M
1 − y

)

− c2A1

S1

(

(

A1 − uM
1

) (T − β)2

2

)

+H1 (c2 − c1)
(

y − V M
1

)

+
1

2S1

(c2 − c1)
(

y2 −
(

V M
1

)2
)

=
c1A1

2S1

(

V M
1 − y

)2

A1 − um
1

+
c2A1

2S1

(

V M
1 − y

)2

uM
1 − A1

+H1 (c2 − c1)
(

y − V M
1

)

+
1

2S1

(c2 − c1)
(

y2 −
(

V M
1

)2
)

=
(

V M
1 − y

)

G (y) ,

where

G(y) :=
c1A1

2S1

V M
1 − y

A1 − um
1

+
c2A1

2S1

V M
1 − y

uM
1 − A1

−H1(c2 − c1)−
1

2S1

(c2 − c1)(y + V M
1 ).

Since G(y) is linear in y and G(V M
1 ) = −H1(c2 − c1)− 1

S1

(c2 − c1)V
M
1 < 0, we have

J(uy(·), Vy(·)) < J(û1(·), V̂1(·))

whenever y < V M
1 is close to V M

1 , a contradiction. �

Theorem 5.1.2. Let (û1 (·), V̂1 (·)) be an optimal process for problem (5.1). Then,
û1(t) < 0 on some non null measure set.

Proof. By Lemma 5.1.2 we have V̂1(0) < V M
1 . Consider the set of admissible trajecto-

ries V1(·), satisfying V1(0) = V̂1(0). The associated cost is
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J(u1(·), V1(·)) =H1(c2 − c1)V̂1(0) +
1

2S1

(c2 − c1)V̂
2
1 (0)−

c1A1

S1

∫ τ

0

V1(t) dt

− c2A1

S1

∫ T

τ

V1(t) dt+H1(c1 − c2)V1(τ) +
1

2S1

(c1 − c2)V
2
1 (τ).

Suppose that û1(t) ≥ 0, a.e. t ∈ [0, T ]. Take θ = min{s | V̂1(s) = max
t∈[0,τ ]

V̂1(t)}.

Since c2 > c1, we have max
t∈[0,T ]

V̂1(t) ≥ V̂1(0). Consider the process (ũ1(·), Ṽ1(·)), with

Ṽ1(0) = V̂1(0) and

ũ1(t) :=







um
1 , if t ∈ [0, α[

A1, if t ∈ [α, θ[

û1(t), if t ∈ [θ, T ].

Here, α is chosen to satisfy Ṽ1(α) = V̂1(θ). Therefore, we have A1θ −
∫ θ

0

û1(τ) dτ =

α(A1 − um
1 ). Hence,

α =

A1θ −
∫ θ

0

û1(τ) dτ

A1 − um
1

≤ A1θ

A1 − um
1

< θ.

Since û1(t) ≥ 0, by definition of ũ1 we have Ṽ1(t) ≥ V̂1(t) on [0, θ], and Ṽ1(t) = V̂1(t)

on [θ, T ]. Comparing cost functions we obtain

J(ũ1(·), Ṽ1(·))−J(û1(·), V̂1(·)) = −
c1A1

S1

α∫

0

(Ṽ1(t)−V̂1(t)) dt−
c1A1

S1

θ∫

α

(V̂1(θ)−V̂1(t))dt < 0,

a contradiction. �

Thus, the use of reversible turbines always improves the profit.

The following picture illustrates this fact. Take the data given in (5.2). We have

V̂1(0) = 4 and θ = 3. The condition pτ < 0 is satisfied and the optimal process, as

was already shown, has the following profile (see Fig. 5.2).
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Figure 5.2: Optimal process - um
1 < 0

Note that û1(t) = −1, t ∈ [0, 3], i.e., water is pumped on this interval. In this way, the

station accumulates water when the price is low to be used when the price is higher.

This solution is optimal when compared to any particular admissible solutions satis-

fying u1(t) ≥ 0, ∀t.

Consider the case um
1 = 0. Fig. 5.3 shows the numerical optimal solution obtained.
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Figure 5.3: Optimal process - um
1 = 0

In this case, we have

û1(t) =

{

0, t ∈]0, τ ]
uM
1 , t ∈]τ, T ]

and V̂1(t) =

{

V1(0) + A1t, t ∈ [0, τ ]

V M
1 + (t− τ)(A1 − uM

1 ), t ∈]τ, T ].

Table 5.1 shows the cost for both situations, um
1 < 0 and um

1 = 0.
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Case um
1 = 0 Case um

1 = −1
Cost -58.2 -58.4

Table 5.1: Costs obtained with and without reversible turbines

The values in the table represent a profit of 58.2e and 58.4e, respectively. We can say

that pumping water brings benefits for the management of the cascade since a better

profit is obtained.

Remark:

From the periodic condition, V1(0) = V1(T ), and taking into account that V1(0) =

V M
1 −A1τ , we obtain the condition A1 =

uM
1 (T − τ)

T
. This equality must be satisfied

in the case of um
1 = 0 to give rise to a solution profile like in Fig. 5.3. For the data

values used, (5.2), such condition is fulfilled.
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5.2 System with 2 reservoirs

In this section we analyze the problem (P2), with 2 reservoirs in cascade, presented

in section 2.3. The existence Theorem (3.1.1) can be applied to this more complex

problem, and following the same line of arguments used in section (5.1.1), we get

existence of optimal solution for (P2). Similarly and based on the numerical solution,

we will verify that the necessary conditions and the sufficient condition are satisfied

for this problem, when considering some particular data.

Problem (P2) in Mayer form can be written as follows.

(P2M) min J(u(·), V (·)) = −A1c1
s1

Z1(τ)−
A1c2
s1

Z2(τ) +H1(c2 − c1)V1(0) +
c2 − c1
2s1

V 2
1 (0)

−H1(c2 − c1)W1(0)−
c2 − c1
2s1

W 2
1 (0) +H2(c2 − c1)V2(0) +

c2 − c1
2s2

V 2
2 (0)

−H2(c2 − c1)W2(0)−
c2 − c1
2s2

W 2
2 (0)− A1H1(τc1 + (T − τ)c2),

s.t. V̇1(t) = A1 − u1(t), a.e. t ∈ [0, τ ]

Ẇ1(t) = A1 − w1(t), a.e. t ∈ [0, τ ] (5.10)

V̇2(t) = u1(t)− u2(t), a.e. t ∈ [0, τ ]

Ẇ2(t) = w1(t)− w2(t), a.e. t ∈ [0, τ ]

Ż1(t) = V1(t), a.e. t ∈ [0, τ ]

Ż2(t) = W1(t), a.e. t ∈ [0, τ ]

Vi(0) = Wi(τ),

Vi(τ) = Wi(0),

Zi(0) = 0,

Vi(t),Wi(t) ∈ [V m
i , V M

i ], ∀t ∈ [0, τ ]

ui(t), wi(t) ∈ [um
i , u

M
i ], a.e. t ∈ [0, τ ], for i = 1, 2

where u = (u1, u2, w1, w2) and V = (V1, V2,W1,W2, Z1, Z2).
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Continuity of the involved functions and convexity and compactness properties are

still present here. So existence of optimal solution follows.

Two sets of data were considered for problem (5.10). Two different profiles were

obtained and analyzed.

5.2.1 Case study 1

We start by getting a numerical solution using the software and interfaces referred

before.

5.2.1.1 Numerical Results

For the particular data (5.11) below, we obtain the numerical solution for problem

(5.10), presented in Fig. 5.4 - 5.5. Here τ = T/2.

Data:

um
1 =-1 um

2 =0 V m
1 =2 V m

2 =0 c1=2 H1=3 S1=1 A=1

uM
1 =2 uM

2 =2 V M
1 =10 V M

2 =2 c2=20 H2=1 S2=0.5 T=12
(5.11)

Figures 5.4 and 5.5 represent the numerical solution (trajectories and controls).
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Figure 5.4: Numerical results - trajectories
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Figure 5.5: Numerical results - controls

The controls functions u1, w1, u2, and w2 are responsible for the behavior of the

trajectories V1, W1, V2, and W2. As we can observe in the pictures, the station 1

pumps in the beginning of the time interval, causing the increase of the volume V1.

During the interval [θ1, θ2], the station one is inactive, and after t = θ2 it turbines a

constant amount A1 of water. If such wouldn’t happen, the volume V1 would exceed

the maximum allowable or would contribute to a less favorable cost. Note that V1 and

W1 touch the upper bounds in [θ2, τ ] and [0, θ3], respectively. On the other hand, V2

attains the lower boundary in [θ1, θ2] and the upper boundary only at time t = τ . The

behavior of the state variable V2, is the reflection of the control policy u1, since u2 is

equal to zero in all the time interval. The state W2 is equal to V
M
2 only at time t = 0.

