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Resumo

Nesta dissertação estamos interessados em dois parâmetros envolvendo o
comprimento de elementos em termos de um conjunto de geradores. Um
deles é o comprimento mínimo de elementos no ideal mínimo (núcleo) de um
semigrupo finito e o outro é o diâmetro de uma potência de um grupo finito.

No Capítulo 3 estudamos o comprimento mínimo de elementos do ideal
mínimo de um semigrupo finito. Denotamos este parâmetro por N(S,A),
onde A é um conjunto de geradores do semigrupo finito S, e designamo-lo por
A-profundidade de S. Introduzimos parâmetros de profundidade N ′, N,M ′ e
M da seguinte forma: Seja N(S)(M(S)) o mínimo (máximo) N(S,A) sobre
conjuntos de geradores de tamanho mínimo; e seja N ′(S)(M ′(S)) o mínimo
(máximo) N(S,A) sobre todos os conjuntos de geradores. Estimamos os
parâmetros de profundidade para algumas famílias de semigrupos finitos.
Calculamos um majorante para N(S), onde S é um produto em coroa ou um
produto direto de dois monóides (de transformações) finitos.

No Capítulo 4 estamos interessados no diámetro de uma potência de um
grupo finito. Denotemos por Gn a n-ésima potência do grupo G. Apresen-
tamos as duas seguintes conjeturas.

Conjetura (forte). Seja G um grupo finito. Então o diâmetro D(Gn) é no
máximo n(|G| − rank(G)).

Conjetura (fraca). Seja G um grupo finito. Existe um conjunto de geradores
A de Gn de tamanho mínimo tal que diam(Gn, A) é no máximo n(|G| −
rank(G)).

Mostramos que os grupos Abelianos satisfazem a conjetura forte. Em
seguida lidamos com geradores de tamanho mínimo para potências de grupos
finitos. Mostramos que a conjetura fraca é válida para grupos nilpotentes,
grupos simétricos e o grupo alternado A4. Mostramos que se impusermos
algumas restrições em n a conjetura fraca é válida para groupos diedrais.
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Por fim, apresentamos alguns majorantes polinomiais para o diâmetro de
potências de grupos solúveis.

Palavaras-chave. semigrupos, conjunto de geradores, ideal minímo, diâmetro
de um grupo, A-profundidade de um semigrupo
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Abstract

In this work we are interested in two parameters involving the length of
elements in terms of a generating set. One is the minimum length of elements
in the minimum ideal (kernel) of a finite semigroup and the other is the
diameter of a direct power of a finite group.

In Chapter 3 we investigate the minimum length of elements in the min-
imum ideal of a finite semigroup. We denote this parameter by N(S,A),
where A is a generating set of the finite semigroup S, and we call it A-
depth of S. We introduce depth parameters N ′, N,M ′ and M as follows:
Let N(S) (M(S)) be the minimum (maximum) N(S,A) over generating sets
of minimum size; and N ′(S) (M ′(S)) be the minimum (maximum) N(S,A)
over all generating sets. We estimate the depth parameters for some families
of finite semigroups. We give an upper bound for N(S) where S is a wreath
product or a direct product of two finite (transformation) monoids.

In Chapter 4 we are interested in the diameter of a direct power of a finite
group. Denote by Gn the n-th direct power of the group G. We present the
two following conjectures.

Conjecture (strong). Let G be a finite group. Then the diameter D(Gn) is
at most n(|G| − rank(G)).

Conjecture (weak). Let G be a finite group. Then there exists a generating
set A for Gn of minimum size such that diam(Gn, A) is at most n(|G| −
rank(G)).

We show that Abelian groups satisfy the strong conjecture. Then we deal
with generating sets of minimum size for direct powers of finite groups. It
is shown that the weak conjecture is true for nilpotent groups, symmetric
groups and the alternating group A4. We show that the weak conjecture is
true for dihedral groups under some restrictions on n. Finally, we present
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some polynomial upper bounds for the diameter of direct powers of solvable
groups.

Keywords. semigroups, generating sets, minimum ideal, diameter of a group,
A-depth of a semigroup
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Chapter 1

Introduction

Consider a finite semigroup S with a generating set A. Every element in
S can be represented as a product of generators in A. By the length of an
element s in S, with respect to A, we mean the minimum length of a sequence
which represents s in terms of generators in A. In finite semigroup (group)
theory, several parameters may be defined involving the length of elements
in terms of a generating set. In this work we are interested in two of these
parameters. One is the minimum length of elements in the minimum ideal
(kernel) of a finite semigroup and the other is the diameter of a direct power
of a finite group. In the first part of this thesis we investigate the minimum
length of elements in the minimum ideal of a finite semigroup. We denote this
parameter by N(S,A), where A is a generating set of the finite semigroup
S, and we call it A-depth of S. We define the following parameters, called
depth parameters, which depend only on the semigroup S,

N(S) = min{N(S,A) : S = 〈A〉, rank(S) = |A|},

M(S) = max{N(S,A) : S = 〈A〉, rank(S) = |A|}

and

N ′(S) = min{N(S,A) : A is a minimal generating set},

M ′(S) = max{N(S,A) : S = 〈A〉}.

Note that the minimum over all generating sets is zero in case of a group and
is one otherwise, so it is of no interest.
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Part of our motivation to estimate such kind of parameters comes from a
famous conjecture in automata theory attributed to Černý, a Slovak mathe-
matician. In 1964 Černý conjectured that any n-state synchronizing automa-
ton has a reset word of length at most (n − 1)2 [5]. In fact, the transition
semigroup of any finite automaton is a finite transformation semigroup. A
reset word in a synchronizing automaton is a constant transformation, which
belongs to the minimum ideal of the transition semigroup. Hence the length
of a reset word in a synchronizing automaton is equal to the length of an
element in the minimum ideal of the transition semigroup, with respect to a
generating set. Also, there is a generalization of Černý’s conjecture, known
as the Černý-Pin conjecture, which gives the upper bound (n − r)2 for the
length of a word of rank r in an automaton with n states in which the mini-
mum rank of words is r. This version of conjecture is a reformulation of the
stronger conjecture in [21], which was disproved in [16].1 Here the automaton
is not necessarily synchronizing but the words of minimum rank r represent
elements in the minimum ideal of the transition semigroup.

We are also interested in investigating how the parameter N(S,A) be-
haves with respect to the wreath product. In fact, the prime decomposition
theorem states that any finite semigroup S is a divisor of an iterated wreath
product of its simple group divisors and the three-element monoid U2 con-
sisting of two right zeros and one identity element [23]. So, it should be
interesting to be able to say something about N(S,A) provided that S is a
wreath product of two finite transformation semigroups.

In the first section of Chapter 3 we estimate the depth parameters for
some families of finite semigroups. More precisely, we establish that the
depth parameters are equal, considerably small and easily calculable for any
finite 0-simple semigroup. We show that semilattices have a unique minimal
generating set. So, the depth parameters for semilattices are equal and again
easily calculable. The third family of semigroups which we have considered
is that of completely regular semigroups. For them the problem is reduced
to the semilattice case. Afterward, we deal with transformation semigroups.
We present in Theorem 1 a lower bound for N ′(S), where S is any finite
transformation semigroup, and we show that it is sharp for several families
of such semigroups. Applying this lower bound helps us to estimate the
depth parameters for the transformation semigroups PTn, Tn and In; their
ideals K ′(n, r),K(n, r) and L(n, r); and the semigroups of order preserving

1The historical assessment appears at the end of Subsection 2.4.
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transformations POn, On and POIn. The main theorem in that section is
Theorem 1 which is proved by two easy lemmas based on simple facts about
construction of finite semigroups. Moreover, we use several results concerning
the generating sets of minimum size of finite transformation semigroups (see
for example [6, 7, 8, 9, 13, 14]).

In the second section of Chapter 3 we are interested in the behavior
of the parameter N(S) with respect to the wreath product and the direct
product. For instance, we establish some lemmas to present a generating
set of minimum size for the direct product (wreath product) of two finite
monoids (transformation monoids). We compute the rank of the products
(direct product or wreath product) in terms of their components.2 Applying
those results we give an upper bound for N(S) where S is a wreath product
or direct product of two finite transformation monoids.

In Chapter 4 we are interested in the diameter of a direct power of a
finite group. In fact, since in some of the proposed upper bounds in 3.2 the
diameter of a direct power of a finite group appears, our research leads to
work in a different direction, namely the estimation of the diameter of a direct
power of a finite group. Let G be a finite group with a generating set A. By
the diameter of G with respect to A we mean the maximum over g ∈ G of the
length of the shortest word in A representing g. Our definition here is a bit
different from which has been usually considered in the literature. Usually
group theorists define the diameter to be the maximum over g ∈ G of the
length of a shortest word in A ∪ A−1 representing g. Let us call this version
of the diameter to be “symmetric diameter". Asymptotic estimate of the
symmetric diameters of non-Abelian simple groups with respect to various
types of generating sets can be find in the survey [4], which also lists related
work, e.g., on the diameters of permutation groups. We are interested in
the behavior of the diameter with respect to the direct product. Specially,
we focus on the direct power of a finite group. More precisely, let G be a
finite group and Gn be the n-th direct power of G. Let A be a minimal
generating set of Gn. Our objective is to find a reasonable answer to the
following question. How large may be the diameter of Gn with respect to
A? A simple argument shows that the diameter of a group with respect to
any generating set is bounded above by the group order minus the group
rank (see Proposition 1) . The cyclic groups are examples whose diameter
is as large as the group order minus the group rank. It is obvious that Gn

2The interested reader may find very similar results in [24].
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is not cyclic for n ≥ 2 and |G| 6= 1. Then the following natural question
arises. Is there any smaller upper bound (less than |Gn| − rank(Gn)) for the
diameter of Gn? In fact, |G|n − rank(Gn) is exponentially large in terms of
|G|. The more precise question in which we are really interested is whether
the diameter of a direct power of a finite group is polynomially bounded.
These questions lead to the conjectures which are the topic of Chapter 4.
Denote by Gn the n-th direct power of the group G.

Conjecture (strong). Let G be a finite group. Then the diameter D(Gn) is
at most n(|G| − rank(G)).

Conjecture (weak). Let G be a finite group. Then there exists a generating
set A for Gn of minimum size such that diam(Gn, A) is at most n(|G| −
rank(G)).

