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AAAAbstractbstractbstractbstract    

This thesis focuses on the study of vegetation dynamics using satellite remote sensing 

data. Vegetation covers a substantial portion of the Earth’s land surface, having an 

important role in the Earth’s energy balance. Several factors, such as climate, abiotic 

environments or biotic interactions, and the dynamics of population and their activities have 

a great impact on the vegetation processes.  

The study of the vegetation dynamics has been an active research topic since the late 

19th century. Mapping vegetation is important and useful for natural resources 

management, land planning and/or environmental policymaking decision support. With the 

increasing availability of remotely sensed images, and the evolution of sensor technology 

(spectral, spatial, radiometric and temporal resolutions), vegetation mapping has become 

possible not only for local but also for global scales. The temporal resolution has a crucial 

impact in the field of study, as it provides data on different stages of the vegetation 

development. This advantage along with the use of long time-series periods lead to a more 

detailed and rigorous monitoring of the vegetation dynamics changes. 

 The main objective of this work consisted in the investigation and development of new 

methodologies to process and obtain information from satellite time-series data of 

vegetation. The research addressed two topics: crop monitoring and land cover 

classification. The investigations conducted on the topic of crop monitoring mainly resulted 

in the development of a software tool, PhenoSat, which is able to extract phenological 

metrics from satellite vegetation time-series data. PhenoSat obtains phenological 

information for the main growth stages and also solves two limitations found in other 

available software packages: (1) the impossibility to select an in-season region of interest 

(especially important when studying discontinuous canopies or dormancy period); and (2) 

the no-detection and/or no-extraction of double growth season information. PhenoSat is 

freely available at http://www.fc.up.pt/PhenoSat. 

 The investigations conducted on the land cover classification topic focused in two 

distinct regions: the African Continent and the Brazilian Amazon. Large areas and the 

presence of clouds are the main problems for land cover studies, due to the limitations on 

obtaining ground truth information for validation, and on using satellite data for classification 

in cloudy covered areas. To address these limitations, a new classification procedure is 

proposed based exclusively in satellite vegetation time-series.  
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ResumoResumoResumoResumo 

Esta tese foca-se no estudo da dinâmica da vegetação utilizando dados de detecção 

remota obtidos por satélite. A vegetação cobre uma parte considerável da superfície 

terrestre, desempenhando um papel importante no equilíbrio energético da Terra. Vários 

factores, como clima, ambiente abiótico ou interacções bióticas, e a dinâmica da população 

e suas actividades têm um grande impacto nos processos de vegetação. 

O estudo da dinâmica da vegetação tem sido um tema de investigação frequente desde 

o final do século XIX. O mapeamento da vegetação é importante e útil para a gestão de 

recursos naturais, ordenamento do território e/ou apoio à decisão de políticas ambientais. 

Com a crescente disponibilidade de imagens adquiridas remotamente, e a evolução da 

tecnologia dos sensores (resoluções espectral, espacial, radiométrica e temporal), o 

mapeamento da vegetação tornou-se possível não apenas a nível local mas também 

global. A resolução temporal tem um impacto crucial na área de estudo, uma vez que 

fornece dados em diferentes fases do desenvolvimento da vegetação. Esta vantagem, 

combinada com a utilização de longos períodos de séries temporais, permite uma 

monitorização mais detalhada e rigorosa das alterações na dinâmica da vegetação. 

O objectivo principal deste trabalho consistiu na investigação e desenvolvimento de 

novas metodologias para processar e obter informação a partir de dados de séries 

temporais de vegetação obtidas por satélite. A investigação abordou dois temas: 

monitorização de culturas agrícolas e classificação da cobertura do solo. As investigações 

realizadas sobre o tema da monitorização de culturas agrícolas resultaram principalmente 

no desenvolvimento de uma ferramenta computacional, PhenoSat, que é capaz de extrair 

métricas fenológicas a partir de séries temporais de vegetação obtidas por satélite. 

PhenoSat obtém informação fenológica para as principais fases de crescimento de culturas 

e resolve também duas limitações encontradas em outras ferramentas computacionais 

disponíveis: (1) a impossibilidade de seleccionar uma região de interesse durante o período 

de crescimento (especialmente importante em estudos de culturas com cobertos 

descontínuos e com períodos de dormência); e (2) a não-detecção e/ou não-extracção de 

informação sobre a fase de recrescimento. PhenoSat está disponível gratuitamente em 

http://www.fc.up.pt/PhenoSat. 
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As investigações realizadas sobre o tema da classificação da cobertura do solo focaram-

se em duas regiões distintas: o Continente Africano e a Amazónia Brasileira. Grandes 

áreas e a presença de nuvens são os principais problemas para estudos de ocupação do 

solo, devido às limitações em obter dados de campo para validação, e em usar dados de 

satélites para classificação em áreas cobertas por nuvens. Para resolver estas limitações, 

é proposto um novo método de classificação baseado exclusivamente em séries temporais 

de vegetação obtidas por satélites.

 

 

Palavras-chave: vegetação, cobertura do solo, classificação, fenologia, séries 

temporais, detecção remota, PhenoSat  
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1. Thesis Focus1. Thesis Focus1. Thesis Focus1. Thesis Focus    

 

This thesis focuses on the study of vegetation dynamics using time-series vegetation 

index data from Earth Observation Satellites (EOS). 

Vegetation covers a substantial part of the Earth’s surface (figure 1). Although 75% of 

the planet cover is an ocean of blue, the remaining 25% of Earth’s surface is a dynamic 

green (NOAA, 2014). Vegetation is a dynamic component, strongly dependent of 

environmental conditions, having an important impact in the ecosystem (surface 

temperature, humidity, water balance, CO2 concentration) and being indispensable for 

normal weather and climate.  

Accurate and timely data that describes vegetation conditions is crucial to assess 

vegetation development and to best understanding and monitoring the land use practices. 

The field survey methods are generally associated to high costs, subjectivity and low spatial 

and temporal coverage, which limits the effectiveness of the process (Langley et al., 2001). 

The field collected data can be supplemented using EOS data. The capability to obtain 

regular observations at various scales, and information for areas with limited in situ 

accessibility, makes possible the use of remote sensing imagery and the study of vegetation 

from local to global scales. 

EOS vegetation data has many applications, such as agriculture, forestry, ecology or 

urban planning. In this thesis, two main topics were addressed: land cover changes 

detection and crop monitoring. 

 
Fig.1. The two sides of Earth depicting green vegetation, using Visible-Infrared Imager/Radiometer Suite data from April 

2012 to April 2013. The darkest green areas represent abundant green vegetation, and the pale colours are sparse 

vegetation cover either due to snow, drought, rock or urban areas (in NOAA, 2014). 
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1.1. Thesis Str1.1. Thesis Str1.1. Thesis Str1.1. Thesis Structureuctureuctureucture 

 

This thesis is divided in 5 main chapters and 4 appendices. The main chapters include 

an introduction, three research articles already published in scientific journals, and a section 

of conclusion remarks. The different chapters are organized as follows: 

 

- Chapter I consists of a general introduction that summarizes and presents a brief 

state-of-the-art for the most important concepts addressed in this PhD work. 

 

- Chapter II refers to the paper published in the IEEE Transactions on Geoscience and 

Remote Sensing journal, which presents a description of the PhenoSat software tool 

developed during this PhD work. This paper is a follow up of a paper presented in the 

MultiTemp2011 conference (appendix 1), where an initial presentation of the 

PhenoSat software was made. PhenoSat permits to extract phenological information 

from satellite vegetation index time-series data using a simple and user-friendly 

interface. As PhenoSat is freely available for research, technical and educational 

purposes, good feedback has been received, permitting to improve the functionalities 

of this tool. The complementary work related to the development of PhenoSat resulted 

in two conference proceedings papers, included in appendices 1 and 2, as well as a 

Book Chapter (appendix 3). 

 

- Chapter III summarizes the research work developed for the creation of a new 

methodology of classification based exclusively in time-series of vegetation data. The 

identification of potential land cover changes using the methodology proposed was 

tested in the African Continent. This work resulted in a paper published at the 

International Journal of Remote Sensing.  

 

-  Chapter IV expands the research done in the previous chapter. The classification 

procedure was applied in Rondonia, a region of the Brazilian Amazon, and the 

research work was initially presented at the 33rd Canadian Symposium on Remote 

Sensing (appendix 4). The large number of land cover types and the similarity 

between the vegetation index profiles affect the classification results. Thus, the effects 

of the similarity were tested using new approaches to reduce the number of classes 
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and to evaluate the variability over the years. This research work resulted in a paper 

published in the Canadian Journal of Remote Sensing. 

 

- Chapter V presents the conclusions section, which summarizes the main 

achievements obtained with this PhD project, and also some suggestions for future 

work. 
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1.2. List of Publications1.2. List of Publications1.2. List of Publications1.2. List of Publications    

 

The following thesis includes seven research articles. Three of them have been 

published in scientific journals during the duration of this PhD work, three were presented 

in international conferences and one of them resulted from an invitation for a chapter in the 

Springer EARSeL Book ‘Multitemporal Remote Sensing: Method and Applications’. The 

articles published in scientific journals are part of this thesis (chapters II, III and IV) and the 

others are included as appendices. A reference list of these papers is given below: 

 

Scientific Journals: 

 

• Arlete Rodrigues, André R.S. Marçal, and Mário Cunha (2013). Monitoring vegetation 

dynamics inferred by satellite data using the PhenoSat tool. IEEE Transactions on 

Geoscience and Remote Sensing, 51, 2096-2104 

 

• Arlete Rodrigues, André R.S. Marçal, and Mário Cunha (2013). Identification of 

potential land cover changes on a continental scale using NDVI time-series from 

SPOT VEGETATION. International Journal of Remote Sensing, 34, 8028-8050 

 

• A. Rodrigues, A.R.S. Marçal, D. Furlan, M.V. Ballester, and M. Cunha (2013). Land 

cover map production for Brazilian Amazon using NDVI SPOT VEGETATION time 

series. Canadian Journal of Remote Sensing, 39, 277-289 

 

 

Conference Proceedings: 

 

• Arlete Rodrigues, André R.S. Marçal, and Mário Cunha (2011). PhenoSat - A tool for 

vegetation temporal analysis from satellite image data. Proceedings of the 6th 

International Workshop on the Analysis of Muti-temporal Remote Sensing Images 

(Multi-Temp), at Trento, Italy, 12-14 July 

 

• Deise Furlan, Arlete Rodrigues, Mário Cunha, André R.S. Marçal, and Maria Victoria 

Ballester (2012). Land cover classification in Rondonia (Amazonia) using NDVI time 
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series data from SPOT-VEGETATION. Proceedings of the 33rd Canadian 

Symposium on Remote Sensing, at Ottawa, Canada, 11-14 June  

 
• Arlete Rodrigues, André R.S. Marçal, and Mário Cunha (2012). Phenology parameter 

extraction from time-series of satellite vegetation index data using PhenoSat. 

Proceedings of the 2012 IEEE International Geoscience and Remote Sensing 

Symposium, at Munich, Germany, 22-27 July 

 

 

Book Chapter: 

• Arlete Rodrigues, André R.S. Marçal, and Mário Cunha (submitted). PhenoSat - A 

tool for remote sensing based analysis of vegetation dynamics. In Springer EARSeL 

Book ‘Multitemporal Remote Sensing: Method and Applications’  
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2. Analysis of Vegetation Dynamics using EOS Data2. Analysis of Vegetation Dynamics using EOS Data2. Analysis of Vegetation Dynamics using EOS Data2. Analysis of Vegetation Dynamics using EOS Data    
 

    2.1. Earth Observation Satellites2.1. Earth Observation Satellites2.1. Earth Observation Satellites2.1. Earth Observation Satellites    
 

The first images from space were taken on the sub-orbital V-2 rocket flight launched by 

the U.S. on October 24, 1946 (Reichhardt, 2006). From 1946 to 1952, upper-atmosphere 

research was conducted using V-2s and Aerobee rockets. In 1954, an Aerobee sounding 

rocket photographed an unknown tropical storm in the Gulf of Mexico (Hubert and Berg, 

1955). Despite these early spaceflights, the space age is generally considered to have 

begun with the historic launch of the first artificial satellite, Sputnik 1 (figure 2), on October 

4, 1957, by the Soviet Union (NASA History Program Office, 2014). A satellite is a moon, 

planet or machine that orbits a planet or star. Usually, the word “satellite” refers to a 

machine that is launched into the space and moves around Earth or another body in 

space.  

 

 

Fig. 2. Sputnik 1, launched from Baikonur, USSR, on October 4, 1957. 

 

Since the launch of the first artificial satellite, Sputnik 1, thousands of satellites have 

been launched into orbit around the Earth. The largest artificial satellite currently orbiting 

the Earth is the International Space Station (ISS). The ISS (figure 3) is a collaboration of 

15 nations working together to create a world-class, state-of-the-art orbiting research 

facility (NASA Missions, 2014). 
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Fig. 3. International Space Station, orbiting Earth since 1998. 

 

Earth Observation Satellites (EOS) are artificial satellites specifically designed to 

observe the Earth from orbit, and acquire global observations of the land surface, 

biosphere, solid Earth, atmosphere and oceans. Satellites orbit Earth at different heights, 

speeds and along different paths. The Earth observation techniques are used to collect 

information about physical, chemical and biological systems of the planet Earth. This 

information permits to assess and monitor the status and changes in the Earth’s 

environment, being important to improve the social and economic well-being. The process 

of gathering information from Earth’s surface has become more and more sophisticated 

due the technological advances in the surveying techniques and the improvements in the 

analyses and processing methodologies. 

The U.S. Explorer VI made the first satellite (orbital) photographs of Earth on August 

14, 1959.  In April 1960, the polar-orbiting Television Infrared Observing Satellite (TIROS)-

1 was designed to provide a view from space of Earth’s cloud patterns (NASA Science 

Missions, 2014). Later versions of these satellites added microwave instruments to 

provide estimates of temperature, pressure, and humidity, which are essential to weather 

forecast models. Several improvements were made in the TIROS series (now called 

Polar-orbiting Operational Environmental Satellites (POES)), making these satellite 

measurements indispensable around the world.  

In the early 1970’s the NASA created the Landsat program, the largest program for 

acquisition of imagery of Earth from space (Mack, 1990). Landsat represents the world’s 

longest continuously (four decades) acquired collection of space-based moderate-

resolution land remote sensing data (figure 4). The first three satellites were using 80-



10    FCUP    Analysis of Vegetation Dynamics using Time-Series Vegetation Index Data  from Earth Observation Satellites  
  

 

 

meter resolution multispectral scanners (MSSs), providing images of large areas of the 

Earth’s surface in four different color bands since 1972. The Landsat mission was 

extended to Landsat 4 (1982) and 5 (1984), which collected information in seven spectral 

bands through an enhanced 30-meter sensor called the thematic mapper (TM). The 

Landsat 6 failed; Landsat 7 (Enhanced Thematic Mapper Plus, ETM+) and Landsat 8 

(formerly the Landsat Data Continuity Mission, LDCM) were launched in 1999 and 2013, 

respectively, and continue in orbit and supplying data. 

 

 

Fig. 4. Landsat Missions Timeline (in http://landsat.usgs.gov/about_mission_history.php). 

 

During the last decades, several satellites were created and launched to collect useful 

Earth’s surface data. EOS images are an important source of information in a wide range 

of applications in different fields, such as ocean, meteorology, geology, forestry, 

landscape and regional planning. Depending on the function and orbit, each satellite 

instruments have different spatial, spectral, radiometric and temporal resolutions. 

The spatial resolution is related with the minimum size of detail observable in an image, 

defining the pixel size of the images covering the Earth surface. Very high-resolution (0.82 

– 4 meters) EOS images became available in the autumn of 1999, with the launch of the 

first IKONOS satellite (SIC, 2014). Since then, different very high-resolution satellites were 

designed and launched, providing information of the Earth’s surface with an amazing 

detail. 

The spectral resolution describes the ability of a sensor to distinguish features in the 

electromagnetic spectrum (Campbell, 2002). The radiometric resolution refers to the 

sensitivity of the sensor to variations in brightness and denotes the number of grayscale 

levels that can be imaged by a sensor. The higher the radiometric resolution the more 

sensitive it is to detecting small differences in reflected or emitted energy. Finally, the 

temporal resolution specifies the revisiting frequency of a satellite sensor for a specific 

location. 
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The concept of temporal resolution is one of the most important elements for several 

remote sensing applications. It is crucial to monitor Earth’s surface changes or short time-

varying phenomena, naturally occurred or caused by humans. The time factor is an 

important aspect particularly in the tropics, where persistent clouds limit the views of the 

Earth´s surface.  

In general, the revisiting period of a satellite sensor is several days (e.g. 16-days for 

Landsat 8). However, some satellite sensors are able to image the same area of the Earth 

in periods from one to five days (e.g. IKONOS, Satellite Pour l’Observation de la Terre 

(SPOT) 5, Moderate Resolution Imaging Spectrometer (MODIS), Project for On-Board 

Autonomy V (PROBA V), Medium Resolution Imaging Spectrometer (MERIS)). The 

temporal resolution of a satellite sensor depends on a variety of factors, including 

satellite/sensor capabilities, swath overlap and latitude.  

The number of satellite sensors capable to acquire high resolution temporal data has 

increased during the last years. Most of these sensors are capable to acquire time-series 

of vegetation data. Vegetation has unique spectral signatures, which evolve with the plant 

vegetative cycle. Thus, vegetation mapping through quantifying vegetation cover presents 

valuable information for understanding the natural and man-made environments, from 

local to global scales. Furthermore, the potential of remote sensing vegetation data in 

agriculture and crop management is high as the multispectral reflectance and 

temperatures of crop canopies are related to photosynthesis and evapotranspiration 

(Basso et al., 2004). 
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2.2. Vegetation Indices2.2. Vegetation Indices2.2. Vegetation Indices2.2. Vegetation Indices    

 

Vegetation indices (VI) combine information from different wavelengths, particularly in 

the RED and near-infrared (NIR) portions of the spectrum, to enhance the vegetation signal. 

Such indices allow reliable spatial and temporal inter-comparisons of terrestrial 

photosynthetic activity and canopy structural variations (Huete et al., 2002). They are 

generally computed for all pixels in time and space, regardless of biome type, land cover 

condition and soil type, thus representing true surface measurements. Due to their simplicity 

and ease of use, VI have a wide range of applications, being an important tool to assess 

how environmental changes affect the distribution and dynamics of vegetation, particularly 

at large temporal and spatial scales, and/or in areas of limited in situ data.  

Unfortunately, the VI data collected using EOS sensors can be affected by diverse 

factors such as illumination and viewing geometry, clouds, aerosol, shadow and water 

vapour (Tucker et al., 1985; Cihlar et al., 1994), which could generate some noisy values. 

The poor quality of observations can affect the subsequent data analysis and can limit the 

use of these datasets (Mithal et al., 2011). The Maximum Value Composites (MVC) process 

can help deal with this problem, removing a significant part of that noise. It consists on 

analyzing the VI values on a pixel-by-pixel basis, in a predefined time-period, and retaining 

the highest value for each pixel location (Holben, 2007). The MVC imagery is obtained when 

all pixels have been evaluated and is highly related to the green vegetation dynamics. 

 

 

 
Fig. 5. EOS vegetation indices data organized in a three dimensional data cube. 
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EOS VI data are easily available and can be searched and ordered with reduced or no 

cost over the internet. These datasets are organized in two-dimensional images, with the 

time acting as a third dimension in the data cube (figure 5). For an observation t, of pixel 

location (j,k), Nt(j,k) gives the VI value at time t (Rouse et al., 1974 ). The set of observations 

Nti(j,k), with i=1,..,N, is the VI time-series for pixel (j,k). 

Several VI have been developed for different sensors and with different purposes, such 

as Perpendicular Vegetation Index- PVI (Richardson and Wiegand, 1977), Green Difference 

Vegetation Index- GDVI (Sripada et al., 2006), Soil Adjusted Vegetation Index- SAVI 

(Huete, 1988), Vegetation Condition Index- VCI (Kogan, 1995), Leaf Area Index- LAI 

(Watson, 1947), Normalized Difference Vegetation Index- NDVI (Rouse et al., 1974) and 

Enhanced Vegetation Index- EVI (Huete et al., 1997). 

NDVI is the most widely used vegetation index to quantify the vegetation condition, being 

directly related to the photosynthetic capacity and energy absorption of plant canopies 

(Sellers, 1985). It is determined using the RED and NIR bands of a given image and is 

expressed as Eq.1 (Rouse et al., 1974).  

 

���� =
���	
�	��

���	
�	��
                                                               (1) 

 

The NDVI values range from -1 to +1. Due to light absorption by chlorophyll, the RED 

spectrum reflection is always lower than in the NIR for the green vegetation. Thus, NDVI 

values for the vegetation cannot be lower than 0. In a practical sense, the values that are 

equal or below 0.1 correspond to bare ground and water bodies due their very low 

reflectance in the NIR band. Values comprising the [0.2 – 0.5] range are related with sparse 

vegetation of grassland and shrubs, and NDVI values near to 1 indicate the highest possible 

density of green leaves (dense vegetation as the closed evergreen tropical forest) (Weier 

and Herring, 2000).  

The choice of NDVI to monitor the changes in vegetation phenology (growing, flowering, 

harvesting, and senescence) during the seasons and from year to year is advantageous, 

as it is easily computed without assumptions regarding land cover classes, soil type or 

climatic conditions. However, the NDVI index presents some disadvantages, such as the: 

inherent nonlinearity, additive noise effects, saturated signals over high biomass conditions 

and is very sensible to canopy background brightness (Vermote and Vermeulen, 1999; 

Vermote et al., 2002). 
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The main function of VI, other than NDVI, is to compensate for the effects of disturbing 

factors on the relationships between vegetation spectral reflectance as measured by crop 

characteristics (crop type, canopy biomass, leaf area index) (Bouman, 1995). To mitigate 

the effects of soil brightness in cases where vegetation is sparse, some distance-based VI 

(e.g. PVI and SAVI) have been developed, being particularly important in arid and semi-

arid environments, where pixels contain a mixture of green vegetation and soil 

background (Huete and Jackson, 1988).  

The EVI index was developed by the MODIS science team to take full advantages of 

the sensor capabilities. It was designed to enhance the vegetation signal with improved 

sensitivity to high biomass regions and improved vegetation monitoring through a de-

coupling canopy background signal and a reduction in atmosphere influences (Huete et 

al., 1997). EVI is defined as Eq.2: 

 

��� = � ×
���	
�	��

(���	���×�	�����×�������)
                                         (2) 

 

where ����/��!"/�#�$! are atmospherically-corrected or partially atmosphere corrected 

(Rayleigh and ozone absorption) surface reflectances, � is the gain factor, % is the canopy 

background adjustment that addresses non-linear, differential ��&	and &�� radiant 

transfer through a canopy, and (1, (2	are the coefficients of the aerosol resistance term, 

which uses the blue band to correct for aerosol influences in the red band. The correction 

of aerosol impact on the final index makes use of reflectance measurements within visible 

blue, which is not always available (case of Advanced Very High Resolution Radiometer 

(AVHRR)). 

In comparison with NDVI, which is only chlorophyll sensitive, EVI is more linearly 

correlated with green leaf area index, canopy type, plant physiology and canopy 

architecture (Boegh et al., 2002), less prone to saturation in temperate and tropical forests 

(Huete et al., 2006; Xiao et al., 2004a) and minimally sensitive to residual aerosol 

contamination (Miura et al., 1998; Xiao at al., 2003). Many studies found that NDVI 

becomes saturated over highly vegetated areas and does not respond to variation of NIR 

reflectance when the red reflectance is low (Gitelson, 2004; Wardlow et al., 2007). To 

compensate for the effects of NDVI saturation over high biomass areas, EVI tends to 

present relatively low values in all biomes and also lower ranges over semi-arid sites 

(Jiang et al., 2008).  
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As an illustration, figure 6 presents the  EVI and NDVI 16-days composites, acquired 

by TERRA MODIS sensor in a vineyard (Douro region, Portugal), for the 2003-2008 

years. EVI presents lower values than NDVI throughout. The soil vegetation growth during 

the winter season causes higher variations in the NDVI profile, which is less observable in 

the EVI data, presenting a smoother profile and consequently a more clear identification of 

the vineyard growing season. 

Among the several VI, the NDVI and EVI indices provide detailed insight into biotic 

activities (Running et al., 1994) and have been applied in a broad range of studies such 

as global climate change, phenological and crop growth monitoring, yield prediction, 

climatic and biogeochemical modelling, to name a few (e.g. Justice et al., 1998, 2002; 

Running et al., 2004; Cunha et al., 2010). The two vegetation indices, EVI and NDVI, 

complement each other in global vegetation studies and improve upon the detection of 

vegetation changes and extraction of canopy biophysical parameters (Huete et al., 1997). 

 

 

 
Fig. 6. Example of temporal series of EVI (dotted line) and NDVI (solid line) acquired from TERRA MODIS sensor, for a 

vineyard region in Douro (Portugal) between 2003 and 2008. 
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2.32.32.32.3....    Vegetation Dynamics using Remotely Sensed DataVegetation Dynamics using Remotely Sensed DataVegetation Dynamics using Remotely Sensed DataVegetation Dynamics using Remotely Sensed Data    
 

Vegetation phenology is the science of studying life-cycle events of plants, and their 

responses to seasonal and inter-annual variation in climate (Morisette et al., 2009). The 

development of phenological models has permitted to study the relationship between 

biological events and the environment. The main methods used to monitor the phenology 

of a region are by field observations, bioclimatic models (e.g. Chuine, 2000), airborne 

pollen data (e.g. Helbig et al., 2004) or, more recently, through the analysis of remote 

sensing data. Remote sensing phenological studies can be done at regional or global 

scale, which is not feasible using field phenological studies, due the temporal and spatial 

limitations (Moulin et al., 1997; Reed et al., 1994; Zhang et al., 2003).  

Recent technological advances have resulted in a new field of phenological research 

concerned with the observation of whole ecosystems and stands of vegetation on global 

scales. The most successful approach is based on satellite VI time-series data to track the 

growth stages of green vegetation (emergence, growth, maturity, and harvest). 

Information about the time of occurrence of these stages was considered as indicators 

revealing the characteristics of the vegetation in the surface (Schwartz and Karl, 1990). 

The VI are useful indicators of vegetation properties and greenness in the spatial and 

temporal domain. Thus, the analysis of the VI time-series through time permits the 

extraction of appropriate metrics to describe vegetation dynamics, allowing a better 

monitoring and understanding of the biophysical changes in the vegetation cover and 

phenology in different ecosystems (Bradley and Mustard 2008).  

The study of vegetation dynamics at continental to global scales was enabled in 1981 

by the AVHRR onboard National Oceanic and Atmospheric Administration (NOAA) 

satellite (Tucker et al., 1985; Eidenshink, 1992). AVHRR has a long enough temporal 

global coverage of EOS NDVI products for vegetation condition and ecosystem studies in 

global scales. These data series are useful for learning from past events, monitoring of 

current conditions and studying the trend of NDVI for detection of long-term vegetation 

dynamics (van Leeuwen et al., 2006).  

The main advantages of AVHRR are the long period of collections, high radiometric 

resolution and the temporal ability for tracking fast the surface coverage changes. The 

spatial resolution of 1.1km lends itself to observing surface conditions on a regional and 

continental scale. However, this spatial resolution can be a disadvantage if the area of 
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interest is relatively small. Furthermore, AVHRR sensors were not originally designed for 

vegetation monitoring (Teillet at al., 1997). The sensors are sensitive to water vapor in the 

atmosphere due to the wide spectral bands, particularly the NIR channel, which clearly 

affects the calculated NDVI value. The AVHRR lacks in terms of quality and atmospheric 

corrections can be partially solved using modern sensors, such as SPOT VEGETATION, 

MODIS, MERIS, and PROBA V. These newer instruments are equipped with better 

navigation, atmospheric correction and improved radiometric sensitivity systems (Gobron 

et al., 2000).  

Long time-series of VI data can provide information on shifts in the spatial distribution 

of bio-climatic zones, indicating variations in large-scale circulation patterns or land-use 

changes. There is thus a great interest in maintaining data continuity and compatibility 

across the sensor datasets (Gitelson and Kaufman, 1998). Compatibility problems among 

the satellite data products exist due to the differences in sensor characteristics and 

algorithms used to process the data. The purpose of the VI continuity is to normalize the 

spectral, spatial, temporal and radiometric differences in order to extend stable temporal 

datasets to monitor the ecosystem changes. The VI continuity/compatibility is obtained 

when VI values computed from different sensors become the same for the same target 

under identical conditions (Yoshioka et al., 2002).  