5.2.1.2 Necessary conditions of optimality

Based on the previous numerical results we make an analysis of the necessary condi-

tions of optimality. All that was written in the introduction of section 5.1.3, regarding

necessary conditions applies here too. Theorem 3.1.2 is used considering previous

data (5.11) and the formulation (5.10) of (P2). For shortness, we write H(t) when H

is calculated on the reference trajectory.
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The maximum principle establishes that, if ((û1, ŵ1, û2, ŵ2), (V̂1, Ŵ1, V̂2, Ŵ2, Ẑ1, Ẑ2))

is an optimal process, then there exist absolutely continuous functions pi, i = 1, 6,

nonnegative Borel measures µi, i = 1, 8 and a real number λ such that

(i) (p, µ, λ) 6= (0, 0, 0)

where p = (p1, p2, p3, p4, p5, p6) and µ = (µ1, µ2, µ3, µ4, µ5, µ6, µ7, µ8)

(ii) (ṗ1, ṗ2, ṗ3, ṗ4, ṗ5, ṗ6) = −(q5, q6, 0, 0, 0, 0)

(iii) p1(0) = q2(T ) + λ(c2 − c1)

(

H1 +
V̂1(0)

S1

)

p2(0) = q1(T )− λ(c2 − c1)

(

H1 +
V̂1(0)

S1

)

p3(0) = q4(T ) + λ(c2 − c1)

(

H2 +
V̂2(0)

S2

)

p4(0) = q3(T )− λ(c2 − c1)

(

H2 +
V̂2(0)

S2

)

p5(0), p6(0) ∈ R

q5(T ) = λ
A1c1
S1

q6(T ) = λ
A1c2
S2

(iv)

H(t) = max
u1,w1,u2,w2∈U

q1(t)(A− u1) + q2(t)(A− w1)

+ q3(t)(u1 − u2) + q4(t)(w1 − w2)

(v) supp {µi} ⊂ Ii

where Ii = {t ∈ [0, τ ] : hi(V̂i(t), Ŵi(t)) = 0}

h1(V1) =V1 − V M
1 h5(V2) =V2 − V M

2

h2(V1) =V m
1 − V1 h6(V2) =V m

2 − V2

h3(W1) =W1 − V M
1 h7(W2) =W2 − V M

2

h4(W1) =V m
1 −W1 h8(W2) =V m

2 −W2

and

q1(t) = p1(t)− µ1{[0, t[}+ µ2{[0, t[}
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q2(t) = p2(t)− µ3{[0, t[}+ µ4{[0, t[}
q3(t) = p3(t)− µ5{[0, t[}+ µ6{[0, t[}
q4(t) = p4(t)− µ7{[0, t[}+ µ8{[0, t[}
q5(t) = p5(t)

q6(t) = p6(t), ∀t ∈ [0, τ ]

Using the data (5.11), we get the following information based on the analysis of the

necessary conditions.

(ii) p1(t) = p1(0)− 2λt

p2(t) = p2(0)− 20λt

p3(t) = p3(0)

p4(t) = p4(0)

p5(t) = 2λ

p6(t) = 20λ

(iii) p2(0) = p1(0)− 12λ− µ1{[0, τ ]}+ µ2{[0, τ ]} − 18λ(3 + V̂1(τ))

p4(0) = p3(0)− µ5{[0, τ ]}+ µ6{[0, τ ]} − 18λ(1 + 2V̂2(τ))

36λ(V̂2(0)− V̂2(τ))− µ7{[0, τ ]}+ µ8{[0, τ ]} − µ5{[0, τ ]}+ µ6{[0, τ ]} = 0

−132λ+ 18λ(V̂1(0)− V̂1(τ))− µ3{[0, τ ]}+ µ4{[0, τ ]} − µ1{[0, τ ]}+ µ2{[0, τ ]} = 0

(iv)

H(t) = max
u1,w1,

u2,w2∈U

(−p1(0) + 2λt+ p3(0) + µ1{[0, t[} − µ2{[0, t[} − µ5{[0, t[}+ µ6{[0, t[}) u1(t)

+ (−p2(0) + 20λt+ µ3{[0, t[} − µ4{[0, t[}+ p4(0)− µ7{[0, t[}+ µ8{[0, t[})w1(t)

+ (−p3(0) + µ5{[0, t[} − µ6{[0, t[}) u2(t)

+ (−p4(0) + µ7{[0, t[} − µ8{[0, t[})w2(t)

where U = [um
1 , u

M
1 ].

In Figure 5.4 the numerical optimal trajectories V̂1, Ŵ1 and V̂2, Ŵ2, are presented.

We define some instants that are crucial: θ1, θ2 and θ3. These instants coincide with

changes of the controls behavior.
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According to the numerical solution we have:

û1(t) =







−1, t ∈ [0, θ1[

0, t ∈ [θ1, θ2[

1, t ∈ [θ2, τ ],

ŵ1(t) =







1, t ∈ [0, θ3[

2, t ∈ [θ3, τ ],

û2(t) = 0, t ∈ [0, τ ], ŵ2(t) = 2, t ∈ [0, τ ].

So, we can define the state variables as

V̂1(t) =







V̂1(0) + 2t, t ∈ [0, θ1[

V̂1(0) + θ1 + t, t ∈ [θ1, θ2[

V M
1 , t ∈ [θ2, τ [,

Ŵ1(t) =







V M
1 , t ∈ [0, θ3[

V M
1 + θ3 − t, t ∈ [θ3, τ ],

V̂2(t) =







V̂2(0)− t, t ∈ [0, θ1[

V m
2 , t ∈ [θ1, θ2[

V m
2 − θ2 + t, t ∈ [θ2, τ [,

Ŵ2(t) =







Ŵ2(0)− t, t ∈ [0, θ3[

Ŵ2(0)− θ3, t ∈ [θ3, τ ].

From the continuity of V̂1(t) and V̂2(t), it comes

V̂1(0) + θ1 + θ2 = V M
1

and

V̂2(0)− θ1 = V m
2 = 0⇒ V̂2(0) = θ1.

We proceed with the analysis on main subintervals of the interval [0, τ ] :

Observe that the measures µ1, µ3 and µ7 are null since the corresponding state

constraints are never active. The measure µ6 is concentrated at t = τ

• t ∈ [0, θ1[:

Here µ2 = µ5 = 0.

Also,

H(t) = max
ui,wi∈U
i=1,2

(−p1(0) + 2t+ p3(0)) u1 + (−p3(0)) u2 + (−p4(0)− µ8{0})w2

+ (−p2(0) + 20t− µ4{[0, t[}+ p4(0) + µ8{0})w1
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∗ ū1(t) = −1, then −p1(0) + 2t+ p3(0) ≤ 0⇒ −p1(0) + p3(0) < 0.

∗ w̄1(t) = 1, then −p2(0) + 20t− µ4{[0, t[}+ p4(0) + µ8{0} = 0.

∗ ū2(t) = 0, then p3(0) ≥ 0 (⇒ p1(0) > 0).

∗ w̄2(t) = 2, then p4(0) + µ8{0} ≤ 0⇒ p4(0) ≤ 0.

• t ∈ [θ1, θ3[:

Here µ2 = 0 on every subset of [0, θ3[, µ5{[0, t[} = µ5{[θ1, t[} and µ8{[0, t[} =

µ8{0}.

H(t) = max
ui,wi∈U
i=1,2

(−p1(0) + 2t+ p3(0)− µ5{[θ1, t[}) u1 + (−p3(0) + µ5{[θ1, t[}) u2

+ (−p2(0) + 20t− µ4{[0, t[}+ p4(0) + µ8{0})w1 + (−p4(0)− µ8{0})w2

∗ ū1(t) = 0, then µ5{[θ1, t[} = −p1(0) + 2t+ p3(0) ≥ 0.

∗ w̄1(t) = 1, then −p2(0) + 20t− µ4{[0, t[}+ p4(0) + µ8{0} = 0.

∗ ū2(t) = 0, then −p3(0) + µ5{[θ1, t[} ≤ 0⇔
−p3(0)− p1(0) + 2t+ p3(0) ≤ 0 ⇒ p1(0) ≥ 2θ3.

∗ w̄2(t) = 2, then p4(0) + µ8{0} ≤ 0⇒ p4(0) ≤ 0.

Since p3(0)−p1(0)+2t ≤ 0, ∀ t ∈ [0, θ1[ and p3(0)−p1(0)+2t ≥ 0, ∀ t ∈ [θ1, θ2[

then p3(0)− p1(0) + 2θ1 = 0⇔ p3(0)− p1(0) = −2θ1.

• t ∈ [θ3, θ2[:

µ2 = 0 on every subset of [0, θ2[, µ4{[0, t[} = µ4{[0, θ3]}, µ5{[0, t[} = µ5{[θ1, t[},
µ8{[0, t[} = µ8{0}.

H(t) = max
ui,wi∈U
i=1,2

(−p1(0) + 2t+ p3(0)− µ5{[θ1, t[}) u1 + (−p3(0) + µ5{[θ1, t[}) u2

+ (−p2(0) + 20t− µ4{[0, θ3]}+ p4(0) + µ8{0})w1 + (−p4(0)− µ8{0})w2

∗ ū1(t) = 0, then µ5{[θ1, t[} = −p1(0) + 2t+ p3(0)⇒ µ5{[θ1, t[} = 2(t− θ1).