In the first section of Chapter 4 we show that Abelian groups satisfy the
strong conjecture. The second section deals with generating sets of minimum
size for direct power of finite groups. Finding a generating set of minimum
size for a direct power of a group is itself a problem. Nevertheless, there
exist in the literature many results regarding the computation of the rank of
a direct power of a finite group, e.g., [27, 28, 29, 30, 31]. We use such kind
of results to find generating sets of minimum size for direct powers of some
families of finite groups such as the symmetric group Sn and the dihedral
group Dn. With a different approach (see [11]) we establish generating sets
of minimum size for the direct powers A2

5, A
3
5, A

4
5, where A5 is the alternating

group of degree five. In the third section of Chapter 4, we show that the weak
conjecture is true for nilpotent groups, symmetric groups and the alternating
group A4. We show that the weak conjecture holds for dihedral groups under
some restrictions on n. Finally, we present some polynomial upper bounds
for the diameter of a direct power of a solvable group.
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Chapter 2

Preliminaries

In this chapter we present the notation and definitions which we use in the
sequel. For standard terms in semigroup theory see [22].

2.1 Depth parameters
A semigroup is a non-empty set with an associative binary operation. Note
that in this work we are only interested in finite semigroups. A semigroup
with an identity element, usually denoted by 1, is called a monoid. Let S be
a finite semigroup. The non-empty subset S ′ ⊆ S is a subsemigroup of S if
it is closed under the binary operation of S. The subsemigroup I is an ideal
of S if SI ∪ IS ⊆ I. An ideal I of a semigroup S is minimal if, for every
ideal J of S, J ⊆ I implies I = J . We note that if such an ideal exists it is
necessarily unique so we may call it the minimum ideal . It is obvious that
every finite semigroup has a minimum ideal which we call the kernel of S and
denote by ker(S) . A non-empty subset A ⊆ S is a generating set , if every
element in S can be represented as a product of elements (generators) in A.
We use the notation S = 〈A〉 when A is a generating set of S. A generating
set A is called minimal if no proper subset of A is a generating set of S. By
the rank of a semigroup S, denoted by rank(S), we mean the cardinality of
any of the smallest generating sets of S.1

1 When S is a non trivial finite group, our notion of (semigroup) rank coincides with
the notion of rank used in group theory (which allows the uses of inverses) since the
inverse of an element a equals necessarily some power of a. The rank of the trivial group
is determined by Convention 1.
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Convention 1. Since in chapter 3 we deal with semigroups it is more con-
venient to consider the rank of the trivial group to be one. While in Chapter
4 we consider the rank of the trivial group to be zero as usual.

We suppose that the reader is familiar with the Green relations in the
classical theory of finite semigroups. For a convenient reference see [22].

Remark 1. We use the fact that J = D for a finite semigroup (the equal-
ity may fail for an infinite semigroup) several times in our proofs without
mentioning it explicitly.

Definition 1. Let S be a finite semigroup with a generating set A. For every
non identity element s ∈ S, the length of s with respect to A, denoted by
lA(s), is defined to be

lA(s) := min{k : s = a1a2 · · · ak, for some a1, a2, . . . , ak ∈ A},

and the length of the identity (if there is any) is zero by convention. Further-
more, for any non empty subset T of S, the maximum (minimum) length of T
with respect to A, denoted byMlA(T ) (mlA(T )), is the maximum (minimum)
length of elements, with respect to A, in T .

Definition 2. Let S be a finite semigroup with a generating set A. By the
A-depth of S we mean the number

N(S,A) := mlA(ker(S)).

We may consider the following parameters, defined in terms of the notion
of A-depth, but which depend only on S:

Definition 3. Let S be a finite semigroup. Define

N(S) := min{N(S,A) : S = 〈A〉, |A| = rank(S)},
N ′(S) := min{N(S,A) : A is a minimal generating set}
M(S) := max{N(S,A) : S = 〈A〉, |A| = rank(S)},
M ′(S) := max{N(S,A) : S = 〈A〉}.

These are henceforth called the depth parameters of S.

Example 1. If G is a group then N(G,A) = 0, for every generating set A
of G. Hence all the depth parameters of G are equal to zero.
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Remark 2. Note that the minimum A-depth over all generating sets of a
finite semigroup which is not a group is one.

Remark 3. If A ⊆ B, then N(S,B) ≤ N(S,A). Hence

M ′(S) = max{N(S,A) : A is a minimal generating set}.

Remark 4. It is easy to see that

N ′(S) ≤ N(S) ≤M(S) ≤M ′(S).

Notation 1. Let i ≥ 1, n ≥ 1 and Ci,n := 〈a : ai = ai+n〉 be the monogenic
semigroup with index i and period n.

Example 2. For i > 1 we have N(Ci,n, A) = i for every minimal generating
set A of Ci,n. Hence all the depth parameters are equal for all finite monogenic
semigroups with index i > 1.

2.2 Semilattices
A semilattice is a semigroup (S, .) such that, for any x, y ∈ S, x2 = x and
xy = yx. Let (S,∧) be a semilattice. For every x, y ∈ S define: x ≤ y if
x = x ∧ y. It is easy to see that (S,≤) is a partially ordered set that has a
meet (a greatest lower bound) for any nonempty finite subset [1].

Example 3. Let X be a set. The set P (X) (set of subsets of X) with the
binary operation of union is a semigroup. Since this semigroup is a free
object in the variety of semilattices we call it the free semilattice generated
by X.

Definition 4. Let S be a semilattice. An element s ∈ S is irreducible if
s = ab (a, b ∈ S) implies a = s or b = s. Denote by I(S) the set of all
irreducible elements of S.

Let (S,≤) be a partially ordered set. As usual let < be the relation on
S such that u < v if and only if u ≤ v and u 6= v. Let u, v be elements of
S. Then v covers u , written u ≺ v, if u < v and there is no element w such
that u < w < v. By the diagram of (S,≤) we mean the directed graph with
the vertex set S such that there is an edge u→ v between the pair u, v ∈ S
if u ≺ v.

7



Notation 2. Given a vertex v of a directed graph, the in-degree of v denoted
by din(v), is the number of w such that (w, v) is an edge; the out-degree of
v, denoted by dout(v), is the number of w such that (v, w) is an edge.

Remark 5. Consider a finite semilattice S. By definition, the set S has an
infimum, which is the zero of S. Notice that in the diagram of S, the vertex
corresponding to zero is the unique vertex which has in-degree zero.

Remark 6. Consider a finite semilattice S with the property that the subset
{x ∈ S : x ≤ s} is a chain for all s ∈ S. Then the diagram of S is a rooted
tree in which the root represents the zero of S.

2.3 Transformation semigroups
The notation and the definitions in this section can be find in [6, 7, 9, 13,
14, 8, 23].

Notation 3. Let N be the set of all natural numbers. For n ∈ N denote
by Xn the chain with n elements, say Xn = {1, 2, · · · , n} with the usual
ordering.

As usual, we denote by PT n the semigroup of all partial functions of Xn

(under composition) and we call the elements of PTn transformations. We in-
troduce two formally different (yet equivalent) definitions of a transformation
semigroup:

Definition 5. By transformation semigroup, with degree n, we mean a sub-
semigroup of the partial transformation semigroup PT n.

Let S be a finite semigroup and X be a finite set. The semigroup S
faithfully acting on the right of the set X means that there is a map X×S →
X, written (x, s) 7→ xs, satisfying:

• x(s1s2) = (xs1)s2;

• If for every x ∈ X xs1 = xs2, then s1 = s2.

Definition 6. By a transformation semigroup (X,S) we mean a semigroup
S faithfully acting on the right of a set X.

8



We use the first definition in 3.1.2 and the second one in 3.2.2. We
define the families of transformation semigroups whose A-depth is estimated
in 3.1.2. Define the full transformation semigroup Tn and the symmetric
inverse monoid In as follows:

Tn := {α ∈ PTn : Dom(α) = Xn},
In := {α ∈ PTn : α is an injective transformation}.

We can define more transformation semigroups which are subsemigroups of
PTn, Tn or In. For instance, for 1 ≤ r < n the following semigroups are ideals
of PTn, Tn and In, respectively.

K ′(n, r) := {α ∈ PTn : rank(α) ≤ r},
K(n, r) := {α ∈ Tn : rank(α) ≤ r},
L(n, r) := {α ∈ In : rank(α) ≤ r}.

Also, we can define more transformation semigroups when we consider the
(partial) transformations to be order preserving. We say that a transforma-
tion s in PT n is order preserving if, for all x, y ∈ Dom(s), x ≤ y implies
xs ≤ ys. Clearly, the product of two order preserving transformations is an
order preserving transformation. Let

POn := {α ∈ PTn \ {1} : α is order preserving},
On : {α ∈ Tn \ {1} : α is order preserving},

POIn := {α ∈ In \ {1} : α is order preserving}.

Note that POn, On and POIn are aperiodic semigroups (i.e., have trivial
H-classes). Denote by Jn−1(POn), Jn−1(On) and Jn−1(POIn) the maximum
J -class in POn, On and POIn, respectively. The J -classes Jn−1(POn),
Jn−1(On) and Jn−1(POIn) have n L-classes which consist of (partial) trans-
formations of rank n− 1 with the same image. The J -class Jn−1(POn) has
two kinds of R-classes, n R-classes consisting of proper partial transforma-
tions of rank n− 1 and n− 1 R-classes consisting of total transformations of
rank n−1; the J -class Jn−1(On) has n−1R-classes consisting of transforma-
tions of rank n− 1; and the J -class Jn−1(POIn) has n R-classes consisting
of proper partial transformations of rank n− 1.

9



2.4 Finite automata and A-depth of a semi-
group

We follow in this section the terminology of [25].
A finite automaton is a pair A = (Q,Σ), where Q is a finite state set

and Σ is a finite set of input symbols, each associated with a mapping on
the state set σ : Q −→ Q (note that we use the same notation for the
symbols in Σ and the associated mappings). A sequence of input symbols
of the automaton will be called for brevity an input word . To every input
word w = σ1σ2 . . . σk is associated a mapping on the state set, which is a
composition of the mappings corresponding to σi, 1 ≤ i ≤ k. By the action
of an input word we mean the action of the associated mapping. The action
of the input word w on the state q is denoted (q)w and the action of the
input word w on the subset of states T is denoted (T )w. Denote by SA the
transition semigroup of A generated by the associated mappings of input
symbols. In fact, (Q,SA) is the transformation semigroup generated by Σ.