Despite the great importance of the remote sensing data in phenological studies (Bin et 

al., 2008; Pettorelli et al., 2005) and the widespread access to satellite vegetation data, 

there is still a gap between data and the required information. The large amounts of data 

and the inconsistency of image quality can make the analysis and extraction of relevant 

vegetation information a difficult and time-consuming process (Badeck et al., 2004).  

The VI time-series obtained by EOS images contain a combination of phenological 

(inter-season) and trend changes (intra-seasons), in addition to various noise components 

such as atmospheric disturbances, viewing and solar illumination variability, cloud cover 

and others. In order to improve the image quality, several approaches have been applied 

to filter noise and optimize the satellite signal. The creation of composites permits to 

reduce the atmospheric disturbances and obtain a higher percentage of clear-sky data. 

However, the MVC process is not generally sufficient to eliminate all unrealistic variability 

from VI time-series, such as residual effects of sub-pixel clouds and prolonged cloudiness 

elements (Jonsson and Eklundh, 2004). If the composite period is long, the land surface 

does not remain static; and if the composite is too short, the atmospheric disturbance 

cannot be removed efficiently, particularly in cloudy regions. Furthermore, additional noise 
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may be also introduced by the process of overlaying several images (for example due to 

image registration). These negative effects require further processing in the form of data 

smoothing.  

The development of robust, accurate and fast filtering models, being capable of 

smoothing the data without introducing artifacts or suppressing natural variations of the 

vegetation, has been an important research topic. The difficulty/lack in obtaining reference 

(ground-based) data for validation, as the coarse scale of the sensors and the required 

representativeness of the reference measurements in time and space, represent the main 

difficulties of this subject (Justice et al., 2000).  

 

Table 1. Filtering methods proposed for smoothing remotely sensed time-series of vegetation indices. 

Filtering Method  Some Prominent Applications 

Running Medians  Velleman (1980) 

   
Best Index Slope Extraction  Viovy et al. (1992); Lovell and Graetz (2001) 

   
Weighted Least Squares Windowed 

Regression 
 Swets et al. (1999) 

   
Harmonic Series and Higher Order 

Splines 
 

Roerink et al. (2000); McCloy and Lucht (2004); Bradley  et 

al. (2007)  

   
Wavelets  Li and Kafatos (2000); Sakamoto et al. (2005) 

   
Asymmetric Gaussian  Jonsson and Eklundh (2002);  

   
Double logistic  Zhang et al. (2003); Beck et al. (2006) 

   
Savitzky-Golay  Chen et al. (2004) 

   
Mean Value Iteration  Ma and Veroustraete (2006) 

   
Whittaker smoother  Atzberger and Rembold (2009); Atzberger and Eilers (2010) 

 

During the last years, different filtering techniques have been proposed (summarized in 

Table 1). In general, data smoothing facilitates the satellite time-series analyses, by 

eliminating the unrealistic abrupt peaks and aberrant values that appears in the VI profile 

(Fontana et al., 2008). Moreover, it permits a better observation of the vegetation changes 

over time and the identification of the main and double growing seasons, which is not 

always clearly possible using the VI original data. This is illustrated in the example 

presented in figure 7. 
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Many studies have focused on VI noise reduction techniques comparison, but there is 

not yet an agreement on which filter is the best to smooth the remotely sensed time-series 

(Chen et al., 2004; Beck et al., 2006; Hird and McDermid, 2009).   

 

 
  

 
 

Fig. 7. Example of a temporal series of NDVI acquired from NOAA AVHRR sensor, for a semi-natural meadows region 

in Montalegre (Portugal) between the years 2001 and 2004. The dotted black line corresponds to the original NDVI data and 

the solid green line the smoothed data produced using the Savitzky-Golay method. 
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2.2.2.2.4444. Crop Monitoring. Crop Monitoring. Crop Monitoring. Crop Monitoring    

 

Agricultural production strategies have changed dramatically over the past two decades. 

Many of these changes have been driven by human population increase, urbanisation, 

economic and political decisions (Reddy et al., 2003). The use of large machineries and 

applications of chemicals and fertilizers may contribute to negative environmental 

applications, such as soil fertility deterioration or water pollution. There is thus the need of 

an efficient approach to monitor the natural resources ensuring the quality, nutritional value, 

sustainability, and safety of agricultural products. Technological investments for crop 

management have become one of the most important approaches in the last twenty years, 

and particularly in the 21st century. 

Crop management aims increasing the efficiency of resources use and reducing the 

uncertainty of decisions required to manage variability on farms (NRC, 1997). It is an 

integrated, information and production-based farming system that is designed to increase 

the efficiency, productivity and profitability of farm production. The crop management data 

generally include: crop and soil information, microclimatic data, surface and subsurface 

drainage conditions, fertilization planning, control of plagues/diseases and water availability 

(Venkataratnam, 2001). Due the impacts of the crop management in the environmental, 

social and economic aspects, various research and technological investments have been 

developed during the last two decades (Schellberg et al., 2008). In order to collect and 

utilize the information efficiently, a vast array of tools, including software, hardware and 

management practices are available, such as Global Positioning System (GPS) receivers, 

yield monitoring and mapping, Geographic Information Systems (GIS) and remote sensing.  

The applications of remote sensing technologies in crop monitoring are increasing rapidly 

due to the great improvements made in the spatial, radiometric, spectral and temporal 

satellite resolutions. Besides providing a spatial overview of the land surface, the satellite 

remote sensing data provide spectral reflection information, which can be measured and 

used to monitor phenology, stage type and crops health (pionnering studies were made by 

Allen et al., 1969; Gausman et al., 1969; Wooley, 1971; Allen et al., 1973; Gausman and 

Allen, 1973; Gausman and Hart, 1974 and Gausman et al., 1974). Furthermore, the ability 

of some satellite sensors to collect imagery at frequent time intervals is an important 

element for crop monitoring. Multitemporal images permit to observe how the vegetation 
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changes throughout the growing season, and better monitor the changes naturally occurring 

or induced by humans.  

Vegetation phenology based on remote sensing data refers to the spatio-temporal 

development of the vegetated land surface as revealed by satellite sensors (de Beurs and 

Henebry, 2004). The main assumption behind all methods for phenological determination 

from satellite sensor data is that the signal is related to measures of vegetation. A time-

series of a given VI follows annual cycles of growth and decline. Thus, deriving phenological 

metrics from remotely sensed data consists on the analysis of the seasonal VI trajectory, 

and identifying critical points such as the start of the season or the end of season. However, 

this is not a straightforward process. Phenological metrics exploit the seasonal growth cycle 

information, which could be influenced by non-climatic factors, biogenic and anthropogenic 

disturbances (fires, land degradation, insect attacks), or temperature and rainfall variations 

(Julien and Sobrino, 2009; Potter et al., 2003). 

Phenological metrics can be derived from satellite VI data in several ways. Some 

researchers use complex mathematical models, others employ thresholds. The most 

common method is based on thresholds, assuming that the growing season has started 

when filtered or partially smoothed VI values exceed a given value (Lloyd, 1990; Reed et 

al., 1994; Alberte, 1994; Zhou et al., 2003). Instead of using thresholds, other methods, as 

derivatives or fitting models, can also be applied to retrieve phenological information from 

EOS VI data. Each method has its own advantages and disadvantages (Hird and 

McDermid, 2009; de Beurs and Henebry, 2010; Viovy et al., 1992). However, the fitting 

models can be easily adapted to a wide range of situations, being the most chosen category 

in the last years. 

 The first method of the vegetation phenology based on EOS data using the fitting model 

was presented by Badhwar in 1984, and since then several methods have been developed 

(e.g. Jonsson and Eklundh, 2002; Zhang et al., 2004). Beck et al. (2006) and Hird and 

McDermid (2009) compared some of the fitting algorithms available in the literature and 

conclude that double logistic and asymmetric Gaussian functions are the most suitable for 

describing the vegetation dynamics, with a slightly better performance and flexibility for the 

double logistic.  

Developing algorithms to automatically remove the time-series noise and retrieve land 

surface phenology metrics from satellite data has been a popular research topic for the last 

decade. TIMESAT (Jonsson and Eklundh, 2004) is the most known software for time-series 

phenology analysis, being used in several research studies (e.g. Gao et al., 2008; 
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Verbesselt et al., 2012; Zeng et al., 2013). It is an open source software and provides three 

different smoothing functions to fit the time-series data: asymmetric Gaussian, double 

logistic and adaptive Savitzky-Golay filter. TIMESAT uses a simple method, based on 

thresholds, to determine a set of phenological metrics, including the start of season, mid-

season and end of season. This method works well in ecosystems with predictable 

minimum and maximum VI values, however it can not adapt so well to different vegetation 

dynamics over the years, caused by uncontrollable conditions (drought year, unseasonal 

snow, fire, plagues and diseases), and crops with partial ground cover or period of 

dormancy.  

 Besides TIMESAT, there are other software packages allowing the analysis of the 

satellite time-series, reduction of noise components and/or extraction of phenological 

metrics from satellite time-series data. HANTS (Roerink et al., 2000), TiSeG (Colditz et al., 

2008), TSPT (Prados et al., 2006; McKellip et al., 2008), PPET (McKellip et al., 2010), 

TIMESTATS (Udelhoven, 2011) and Enhanced TIMESAT (Tan et al., 2011) are some 

examples. Although these software products have important functionalities for the extraction 

of phenological information, they present two great limitations: the first is related with the 

extraction of information for the double growth-season, and the second is the impossibility 

to define an in-season temporal region of interest that is important for crops with a dormancy 

period. Moreover, they were tested only in a short number of vegetation types and detailed 

comparisons with field data are still scarce. 

Based on the increasing importance of phenological research for the management 

resources and yield production, this PhD work had as its main purpose the creation of a 

new software package (PhenoSat) to extract phenological information from satellite VI time-

series. PhenoSat permits to obtain information for the main growth vegetation stages and 

solves the main limitations found in the aforementioned software packages. Figure 8 shows 

a schematic procedure for the calculation of PhenoSat derived phenological metrics. The 

NDVI original values were obtained from SPOT VEGETATION sensor for a vineyard crop 

in Portugal, for the year 2000. 
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Fig.8. Representation of PhenoSat derived phenological stages, using the maxima and minima of the first and second 

derivatives of the NDVI fitted data. 
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2.2.2.2.5555. Land Cover Change Detection. Land Cover Change Detection. Land Cover Change Detection. Land Cover Change Detection    

 

Land use and land cover is essential for many planning and management activities 

concerned with the Earth’s surface, because it constitutes a key environmental information 

for a variety of scientific, resource management and policy purposes, as well as for a range 

of human activities (Cihlar, 2000). 

Classifying and mapping vegetation is an important task for monitoring natural resources 

as vegetation provides a base for all living beings and plays an essential role in affecting 

global climate change (Xiao et al., 2004b). Traditional methods (e.g. field surveys, literature 

reviews, map interpretation and collateral and ancillary data analyses) are not effective to 

acquire vegetation covers because they are time-consuming, date lagged and often too 

expensive. The technology of remote sensing offers a practical and economical means to 

study vegetation cover changes, especially for large areas (Langley et al., 2001). The use 

of remote sensing in land use/land cover mapping is one of the most important applications 

of modern satellite sensor technology, as it provides data from which updated land cover 

map information can be extracted efficiently, at reduced costs. 

The EOS data frequently used for land cover mapping are mostly high spatial resolution 

image data. The high spatial resolution multispectral data, provided by Landsat or SPOT 

High Resolution Visible (HRV) sensors, have been widely used to produce a large variety 

of land cover maps (Aban et al., 2002; Kokalj and Oštir, 2007; Marçal et al, 2005; Poças et 

al., 2011). Over the years, the improvements on sensors instruments leading to the 

production of more accurate land cover maps, due the very high spatial (e.g. IKONOS) and 

spectral (e.g. Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER)) resolutions. The automatic classification based on multispectral images usually 

uses high spatial resolution images (a single one or, a few from different seasons in a year) 

with multiple spectral bands. However, to detect with precision all the seasonal dynamics 

and the changes in the land cover, this type of classification is not appropriate. Multiple 

measurements over time are necessary to capture all the changes occurring naturally or 

caused by different factors (e.g. fire, human interventions or climate changes). The 

availability of satellite sensors with high temporal resolution (image per day or per 2-3 day 

periods) allows the acquisition of image sequences in time (time-series), which permits the 

accurate monitoring of the seasonal vegetation development as well as the detection and 

assessment of land cover changes (Lunetta et al., 2006). Besides that, these temporal data 
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can be an alternative to standard classification approaches, particularly in tropical regions 

where the presence of cloud cover seriously limits the use of passive satellites (Carreiras 

et al., 2003). 

The automatic classification based on satellite time-series needs to be slightly different 

from the standard approach. The multispectral image classification usually uses high spatial 

resolution images with multiple spectral bands, and focuses on finding patterns on the 

spectral response having into account known land cover groups. Instead of using the 

multispectral values as features for each pixel, the temporal image classification uses the 

temporal yearly profiles as features. This type of classification is based on image sequences 

acquired over a period of time, thus providing high frequency observation of the land 

surface. 

Since 1981, the AVHRR sensor has made the monitoring of the land surface processes 

(Hansen et al., 2000, Loveland et al., 2000). The long period of AVHRR data record is very 

valuable for global land cover change studies (Hansen and DeFries, 2004). However, the 

AVHRR data, as mentioned, have several limitations such as insufficient geometric 

correction, unsatisfactory atmospheric correction, or cloud masking (Cihlar et al., 1997; Roy, 

2000). The MVC process can improve the AVHRR data by reducing the atmospheric 

effects, but some difficulties arise when all the entire compositing period is cloudy. The new 

era of temporal EOS data, well-calibrated and corrected geometrically, such as SPOT 

VEGETATION, MODIS and MERIS, provide the possibility of consistent long-term 

observations and trend analysis, important for multiple global-change studies.  

The access to satellite temporal data is currently widespread, at reduced or no cost. The 

improvements on data processing made possible to extract data for land cover mapping at 

continental and global scales. However, there are some problems (diversity of inputs, labor 

to process the remote sensing data, difficulty in collect ground truth data) that make the 

production and update of land cover maps at these scales a difficult and a lengthy process 

(Loveland et al., 2000; Muchoney et al., 1996).  

One of the main objectives of this PhD work was to investigate and develop a new 

methodology that allows the detection of potential land cover changes using a classification 

method based exclusively in VI time-series data. Similarity measures are used to perform 

a hierarchical aggregation of the land cover vegetation types, level-by-level, until only one 

class is left. The calculation of the classification accuracy at each level permits to determine 

the best number of classes for a desirable level of accuracy. 
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1. Summary1. Summary1. Summary1. Summary    

 

 A long history of research in phenology has created a significant knowledge and ability 

to predict plant developmental events (McMaster, 2005). 

 During the last decade, the interest in phenology has been increasing significantly (e.g. 

Jonsson and Eklundh, 2004; Fisher et al., 2006; Hermance et al., 2007; Hudson et al., 

2009).  Phenology provides valuable information for many areas as land-use planning, crop 

management, carbon sequestration and more recently to infer about climate changes. The 

knowledge of timing of phenological events and their variability can help to get more stable 

crop yields and quality.  

 Focused on the crop management’s importance in the actual general practices, a new 

software package (PhenoSat) was developed during this PhD project that allows the 

extraction of phenological information from EOS VI time-series.  

 Different land cover types (vineyard, semi-natural meadows, low shrublands), in different 

geographical locations of continental Portugal, were used to test the ability of PhenoSat in 

determining the phenological information. Two important features were also tested: the 

advantage of selecting an in-season temporal region of interest; and the capability to detect 

more than one growth cycle through a year.  
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Monitoring Vegetation Dynamics Inferred by
Satellite Data Using the PhenoSat Tool
Arlete Rodrigues, Student Member, IEEE, Andre R. S. Marçal, and Mário Cunha

Abstract—PhenoSat is an experimental software tool that pro-
duces phenological information from satellite vegetation index
time series. The main characteristics and functionalities of the
PhenoSat tool are presented, and its performance is compared
against observed measures and other available software applica-
tions. A multiyear experiment was carried out for different vege-
tation types: vineyard, low shrublands, and seminatural meadows.
Temporal satellite normalized difference vegetation index (NDVI)
data provided by MODerate resolution Imaging Spectroradiome-
ter and Satellite Pour l’Observation de la Terre VEGETATION
were used to test the ability of the software in extracting vegetation
dynamics information. Three important PhenoSat features were
analyzed: extraction of the main growing season information,
estimation of double growth season parameters, and the advan-
tage of selecting a temporal region of interest. Seven noise re-
duction filters were applied: cubic smoothing splines, polynomial
curve fitting, Fourier series, Gaussian models, piecewise logistic,
Savitzky–Golay (SG), and a combination of the last two. The
results showed that PhenoSat is a useful tool to extract NDVI
metrics related to vegetation dynamics, obtaining high significant
correlations between observed and estimated parameters for most
of the phenological stages and vegetation types studied. Using the
combination of SG and piecewise logistic to fit the NDVI time
series, PhenoSat obtained correlations higher than 0.71, except for
the seminatural meadow start of season. The selection of a tem-
poral region of interest improved the fitting process, consequently
providing more reliable phenological information.

Index Terms—Normalized difference vegetation index (NDVI),
phenology, PhenoSat, time series.

I. INTRODUCTION

T EMPORAL vegetation profiles based on remotely sensed

data provide valuable information for understanding land

cover dynamics, generally interpreted by vegetation phenolog-

ical events. Over the last years, the number of remote sensing

sensors capable of acquiring phenological appropriate temporal

data has been increasing considerably. Most of these sensors
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[Advanced Very High Resolution Radiometer, Satellite Pour

l’Observation de la Terre (SPOT) VEGETATION (SPOTVGT),

MODerate resolution Imaging Spectroradiometer (MODIS),

and MEdium Resolution Imaging Spectrometer] provide data

related to a specific vegetation index (VI), such as the nor-

malized difference vegetation index (NDVI) or the enhanced

VI [1]. The VI temporal profile (time series) can be analyzed

through time and used to extract information about the vegeta-

tion dynamics. Currently, access to satellite vegetation data is

widespread, with low or no costs. However, the analysis and

extraction of relevant information can be a difficult and time-

consuming process due to the large amounts of data and the

presence of noise.

The VI time series obtained by Earth Observation Satellite

(EOS) images generally include various noise components such

as atmospheric disturbances, viewing and solar illumination

variability, cloud cover, and others. In the SPOTVGT (ten days)

andMODIS (16 days) composites, some of this noise is reduced

by the maximum value compositing process [2], where only the

highest VI value in a predefined period (10 or 16 days according

to the sensor) is retained. However, additional noise may be

also introduced by the process of overlaying several images

(for example, due to image registration). Noise reduction or

fitting a model to the observed data is thus necessary before the

extraction of vegetation dynamics information. It is important

to carefully evaluate the time series and the noise present

in order to choose the best fitting algorithm, one capable of

smoothing the data without introducing artifacts or suppressing

natural variations of vegetation [3]. Various time-series fitting

algorithms have been developed [2], [4]–[10], and compari-

son studies have been conducted [11], which concluded that

asymmetric Gaussian (AG) [6] and double logistic functions

[4] present the best results.

During the last years, more fitting algorithms (e.g., [12]–

[14]) and software products were developed to extract phe-

nology from satellite VI time series. These software include

TIMESAT [7], TimeStats [15], enhanced TIMESAT [16], PPET

[17], and the software developed by United States Geological

Survey Earth Resources Observation and Science Center [18].

All these software tools have important functionalities for the

extraction of phenological information, but none of them allow

the selection of an in-season window of interest, which is fun-

damental for application to crops with discontinuous canopy.

Moreover, except for TIMESAT, none of them have a specific

option to determine a double growth season phenology. To

address these limitations, the authors of this paper developed

PhenoSat, a new tool that is flexible to detect the number of

growth seasons in each year and has an option that permits

0196-2892/$31.00 © 2012 IEEE
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to define, manually or automatically, an in-season window of

interest.

The aim of this paper is to evaluate the capability of NDVI

metrics obtained from PhenoSat to identify the phenology

in situ. Different NDVI time series provided by MODIS and

SPOT VGT satellite sensors, from different geographical lo-

cations and vegetation types, were used to address the objec-

tives of this paper. The following section describes PhenoSat

functionalities and insights into the algorithm performance.

Sections III and IV present an experiment carried out to test the

PhenoSat ability to detect accurate phenology with various veg-

etation types, and Section V presents the concluding remarks.

II. PHENOSAT SOFTWARE DESCRIPTION

A. Functionalities and Implementation

PhenoSat is a simple-to-use tool that extracts satellite VI

metrics related to vegetation phenology. PhenoSat was imple-

mented in Matlab, receiving as input a temporal VI data set and

as outputs the phenological information and the data from the

various fitting steps.

PhenoSat extracts a number of phenological parameters for

the main growth period such as the following: start of the

season, maximum vegetation growth, or senescence. Some

vegetation types can have a regrowth in the same year, which

is related to some factors such as the grass-cut-animal pastures

or particular weather conditions. The beginning and maximum

of the regrowth period can be determined by PhenoSat.

Some VI data sets available online (e.g., MODIS and SPOT

VGT) are already preprocessed in order to remove many of the

disturbances provided by different factors such as atmospheric

conditions or geometry and illumination variability [19]–[22].

Although this preprocessing is generally effective, the VI data

sets still retain enough problems (punctual outliers or abrupt

changes) that require additional processing. The elimination

of these artifacts can be achieved by the application of noise

reduction filters, which permits the researcher to conduct a bet-

ter subsequent analysis and to obtain more reliable vegetation

dynamics information.

Initially, the VI time-series values that are substantially

different (with an NDVI difference above 0.2) from the left

and right spatial neighbors, and from a median of a window

(Mw), are considered outliers, and their values are replaced

by the Mw value. PhenoSat has an option that permits the

application of an upper envelope [4], enhancing the spring

and summer periods. Despite these actions, some noise might

still remain in the time series. Further improvements in the

analysis can be obtained by PhenoSat using seven smoothing

algorithms: cubic smoothing splines (CSSs), polynomial curve

fitting (PCF), Gaussian models (GMs), Fourier series (FS),

piecewise logistic (DL), Savitzky-Golay (SG), and, also, the

sequential combination of the SG and DL.

The CSS algorithm fits a spline or smooth piecewise-

polynomial algorithm, and a smoothing parameter determines

just how closely the smoothing spline adheres to the given

data [23].

The PCF [24] applies a polynomial of a given degree to fit

the data. The higher the degree, the closer the fitting curve will

be to the given data.

The FS [25] is a sum of sine and cosine functions of different

period that describes a periodic signal. It is represented in either

the trigonometric form or the exponential form

y = a0 +Σn

i=1
[ai cos(nwx) + bi sin(nwx)] (1)

where a0 models a constant (intercept) term in the data and is

associated with the i = 0 cosine term, w is the fundamental fre-

quency of the signal, and n is the number of terms (harmonics)

in the series (1 ≤ n ≤ 8).
The GM [26] fits peaks and is given by

y = Σn

i=1
aie

[

−

(

x−bi

ci

)

2

]

(2)

where a is the amplitude, b is the centroid (location), c is

related to the peak width, and n is the number of peaks to fit

(1 ≤ n ≤ 8).
The SG is a particular type of low-pass filter, well adapted

for data smoothing [27]. This filter

gi = ΣnR

n=nL
cnfi + n (3)

replaces each data value fi, i = 1, . . . , N , by a linear combina-

tion gi of nearby values in a window defined by the number of

points used “to the left” (nL) and “to the right” (nR) of a data

point i, respectively. The application of the SG in PhenoSat uses

the simplest case (nL = nR), where the same number of points

is used “to the left” and “to the right.” Some tests were done

to estimate the best SG moving window and polynomial order,

and a first-degree polynomial with a frame size of five proved

to be capable of removing the undesirable data from NDVI time

series, capturing efficiently all the transitions related to the main

and double growth seasons.

The DL, defined by (4), uses seven parameters to fit the VI

data

VIt=VIw+
k

1+exp [−c(t− p)]
−

k+VIw−VIw1

1+exp [−d(t− e)]
(4)

where t represents the time, VIt is the VI value at time t,

k is related with the VI asymptotical value, c and d are

the slopes at “left” and “right,” and p and e are the dates of the

inflection points. VIw and VIw1 are the VI values before the

start of growing season and after the leaf fall, respectively.

The continuity between the vegetation growth and senescence

parts is assured by the k parameter, even when they differ in

shape [28]. The parameters of the DL method were estimated

by the Levenberg–Marquardt [29] algorithm that requires some

reasonable initial values.

Fig. 1 presents a schematic representation of the DL param-

eters, using two consecutive years of NDVI SPOT VGT data.

The continuity between the two years is assured by the NDVIw
and NDVIw1, being the NDVIw for the second year (beginning

of the time series) the same as the NDVIw1 for the first year

(final of the time series).

A new fitting method using a combination of SG and DL

(SG+DL) was also implemented. It consists of the application



2098 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 51, NO. 4, APRIL 2013

Fig. 1. Schematic representation of the DL parameters, using two consecutive
years of NDVI SPOT VGT data.

Fig. 2. Representation of NDVI metrics (Gu, LIP, Mat, MVD, Se, RIP, and
Dm) calculated based on maximum and minimum rates of curvature change.
Global maximum and minimum of the curvature estimate the inflection points.

of the SG filter to the NDVI time series, followed by the DL

fitting process.

B. Phenological Information Extraction

PhenoSat extracts information (VI value and time of occur-

rence) of seven phenological stages in the main growing season:

green-up (Gu) or start of season (SOS), left and right inflection

points (LIP and RIP), maturity (Mat), maximum vegetation

development (MVD), senescence (Se), and dormancy (Dm).

To estimate these stages, the fitted data derivatives are used.

Initially, the LIP and RIP, corresponding to the maximum

growth and maximum senescence rates, are calculated using

the maximum and minimum of the fitted data first derivative.

Then, the MVD is determined as the maximum VI value

observed in the data interval delimited by the inflection points.

The Gu and Dm correspond to the maxima of the fitted data

second derivative to the left and right of the MVD, respectively.

Furthermore, the maturity [beginning of ripening stage (fruit

vegetation) or full canopy (nonfruit vegetation)] and senescence

correspond to the minima of the fitted second derivative to the

left and right of the MVD. As an illustration, Fig. 2 shows the

NDVI values optimized after DL application and a schematic

procedure for the calculation of the NDVI metrics. The NDVI

values were obtained from SPOT VGT sensor for a vineyard

region in Portugal, for the year 2000.

In addition to the phenological information extracted by

PhenoSat for the main growing season, it is also possible to

record information for a double growth season or regrowth

occurrence. This option allows obtaining information about the

VI value and time occurrence for the start and maximum of

this period. To determine the regrowth stage occurrence, the

use of two successive years of data is necessary: the data for the

year in analysis and the data for the following year. The start

occurs when an increase of three or more consecutive points is

verified after the Dm stage. The maximum of the double growth

happens when, after the start occurrence, a decreasing period is

verified.

Another feature of PhenoSat is the possibility of selecting

an annual time-series subinterval, reducing the volume of data

to be processed and thus improving the fitting process. This

temporal region of interest can be selected manually, by the

user, or automatically, by PhenoSat. The manual selection can

be done by introducing the initial and final time positions in

a specific application defined for this purpose. This selection

must be based on the knowledge of the vegetation behavior,

at normal growth conditions. For the automatic detection of

the temporal region of interest, the PhenoSat first finds the

maximum value of the data and then searches for the point

where a significant increase (or abrupt decrease) is verified

to the left of the maximum. That point corresponds to the

initial position of the region of interest. Afterward, to determine

the final position, the program proceeds in a similar way but

evaluates the data to the right of the maximum.

III. EXPERIMENTAL SETUP

A. Satellite Data and Study Areas

In order to evaluate the performance of PhenoSat, various

tests were carried out using NDVI time series acquired from

different sensors, representing a variety of vegetation types

and geographical locations. Satellite vegetation data covering

Portugal from Aqua MODIS NDVI (16-day composite and

250-m resolution) and NDVI SPOT VGT (ten-day composite

and 1-km resolution) were downloaded from Reverb [30] and

Vision on Technology (VITO) [31], respectively. Three dif-

ferent vegetation types, namely, vineyard (VIN), seminatural

meadows (SNM), and low shrublands (LSL), were used for

the experimental test carried out (Table I). These land cover

types were selected due to the availability of VIN ground-

based information as well as for its different growth patterns:

1) The grapevines in Portugal have a long dormancy period

with intense understory vegetation growth and a discontinuous

canopy [28]; 2) SNM presents a vegetation regrowth by August

whose intensity and date of occurrence are mainly dependent

on climatic conditions [32]; and 3) LSL, composed mainly of

shrubs and permanent herbaceous species [33], is an exten-

sive grazing area with minimal agronomic human intervention,

where vegetation development occurs later than in the SNM.