∗ w̄1(t) = 2, then −p2(0) + 20t− µ4{[0, θ3]}+ p4(0) + µ8{0} ≥ 0.
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∗ ū2(t) = 0, then p3(0) ≥ µ5{[θ1, t[} = 2(t− θ1).

∗ w̄2(t) = 2, then p4(0) + µ8{0} ≤ 0⇒ p4(0) ≤ 0.

• t ∈ [θ2, τ [:

µ2{[0, t[} = µ2{[θ2, t]},
µ4{[0, t[} = µ4{[0, θ3]}, µ5{[0, t[} = µ5{[θ1, θ2[} and µ8{[0, t[} = µ8{0}

H(t) = max
ui,wi∈U
i=1,2

(−p1(0) + 2t+ p3(0)− µ2{[θ2, t[} − µ5{[θ1, θ2]}) u1

+ (−p2(0) + 20t− µ4{[0, θ3]}+ p4(0) + µ8{0})w1

+ (−p3(0) + µ5{[θ1, θ2]}) u2 + (−p4(0)− µ8{0})w2

∗ ū1(t) = 1, then −p1(0) + 2t+ p3(0)− µ2{[θ2, t[} − µ5{[θ1, θ2]} = 0.

∗ w̄1(t) = 2, then −p2(0) + 20t− µ4{[0, θ3]}+ p4(0) + µ8{0} ≥ 0.

∗ ū2(t) = 0, then p3(0) ≥ µ5{[θ1, θ2]}.
∗ w̄2(t) = 2, then p4(0) + µ8{0} ≤ 0⇒ p4(0) ≤ 0.

As µ2{[θ2, t[} = −p1(0)+2t+p3(0)−µ5{[θ1, θ2[}−µ5{θ2}, µ5{[θ1, θ2[} = 2(θ2−θ1)

and p3(0)−p1(0) = −2θ1, then we have µ2{[θ2, t[} = 2t−2θ1−2(θ2−θ1)−µ5{θ2} =
2(t− θ2)− µ5{θ2}.
Applying limits when t ↓ θ2 (t → θ2, t > θ2), it comes µ2{θ2} = −µ5{θ2} ⇒
µ5{θ2} = 0, µ2{θ2} = 0.

From the periodic constraints, we have







V̂1(0) = Ŵ1(τ)

V̂1(τ) = Ŵ1(0)

V̂2(0) = Ŵ2(τ)

V̂2(τ) = Ŵ2(0)

⇔







10− θ1 − θ2 = 4 + θ3

10 = 10

θ1 = Ŵ2(0)− θ3

6− θ2 = Ŵ2(0)

Since Ŵ2(t) starts on the lower boundary, Ŵ2(0) = 2 and we have

θ2 = 4 θ1 + θ3 = 2.
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The information above and transversality conditions lead to:

µ6{τ} − 16− 38θ1 + µ8{0} = 0

p2(0) = p1(0) + µ2{[θ2, τ ]} − 246

µ8{0}+ µ6{τ} = 80− 38θ1

p4(0) = p1(0)− 98 + µ6{τ}

And we conclude that θ1 = 16/19, θ3 = 22/19 and p2(0) = p1(0)− 242.

Take µ6{τ} = 0 and p1(0) = 8. We obtain a possible set of multipliers that satisfy all

the necessary conditions of optimality.

The trajectories V̂1, V̂2 can now be completely defined on the whole interval [0, T ]

(remember that Ŵ1(t) = V̂1(6 + t) and Ŵ2(t) = V̂2(6 + t)):

V̂1(t) =







98
19

+ 2t, t ∈ [0, θ1[

114
19

+ t, t ∈ [θ1, θ2[

10, t ∈ [θ2, 6 + θ3[

16 + 22
19
− t, t ∈ [6 + θ3, 12],

V̂2(t) =







16
19
− t, t ∈ [0, θ1[

0, t ∈ [θ1, θ2[

t− 4, t ∈ [θ2, 6[

8− t, t ∈ [6, 6 + θ3[

16
19
, t ∈ [6 + θ3, 12].

The values of θ1, θ2 and θ3 were determined exactly:

θ1 =
16

19
, θ2 = 4, θ3 = 22/19.

The set of multipliers can be defined as:

µ1, µ3, µ6, µ7 ≡ 0 µ2{[θ2, t[} = 2(t− θ2) µ8{0} = 48δ{0}

µ4{[0, t[} =







192 + 20t, t < θ3

192 + 20θ3, t ≥ θ3,
µ5{[θ1, t[} =







0, t ≤ θ1

2(t− θ1), θ1 < t < θ2

2(θ2 − θ1), t ≥ θ2.

λ = 1

p1(t) = 8− 2t p2(t) = −234− 20t p3(t) = 8− 32
19

p4(t) = −90 p5(t) = 2 p6(t) = 20, t ∈ [0, 6].
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Here δ{0} denotes the unit measure concentrated at t = 0.

To completely validate (û, V̂ ) as a local minimizer, we analyze sufficient conditions of

optimality.

5.2.1.3 Sufficient conditions of optimality

We specify the conditions of Theorem 4.2.2 for our problem with 2 reservoirs and we

verify that these conditions are satisfied for the reference pair (û(·), V̂ (·)) displayed at
the end of last section. To do that, the formulation (P2) will be under consideration:

(P2) min −
[
A1

S1

∫ T

0

c(t)V1(t)dt + (H1 −H2)

∫

]0,T ]

V1(t)dc(t)

+
1

2S1

∫

]0,T ]

V 2
1 (t)dc(t) +H2

∫

]0,T ]

(V2(t) + V1(t)) dc(t)

+
1

2S2

∫

]0,T ]

V 2
2 (t)dc(t)

]

,

s.t. V̇1(t) = A1 − u1(t), a.e. t ∈ [0, T ]

V̇2(t) = u1(t)− u2(t), a.e. t ∈ [0, T ]

Vi(0) = Vi(T ),

V m
i ≤ Vi(t) ≤ V M

i , ∀t ∈ [0, T ]

um
i ≤ ui(t) ≤ uM

i , a.e. t ∈ [0, T ]

for i = 1, 2 and c(t) given by (2.4) with τ = T/2.

Theorem 5.2.1. Let (ûk(·), V̂k(·)), k = 1, 2, be a control process. Assume that the

following conditions are satisfied:

1. there exist right continuous functions p1(·), p2(·) ∈ BV ([0, T ], R) and piecewise

absolutely continuous functions ηk(·), k = 1, 2, satisfying

dp1(t) = −
A1

S1

c(t) dt−H1 dc(t)−
V̂1(t)

S1

dc(t) + dη1,
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dp2(t) = −H2 dc(t)−
V̂2(t)

S2

dc(t) + dη2,

p1(0) = p1(T ), p2(0) = p2(T ),

η1(t) = ν1(t) + ∆η1(τ)H(t− τ) + ∆η1(T )H(t− T ),

η2(t) = ν2(t) + ∆η2(τ)H(t− τ) + ∆η2(T )H(t− T ),

where ν1(·), ν2(·) ∈ AC([0, T ],R), ∆ηi(τ), ∆ηi(T ), i = 1, 2 are constants, and

H(·) stands for the Heaviside step function;

2. the equality

max
uk∈[u

m
k
,uM

k
], k=1,2

u1(−p1(t)+p2(t))+u2(−p2(t)) = û1(−p1(t)+p2(t))+ û2(−p2(t)),

holds a.e. t∈ [0, T ];

3. the functions ν1(·), ν2(·), satisfy the inequalities

dνk(t) ≤ 0, if V̂k(t) = V m
k

dνk(t) ≥ 0, if V̂k(t) = V M
k

dνk(t) = 0, if V̂k(t) ∈]V m
k , V M

k [

for k = 1, 2;

4. if c1 < c2, then for all k = 1, 2 and τq ∈ {τ, T}, the inequalities

∆ηk(τq) < 0, if V̂k(τq) = V m
k ,

∆ηk(τq) > 0, if V̂k(τq) = V M
k and

∆ηk(τq) = 0, if V̂k(τq) ∈]V m
k , V M

k [ hold;

5. if V̂k(t) ∈]V m
k , V M

k [ for some k, then dc(t) ≤ 0.

Then

J(û(·) + ū(·), V̂ (·) + V̄ (·)) ≥ J(û(·), V̂ (·))

wherever (ûk(·)+ūk(·), V̂k(·)+V̄k(·)), k = 1, 2, is an admissible process and maxk=1,2 |V̄k(τ)|
is sufficiently small.