Definition 7. The rank of a finite automaton is the minimum rank of its
input words (the rank of a mapping is the cardinality of its image). An input
word of minimum rank is called terminal .

A finite automaton with rank one is called synchronizing and every ter-
minal word in a synchronizing automaton is a reset word . It is clear that the
minimum ideal of the transition semigroup SA consists of the terminal words
of the automaton A. Meanwhile, the parameter N(SA,Σ) is the minimum
length of terminal words in the automaton A = (Q,Σ). In fact, to compute
the number N(S,A), where S is a finite transformation semigroup with a
generating set A, is equivalent to finding the minimum length of terminal
words in a finite automaton with transition semigroup S. The importance of
knowing the length of the terminal words in a finite automaton is motivated
by the two following conjectures attributed to Černý and Pin, respectively.

Conjecture. [5] Every n-state synchronizing automaton has a reset word of
length at most (n− 1)2.

Conjecture. Every n-state automaton of rank r has a terminal word of
length at most (n− r)2.

We mention that Pin generalized the Černý conjecture as follows [21].
Suppose A = (Q,Σ) is an automaton such that some word w ∈ Σ∗ acts on Q
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as a transformation of rank r. Then he proposed that there should be a word
of length at most (n−r)2 acting as a rank r transformation. This generalized
conjecture was disproved by Kari [16]. However, the above conjecture is a
reformulation of the Pin conjecture that is still open (and that was introduced
by Rystsov as being the Pin conjecture [25]).

2.5 Diameter of a finite group
In Chapter 4 we deal with the notion of diameter of a finite group. Since
this notion has different definitions in the literature we introduce here our
definitions and notation precisely.

Let G be a finite group with a generating set A. Denote by A−1 the set
{a−1 : a ∈ A}. By the symmetric length of an element g ∈ G, with respect to
A, we mean the minimum length of a sequence which represents g in terms
of elements in A ∪ A−1. Denote this parameter by lsA(g).

Now we have the following different definitions for the diameter of a finite
group with respect to a generating set.

Definition 8. LetG be a finite group with generating set A. By the diameter
of G with respect to A we mean

diam(G,A) := max{lA(g) : g ∈ G}.

Definition 9. Let G be a finite group with generating set A. By the sym-
metric diameter of G with respect to A we mean

diams(G,A) := max{lsA(g) : g ∈ G}.

Notation 4. Denote by D(G) (respectively Ds(G)) the maximum diameter
(respectively symmetric diameter) over all generating sets of G.

Remark 7. Let G be a finite group with a generating set A. For g ∈ G we
have lsA(g) ≤ lA(g) and Ds(G) ≤ D(G).

The terminology of diameter and symmetric diameter of a group comes
from the diameter of the Cayley graph and the directed Cayley graph of a
group.

Definition 10. By the Cayley graph of a group G with respect to a gener-
ating set A we mean the graph whose set of vertices is G and such that there
is an edge between g1, g2 ∈ G if and only if g−11 g2 ∈ A∪A−1. We denote this
graph by Cay(G,A).
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Definition 11. By directed Cayley graph of group G with respect to a gen-
erating set A we mean the directed graph whose set of vertices is G and such
that there is an edge from g1 to g2 if and only if g−11 g2 ∈ A. We denote this
graph by

−−→
Cay(G,A).

Definition 12. A directed graph is called strongly connected if it contains a
directed path from u to v and a directed path from v to u for every pair of
vertices u, v.

The distance between two vertices in a connected graph is the length of
the shortest path between them. In the case of a strongly connected directed
graph the distance between two vertices u and v is defined as the length of the
shortest path from u to v. Notice that, in contrast with the case of undirected
graphs, the distance between u and v dose not necessarily coincide with the
distance between v and u, so it is not a distance in the metric sense of the
word. We consider the diameter of a (strongly connected directed) graph as
usual, that is, the maximum of distances between two vertices over all pairs
of vertices in the vertex set. It is easy to see that the symmetric diameter
of a group with respect to a generating set is equal to the diameter of the
corresponding Cayley graph; and the diameter of a group with respect to a
generating set is equal to the diameter of the corresponding directed Cayley
graph (note that the directed Cayley graph of a group is always strongly
connected).

The following proposition gives a general upper bound for the diameter
of a finite group.

Proposition 1. Let G be a finite group. We have D(G) ≤ |G| − rank(G).

Proof. Let X be an arbitrary generating set of G. It is enough to show
that diam(G,X) ≤ |G| − rank(G). Without loss of generality suppose that
1 6∈ X. Let diam(G,X) = t. There exist g ∈ G and x1, x2 . . . , xt ∈ X such
that g = x1x2 · · · xt and t is the smallest number for which g has such a kind of
decomposition inX. Hence x1, x1x2, . . . , x1x2 · · ·xt are t distinct non identity
elements of G. On the other hand, X has |X| − 1 elements distinct from
x1, x1x2, . . . , x1x2 · · · xt. By adding the identity to these distinct elements we
get |G| ≥ t+ |X|−1 + 1, which gives the inequality diam(G,X) ≤ |G|− |X|.
Now the result follows from rank(G) ≤ |X|.
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Chapter 3

A-depth of a finite semigroup

This chapter is organised as follows. In the first section our goal is estimating
the depth parameters for some families of finite semigroups. In the second
section we investigate the behaviour of those parameters with respect to
products (direct product and wreath product).

3.1 A-depth for some families of finite semi-
groups

In this section we estimate the depth parameters for some families of finite
semigroups. We start with 0-simple semigroups. We establish that the depth
parameters are equal, considerably small and easily computable for any finite
0-simple semigroup. Then we show that semilattices have a unique minimal
generating set. So, the depth parameters are equal and again easily com-
putable. The third family of semigroups which we have considered is that
of completely regular semigroups. For them the problem is reduced to the
semilattice case.

In all of the above examples, we did not represent semigroups as trans-
formation semigroups. On the other hand, representing the elements of a
semigroup as transformations make us able to do some calculations. In the
second section of this chapter we deal with transformation semigroups. We
present in Theorem 1 a lower bound for N ′(S), where S is any finite trans-
formation semigroup, and we show that it is sharp for several families of
such semigroups. Applying this lower bound helps us to estimate the depth
parameters for some families of finite transformation semigroups.
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3.1.1 Examples

The following lemma is an easy observation which we are going to use fre-
quently.

Lemma 1. Let S be a finite semigroup and I be an ideal of S. If I is
contained in the subsemigroup generated by the set S \ I, then every minimal
generating set of S must be contained in S \ I.

Proof. Let A be a minimal generating set of S. Suppose that a ∈ I ∩ A.
Because I is contained in the subsemigroup generated by the set S \ I, a can
be written as a product of elements in S \ I. Moreover, because I is an ideal
and A is a generating set, every factor of this product can be written as a
product of generators in A \ I. Therefore, a can be written as a product of
elements in A \ I, which contradicts the minimality of A. This shows that
A ∩ I = ∅. Hence we have A ⊆ S \ I.

A semigroup S is called 0-simple if it possesses a zero, which is denoted
by 0, if S2 6= 0, and if φ, {0} and S are the only ideals of S [22]. The 0-simple
semigroups are examples of semigroups whose parameters M,N,M ′, N ′ are
equal, considerably small and easily computable.

Lemma 2. If S is a finite 0-simple semigroup then

N(S) = M(S) = M ′(S) = N ′(S) ≤ 2.

Proof. If S is a finite 0-simple semigroup then it is isomorphic to a regular
Rees matrix semigroup [22]. Let S = M0[G, I, L, P ] be represented as a
Rees matrix semigroup over a group G, where P is a regular matrix with
entries from G∪ {0}. If P does not contain any entry equal to 0, then every
generating set must contain the zero element (since the other elements do
not generate it). Therefore N(S) = M(S) = M ′(S) = N ′(S) = 1. Suppose
that P does contain at least one 0 entry. In this case, no minimal generating
set can contain the zero element of S, since then 0 forms an ideal of S and
the subsemigroup generated by S \ {0} contains 0 (see Lemma 1). Let A be
any generating set of S. We show that there are at least two not necessarily
distinct elements of A whose product is 0. Let for some k ≥ 2

(i1, gi1 , j1)(i2, gi2 , j2) · · · (ik, gik , jk) = 0.
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Then there exists 1 ≤ l < k such that pjlil+1
= 0. Hence

(il, gil , jl)(il+1, gil+1
, jl+1) = 0.

Therefore there are two not necessarily distinct elements of A whose product
is 0, which shows that N(S,A) = 2. It follows that

N(S) = M(S) = M ′(S) = N ′(S) = 2.

Let S be a finite semilattice. We show that I(S), the set of all irreducible
elements of S, is the unique minimal generating set of S. This leads to the
equality of all parameters M,N,M ′, N ′ . Then we find a sharp upper bound
for I(S)-depth of S. Finally, the special case where the diagram of S is a
rooted tree is considered.

Lemma 3. Let S be a semilattice. The set I(S) is the unique minimal
generating set of S.

Proof. Let A be a generating set. First we show that I(S) ⊆ A. Let s ∈ I(S).
If s /∈ A then s is a product of some elements in A none of which is equal to
s. This is in contradiction with irreducibility of s. Hence s ∈ A.

Now we show that I(S) is a generating set of S. Let s ∈ S \ I(S). Then
there exist a, b ∈ S such that s = a ∧ b while s 6= a, s 6= b. If both a, b
are irreducible then we are done, otherwise we repeat this process for a, b.
This process must end after a finite number of steps because S is finite and
the elements which are produced at each step are strictly larger than the
elements encountered in the previous step.

The following corollary is an immediate consequence of Lemma 3.

Corollary 1. Let S be a finite semilattice. Then

N(S) = N ′(S) = M(S) = M ′(S) = N(S, I(S)).

Proposition 2. The inequality N(S, I(S)) ≤ |I(S)| holds for every finite
semilattice S. The equality holds if and only if S is the free semilattice
generated by I(S).