For each test site selected, the median NDVI value was

recorded from each image. The median was used instead of the

mean values as it has lower sensitivity to erroneous or outlier

values. Annual NDVI time series were created for VIN, SNM,

and LSL.
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TABLE I
DESCRIPTION OF STUDY AREAS AND SATELLITE DATA SETS USED

B. PhenoSat-Derived Phenology

For each test site, the SOS and MVD phenological stages

were extracted. If the crop shows a double growth season,

the start and maximum of this period were also recorded.

The PhenoSat-derived phenology, for each vegetation type,

was compared against observed measures and the results pro-

duced by TIMESAT. Both software tools extract phenologi-

cal information from satellite VI time series. TIMESAT was

chosen for this experiment because it is a freely available

software tool and has time-series fitting algorithms similar to

PhenoSat.

TIMESAT uses three distinct methods to fit the NDVI time

series: AG, DL, and SG. Previous studies showed that AG and

DL algorithms present similar results [11], [34]. As described

in Section II-A, PhenoSat permits the use of seven different

methods to smooth VI time series. However, for consistency,

in this experiment, we only used DL, SG, and SG+DL as they

are implemented in both software tools.

The SG filter was implemented in both tools in a similar

way, replacing each data value by a linear combination of

nearby values in a window [27]. The implementation of the

DL differs in the number of parameters: PhenoSat uses seven

parameters (see (4) in Section II-A), and TIMESAT uses only

four parameters, which are related to the inflection points and

the respective rates of change.

To determine the phenological metrics, TIMESAT uses a

threshold approach: The start time of the season corresponds to

the time for which the left edge has increased by 20% (default

value used by TIMESAT) of seasonal amplitude, measured

from the left minimum level. The time for the middle of the

season is obtained by calculating the mean value of the times

for which the left edge has increased to the 80% level and

the right edge has decreased to the 80% level. On the other

hand, PhenoSat uses an algorithm based on derivatives avoiding

thresholds or empirical constants, providing a method that

can be applied globally and is capable of identifying multiple

growth periods within a single year.

C. Software Performance Evaluation

To evaluate the performance of the software in the extraction

of phenological metrics, a Spearman’s rank correlation (e.g.,

TABLE II
STATISTICS OF OBSERVED PHENOLOGICAL MEASURES OBTAINED FOR

VINEYARD (VIN), LOW SHRUBLAND (LSL), AND SEMINATURAL

MEADOW (SNM) VEGETATION TYPES. NOTE THAT THE

OBSERVED MEASURES WERE OBTAINED FROM FIELD

MEASUREMENTS (VIN) OR BY THE ANALYSIS OF

THE NDVI ANNUAL PROFILES (LSL AND SNM)

[35]) and a root-mean-square error (rmse) analysis were per-

formed to compare the estimated and observed phenological

measures. Table II presents the statistics of observed phe-

nological measures obtained for each study area. For VIN,

the observed measures were collected in the field, according

to the Baggiolini scale [36]; for LSL and SNM, they were

derived by the analysis of the original NDVI time series, taking

into account the knowledge of the vegetation behavior in the

field under normal conditions (regular atmospheric conditions,

without human interventions that affect the normal growth of

vegetation). The SOS was determined as the first point where

a continuous (five or more points) vegetation growth was veri-

fied (March/April). The MVD was identified as the maximum

NDVI value in the annual time series, which generally occurs

in June or early July. The SNM regrowth was related to the first

significant (three or more points) vegetation growth after the

MVD (around August).

Two other important points to evaluate are the ability of

TIMESAT and PhenoSat to detect a double growth season and
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Fig. 3. Original NDVI temporal profiles for three land cover types:
(a) Vineyard, (b) low shrubland, and (c) seminatural meadows. The x-axis scale
of the plot (c) is different from the other two as the sensor used was MODIS
(16 days), and for plots (a) and (b), the sensor used was SPOT VGT (ten days).

the advantage of the option of selecting a temporal region of

interest (available in PhenoSat but not in TIMESAT).

IV. RESULTS AND DISCUSSION

The original NDVI temporal profiles produced for each test

site are shown in Fig. 3. As described, these plots were pro-

duced from the median NDVI of the test area available for each

land cover type. The general shape of these temporal plots is

very much what could be expected for the vegetation types. The

SNMs are irrigated all year round, and in general, they present

a SOS in March/April, an MVD in June/July, and a regrowth

by August. LSL presents a similar behavior to SNM; however,

as the LSLs are not irrigated, the regrowth is less frequent and

with less magnitude.

For the VIN vegetation type, the annual profile presents high

variability among years and is not so well defined as for SNM

and LSL. Grapevine (VIN) budbreak occurs in March/April

(Julian Day 79 to 91), followed by a period of about four weeks

of intensive growth and then a steady decrease until “veraison”

(change of color of the grapes) that occurs between Julian Day

201 and 215 (Table II; Fig. 3). Due to the large interrow space

and discontinuous canopy, it is possible to see, particularly in

the annual winter season, the effect of the soil vegetation growth

on the VI temporal profiles.

A. PhenoSat Fitting Methods

To evaluate the ability of the PhenoSat fitting algorithms (SG,

DL, SG+DL, CSS, PCF, GM, and FS) in estimating phenology,

a comparison was made between derived and observed pheno-

logical information.

The performance of CSS, PCF, GM, and FS algorithms

depends on a smoothing parameter, which affects the adherence

of the fitting curve to the original data. To test the sensitivity

of the algorithms to the smoothing parameter, PhenoSat was

executed eight times for each algorithm: For PCF, GM, and FS,

the parameter was varied between one and eight, and for CSS,

it was varied from 0.1 to 0.8.

Table III presents the Spearman’s correlation rank (rs) be-

tween PhenoSat-estimated phenological parameters and ob-

served values, for the VIN region. The SOS and MVD obtained

from PhenoSat were compared with grapevine field measures

of budbreak and veraison (“change of color of the grapes”), re-

spectively. The SG+DL algorithm presented correlations above

0.70 for both phenological stages evaluated. For CSS, FS, GM,

and PCF algorithms, high smoothing parameters allowed a

more accurate detection of the SOS, presenting correlations of

0.71, 0.83, 0.89, and 0.64, respectively. However, for the MVD,

intermediate values obtained the best correlations except for

CSS, where the lowest parameter (0.1) produced the highest

correlation (0.40).

B. PhenoSat and TIMESAT Results

Table IV shows theSpearman’s rank correlation (rs) and rmse

results obtained between observed and estimated phenological

SOS and MVD, for VIN, LSL, and SNM vegetation types.

Analyzing the fitting algorithms, SG+DL was the best for

PhenoSat with correlations above 0.70 for all tests, except for

the seminatural meadow SOS. In TIMESAT, SG and SG+DL

were the algorithms that obtained the better and the worst corre-

lations, respectively, between derived and observed phenologies.

For VIN, PhenoSat showed the best results in all fitting

methods, providing rmse values between 15 and 23 days. In

TIMESAT, some VIN years are not considered in the correla-

tion estimation as the software was unable to predict the metrics

for those years. The poor adherence of the TIMESAT fitting

algorithms to the VIN original data can explain the abnormal

rmse (above 100 days) results obtained.

For all vegetation types, TIMESAT and PhenoSat proved

to be useful tools to detect phenological events, obtaining, in

some cases, correlations above 0.70. TIMESAT obtained better

results for the MVD except using the SG+DL algorithm, for

which the PhenoSat always was the best with mean correlations

of about 0.70 and rmse values between 5 and 23 days.

Table V presents the observed and computed regrowth

season parameters. In 2007, there was no regrowth, which

was correctly verified by both software tools. For the other

years, TIMESAT had some difficulty in determining the double

growth season using the different algorithms; the SG+DL was

the worst case, as TIMESAT was unable to determine the

parameters for any year tested. The TIMESAT 1-season option

does not report any regrowth; thus, the results presented in
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TABLE III
SPEARMAN’S CORRELATION RANK (rs) BETWEEN PHENOSAT-ESTIMATED PHENOLOGICAL

PARAMETERS AND OBSERVED MEASURES, FOR THE VINEYARD TEST SITE

TABLE IV
SPEARMAN’S RANK CORRELATION (rs) AND RMSE BETWEEN OBSERVED AND ESTIMATED PHENOLOGIES, OBTAINED FROM TIMESAT

AND PHENOSAT, FOR VINEYARD (VIN), LOW SHRUBLAND (LSL), AND SEMINATURAL MEADOW (SNM) VEGETATION TYPES

Table V were obtained using the option 2-seasons. Although

this option might work for some years, it is not sufficiently

flexible for the years in which there is no regrowth. On the other

hand, PhenoSat determined the parameters with high precision,

only failing on the maximum for the year 2005. The PhenoSat

algorithm, to derive the regrowth, uses the preprocessed time

series before the application of the fitting process, being inde-

pendent from the fitted data, and thus provides identical results

for all fitting algorithms tested.

Fig. 4 shows the original and SG, DL, and SG+DL fitted

data, obtained by PhenoSat and TIMESAT software tools, for

the SNM region in 2003. From the original data, it is possible

to verify a regrowth occurrence around the Julian Day 240

to 256. The TIMESAT SG algorithm cannot detect efficiently

the regrowth, smoothing this period, contrary to PhenoSat that

can detect with high precision the beginning of the regrowth.

For DL, the TIMESAT and PhenoSat fitted results present

slight differences for the main growing season; however, for

the regrowth period, PhenoSat tends to smooth this period. The

SG+DL algorithm presents a similar performance to that ver-

ified in SG for the TIMESAT tool; for PhenoSat, the SG+DL

fitted results show a “mix” of the SG and DL results.
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TABLE V
OBSERVED AND ESTIMATED DOUBLE GROWTH SEASON PARAMETERS, FROM TIMESAT (2-SEASONS)

AND PHENOSAT, FOR A SEMINATURAL MEADOW REGION

Fig. 4. Original and fitted results obtained from PhenoSat and TIMESAT
using SG, piecewise logistic (DL), or both (SG+DL) algorithms, for the
seminatural meadow vegetation type in 2003.

The selection of an in-season window is of particular interest

for crops like VIN, with a long period of winter dormancy,

and crops with discontinuous canopies. The VIN, in general,

presents a budbreak in March/April (Julian Day 79 to 91) and

dormancy stage in October/November (Julian Day 300 to 310).

Thus, the period comprising the Julian Day 79 to 310 is usually

used to define a manual selection of the region of interest.

However, the manual selection, based on the knowledge of the

vegetation behavior in the field under normal conditions, is

not flexible to adapt to the different vegetation dynamics that

can occur over the years due to some factors, such as adverse

weather conditions. The automatic selection can be a good

option to eliminate these limitations and detect more accurately

the temporal region of interest.

Fig. 5 shows the original VIN data for 2000 and 2003 and

SG+DL fitted data obtained using all range of observations and

using a region of interest automatically selected by PhenoSat.

For the year 2000, PhenoSat selects the range Julian Day 110

to 310 as the temporal region of interest, which is easily recog-

nized as the VIN dynamics period in the original data. However,

for the year 2003, only 15 observations (Julian Day 100 to 240)

are selected. The difference in the two years can be explained

by the fact that, in 2003, there was an irregular precipitation

from August 30 to September 5, which was not verified in 2000.

The weather conditions in 2003 caused an early growth of the

soil vegetation, which can be seen graphically around the Julian

Day 250.

Although, for the year 2000, no advantage was verified in

selecting a subtemporal region of interest, this is not verified

in 2003, where the fitted data provided by all 36 observations

tend to oversmooth the original data and are therefore unable

to detect the regrowth occurrence around Julian Day 250. This

difference in the fitted results leads to different phenological

stage occurrences. Using all 36 observations (r2 = 0.41), the
SOS and the MVD were obtained on Julian Day 140 and Julian

Day 160, respectively; however, using the 15 observations

(r2 = 0.96) provided by the region of interest, an earlier SOS

(Julian Day 120) and a later MVD (Julian Day 180) were

verified, these results being more consistent with the original

data. This demonstrates that the selection of the temporal region

of interest produces an improvement in the fitted process, thus

obtaining more reliable results.

Table VI presents the effect of the temporal region of in-

terest selection on the Spearman’s correlations between ob-

served and PhenoSat-derived phenologies, for the VIN region

(2000–2005). Using the temporal region of interest, the correla-

tions range between−0.70 and−0.77 being always higher than
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Fig. 5. (Dotted line) Original vineyard data for 2000 and 2003, (solid line) SG+DL fitted data obtained using a subtemporal region of interest, and (dashed line)
all range of observations.

TABLE VI
CORRELATIONS (rs) BETWEEN OBSERVED AND PHENOSAT-DERIVED

PHENOLOGY PARAMETERS FOR VINEYARD (2000–2005)

those obtained using the complete range of 36 observations.

Thus, the PhenoSat feature to select an in-season region of

interest proved to be a valuable tool for vineyard monitoring,

allowing for high significant correlations between estimated

and observed values to be obtained. Adverse weather conditions

such as unseasonal snow, extreme heat, or irregular precipita-

tion could result in a false vegetation regrowth. The selection of

a subtemporal region of interest based on vegetation dynamics

knowledge could help to deal with the false report of regrowth

in particular natural environments (high latitudes or boreal re-

gions), leading to a better analysis and more consistent results.

V. CONCLUSION

The experiment carried out to evaluate the performance of the

PhenoSat showed that it can produce accurate and consistent

results, compared with observed measures. This tool proved

capable of solving some limitations present in other software

tools, such as the following: the detection of a double growth

season, with the extraction of phenological parameters for this

period, and the possibility to select, manually or automatically,

an in-season region of interest.

The extraction of phenological parameters using an algo-

rithm based on derivatives allows PhenoSat to avoid thresholds

or empirical constants, providing a method that can be applied

globally and that is capable of identifying multiple crops or re-

growth within a single year. The tool proved to be very efficient

in detecting the double growth period. The independency of the

fitted results leads to a more realistic time-series profile over the

year and, thus, more accurate regrowth-derived results.

The option to select, automatically or manually, a temporal

region of interest of the VI time series provides an improvement

in the fitting process, leading to more reliable results. The

PhenoSat feature to select an in-season region of interest proved

to be a valuable tool for vineyard monitoring and can enlarge

the PhenoSat application to crops with discontinuous canopy,

like forestry and deciduous fruit trees.

PhenoSat is a freely available software tool, with a pre-

liminary version currently available at http://www.fc.up.pt/

LamSat_XXI. This version is able to run a single data set file

(with data for a single vegetation type, for different years) at

a time. However, a new version is being developed to improve

and automate the process in order to receive various data set

files at once. Another improvement consists in creating an

application that permits the extraction of phenological infor-

mation directly from the EOS images. This option eliminates

the laborious and manual preprocessing steps that involve the

extraction of VI data from the images to create the data set

input file.
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1. Summary1. Summary1. Summary1. Summary    
 

 Land cover maps of global or continental scales are basic information for many kinds 

of applications (global change research, resource management). Accurate, timely 

information on the distribution of vegetation on the Earth’s surface is a requisite for 

understanding how changes in land cover affect phenomena as diverse as the terrestrial 

primary productivity, the hydrological cycle and the energy balance at the surface-

atmosphere interface.  

The validation of land cover maps covering small areas is usually achieved by the use 

of ground data. However, for large areas this data collection can be problematic, due to 

the extent of the area concerned, the diverse ecosystems, the lack of homogeneous 

national legends, and the potential financial costs (Mayaux et al., 2008). Therefore, 

ground data are often replaced by EOS data (Strahler et al., 2006). 

To update land cover maps for large scales, and avoid the logistical and financial 

problems in obtaining ground data, a new methodology was developed in this work. The 

methodology is based exclusively on satellite vegetation time-series and consists on a 

hierarchical aggregation of the land cover types, which is determined using the similarity 

between the yearly VI profiles.  

The second largest continent of the world (Africa) is used to apply and evaluate the 

proposed approach. According to a statement by the United Nations Environment 

Programme (UNEP), the African Continent is particularly vulnerable to climate changes, 

and is suffering from deforestation at twice the average world rate. These characteristics 

reinforce the need for land use / land cover information to better understand the continent 

and the interactions between climate, ecosystem and human activities.  
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The identification of land cover changes on a continental scale is a laborious and time-
consuming process. A new methodology is proposed based exclusively on SPOT VGT
data, illustrated for the African Continent using GLC2000 as reference to select 26 dis-
tinct land cover types (classes). For each class, the normalized difference vegetation
index (NDVI) time-series are extracted from SPOT VGT images and a hierarchical
aggregation is done using two different methods: one that preserves the initial signa-
tures throughout the hierarchical process, and another that recalculates the signatures
for each aggregation level. The average classification agreement was above 89% using
26 classes. Reducing the number of classes improves classification agreement. In order
to study the influence of temporal variability in the classification results, the method-
ology was applied on data from 1999, 2001, 2008, and 2010. With 26 classes, the best
average classification agreement obtained was 94.5% with annual data, against 74.1%
with interannual data.

1. Introduction

Land use and land cover maps are important to predict and manage the resources of the

land surface, which can be related to economic, social, and environmental sustainability

aspects. Studies based on land cover maps are usually carried out using remote-sensing

data from either aerial surveys or Earth Observation Satellites (EOS). In the case of EOS,

high-resolution images acquired by Landsat Thematic Mapper (TM) and Satellite Pour

l’Observation de la Terre (SPOT) High Resolution Visible (HRV) have been widely used

in the creation of a large number of land cover maps (e.g. Marçal et al. 2005; Pôças

et al. 2011). These sensors have provided high-spatial resolution multispectral data since

1982 and 1986, respectively. Improvement in sensor characteristics over the years has

opened up new possibilities for the production of accurate land cover maps due to the

very high spatial (e.g. IKONOS satellite) or spectral resolution (e.g. Advanced Spaceborne

Thermal Emission and Reflection Radiometer (ASTER)).

Furthermore, the availability of daily (or 2–3 day periods) global coverage at moderate

spatial resolution (300–1000 m pixels) provides high-temporal resolution data sets that can

be valuable for many applications, including land cover change detection (e.g. Kleynhans

et al. 2011; Lunetta et al. 2006; Zhan et al. 2002). The accuracy of the classification per-

formed for land cover map production depends not only on the data preprocessing stages,

*Corresponding author. Email: dr.arlete@gmail.com

© 2013 Taylor & Francis



International Journal of Remote Sensing 8029

the classification methods, and the number of classes used, but also on the availability

of training/control sample data. Various studies have proposed methods and algorithms

for land cover classification at regional (e.g. Bosard, Feranec, and Otahel 2000; Homer

et al. 2004; Vogelmann et al. 2001) and global scales (e.g. Bartholomé and Belward 2005;

DeFries and Townshend 1994; DeFries et al. 1998; Friedl et al. 2002; Hansen et al. 2000;

Loveland et al. 2000).

The automatic classification of satellite image data can be performed by two different

strategies: multispectral images or temporal image sequences. Multispectral image clas-

sification focuses on finding patterns on the spectral response while taking into account

known land cover groups. This approach usually uses high-spatial resolution images (single

or several from different seasons) with multiple spectral bands. The temporal image clas-

sification approach uses image sequences acquired over a period of time, thus providing

high-frequency observation of the land surface. However, these data sets can only realisti-

cally be obtained at low spatial resolution (typically 1 km pixel size). The data processing

and distribution of these data sets have considerably improved in recent years, enabling

access to high-level data (calibrated geometrically and corrected) at reduced or zero cost.

A number of classification experiments using temporal satellite data have been

reported for different geographical areas, as summarized in Table 1. It is difficult to

compare the classification accuracy of these studies because they use different numbers

of classes (5–14) and various satellite data (Moderate Resolution Imaging Spectro-

radiometer (MODIS), Advanced Very High Resolution Radiometer (AVHRR), and SPOT

Table 1. Summary of classification results using EOS temporal data reported in various publica-
tions.

Study area Satellite data Classes

Best
accuracy

(%) Author(s)

Canada AVHRR 1 km 12 61 Latifovic and Pouliot
(2005)

Sub-Saharan Africa 16 day MODIS 1 km 13 76 Vanacker et al. (2005)
China 16 day MODIS 500 m 9 88 Bagan, Wang, and

Yasuoka (2007)
Portugal 8 day MODIS 500 m 9 90 Carrão, Gonçalves,

and Caetano (2007)
South Africa 16 day MODIS 500 m 14 79 Colditz (2007)
Germany 16 day MODIS 500 m 14 83 Colditz (2007)
Volta Basin 16 day MODIS 250 m 10 77 Machwitz et al.

(2008)
Kansas 8 day MODIS 250 m 6 94 Wardlow and Egbert

(2008)
Dry Chaco Ecoregion 16 day MODIS 250 m 7 79 Clark et al. (2010)
Western Burkina Faso
and Southern Mali

16 day MODIS 250 m 5 67 Landmann et al.
(2010)

Krishna River Basin 8 day MODIS 250 m 9 85 Gumma, Thenkabail,
and Nelson (2011)

Belgium Monthly SPOT VGT
1 km/Monthly MODIS
250 m

8 80 Heremans et al.
(2011)

North-Western
Morocco

16 day MODIS 250 m 5 80 Hopfner and Scherer
(2011)

Mali, West Africa 16 day MODIS 250 m 13 70 Vintrou et al. (2012)
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VEGETATION (VGT)). Nevertheless, the accuracy values reported range between 61%

with 12 classes (Latifovic and Pouliot 2005) and 94% with 6 classes (Wardlow and Egbert

2008).

Recent improvements in temporal data availability have made it possible to extract data

for land cover map production at continental and global scales. However, the classification

at these scales can be a difficult and time-consuming process due to limited available ground

truth data (Loveland et al. 2000).

One of the land cover maps available for the African Continent is the Global Land

Cover Map for the Year 2000 (GLC2000). GLC2000 was created under the coordination of

the Joint Research Centre of the European Commission (Bartholomé and Belward 2005),

making use of four types of remotely sensed data provided by SPOT VGT, the European

Remote-Sensing Satellite (ERS), the Japanese Earth Resources Satellite (JERS), and the

Defense Meteorological Satellite Program (DMSP). In addition, ancillary data from differ-

ent sources were used as well as the expertise of 12 partners from seven local organizations

(Mayaux et al. 2004). The diversity of data input, and the labour required for processing

remote-sensing data and collection of ground truth data needed to produce GLC2000 are

the main difficulties in frequent updates of this land cover map.

This article proposes a methodology to identify areas of potential change on a continen-

tal scale, with an application to the GLC2000 of Africa. The method is based exclusively

on normalized difference vegetation index (NDVI) time-series from SPOT VGT, reducing

the data input volume and time needed to produce updated land cover maps.

The potentially altered areas of GLC2000 are determined using a classification proce-

dure based on the hierarchical aggregation of land cover classes. Initially, the GLC2000 data

set is used to select 26 classes in the NDVI SPOT VGT images. The NDVI profiles are

extracted for each class using the year 2000 as reference. A hierarchical structuring of

classes is determined, which consists of the aggregation of the two most similar, level-by-

level, until only one class is left. At each level, a similarity measure is applied and the two

most similar classes are merged into a new class. Two distinct methods are used: one that

preserves the initial profiles (signatures) in all hierarchical levels, and a second that uses the

mean of the original signatures to create the signature of the new one. A cross-validation

process (Geisser 1975; Stone 1974) is used to estimate the classification agreement for

each class at each level of aggregation. The acquisition of ground truth data for classi-

fication assessment of large areas and temporal continuity is an uncommon practice due

to limitations such as costs, time, and logistical challenges (Loveland et al. 2000). Due

to the impossibility of acquiring ground truth data for this work, the term ‘classification

agreement’ used in this article is related to GLC2000, which is considered as the reference.

In order to study the influence of temporal variability in the classification results,

the methodology proposed was applied for the years 1999, 2001, 2008, and 2010. Two

approaches were followed: one that considers the NDVI profiles of land cover used for

training from GLC2000 unchanged over the years, using training from the year under anal-

ysis; and a second that eliminates the problems related to annual coverage, using training

from the reference year (2000) and control samples from the test year (1999, 2001, 2008,

or 2010).

2. Material and methods

2.1. Study area

The experimental work was done using image data from the African Continent, covering

an area of 30.3 million km2, from latitudes 37◦ N to 34◦ S and longitudes 18◦ W to 51◦ E.
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Table 2. List of land cover classes used for Africa.

Class Description Code
No.
pixels Geographical centre

1 Bare Rock BR 4800 20◦ 53′ N, 17◦ 49′ E
2 Croplands (>50%) C 1702 27◦ 13′ S, 29◦ 07′ E
3 Closed Deciduous Forest CDF 2408 12◦ 39′ S, 27◦ ◦ 00′ E
4 Closed Evergreen Lowland Forest CELF 3528 3◦ 39′ N, 14◦ 11′ E
5 Closed Grassland CG 3752 21◦ 11′ S, 46◦ 15′ E
6 Cities Ct 576 26◦ 09′ S, 28◦ 07′ E
7 Croplands with Open Woody

Vegetation
COWV 2170 12◦ 07′ N, 20◦ 04′ E

8 Degraded Evergreen Lowland Forest DELF 162 24◦ 04′ S, 47◦ 20′ E
9 Deciduous Shrubland with Sparse Trees DSST 1740 12◦ 00′ N, 10◦ 01′ W
10 Deciduous Woodland DW 5715 7◦ 43′ N, 24◦ 49′ E
11 Irrigated Croplands IC 2800 31◦ 03′ N, 30◦ 49′ E
12 Mangrove M 139 11◦ 15′ N, 15◦ 19′ W
13 Mosaic Forest/Croplands MFC 3822 6◦ 13′ N, 6◦ 28′ W
14 Mosaic Forest/Savanna MFS 2668 4◦ 55′ N, 28◦ 37′ E
15 Montane Forest (>1500 m) MF 1116 7◦ 49′ N, 35◦ 39′ E
16 Open Deciduous Shrubland ODS 181 4◦ 20′ S, 13◦ 14′ E
17 Open Grassland OG 2988 25◦ 22′ S, 22◦ 23′ E
18 Open Grassland with Sparse Shrubs OGSS 2992 20◦ 12′ S, 19◦ 25′ E
19 Swamp Bushland and Grassland SBG 1575 7◦ 59′ N, 30◦ 28′ E
20 Stony Desert SD 7936 29◦ 24′ N, 11◦ 48′ E
21 Sandy Desert and Dunes SDD 31373 19◦ 08′ N, 6◦ 35′ W
22 Submontane Forest (900–1500 m) SF 1485 1◦ 54′ S, 27◦ 35′ E
23 Swamp Forest SwF 2623 1◦ 49′ N, 17◦ 39′ E
24 Sparse Grassland SG 4578 29◦ 18′ S, 18◦ 47′ E
25 Salt Hardpans SH 1785 33◦ 43′ N, 8◦ 28′ E
26 Tree Crops TC 154 30◦ 37′ N, 30◦ 39′ E

GLC2000 was used to select the initial land cover classes in the SPOT VGT images.

Although there are 27 land cover classes for the African Continent present in GLC2000,

in this work only 26 were used (Table 2) because the class ‘Waterbodies’ was discarded as

it is a very easy class, with a spectral signature clearly different from the others. Figure 1

presents the geographical locations of the training areas, and the number of pixels for each

class.

2.2. Satellite imagery and data processing

The VGT sensor, on board SPOT satellites, has provided daily coverage of the entire Earth

since 1998, at a spatial resolution of 1 km (VITO 2012). The sensor acquires data in four

spectral bands, BLUE (0.43–0.47 µm), RED (0.61–0.68 µm), NIR (0.78–0.89 µm), and

SWIR (1.58–1.75 µm) (VITO 2012). Three types of SPOT VGT product are available:

primary products, daily (S1), and 10 day (S10) syntheses. NDVI, which is the difference

between the NIR and RED bands divided by the sum of these two bands (e.g. Tucker 1980),

is computed from the S10 images.

SPOT VGT S10 syntheses are made available for ten possible regions of interest, one

of these pre-defined regions being Africa. All SPOT VGT S10 composites of Africa used

in this work were transferred from the SPOT VGT site (VITO 2012) and geo-referenced in
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Figure 1. Geographical location of the training areas identified for each land cover class.

LAT/LONG WGS84 coordinates. For a single year (1 January–31 December), a total of

36 SPOT VGT S10 images are available (3 for each month).

As the NDVI S10 images data set from SPOT VGT images is affected by various factors

such as atmospheric conditions, maximum value composites (MVC) are used to minimize

their influence. Thus, for the period of 10 days, the NDVI values are analysed on a pixel-

by-pixel basis and the highest value is retained for each pixel location. A MVC image is

obtained when all pixels have been evaluated. Tucker, Hielkema, and Roffey (1985) showed

that MVC imagery is highly related to the green vegetation dynamic. Common problems

encountered in single-date remote-sensing studies, as cloud contamination, atmospheric

attenuation, and observation geometry, are minimized only usingMVC. However, the MVC

process as applied to the NDVI S10 images data set is not sufficient to eliminate all unre-

alistic variability from NDVI time-series (Jonsson and Eklundh 2004; Rodrigues, Marçal,

and Cunha 2013). In order to reduce the impact of additional noise introduced by the pro-

cess of overlapping several images, a median filter was applied to the NDVI images used

for training. The median filter smoothes the data, removing the undesired abrupt changes

without introducing artefacts, or suppresses natural variation in the vegetation growth.