Taking into account the position of V̂1(t) and V̂2(t) relative to the boundary of admis-
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sible volume sets, we can write

∫

]0,T ]

dη1(t) =

∫

[θ2,τ+θ3]

dη1(t) and

∫

]0,T ]

dη2(t) =

∫

[θ1,θ2]

dη2(t) + ∆η2{τ}

From 1. of Theorem 5.2.1, we have

p1(t) =p1(0)−
∫

]0,t]

A1c(t)

S1

dt+

∫

]0,t]

dη1(τ)−
∫

]0,t]

(

H1 +
V̂1(t)

S1

)

dc(t)

p2(t) =p2(0)−
∫

]0,t]

(

H2 +
V̂2(t)

S2

)

dc(t) +

∫

]0,t]

dη2(τ)

and from the periodicity condition p1(0) = p1(T ) we obtain

∫

]0,T ]

dη1(t) =
A1T (c1 + c2)

2S1

+
(c2 − c1)

S1

(

V M
1 − V̂1(T )

)

∫

]0,T ]

dη2(t) =
(c2 − c1)

S2

(V M
2 − V̂2(T ))

Analysis of condition 2. leads to

p2(0) ≥ 0 and p1(0) ≥
A1c1θ1
S1

+ p2(0) ≥ 0 (5.12)

∫

[θ1,t]

dη2(τ) = p1(0)−
A1c1
S1

t− p2(0) ≤ 0 and

∫

[θ1,t]

dη2(τ) ≥ −p2(0), t ∈ [θ1, θ2[

(5.13)

From the last two inequalities, we get p1(0) ≥
A1c1
S1

t.

Considering the first inequality of (5.13), taking the limit when t ↓ θ1 we obtain

p1(0) ≤
A1c1θ1
S1

+ p2(0) (5.14)

From (5.12) and (5.14), it comes

p1(0) =
A1c1θ1
S1

+ p2(0) (5.15)

and with (5.13) we conclude

∫

[θ1,t]

dη2(t) =
A1c1
S1

(θ1 − t), t ∈ [θ1, θ2[. (5.16)
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Also from condition 2. and (5.15), we can write

∫

[θ2,t]

dη1(t) =
A1c1
S1

(t− θ1) +

∫

[θ1,θ2]

dη2(t) ≤ 0, t ∈ [θ2, τ [. (5.17)

From 5.16 and 5.17 it comes

∫

[θ2,t]

dη1(t) =
A1c1
S1

(t− θ2) t ∈ [θ2, τ [.

Condition 2. conveys that for t ∈ [τ, θ3[,

∫

[θ2,t]

dη1(t) =
A1c1
S1

(τ−θ1)+
A1c2
S1

(t−τ)+
(

H1 +
V M
1

S1

−H2 −
V̂2(T )

S2

)

(c2−c1) (5.18)

p2(0) ≤
(

H2 +
V̂2(T )

S2

)

(c2 − c1) (5.19)

− A1c1θ1
S1

+
A1c2
S1

(t− T ) +

(

H1 +
V̂1(T )

S1

−H2 −
V̂2(T )

S2

)

(c2 − c1) ≥ 0, t ∈ [θ3, T [

(5.20)

p1(0) +
A1c2
S1

(t− T ) +

(

H1 +
V̂1(T )

S1

)

(c2 − c1) ≥ 0, t ∈ [θ3, T [. (5.21)

The above information allow us to express p1, p2,

∫

[0,t[

dη1(t),

∫

[0,t[

dη2(t) as follows:

p1(t) =







p1(0)−
A1c1
S1

t, t ∈ [0, θ2[

p1(0)−
A1c1θ2
S1

, t ∈ [θ2, τ [

p1(0)−
A1c1θ1
S1

− (c2 − c1)

(

H2 +
V̂2(T )

S2

)

, t ∈ [τ, θ3[

p1(0)−
A1c2θ1
S1

− (c2 − c1)

(

H1 +
V̂1(T )

S1

)

, t ∈ [θ3, T [
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p2(t) =







p1(0)−
A1c1θ1
S1

, t ∈ [0, θ1[

p1(0)−
A1c1
S1

t, t ∈ [θ1, θ2[

p1(0)−
A1c1
S1

θ2, t ∈ [θ2, τ [

p1(0)−
A1c1θ1
S1

− (c2 − c1)

(

H2 +
V̂2(T )

S2

)

, t ∈ [τ, T [

∫

[0,t]

dη1(t) =







0, t ∈ [0, θ2[
A1c1
S1

(t− θ2), t ∈ [θ2, τ [

A1c1
S1

(τ − θ1) +
A1c2
S1

(t− τ) + (c2 − c1)

(

H1 −H2 +
V M
1

S1

− V̂2(T )

S2

)

,

t ∈ [τ, θ3[

A1T

2S1

(c1 + c2) + (c2 − c1)

(

V M
1 − V̂1(T )

S1

)

, t ≥ θ3

and

∫

[0,t]

dη2(t) =







0, t ∈ [0, θ1[
A1c1
S1

(θ1 − t), t ∈ [θ1, θ2[

A1c1
S1

(θ1 − θ2), t ∈ [θ2, τ [

(c2 − c1)

(

V M
2 − V̂2(T )

S2

)

, t ≥ τ.

Assuming that p1(0) =
A1c1θ2
S1

and using the data (5.11) we can write:

λ =1

p1(t) =







8− 2t, t ∈ [0, θ2[

0, t ∈ [θ2, τ [

−10− 38θ1, t ∈ [τ, θ3[

86− 20t+ 18θ1, t ∈ [θ3, T [

p2(t) =







8− 2θ1, t ∈ [0, θ1[

8− 2t, t ∈ [θ1, θ2[

0, t ∈ [θ2, τ [

−10− 38θ1, t ∈ [τ, T [
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∫

[0,t[

dη1(t) =







0, t ∈ [0, θ2[

2t− 8, t ∈ [θ2, τ [

−38θ1 + 20t+ 108, t ∈ [τ, θ3[

204 + 18θ1, t ≥ θ3

∫

[0,t[

dη2(t) =







0, t ∈ [0, θ1[

2(θ1 − t), t ∈ [θ1, θ2[

2(θ1 − 4), t ∈ [θ2, τ [

72− 18θ1, t ≥ τ

where θ1 = 16/19, θ2 = 4, θ3 = 8− θ1 V̂1(0) = 6− θ1 and V̂2(0) = 6− θ1.

In [0, θ2[∪]θ3, T ], V̂1(t) ∈]V m
1 , V M

1 [. Also in [0, θ1[∪]θ2, τ [∪]τ, T ], V2(t) ∈]V m
2 , V M

2 [ and

in these intervals dν1(t) = 0 and dν2(t) = 0 respectively. So condition 3. is satisfied.

In [θ2, θ3], V1(t) = V M
1 and dν1(t) ≥ 0. In [θ1, θ2] we have V2(t) = V m

2 and dν2(t) ≤ 0.

Then (3) is verified.

Furthermore, V̂1(τ) = V M
1 and ∆η1(τ) = 176 > 0. Also V̂2(τ) = V M

2 and ∆η2(τ) =

59 > 0. So condition 4. is also verified.

Condition 5. is obviously true, since V1(t) ∈]V m
1 , V M

1 [ in [0, θ2[∪]θ3, T ], V2(t) ∈
]V m

2 , V M
2 [ in [0, θ1[

⋃
]θ2, τ [

⋃
]τ, T [ and in these intervals dc(t) = 0.

We conclude that (û, V̂ ) is in fact a local minimizer for the problem.

5.2.2 Case study 2

Problem (P2) is here considered with objective function in original form (2.2):

min
N∑

k=1

∫ T

0

−c(t)
[

u1(t)

(
V1(t)

S1

+H1 −
V2(t)

S2

−H2

)

+ u2(t)

(
V2(t)

S2

+H2

)]

,

s.t. V̇1(t) = A1 − u1(t), a.e. t ∈ [0, T ]

V̇2(t) = u1(t)− u2(t), a.e. t ∈ [0, T ] (5.22)

Vi(0) = Vi(T ),

Vi(t) ∈ [V m
i , V M

i ], ∀ t ∈ [0, T ]

ui(t) ∈ [um
i , u

M
i ], a.e. t ∈ [0, T ], for i = 1, 2.
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The analysis made in this section is published in [40].

5.2.2.1 Numerical Results

Problem (5.22) is analyzed considering now the following data:

um
1 = −0.351 uM

2 = 0.8316 V m
2 = 48.3 H2 = 1 c1 = 2 T = 24

uM
1 = 0.44496 V m

1 = 86.7 V M
2 = 66 S2 = 44.5 c2 = 20

um
2 = 0 V M

1 = 147 H1 = 3 S1 = 81.7 A = 0.158

(5.23)

We take once more τ = T/2.

Figure 5.6 represents the numerical solution.

The picture represents V1, V2, u1, u2 on the whole interval [0, T ]. We didn’t split the

interval on two as in case study 1.
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Figure 5.6: Numerical results - real data
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The profile of the optimal solution is different from case 1. Now, the trajectory V̂1(·)
only touches the upper boundary at instant t = τ . V̂2(·) doesn’t attain the maximum

value allowed and it has an irregular behavior in the second part of the interval ([τ, T ]),

which is a consequence of the irregular behavior of the control function u2(·).