Proof. First we show that the product of all elements in I(S) is zero. Let
I(S) = {a1, a2, . . . , an} and denote a1a2 · · · an by t. If s ∈ S, then there exist
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ai1 , ai2 , . . . , aik ∈ I(S) such that s = ai1ai2 · · · ain . Now we have st = ts = t
because S is commutative and idempotent. Therefore t = 0.

For the second statement, first suppose that S is the free semilattice
generated by I(S). We show that N(S) = |I(S)|. Since I(S) is a generat-
ing set of S, there exist ai1 , ai2 , . . . , aik ∈ I(S) = {a1, a2, . . . , an} such that
ai1ai2 · · · aik = 0; because S is commutative and idempotent we can suppose
the aij ’s to be distinct. Therefore, by the preceding paragraph, we have
ai1ai2 · · · aik = a1a2 · · · an = 0. Now because S is a free semilattice

{ai1 , ai2 , . . . , aik} = {a1, a2, . . . , an}

so that k = n.
Conversely, suppose N(S, I(S)) = |I(S)|, we show that S is the free

semilattice generated by I(S). Suppose

ai1ai2 · · · aik = aj1aj2 · · · aj` . (3.1)

Let {aik+1
, aik+2

, . . . ain} be the set I(S) \ {ai1 , . . . , aik}. By equality (3.1), we
have

ai1ai2 · · · aikaik+1
aik+2

· · · ain = aj1aj2 · · · ajlaik+1
aik+2

· · · ain .

Since N(S) = M ′(S) = |I(S)| the subset {aj1 , aj2 , . . . aj` , aik+1
, aik+2

, . . . ain}
must be the whole set I(S). This shows that

{ai1 , ai2 , . . . , aik} ⊆ {aj1 , aj2 . . . , aj`}.

By symmetry, the reverse inclusion {aj1 , . . . , aj`} ⊆ {ai1 , . . . , aik} also holds.
It follows that S is the semilattice freely generated by I(S).

Proposition 3. If the diagram of a finite semilattice S is a rooted tree then
N(S, I(S)) ≤ 2.

Proof. Denote the diagram of S by T . It is clear that

I(S) = {v ∈ V (T ) : dout(v) ≤ 1}.

Let v0 be the root of the tree T . If v0 belongs to I(S) then N(S, I(S)) ≤ 1.
Suppose that v0 6∈ I(S). We show that there are two elements in I(S) whose
product is zero. Because dout(v0) ≥ 2, there exist two distinct vertices v1, v2
such that v0 → v1 and v0 → v2. Denote by Ti the rooted sub-tree of T with vi
as its root. Note that V (Ti)∩I(S) 6= ∅ because every sub-tree contains leaves
and leaves are irreducible. If ui belongs to V (Ti) ∩ I(S) then u1u2 = 0.
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Let S be a completely regular semigroup. Green’s relation D is a congru-
ence in S and S/D is a semilattice of D-classes which are simple semigroups
[12]. Hence by the results obtained for semilattices, we have the following
lemma for completely regular semigroups.

If a D-class of a completely regular semigroup S is an irreducible element
of the semilattice S/D, then we call it an irreducible D-class of S. Denote
by IRD(S) the set of all irreducible D-classes of S.

Lemma 4. Let S be a completely regular semigroup. Then the following
inequality holds

M ′(S) ≤ N(S/D) ≤ |IRD(S)|.

Proof. Let A be a generating set of S. First we show thatD∩A 6= ∅ for every
D ∈ IRD(S). Let D ∈ IRD(S) and d ∈ D. There exist a1, a2, . . . , aj ∈ A
such that d = a1a2 · · · aj. Therefore Da1Da2 · · ·Daj ⊆ Dd = D. Because D is
an irreducible D-class of S there exists k ∈ {1, 2, . . . , j} such that Dak = D.
Therefore ak ∈ D ∩ A 6= ∅.

We now prove the first inequality. Let t = N(S/D). By Corollary 1, there
are irreducible D-classes D1, D2, . . . , Dt of S such that D1D2 · · ·Dt = ker(S).
Let ai ∈ A ∩ Di (we have shown that it exists). Then a1a2 · · · at ∈ ker(S),
whence N(S,A) ≤ t. Since A is arbitrary, we get M ′(S) ≤ N(S/D). The
second inequality follows from Proposition 2.

3.1.2 A-depth of transformation semigroups

Our main goal in this section is estimating the depth parameters for some
families of finite transformation semigroups.

First we find a lower bound for N ′(S) where S is any finite transformation
semigroup. Let S be a finite transformation semigroup and A be a minimal
generating set of S. Denote by r(S,A) the minimum of the ranks of elements
in A; and denote by t(S) the rank of elements in the minimum ideal of S.
The following corollary of Lemma 1 shows that r(S,A) is independent of the
choice of the minimal generating set A.

Corollary 2. Let S ≤ PTn be a finite transformation semigroup. Let A and
B be two minimal generating sets of S. We have r(S,A) = r(S,B).

Proof. It is enough to show that

min{rank(f) : f ∈ A} ≤ min{rank(f) : f ∈ B}.
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Let min{rank(f) : f ∈ A} = r. Consider the subsemigroup

I = {f ∈ S : rank(f) < r}.

It is easy to see that I is an ideal of S. Since A ⊆ S \ I, by Lemma 1 we
have B ⊆ S \ I. Hence min{rank(f) : f ∈ B} ≥ r.

From now on, we use r(S) instead, since it depends only on S.

Lemma 5. Let X = {f ∈ PT n : rank(f) ≥ r}. For f1, f2, . . . , fk ∈ X the
inequality

rank(f1f2 · · · fk) ≥ n− k(n− r), (3.2)

holds.

Proof. We use induction on k. For k = 1, the lower bound given by (3.2) is
obvious. Now, let f1, f2, . . . , fk+1 be k+1 not necessarily distinct elements of
X. Denote the composite transformation f1f2 · · · fk by f . By the induction
hypothesis, we know that rank(f) ≥ n−k(n−r). Then, it is enough to show
for fk+1 ∈ X that

rank(ffk+1) ≥ n− (k + 1)(n− r).

Let rank(f) = t and Im(f) = {a1, a2, . . . , at}. Suppose that

rank(ffk+1) < n− (k + 1)(n− r).

Because rank(fk+1) ≥ r, it follows that

|(Xn \ {a1, a2, . . . , at})fk+1| > r − (n− (k + 1)(n− r)).

On the other hand,

|(Xn \ {a1, a2, . . . , at})fk+1| ≤ n− t.

Hence r − (n− (k + 1)(n− r)) < n− t which gives t < n− k(n− r). Since
t = rank(f) ≥ n− k(n− r), this contradiction implies that

rank(ffk+1) ≥ n− (k + 1)(n− r),

which completes the proof.
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The next theorem gives a lower bound for N ′(S) where S is a finite
transformation semigroup.

Notation 5. For any number k denote by dke the least integer greater than
or equal to k.

Theorem 1. If S ≤ PT n and S is not a group with r(S) ≤ n− 1, then

N ′(S) ≥
⌈
n− t(S)

n− r(S)

⌉
.

Proof. Let A be a minimal generating set of S. We have

A ⊆ {f ∈ S : rank(f) ≥ r(S)}.

Let f1, f2, . . . , fk ∈ A be such that f1f2 . . . fk ∈ ker(S). Since

rank(f1f2 . . . fk) = t(S),

then by Lemma 5 we have k ≥
⌈
n−t(S)
n−r(S)

⌉
. Hence N(S,A) ≥

⌈
n−t(S)
n−r(S)

⌉
, which

is the desired conclusion.

Theorem 1 presents a lower bound for N ′ for finite transformation semi-
groups which are not groups. For estimating the other parameters N,M,M ′

we should know more about generating sets. Nevertheless, the following very
simple lemma provides the main idea to estimate those parameters for some
families of finite transformation semigroups.

Lemma 6. Let S be a finite semigroup such that S\{1} 1 is its subsemigroup
and has a unique maximal J -class J . Let A be a generating set of S. Then
each L-class and each R-class of J has at least one element in A.

Proof. Given x ∈ J . Since every finite semigroup is stable, for x to be a
product of elements in A it is necessary that at least one element of A be
L-equivalent to x and at least one element of A be R-equivalent to x. Thus
A must cover the L-classes and also the R-classes of J .

1Note that S \ {1} = S if S is not a monoid.
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Now we are ready to apply the results in this section to the transfor-
mation semigroups PTn, Tn, In, their ideals K ′(n, r), K(n, r), L(n, r) and the
semigroups of order preserving transformations POn, On, POIn. If S is one
of the semigroups POn, On or POIn, then S\{1} is a subsemigroup of S with
a unique maximum J -class [9, 6]. Moreover, if S is one of K ′(n, r), K(n, r)
or L(n, r), then S \ {1} = S has a unique maximum J -class [13, 7]. Hence,
except for Tn, PTn and In the above semigroups satisfy the hypothesis of
Lemma 6. Thus, our strategy for estimating the depth parameters is differ-
ent for these semigroups. First, we need to identify the generating sets of
minimum size for Tn, PTn, In. It is well known that, for n ≥ 3,

rank(Tn) = 3, rank(In) = 3, 2rank(PTn) = 4.

But we need to know exactly what are the generating sets of minimum size.
So we establish the following lemmas for completeness.

Notation 6. We use the notation (i, j) for denoting a transposition.

Lemma 7. Let A = {a, b, c} ⊆ Tn (n ≥ 3) such that {a, b} generates Sn and
c is a function of rank n−1. Then A is a generating set of Tn with minimum
size. Furthermore, all generating sets of Tn with minimum size are of this
form.

Proof. Since the symmetric group Sn cannot be generated by less than two
elements for n ≥ 3, we need at least 3 elements to generate Tn. Then it
suffices to show that such a set A generates Tn. We know that every element
of Tn \ Sn is a product of idempotents of rank n− 1 [14]. Therefore we show
that A generates all idempotents of rank n − 1 (because {a, b, c} already
generates all permutations). Since c is a function of rank n − 1, there exist
exactly two distinct numbers 1 ≤ i < j ≤ n such that ic = jc = l, and there
exists a unique number 1 ≤ k ≤ n such that k 6∈ Im(c). Suppose that α is
an idempotent of rank n− 1 which implies that α has the form

α =

(
a1 a2 a3 . . . an
a1 a1 a3 . . . an

)
,

2Usually by a generating set of an inverse semigroup one means a subset A ⊆ S such
that every element in S is a product of elements in A and their inverses. But we do not
include inverses here.