NDVI annual profiles were created for each class from the 36 NDVI median values

extracted from each year. To remove rare events such as rapid transitions or other anomalies

present in the temporal profiles, a Savitzky–Golay filter (Press et al. 2007) was applied.

Savitzky–Golay filter coefficients are derived by performing an unweighted linear least

square fit using a polynomial of a given degree. In general, higher-degree polynomials

can capture more accurately the heights and widths of narrow peaks, but perform poorly

at smoothing wider peaks (Orfanidis 1995). Some tests were done and a Savitzky–Golay
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filter with a first-degree polynomial and frame size 5 showed the best results, removing the

undesirable data from NDVI time-series and capturing efficiently all the transitions related

with the main and double growth seasons.

The correlation between smoothed and original profiles for all 26 classes was highly

significant (r = 0.85, n = 36, p < 0.0001). This result was interpreted as indicating that the

Savitzky–Golay filter does not significantly alter the original NDVI profile, smoothing the

curve and improving subsequent data analysis.

Figure 2 shows the NDVI time-series obtained for each class after application of the

Savitzky–Golay filter. Four classes (BR, SDD, SD, and SH) are clearly different from all

others, due their low NDVI values, but they are very similar to each other. The other classes

all have particular features that can be used for the classification process.
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Figure 2. NDVI time-series of the 26 land cover classes for Africa, 2000, after the application of a
Savitzky–Golay filter with first-degree polynomial and frame size 5.
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2.3. Hierarchical aggregation

The land cover classification of a pixel makes use of its NDVI annual profile (time-series).

The observed profile is compared with those of each class provided by training, using a

similarity measure, and the closest is considered the class most likely. In this work, four

different similarity measures were used: Euclidean distance (ED), cosine similarity mea-

sure (Cos), Jaccard coefficient (Jac), and dynamic time warping (DTW). The first three

represent time-rigid measures while DTW is a time-flexible measure. To test the impacts

of temporal distortions on vegetation profiles over the years, DTW was used in two modes,

considering windows restrictions in the time-axis of 20 and 30 days.

2.3.1. Time-rigid similarity measures

Euclidean distance is the most widely used similarity measure to compare two time-series.

Considering two time-series T = t1, . . . , tn and S = s1, . . . , sm, where n andm represent the

length of T and S, respectively, the ED between T and S is defined by the square root of the

sum of squared differences between corresponding elements T and S (Agrawal, Faloutsos,

and Swami 1993), according to Equation (1). The lower the value of ED, the greater the

similarity between T and S. One of the disadvantages of this similarity measure is the fact

that only time-series with the same length can be compared. In our case, this was not a

problem, as only yearly time-series (n = m = 36) were compared:

ED (T , S) =

√

∑n

i=1
(ti − si)

2, where n = m. (1)

The cosine similarity measure (Cos) defines the cosine of the angle between T and S.

This allows points with equal composition but different scales to be treated identically. The

Cos between T and S, as defined in Equation (2) (Egghe 2009), ranges from –1 (meaning

exactly opposite) to 1 (meaning exactly the same). A value of zero indicates no correla-

tion, while intermediate values indicate various levels of similarity (]0,1[) or dissimilarity

(]–1,0[):

Cos (T , S) =

∑n
i=1 ti × si

√

∑n
i=1 t

2
i ×

√

∑n
i=1 s

2
i

. (2)

Cos similarity may be extended to the Jaccard coefficient (Jac). The Jaccard coeffi-

cient calculates the ratio between the intersection and union of T and S (Jaccard 1912), as

shown in Equation (3) (Egghe 2009). The results range from 0 (minimum similarity) to 1

(maximum similarity):

Jac (T , S) =

∑n
i=1 ti × si

∑n
i=1 t

2
i +

∑n
i=1 s

2
i −

√
∑n

i=1 ti ×
√

∑n
i=1 si

. (3)

2.3.2. Time-flexible similarity measures

ED, Cos, and Jac similarity measures do not consider shifts or distortions in time, which

is often an important aspect when comparing temporal vegetation data. DTW allows an

‘elastic’ transformation of the time-series, minimizing the effects of delays and distortions

in time, to detect similar patterns (Berndt and Clifford 1994).
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Figure 3. Example of a warping path, obtained using the classes DW (Deciduous Woodland) and
MFS (Mosaic Forest/Savanna).

To determine DTW between T and S, first an n-by-m matrix is created, where the

(ith, jth) element represents the distance (e.g. the ED) between points ti and sj. This dis-

tance matrix is commonly called cost function (cf). Next, the point – to – point alignment

and matching relationship between T and S can be represented by time – warping paths

W = (w1,w2, . . . ,wk), being k (max n,m ≤ k ≤ m + n − 1) the number of all possible

warping paths. Usually the warping path is subject to various restrictions such as bound-

ary conditions, monotonicity, and continuity (Keogh and Pazzani 2001). A warping path

is a contiguous set of matrix elements that defines a map between T and S, where the ele-

ment wk = i, j indicates the alignment and matching relationship between ti and sj (Li,

Chen, and Wu 2010). As an illustration, Figure 3 presents an example of the optimal

warping path obtained using the classes DW (Deciduous Woodland) and MFS (Mosaic

Forest/Savanna).

The DTW between the time-series T and S is the value that minimizes Equation (4)

(Chu et al. 2002). The k in the denominator is used to compensate for the fact that warping

paths may have different lengths:

DTW (T , S) = min

{

1

k

√

∑k

i=1
Wi

}

. (4)

When the two time-series have the same length (n = m), ED can be seen as a special case

of DTW with no warping along the time-axis. Thus, the kth element of W is constrained

such that wk = (i,j)k , with i = j = k (Assent et al. 2009).
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DTW can produce undesirable results if displacements and deformations are not lim-

ited in the time-axis. To avoid this, some restrictions can be applied that limit the possible

time-axis difference between the two time-series (Sakoe and Chiba 1978). Various meth-

ods have been proposed, such as windowing (Berndt and Clifford 1994), slope weighting

(Kruskall and Liberman 1983; Sakoe and Chiba 1978), and slope constraints (Itakura

1975; Myers, Rabiner, and Roseneberg 1980). In this work, to test the impacts of tem-

poral distortions in the vegetation profiles over the years, two versions of DTW were

used considering windows restrictions in the time-axis (shifts) of 20 (DTW2) and 30

(DTW3) days. These restrictions were chosen because, in general, interannual vegetation

dynamics related to phenological stages do not present differences greater than 1 month

(30 days). Figure 4 shows the effect of these restrictions in the warping path calcula-

tion, using the classes DW (Deciduous Woodland) and MFS (Mosaic Forest/Savanna) as

an example. In this case, the two restrictions considered result in two different warping

paths.

2.3.3. Hierarchical aggregation methods

The similarity measures were applied to the filtered NDVI time-series to perform a hier-

archical aggregation. This process consists in joining the two most similar classes in

succession until only a single class is left. The hierarchical process has 26 levels of

aggregation, from the 1st (26 classes) to the 26th (with only 1 class).

At each level of aggregation, one new class is created based on the signatures of the two

classes merged from the previous level. Two distinct methods were used to characterize a

new class: a New Signature (NS) and a Preserved Signature (PS). In the first case (NS), the

signature of the new class is created based on the mean of the signatures (NDVI time-series)

of the two previously joined, repeating the classification process at each hierarchical level

with the revised set of signatures. In the second case (PS), the original signatures of the

classes are preserved at all hierarchical levels and the classification process is performed

only once, at the 1st level.

A cross-validation study was conducted. Cross-validation consists of partitioning the

initial data into independent training and control samples, intended to produce reliable

error estimates. The available reference data (Figure 1, Table 2) for each of the 26 classes

were split randomly in five subsets, which were used as training (80%) and control (20%)

samples. The classification process was repeated five times, leaving a different subset for

control at each time.

For each class, and for each level of aggregation, the classification agreement was deter-

mined based on the number of pixels correctly classified in that class. As the PS method

only performs the classification process at the 1st level, this procedure to determine the

agreement was only applied at this level. For the other levels, the agreement estimation

was based on the error matrix generated for the 1st level. This error matrix contains, for

each class, the number of pixels correctly classified in that class and the number of pixels

classified in other classes.

An example of an error matrix using four test classes is presented in Figure 5(a).

In this example, for class 1, only 293 of a total of 960 pixels were correctly classi-

fied in that class; the others pixels were classified in classes 3 (303 pixels) and 4 (364).

For class 2, all pixels were correctly classified obtaining a classification agreement of

100%. This can be explained by the fact that temporal profiles for the test classes 1, 3,

and 4 are very similar (Figure 5(b)), in contrast to class 2 that has a clearly identifiable

profile.



International Journal of Remote Sensing 8037

0.7

0.5

0.3

i

Deciduous Woodland

1 6 11 16 21 26 31 36

0.7

0.5

0.3
1 6 11 16 21 26 31 36

Wk

Wk

j

i

j

0
.7

0
.5

0
.3

0
.7

0
.5

0
.3

W1

Warp path with window restriction of 20 days

Optimal warp path

j – 2 = i, j + 2 = i

Warp path with window restriction of 30 days

Optimal warp path

j – 3 = i, j + 3 = i

Deciduous Woodland

W2
W3

...

W1
W2

W3

...

M
o
sa

ic
 F

o
re

st
/S

av
an

n
a

M
o
sa

ic
 F

o
re

st
/S

av
an

n
a

1
6

1
1

1
6

2
1

2
6

3
1

3
6

1
6

1
1

1
6

2
1

2
6

3
1

3
6

Figure 4. Example of warping paths obtained using the classes DW (Deciduous Woodland) and
MFS (Mosaic Forest/Savanna) with windows restrictions of 20 (top) and 30 days (bottom).
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Figure 5. (a) Example of an error matrix obtained using four distinct classes and (b) the temporal
profiles for each class.

2.4. GLC update for multiple years

Using the year 2000 as reference, NDVI profiles for the years 1999, 2001, 2008,

and 2010 were processed to evaluate the influence of temporal variability in the

land cover results. These years were selected because adjacent years (1999–2000 and

2000–2001) were expected to have little change in land cover, and the differences iden-

tified between the reference and study years would also be due to greater variability in the

weather, soil moisture, vegetation conditions, and interannual crop selection. In the years

2008 and 2010 the land cover changes were expected to be higher and, consequently, the

classification process would have to deal with the factors previously mentioned, as well as

land cover variability itself.

The same training areas (same pixel/geographical locations) used for 2000 were

selected in the NDVI SPOT VGT images for 1999, 2001, 2008, and 2010. The extraction

and processing of the NDVI profiles for these years were done using the same procedure

as described for 2000. To identify the areas of potential change for 1999, 2001, 2008, and

2010, two different approaches were considered. In the first, the same procedure described

for the year 2000 was conducted in 1999, 2001, 2008, and 2010, training year-by-year. This

approach assumes that land cover in the training areas remains unchanged over the years.

This assumption is obviously weak, particularly for 2008 and 2010. A second approach

was also considered, which uses training samples from the year 2000 and control samples

from the test year (1999, 2001, 2008, or 2010). Although this second approach allows the

elimination of problems caused by differences in annual land cover in training areas, it is

vulnerable to changes associated with atmospheric conditions and land cover variability

over the years.

3. Results and discussion

3.1. GLC update for the reference year (2000)

Figure 6 presents the classified images for the year 2000, using Cos, ED, Jac, DTW2, and

DTW3 as classifiers. Comparing the five classified images, the Cos measure shows the
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Figure 6. Classified images for the year 2000 obtained using the cosine (Cos), Euclidean Distance
(ED), Jaccard (Jac), and dynamic time warping (with windows restrictions of 20 (DTW2) and 30 days
(DTW3)) measures.

most distinct results, particularly in Northern Africa. Although the DTW2, DTW3, ED,

and Jac images present similar results for the majority of the continent, there are clearly

distinguishable differences in Western Africa.

The average agreement (Table 3) between the five similarity measures only slightly

varies, from 89.8% to 93.3%, but there are considerable differences for individual classes.

The best performance is obtained using Cos (93.3% on average), with a minimum of 73.6%

(for Salt Hardpans (SH)). The results obtained using DTW2 and DTW3 were no better than

when using other similarity measures, which can be explained by the fact that training and

control data from the same year are being used.

The classes Cities (Ct), Mangrove (M), and Bare Rock (BR) had lower classi-

fication agreement, except for the Cos measure. In contrast, the classes Croplands

with Open Woody Vegetation (COWV), Open Deciduous Shrubland (ODS), and Stony

Desert (SD) gave a classification agreement of 100% (or nearly) for all similarity

measures.

A comparison between the average classification agreements obtained for each level of

aggregation using NS and PS methods is presented in Figure 7, with best similarity mea-

sure (Cos). In the first ten hierarchical levels the two methods gave very similar results,

with NS slightly outperforming PS. For higher aggregation levels (12–24) the results of

the two methods show wide disparity, with the PS method performing best. The vari-

ability in the NS results can be justified by modification of spectral signatures at each

level.

The average agreement versus aggregation-level plots showed similar behaviour for ED,

Jac, DTW2, and DTW3 to those presented in Figure 7 for Cos.
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Table 3. Classification agreement (%) for each class and similarity measures for 2000.

Classification agreement (%)

Class Code ED Jac Cos DTW2 DTW3

1 BR 31.6 31.8 77.4 53.2 88.9
2 C 99.7 99.6 99.9 99.9 99.8
3 CDF 99.9 99.8 99.5 98.3 97.1
4 CELF 98.1 97.6 95.4 99.1 99.2
5 CG 98.7 99.3 99.8 98.6 99.4
6 Ct 34.7 33.9 95.7 29.9 29.2
7 COWV 100.0 100.0 99.9 100.0 100.0
8 DELF 93.3 96.3 100.0 92.6 90.7
9 DSST 99.3 99.5 99.8 96.7 96.2
10 DW 99.8 99.8 95.7 99.2 99.5
11 IC 98.5 98.8 96.0 97.8 97.6
12 M 56.8 56.8 99.3 47.5 46.0
13 MFC 99.6 99.6 86.9 98.9 98.2
14 MFS 99.9 100.0 99.2 99.2 98.9
15 MF 93.0 95.6 83.4 93.6 92.8
16 ODS 100.0 100.0 100.0 100.0 100.0
17 OG 99.4 99.7 96.5 99.7 99.8
18 OGSS 92.8 91.9 81.5 82.4 81.6
19 SBG 92.1 90.7 96.4 87.0 86.4
20 SD 100.0 100.0 99.4 100.0 100.0
21 SDD 94.3 94.5 89.5 97.8 97.9
22 SF 98.0 97.8 96.4 97.8 97.2
23 SwF 98.6 98.7 99.4 96.3 95.2
24 SG 98.3 98.6 87.4 98.8 99.0
25 SH 77.8 77.4 73.6 93.4 93.9
26 TC 91.6 90.9 77.4 83.1 83.8

Average agreement (%) 90.2 90.3 93.3 90.0 89.8

Notes: The classification agreement for each class represents the number of pixels correctly classified in that
class, and the average agreement is calculated using the average of the 26 values. ED: Euclidean distance; Jac:
Jaccard Coefficient; Cos: cosine measure; DTW2: dynamic time warping with a restriction in time-axis of 20 days;
DTW3: dynamic time warping with a restriction in time-axis of 30 days.

Figure 7. Average classification agreement (%) as a function of aggregation level, obtained from
NS and PS methods, at each level of aggregation, using the cosine measure.
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3.2. GLC update for multiple years

The study done for the year 2000 was repeated for 1999, 2001, 2008, and 2010. To evaluate

the proposed methodology for these years, two approaches were considered: (1) using the

training and control samples from the same year and (2) using the training samples and

signatures from 2000 and the control samples from the year under evaluation (1999, 2001,

2008, or 2010).

3.2.1. Training and control samples from the same test year

The training and control samples selected for the reference year (2000) were used with

1999, 2001, 2008, and 2010 data. This is based on the assumption that no land cover

changes had occurred at the test sites between that year and 2000. Table 4 presents

the results obtained for the different years, using the similarity measures for levels 1

(26 classes), 7 (20 classes), and 12 (15 classes) using the two distinct aggregation methods

(PS and NS).

For the first level, the values obtained for the years 1999, 2001, 2008, and 2010 are not

very different to those obtained for 2000, with the Cos measure being the best performer.

Table 4. Average classification agreement (%) using training and validation data from the year
under evaluation.

Average agreement (%)

26 classes 20 classes 15 classes

Year
Similarity
measure NS = PS NS PS NS PS

1999 ED 90.3 93.7 93.6 94.4 95.0
Jac 90.4 93.5 93.7 96.3 96.5
Cos 91.6 96.2 95.8 97.9 98.4
DTW2 89.2 90.5 90.7 91.6 93.2
DTW3 89.3 90.3 90.5 91.4 93.0

2000 ED 90.2 96.1 95.9 95.5 95.5
Jac 90.3 96.2 96.0 98.0 98.4
Cos 93.3 96.0 95.5 94.5 98.7
DTW2 90.0 93.8 94.1 92.2 93.3
DTW3 89.8 93.2 93.8 92.5 93.1

2001 ED 91.1 96.1 96.7 94.9 97.2
Jac 91.2 94.1 94.8 96.1 97.9
Cos 94.5 94.7 96.6 93.7 97.7
DTW2 90.9 93.5 93.3 94.5 96.1
DTW3 90.0 92.2 93.2 90.6 91.9

2008 ED 88.7 92.6 93.1 93.9 93.8
Jac 89.0 92.5 92.6 96.1 97.1
Cos 91.1 91.9 93.0 91.8 95.3
DTW2 87.1 90.1 90.6 93.3 96.8
DTW3 86.8 88.9 89.7 90.7 91.9

2010 ED 86.7 92.3 92.4 92.3 93.6
Jac 86.9 90.5 91.2 95.2 96.8
Cos 89.1 92.1 91.0 92.5 92.6
DTW2 88.2 90.6 90.8 92.7 95.2
DTW3 88.0 90.1 90.4 91.9 95.0
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The lowest average agreement (87%) was obtained for 2008 and 2010, which are the years

most distant to the reference year (2000).

A comparison between NS and PS methods was done for the hierarchical levels with

15 and 20 classes. The results show, in general, an increase in the average agreement

through the aggregation levels, for both PS and NS. With 20 classes the difference between

the two methods is no greater than 1.9%, but with 15 classes the difference is larger, and

in some cases greater than 4% (e.g. in 2000 and 2001 using the Cos measure), with PS

performing best.

The results presented in Table 4 show that a reduction in the number of classes from

26 to 15 provides classification agreements above 90.5%, for all similarity measures, with

a better performance for the PS method.

The results of the hierarchical aggregation process, obtained from the Cos measure

for the years 2000, 2001, and 2010, are presented in Figures 8, 9, and 10. The dendogram

analysis for the reference year (Figure 8) shows that it is possible to identify seven groups of

classes. The classes assigned to each group and a description of the group characteristics

are presented in Table 5. For the years 2001 and 2010 (Figures 9 and 10) it is possible

to see some differences in the aggregation of classes. For 2001, the classes with more

differences were those of the fourth group (Table 5). This group includes the grass, shrubs,

and agricultural vegetation types. Weather conditions, water resources, crop management,

grass cutting, and grazing are among the factors that can affect the growth period of these

land cover types, which makes them more susceptible to changes over time. For the year

2010, classes 8 (Degraded Evergreen Lowland Forest), 11 (Irrigated Croplands), and 26

(Tree Crops) showed differences in the aggregation process when compared with the year

2000. These classes represent water-dependent and degraded vegetation types, and are thus

more likely to show different NDVI profiles over the years.

Figure 8. Dendogram for the hierarchical aggregation process, obtained from the cosine measure
for 2000.
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Figure 9. Dendogram for the hierarchical aggregation process, obtained from the cosine measure
for 2001.

Figure 10. Dendogram for the hierarchical aggregation process, obtained from the cosine measure
for 2010.

The classes showing annual regrowth (e.g. classes 2 (Croplands > 50%), 11 (Irrigated

Croplands), and 16 (Open Deciduous Shrubland)) can be more susceptible to changes over

the years, as they are influenced by different factors such as weather conditions, pasture

management, and available water resources.
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Table 5. Description of the seven groups of classes identified through the dendogram analysis, for
the year 2000.

Group Classes Description

1 BR, SD, SDD, SH, MF,
SBG, M

Presents an almost linear NDVI profile over the year,
which is a characteristic of non-vegetated or
low-vegetation areas.

2 Ct, OGSS, MFC, CELF,
DELF, SG, CDF, SF, SwF

Maximum vegetation development around April/May.

3 IC, TC Maximum vegetation development in July, verifying an
autumn regrowth period.

4 CG, OG, ODS, C NDVI maximum development between March and
April, followed by a decrease in the NDVI until
autumn.

5 DW, MFS Growth period from February to May, stabilizing in
summer.

6 DSST Regular profile during summer, achieving peak growth
in September.

7 COWV NDVI peak in August, followed by brief senescence
and dormancy.

3.2.2. Training in 2000 and control samples from other years

In spite of the results presented in the previous section, the fixed-year approach is some-

how limited because it is based on the assumption that the land cover used for training from

GLC2000 is unchanged for 1999, 2001, 2008, and 2010. To resolve this problem, an alter-

native approach was considered, using training data from 2000 (reference year) and control

samples from other years (1999, 2001, 2008, or 2010).

As expected, the classification agreement values obtained with this approach (Table 6)

are worse than those obtained in the previous section. This can be explained by the fact that

training and control samples from different years support different dynamics of vegetation

influenced by weather and other temporal variability. Figure 11 presents an example of an

error matrix obtained from the application of the ED measure, for the cross-validation pro-

cess, using training data from 2000 and control samples (subset 1) from 1999. Note that

classes 16 (Open Deciduous Shrubland) and 17 (Open Grassland) have a small number

of pixels correctly classified, being those most classified in classes 5 (Closed Grassland)

and 24 (Sparse Grassland). This is very different to the results obtained for the reference

year, where classes 16 and 17 achieved classification agreements of 100% and 99.2%,

respectively. In order to better understand these differences, Figure 12 presents the NDVI

profile of classes 5 (CG), 16 (ODS), 17 (OG), and 24 (SG) obtained for 1999 and 2000.

These profiles show the changes that occurred between 1999 and 2000, particularly for

the Open Deciduous Shrubland and Closed Grassland classes. The Sparse Grassland and

Open Grassland classes present a similar annual profile, in particular for the year 1999,

where they are almost coincident over days 180–330. This similarity can explain the results

showed in the error matrix (Figure 11) and consequently the reduction in classification

agreement. The same problem was observed with other classes for the years 2001, 2008,

and 2010, which proves that temporal variability influences vegetation profiles over the

years.

Due to variation in interannual vegetation dynamics, it was expected that DTW2 and

DTW3, which use a flexible time-axis perspective and can thus adapt to intra-annual climate
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Table 6. Average classification agreement (%) obtained from all years, using training data from
2000.

Average agreement (%)

26 classes 20 classes 15 classes

Year
Similarity
measure NS = PS NS PS NS PS

1999 ED 64.9 73.1 71.3 78.2 69.3
Jac 65.2 68.7 67.9 74.7 74.5
Cos 54.6 57.8 57.1 62.8 62.4
DTW2 70.4 74.6 76.0 78.8 79.1
DTW3 69.8 75.2 75.9 79.3 78.7

2000 ED 90.2 96.1 95.9 95.5 95.5
Jac 90.3 96.2 96.0 98.0 98.4
Cos 93.3 96.0 95.5 94.5 98.7
DTW2 90.0 93.8 94.1 92.2 93.3
DTW3 89.8 93.2 93.8 92.5 93.1

2001 ED 72.9 80.5 80.3 88.1 84.5
Jac 74.1 82.8 82.1 90.3 92.1
Cos 52.2 58.8 57.8 65.9 67.0
DTW2 70.5 78.8 79.4 83.0 85.0
DTW3 71.0 78.7 79.9 83.3 83.9

2008 ED 62.5 70.9 70.0 73.4 72.5
Jac 62.0 69.1 68.6 80.6 79.8
Cos 51.4 55.0 52.5 57.2 54.7
DTW2 67.2 75.7 76.0 76.7 79.0
DTW3 67.5 74.3 75.3 76.6 78.7

2010 ED 59.6 69.3 69.6 74.1 72.9
Jac 58.3 65.5 65.4 76.4 75.6
Cos 41.0 50.5 49.2 53.7 50.6
DTW2 68.7 74.9 76.7 81.0 81.4
DTW3 68.2 74.1 75.8 80.2 80.7

variability, would produce better results than the fixed-time similarity measures. The results

confirm this hypothesis, except for 2001. In general, the greater the gap between the train-

ing and control years the greater the temporal variability, and thus the results tend to be

worse (Table 6). In general, for both PS and NS methods, average agreement increases

with aggregation level, showing a similar pattern to that verified in the previous section.

When the number of classes was reduced from 26 to 15, average agreement was improved,

and this was verified when using only annual data (Table 4).

As we are comparing and using data from different years, it is important to evaluate

the time-rigid (ED, Jac, and Cos) and the time-flexible similarity measures (DTW2 and

DTW3). As DTW and ED are the most commonly used time-series similarity measures

(Agrawal et al. 1995; Das et al. 1998; Debregeas and Hebrail 1998; Faloutsos, Ranganathan,

andManolopoulos 1994; Keogh et al. 2001), a comparison between these two measures was

carried out. Both DTW2 and DTW3 were tested, but as their results were found to be very

similar, only DTW2 was considered in comparison with ED. Table 7 presents a compar-

ison between the average classification agreement (%) obtained from DTW2 and ED, for

26 classes, using annual and interannual data. For both similarity measures, it will be seen
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Figure 11. Error matrix for the Euclidean distance (ED) measure using training of 2000 and control
samples of 1999, for a subset of the cross-validation process.

Figure 12. NDVI temporal profiles for Closed Grassland (CG), Open Deciduous Shrubland (ODS),
Open Grassland (OG), and Sparse Grassland (SG), for the years 1999 and 2000.

that, in general, the more distant the year being analysed from the reference year (2000), the

worse the results. The differences between DTW2 and ED are reinforced in the interannual

approach. The use of interannual data can introduce errors in the classification process,

because the vegetation dynamic for a specific class can change over the years influenced by

uncontrollable conditions such as anthropogenic actions, agricultural practices, available

soil water, and weather. DTW2 can detect these time differences if they occur in a small

bandwidth (20 days), which is not possible using ED. Although the differences between the

time-flexible and time-rigid similarity measures in an annual perspective are low (<1.6%),

analysis of the interannual approach showed marked differences, varying from 2.4% in

2001 to 9.1% in 2010.
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Table 7. Average classification agreement (%) obtained from DTW2 and ED, for 26 classes, using
annual and interannual data.

Training data Year ED DTW2 1

In the year under evaluation 1999 90.3 89.2 1.1
2001 91.1 90.9 0.2
2008 88.7 87.1 1.6
2010 86.7 88.2 1.5

Reference year 2000 90.2 90.0 0.2

In 2000 1999 64.9 70.4 5.5
2001 72.9 70.5 2.4
2008 62.5 67.2 4.7
2010 59.6 68.7 9.1

Note: 1 is the absolute difference between ED and DTW2 values.

4. Conclusions

This article presents a methodology to identify areas of potential change on a continental

scale, based on NDVI time-series extracted from SPOT VGT. The method was illustrated

as applied to Africa based on the GLC2000 data set and using 26 classes. A hierarchical

aggregation structure for the land cover classes was computed based on the similarity of

the NDVI profiles. For each level of aggregation, the average classification agreement for

each class was calculated. This methodology proved to be very useful in identifying the

areas of potential change at various levels of class aggregation, and thus determining the

best selection for the number of classes, maintaining the desirable level of agreement.

The classification agreements were obtained in relation to the GLC2000 data set, which

has its own inaccuracies. Independent ground truth data are therefore needed to confirm that

this approach is robust and accurate, and thus able to be used to update land cover maps for

different years, facilitating the study of interannual land cover changes. The methodology

proposed is not restricted to SPOT VGT data, and can be used for any temporal data set.
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1. Summary1. Summary1. Summary1. Summary    

 

 The Brazilian Amazon forest is a study area for many classification research studies 

because of its unique characteristics and interfaces with other important vegetation types. 