It is clear from the objective function written as in (5.10) (equivalent form for (5.22))

that changes on the trajectory V̂2(t) that maintain the values of V̂2(0)(=V̂2(T )) and

V̂2(τ), do not affect the cost. The optimal trajectory V̂2(·) on the interval [τ, T ] is

not unique (a more detailed analysis will be presented in the next subsection). This

explains the irregular behavior of û2 and V̂2 on Figure 5.6.

5.2.2.2 Infinity of solutions

Let us see that the optimal trajectory V̂2(t) for problem (P2) with data (5.23) is not

unique. This explains the irregular behavior of û2 and V̂2 on Figure 5.6. Indeed, using

the fact that u1(t) = uM
1 , t ∈ [τ, T ] and V1(τ) = V M

1 , V2(τ) = V m
2 , it is possible to

write any admissible trajectory (V1(·), V2(·)) as:

V1(T ) =V1(τ)−
∫ T

τ

(A− uM
1 )dt, for t ∈ [τ, T ]

=V M
1 − (A− uM

1 )τ

V2(T ) =V2(τ)−
∫ T

τ

(uM
1 − u2(t))dt, for t ∈ [τ, T ]

=V m
2 − uM

1 τ +

∫ T

τ

u2(t)dt

Observe that the cost function in (5.10) only depends on V2(τ) and V2(0)(= V2(T )).

The values V̂2(τ) and V̂2(0) can be attained by more than one V2(·), while (u2(·), V2(·))
remains admissible.

Take u2(t) = const = ū2, for t ∈ [τ, T ]. If

ū2 =
1

T − τ

(

V̂2(T )− V m
2 + τuM

1

)

(5.24)

then V2(T ) = V̂2(T ).

For our particular data (5.23), this value ū2 belongs to the interval ]um
2 , u

M
2 [ and V2(·)

is admissible. This gives rise to another optimal solution for the problem.

Furthermore, we can show that there is an infinity of solutions to the problem. Take
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the above ū2 which is admissible. Define a piecewise constant function u2(t) such that

u2(t) =







α, t ∈ [τ, γ[

β, t ∈ [γ, T ]

with γ, α, β constants, and

∫ T

τ

u2(t)dt = ū2τ,

where ū2 is defined in (5.24).

Then

∫ T

τ

u2(t)dt =

∫ γ

τ

αdt+

∫ T

γ

βdt

=αγ + β(τ − γ)

=ū2τ

γ =
T (ū2 − β)

2(α− β)

This equation has an infinity of solutions (γ, α, β) with γ ∈]τ, T [, α, β ∈ [um
2 , u

M
2 ] and

V2(t) admissible.

The cost function keeps the same value for all control functions u2(t) defined in such

way.

5.2.2.3 Necessary conditions of optimality

Observing the previous numerical results, we can write:

û1(t) =







um
1 , for t ∈ [0, θ[

0, for t ∈ [θ, τ [

uM
1 , for t ∈ [τ, T ],

û2(t) =







0, for t ∈ [0, τ [

w2(t), for t ∈ [τ, T ]
(5.25)

where θ ∈]0, τ [ is the instant of change of control behavior.
Since V̂2(·) is not unique and û2(·) has an irregular behavior, we don’t fix the value of
the control on the interval [τ, T ].

Also,

V1(τ) = V M
1 and V2(θ) = V m

2 (5.26)
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and

V̂1(t) =







V̂1(0) + (A1 − um
1 )t, t ∈ [0, θ[

V̂1(θ) + A1(t− θ), t ∈ [θ, τ [

V M
1 + (A1 − uM

1 )(t− τ), t ∈ [τ, T ],

V̂2(t) =







V̂2(0) + um
1 t, t ∈ [0, θ[

V m
2 , t ∈ [θ, τ [

V m
2 + uM

1 (t− τ)− w(t), t ∈ [τ, T ],

where w(t) =

∫ t

τ

w2(s)ds and w2(s) ∈ [um
2 , u

M
2 ].

From (5.26) and description of V̂1, V̂2 above we get

V̂1(0) = V M
1 + um

1 θ − A1τ and V̂2(0) = V m
2 − um

1 θ. (5.27)

Also, from the periodic constraints Vi(0) = Vi(T ), i = 1, 2 we can deduce that

θ =
τ(2A1 − uM

1 )

um
1

and

∫ T

τ

w2(s)ds = A1T. (5.28)

Applying necessary conditions we get (see formulation (5.22)):

(i) (p, µ, λ) 6= (0, 0, 0), p = (p1, p2), µ = (µ1, µ2, µ3, µ4) ,

(ii) p1(t) = p1(0)−
λ

S1

∫ t

0

c(t)u1(s)ds,

p2(t) = p2(0) +
λ

S2

∫ t

0

c(t)(u1(s)− u2(s))ds,

(iii) p1(0) = p1(T )− µ1{[0, T ]}+ µ2{[0, T ]},

p2(0) = p2(T )− µ3{[0, T ]}+ µ4{[0, T ]}.

(iv) The following maximum is attained when u1 = û1(t) and u2 = û2(t), a.e. t ∈
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[0, T ]:

max
ui∈U
i=1,2

u1

(

− p1(t) + µ1{[0, t[} − µ2{[0, t[}+ p2(t)− µ3{[0, t[}+ µ4{[0, t[}

+λc(t)

(

V̂1(t)

S1

+H1 −H2 −
V̂2(t)

S2

))

+u2

(

− p2(t) + µ3{[0, t[} − µ4{[0, t[}+ λc(t)

(

V̂2(t)

S2

+H2

))

(v) supp {µi} ⊂ Ii, i = 1, 4, where

I1 = {t ∈ [0, T ] : V1(t) = V m
1 } I2 = {t ∈ [0, T ] : V1(t) = V M

1 }

I3 = {t ∈ [0, T ] : V2(t) = V m
2 } I4 = {t ∈ [0, T ] : V2(t) = V M

2 }

where p1, p2 are absolutely continuous functions, µ1, µ2, µ3, µ4 are nonnegative Borel

measures and λ is a non-negative real number ( we will assume that λ = 1).

Observe that V̂1(t) 6= V m
1 and V̂2(t) 6= V M

2 , ∀t, so we have µ1 ≡ µ4 ≡ 0. Since

V̂1(t) = V M
1 only at t = τ , we can write µ2{[0, T ]} = µ2{τ}. From (ii), (iii) and (v)

we get

µ2{[0, T ]} =
c1u

m
1 θ

S1

+
c2u

M
1 τ

S1

, µ3{[0, T ]} =
c1u

m
1 θ

S2

+
c2u

M
1 τ

S2

− c2
S2

∫ T

τ

w2(s)ds. (5.29)

Information expressed by condition (iv) is analyzed separately on [0, θ[, [θ, τ [ and

[τ, T ]. The signals of coefficients of u1, u2 in (iv) determines the values of û1 and û2.

We are departing from assumed û1 and û2, so, we obtain in this case those signals.

On what follows we use (ii) and write the expressions in terms of p1(0) and p2(0).

To make the reading easier we define α =

(

V̂1(0)

S1

+H1 −
V̂2(0)

S2

−H2

)

.

• On [0, θ[:

µ2{[0, θ[} = µ3{[0, θ[} = 0. As û1(t) = um
1 and û2(t) = um

2 = 0, we have

A1c1θ

S1

− p1(0) + p2(0) + c1α ≤ 0 − p2(0) +
c1V̂2(0)

S2

+ c1H2 ≤ 0. (5.30)
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• On [θ, τ [:

µ2{[0, τ [} = 0 . As û1(t) = 0 ∈]um
1 , u

M
1 [ and û2(t) = um

2 we get

A1c1t

S1

− p1(0) + p2(0) + c1α = µ3{[θ, t[} ≥ 0. (5.31)

Taking the limit when t ↓ θ (t→ θ, t > θ) in the above expression, we obtain

A1c1θ

S1

− p1(0) + p2(0) + c1α ≥ 0. (5.32)

From (5.30) and (5.32) we have

A1c1θ

S1

− p1(0) + p2(0) + c1α = 0. (5.33)

Consider now û2(t) = 0 = um
2 . From (iv), (5.31) and (5.33), we get

A1c1t

S1

− p1(0) + c1

(

V̂1(0)

S1

+H1

)

≤ 0.

The function on the left-hand side of the last inequality is increasing and continuous.

The inequality is satisfied ∀ t ∈ [θ, τ [ if and only if it is satisfied for t = τ . We can

write

p1(0) ≥ c1

(

A1τ

S1

+
V̂1(0)

S1

+H1

)

. (5.34)

• On [τ, T [:

µ2{[0, T ]} = µ2{τ}; û1(t) = uM
1 . After some calculus, we conclude from (iv)

− p1(0) +
c2
S1

(
−uM

1 τ − um
1 θ + A1t

)
+ p2(0) +

c2
S2

(
A1T − uM

1 τ − um
1 θ
)
+ c2α ≥ 0.