20



where {1, 2, . . . , n} = {a1, a2, . . . , an}. Let ρ =

(
a1 a2 . . . ai . . . an
1 2 . . . i . . . n

)
,

and define permutations τ, σ as follows. If i = 2 let τ be the cycle (i, j, 1)
and

tσ =


ar if t = rc, r 6∈ {j, 1, 2}
a1 if t = l
a2 if t = k
aj if t = 1c.

(3.3)

If i = 1, j = 2 let τ be the identity function and let

tσ =


ar if t = rc, r 6∈ {1, 2}
a1 if t = l
a2 if t = k.

(3.4)

In the remaining cases let τ = (i, 1)(j, 2) and let

tσ =


ar if t = rc, r 6∈ {i, j, 1, 2}
a1 if t = l
a2 if t = k
ai if t = 1c
aj if t = 2c.

(3.5)

Now it is easy to check that α = ρτcσ.
The last statement of the lemma follows from the structure of J -classes

of Tn. More precisely, Jn−1 = {f ∈ Tn : rank(f) = n − 1} is a J -class of
Tn which is J -above all the other J -classes except the maximum J -class.
Therefore every generating set of Tn must have at least one element in the
J -class Jn−1.

Lemma 8. Let A = {a, b, c, d} ⊆ PT n (n ≥ 3) such that {a, b, c} generates
Tn and d is a proper partial function of rank n− 1. Then A is a generating
set of PT n with minimum size. Furthermore, all generating sets of PT n with
minimum size are of this form.

Proof. By Lemma 7, the full transformation semigroup Tn cannot be gener-
ated by less than three elements for n ≥ 3. On the other hand, elements of
Tn cannot generate any proper partial function so we need at least 4 elements
to generate PT n. Then it suffices to show that such a set A generates PT n.
First we prove this for the particular case in which

d =

(
1 2 . . . n− 1 n
− 1 . . . n− 2 n− 1

)
.
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Since {a, b, c} generates Tn, we must show that, by adding d, we reach all
proper partial functions. For k ≥ 1, let

f =

(
a1 a2 . . . ak ak+1 . . . an
− − . . . − bk+1 . . . bn

)
be a proper partial function which is undefined in exactly k elements. Then
it is easy to check that f = σdkg where σ is the permutation

σ =

(
a1 a2 . . . ak ak+1 . . . an
1 2 . . . k k + 1 . . . n

)
,

and g is the function

g =

(
1 2 . . . n− k n− k + 1 . . . n
bk+1 bk+2 . . . bn n− k + 1 . . . n

)
.

For the general case let

d′ =

(
a′1 a′2 . . . a′n
− b′2 . . . b′n

)
.

where
{1, 2, . . . , n} = {a′1, a′2, . . . , a′n} = {b′1, b′2, . . . , b′n}.

We show that {a, b, c, d′} generates PTn. It is enough to show that d is a
product of elements in {a, b, c, d′}. Define the permutations ρ, δ as follows

ρ =

(
1 2 . . . n
a′1 a′2 . . . a′n

)
,

and
δ =

(
b′1 b′2 . . . b′n
n 1 . . . n− 1

)
.

Now it is easy to check that d = ρd′δ.
Finally, we show that all generating sets of PT n of minimum size are of

the stated form. Let A be any generating set of PT n. Since Tn ⊆ PT n
and PTn \ Tn is an ideal, then A must contain a generating set of Tn. On
the other hand elements of Tn cannot generate any proper partial function.
Therefore A must contain at least one proper partial function. Since all the
proper partial functions of rank n − 1 are in the J -class which is J -above
all J -classes but the maximum J -class, then A must contain at least one
partial function of rank n− 1.
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Lemma 9. Let A = {a, b, c} ⊆ In (n ≥ 3) be such that {a, b} generates Sn
and c is an element of Jn−1 = {α ∈ In : rank(α) = n − 1}. Then A is a
generating set of In with minimum size. Furthermore, all generating sets of
In with minimum size are of this form.

Proof. We know that {a, b, c, c−1} is a generating set of In [8]. We only need
to show that c−1 ∈ 〈a, b, c〉. Let Dom(c) = Xn \ {i}, Im(c) = Xn \ {j}. For
i 6= j, let α = (i, j) be a transposition and for i = j, let α be the identity
function. We may complete c−1 to an element θ of Sn by defining jθ = i. It
is easy to check that αcθαθ = c−1.

For the second statement, let A be any generating set of In. Since Sn is
the maximum J -class of In, A must contain a generating set of Sn, which
has at least 2 elements for n ≥ 3. On the other hand, since Sn is a group the
elements of Sn are not enough to generate the whole semigroup In. So, we
need at least one element in In \ Sn. Since Jn−1 is J -above all J -classes but
the maximum J -class, then A must contain at least one element in Jn−1.

Part of the following corollary is immediate by Theorem 1.

Corollary 3. For n ≥ 3,

N ′(Tn) = N(Tn) = n− 1,

N ′(PTn) = N(PTn) = n,

N ′(In) = N(In) = n.

Proof. Since

t(Tn) = 1,

t(In) = t(PTn) = 0,

r(Tn) = r(PTn) = r(In) = n− 1,

then by Theorem 1

N ′(Tn) ≥ n− 1, N ′(PTn) ≥ n, N ′(In) ≥ n.

What is left is to show that

N(Tn) ≤ n− 1, N(PTn) ≤ n, N(In) ≤ n.

We do this by showing that each of the above semigroups has a generating
set A of minimum size for which A-depth is at most the proposed upper
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bound. By Lemma 8 the rank of PTn is four and the set A = {α, β, θ, γ} is a
generating set of Tn provided that {α, β} is a generating set of the symmetric
group Sn, θ is a transformation of rank n − 1, and γ is a proper partial
transformation of rank n−1. If we choose γ to be the partial transformation

γ =

(
1 2 3 . . . n
− 1 2 . . . n− 1

)
,

then γn is the empty map, which lies in the minimum ideal of Tn. This
shows that N(PTn, A) ≤ n. With the above notation and by Lemma 9 the
set A′ = {α, β, γ} is a generating set of In of minimum size and the above
argument gives N(In, A

′) ≤ n. For Tn, again with the above notation and
by Lemma 7 the set A = {α, β, θ} is a generating set of minimum size. If we
choose θ to be the transformation

θ =

(
1 2 3 . . . n
1 1 2 . . . n− 1

)
,

then θn−1 is the constant map, which lies in the minimum ideal of Tn. Hence
N(Tn, A) ≤ n− 1.

Now we show that N = N ′ for the remaining semigroups, and indeed
N ′ = N = M = M ′ (except for the semigroup On).

Proposition 4. For n ≥ 3,

N ′(POn) = N(POn) = M(POn) = M ′(POn) = n,

N ′(On) = N(On) = n− 1,

N ′(POIn) = N(POIn) = M(POIn) = M ′(POIn) = n.

Proof. We start with the semigroup POn. We know that POn is generated
by the J -class Jn−1 consisting of transformations or partial transformations
of rank n− 1 [9], and the empty transformation is the zero of POn. Hence,
we have r(POn) = n − 1 and t(POn) = 0. So Theorem 1 implies that
N ′(POn) ≥ n. It remains to show that M ′(POn) ≤ n. Let A be a minimal
generating set of POn. By Lemma 6, A intersects each R-class of Jn−1.
Hence we can find proper partial transformations f1, f2, . . . , fn ∈ A such that
1 6∈ Dom(f1) and for 1 ≤ i ≤ n− 1, (i+ 1)f1f2 . . . fi 6∈ Dom(fi+1). It is easy
to see that f1f2 . . . fn is the empty function. This shows thatN(POn, A) ≤ n.
Since A is an arbitrary minimal generating set, then M ′(POn) ≤ n.
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The next semigroup in the statement of the proposition is the semigroup
On. Since the maximum J -class Jn−1 generates On [9], r(On) = n − 1. By
Theorem 1, N ′(On) ≥ n− 1. We show that N(On) ≤ n− 1. It is enough to
show that N(On, A) ≤ n− 1 for some generating set A of minimum size. For
1 ≤ i ≤ n− 1 let

αi =

(
1 2 3 . . . i i+ 1 . . . n
1 2 3 . . . i+ 1 i+ 1 . . . n

)
and

β =

(
1 2 3 . . . i i+ 1 n− 1 . . . n
1 1 2 . . . i− 1 i n− 2 . . . n− 1

)
.

The set {α1, α2, . . . , αn−1, β} is a generating set of On of minimum size as has
been proved in [9]. On the other hand, βn−1 is a constant transformation.
This shows that N(On, A) ≤ n− 1, and so N(On) ≤ n− 1.

We now apply this argument again for POIn. With the same reason
as the previous cases N ′(POIn) ≥ n [6]. We show that N(POIn, A) ≤ n
for every minimal generating set A. Again A intersects each R-class of Jn−1.
Hence we can find proper partial transformations f1, f2, . . . , fn ∈ A such that
1 6∈ Dom(f1) and for 1 ≤ i ≤ n− 1, (i+ 1)f1f2 . . . fi 6∈ Dom(fi+1). It is easy
to see that f1f2 . . . fn is the empty function. Hence N(POIn, A) ≤ n, which
completes the proof.

We use the following lemmas to prove Proposition 5.

Lemma 10. The transformation semigroup L(n, r) is generated by its max-
imum J -class.

Proof. For 0 ≤ k ≤ r denote

Jk := {α ∈ L(n, r) : rank(α) = k}.

It is easy to see that Jk is a J -class of L(n, r). Now we prove that the
maximum J -class Jr generates L(n, r). For k < r, consider an arbitrary
β ∈ Jk. Suppose that

β =

(
a1 a2 . . . ak
b1 b2 . . . bk

)
.