The landscape transformations and deforestation since the 1970s have been contributing 

to the increase of atmospheric carbon dioxide concentration, with severe present and future 

climate consequences (Batjes and Sombroek, 1997; Houghton, 2000; Schulze et al., 2003).  

Thus up-to-date and accurate land cover maps are required for understanding and 

monitoring the impacts of these changes in the environment (soil degradation, biotic 

diversity, carbon cycle). However, the production of up-to-date land cover maps in the 

tropical regions is difficult due to the presence of cloud cover and/or due to the difficulty in 

acquiring ground data. 

  Aiming to solve these limitations, the methodology proposed in the previous chapter was 

applied in the Brazilian Amazon. It is important to note the difficulty in classifying a large 

number of vegetated classes over the Amazon, due the cloud contamination (particularly 

during the rainy season) and the characteristics of the region. Two major problems that 

usually affect the classification accuracy were evaluated: the effect of the similarity between 

the land cover classes and the land cover variability over the years.  

 

 

  



Land cover map production for Brazilian Amazon

using NDVI SPOT VEGETATION time series

A. Rodrigues, A.R.S. Marcal, D. Furlan, M.V. Ballester, and M. Cunha

Abstract. Earth Observation Satellite (EOS) data have a great potential for land cover mapping, which is mostly based on

high resolution images. However, in tropical areas the use of these images is seriously limited due to the presence of clouds.

This paper evaluates the ability of temporal-based image classification methods to produce land cover maps in tropical

regions. A new approach is proposed for land cover classification and updating based exclusively on temporal series data,

illustrated with a practical test using SPOT VEGETATION satellite images from 1999 to 2011 for Rondonia (Amazon),

Brazil. Using the GLC2000 as reference, a Normalized Difference Vegetation Index (NDVI) time series of 15 distinct land

cover classes (LCC) were created. Two classifiers were used (Euclidean Distance and Dynamic Time Warping) to produce

maps of land cover changes for 1999�2011. Due to the difficulties in discriminating 15 LCC in the Amazon region, a

hierarchical aggregation was performed by joining the initial classes gradually up to four broad classes. The land cover

changes in the 1999�2011 period were evaluated using criteria based on the classification results for the individual years.

The comparison with reference data showed consistent results, proving that this approach is able to produce accurate land

cover maps using exclusively temporal series EOS data.

Résumé. Les données des Satellites d’Observation de la Terre ont un grand potentiel pour la cartographie du couvert

végétal, la plupart basée sur des images d’ haute résolution. Cependant, l’utilisation de ces images en régions tropicales est

sérieusement limitée en raison de la présence de nuages. Ce document évalue l’adéquation des méthodes de classification

en utilisant des images temporelles pour produire des cartes d’occupation des sols dans les régions tropicales. Une nouvelle

approche est proposée pour classification de la couverture terrestre et mises à jour basée uniquement sur des données de

séries temporelles, et illustrée par un test pratique en utilisant des données du satellite SPOT VEGETATION entre 1999 et

2011 pour Rondonia (Amazonie), Brésil. En prenant comme référence le GLC2000, ont été créés séries temporelles de

NDVI pour 15 différents types de couverture terrestre (TCT). Deux classificateurs ont été utilisé (Distance Euclidienne et

«Dynamic Time Warping ») pour produire cartes des modifications de la couverture du sol pour le période 1999�2011.

Due de la difficulté en classifier 15 TCT en la région de l’Amazonie, une agrégation hiérarchique a été faite en joignant les

classes initiales graduellement jusqu’à quatre vaste classes. Les modifications de la couverture terrestre au période de

1999�2011 ont été évaluées par un critère basé sur les résultats de la classification pour chaque année. La comparaison

avec les données de référence a montré résultats conformes, ce qui prouve que cette approche est capable de produire exact

cartes d’occupation du sol en utilisant exclusivement des données de séries temporelles.

Introduction

The global environmental change research community

requires improved and up to date land cover maps at

regional to global scales to support a variety of science

and policy applications. This is particularly true in the

Brazilian Amazon where land cover change induced either

by human and natural causes has been unprecedented in

recent decades (Alves et al., 2009; Asner et al., 2009;

Ballester et al., 2003; Braswell et al., 2003; Brown et al.,

2007; Houghton et al., 2000; Li et al., 2012).

While the need for frequent monitoring of land cover

changes is clear, it is difficult to produce these maps using

only ground-based information (Loveland et al., 2000). The

automatic classification of Earth Observation Satellite

(EOS) data is thus frequently used for land cover mapping,

mostly based on high resolution image data (e.g., from

Landsat satellites). The ability to apply automatic classifica-

tion methods to produce land cover change maps and

information, with the range, quality, and detail needed by

scientists and resource management, is a huge challenge.

This is emphasized in tropical areas where the presence of

cloud cover seriously limits the use of passive EOS data

(Carreiras et al., 2003). In the case of the Amazon, cloud

cover is frequent particularly in the rainy season. To

eliminate this limitation, the use of low spatial resolution
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EOS data that have a very high acquisition frequency (daily)

such as AVHRR (Loveland et al., 2000), SPOT VEGETA-

TION (Carreiras et al., 2003), and MODIS (Wardlow and

Egbert, 2008) can be an alternative. However, to better use

these data sources, the classification needs to be slightly

different than the standard approach. Instead of using a

single image, where the multispectral values are used as

features for each pixel, the temporal yearly Normalized

Difference Vegetation Index (NDVI) profile is used as a

feature vector instead.

The aim of this work was to propose a new approach for

land cover classification and updates based exclusively on

temporal series of NDVI, illustrated with a practical case

using SPOT VEGETATION (VGT) satellite data from 1999

to 2011 for Rondonia (Amazon), Brazil. The Global Land

Cover Map of the Year 2000 (GLC2000) of South America

was used to select 15 distinct land cover classes (LCC) in the

SPOT VGT images. Temporal yearly NDVI profiles were

extracted for each LCC and a pixel-by-pixel classification

was made using the Euclidean Distance (ED) and Dynamic

Time Warping (DTW) as classifiers. Two approaches were

considered: one that uses the NDVI time series of the

reference year (2000) to classify all years; and another that

considers the NDVI time series obtained from the year

under analysis.

Because of the difficulty in classifying 15 vegetated classes

over the Amazon, the 15 initial LCC were aggregated in four

main groups based on their NDVI profile similarity. The ED

and DTW measures were used to compute a hierarchical

aggregation of the initial classes using the method proposed

in Rodrigues et al. (2013). The effect of the NDVI time series

similarity on the classification results was evaluated by

performing a new classification using the four new groups of

classes and comparing the results with the land cover maps

obtained for the 15 initial classes.

The LCC variability over the years was analyzed by

classifying each pixel as ‘‘permanent’’, ‘‘stable’’, ‘‘change’’,

‘‘stable in the first years’’, ‘‘stable in the last years’’, and

‘‘unspecified’’ using a criteria based on the number of

identical classes obtained from 1999 to 2011. To evaluate

the ED and DTW land cover maps between 2000 and 2011 a

comparison was made with the PRODES data (PRODES,

2013) available for 2000 and 2011.

Materials and methods

Study area

A test areawas established in northwest Brazil, containing

the entire state of Rondonia. The transformation of the

tropical forests to pastures and crops in western Amazonia,

particularly at the Rondonia state, was rapidly developed

under a series of government projects for resettling small

farmers from southern Brazil (Ballester et al., 2003). These

projects resulted in high deforestation rates, which have been

well documented since the early 1980s until today through

the use of satellite imagery (Alves et al., 1999; INPE, 2000).

In this region, deforestation evolution leads to a typical

spatial fishbone pattern associated with the colonization

process and road development (Dale et al., 1994; Moran,

1993; Pedlowski et al., 1997; Ballester et al., 2003). Large

areas of previously untouched rainforest have undergone

rapid change since the 1970s due to extensive immigration

and colonization. In just 40 years (1970�2010), the popula-

tion grew from 116 thousand to 1.5 million inhabitants, and

the state lost over 34% of its native forest cover (INPE,

2000). Spatially, the deforestation process is more intense

along the highway BR364, between Cuiba and Porto Velho,

that was constructed in 1965, improved in 1969 (Fujisaka

et al., 1996), and finally paved in 1984. The main land use in

the region is cattle pasture, rising from 67% of the state

cultivated area in 1985 to 91% in 2006, when perennial and

annual crops only accounted for 5% of agricultural areas of

Rondonia, respectively (IBGE, 2013).

The GLC2000 dataset (Eva et al., 2004) was used to

establish training sites, characterizing the most relevant land

cover classes in this region. Although the GLC2000 map has

problems picking up classes over vegetated land surfaces

(Eva et al., 2006; Gonsamo and Chen, 2011), it was the only

complete land cover map available. The GLC2000 classes

were compared with ground reference information acquired

for the year 2000. The field data were obtained by recording

each point location using a Garmin 76-Map GPS. Each

control point was photographed, and land cover at the eight

cardinal points was recorded. Figure 1 presents the

GLC2000 land map for the central region of Rondonia

(left) and the location of the 133 field data points (right).

Table 1 presents a comparison between the field and

GLC2000 data. The main differences occurred in the urban

and water classes, with good agreement for the other classes

evaluated. For example, in the GLC2000 the rip and (or)

regrowth field classes were assigned to the Agriculture

Intensive, Mosaic Agriculture, and (or) Degraded Forest

classes, which are crops also characterized by a regrowth

around the months of July and August. The results in Table

1 show a coherent correspondence between the two datasets

for the majority of the pixels (approximately 88%).

The GLC2000 was thus considered as the reference land

cover map. For each of the 15 LCC used, a training site was

selected carefully to avoid pixel boundaries with other

classes. The size of the training sites was, on average,

37 pixels, ranging from 15 to 252 pixels. Table 2 presents

the description, number of pixels, and coefficient of varia-

tion (Reed et al., 2002) for the NDVI profiles of the pixels

assigned to each class. A total of 10 LCC present a

coefficient of variation below 10%, with an overall mean

of 11.0% for the 15 classes.

Most sites were identified in the central region of

Rondonia, where in the last three decades there has been

considerable change in land use and (or) land cover, mostly

due to deforestation for crop and grassland production (Eva
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et al., 2002). There are also some areas of transition between

forest and regeneration, which were deforested and later

abandoned, thus starting a natural regeneration process.

The classes were chosen to include native vegetation,

regeneration areas, intensive agriculture, flooded vegetation,

and urban areas.

The Brazilian Amazon, in particular the state of Rondo-

nia, has only two well-defined seasons: dry and rainy. The

start of the dry season may vary from year to year, but it

always includes the months of July and August. There is no

significant variation of the air temperature throughout the

year. Thus the main climatic influence for vegetation

development is the annual hydric regime. The average

monthly precipitation in the state capital, Porto Velho, for

the year 2000 is presented in Figure 2. This plot clearly

shows the presence of a dry season, with one month (June)

almost without rain. This pluviometric pattern has a great

influence in the vegetation development of grassland and

shrubland and consequently on the annual pattern of NDVI

values.

Satellite imagery and data preprocessing

The VGT sensor onboard the SPOT4 satellite has

provided daily coverage of the entire Earth since 1998, at

a spatial resolution of 1 km (VITO, 2012). It acquires data,

which are delivered as primary products or daily (S1) and

ten-days (S10) syntheses, in four spectral bands (blue, red,

near-infrared and short-wave infrared), ranging from 0.43 to

1.75 mm (VITO, 2012). The NDVI is computed from the

extracted pixel values as

NDVI ¼ ðqNIR ÿ qREDÞ=ðqNIR þ qREDÞ (1)

where rNIR is the reflectance at the near-infrared wave-

length band and rRED is the reflectance at the red waveband

(Rouse et al., 1973). The widths of the reference bands of the

VGT sensor are 0.61�0.68 mm (RED) and 0.78�0.89 mm

(NIR).

Ten-day NDVI synthesis images (NDVI S10) are available

from VGT globally and are divided into 10 regions, one of

them being South America. These synthesis images are

Maximum Value Composites (MVCs) of daily NDVI

images, intended to reduce the noise caused by a variety of

biophysical factors. For each year, a total of 36 VGT NDVI

S10 images are available (three for each month).

The entire training area for each of the 15 LCC was

considered as a unit instead of using a pixel-by-pixel

approach. The median of the NDVI S10 values of the pixels

assigned for each class were computed. The yearly NDVI

time series were created using the median values obtained

for each of the 36 images available in one year.

Image classification procedure

The land cover classification of a pixel makes use of its

NDVI annual profile (time series). The pixel-by-pixel

classification process applied in this work compares the

annual NDVI pixel profile with each of the 15 reference time

series (15 NDVI class profiles). The class label of the most

Figure 1. Global Land Cover Map (GLC) 2000 for the central region of Rondonia (left) and the location

of the 133 field data points (right). The description of the GLC classes is available in Table 2.
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similar reference profile is retained for the pixel under

analysis. To compare the NDVI time series, the ED

(Agrawal et al., 1993) and DTW (Berndt and Clifford,

1994; Chu et al., 2002) similarity measures were used. These

measures were selected as they are the commonly used

algorithms for similarity analysis of time series (Agrawal et

al., 1995; Das et al., 1998; Debregeas and Hebrail, 1998;

Faloutsos et al., 1994; Keogh et al., 2001). Furthermore,

these distance measures have important differences when

comparing time series data. The ED is a time-rigid measure

and does not consider any distortions or shifts over time,

whereas the DTW is a time-flexible measure capable to

consider the shifts and distortions over time, which can have

an important role in vegetation dynamics. To test the

impacts of temporal distortions, the DTW was applied

using a window restriction of 20 days (Berndt and Clifford,

1994) in the time axis (shift).

The 15 reference LCC selected in 2000 were also selected

for the remaining years (1999 and 2001�2011). For each

year, two classified images were computed using the ED and

DTW as classifiers. To evaluate the influence of temporal

land cover variability, two approaches were considered: one

that establishes the reference NDVI time series of each year

Figure 2. Average monthly rainfall (mm) for Porto Velho (Santo

Antônio), for the year 2000. Source: Agência Nacional de Água

(ANA).

Table 2. Characterization of the land cover classes.

Land cover description Acronym

Pixels

(no.)

Coefficient of

variation (%)

Agriculture Intensive AI 35 6.0
Closed Deciduous Forest CDF 16 9.8

Closed Evergreen Tropical

Forest

CETF 252 8.6

Closed Shrublands CS 16 9.1

Fresh Water Flooded

Forest

FWFF 48 20.3

Grass Savannah GS 30 10.2

Mosaic Agriculture �

Degraded Forest

MADF 16 7.6

Montane Forest (500�

1000m) � Dense

Evergreen

MFDE 24 8.5

Ore Exploration OE 15 10.7

Periodically Flooded

Savannah

PFS 16 7.4

Permanent Swamp Forest PSF 16 5.6

SemiDeciduous Transition

Forest

SDTF 16 5.8

Shrub Savannah SS 16 7.7

Urban U 15 12.7

Water Bodies WB 20 35.3

Table 1. Land cover comparison between field data and Global

Land Cover Map for the year 2000.

Field data GLC2000

Class

Pixels

(no.) Class

Pixels

(no.)

Crop 26 Agriculture/mosaic

agriculture

16

Mosaic forest/dense

evergreen

3

Shrublands 7

Forest 10 Mosaic agriculture/

degraded forest

5

Closed evergreen tropical

forest

3

Agriculture intensive 1

Semideciduous transition

forest

1

Next to forest 10 Next to forest 10

Pasture 28 Agriculture intensive 20

Mosaic agriculture/

degraded forest

8

Rip/regrowth 33 Agriculture intensive 22

Mosaic agriculture/

degraded forest

11

Shrublands 8 Shrub savannah 1

Shrublands 5

Mosaic agriculture/dense

forest

2

Forest and shrub

(burnt)

2 Agriculture intensive 2

Water 4 Shrub savannah 1

Closed evergreen tropical

forest

1

Semideciduous transition

forest

1

Agriculture intensive 1

Urban 12 Urban 5

Agriculture intensive 2

Grass savannah 1

Mosaic agriculture/

degraded forest

3

Shrub savannah 1
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to process the classification, and another that uses the

NDVI profiles identified on the reference year (2000) to

classify every year.

The effect of the NDVI time series similarity on the

classification results was evaluated, reducing the number of

initial LCC and analyzing the land cover variability for each

pixel over the years 1999�2011. A hierarchical aggregation

of the initial classes was performed using the ED and DTW

distance measures, following the method proposed in

Rodrigues et al. (2013), and a new classification was made

using the new groups of classes. To analyze the LCC

variability over years, each pixel was classified as permanent,

stable, change, stable in the first years, stable in the last

years, and unspecified using the criteria presented in Table 3.

These criteria are based on the number of identical classes

obtained from 1999 to 2011. Figure 3 presents a schematic

illustration of the criteria used, where each color represents

a distinct LCC.

To evaluate the consistency of the ED and DTW land

cover maps for 2000 and 2011 a comparison was made with

the PRODES data available for 2000 and 2011. PRODES

(Amazon Deforestation Monitoring Project) consists of a

systematic monitoring of deforestation in Amazon, using

remote sensing images and digital image processing techni-

ques (PRODES, 2013). ED and DTWmaps were reclassified

in three main classes: forest, nonforest, and hydrography.

The percentage of pixels classified in each class was

determined and the consistency of the results was evaluated

using the PRODES data as reference.

Results and discussion

NDVI S10 images from SPOT VGT from 1999 to 2011

were processed for Rondonia. As precipitation has consider-

able influence on the vegetation development, the most

relevant period for this region is from April to September.

Furthermore, the presence of clouds limits the use of

satellite data in the rainy season. Maximum Value Compo-

site images of January and April�September using NDVI

VGT data from 2000 are presented in Figure 4. Due to the

frequent cloud cover, the NDVI values from January might

not be clearly related to the vegetation type and condition.

In the remaining images, it was noticeable that the central

areas of Rondonia have lower NDVI values. This is because

this part of the state has low height herbaceous or semi-

herbaceous vegetation, as the soil is mostly used for

agriculture and pasture. Moreover, Rondonia is a remark-

able example of land cover change in the past decades as a

result of deforestation induced by human and natural

causes. The converted forest cover in a fishbone pattern,

mainly due to forestation caused by agricultural and urban

expansion as reported by Eva et al. (2002), is noticeable in

Figure 4. The least influence of clouds occurred between

June and August. During this period a large increase in

NDVI occurred, especially in forests. The better transpar-

ency of the atmosphere at this time of the year promotes a

net balance of radiation greater than the other parts of the

year (Da Rocha et al., 2004; Malhi et al., 2002). This high

availability of energy and the ability of forestry trees to

capture water from deep soil explain the trend of the NDVI

increase in forest areas between June and August.

The original (dotted line) and Savitzky�Golay (Press et al.,

2007) smoothed (solid line) NDVI time series training

profiles of the 15 LCC, for the year 2000, are presented in

Figure 5. Each LCC multitemporal NDVI signature is

consistent with its expected pattern of vegetation dynamics

Table 3. Criteria to define an attribute for each pixel, according to

the classification results from 1999 to 2011.

Classification

attribute Criteria

1 � Permanent 11� years (out of 13) with the same class

2 � Stable 4� in the first 5 years and 4� in the last

5 years classified in the same class

3 � Change 4� in the first 5 years classified in the same

class Cl1, and 4� in the last 5 years

classified in the same class Cl2.

Cl1 " Cl2

4 � Stable in the first

years

4� in the first 5 years classified in the same

class

5 � Stable in the last

years

4� in the last 5 years classified in the same

class

6 � Unspecified None of the previous assignments

Figure 3. Schematic illustration explaining the criteria to define an attribute for each pixel, according to the

classification results from 1999 to 2011. Each color represents a distinct class.
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# 2013 CASI 281



Figure 5. Original (dotted line) and Savitzky�Golay smoothed (solid line) NDVI time series of the 15 land cover

classes in Rondonia for the year 2000.

Figure 4. NDVI 10-day composites for Rondonia produced from SPOT VEGETATION data for the year 2000.

The NDVI values correspond to the first 10 days of each month.
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and most of them are spectrally separable at some point

during the growing season. The NDVI profiles consistently

showed a major influence of the presence of clouds,

especially from November to February. Land cover classes

representing shorter vegetation types were the most sensitive

to the hydrological regime. The Agriculture Intensive (AI)

class showed a decreased NDVI value from June until

August, a period that is considered quite dry. Taller vegeta-

tion types (e.g., Closed Evergreen Tropical Forest (CETF))

maintained NDVI values above 0.8 from May to September.

These higher NDVI values during the dry season could be

related with the ability of vegetation to capture depth water.

The NDVI time series training profiles show a consider-

able similarity among a number of classes (Figure 5), which

naturally influences the classification results. Figure 6

presents the classified images for the reference year (2000)

using the ED and DTW classifiers. The majority of

Rondonia was classified in both images as CETF. Large

differences between ED and DTW were obtained in the

eastern region of Rondonia: the AI and Grass Savannah

(GS) classes were dominant using the ED classifier, but

when using the DTW, only the AI could be well distin-

guished. Some of the pixels that were classified as GS using

the ED classifier were classified as Closed Shrublands (CS)

using the DTW. This is because these two classes were

composed predominantly of grasses and shrubs. The GS

class is very dependent on water availability and is char-

acterized by open canopy with herbaceous soil vegetation,

whereas the CS class is characterized by shrubs, herbs, and

grasses as dominant vegetation, and this vegetation can

remain stable over time or can be affected by factors such as

fire or browsing. In both cases, the GS and CS classes

presented a similar profile in the main growing season

(Figure 5), and they can present a double growth due to the

herbaceous soil vegetation growth, animal grazing, human

interference, or other adverse conditions such as fire.

In the western region of Rondonia another difference can

be easily observed between the ED and DTW images: some

of the pixels that were classified as CETF using the ED

classifier were classified as Montane Forest � Dense Ever-

green (MFDE) using the DTW. This can be explained

because CETF and MFDE are two classes of large evergreen

forest vegetation, presenting high NDVI values and a stable

behavior in the main growth season.

Using the profiles from the year under evaluation

The classified images for 1999, 2000, and 2011 using the

ED and DTW classifiers are presented in Figure 7; 1999

presented better results with the reference year (2000) than

2011. The percentage of pixels that suffered changes between

1999 and 2000 (49% for ED and 57% for DTW) was lower

compared with changes that occurred between 2000 and

2011 (66% for ED and 72% for DTW). This can be

explained because larger temporal distance will, in general,

correspond to higher land cover variability, resulting in

higher differences in the classification results.

Table 4 presents the fraction of pixels with different

classification results in consecutive years. For both classi-

fiers, the most similar years were found to be 1999 and 2000.

However, the maximum change between consecutive years

occurred in different dates for ED (2001�2002) and DTW

(2006�2007). The average fraction of pixels that changed

between consecutive years was about 70% for both classifiers

considering 15 LCC.

Using the profiles from the year 2000

Figure 8 shows the classified images for 1999, 2000, and

2011 using the ED and DTW classifiers and the reference

signatures from 2000. Using the ED, 46% and 47% of pixels

Figure 6. Classified images for the year 2000, using the Euclidean Distance (left) and Dynamic Time

Warping (right) classifiers. (See Table 2 for definitions of acronyms.)
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were found to change between 1999 and 2000 and between

2000 and 2011, respectively. Comparing this with the results

obtained in the previous approach, the ED can reduce the

fraction of pixels with changes between 1999 and 2000 by 3%

and by 19% between 2000 and 2011. The DTWusing profiles

from 2000 also indicated less pixel changes (by 7% and 14%)

between 1999 and 2000 and between 2000 and 2011.

Table 4 presents the fraction of pixels that have different

classification results between consecutive years, using the

reference signatures from 2000. Compared with the results

obtained in the previous approach, the use of the 2000

profiles provided a higher correlation between images of two

consecutive years and indicated a reduction on the average

fraction of pixels with changes (16% for ED and 12% for

DTW).

Effect of the NDVI time series similarity on the classification

results

The two previous approaches indicated a considerable

variability in LCC over the range of years tested. However, it

is worth noting the large number of classes considered and

the similarity between some of NDVI time series profiles

used to train the LCC (Figure 5). To test the effect of the

NDVI time series similarity on the classification results, the

15 LCC were reduced by joining the most similar classes.

A hierarchical aggregation, based on the LCC similarity,

was done using the ED and DTW measures (Figure 9).

Through the dendogram analysis presented in Figure 9, it

was possible to clearly identify four groups (A, B, C, and D).

Group A contains four classes (2 (Mosaic Agriculture �

Degraded Forest (MADF)), 3 (SemiDeciduous Transition

Forest (SDTF)), 4 (Shrub Savannah (SS)) and 8 (Closed

Deciduous Forest (CDF)), the group B contains four classes

Table 4. Fraction of pixels (%) that present different classification

results between consecutive years.

Profiles from the year

under analysis Profiles from 2000

Years

ED

classifier

DTW

classifier

ED

classifier

DTW

classifier

1999�2000 49 57 46 50

2000�2001 71 75 70 66

2001�2002 78 73 64 69

2002�2003 75 74 53 63

2003�2004 73 71 45 63

2004�2005 74 69 38 54

2005�2006 73 75 57 56

2006�2007 74 77 63 62

2007�2008 66 68 67 64

2008�2009 71 72 62 56

2009�2010 74 68 46 47

2010�2011 60 62 39 45

Note: ED, Euclidean Distance; DTW, Dynamic Time Warping.

Figure 7. Classified images obtained for 1999, 2000, and 2011 using (a) Euclidean Distance and (b) Dynamic Time

Warping as classifiers. (See Table 2 for definitions of acronyms.)
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284 # 2013 CASI



(5 (AI), 10 (CS), 12 (Fresh Water Flooded Forest (FWFF))

and 13 (GS)), and the group C also four classes (1 (CETF), 6

(Permanent Swamp Forest (PSF)), 7 (MFDE) and 11

(Periodically Flooded Savannah (PFS))). Group D contains

the three classes with lower NDVI (9 (Urban (U)), 14 (Ore

Exploration (OE)) and 15 (Water Bodies (WB))).

Each of the classified images was reclassified using the

approaches presented in the two previous sections, replacing

each pixel class by the number of the enclosing group (from

1 to 4, corresponding to A�D). A pixel-by-pixel analysis

was made to evaluate the land cover variability over the

13-year period (1999�2011). Each pixel was classified as

Figure 9. Dendograms for the hierarchical aggregation of the 15 land cover classes, based on the VGT data from

2000, using (a) the Euclidean Distance and (b) Dynamic Time Warping. (See Table 2 for definitions of acronyms.)

Figure 8. Classified images obtained for 1999, 2000, and 2011 using (a) Euclidean Distance and (b) Dynamic Time

Warping as classifiers, and using the profiles of the reference year. (See Table 2 for definitions of acronyms.)
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permanent, stable, change, stable in the first years, stable in

the last years, and unspecified using the criteria presented in

Table 3 and Figure 3.

Table 5 presents a comparison between the ED classifica-

tion results for four distinct pixels (P1, P2, P3, P4), using the

15 initial LCC and the four groups of classes. Using 15

classes, P1 and P2 presented a total of five distinct LCC over

the 13 years, and P4 presented the lower land cover

variability with a total of three LCC. Although a pixel can

present higher land cover variability over the years, this does

not imply a greater deviation between the land cover

profiles. For example, P1 and P3 had an initial number of

five and four distinct LCC, respectively, but using the

aggregation groups the final number of classes obtained

for both pixels were identical. This difference in LCC

variability over the years influences the characterization of

each pixel. This was the case for P1 and P2 which were

classified as unspecified pixels using 15 LCC, but when using

four classes they were classified as stable in the first years

(P1) and permanent (P2) pixels.

Figure 10 presents the classified images for the year 2000,

using the four groups of classes. The land cover maps,

obtained using ED and DTW classifiers, presented slight

differences, instead of what happens when using 15 classes

(Figure 6). Superimposing the ED and DTW land cover

maps, the percentages of agreement obtainedwere 74.3% and

92.5% using 15 and four classes, respectively. In Figure 10 it is

possible to clearly identify the pixels with lower NDVI values

(blue), such as water spots. The largest area of Rondonia was

classified as group C (CETF, PSF, MFDE, PFS) using four

classes, and as CETF using 15 LCC (Figure 6). These results

demonstrate the consistency of the land cover maps before

and after the aggregation of classes.

Table 6 presents the fraction of pixels classified in each

attribute (defined in Table 3 and Figure 3), using the

approaches previously evaluated. The number of pixels

classified as permanent over the 13-year period increased

considerably with the aggregation of the 15 classes. Further-

more, the number of pixels unspecified was greatly reduced.

The results presented in Table 6 reinforce the idea that using

the profiles from 2000 to classify all the years reduces the

differences on the training profiles and, consequently, more

similarity between the classification images over the years is

achieved. Reducing the number of initial classes, aggregating

the most similar, reduces the variability in the LCC over the

years, providing more similar classification results between

years and classifiers.