(5.35)

Choosing V̂2(t) and û2(t) admissible, such that V̂2(t) ∈]V m
2 , V M

2 [ and û2(t) ∈]um
2 , u

M
2 [, ∀ t[τ, T ]

we obtain µ3{[0, T ]} = µ3{[θ, τ ]}. Figure 5.6 shows one such trajectory. We get, also
from (iv),

p2(0) =
c2
S2

(

uM
1 τ − A1T + V̂2(0) + um

1 θ
)

+ c2H2. (5.36)

Now, looking at the conclusions above, we can easily obtain:

• V̂1(0), V̂2(0) and θ written in terms of data of the problem (see (5.27) and (5.28))
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• p2(0) written in terms of the data of the problem (see (5.36))

• p1(0) (see (5.33))

• equations defining µ3{[0, t[} = µ3{[θ, t[} and µ3{[0, T ]} (see (5.31) and (5.29))

• equation defining µ2{[0, T ]} = µ2{τ} (see (5.29))

Using the data of the problem and the above information we can write

V̂1(t)=







143.56 + 0.51t, t ∈ [0, θ[

145.1 + 0.16t, t ∈ [θ, τ [

147− 0.287(t− 12), t ∈ [τ, T ],

V̂2(t)=







49.85− 0.351t, t ∈ [0, θ[

48.3, t ∈ [θ, τ [

48.3 + 0.44496(t− 12)− w(t), t ∈ [τ, T ],

where w(t) =
t∫

τ

w2(s)ds and θ = 4.4.

The multipliers p1 and p2 are now completely determined. The inequalities (5.34) and

(5.35) must also be satisfied. For data (5.23), p1 and p2 can be defined as

p1(t) =







47.69 + 0.0086t, t ∈ [0, θ[

47.73, t ∈ [θ, τ [

49.04− 0.11t, t ∈ [τ, T ],

p2(t) =







42.4− 0.016t, t ∈ [0, θ[

42.33, t ∈ [θ, τ [

39.93 + 0.19t− 0.45w(t), t ∈ [τ, T [

43.03, t = T

and we can write

µ2{[0, t[} =







0, t ∈ [0, τ [∪]τ, T ]
1.27, t = τ,

µ3{[0, t[} =







0, t ∈ [0, θ[∪]τ, T ]
0.004t− 0.02, t ∈ [θ, τ [

0.63, t = τ,

where w(T ) =

∫ T

τ

w2(s)ds = 3.79, V1(0) = 143.56 and V2(0) = 49.85.

Figure 5.7 overlaps the numerical solution with the analytical solution. These solutions

are the same with exception of V2(t) on [τ, T ]. As outlined before, the solution is not

unique on that set.
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Figure 5.7: Numerical results vs. analytical results

5.2.2.4 Sufficient conditions of optimality

We now prove that the sufficient conditions of optimality stated in Theorem 5.2.1 are

satisfied by some set of multipliers when the reference process is (û(·), V̂ (·)) of the
previous section. The formulation under consideration is (P2) (see section 5.2.1.3).

Taking into account the profile of V̂1(t) and V̂2(t), we can write
∫

[0,T ]

dη1(t) = ∆η1(τ) and

∫

[0,T ]

dη2(t) =

∫

[θ,a]

dη2(t).

From (5.27) and (5.28), θ = 4.4, V1(0) = 143.56 and V2(0) = 49.85.

Now, from condition 1.

p1(t) = p1(0)−
A1

S1

∫ t

0

c(t)dt+

∫

]0,t]

dη1(t)−
∫

]0,t]

(

H1 +
V̂1(t)

S1

)

dc(t),

p2(t) = p2(0)−
∫

]0,t]

(

H2 +
V̂2(t)

S2

)

dc(t) +

∫

]0,t]

dη2(t)

and from the periodicity condition p1(0) = p1(T ) we deduce

∫

]0,T ]

dη1(t) =
A1τ(c1 + c2)

S1

+
(c2 − c1)

S1

(

V M
1 − V̂1(T )

)

,

∫

]0,T ]

dη2(t) =
(c2 − c1)

S2

(V m
2 − V̂2(T )).

Analysis of condition 2. and 3. of Theorem 5.2.1 leads to



86 CHAPTER 5. EXAMPLES

p1(0) ≥
A1c1t

S1

+ p2(0) ≥ 0 a.e. t ∈ [0, θ[ and p2(0) ≥ 0 (5.37)

∫

[θ,t]

dη2(s) = p1(0)− p2(0)−
A1c1t

S1

≤ 0 a.e. t ∈ [θ, τ [ (5.38)

∫

]0,t]

dη1(s) = 0 p2(0) ≥ −
∫

[θ,t]

dη2(s) a.e. t ∈ [θ, τ [

From (5.37) and (5.38) we obtain p1(0) = p2(0) +
A1c1θ

S1

.

From conditions 3. and 4. of Theorem 5.2.1 we have

∫

]0,t]

dη1(s) = ∆η1(τ) and

∫

[θ,t]

dη2(s) ≤ 0, ∀t ∈ [τ, T [.

Due to the infinity of solutions for V2(t) on [τ, T ], we can write, for t ∈ [τ, T [

−p2(t) = 0⇒ p2(0) = (c2 − c1)

(

H2 +
V m
2 − um

1 θ

S2

)

−p1(0) + p2(0) + (c2 − c1)

(

H1 +
V̂1(T )

S1

−H2 −
V̂2(T )

S2

)

+
A1c2(t− T )

S1

≥ 0.

Working the above information and the data of the problem we can write:

λ = 1 and

p1(t) =







38.18 + 0.0039t, t ∈ [0, τ [

−0.04t− 46.52, t ∈ [τ, T [

38.18, t = T,

p2(t) =







38.16, t ∈ [0, θ[

38.18− 0.004t, t ∈ [θ, τ [

0, t ∈ [τ, T [

38.16, t = T,

∫

]0,t]

dη1(s) =







0, t < τ

1.27, t ≥ τ,

∫

]0,t]

dη2(s) =







0, t < θ

−0.004t+ 0.02, t ∈ [θ, τ [

−0.63, t ≥ τ.

These multipliers were calculated taking into consideration conditions 1. and 2.

of Theorem 4.2.2 essentially. Let us check that conditions 3., 4. and 5. are fully

accomplished.
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In [0, τ [
⋃
]τ, T ], V̂1(t) ∈]V m

1 , V M
1 [ and we have dν1(t) = 0. For t = τ , V̂1(τ) = V M

1 and

dν1(t) ≥ 0. Also V̂2(t) ∈]V m
2 , V M

2 [ on [0, θ[
⋃
]τ, T ], and on that set dν2(t) = 0. When

t ∈ [θ, τ ], we have V̂2(t) = V m
2 and dν2(t) ≤ 0. So we can claim that condition 3. is

verified.

Furthermore, V̂1(τ) = V M
1 and ∆η1(τ) = 1.27 > 0. Also, since V̂2(τ) = V m

2 and

∆η2(τ) = −0.63− (0.02− 0.004 ∗ 12) < 0, condition 4. is verified.

Condition 5. is obviously satisfied. Observe that V̂1(t) ∈]V m
1 , V M

1 [ in [0, τ [∪]τ, T ] and
V̂2(t) ∈]V m

2 , V M
2 [ in [0, θ[∪]τ, T ] and in these intervals dc(t) = 0.

We conclude that (û, V̂ ) is in fact a local minimizer for the problem.
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Chapter 6

Global Solution

In this chapter we look for the global solution of the problem with 2 reservoirs and cost

function given by (2.4). The formulation under consideration is (P2C) given in (2.7).

We look for an admissible process that optimizes the cost function over all admissible

processes for the problem.

The issue here is the maximization of an indefinite quadratic form subject to linear

constraints. The nonconvexity of the cost function enables the existence of several

local minima and the application of global optimization methods is relevant to ob-

tain the global optimal solution. We adopt two different numerical approaches that

focus on global optimization techniques, the Chen-Burer algorithm and the projection

estimation refinement method (PER method), used to reduce the dimension of the

problem. Results and execution time of the two procedures are compared.

6.1 Discretized Problem

We consider the formulation (P2C) presented in section 2.3.1 with τ = T/2. Let N

be an even natural number. In this analysis, we are assuming that N = T = 24. A

discretization of the problem is undertaken and we get

89
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min − A1c1
s1

N
2
−1
∑

k=0

V1(k)−
A1c2
s1

N−1∑

k=N
2

V1(k) +H1(c2 − c1)V1(0) +
c2 − c1
2S1

V 2
1 (0)

−H1(c2 − c1)V1

(
N

2

)

− c2 − c1
2S1

V 2
1

(
N

2

)

+H2(c2 − c1)V2(0) +
c2 − c1
2S2

V 2
2 (0)

−H2(c2 − c1)V2

(
N

2

)

− c2 − c1
2S2

V 2
2

(
N

2

)

,

s.t. V1(k + 1) = V1(k) + A1 − u1(k), (6.1)

V2(k + 1) = V2(k) + u1(k)− u2(k),

Vi(0) = Vi(N),

Vi(k) ∈ [V m
i , V M

i ],

ui(k) ∈ [um
i , u

M
i ], for i = 1, 2.