Choose ak+1 6∈ Dom(β) and bk+1 6∈ Im(β) and let

β′ =

(
a1 a2 . . . ak ak+1

b1 b2 . . . bk bk+1

)
.
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Now choose f ∈ Jr such that f(bi) = bi for 1 ≤ i ≤ k and bk+1 6∈ Dom(f).
It is easy to see that β = β′f . Therefore, Jk ⊆ Jk+1Jr for 0 ≤ k ≤ r − 1. It
follows that Jk ⊆ Jr−k+1

r . Hence L(n, r) is generated by Jr.

Lemma 11. The R-class in K ′(n, r) of a partial permutation consists only
of partial permutations. Moreover, two partial permutations which are R-
equivalent in K ′(n, r) are also R-equivalent in L(n, r).

Proof. Let f, g ∈ K ′(n, r). Suppose that fRg and f is a partial permutation.
There exist h, k ∈ K ′(n, r) such that f = gh and g = fk. First we show
that g is a partial permutation. Since f = gh, then Dom(f) ⊆ Dom(g)
and rank(f) ≤ rank(g). Since g = fk, then Dom(g) ⊆ Dom(f) and
rank(g) ≤ rank(f). Hence we have Dom(f) = Dom(g) and rank(f) =
rank(g). Since f is a partial permutation, then |Dom(f)| = rank(f). It
follows that |Dom(g)| = rank(g), hence g is a partial permutation. Now
define the partial permutations h′, k′ as follows. Let Dom(h′) = Im(g) and
xh = xh′ for every x ∈ Im(g). Let Dom(k′) = Im(f) and xk = xk′ for every
x ∈ Im(f). Hence we have f = gh′ and g = fk′ and h′, k′ ∈ L(n, r). It shows
that f, g are R-equivalent in L(n, r).

Proposition 5. For every n > 1 and 1 ≤ r ≤ n− 1,

N ′(K(n, r)) = N(K(n, r)) = M(K(n, r)) = M ′(K(n, r)) =

⌈
n− 1

n− r

⌉
,

N ′(K ′(n, r)) = N(K ′(n, r)) = M(K ′(n, r)) = M ′(K(n, r)) =

⌈
n

n− r

⌉
,

N ′(L(n, r)) = N(L(n, r)) = M(L(n, r)) = M ′(L(n, r)) =

⌈
n

n− r

⌉
.

Proof. To see that the semigroups K(n, r) and K ′(n, r) are generated by
their maximum J -classes see [13, 7], respectively; and by Lemma 10, this
assertion is true for L(n, r). Hence, by Lemma 1 every minimal generating set
for these semigroups is contained in their maximum J -classes. On the other
hand, the rank of elements in the maximum J -class for these semigroups is
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r. Hence, Theorem 1 implies that

N ′(K(n, r)) ≥
⌈
n− 1

n− r

⌉
,

N ′(K ′(n, r)) ≥
⌈

n

n− r

⌉
,

N ′(L(n, r)) ≥
⌈

n

n− r

⌉
.

The proof is completed by showing that

M ′(K(n, r)) ≤
⌈
n− 1

n− r

⌉
,

M ′(K ′(n, r)) ≤
⌈

n

n− r

⌉
,

M ′(L(n, r)) ≤
⌈

n

n− r

⌉
.

First, we prove that M ′(K(n, r)) ≤
⌈
n−1
n−r

⌉
. Let A be a minimal generating

set of K(n, r). We show that there exists some product of at most
⌈
n−1
n−r

⌉
generators in A which is a constant transformation. Denote by J the max-
imum J -class of K(n, r). By Lemma 6, A covers the L-classes of J and
the R-classes of J . Since A covers the L-classes of J , there exists a trans-
formation f1 ∈ A such that Im(f1) = {1, 2, . . . , r}. Since A also covers the
R-classes of J , we can define f2, f3, . . . , f` ∈ A as follows: for i ≥ 2, if
rank(f1f2 · · · fi−1) > n − r + 1, then choose fi ∈ A that collapses n − r + 1
elements in the image of f1f2 · · · fi−1; otherwise, choose fi ∈ A that collapses
all the elements in the image of f1f2 · · · fi−1. It is enough to check that
f1f2 · · · fdn−1

n−re is a constant transformation. If r = 1, this is trivial. Let
r ≥ 2. If r ≤ n− r+ 1, then f1f2 is a constant transformation. On the other
hand, the inequalities 2 ≤ r ≤ n− r+ 1 imply 2 =

⌈
n−1
n−r

⌉
. Suppose next that

r > n − r + 1. There exists k ≥ 2 such that rank(f1f2 · · · fk) ≤ n − r + 1
and rank(f1f2 · · · fk−1) > n− r + 1. Since fk+1 collapses all the elements in
the image of f1f2 · · · fk, then f1f2 · · · fk+1 is a constant transformation. It
remains to show that k + 1 =

⌈
n−1
n−r

⌉
. Note that

rank(f1f2 · · · fi) = r − (i− 1)(n− r), for 1 ≤ i ≤ k.
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Hence
rank(f1f2 · · · fk) = r − (k − 1)(n− r) ≤ n− r + 1, (3.6)

and
rank(f1f2 · · · fk−1) = r − (k − 2)(n− r) > n− r + 1. (3.7)

The inequalities (3.6) and (3.7) imply that

k <
n− 1

n− r
≤ k + 1,

which is the desired conclusion.
Next we prove that

M ′(L(n, r)) ≤
⌈

n

n− r

⌉
.

Let B be a minimal generating set of L(n, r). We show that there exists
some product of at most

⌈
n
n−r

⌉
generators in B which is the empty transfor-

mation. By Lemma 6, B covers the R-classes of Jr. Hence, there exists a
transformation g1 ∈ B such that 1, 2, . . . , n − r 6∈ Dom(g1). We can define
g2, g3, . . . , g` ∈ B as follows: for i ≥ 2, if rank(g1g2 · · · gi−1) ≥ n − r + 1
choose gi ∈ B such that n − r elements in the image of g1g2 · · · gi−1 are ex-
cluded from Dom(gi); otherwise, choose gi ∈ A such that all elements in the
image of g1g2 · · · gi−1 are excluded from Dom(gi). It is enough to check that
g1g2 · · · gd n

n−re is the empty transformation. If r = 1, then g1g2 is the empty

transformation and
⌈

n
n−1

⌉
= 2. Let r ≥ 2. If r < n− r + 1, then g1g2 is the

empty transformation. On the other hand the inequalities 2 ≤ r < n− r+ 1
imply

⌈
n
n−r

⌉
= 2. Suppose next that r ≥ n− r + 1. There exists k ≥ 2 such

that

0 < rank(g1g2 . . . gk) < n− r + 1, (3.8)
rank(g1g2 · · · gk−1) ≥ n− r + 1. (3.9)

Since none of the elements in the image of g1g2 . . . gk is in the domain of
gk+1, then g1g2 · · · gk+1 is the empty transformation. It remains to show that
k + 1 =

⌈
n
n−r

⌉
. By definition of gk, we have

rank(g1g2 · · · gk) = n− k(n− r), (3.10)

and
rank(g1g2 · · · gk−1) = n− (k − 1)(n− r). (3.11)
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Substituting (3.10) in (3.8) and (3.11) in (3.9) we obtain

k <
n

n− r
≤ k + 1,

which is the desired conclusion.
Finally, we consider the semigroup K ′(n, r). Let C be a minimal gener-

ating set of K ′(n, r). By Lemma 6, C covers the R-classes of the maximum
J -class of K ′(n, r). On the other hand, the maximum J class of L(n, r) is
contained in the maximum J -class of K ′(n, r). Then by Lemma 11, we may
choose g1, g2, . . . , gd n

n−re ∈ C. This shows that N(K ′(n, r), C) ≤
⌈

n
n−r

⌉
and

so M ′(K ′(n, r)) ≤
⌈

n
n−r

⌉
.

In the sequel we try to calculate the maximum A-depth over all minimal
generating sets. We just apply the following simple lemma to establish an
upper bound for M ′(S) provided that S is a semigroup generated by the
maximal J -classes. First we need to introduce some notation.

Notation 7. Let S be a finite semigroup. Denote by JM the set of all the
maximal J -classes of S. For every J -class J of S denote by hJ , `J and rJ
the number of elements in the H-classes of J , the number of L-classes of J
and the number of R-classes of J , respectively.

Lemma 12. Let J be a maximal J -class of a semigroup S. Let A be a
generating set of S. The length of elements in J with respect to A is at most
min{`JhJ , rJhJ}.

Proof. Let x ∈ J and lA(x) = k. There exist a1, a2, . . . , ak ∈ A∩ J such that
x = a1a2 . . . ak. Since, a1, a1a2, . . . , a1a2 . . . ak are k distinct elements in the
same R-class, then k ≤ `JhJ . On the other hand, ak, ak−1ak, . . . , a1a2 . . . ak
are k distinct elements in the same L-class, then k ≤ rJhJ . Hence

k ≤ min{`JhJ , rJhJ}.

Proposition 6. Let S be a finite semigroup. If S is generated by the maximal
J -classes, then

M ′(S) ≤ N(S,∪J∈JMJ) max
J∈JM

min{`JhJ , rJhJ}.
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Proof. Let A be a minimal generating set of S. It suffices to show that
N(S,A) is bounded above by the proposed bound. Let N(S,∪J∈JMJ) = k.
There exist x1, x2, . . . , xk ∈ ∪J∈JMJ such that x = x1x2 . . . xk ∈ ker(S). We
have lA(x) ≤

∑k
i=1 lA(xi). According to Lemma 12, lA(xi) ≤ min{`JhJ , rJhJ}

for some maximal J -class of S containing xi. If M is the maximum of
min{`JhJ , rJhJ} over all maximal J -classes of S, then lA(xi) ≤ M for 1 ≤
i ≤ k. This shows that lA(x) ≤ kM . Hence N(S,A) ≤ kM which is the
desired conclusion.

3.2 A-depth and products of semigroups
We did some attempt to understand the behavior of the depth parameters
with respect to products (direct product and wreath product) of semigroups.
Here we deal mostly with monoids rather than semigroups because it is easier
to say something about minimal generating sets when the components of the
product are two monoids.

3.2.1 Direct product

Let S, T be two finite semigroups. We are interested in estimating the pa-
rameters

N ′(S × T ), N(S × T ),

with respect to the corresponding parameters for S and T . First, we observe
that the kernel of the direct product of two finite semigroups is the product
of the kernels of its components.