Table 5. Classification results for four distinct pixels (P1, P2, P3,

P4) from 1999 to 2011 using the Euclidean Distance.

15 classes 4 classes

Year P1 P2 P3 P4 P1 P2 P3 P4

1999 11 1 1 1 3 3 3 3

2000 1 1 6 1 3 3 3 3

2001 11 7 11 11 3 3 3 3

2002 8 8 11 11 1 1 3 3

2003 7 7 11 1 3 3 3 3

2004 7 11 6 1 3 3 3 3

2005 6 7 1 6 3 3 3 3

2006 1 7 6 6 3 3 3 3

2007 1 1 1 1 3 3 3 3

2008 8 8 8 1 1 1 1 3

2009 6 6 8 6 3 3 1 3

2010 11 1 8 1 3 3 1 3

2011 8 1 8 1 1 3 1 3

Classes (no.) 5 5 4 3 2 2 2 1

Attribute* 6 6 5 5 4 1 3 1

*Attributes: 1, Permanent; 2, Stable; 3, Change; 4, Stable in the first

years; 5, Stable in the last years; 6, Unspecified.

Figure 10. Classified images for the year 2000, using four groups of classes and using the Euclidean

Distance (left) and Dynamic Time Warping (right) as classifiers. (See Table 2 for definitions of acronyms.)
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Evaluation of the classification results using the PRODES

data

To evaluate the classification results obtained with the

proposed methodology the PRODES data were used as a

reference. Figure 11 (left) presents the classified maps for

Rondonia obtained for 2000 and 2011 using the PRODES

data. In both maps, the main region of Rondonia was

classified as forest and it is easy to identify the water-covered

area, in particular the area in the upper right corner of the

images. The deforestation has increased considerably be-

tween 2000 and 2011, occupying the biggest area of the

central region of Rondonia.

To compare the ED and DTW land cover changes

between 2000 and 2011 with the reference (PRODES)

data, a reclassification was made aggregating the 15 initial

LCC in three main classes: forest (enclosing the classes

characterizing any type of forest vegetation (CETF, CDF,

SDTF, PSF, MADF, MFDE, FWFF)), nonforest (AI, CS,

GS, PFS, SS, U) and hydrography (WB, OE). The results of

this reclassification, available in Figure 11, show coherent

results between ED, DTW, and PRODES land cover maps.

In both cases, the majority of Rondonia was classified as

forest and the water spot in the upper right corner can be

easily identified. For the new ED and DTW land cover

maps, the percentage of pixels classified at each class was

determined and compared with the PRODES data results

(Table 7). The nonforest and deforestation classes of

PRODES (reference) land cover maps were aggregated in a

single class (nonforest). The results obtained based on the

ED and DTW methodologies were consistent with those

obtained from the reference data. The forest class occupies

Figure 11. Classified maps for Rondonia using the PRODES, Euclidean Distance (ED), and Dynamic Time

Warping (DTW) for 2000 and 2011. PRODES deforestation data for 2000 and 2011 refer to 1997�2000 and 2000�

2011, respectively.

Table 6. Fraction of pixels (%) classified per attribute from 1999 to 2011.

15 classes 4 classes

Attribute ED DTW ED* DTW* ED DTW ED* DTW*

1 � Permanent 1.51 0.67 18.97 9.81 36.3 37.18 68.80 65.18

2 � Stable 6.53 3.68 8.43 10.30 5.22 5.60 1.65 2.58

3 � Change 0.43 0.38 0.51 0.59 3.54 4.02 4.00 3.00

4 � Stable in the first years 12.69 9.03 13.27 13.17 29.1 28.13 9.51 11.08

5 � Stable in the last years 13.70 18.37 15.26 22.55 8.02 8.24 8.64 8.71

6 � Unspecified 65.14 67.88 43.56 43.59 17.7 16.83 7.39 9.45

*Profiles from 2000.

Note: ED, Euclidean Distance; DTW � Dynamic Time Warping.
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the majority of Rondonia, always higher than 53% areal

coverage. The reference data presented a 9.95% decrease in

the forest area, due to the increase of deforestation in

the Rondonia region between the years 2000 and 2011

(Figure 11, left). The same conclusion was verified using the

ED and DTW classifications, where a decrease (increase) of

around 10% was verified in the forest (nonforest) class

(Figure 11). The variability between hydrography can be due

to the fact that the urban class (considered as nonforest) was

sometimes classified as hydrography due to the low NDVI

values and similar profile with WB and OE classes.

Conclusions

A new approach was proposed for land cover classifica-

tion and land cover map updating based exclusively on

temporal series data acquired by EOS. The approach was

illustrated with a practical test using SPOT VGT data from

1999 to 2011 in the Brazilian Amazon. The GLC2000 was

used as a reference to select 15 distinct LCC in the SPOT

VGT images of Rondonia.

Maps of land cover changes for 1999�2011 were obtained

using two classifiers: one that represents a time-rigid measure

(ED) and another that represents a time-flexible measure

(DTW). The similarity between some NDVI profiles had

influenced the classification results, leading to some differ-

ences between the ED and DTW land cover maps, particu-

larly in the eastern and western regions of Rondonia.

The noise due to the cloud contamination (especially from

November to February) and the characteristics of the study

area makes it difficult to classify 15 LCC in the Amazon

region. Thus, the 15 initial LCC were gradually aggregated,

joining the most similar, until only four final broad classes

remained. The land cover variability over time was evaluated

by making a pixel-by-pixel analysis. Each pixel was classified

as permanent, stable, change, stable in the first years, stable

in the last years, and unspecified using a criteria based on

the number of identical classes from 1999 to 2011. The maps

of land cover changes obtained using 15 and four LCC

presented coherent results. As expected, the reduction of the

number of classes allowed higher similarity over the years.

The PRODES data were used to evaluate the results of the

ED and DTW classifications for the years 2000 and 2011.

The ED and DTW land cover maps showed consistent

results comparing with PRODES data, which proves that

this approach is capable to produce accurate land cover

maps for Rondonia, using exclusively temporal series data.
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ConclusionsConclusionsConclusionsConclusions    
 

The work carried out focused on the development of the PhenoSat tool, and on the 

application of temporal series of VI for land cover classification. There are other potential 

applications of phenological parameter extraction from EOS data, such as crop value and 

quality evaluation, but they were not pursued in this thesis. 

 

The PhenoSat software, developed to extract phenological information from EOS 

temporal vegetation index data, proved to be capable of obtaining accurate and consistent 

results when compared with field observations.  

Currently, the access to low spatial resolution EOS data is easy and with low or no 

cost, making these data prevalent in the development of tools to process and extract 

phenological metrics. However, the presence of noise in the EOS temporal series is a 

frequent and relevant aspect that requires processing techniques to minimize its effects. 

PhenoSat uses six fitting methods to smooth the vegetation satellite data: Savitzky-Golay 

(SG), Cubic Smoothing Splines (CSS), Polynomial Curve Fitting (PCF), Gaussian models 

(GM), Fourier Series (FS) and Piecewise-Logistic (PL). Four of these methods (CSS, 

PCF, GM and FS) depend on a smoothing parameter, which determines how closely the 

smoothing data adheres to the original data. All six methods proved capable of reducing 

the noise, without suppressing the natural variations of the vegetation. These smoothing 

processes permit a precise and accurate subsequent data analyses (more detailed 

information in appendices 2 and 3). 

Comparing with other software packages available, PhenoSat presents two major 

advantages: (i) the detection and extraction of phenological information for annual 

regrowth and (ii) the selection of an in-season region of interest.  

In all the experiments carried out, PhenoSat was capable of identifying the double 

growth season occurrences. It obtained accurate phenological information for the 

beginning and maximum of the regrowth period, with the differences between estimated 

and field observed measures not higher than 10-days.  

The selection of a region of interest allows the reduction of the processing time in 

addition to a better fitting and more accurate phenological measures (for more details see 

appendix 3, section 4.2). This feature proved to be very valuable to monitor vineyard and 

other crop with discontinuous canopy, like forestry or deciduous fruit trees. The in-season 
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region of interest should be defined using the crops behaviour in the field at normal 

conditions (regular atmospheric conditions and no human interventions that can affect the 

normal growth period). 

The algorithm based on growth rate changes to extract the phenological information, 

avoid the use of thresholds or empirical constants, making PhenoSat a flexible tool to be 

applied on different crops and vegetation index data from different data sources. 

Since PhenoSat was released online (http://www.fc.up.pt/PhenoSat), on July 2011, 

important feedback was received which led to successive improvements (e.g. appendices 

2 and 3). One of that improvements is related with the PhenoSat inputs. Initially, 

PhenoSat received as input the temporal VI dataset values, requiring the previous 

extraction of these values from the EOS images. Depending on the number of 

years/datasets in analysis, this can be a time-consuming process. To solve this problem, 

PhenoSat is now also able to receive the original VI images as input, which can be used 

entirely or just on a specific region.  

Another improvement is the creation of digital phenological maps. Three stages, 

considered to represent the principal vegetation growth cycle parameters, were chosen: 

the Maximum Vegetation Development (MVD), the start of season and the end of season. 

MVD indicates the maximum annual vegetation value achieved, and is generally related to 

a time during the growing season when biomass is high and growth is rapid; the start and 

end of season are the main phenological indicators, and they are always considered in the 

studies that have investigated vegetation dynamics using information from date 

phenometrics.  

Another task that can be done in the future, to promote the PhenoSat application, is to 

rewrite it in a more flexible programming language, like C or C#, which would facilitate the 

distribution and avoid licence costs and Matlab´s installation constraints (such as version 

and toolboxes). 

 

The work developed for land cover change detection culminated in a classification 

methodology for updating land cover maps on large scales. The proposed method uses 

exclusively vegetation time-series data acquired by EOS, and is based on a hierarchical 

aggregation of the land cover classes. The purpose of the hierarchical aggregation is to 

evaluate the two proposed methods: New Signature (NS) and Preserve Signature (PS). 

As the signature of the new class (obtained by joining the two most similar ones) is 

modified in NS and not in PS, the classification results will be distinct. With this procedure 
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it is possible to evaluate if the differences between NS and PS are significant and, 

consequently, if there are advantages on using one method instead of the other. For both 

PS and NS methods, improved classification results were obtained as the aggregation 

level increased. However, NS tends to be slightly worse due to the modification of spectral 

signatures at each level.  

In general, the classified results obtained using the proposed methodology were 

consistent with those obtained from reference data, proving that this approach is able to 

produce accurate land cover maps using exclusively temporal series of EOS data. For 

both studies carried out (on the African Continent and on the Brazilian Amazon) it was 

verified that the aggregation of the most similar land cover classes allowed the reduction 

of the variability, thus improving the classification accuracies.  

The choice of the distance measure to perform the hierarchical aggregation plays a 

significant role in the quality of the classification algorithm. Four similarity measures were 

tested: Euclidean Distance (ED), Cosine (Cos), Jaccard (Jac), and Dynamic Time 

Warping (DTW). ED is the most straightforward similarity measure for time-series. 

However it requires that the two time-series in comparison have the same length. Besides 

that, ED, Cos and Jac do not consider shifts or distortions in time, which is a relevant 

aspect when comparing temporal vegetation data. Thus, DTW is used to solve this 

limitation. It is characterized by a non-linear mapping between two sequences, where the 

distance between them is minimized. The calculation of DTW was more demanding, but it 

proved to be more efficient when analysing land cover changes over the years. In addition 

to DTW, new time-flexible measures can be further implemented and tested, as for 

example the Longest Common Subsequence, the Edit Distance with Real Penalty and the 

Edit Distance on Real Sequence. These similarity measures address the problems related 

with local shifting and presence of noise.  

 In the proposed temporal-based classification approach, the user indicates the initial 

land cover classes and the classification is done without considering a priori any inter-

relationships between the initial classes. The hierarchical arrangement, and the distance 

measure used to form a new class, is very often in conflict with the ability to define a clear 

boundary between two classes. For example, in chapter III, section 2, figure 2, it is 

possible to see a higher similarity between the profiles of the BR (bare rock), SDD (sandy 

desert and dunes) and SH (salt hardpans) classes. Although the similarity of these 

classes have resulted in their aggregation (chapter III, section 3, figures 8, 9 and 10), this 

depends on the similarity measure being used.  
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To ensure the aggregation of similar classes during the hierarchical aggregation, a new 

approach, consisting in incorporating some pre-defined hierarchical relationship at the 

beginning of the classification process, can be used. This approach can serve the distinct 

requirements of different end users. For example, a forester and a rural planner can have 

different interests: the first may be interested in preserving the information associated with 

the classes ‘dense forests’ and ‘sparse forests’ and in aggregating all remaining classes at 

a higher hierarchical level; whereas the last may be interested in separate ‘cultivated area’ 

and ‘intensive cultivated area’. Thus, in a classification process it is important to 

understand what is the purpose of the analysis to ensure that the proper and most useful 

classes are identified. 

 

Overall, both the PhenoSat tool and the classification methodologies developed have 

great potential for high level information extraction from EOS data. 

Some new research lines were identified to follow the previous work: (1) the 

comparison of EVI and NDVI phenological measures for the same crop and region; (2) the 

combination of NDVI from AVHRR and other sensors to obtain a long-term NDVI time-

series; and (3) the determination of indicators that allow to evaluate vegetation stresses 

as drought.  
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ABSTRACT 

 
The availability of temporal satellite image data has increased 

considerably in recent years. A number of satellite sensors 

currently observe the Earth with high temporal frequency thus 

providing a tool for monitoring/understanding the Earth-surface 

variability more precisely, for several applications such as the 

analysis of vegetation dynamics. However, the extraction of 

vegetation phenology information from Earth Observation Satellite 

(EOS) data is not easy, requiring efficient processing algorithms to 

properly handle the large amounts of data gathered.  

The purpose of this work is to present a new, easy-to-use 

software tool that produces phenology information from EOS 

vegetation temporal data – PhenoSat. This paper describes 

PhenoSat, focusing on two new features: the determination of the 

beginning and maximum of a double growth season, and the 

selection of a temporal sub-region of interest in order to reduce and 

control the data evaluated.  

 

Index Terms— Remote Sensing; Vegetation Index; Time-series; 

Phenology; Vegetation Dynamics.  

 

1. INTRODUCTION 

 

The number of satellite sensors with capability to acquire temporal 

image data has considerably increased in the last few years. The 

most important of these sensors are NOAA AVHRR, SPOT 

VEGETATION, ENVISAT MERIS, Metop-AVHRR and MODIS. 

With the increased number of sensors and improved data 

availability, it is now considerably easier to collect high temporal 

resolution image datasets, allowing for the monitorization of the 

Earth-surface to be done more frequently and with increased 

precision. 

Phenological studies are very important to understand 

ecosystem functioning and associated seasonal patterns of carbon, 

water and energy fluxes, as well as to quantify crop response to 

climate variability and agronomic practices. The easier access to 

vegetation temporal data provides a continuous high frequency 

range of observations, and thus a more detailed crop and 

vegetation monitoring is now possible. However, the adequate 

processing of the large data volumes obtained is a difficult and 

time consuming process. Therefore, the development of software 

tools that allow for an efficient, semi-automatic processing is 

highly necessary.  

There are a number of software tools available to process 

vegetation temporal data, such as TiSeG [1], TSPT [2], TIMESAT 

[3] and PPET [4]. These tools enable the extraction of phenology 

information, but in general do not permit the extraction of 

phenology for a double growth season, neither a selection of the 

data interval to process. 

The most common approach to extract vegetation parameters 

(phenological phases) uses deterministic models based on 

regression analysis. In [5] it is shown that the best methods were 

developed by [6] and by [7]. Although most of these models 

provide satisfactory parameters estimation, they present limitations 

when applied to different years, areas and vegetation types. 

The main objective of this work is to present the software tool 

PhenoSat for the extraction of phenology information from 

vegetation indices temporal data, addressing the flaws encountered 

in the existing software packages. 

This paper presents the methodologies used for processing 

temporal series of vegetation index imagery and the main features 

includes in the software tool developed.  

 

1.1. Data 

 

The Normalized Difference Vegetation Index (NDVI) and 

Enhanced Vegetation Index (EVI) are remote sensed vegetation 

indices (VI) commonly used in vegetation dynamics studies. NDVI 

is calculated from the reflectance in RED and near-infrared (NIR) 

spectral bands [8] using Eq.1.   
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The EVI improves upon the quality of the NDVI product, 

correcting some distortions in the reflected light caused by 

particles in the air as well as the ground cover below the 

vegetation. When viewing rainforests and other areas of the Earth 

with large amounts of chlorophyll, the EVI has the advantage that 

it does not become saturated as easily as the NDVI. EVI is 

calculated using Eq.2, where NIR, RED and BLUE are the surface 

reflectance in near-infrared, red and blue spectral bands, G is a 

gain factor, L is a canopy background adjustment term, and C1 and 

C2 are the coefficients of the aerosol resistance term, which use the 

blue band to correct for aerosol influences in the red band [9]. 

For agricultural and vegetation condition monitoring, clouds 

are partially screened from NDVI and EVI images by producing 

Maximum Value Composites (MVC) over a specific period. For 

this period, the NDVI (EVI) values are analyzed, on a pixel-by-
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pixel basis, and the highest value is retained for each pixel 

location. When all pixels have been evaluated, a MVC image is 

obtained. In [10] it is shown that the MVC imagery is highly 

related to green vegetation dynamic, and the common problems 

present in single-date remote sensing studies, as cloud 

contamination, atmospheric attenuation and observation geometry 

are minimized using MVC.  

VI satellite data are easily available and can be searched and 

ordered with reduced or no cost over the internet. These datasets 

are organized in two-dimensional images, with the time acting as a 

3rd dimension in the data cube (Fig.1). For an observation t, for 

pixel location (j,k), Nt(j,k) gives the VI value at time t [11]. The set 

of observations Nti(j,k), with i=1,…,N, is the time-series for pixel 

(j, k). 

Time-series of VI can be used to obtain information on 

seasonal vegetation development. This information is essential to 

understand the characteristics and behavior of vegetation 

dynamics, thus allowing a more precise knowledge and 

monitorization [12] [13].   
 

 
Fig.1. Vegetation indices satellite data organized in two-

dimensional images. 

 

2. METHODOLOGY 

 

The software presented here – PhenoSat – was developed using 

Matlab [14]. It receives as input a VI temporal data cube (a set of 

VI images). It is important to understand that VI values are not 

only dependent of vegetation density and type, they are also 

influenced by observation geometry, atmospheric and illumination 

conditions, although the MVC technique used minimizes the 

influence of these undesired factors.  

 The final temporal VI data has nevertheless some noise due 

to the contribution of some parameters that cannot be fully 

eliminated by the MVC process. To reduce this noise and its 

influence in the results, a moving median filter [15] is after applied 

to remove rare events such as rapid shocks or other anomalies. 

Usually the application of the median filter is not sufficient to 

properly remove the noise present in temporal VI data. To remove 

occasional outliers, a Savitzky-Golay (SG) filter [16] can be 

applied. The SG filter coefficients are derived by performing an 

unweighted linear least square fit using a polynomial of a given 

degree. In general, higher degree polynomials can more accurately 

capture the heights and widths of narrow peaks, but perform poorly 

at smoothing wider peaks. 

Field-based ecological studies have proved that vegetation 

phenology tends to follow relatively well-defined temporal 

patterns. The beginning of growth is followed by a rapid growth, 

stabilizing in the maximum leaf area. The transition between 

senescence follows a similar trend, but in a reverse pattern. Thus, it 

is possible to represent the vegetation growth by a logistic function 

[17] [18], such as the period between senescence and dormancy. 

Temporal variations of satellite NDVI data can be modeled by 

a double logistic function of the type presented in Eq.3, where t is 

the Julian day, VIt is the VI value at time t, k is related to high 

asymptotical value of VI, c and d denote the slopes at the “left” and 

“right” inflection points, respectively, and p and e are the dates of 

these inflection points. VIw and VIw1 are the VI values before the 

budbreak and during the dormancy after the leaf fall, respectively. 

This double logistic function is similar to others already developed 

([17] [6]) but the k parameter insures the continuity between the 

vegetation growth and senescence parts, even when they differ in 

shape [19] [20].  
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As an illustration, Fig.2 shows the NDVI values optimized 

after a double logistic function application and a schematic 

procedure for the calculation of the transition dates. As shown in 

Fig.2, it is possible to identify the principal phenological phases 

(Green-up (Gu), Maturity (M), Senescence (Se) and Dormancy 

(Dm)) from the rate of curvature change of Eq.3, using its minima 

and maxima. To identify the inflexion points (IPL and IPR) the 

global maximum and minimum of the curvature are used. 
 

 
Fig.2. Schematic representation of NDVI Metrics calculated based 

on maxima and minima rate of curvature change. Global maximum 

and minimum of the curvature estimate the inflexion points. 
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The PhenoSat program permits to deal with double-crop 

growth season and/or vegetation re-growths during the seasons. To 

estimate the time occurrences of this re-growth, for a specific year 

N, the data after dormancy in year N and all data in year N+1 are 

considered. Eq.4 and Eq.5, where t is the time occurrence and VIt 

is the VI value at time t, allow for the calculation of the beginning 
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of re-growth and its maximum value. The beginning occurs when 

0>∆  for three or more distinct points and the maximum VI value 

occurs at a time t that verifies Eq.5. 

 

 
Fig.3. Example of an EVI temporal series for a year: original data 

and adjusted to a subset of the data. 

 

Two more options are available in PhenoSat: the execution of 

an upper envelope [6] to enhance the spring and summer periods, 

and the selection of a region of interest allowing a reduction of the 

temporal data volume to be processed. 

The region of interest can be selected manually by the user, or 

automatically by PhenoSat. The automatic selection of the 

temporal region of interest is done by PhenoSat, by first finding 

the maximum value of the data and searching for the point where a 

significant increase (or abrupt decrease) is verified at the left of 

that maximum. That point corresponds to the initial position of the 

region of interest. Afterwards, to determine the final position the 

program proceeds in a similar way, but evaluates the data at the 

right of the maximum (Fig.3). The data between initial and final 

positions are used to compute the phenological phases, with the 

remaining data being discarded. 

The outputs of PhenoSat are two text (on MSExcel) files 

containing information about data processing (original and fitting 

data) and the vegetation dynamic information (phenology phases 

such as green-up, maturity, senescence, dormancy, and beginning 

and maximum of a double growth season if it occurs).  

 

3. TEST RUN 

 

PhenoSat was tested in a vineyard and semi-natural mountain 

meadows both in the North of Portugal. AQUA MODIS EVI 

satellite images, with 16-days temporal (23 images per year) and 

250 meters spatial resolutions, were acquired from Land Processes 

DAAC User Services, USGS Earth Resources Observation and 

Science (EROS) Center. All available data for this site were used – 

6 years (2003-2008).  

A sub-image representing a specific test site in Régua (latitude 

41º.167, longitude -7º.783) region was selected. The EVI values 

were extracted for all years for this sub-image, thus obtaining the 

EVI time-series. 

As the EVI values are not distributed in a [0-1] range, the first 

step was to scale those values using the information provided by 

MODIS [21] image information. The VI data was exported to a 

text file table with 6 columns (years) and 23 rows (16 day MVCs). 

This text file was selected as input file in the PhenoSat interface. 

Median and SG filters were applied as an upper envelope which 

enhances the rise and fall of the curve. 

Table1. Time occurrences (in 16-day periods) of the phenological 

phases obtained from EVI time-series in Régua vineyard region, 

between 2003 and 2008. 

 2003 2004 2005 2006 2007 2008 

Green-up 5.72 6.81 5.98 6.02 7.15 7.18 

Inflexion1 7.63 8.14 7.26 7.94 8.32 8.68 

Maturity 10.04 9.64 8.64 11.32 9.54 10.41 

Senescence 11.54 11.73 11.15 12.84 14.46 12.21 

Inflexion2 15.34 15.29 15.01 14.69 16.41 15.72 

Dormancy 18.45 18.27 17.86 16.17 18.30 19.25 

Maximum 11.2 11.04 10.46 11.73 11.63 11.68 

 

To minimize the processing time and focus on the relevant 

data, a region of interest was defined with initial and final 

positions as 5 (March) and 21 (November). The 7 parameters of 

the double logistic function were estimated using the Levenberg-

Marquardt method [22], and the result was used to fit the data in 

the interval (5-21). Finally, the fitted data obtained were used to 

compute the phenological phases (green-up, inflexion1, maturity, 

senescence, inflexion2 and dormancy). 

The process described here was applied to all available years 

(2003-2008). Table1 presents the time occurrences of the 

phenological phases obtained from PhenoSat for all 6 years. The 

mean value of R-square, for all years, was estimated in 0.99 which 

proves the efficiency of the method to fit the EVI time-series used. 

As the vineyard crop does not verify a double growth season in 

the same year, a semi-natural mountain meadows (“lameiros”) 

crop, in Northwest Portugal was selected for testing. In some years 

this type of crop verifies a re-growth, so it is ideal to test the ability 

of the software in its detection.  If the re-growth does not occurs in 

the same year, the value of the beginning and maximum refers to 

the following year, and the maximum of the re-growth in a year 

can be coincident to the maximum vegetation growth in the 

following year. Fig.4 shows the NDVI data acquired in 2006, 2007 

and 2008 in a “lameiros” crop, where it is possible to see the 

values of re-growth obtained in two years (2006 and 2007). 

 

 
Fig.4. NDVI data after SG filter application, from “lameiros” crop 

in 2006 and 2007 (left) and in 2007 and 2008 (right), and the re-

growth in 2006 and 2007, respectively.  

 

To evaluate the Phenosat software and its results, different tests 

using various test sites, various VI time-series and various sensors 

were done, and a comparison was made between the phenology 

information obtained in the field and those computed by the 

software. The results in the field and obtained by PhenoSat were 

found to be very similar for vineyard [20] and for lameiros [23]. 
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5.  CONCLUSIONS 

 

This work presents a new software tool (PhenoSat), developed in 

Matlab, which allows for information about phenology phases to 

be obtained from vegetation index (VI) temporal data, using an 

easy-to-use semi-automatic process. This software tool focuses in 

two new and relevant features: the ability to obtain information 

about a double growth season and the option available to select a 

temporal sub-region of interest. 

PhenoSat was tested for different VI time-series acquired from 

different sensors, for different years and in different geographical 

areas. A test case using MODIS AQUA data was presented here. 

The results obtained from PhenoSat proved to be very similar to 

measurements made in field. Thus, satellite VI data processed by 

PhenoSat has high capability to predict phenology phases, and has 

the advantage of doing it in a short time and in a relatively simple 

way.  

The PhenoSat software tool is available for public use freely at 

http://www.fc.up.pt/LamSat_XXI. 
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ABSTRACT 

 

PhenoSat is an experimental software tool that extracts 

phenological information from satellite vegetation index 

time-series. Temporal satellite NDVI data provided by 

VEGETATION sensor from three different vegetation types 

(Vineyard, Closed Deciduous Forest and Deciduous 

Shrubland with Sparse Trees) and for different geographical 

locations were used to test the ability of the software in 

extracting vegetation dynamics information. Six noise 

reduction filters were tested: piecewise-logistic, Savitzky-

Golay, cubic smoothing splines, Gaussian models, Fourier 

series and polynomial curve fitting. The results showed that 

PhenoSat is an useful tool to extract phenological NDVI 

metrics, providing similar results to those obtained from 

field measurements. The best results presented correlations 

of 0.89 (n=6; p<0.01) and 0.71 (n=6; p<0.06) for the green-

up and maximum stages, respectively. In the fitting process, 

the polynomial and Gaussian algorithms over smoothed the 

peak related with a double-growth season, the opposite to 

the other methods that could detect more accurately this 

peak.  

 
Index Terms— PhenoSat, Phenology, NDVI, SPOT 

VGT, Time-series 

 

1. INTRODUCTION 

 

Earth Observation Satellites provide a cost-effective mean 

for assessing the vegetation dynamics in agricultural and 

natural ecosystems. In recent years the number of satellite 

sensors with capability to acquire temporal data has 

increased considerably. Most of these sensors provide 

temporal vegetation data associated to a specific vegetation 

index (VI). Time-series satellite imagery can provide a 

synoptic view of vegetation dynamics by measuring surface 

reflectance at regular time-intervals that may be used to 

extract the phenological information required to better 

analyze and understand global changes in vegetation. The 

evolution of the VI through time establishes temporal 

profiles that can be analyzed to extract meaningful 

parameters about the vegetation dynamics. Although VI 

time-series data from different sensors are widely available, 

there is still a considerable gap between the raw data and the 

information actually needed.  

PhenoSat is an automatic tool to analyze time-series data 

and extract phenology information in an easy and fast 

manner. A preliminary application of PhenoSat was used on 

vegetation dynamics studies and is reported in [1]. 