Define new variables x and y in the following way:

x =

[

V1(0), V1

(
N

2

)

, V2(0), V2

(
N

2

)]

, (6.2)

and

y =

[

V1(1), · · · , V1

(
N

2
− 1

)

, V1

(
N

2
+ 1

)

, · · · , V1 (N − 1) , (6.3)

V2(1), · · · , V2

(
N

2
− 1

)

, V2

(
N

2
+ 1

)

, · · · , V2 (N − 1)

]

.

The cost function can now be expressed as

I(x, y) = 〈a, x〉+ 〈b, y〉+ 〈x,Qx〉, (6.4)

where a and b are appropriate vectors, gathering the linear part of the cost, relative

to x and y respectively. Q is an appropriate matrix representing the quadratic part of
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the cost function. More precisely, Q, a and b are given by

Q =













c2 − c1
2S1

0 0 0

0 −c2 − c1
2S1

0 0

0 0
c2 − c1
2S2

0

0 0 0 −c2 − c1
2S2













(6.5)

a =

[

H1(c2 − c1)−
A1c1
S1

,−H1(c2 − c1)−
A1c2
S1

, H2(c2 − c1),−H2(c2 − c1)

]

(6.6)

b =










N

2
-1 components

︷ ︸︸ ︷

−A1c1
S1

, · · · ,−A1c1
S1

,

N

2
-1 components

︷ ︸︸ ︷

−A1c2
S1

, · · · ,−A1c2
S1

,

N

2
-1 components

︷ ︸︸ ︷

0, · · · , 0,

N

2
-1 components

︷ ︸︸ ︷

0, · · · , 0










. (6.7)

The constraints of the problem are translated into

Vi(k) ∈ [V m
i , V M

i ], for k = 0, · · · , N − 1 and i = 1, 2,

V1 (N − 1) + A1 − V1(0) ∈ [um
1 , u

M
1 ], (6.8)

V2 (N − 1) + V1 (N − 1) + A1 − V1(0)− V2(0) ∈ [um
2 , u

M
2 ], (6.9)

and for k = 0, · · · , N − 2

V1(k) + A1 − V1(k + 1) ∈ [um
1 , u

M
1 ], (6.10)

V2(k) + V1(k) + A1 − V1(k + 1)− V2(k + 1) ∈ [um
2 , u

M
2 ]. (6.11)

The expressions in (6.8 - 6.11) are equal to u1(N − 1), u2(N − 1), u1(k) and u1(k),

respectively. Observe that we do not consider Vi(N), i = 1, 2, as variables. In fact

since Vi(N) = Vi(T ) = Vi(0), we only need to ensure the admissibility of control action

to go from Vi(N − 1) to Vi(N) = Vi(0).
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This is guaranteed by equations (6.8) and (6.9).

6.2 Chen-Burer Algorithm

The algorithm introduced by Jieqiu Chen and Samuel Burer (see [12] and reference

therein) aims the optimization of nonconvex quadratic programming problems with

linear and bounded constraints. It is a global optimization algorithm which involves

two main components. The first one is a finite branch-and-bound (B&B) scheme,

in which branching is based on the first-order Karush-Kuhn-Tucker conditions (KKT

conditions). The other is a polyhedral-semidefinite relaxation that is applied at each

node of the B&B tree. Such relaxation is derived from completely positive and doubly

nonnegative programs (see [4–6]). One of the advantages of this method is that the

B&B tree is finite. Other, is that we can develop stronger relaxations for the problem.

The implementation of the global optimization solver for quadratic problems use the

same syntax of the local optimization routine quadprog of the Matlab and requires an

external linear programming solver.

Chen-Burer algorithm addresses problems of the form

minimize
1

2
xTHx+ fTx (6.12)

s.t. Ax ≤ b

Aeqx = beq

LB ≤ x ≤ UB

where x ∈ R
n is the variable and H ∈ R

n×n, f ∈ R
n, A ∈ R

m×n, b ∈ R
m, Aeq ∈

R
meq×n, beq ∈ R

meq , LB ∈ R
n and UB ∈ R

n are parameters. Here, H is a symmetric

and generally not positive semidefinite matrix. The admissible set must have an

interior point and Aeq must be of full row rank.

Components of the vectors LB and UB are allowed to be infinite, but the feasible set

of the problem must be bounded. The algorithm is of free use and it is available at

http://dollar.biz.uiowa.edu/~sburer.

6.3 Numerical Results

Problem (6.1) is considered, with data given by (5.23). Two different approaches

are discussed and compared. In the first approach, we directly apply the Chen-
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Burer algorithm. In the second one we use the specific structure of the cost function

already outlined in (6.4), to reduce the dimension of the problem. A projection of

the set of feasible solutions onto a subspace of the new cost function arguments is

taken. Then the Chen-Burer algorithm is applied to the projected low-dimensional

problem. The solution obtained is then used to construct an approximate solution

to the original discrete problem via a simple convex programming problem. Such

approximate solution is finally used as an initial guess for local optimization software.

6.3.1 1
st Approach

Direct application of Chen-Burer algorithm to the original discretized problem (6.1),

with N = 24, gives the optimal trajectory shown in Fig. 6.1. Observe that this

problem involves 48 variables, 96 inequality constraints and 96 boxing constraints. By

rearranging the position of variables, the resultant global solution can be rewritten as

(x̂, ŷ) where

x̂ = [143.64, 147, 49.76, 48.3].

Using relationship between (x̂, ŷ) and V̂i, i = 1, 2 (see (6.2) and (6.3) and also (6.8)-

(6.11)) we obtain the following pictures.
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Figure 6.1: Trajectories associated to the global solution
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Figure 6.2: Control functions associated to the global solution

The cost value associated to this global solution is 308.918 and the execution time is 24

hours. This execution time is too long. In the next section we take another approach

to solve this same problem.

6.3.2 2
nd Approach

On a second approach, we start by reducing the dimension of the problem with the

help of an algorithm, based on the projection estimation refinement method (PER)

from [7]. This method approximates the orthogonal projection P of a polytope X

onto a subspace, by a sequence of polytopes P 0, P 1, ..., P k, ... that tend to P , and with

P k ⊂ P for all k. The number of vertices of the polytopes Pk increase by one at each

iteration. A new polytope is constructed on the basis of the previous one by means

of computing support functions for the projection P and Fourier-Motzkin convolution

method (see [46]). In [13], a robust algorithm for solving this problem was proposed.

For approximating polyhedra, two descriptions are constructed simultaneously, one as

a set of its vertices that belong to the boundary of P and the other as the solution set

of the system of linear inequalities

P k = {x ∈ R
q : 〈cj, x〉 ≤ dj, j = 1, 2, · · · , N}

where cj ∈ R
q and dj ∈ R.

Figure 6.3 describes two iterations in the constructive process of the polytopes. The

•-dots on the left picture are the candidates to include in the next step. These are
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the most distant points of the feasible set, in the criteria space, from the convex set

planes. They are found through maximization in directions orthogonal to the convex

hull planes. In Fig. 6.3 (right), the most distant new point •-dot is included into the
convex hull planes.

Figure 6.3: (Left) 1st iteration; (Right) 2nd iteration

If inequalities of internal approximating sets and the values of the corresponding sup-

port functions are known, it is easy to find external approximating sets P̄ 0, P̄ 1, ..., P̄ k,

which contain the projection P, i.e., P k ⊂ P ⊂ P̄ k for all k.

Figure 6.4: Internal estimation (convex hull of vertices) and external estimation
(described by support-planes)

The objective is to find a pair (P k, P̄ k), such that d(P k, P̄ k) ≤ ǫ, where d(P k, P̄ k) is

the Hausdorff distance between the sets P k and P̄ k and ǫ is a given precision.

Computational details and a discussion of these techniques for polyhedral approxima-

tion can be found in [29,30].

Returning to our discretized problem, recall that the cost function is

I(x, y) = 〈a, x〉+ 〈b, y〉+ 〈x,Qx〉 → min,
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where Q, a and b are defined in (6.5),(6.6) and (6.7). We remind that

x =

[

V1(0), V1

(
N

2

)

, V2(0), V2

(
N

2

)]

, and

y =

[

V1(1), · · · , V1

(
N

2
− 1

)

, V1

(
N

2
+ 1

)

, · · · , V1 (N − 1) ,

V2(1), · · · , V2

(
N

2
− 1

)

, V2

(
N

2
+ 1

)

, · · · , V2 (N − 1)

]

.

Define a new variable

z = 〈b, y〉.

Once it is known the value of z, the value of V1(1) can be calculated as:

V1(1) = −
(

s1
A1c1

z + V1(2) + . . .+ V1

(
N

2
− 1

)

+
c2
c1

(

V1

(
N

2
+ 1

)

+ . . .+ V1(N − 1)

))

.

The cost function is expressed in terms of x and z as

〈ā, x̄〉+ 〈x̄, Q̄x̄〉 → min, (6.13)

where x̄ = (x, z), ā = (a, 1), and Q̄ =

(

Q 0

0 0

)

.