Lemma 13. Let S, T be two finite semigroups. Then

ker(S × T ) = ker(S)× ker(T ).

Proof. It is easy to see that ker(S) × ker(T ) is an ideal of S × T . Since
ker(S×T ) is the minimum ideal of S×T , then ker(S×T ) ⊆ ker(S)×ker(T ).
It remains to show that ker(S)×ker(T ) is just one J -class. It follows from the
fact that the direct product of two simple semigroups is a simple semigroup;
it is easy to justify this fact by considering that a semigroup S is simple if
and only if SaS = S for every a ∈ S [22].
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Now we need to establish a relationship between generating sets of the
direct product and generating sets of its components. We could not find a
nice general method for constructing a generating set of minimum size for
S1×S2 when the semigroups S1, S2 do not contain an identity element. Just
as an easy example we consider the product of two monogenic semigroups.

Example 4. Let i, n, j,m ≥ 1. Then the depth parameters are all equal for
Ci,n × Cj,m and they are given by the formula

N(Ci,n × Cj,m) =


0 if i = j = 1
i if j = 1, i 6= 1
j if i = 1, j 6= 1
2 if i, j 6= 1

Furthermore, if i 6= 1, or j 6= 1, then Ci,n × Cj,m has a unique minimal
generating set.

Proof. Let Ci,n = 〈a : ai+n = ai〉 and Cj,m = 〈b : bj+m = bj〉. In case both
i, j are equal to 1, these cyclic semigroups are groups and, therefore, so is
their product. Because N(G) = 0 for any group G then N(C1,n×C1,m) = 0.
If j = 1, i 6= 1, then the maximum J -class of Ci,n×C1,m is {a}×C1,m. If A is
any generating set of Ci,n×C1,m then Amust contain {a}×C1,m because a can
not be written as a product of two elements. On the other hand, {a}×C1,m

generates Ci,n × C1,m because, if (ak, bl) ∈ Ci,n × C1,m for some k > 1, then
(ak, bl) = (a, bl)(a, 1)k−1. Therefore, {a} × C1,m is the unique generating set
of Ci,n × C1,m of minimum size and

ker(Ci,n × C1,m) = {ai, ai+1, . . . , ai+n} × C1,m.

Note that (a, 1)i ∈ ker(Ci,n×C1,m) and, because the first component of every
element in the generating set is a, the product of generators with less than i
factors can not reach the minimum ideal. Therefore N(Ci,n×C1,m) = i. The
case where i = 1, j 6= 1 is similar. Now let i, j 6= 1. We show that

A = {(a, bk)|1 ≤ k ≤ j +m− 1} ∪ {(al, b)|1 ≤ l ≤ i+ n− 1}

is the unique minimal generating set of Ci,n×Cj,m. Every generating set must
contain A because a and b cannot be written as products of any other ele-
ments. Furthermore, if (as, bt) ∈ Ci,n × Cj,m for some s, t > 1 then (as, bt) =
(a, bt−1)(as−1, b). Hence, A generates Ci,n × Cj,m. We have ai ∈ ker(Ci,n)
and aj ∈ ker(Cj,m). In view of Lemma 11, it follows that (a, bj−1)(ai−1, b) =
(ai, bj) ∈ ker(Ci,n × Cj,m). This proves that N(Ci,n × Cj,m) = 2.
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In the next example, we treat the case where just one of the components
in the direct product is a cyclic semigroup.

Example 5. Let S be a semigroup and let i > 1, n ≥ 1. Then

M ′(S × Ci,n) ≤ i.

Proof. Let
Ci,n = {a, a2, . . . , ai, ai+1, . . . , an+i−1}.

If A is any generating set of S × Ci,n then S × {a} ⊆ A. Let x ∈ ker(S).
We have (x, a) ∈ A and (x, a)i = (xi, ai) ∈ ker(S)×ker(Ci,n), whence N(S×
Ci,n, A) ≤ i.

From now on, we consider monoids rather than semigroups. Let A1, A2

be two minimal generating sets of the monoids M1 6= {1} and M2 6= {1},
respectively. If (1, 1) 6∈ (A1×{1})∪ ({1}×A2), then A = (A1×{1})∪ ({1}×
A2) is a minimal generating set of M1 ×M2; otherwise A = (A1 × {1}) ∪
({1} ×A2) \ {(1, 1)} is a minimal generating set of M1 ×M2. Let N ′(M1) =
t1, N

′(M2) = t2. There exist a1, a2, . . . , at1 ∈ A1 \ {1}, a′1, a′2, . . . , a′t2 ∈
A2 \ {1} such that a1a2 . . . at1 ∈ ker(M1), a

′
1a
′
2 . . . a

′
t2
∈ ker(M2). So we have

(a1a2 . . . at1 , a
′
1a
′
2 . . . a

′
t2

) ∈ ker(M1 ×M2). On the other hand, the length of
(a1a2 . . . at1 , a

′
1a
′
2 . . . a

′
t2

) with respect to A is t1 + t2. It follows that

N ′(M1 ×M2) ≤ N ′(M1) +N ′(M2). (3.12)

It is natural to ask whether there is an expression like inequality (3.12) for
the other parameters N,M,M ′. In fact, if A or A \ {(1, 1)} is a generating
set of minimum size then we could derive a similar inequality for N . But A
may not be a generating set of minimum size. In general, we may establish
the following lemma concerning the rank of the direct product of two finite
monoids.

Definition 13. For a finite monoid M with group of units U , the rank of
M modulo U is the minimum number of elements in M \ U which together
with U generate M .

Lemma 14. Let M1,M2 be two finite monoids. Denote by Ui the group of
units of Mi and by ki the rank of Mi modulo Ui. Let A′i ⊆ Mi \ Ui be such
that |A′i| = ki and Mi = 〈Ui∪A′i〉. Let B be a generating set of U1×U2. Then
the set

C = B ∪ (A′1 × {1}) ∪ ({1} × A′2),
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is a generating set of M1 ×M2. Furthermore, we have

rank(M1 ×M2) = rank(U1 × U2) + k1 + k2.

Proof. Let (x, y) ∈M1×M2. We show that (x, y) ∈ 〈C〉. It is enough to show
that (x, 1), (1, y) ∈ 〈C〉. We know that x is a product of elements in U1∪A′1.
Let x = x1x2 . . . xt for some xi ∈ U1∪A′1. Hence we have (x, 1) =

∏t
i=1(xi, 1).

For 1 ≤ i ≤ t; if xi ∈ A′1 then we have (xi, 1) ∈ C; if xi ∈ U1 then we have
(xi, 1) ∈ U1 ×U2 = 〈B〉. Thus (xi, 1) ∈ 〈C〉, which implies that (x, 1) ∈ 〈C〉.
In the same manner we can see that (1, y) ∈ 〈C〉.

The rest of the proof consists in showing that C is a generating set of
minimum size when B is a generating set of minimum size or U1 × U2. Let
X be a generating set of M1 ×M2. Write M̄1 = M1 \ U1 and M̄2 = M2 \ U2.
We have

M1 ×M2 = (U1 × U2) ∪ (U1 × M̄2) ∪ (M̄1 × U2) ∪ (M̄1 × M̄2). (3.13)

It is clear thatX has at least rank(U1×U2) elements in U1×U2. Furthermore,
(U1×M̄2)∪(M̄1×M̄2) and (M̄1×U2)∪(M̄1×M̄2) are ideals ofM1×M2, then
X has at least k1 elements in M̄1 × U2 and k2 elements in U1 × M̄2. These
facts combining with the pairwise disjointness of the subsets in the right side
of (3.13) gives |X| ≥ rank(U1×U2) +k1 +k2, which completes the proof.

Remark 8. Let A1, A2 be two generating sets ofM1,M2 with minimum size.
If (1, 1) 6∈ ({1}×A2)∪(A1×{1}) the size of the generating set A = ({1}×A2)∪
(A1×{1}) is equal to rank(M1) + rank(M2) = rank(U1) +k1 + rank(U2) +k2,
where ki is the rank of Mi modulo Ui. Therefore, by Lemma 14, if rank(U1×
U2) = rank(U1) + rank(U2), then the generating set A is a generating set
of minimum size. On the other hand, by the minimality of A1 and A2,
(1, 1) ∈ A = ({1}×A2)∪ (A1×{1}) if and only if U1 = U2 = {1}. Whence, if
(1, 1) ∈ A then |A\{(1, 1)}| = rank(U1)+k1+rank(U2)+k2−1 = k1+k2+1.
But also by Lemma 14, rank(M1 ×M2) = k1 + k2 + 1. So A \ {(1, 1)} is a
generating set of minimum size of M1 ×M2.

Theorem 2. Let M1 and M2 be two finite monoids. Then we have

N(M1 ×M2) ≤ (N(M1) +N(M2))D(U1 × U2),

provided that D(U1 × U2) 6= 0. Furthermore, if rank(U1 × U2) = rank(U1) +
rank(U2) (and also in the case D(U1 × U2) = 0) then we have

N(M1 ×M2) ≤ N(M1) +N(M2).
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Proof. Let A1, A2 be generating sets of minimum size of M1,M2, respec-
tively, such that N(M1, A1) = N(M1) and N(M2, A2) = N(M2). Let B be a
generating set of U1 × U2 of minimum size. Let

C = B ∪ (A′1 × {1}) ∪ ({1} × A′2),

whereA′i = Ai\Ui. There exist x1, x2, . . . , xN(M1) ∈ A1 and y1, y2, . . . , yN(M2) ∈
A2 such that x1x2 . . . xN(M1) ∈ ker(M1) and y1y2 . . . yN(M2) ∈ ker(M2). Hence
the pair (x1x2 . . . xN(M1), y1y2 . . . yN(M2)) belongs to ker(M1 ×M2). The fol-
lowing equality

(x1x2 . . . xN(M1), y1y2 . . . yN(M2)) =

N(M1)∏
i=1

(xi, 1)

N(M2)∏
j=1

(1, yj),

implies that

lC((x1x2 . . . xN(M1), y1y2 . . . yN(M2))) ≤
N(M1)∑
i=1

lC(xi, 1) +

N(M2)∑
j=1

lC(1, yj).