Nevertheless, much work has to be done to accurately 

calibrate the use of the PhenoSat for different vegetation 

cover types and geographic locations. 

This paper presents the results obtained from a number 

of algorithms used to extract phenological information from 

satellite VI time-series. These algorithms were implemented 

in PhenoSat and, using NDVI data from SPOT 

VEGETATION (VGT), we illustrate the performance of 

PhenoSat in 3 different vegetation types. 

  

2. MATERIALS AND METHODS 

 

The algorithms implemented in PhenoSat allow to extract a 

number of phenological information parameters, such as: 

green-up, maturity, senescence, dormancy and a double-

growth (regrowth) occurrence, if it happens. 

 

2.1. Dataset and study area 

 

Ten-days NDVI composite times-series obtained by SPOT 

VEGETATION were used for three test sites located in 

Africa (2 sites) and Portugal (1 site). Three different 

vegetation types were analysed: vineyard (VIN; Portugal), 

Closed Deciduous Forest (CDF; Africa) and Deciduous 

Shrubland with Sparse Trees (DSST; Africa). These land 

cover types were selected for the available ground-based 

information as well as for their different growth patterns. 

 The GLC2000 map for Africa was used to select the test 

sites for CDF and DSST. The PhenoSat derived phenology 

parameters obtained for each algorithm were compared with 

ground-based phenological observations for vineyard over 

the years 2000-2005. Table I presents the data description 

used in the different experiments carried out. 

 

 

 



Table I. Satellite data description used in this paper experiments. 

Land Cover Type Code Location Satellite product 
Time-series 

period 

Size 

(pixels) 

Vineyard (*) VIN Portugal SPOT VGT (1km; 10 days) 2000 to 2005 9 

Closed Deciduous Forest CDF Africa SPOT VGT (1km; 10 days) 2000 2408 

Deciduous Shrubland with Sparse Trees DSST Africa SPOT VGT (1km; 10 days) 2000 1740 

*Ground-based measurements available. 

2.2. Methodology 

 

PhenoSat receives as input the NDVI temporal profiles 

extracted for a given test site. In order to analyze the 

temporal profiles and compute the NDVI metrics related 

with the phenological vegetation, one of six algorithms can 

be used to fit the data: Savitzky-Golay filter (SG), 

piecewise-logistic (DL), cubic smoothing splines (CSS), 

polynomial curve fitting (PCF), Fourier series (FS) or 

Gaussian model (GM). The SG algorithm performs a local 

polynomial regression on a series of values to determine the 

smoothed value for each point [2].  

Some studies showed that vegetation dynamics tends to 

follow a well-defined growth temporal pattern and the 

vegetation cycle can be represented by a piecewise-logistic 

algorithm (DL) [3, 4]. The DL used in this work is based on 

7 parameters to fit the vegetation data, as described in [1, 4].�

The CSS algorithm fits a spline or smooth piecewise-

polynomial algorithm, and a smoothing parameter 

determines just how closely the smoothing spline adheres to 

the given data [6]. 

The PCF [7] applies a polynomial of a given degree to fit 

the data. The higher the degree, the closer the fitting curve 

will be to the given data, although this should be done only 

up a certain degree. 

The Fourier series [8] is a sum of sine and cosine 

functions that describes a periodic signal. It is represented in 

either the trigonometric form or the exponential form (Eq.1), 

where a0 models a constant (intercept) term in the data and 

is associated with the i = 0 cosine term, w is the fundamental 

frequency of the signal, n is the number of terms 

(harmonics) in the series, and 1 � n � 8. 

The Gaussian model [9] fits peaks and is given by Eq.2, 

where a is the amplitude, b the centroid (location), c is 

related to the peak width and n is the number of peaks to fit 

(1� n � 8).  
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2.3. Evaluation strategy 

 

A SG filter with 1st degree polynomial and frame size 5 was 

applied. These parameters values were chosen because they 

smoothed the data just enough to remove the outliers and 

spikes, without suppressing natural variations of the 

vegetation. The results obtained from the SG filter were then 

fitted by the CSS, GM, PCF, FS or DL algorithms. The 

performance of CSS, FS, GM and PCF algorithms depends 

on a smoothing parameter, which affects the adherence of 

the fitting curve to the original data. PhenoSat was used to 

test the sensitivity of each algorithm by varying the 

smoothing parameter through a range of possibilities.  

Seven satellite based phenological stages (NDVI 

metrics) were determined: green-up (Gup), “left” and “right” 

inflection points (LIP and RIP), maturity (Mat), maximum 

(Max), senescence (Se) and dormancy (Dm). The Max stage 

was defined as the maximum NDVI value observed in the 

data interval delimited by LIP and RIP. The other six 

phenological stages were determined based on the maxima 

and minima of the first and second derivatives of the fitted 

data. As an illustration, Fig. 1 shows the NDVI values 

optimized after DL application and a schematic procedure 

for the calculation of the NDVI metrics.  

 

 
 

Fig. 1. Representation of NDVI Metrics calculated based on 

maxima and minima rate of curvature change. Global 

maximum and minimum of the curvature estimate the 

inflexion points.  

 

3. RESULTS 

 

The NDVI profiles of the year 2000 for the three test sites 

selected are presented in Fig. 2. These profiles were 

determined using the median NDVI computed for each test 



site and for each image available in the year 2000 (36 

images).  

The CDF profile verifies a double-growth occurrence in 

the same year, and the DSST profile presents a marked 

difference between summer and winter growth without in-

season regrows. The grapevine in Portugal can have a not 

so well-defined profile as this culture has a long dormancy 

period and a discontinuous canopy with understory 

vegetation growth.  

 

 
 

Fig. 2. Temporal NDVI profiles for Closed Deciduous 

Forest (CDF), Deciduous Shrubland with Sparse Trees 

(DSST) and Vineyard (VIN), for the year 2000.  

 

3.1. PhenoSat derived NDVI metrics 

 

The original and the curves fitted by PhenoSat for CDF 

vegetation type, using the GM, PCF and CSS algorithms, 

are presented in Fig. 3. The DL, FS and SG fitting results 

are similar to those obtained using the CSS algorithm. Fig. 

3 shows PCF and GM with considerable differences in the 

fitted curves, comparatively to the CSS method. The 

biggest difference was on the regrowth period where they 

were unable to fit the second peak of the original data, over 

smoothing this occurrence. The CSS could more accurately 

detect the peaks and transitions on the original data (with an 

r-square of 0.93), which was also verified in the DL (0.98), 

SG (0.93) and FS (0.91) algorithms. 

Although there are differences in the fitting process, the 

phenological values obtained for the regrowth are identical 

for all algorithms. The beginning and maximum of this 

period occurred on decades 27 and 32, respectively. For the 

main growing season, the phenological results were very 

similar for DL, SG and CSS, being the PCF the most 

distinct with an early green-up occurrence (Table II). 

For the DSST vegetation type, the phenological stages 

obtained from PhenoSat presented a greater similarity over 

the six algorithms. However, the PCF and FS showed a 

slight difference at the beginning of the growth season, 

having a green-up occurrence earlier than on the other 

methods (Table III). The SG and CSS presented identical 

results and GM was the algorithm with the lower r-square 

value (0.96).   
 

 
 

Fig. 3. CDF original NDVI data and PhenoSat fitting results 

obtained using GM, PCF and CSS algorithms. 

 

Table II. PhenoSat estimated phenological dates (10-days) 

obtained for Closed Deciduous Forest (CDF). 

 

NDVI 

metrics 

CDF 

DL SG CSS PCF GM FS 

Gup 9 7 7 3 9 7 

LIP 10 10 10 8 12 10 

Mat 11 11 11 13 14 12 

Max  14 13 14 14 15 13 

Se 18 17 19 14 16 14 

RIP 21 22 21 22 19 22 

Dm 24 24 23.5 26 21 25 
 

R-square 0.98 0.93 0.93 0.71 0.80 0.91 

 

The results for the VIN (Table III) showed PCF and FS 

with earlier green-up occurrences, comparing with the other 

algorithms. For FS and GM the senescence and maximum 

stages occurred on the same day of the year. PCF had the 

lower r-square (0.23) value, followed by GM (0.53) and FS 

(0.57). The algorithms with higher r-square were the DL, SG 

and CSS, with 0.67, 0.66 and 0.66, respectively. 

 

3.2. Comparison with ground-based measures 

 

Vineyard green-up and maximum NDVI metrics obtained by 

PhenoSat were compared with the budbreak and veraison 

stages observed in the field for the period 2000-2005. 

The CSS and FS algorithms were unable to detect with 

precision the maximum stage. However, for the green-up 

they presented correlations of 0.59 and 0.60. The opposite 

was verified with PCF, which obtained correlations of 0.62 

and 0.15 for the maximum and green-up phenological 

stages, respectively. DL presented a more coherent behavior 

between the two phenological stages, being the best 

algorithm with both correlations above 0.70.  

The PCF, GM, FS and CSS results were obtained using 

smoothing parameters of 4, 4, 4 and 0.4, respectively. The 

sensitivity of each algorithm to the smoothing parameter 

was tested running PhenoSat 8 times for each algorithm. For 

PCF, GM and FS the parameter was varied between 1 and 8, 

and for CSS was varied from 0.1 to 0.8. For the green-up 



Table III. PhenoSat estimated phenological dates (10-days) obtained for Deciduous Shrubland with Sparse Trees (DSST) and 

Vineyard (VIN), for the year 2000. 

 

NDVI 

Metrics 

 DSST  VIN 

 DL SG CSS PCF GM FS  DL SG CSS PCF GM FS 

Gup  13 13 13 9 14 10  12 12 12 9 12 11 

LIP  17 16 16 16 19 17  14 14 14 14 15 15 

Mat  20 17 17 24 25 22  16 16 15 20 18 18 

Max  26 26 26 25 26 26  18 20 19 21 19 19 

Se  29 34 34 25 26 30  20 24 23 22 19 19 

RIP  31 35 35 34 33 33  22 28 24 28 21 22 

Dm  33 36 36 36 36 36  26 34 31 33 23 33 

R-square  0.99 0.99 0.99 0.98 0.96 0.99  0.67 0.66 0.66 0.23 0.53 0.57 

stage, the results showed that higher parameters obtained 

higher correlations between estimated and ground-based 

observations (Table IV). For the maximum stage, 

intermediate values (4, 5 and 6) obtained the best results 

except for CSS, where 0.1 is the smoothing parameter with 

the highest correlation (0.40).  

 

Table IV. Spearman correlation rank (rho) between 

PhenoSat estimated phenological parameters and ground-

based measures, for a Vineyard region from 2000 to 2005. 

 

AAlgorithm 
Gup  Max 

Par rho p  Par rho p 

CSS 0.8 -0.71 0.06  0.1 -0.40 0.22 

DL   -0.77 0.04    0.71 0.06 

FS 8 -0.83 0.02  6 -0.43 0.20 

GM 8 -0.89 0.01  5 -0.60 0.10 

PCF 8 -0.64 0.09  4 0.62 0.10 

SG   -0.15 0.39    0.15 0.39 
Par is the best smoothing parameter and p represents the p-value. 

 

4. CONCLUSIONS 

 

The experiment carried out showed that PhenoSat is capable 

to extract phenological information from satellite vegetation 

data. All six fitting algorithms tested proved to be capable to 

detect the peaks and transitions of the main growing season 

with high precision. However, the PCF and GM algorithms 

presented the most distinct results being unable to accurately 

capture the double growing season, over smoothing this 

period.  

Comparing ground-based measures and PhenoSat 

derived phenology, the DL presented correlations above 

0.70 for both phenological stages evaluated. For CSS, FS, 

GM and PCF algorithms, high smoothing parameters 

allowed a more accurate detection of the green-up 

occurrence, presenting correlations of 0.71, 0.83, 0.89 and 

0.64, respectively. However, for the maximum stage, 

intermediate values obtained the best correlations except for 

CSS, where the lowest parameter (0.1) produced the highest 

correlation (0.40).  

A preliminary version of PhenoSat is freely available at 

http://www.fc.up.pt/LamSat_XXI. 
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Abstract   PhenoSat is a software tool that extracts phenological information from satellite based vegetation 
index time-series. This paper presents PhenoSat and tests its main characteristics and functionalities using 
a multi-year experiment and different vegetation types – vineyard and semi-natural meadows. Three im-
portant features were analyzed: (1) the extraction of phenological information for the main growing season, 
(2) detection and estimation of double growth season parameters, and (3) the advantages of selecting a sub-
temporal region of interest. Temporal NDVI satellite data from SPOT VEGETATION and NOAA AVHRR 
were used. Six fitting methods were applied to filter the satellite noise data: cubic splines, piecewise-lo-
gistic, Gaussian models, Fourier series, polynomial curve-fitting and Savitzky-Golay. PhenoSat showed to 
be capable to extract phenological information consistent with field measurements, presenting in some 
cases correlations above 70% (n=10; p≤0.012). The start of in-season regrowth in semi-natural meadows 
was detected with a precision lower than 10-days. The selection of a temporal region of interest, improve 
the fitting process (R-square increased from 0.596 to 0.997). This improvement detected more accurately 
the maximum vegetation development and provided more reliable results. PhenoSat showed to be capable 
to adapt to different vegetation types, and different satellite data sources, proving to be an useful tool to 
extract metrics related with vegetation dynamics. 

1 Introduction 

Temporal vegetation profiles based on remotely sensed data provide valuable information for understand-
ing land cover dynamics, generally interpreted by vegetation phenological events. Sensors such as Ad-
vanced Very High Resolution Radiometer (AVHRR), SPOT VEGETATION (Satellite Pour l’ Observation 
de la Terre - Vegetation), MODIS (Moderate-Resolution Imaging Spectroradiometer),  MERIS (Medium 
Resolution Imaging Spectrometer) and PROBA-V (Project for On-Board Autonomy - Vegetation) are ca-
pable to acquire appropriate temporal vegetation index (VI) that could be related with vegetation phenol-
ogy. The analysis of the VI time-series through time allows the extraction of appropriate metrics to describe 
vegetation dynamics (Bradley and Mustard 2008). Although the access to satellite vegetation data is cur-
rently widespread, with low or no costs, there is still a gap between the data and meaningful information. 
The large amounts of data and the presence of noise can make the analysis and extraction of relevant veg-
etation information a difficult and time consuming process.  
 The VI time-series obtained by Earth Observation Satellite (EOS) images generally include various 
noise components such as atmospheric disturbances, viewing and solar illumination variability, cloud cover 
and others. Maximum Value Composites (MVC) are used to minimize the noise influence by analyzing the 
VI values on a pixel-by-pixel basis, in a predefined time-period, retaining the highest value for each pixel 
location (Holben 2007). A MVC image is obtained when all pixels have been evaluated. The MVC imagery 
is highly related to the green vegetation dynamics, and common problems encountered in single-date re-
mote sensing studies, as cloud contamination, atmospheric attenuation and observation geometry, are min-
imized using MVC (Tucker et al. 1985). However, generally the MVC process is not sufficient to eliminate 
all unrealistic variability from VI time-series (Jonsson and Eklundh 2004; Rodrigues et al. 2013). Further-
more, additional noise may be also introduced by the process of overlaying several images (for example 
due to image misregistration). Thus, it is necessary to fit a model to the observed data before the extraction 
of vegetation dynamics information. An appropriate model should be capable of smoothing the data without 
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introducing artifacts or suppressing natural variations of the vegetation (Fontana et al. 2008). Over recent 
years, a large number of fitting algorithms have been proposed for this purpose, including the ARMD3-
ARMAS, Fourier, asymmetric Gaussian, Savitzky-Golay, double logistic, and mean-value iteration, to 
name a few (Fillipova-Racheva and Hall-Beyer 2000; Roerink at al. 2000; Jonsson and Eklundh 2002; Chen 
et al. 2004; Beck et al. 2006; Ma and Veroustraete 2006). 

A number of software tools able to extract phenology from satellite VI time-series have been developed, 
such as TIMESAT (Jonsson and Eklundh 2004), TimeStats (Udelhoven 2011), Enhanced TIMESAT (Tan 
et al. 2011), PPET (McKellip et al. 2010), and the software developed by USGS Earth Resources Observa-
tion and Science Center (Ross et al. 2009). Although these software products have important functionalities 
for the extraction of phenological information, they present some limitations. They include: i) none of them 
allows the selection of an in-season window of interest, which is fundamental for analyzing vegetation 
types and crop systems with more than one growth cycle through the year; and ii) except for TIMESAT, 
none of them has a specific option to characterize a double growth season phenology. Moreover, the soft-
ware packages were tested only in short number of vegetation types and detailed comparisons with field 
data are still scarce. To address these limitations, PhenoSat was developed to detect the number of growth 
seasons in each year and has the option to define an in-season window of interest. The main characteristics 
and functionalities of PhenoSat were tested using a multi-year experiment and different vegetation types, 
as well as data from two different sensors. 

 

2 PhenoSat Description 

PhenoSat is a software tool developed to extract phenological information from satellite VI time-series. 
This tool was implemented in Matlab (Higham and Higham 2000) using a simple interface to provide an 
easy-to-use software. PhenoSat can receive two standard input text files: containing the original satellite VI 
images, or containing a temporal VI dataset. For the VI images, a pixel-by-pixel approach is conducted, 
and a specific region can be selected instead of using all image size. For a temporal dataset, the numerical 
values (VI) are already standardized in a text file. 
 A number of satellite based metrics related with main growing season phenological parameters (e.g. 
start of season, maximum vegetation development, end of season) can be determined by PhenoSat. Some 
vegetation types and crops systems present more than one growth cycle through the year manly related with 
crop rotation or vegetation regrowth. The timing and magnitude of these in-season cycles present high intra-
annual variability due to some factors such as climate, animal grazing and human land use decisions. In-
formation about the timing of start and maximum of these seasonal cycles can be obtained using PhenoSat. 
It is important to note that some extreme conditions (e.g. fire, unseasonal snow) could result in a false report 
of a double growing season. For this reason, a new feature was developed in PhenoSat that allows the 
selection of a sub-temporal region of interest, based on vegetation dynamics knowledge. The annual VI 
time-series subinterval, defined manually or automatically, improves the fitting process, providing more 
realistic results of the vegetation dynamics.  
 PhenoSat outputs two files containing the phenological information (estimated date and respective VI 
value) and the processed data at each of the fitting steps. When the VI images are used as input, three 
additional output images will be created. These images present, for each pixel analyzed, the phenological 
estimated dates for three main stages: start of season, maximum vegetation development and end of season. 
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2.1 PhenoSat Fitting Methods 

Some VI datasets available online from different sensors (e.g. AVHRR, SPOT VEGETATION 
(SPOT_VGT), MODIS) are already preprocessed in order to reduce the noise caused by a variety of bio-
physical factors (Carreiras et al. 2003; Gutman 1991; Li and Strahler 1992). Although this preprocessing is 
generally effective, the VI datasets still retain some problems (punctual outliers or abrupt changes) that 
require additional processing. Noise reduction filters can be applied to remove the undesirable artifacts, 
improving the subsequent analysis, and leading to more reliable vegetation dynamics information. 
 PhenoSat considers as outliers the VI values that present a VI difference above 0.2 from the median 
(Mw), and from its left and right spatial neighbors. The values of these outliers are replaced by the Mw 
value. To enhance the spring and summer periods, an upper envelope (Beck et al. 2006) can be applied, 
allowing a better discrimination of the maximum vegetation development. Although these actions can re-
move the VI time-series outliers, some noise might still remain. For this reason, PhenoSat provides six 
methods that can be used to obtain improvements in the noise reduction process. The methods are: cubic 
smoothing splines (CSS), piecewise-logistic (PL), Gaussian models (GM), Fourier series (FS), polynomial 
curve-fitting (PCF) and Savitzky-Golay (SG). The CSS algorithm (Reinsch 1967) fits a cubic smoothing 
spline to the VI time-series data. The adherence of the smoothing spline method to the given data depends 
on the algorithm parameter selected.  
 Beck et al. (2006) and Fontana et al. (2008) proved that vegetation dynamics tends to follow a well-
defined growth temporal pattern and the vegetation cycle can be represented by a double-logistic function. 
PhenoSat uses a particular case of a double-logistic function (PL) defined by Eq. 16.1, where �	represents 
the time, ���  the �� value at time t,  � and �		are the slopes at the ‘left’ and the ‘right’, and � and 	 are the 
inflection points dates. ��
 and	��
� are the �� values before the bud break and after the leaf fall, respec-
tively. The � parameter is related with the asymptotical value and assures the continuity between vegetation 
growth and senescence parts, even when they differ in shape (Cunha et al. 2010). The PL seven parameters 
are estimated using the Levenberg-Marquardt algorithm (Montgomery et al. 2006), which requires reason-
able initial values. 
 

 ��� = ��
 +
�

�����	[�������]
−

����������

�����	[� ���!�]
	 (16.1) 

 
 Figure 16.1 presents a representation of the PL parameters, using two consecutive years of NDVI (Nor-
malized Difference Vegetation Index) SPOT_VGT data. The continuity between the two years is assured 
by the	��
 and	��
�, being the ��
 for the second year (beginning of the time-series) the same as the ��
� 
for the first year (final of the time-series). 
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 Fig. 16.1 Representation of the piecewise-logistic function parameters, using NDVI SPOT VEGETATION data from two 
consecutive years. 

 
The GM adjustment to data is given by the Eq. 16.2 (Goshtasby and Oneill 1994): 
 

 " = ∑ $%	
[��

&'()
*)

�+],
%-� 	 (16.2) 

 
where a is the amplitude, . the centroid (location), � is related to the peak width and / is the number of 
peaks to fit �1 1 / 1 8�. 

The FS is a sum of sine and cosine functions of different period that describes a periodic signal (Mitra 
2010). In the trigonometric form, it is represented as: 

 

 " = $3 + ∑ [$%
,
%-� cos�/78� + .%9:/�/78�]	 (16.3) 

 
where $3 models a constant (intercept) term in the data and is associated with the : = 0 cosine term, 7 is 
the fundamental frequency of the signal, and / is the number of terms (harmonics) in the series �1	 1 	/	 1

	8�. 
The PCF (Verschelde 2007) finds the coefficients of a polynomial, of a given degree, that fits the data. 

The higher the degree, the closer the fitting curve will be to the data, although this should be done only up 
to a certain (reasonable) degree. 
 The SG filter (Press et al. 2007) defined by 
 

 <% = ∑ �,=% + /,>
,?  (16.4) 

 
is a particular type of low-pass filter, that replaces each data value =%, : = 1, … , B, by a linear combination 
<% of nearby values in a window defined by the number of points ‘to the left’ (/C) and ‘to the right’ (/D) 
of a data point :. In PhenoSat, the SG filter uses /C = /D and is always applied to smooth the original VI 
data. For the subsequent analysis, it can be used alone or combined with one of the other methods.  
 Figure 16.2 presents a comparison of the six fitting methods described, using a NDVI SPOT_VGT 
annual time-series obtained from a Closed Deciduous Forest. The PCF and GM methods present the most 
distinct fitting results for the main and double growing seasons. The biggest differences are on the double 



5 

 
 

growth season, where these two methods present low sensitivity to detect the regrowth peak, over smooth-
ing this occurrence. 
 
 

 

Fig. 16.2 Comparison of PhenoSat fitting methods using a NDVI SPOT VEGETATION annual time-series obtained from 
a Closed Deciduous Forest. 

 

2.2 Phenological Metrics 

PhenoSat is able to determine the VI value and time of occurrence of the following seven phenological 
events in the main growing season: start of season (SOS), maturity (MAT- beginning of the ripening 
stage/full canopy), maximum vegetation development (MVD), senescence (SEN), end of season (EOS), 
and the maximum growth and maximum senescence rates (namely left (LIP) and right (RIP) inflexion 
points, respectively). 

The phenological information is obtained using the derivatives of the fitting VI time-series, as illustrated 
in figure 16.3. The LIP (or RIP) corresponds to the maximum (or minimum) of the fitted first derivative. 
The MVD is determined as the maximum VI fitted value. The maxima of the fitted VI time-series second 
derivative, at the left/right of the MVD, identify the SOS/EOS. Similarly, the MAT/SEN can be found using 
the minima of the fitted data second derivative, at the left/right of the MVD. 

 

 

Fig. 16.3 Representation of PhenoSat derived phenological stages using the maxima and minima of the first and second 
derivatives of the NDVI fitted data. 



6  

 
 
Some factors, such as adverse weather conditions (snow, ice or extreme heat), water availability, pasture 

management and/or herbaceous vegetation growth in the winter season, can induce an annual regrowth in 
some  crops (e.g. crop systems with more than one growth cycle a year, shrublands or semi-natural mead-
ows). This phenological information can also be extracted by PhenoSat if required. This option allows to 
record the VI value and date of occurrence for the start and maximum of this in-season period. PhenoSat 
calculates the regrowth parameters using the smoothed time-series (before the application of the fitting 
method) after the EOS time occurrence. 

The regrowth start is defined as the point where an increase of three or more points occurs after the EOS 
stage. After this starting point, a decreasing period of two or more points determines the maximum of the 
regrowth. In some cases, the regrowth reported can be a “false regrowth”. For example in vineyards, as 
many other discontinuous canopies, during the winter season the inter-row vegetation growth appears as a 
regrowth in the vineyard annual profile. The unseasonal snow could also result in a false report of a double 
growth season in many environments. Only with the knowledge/analysis of the ground conditions it is 
possible to infer about the truth of the regrowth.  

The selection of an in-season temporal region of interest, based on known vegetation dynamics, can help 
dealing with a false regrowth, particularly for natural land cover types. PhenoSat has the possibility to 
select, automatically or manually, the in-season temporal region of interest. The manual selection can be 
done by inputting the initial and final time positions, based on known behavior of the vegetation in the field 
at normal growth conditions. This type of selection presents some limitations when adapting to different 
dynamics over the years. PhenoSat tries to solve this problem with an optional approach that automatically 
detects the region of interest. This option, based on the VI time-series profiles, is more flexible and can 
adapt to the dynamics variations over the years. To determine the annual time-series subinterval, PhenoSat 
firstly calculates the maximum value of the VI data. Then, searches for the initial position, which corre-
sponds to the point where a significant increase (or abrupt decrease) is verified to the left of the maximum. 
Afterwards, to determine the final position, the algorithm proceeds in a similar way but evaluating the data 
to the right of the maximum. 

 

3 PhenoSat Application  

3.1 Study Area and Satellite Data 

The PhenoSat software was tested for different vegetation types and geographical locations in continental 
Portugal. The NDVI time-series from AVHRR (10-days composite and 1-km resolution) and SPOT_VGT 
(10-days composite and 1-km resolution) covering Portugal, were downloaded from The Joint Research 
Centre Community Image Data portal (JRC-CID 2013).  

The performances of PhenoSat were tested in two land use types that present, mainly, a different annual 
growth pattern (Table 16.1): vineyard (VIN) in Douro wine region (Northeast Portugal); and semi-natural 
meadows (SNM) in Montalegre (Northeast Portugal). In Douro region the predominant land cover is the 
vineyard with extensive contiguous areas. The vineyard has a long dormancy period with intense understory 
vegetation growth and a discontinuous canopy (Cunha et al 2010). The SNM are an essential element of 
the mountain landscapes in Northern Portugal, and represent the main fodder resource for livestock pro-
duction. This type of crop is characterized by a regrowth around the month of August, whose intensity and 
date of occurrence are mainly dependent of climatic conditions (Pocas et al. 2012). 

The different vegetation profiles provided by these crops (Fig. 16.4) permit to evaluate the adaptability 
and performance of PhenoSat to distinct situations. For each crop, a training area was defined carefully to 
avoid pixel boundaries with other crops, hence the reduced number of pixels (Table 16.1) used in these 
experiments. Entire training areas were considered as units, instead of using a pixel-by-pixel approach. The 
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median of the NDVI values of the pixels assigned to each crop were computed. The yearly NDVI time-
series were created using the median values obtained for each of the images available in a year. 