The projection of the set of feasible solutions onto the subspace of variables

(V1(0), V1(N/2), V2(0), V2(N/2), z)

is constructed using PER method. Taking this projection as admissible set and cost

function (6.13), we obtain an optimization problem in R
5.

The application of the Chen-Burer algorithm to this new simple problem, leads to a

solution (x̂, ẑ). A simpler convex programming problem can then be applied and an

approximate solution (x̂, ŷ) to the original discrete problem is obtained. Finally, this

approximate solution is used as an initial guess in a local optimization software, from

which we get a global solution for the original problem. This approach was followed

for the discretized problem (6.1). A feasible set for the projected problem (exterior

approximation with 15 inequalities and 10 boxing constraints) is calculated, using the

PER method. The Chen-Burer algorithm is then applied to the low dimension problem
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and the solution obtained is

ˆ̄x = (x̂, ẑ) = [140.66, 147, 48.30, 49.16, − 68.18].

An approximate solution to the original discretized problem is calculated by solving

the following convex quadratic programming problem with the function QuadProg from

the Matlab:

minimize ‖Π(w)− x̂‖2,
s.t. Aw ≤ b,

Aeqw = beq,

LB ≤ w ≤ UB,

where w = (V1(0), V1(1), · · · , V1(N − 1), V2(0), V2(1), · · · , V2(N − 1)),

Π(w) = (V1(0), V1(N/2), V2(0), V2(N/2)),

x̂ = (V̂1(0), V̂1(N/2), V̂2(0), V̂2(N/2)).

Figure 6.5 shows the resultant solution, trajectories and control variables.
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Figure 6.5: Approximate solution
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The controls, together with x̂, are then used as an initial guess to apply the optimiza-

tion package from [45]. The final result is presented in Fig. 6.6
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Figure 6.6: Final results with new approach

The cost obtained with the two approaches is almost the same, as we can see in table

6.1.

1st approach 2nd approach
• PER

• Chen - Burer • Chen - Burer
Algorithm Algorithm
(directly) • QuadProg

• Local optimization
Cost -308.9 -308.6
Total
time 24 hours 1.48 min
execution

Table 6.1: Comparison of methods

By carrying out this analysis, we may conclude that the 2nd approach has a shorter
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runtime than the 1st approach. This difference is quite significant so, the use of the

2nd approach was quite rewarding.

The short gap between the two approaches is negligible. The 2nd approach use several

different numerical methods, it accumulates numerical errors from each of them, which

may explain the difference of the two cost values.
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Chapter 7

Conclusions

In this work, an optimal control problem for a model of hydro-electric power stations

in cascade where some of the stations have reversible turbines, is analyzed. The

objective was to optimize the profit of power production. In mathematical terms, this

is a problem of minimizing an infinite-dimensional quadratic non-definite functional

subject to linear and cone constraints. The presence of state constraints and the

nonconvexity of the cost function contribute to an increased complexity of the problem.

A characteristic feature of these problems is that it is possible that the minimizer

is not isolated. In such cases sufficient conditions for optimality are much more

effective than necessary conditions. Traditional sufficient conditions do not address

non-isolated minimizers. Thus, new sufficient conditions for optimality are deduced

for an abstract problem with mathematical structure as referred above. Sufficient

conditions of optimality for the problem with N power stations and a periodic price

were then directly derived. This showed that a periodic extension of the optimal

solution on the period is optimal on the whole interval. This is an important result

since it simplifies the elaboration of the management strategy. The new sufficient

conditions are an important contribution from this thesis. They are originally deduced

for an abstract problem of minimizing a quadratic non-definite functional subject to

linear and cone constraints. The developed results are expected to be of interest to

classes of problems other than those considered in this thesis. This will be considered

in future work.

Examples of hydro-electric power stations in cascade are analyzed. Numerical opti-

mization is performed, using available software. An analytical analysis of the problem

is undertaken to validate the numerical solution. Taking into account the profile of

the numerical solution, the sufficient conditions of optimality are proved to be met by

101
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this solution. It was demonstrated that, in the framework of our model, and in the

case of one power station, the use of reversible turbines always improves the profit.

It would be of interest to extend the analysis made in these simple cases of one and

two power stations, to the more general problem of several power stations. It is still

expected that, under some conditions on the data of the problem, the use of reversible

turbines always improves the profit.

The nonconvexity of the cost function enables the existence of several local minima

and global optimization methods are of particular relevance. Two different numerical

approaches were considered. These approaches focus on global optimization techniques

(Chen-Burer algorithm) and on the projection estimation refinement method (PER

method) to reduce the dimension of the problem. Results and execution time for the

two procedures were compared, and it was concluded that the 2nd approach is more

efficient and less time consuming.

Our models are meant to capture the essential features of real life problems in hydro-

electric systems. By increasing its complexity, it is possible to achieve models that

reflect more closely reality. This is a subject open to being further developed in the

future.



Appendix A

Notations

Variables

ui(t) - turbined/pumped flows of water for reservoir i at time t (hm3/h)

Vi(t) - water volume in the reservoir i at time t (hm3)

Zi(t) - water level in reservoirs i at time t (m)

hi(t) - heads (differences in water levels) at time t (m)

Hourly data

Ai - incoming flows at time t (hm3/h)

c(t) - price function of selling energy ( e/MWh)

Constants

u0Ti - nominal turbined water volumes(m3/s)

u0Pi - nominal pumped water volumes(m3/s)

V 0
i - minimal water volume in reservoir, i (hm3)

Zmax
i - maximal water level (meters above sea level) in reservoir i (m)

Zmin
i - minimal water level (meters above sea level) in reservoir i (m)

Z0
i - nominal water level (meters above sea level) in reservoirs i (m)

h0i - nominal heads (m)

∆h0Ti - nominal head loss in case of turbining (m)

∆h0Bi - nominal head loss in case of pumping (m)

αi, βi, ζi, ξi - positive technical parameters

µT
i - global income constant of the station i when it is turbining

µB
i - global income constant of the station i when it is pumping

Φprog
i , Φfort

i , Φcint
i - probability parameters associated to forced stop of station i
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Appendix B

Data for the original model

Constants Reservoir 1 Reservoir 2

Zmax
i 450.000 231.000

Zmin
i 435.900 226.100
V M
i 147.000 66.000

V m
i 86.700 48.300

u0Ti 120.000 220.000
u0Pi 96.000 —
V 0
i 48.900 48.000

Z0
i 420.000 226.000

h0i 211.000 66.000
∆h0Ti 3.000 2.000
∆h0Pi 1.900 —
αi 1.396 0.299
βi 0.669 0.975
ζi 0.250 —
ξi 226.100 158.100

µT
i /µ

P
i 94.000 85.500

Φprog
i 0.087 0.087

Φfort
i 0.013 0.013

Φcint
i 0.015 0.015
Ai 0.158 0
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Appendix C

Adjustment of parameters

The model presented in section 2.2.1 is complex and a simplified model (P2) (see

section 2.3) was considered for the problem of hydro-electric power production. Can

we compare or confront the results of both models? To do that the parameters of the

simplified model must be chosen with some criterion and linked in someway with the

original ones. Here, we take as reference the data for the original problem presented

in Appendix B.

Consider to adapt the control constraints. In the original model they are

ζi(hi(t)− h0
i )− u0P

i ≤ ui(t) ≤ u0T
i

√

hi(t)

h0
i

, i = 1, 2.

In the simplified model, we take boxing control constraints. Our option was to take

intervals that contains the above ones.

ζi(h
min
i − h0

i )− u0P
i ≤ ui(t) ≤ u0T

i

√

hmax
i

h0
i

.

Defining

hmin
1 = 205 (m), hmin

2 = 68 (m) hmax
1 = 224 (m), hmax

2 = 73 (m),

and converting units (m3/s→ hm3/h), we obtain
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−97.5 ≤ u1(t) ≤ 123.6 (m3/s) → −0.351 ≤ u1(t) ≤ 0.44496 (hm3/h)

0 ≤ u2(t) ≤ 231 (m3/s) → 0 ≤ u2(t) ≤ 0.8316 (hm3/h).

We keep the original values for V M
i and V m

i .

86.7 ≤ V1(t) ≤ 147 (hm3) 48.3 ≤ V2(t) ≤ 66 (hm3)

A1 = 0.158 (hm3).

To determine the parameters S1, S2, H1 and H2 for (P2), we use the following

expressions ( see Figure 2.3 )

Z1 = H1 +
V1

S1

, Z2 = H2 +
V2

S2

. (C.1)

As we should ensure that

Zmin
1 > H1 > Zmax

2 > Zmin
2 > H2 ⇔ 435.9 > H1 > 231 > 226 > H2,

then we take H1 = 300 m = 3 hm and H2 = 100 m = 1 hm, as acceptable parameters.

From (C.1), we take out the values of S1 and S2, obtaining S1 = 81.7 hm2 and

S2 = 44.5 hm2.
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