 

Table 16.1 Description of training areas and satellite datasets used to test PhenoSat 

Land Cover Acronym 
Coordinates  

(Long/Lat WGS84) 

Satellite  

products 
Time-series 

period 
Size 

 (pixels) 

Vineyard * VIN 
UL: 7d45’17.7W, 41d09’51.6N 

BR: 7d43’41.8W, 41d08’48.4N 
SPOT_VGT 

AVHRR 
2001-2010 6 

Semi-Natural 
Meadows 

SNM 
UL: 7d57’36.9W, 41d38’15.2N 

BR: 7d56’33.4W, 41d37’11.6N 
SPOT_VGT 

AVHRR 
2001-2010 4 

* phenological field measures available 

UL: upper left corner; BR: bottom right corner 

 
 
 

 

Fig. 16.4 Original NDVI temporal profiles obtained from SPOT VEGETATION and AVHRR data, for the semi-natural 
meadows (a) and vineyard (b) land use types, for the period 2001-2010. 
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3.2 Extraction of Phenological Information 

The ability of PhenoSat to estimate phenological metrics from satellite VI data was evaluated by a compar-
ison between PhenoSat derived phenology and field measures. Table 16.2 presents the statistics of field 
phenological measures obtained for each study area. For the VIN test site, phenological measures collected 
in the field according to the Baggiolini scale (Baggiolini 1952) were available. The bud break (BUB), 
flowering (FLO) and veraison (VER, define as the ‘change of color grapes’ stage) field observations were 
compared with the SOS, MAT and SEN derived by PhenoSat. As no ground measures of phenology were 
available for SNM, the PhenoSat results for SNM were compared with the reference measures (named field 
measures from this point) derived by visual inspection of the original VI time-series, taking into account 
the knowledge of the vegetation behavior in the field at normal conditions. As an example, figure 16.5 
presents the field measures determined from the SNM for one year. The SOS was determined as the first 
point where a significant (four or more points) NDVI growth was occurred (March/April). The MVD was 
identified as the maximum NDVI value in the annual time-series, which generally occurs in June or early 
July. The abrupt decrease verified after this point is due to the grass cutting process. The remaining ground 
vegetation (about 5cm height) begins a senescence period until the maximum senescence (EOS), occurring 
mostly around August. In general the SNM EOS stage is followed by a regrowth (RG), representing the 
first significant (three or more points) vegetation growth after the EOS occurrence. 
 

Table 16.2 Statistics of field phenological measures obtained for vineyard (VIN) and semi-natural meadows (SNM) vegetation 
types  

Phenological  Stage Statistics VIN SNM 

Start of Season 

Mean  (DOY) 82.16 98.00 

Maximum (DOY) 92.00 150.00 

Minimum (DOY) 78.00 70.00 

Standard deviation (days) 4.73 23.15 

    

Flowering 

Mean  (DOY) 145.76 ---- 

Maximum (DOY) 153.00 ---- 

Minimum (DOY) 125.30 ---- 

Standard deviation (days) 7.18 ---- 

    

Veraison / Maximum Vegetation 

Development 

Mean  (DOY) 204.20 169.00 

Maximum (DOY) 213.50 180.00 

Minimum (DOY) 199.70 150.00 

Standard deviation (days) 4.07 10.44 

    

End of season 

Mean  (DOY) ---- 237.00 

Maximum (DOY) ---- 250.00 

Minimum (DOY) ---- 210.00 

Standard deviation (days) ---- 12.69 
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Fig. 16.5 Example of phenological “reference measures” derived from the analysis of a 1-year series (from NDVI SPOT 
VEGETATION for the semi-natural meadows). 
 
 

4 Results and Discussion 

4.1 PhenoSat-derived phenology 

The VIN phenological parameters estimated by PhenoSat were compared with those obtained from field 
measurements. The results are presented in Table 16.3. Using the SPOT_VGT data, the correlations ob-
tained for the start of season were no higher than 33%, except for GM and PL which obtained, respectively, 
values of 0.77 (n=10; p=0.004) and 0.63 (n=10; p=0.025). The inter-row vegetation growth during the 
winter, and the difficulty in discriminating the first grapevine leaves from the satellite data, makes it diffi-
cult to estimate with high precision the SOS VIN stage. For maturity and mid-season, the correlations were, 
in general, higher than for the SOS. The maturity phenological stage represents the period of VIN full 
canopy which can be better identified and determined using NDVI data, as it is showed by the correlation 
values. 

The NDVI values for AVHRR were always greater than SPOT_VGT values (Fig. 16.4b), presenting 
the higher differences at the end of the years. Comparing with field measurements (Table 16.3), the AVHRR 
data achieved better correlations for the start of season, for most of the fitting methods. However, for the 
remaining parameters, the SPOT_VGT data were better, providing correlations above 70% (n=10; 
p≤0.012), in some cases. 

The flexibility of PhenoSat to extract phenology data from different land use types was tested using the 
SNM. A comparison between the estimations and field measures is presented in Table 16.4. The phenolog-
ical dates for SOS, MVD and EOS stages were extracted with a reasonable precision with correlations 
higher than 0.50 in most cases. All the fitting methods produced similar results, being PCF the method with 
best performance for the SOS stage (n=10; r=0.86; p<0.001). 
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The capability of PhenoSat in determining multiple growths in a same year was also tested using the 

SNM data. This crop is characterized by an annual regrowth around the month of August. However, the 
start of the regrowth can suffer changes due to some factors such as the climatic conditions and human 
intervention. 
 

Table 16.3 Correlations between field and PhenoSat estimated vineyard phenology, using NDVI data from SPOT_VGT and 
AVHRR sensors  

Fitting Methods 
SPOT_VGT (n=10) AVHRR (n=10) 

Start Maturity Mid-season Start Maturity Mid-season 

CSS -0.27 -0.78 -0.40 0.49 -0.28 0.07 

FS -0.17 -0.76 -0.58 0.56 -0.32 -0.27 

GM 0.77 -0.69 0.67 0.45 0.47 0.36 

PCF -0.33 -0.71 -0.38 -0.30 0.41 0.21 

PL 0.63 -0.66 -0.55 -0.06 0.30 0.18 

SG 0.30 -0.77 -0.25 0.30 -0.21 -0.08 

Mean (absolut) 0.37 0.73 0.47 0.36 0.30 0.20 

The start, maturity and mid-season represent the comparison between SOSvsBUB, MATvsFLO and SENvsVER, respectively. The SOS, 

MAT and SEN are the derived PhenoSat phenology, and BUB, FLO and VER are the phenological measures obtained in the vineyard 

Fitting methods: CSS – Cubic Smoothing Splines; FS – Fourier Series; GM – Gaussian Models; PCF – Polynomial Curve Fitting; PL – 

Piecewise-Logistic; SG – Savitzky-Golay 

 

Table 16.4 Comparison between field and PhenoSat estimated phenology for the semi-natural meadows crop, using 
SPOT_VGT data 

 Correlation Field vs PhenoSat 

Method Start of Season Maximum Vegetation 
Development 

End of Season 

CSS 0.58 0.54 0.51 

FS 0.50 0.45 0.66 

GM 0.43 0.56 0.63 

PCF 0.86 0.44 0.63 

PL 0.38 0.51 0.65 

SG 0.53 0.53 0.54 

 
Figure 16.6 presents the original and smoothed NDVI SPOT_VGT profiles for the SNM land use type, 

for the three final years (2008, 2009 and 2010). The smoothed data were obtained using a SG filter with a 
first degree polynomial and frame size 5.  These parameters removed the outliers/spikes without suppress-
ing the natural variations of the SNM VI original data. From the analysis of the smoothed profiles it is 
possible to see that 2010 is the only year that presents a double growth season, with start (3 or more con-
secutive points increasing) around the DOY 270. Table 16.5 shows the timing of regrowth derived from 
the original data and determined using PhenoSat. All six fitting methods were capable to detect the start of 
the regrowth, obtaining similar results. In the years 2001, 2003, 2007, 2008 and 2009 there was no regrowth, 
which was correctly verified by PhenoSat. For the remaining years, PhenoSat accurately detected the be-
ginning of the double growth season, being the differences between original and estimated parameters of 
10-days (except for PCF in the year 2004). Similar conclusions were observed for the maximum of the 
regrowth. 
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Fig. 16.6 Original and smoothed NDVI SPOT VEGETATION time-series for the semi-natural meadows crop, for years 
2008, 2009 and 2010. 

 
Table 16.5 Start of double growth season estimations using original and fitted data, for semi-natural meadows 

 Start of double growth (day of the year) 

Method 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

CSS n.a. 260 n.a. 230 260 250 n.a. n.a n.a. 260 

FS n.a. 270 n.a. 230 260 260 n.a. n.a. n.a. 260 

GM n.a. 260 n.a. 230 260 260 n.a. n.a. n.a. 270 

PCF n.a. 260 n.a. 250 270 260 n.a. n.a. n.a. 270 

PL n.a. 260 n.a. 230 260 250 n.a. n.a. n.a. 260 

SG n.a. 260 n.a. 230 260 250 n.a. n.a. n.a. 280 

Original n.a. 260 n.a. 230 260 250 n.a. n.a. n.a. 270 

n.a. signifies that no regrowth is verified on this year 

 

4.2 Advantages of selecting an in-season region of interest 

PhenoSat has the option to select a region of interest, instead of using all range of observations in a year. 
The reduction of the VI time-series improves the fitting process, capturing more efficiently the maximum 
vegetation development, thus producing more realistic results. To evaluate the utility of this feature on 
phenological studies, PhenoSat was tested using the VIN. The interest region must be selected according 
to the behavior of the studied vegetation in the field, under normal conditions. The grape-growth cycle in 
Douro (Portugal) starts with the bud break stage, which occurs around March. The harvest period typically 
occurs between August and September/October, however it is deeply dependent on the winemakers accord-
ing to the style and quality of the wine they wish to produce.  Considering these facts, the main phenological 
cycle of the studied VIN crop is assumed to be ranged from March (DOY 70) to September (DOY 270). 

 Figure 16.7 presents the VIN NDVI SPOT_VGT data for the year 2009, and the PL fitting results using 
all range of observations (dash line) and the in-season region of interest. Using all range of observations, 
the maximum peak of the VIN (around the DOY 180/190) cannot be detected due to the initial peak around 
the DOY 30 that could be related with winter vegetation growth in the vineyard inter-row. The inclusion of 
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this early pick of NDVI profile led to an over smoothed of the main growing cycle. On the other hand, the 
use of the region of interest allowed a more accurate adaptation of the fitting method to the variations of 
the original data during the main growth cycle. The full canopy and senescence stages were captured with 
high precision and more realistic results were produced. The PL fitted data, produced using region of inter-
est (from 7 to 27 ten days NDVI; 21 observations) instead the all 36 observations, improves the R-square 
from 0.596 to 0.997. 

 

 

Fig. 16.7 NDVI SPOT VEGETATION original time-series (dot line) and the piecewise-logistic fitted results using all 
range of observations (dash line) and the in-season region of interest (solid line), for the vineyard in 2009  

Another example of the importance of the use of the interest zone in vineyards is presented in figure 
16.8. The PL fitted results, using all the 36 observations, captured the initial peak (DOY 70) as the maxi-
mum development of the VIN crop. This erroneous information led to non-accurate phenological estima-
tions. Using the region of interest, the fitted results captured more precisely the VIN growing season, over 
smoothing the period related with the soil vegetation growth.  

The selection of a region of  interest proved to be useful not only in reducing the processing time, but 
also in obtaining better fitted results, and consequently more reliable phenological information. 

 
 

 

Fig. 16.8 NDVI SPOT VEGETATION original time-series (dot line) and the piecewise-logistic fitted results using all 
range of observations (dash line) and using an in-season region of interest (solid line), for the vineyard in 2001 
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5 Conclusions 

PhenoSat is an easy-to-use software tool which enables phenological information to be extracted from sat-
ellite VI data. The experiments carried out indicate that the phenological estimations provided by PhenoSat 
are accurate and consistent with field measurements.  
 PhenoSat permits the detection of an annual regrowth and the possibility to define an in-season region 
of interest, which are limitations of other software packages used to extract phenology. 
 The option to select an in-season region of interest results on an improvement of the fitting process, 
leading to more reliable results. This PhenoSat feature proved to be a valuable tool for vineyard monitoring 
and can extend the PhenoSat application to crops with discontinuous canopy, like forestry and deciduous 
fruit trees. PhenoSat proved to be capable to detect efficiently the regrowth occurrence. The independency 
of the fitted results leads to a more realistic time-series profile over the year and, thus, more accurate re-
growth-derived results.  
 Comparing PhenoSat with other tools available for phenological studies (e.g. TIMESAT, TimeStats, 
Enhanced TIMESAT, PPET), PhenoSat appears as an intuitive, easy-to-use software with two new im-
portant features: the possibility to select an in-season region of interest, and the capability of identifying 
multiple regrowth within a single year. Moreover, the extraction of phenological parameters using an algo-
rithm based on changes of growth rates allows PhenoSat to avoid thresholds or empirical constants, provid-
ing a flexible tool that can be applied to different crops and VI data provided from different data sources.  
 PhenoSat is freely available at http://www.fc.up.pt/PhenoSat website. 
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ABSTRACT 

Land cover change maps are recognized as an important environmental asset, but are difficult to 
produce on a routine basis. Earth Observation Satellite (EOS) images have a great potential for 
land cover mapping, which is mostly based on high resolution image data. However, in tropical 
areas the use of these images is seriously limited due to presence of clouds. This paper 
evaluates the ability of temporal based image classification methods to produce land cover 
maps in tropical regions. A practical test was carried out using VEGETATION satellite data from 
1999, 2000 and 2010 for Rondonia (Amazonia), Brazil. A total of 13 land cover classes were 
identified and grouped hierarchically. Temporal profiles were created for each land cover class, 
and used as the basis for the classification process, with Jaccard and Dynamic Time Warping 
used as classifiers. When the training and control samples of the same year were used the 
classification accuracy is greater than 80% for all tested years. To achieve the accuracy level of 
80% when using interannual data for training and control samples, the initial number of classes 
needs to be aggregated up to 7 classes (1999) or 11 classes (2010). 

Keywords: Remote Sensing, SPOT-VEGETATION, GLC2000, Amazonia, time-series 

 

1. INTRODUCTION 

The global environmental change research community requires improved and up-to date land 
cover maps at regional to global scales to support a variety of science and policy applications. 
This is especially true in Brazilian Amazon, where land cover change induced either by human 
and natural causes has been unprecedented in recent decades (e.g. Hughton et al., 2000, Eva 
et al., 2004).  

While the need for frequent monitoring land cover changes is clear, there is difficult to produce 
using ground based information alone (e.g Loveland et al., 2000). Hence, the development of 
new methods based in automatic classification to produce land cover change maps with the 
range, quality and detail needed by scientists and resource management, is still a huge 
challenge. 

The automatic classification of Earth Observation Satellite (EOS) images is thus frequently used 
for land cover mapping, mostly based on high resolution image data (e.g. from Landsat or SPOT 
satellites). However, in tropical areas the presence of cloud cover seriously limits the use of EOS 
images (Carreiras et al., 2003). In the case of Amazonia, cloud cover is particularly frequent in 
the rainy season, from October to April. An alternative is to use instead low spatial resolution 
EOS images, which have a very high acquisition frequency (daily), such as AVHRR (e.g. 
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Loveland et al., 2000), SPOT-VEGETATION (Carreiras et al. 2003) and MODIS (Warlow and 
Egbert, 2008). This classification approach is slightly different. Instead of using a single multi-
spectral image, the temporal yearly NDVI profile is used as a feature vector.  

The purpose of this work was to investigate the potential of NDVI temporal series data from 
SPOT-VEGETATION (VGT) to produce land cover change maps of Rondonia, Amazonia, Brazil. 

 

2. MATERIALS AND METHODS 

2.1. Study area 

A test area was established in northwest Brazil, corresponding to a rectangular region of 900 by 
1000 km, containing the entire state of Rondonia. Figure 1a shows the location of the test area 
in Brazil.  

The Global Land Cover (GLC) 2000 dataset (Eva et al., 2004 was used to establish a number of 
test sites, characterizing the most relevant land cover classes in this region. A total of 13 land 
cover classes (LCC) were used: Agriculture Intensive (AI), Closed Deciduous Forest (CDF), 
Closed Evergreen Tropical Forest (CETF), Closed Shrublands (CS), Fresh Water Flooded 
Forest (FWFF), Grass Savannah (GS), Mosaic Agriculture / Degraded Forest (MADF), Montana 
Forest (500-1000m) – Dense Evergreen (MFDE), Periodically Flooded Savannah (PFS), 
Permanent Swamp Forest (PSF), Semi Deciduous Transition Forest (SDTF), Shrub Savannah 
(SS) and Urban (U). Figure 1b shows the location of the training / control samples sites identified 
for each class, overlaid on a color composite image of GLC2000. The size of each site varies 
slightly, with about 20 pixels on average assigned for each class. The data was divided in 5 
subsets to be used separately as training and control samples. 

(a) (b) 

Figure 1: (a) Location of the study area in Brazil. (b) GLC2000 color composite with the location 
of training sites for the 13 land cover classes tested in Rondonia. 

Most sites were identified in the central region of Rondonia, where in the last three decades 
there has been considerable change in land use / land cover, mostly due to deforestation for 
crop and grassland production (Eva et al., 2004). There are also some areas of transition 
between forest and regeneration, which were deforested and later abandoned, thus starting a 
natural regeneration process. The classes were chosen to include native vegetation, 
regeneration areas, intensive agriculture, flooded vegetation and urban areas. 
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The state of Rondonia, as well as all Brazilian Amazonia, only has two climate seasons, which 
are well defined – dry season and rainy season. Regarding air temperature, there is no 
significant variation throughout the year. Thus the main climatic influence for vegetation 
development is the annual hydric regime. The start of the dry season may vary from year to 
year, but it always includes the months of July and August.  

 

2.2. Satellite imagery and data processing 

The VGT sensor onboard SPOT4 satellite provides daily coverage of the entire Earth since 
1998, at a spatial resolution of 1 km (VITO, 2012). The Normalized Difference Vegetation Index 
(NDVI) was computed from the extracted pixel values as :  

)/()(NDVI redNIRredNIR     (1) 

where NIR is the reflectance at the near infrared wavelength band and red is the reflectance at 
the red waveband. The width of the red and near infrared NIR bands in the VGT sensor 
correspond to 0.61 – 0.68 µm and 0.78 – 0.89 µm, respectively. 

Ten-day NDVI synthesis images (NDVI S10) are available from VGT globally, divided in 10 
regions, being one of them South America. This synthesis images are Maximum Value 
Composites (MVCs) of daily NDVI images, intended to reduce the noise caused by a variety of 
biophysical factors.  For each year, a total of 36 VGT S10 NDVI images are thus available (3 for 
each month). For each one of the 13 classes, the NDVI median value was computed using the 
training areas defined. A NDVI annual profile (time-series) was created for each class, from the 
36 NDVI median values extracted from each year.  

Although the NDVI S10 images are already smoothed versions of the daily NDVI images, there 
is still considerable noise in the temporal series data, which limits its potential for extracting 
meaningful information. This is particularly true for the Amazon region due to the presence of 
cloud coverage during long periods. A Savitzky-Golay (SG) filter (Press et al., 2007) was applied 
to remove rare events, such as rapid transitions or other anomalies in the temporal series. The 
SG filter coefficients are derived by performing an unweighted linear least square fit using a 
polynomial of 1st degree and frame size 5. 

 

2.3. Image classification procedure 

The land cover classification of a pixel makes use of its NDVI annual profile (time-series). The 
profile is compared with the profiles available for each class from training, using a distance 
measure. In this work, two different similarity measures were used, following the experiment 
carried out in (Rodrigues et al., submitted). The first one is a rigid measure – Jaccard coefficient 
(Egghe, 2009), and the second one is a flexible measure – Dynamic Time Warping or DTW (Chu 
et al., 2002), capable of incorporating shifts or distortions in time.  

One useful feature to interpret land cover classified data is to have a hierarchical structure of the 
classes, so that simplified versions with fewer classes can be created.  A hierarchical structure 
of the 13 initial classes was established, using the same metrics (Jaccard and DTW).   

In order to evaluate the classification results, a cross-validation approach was used. The 
available reference data for each class was split randomly in 5 groups. These groups were used 
as training (80%) and control (20%) samples. The process was repeated 5 times, leaving a 
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different subset for validation at each time. The classification accuracy was determined for each 
class, as the average of the 5 classification experiments.  

Using the year 2000 as reference, the NDVI profiles for the years 1999 and 2010 were 
processed to evaluate the influence of temporal variability in the land cover results. For 1999 are 
expected fewer changes in the land cover, and the eventual differences between the reference 
year and the studied year can be due mostly to variability in the weather and crop conditions. In 
a more distant year, 2010, the land cover changes are expected to be higher and, consequently, 
the classification process will have to deal with weather and crop variability, as well as land 
cover changes. 

The same training areas (same pixel/geographical locations) used for 2000 were selected for 
1999 and 2010. Two different approaches were considered: in the first, the same procedure 
described for the year 2000 was conducted in 1999 and 2010. This approach assumes that the 
land cover in the training areas did not suffer changes along the years. This assumption is 
obviously weak, particularly for the year 2010. To solve these flaws a second approach was 
considered, which uses training samples from the year 2000 and validation samples from the 
test year (1999 or 2010). This second approach allows the elimination of problems caused by 
the differences in annual land cover in training areas, but is vulnerable to changes associated 
with atmospheric conditions of the various years.  

 

3. RESULTS AND DISCUSSION 

Ten-day NDVI synthesis images from VGT were processed for Rondonia, for the years 1999, 
2000 and 2010. As precipitation has considerable influence on the vegetation development, the 
most relevant period for this region is from April to September. Furthermore, the presence of 
clouds limits the use of passive satellite data from the rainy season. 

 

Figure 2. NDVI 10-day composites for Rondonia produced from VEGETATION data from 2000.  

Mapping of the first decade NDVI value for each LCC for January and April-September period 
for the year 2000 are presented in figure 2. For January, due to the frequent cloud cover, the 
NDVI values might not be clearly related to the vegetation type (land cover class) and condition. 



33rd Canadian Symposium on Remote Sensing / 33ième Symposium Canadien de télédétection 
  June 11‐14 juin  2012, Ottawa, Canada.    5 
     

In the remaining images presented in figure 2, it is noticeable that the central areas of Rondonia 
have lower NDVI values. This is due to the fact that this part of the state has low height 
herbaceous or semi herbaceous vegetation type, as the soil is mostly used for agriculture and 
pasture. 

The temporal profiles for the 13 land cover classes are presented in figure 3 for 2000, both in 
their original form and in a smoothed form, after the application of a SG filter. 

   

   

   

   

 

 
AI – Agriculture intensive 
CDF- Closed deciduous forest 
CETF – Closed evergreen tropical forest 
CS – Closed shrublands 
FWFF – Fresh water flooded forests 
GS – Grass savannah 
MFDE – Montane forests (500-1000m) – 
dense evergreen 
 
 

 
MADF – Mosaic agriculture / degraded 
forest 
PFS – Periodically flooded savannah 
PSF -  Permanent swamp forests 
SDTF – Semi deciduous transition 
forest 
SS – Shrub savannah 
U – Urban 

Figure 3. NDVI time series (original and smoothed data).of the 13 land cover classes for 2000  

Each LCC multi-temporal NDVI signature was consistent with its phenological characteristics 
and most LCC were spectrally separable at some point during the growing season. The non-
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smoothed NDVI profiles show consistently a major influence of the presence of clouds especially 
from November to February. 

Classes with smaller vegetation are the most sensitive to the hydrological regime. The class AI, 
shows a decrease NDVI value from June until August, a period that is considered quite dry 
(figure 3). The vegetation with larger size (e.g. CETF), maintain NDVI values above 0.8 during 
the period May-September. These higher NDVI values during the dry season could be related 
with the ability of vegetation to capture water in greater depth. 

The temporal profiles associated with the various land cover types used show that there is a 
considerable similarity between a number of classes (figure 3.). It is therefore reasonable to 
merge some classes, thus reducing the total number of classes in the land cover map. In order 
to carry out this task in a suitable manner, a hierarchical structuring of the classes was 
established, using the Jaccard and DTW metrics. 

Figure 4 shows the dendogram for the hierarchical structure of the 13 land cover classes, based 
on the VGTdata from 2000, using the Jaccard coefficient. Through the dendogram analysis, it is 
possible to identify 5 groups of classes. The first group (G1), comprising the classes 3, 4, 2, 6 
and 8, represents a vegetation type that verifies a decline in the NDVI value around the final 
spring season, which is related to the characteristics of degraded or deciduous vegetation. The 
second group (G2) that includes the class 5, is a specific vegetation type that can verify a double 
growth-season in the same year. The third group (G3), comprising the classes 12, 13 and 10, 
presents a regular profile during all summer season with an accentuated NDVI peak (around 
0.8) on May. The fourth group (G4), with classes 7, 11 and 1, is characterized by a high NDVI 
profile, representing permanent and dense forests. Lastly, the fifth group (G5), composed by 
class 9, presents a low and almost linear NDVI throughout all year, this being a characteristic of 
non-vegetated land cover classes. 

The VGT data was classified using two different approaches, both with some limitations. The 
first one assumes that there is no difference between the land cover types present in the areas 
identified as training, for the period 1999-2010. It used training temporal profiles created from 
each year being classified. The second one uses the temporal profiles identified as training in 
2000, for the classification of new observations (1999 and 2010). This approach does not 
account for the variability in vegetation condition due to the changing hydrological pattern. 

Table 1 presents the average classification accuracy obtained for all years, at each level of 
aggregation, using training and control samples of the same year. In the first level of aggregation 
(13 classes), the accuracy obtained is greater than 80% for all years. To obtain a value of 85%, 
on 1999 and 2000, the number of classes must be reduced to 10, and for 2010 this number 
must be reduced at least 2 levels.     

The results after the eighth level of aggregation (6 classes) stabilize and the aggregation 
process becomes time independent. According to the dendogram classes 9, 1, 11 and 7 are not 
yet aggregated; however the other classes were aggregated in two groups (figure 4): one 
includes the G1 and G2, and the other the G3. These two groups are more susceptible to suffer 
changes over time due to weather, soil and human conditions, which might cause an early or 
later leaf fall on forest vegetation types. 
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1 – CETF – Closed evergreen tropical 
forest 
2 – MADF – Mosaic agriculture/degraded 
forest 
3 – SDTF – Semi deciduous transition 
forest 
4 – SS – Shrub savannah 
5 – AI – Agriculture intensive 
6 – PSF – Permanent swamp forests 
7 – MFDE – Montane forest ( 500 -1000m) 
– dense evergreen 
8 – CDF – Closed deciduous forest 
9 – U – Urban 
10 – CS – Closed Shrublands 
11 – PFS – Periodically flooded savannah 
12 – FWFF – Fresh water flooded forests 
13 – GS – Grass savannah 

Figure 4: Dendogram for the hierarchical aggregation of the 13 land cover classes, based on the 
VGT data from 2000, using the Jaccard coefficient.  

Table 1 – Average classification accuracy (case 1) for the 12 hierarchical levels, using the 
Jaccard as classifier 

Year 
Aggregation level 

1 2 3 4 5 6 7 8 9 10 11 12 

2000 80.5% 81.3% 82.7% 84.8% 87.6% 87.4% 92.5% 91.5% 95.1% 97.7% 96.7% 99.5% 

1999 83.2% 84.2% 86.5% 84.6% 87.5% 86.7% 86.3% 88.9% 87.3% 89.1% 92.2% 99.5% 

2010 80.5% 80.6% 81.2% 80.7% 82.9% 85.8% 92.0% 94.4% 94.7% 94.4% 93.5% 99.5% 

Table 2 presents the average classification accuracy obtained for 1999 and 2010, at each level 
of aggregation, using training samples of 2000. For the first level (13 classes) the average 
accuracy was not higher than 41%, which shows that an error around 60% was obtained in the 
classification process. On both years, the average accuracy increases over the hierarchical 
levels. However, for 2010 the accuracy values are lower than those obtained for 1999, proving 
that a more distant year than the reference year (2000) is more susceptible to suffer changes. 

Table 2 – Average classification accuracy (case 2) for the 12 hierarchical levels, using the 
Jaccard as classifier 

Year 
Aggregation Level 

1 2 3 4 5 6 7 8 9 10 11 12 

1999 41.2% 46.9% 49.1% 53.8% 55.5% 73.0% 82.1% 86.1% 92.6% 90.4% 90.5% 99.2% 

2010 31.5% 34.6% 39.3% 44.0% 50.0% 51.7% 53.8% 57.9% 62.6% 64.6% 82.2% 99.1% 

Comparing with table 1, where an accuracy of 80% is achieved at the first level, in this case to 
obtain this precision for the year 1999, the classes need to be aggregated until  the 7th 
hierarchical level. Thus the classes 5, 7, 11, 1 and 9 are not yet aggregated and the others 
classes were aggregated in the previously identified as G1 and G3 groups. For the year 2010, a 
precision of 80% was obtained only in the 11st level, maintaining the classes with more distinct 
profiles (1 and 9) as the individual classes. 

 

CONCLUSIONS 
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This study presents an approach for continuous update land cover mapping using moderate 
spatial resolution time series data sets. The comparison of classification results over several 
years not only indicates the method’s consistency, but also its potential to detect land cover 
change in tropical regions were clouds cover is frequent in the rainy season. The accuracies 
were obtained in relation to GLC 2000 dataset which have its own inaccuracy, thus independent 
ground truth data are needed to declare this approach robust and accurate. 
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