For 1 ≤ i ≤ N(M1), if xi ∈ A′1 then we have lC(xi, 1) = 1; otherwise, we
have lC(xi, 1) ≤ diam(U1 × U2, B). For 1 ≤ i ≤ N(M2), if yi ∈ A′2 then we
have lC(1, yi) = 1; otherwise, we have lC(1, yi) ≤ diam(U1 × U2, B). Let

s1 = |{x1, x2, . . . , xN(M1)} ∩ A′1|,

and
s2 = |{y1, y2, . . . , yN(M2)} ∩ A′2|.

Then the length of (x1x2 . . . xN(M1), y1y2 . . . x
′
N(M2)

), in the generating set C,
is at most

s1 + s2 + (N(M1) +N(M2)− (s1 + s2))diam(U1 × U2, B) (3.14)
=(N(M1) +N(M2))diam(U1 × U2, B)

+(1− diam(U1 × U2, B))(s1 + s2).

The upper bound in (3.14) depend on the integers s1, s2 and the generating
set B. Now we try to remove these parameters from the proposed upper
bound. Since 1− diam(U1 × U2, B) ≤ 0 and s1 + s2 ≥ 0 then

(N(M1) +N(M2))diam(U1 × U2, B)

+(1− diam(U1 × U2, B))(s1 + s2)

≤(N(M1) +N(M2))diam(U1 × U2, B). (3.15)
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Substituting D(U1 × U2) for diam(U1 × U2, B) in (3.15) establishes the first
statement of the theorem.

Now we prove the second statement. Let rank(U1 × U2) = rank(U1) +
rank(U2. According to Remark 8, the set A = ({1} × A2) ∪ (A1 × {1}) is
a generating set of M1 ×M2 of minimum size. Suppose that N(M1, A1) =
N(M1) = t1 and N(M2, A2) = N(M2) = t2. There exist a1, a2, . . . , at1 ∈
A1, a′1, a

′
2, . . . , a

′
t2
∈ A2 such that a1a2 . . . at1 ∈ ker(M1), a′1a

′
2 . . . a

′
t2
∈

ker(M2). So we have (a1a2 . . . at1 , a
′
1a
′
2 . . . a

′
t2

) ∈ ker(M1 × M2). On the
other hand, the length of (a1a2 . . . at1 , a

′
1a
′
2 . . . a

′
t2

) with respect to A is at
most t1 + t2. It follows that

N(M1 ×M2) ≤ N(M1) +N(M2), (3.16)

which is the desired conclusion. For the case that D(U1 × U2) = 0 we have
U1×U2 = U1 = U2 = {1}. According to Remark 8, the set A = ({1}×A2)∪
(A1×{1})\{(1, 1)} is a generating set ofM1×M2 of minimum size. Suppose
that N(M1, A1) = N(M1) = t1 and N(M2, A2) = N(M2) = t2. There exist
a1, a2, . . . , at1 ∈ A1 \ {1}, a′1, a′2, . . . , a′t2 ∈ A2 \ {1} such that a1a2 . . . at1 ∈
ker(M1), a′1a

′
2 . . . a

′
t2
∈ ker(M2). So we have (a1a2 . . . at1 , a

′
1a
′
2 . . . a

′
t2

) ∈
ker(M1 × M2). On the other hand, the length of (a1a2 . . . at1 , a

′
1a
′
2 . . . a

′
t2

)
with respect to A \ {(1, 1)} is at most t1 + t2. It follows that

N(M1 ×M2) ≤ N(M1) +N(M2), (3.17)

which is the desired conclusion.

The remainder of this section is devoted to the computation ofN(Tn×Tm)
for n,m ≥ 3.

Lemma 15. For n ≥ 3 the symmetric group Sn can be generated by two
elements of coprime order.

Proof. Define the permutations a, a′ and b as follows:

a =

(
1 2 3 . . . n
2 3 4 . . . 1

)
, a′ =

(
1 2 3 . . . n
1 3 4 . . . 2

)
and

b =

(
1 2 3 . . . n
2 1 3 . . . n

)
.
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It is known that the full cycle a and the transposition b generate Sn [15].
On the other hand, note that a′b = a. Hence the sets {a, b} and {a′, b} are
generating sets of Sn. Note that

ord(a) = n, ord(b) = 2, ord(a′) = n− 1.

Therefore, for odd n, the set A = {a, b} and, for even n, the set A′ = {a′, b}
are the desired generating sets.

For n,m ≥ 3, let U1 and U2 be the group of units of Tn and Tm, re-
spectively. We show that N(Tn × Tm) = N(Tn) × N(Tm), while U1 × U2

is neither trivial nor rank(U1 × U2) = rank(U1) + rank(U2). More pre-
cisely, we have U1 = Sn and U2 = Sm. Let Sn = 〈a, b〉 and Sm = 〈c, d〉
such that both of the pairs a, c and b, d are of coprime orders (see Lemma
15). We show that Sn × Sm = 〈(a, c), (b, d)〉. It is enough to show that
(a, 1), (b, 1), (1, c), (1, d) ∈ 〈(a, c), (b, d)〉. This is because a, c and b, d are of
coprime orders. In fact, if x, y are of coprime order then there exists a power
of (x, y) which is equal to (x, 1) and there exists a power of (x, y) which is
equal to (1, y). Hence, we have rank(Sn × Sm) = 2, which is not equal to
rank(Sn) + rank(Sm).

Lemma 16. Let S = {f ∈ Tn| rank(f) ≥ n − 1}. If rank(f1f2 . . . fk) = 1
for some f1, f2, . . . , fk ∈ S then at least n − 1 elements of f1, f2, . . . , fk are
of rank n− 1.

Proof. For every f, g ∈ Tn, if rank(f) = n then rank(fg) = rank(gf) =
rank(g). Thus, without loss of generality, we can suppose that all the fi have
rank n− 1 and apply Lemma 5.

Lemma 17. Let n,m ≥ 2. Let A be a generating set of Sn×Sm of minimum
size and a ∈ Tn be a function of rank n − 1, b ∈ Tm be a function of rank
m − 1. Then B = A ∪ {(a, a′)} ∪ {(b′, b)}, where (a′, b′) ∈ Sm × Sn, is a
generating set of Tn× Tm of minimum size. Furthermore, all generating sets
of Tn × Tm of minimum size are of this form.

Proof. First we show that B generates Tn × Tm. Since

(a, 1) = (a, a′)(1, a′−1) and (1, b) = (b′, b)(b′−1, 1),

B generates (a, 1), (1, b). Let (f, g) ∈ Tn × Tm. Because f ∈ Tn, there exist
f1, f2, . . . , fk ∈ Sn ∪ {a} such that f = f1f2 . . . fk. Because g ∈ Tm, there
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exist g1, g2, . . . , gl ∈ Sm ∪ {b} such that g = g1g2 . . . gl. Then we have

(f, g) = (f1, 1)(f2, 1) . . . (fk, 1)(1, g1)(1, g2) . . . (1, gl).

Every (fi, 1) either is (a, 1) or belongs to Sn × Sm and every (1, gi) either
is (1, b) or belongs to Sn × Sm. Therefore B generates (fi, 1), (1, gj) for
i = 1, 2, . . . , k and j = 1, 2, . . . , l. Consequently B generates (f, g).

Let C be a generating set of Tn × Tm of minimum size. Then C must
contain a generating set of the maximum J -class which is Sn × Sm. On
the other hand, the maximum J -class Sn × Sm is a subsemigroup; hence,
one cannot obtain any elements in the J -classes below by multiplying just
elements on the maximum J -class. Therefore, C must contain some elements
of some J -classes below the maximum J -class. There are exactly two J -
classes which are below the maximum J -class and above all other J -classes.
Therefore, C must intersect each of them in at least one element. Note that
all such elements have the respective forms (a, a′) and (b′, b) as described in
the statement of the lemma. This shows that A ∪ {(a, a′)} ∪ {(b′, b)} is a
generating set of minimum size and all generating sets of minimum size are
of this form.

Proposition 7. If Tn, Tm are two full transformation semigroups, then

N(Tn × Tm) = m+ n− 2.

Proof. If n = m = 1 then we have N(T1 × T1) = 0 = 1 + 1 − 2. If n = 1
or m = 1 the equality holds by Corrolary 3. Then suppose n,m ≥ 2. Let
A be a generating set of Sn × Sm of minimum size. Consider functions α, β
defined by

α =

(
1 2 3 . . . n
1 1 2 . . . n− 1

)
,

β =

(
1 2 3 . . . m
1 1 2 . . . m− 1

)
.

By Lemma 17, B = A ∪ {(α, 1)} ∪ {(1, β)} is a generating set of Tn × Tm of
minimum size. We have

(α, 1)n−1(1, β)m−1 = (αn−1, 1) (1, βm−1) = (αn−1, βm−1).

Since the functions αn−1 and βm−1 are constant, we have (α, 1)n−1(1, β)m−1 ∈
ker(Tn)×ker(Tm). This shows that N(Tn×Tm) ≤ n−1+m−1 = m+n−2.
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Next, we prove that N(Tn × Tm) ≥ m+ n− 2. Suppose

B = A ∪ {(a, a′)} ∪ {(b′, b)}

is a generating set of Tn × Tm of minimum size and there are

(f1, g1), (f2, g2), . . . , (fk, gk) ∈ B

such that
(f1, g1)(f2, g2) . . . (fk, gk) ∈ ker(Tn)× ker((Tm).

Then f1f2 . . . fk ∈ ker(Tn) and g1g2 . . . gk ∈ ker(Tm). By Lemma 16, at least
n − 1 elements in {f1, f2, . . . , fk} are of rank n − 1 and m − 1 elements
of g1, g2, . . . gk are of rank m − 1. Since every generator has at least one
invertible component, the two conditions cannot be met by the same factor
and therefore there are at least m+ n− 2 factors.

With the same argument we can generalize Lemma 17 and Proposition 7
for any finite product of full transformation semigroups.

Lemma 18. Let A be a generating set of Sn1 × Sn2 × · · · × Snk
of minimum

size and

αt = (a1, a2, . . . , at, . . . , ak) ∈ Tn1 × Tn2 × · · · × Tnk
t = 1, 2, . . . k

such that

rank(at) = nt − 1 and ai ∈ Sni
i ∈ {1, 2, . . . , k}r {t}.

Then B = A ∪ (
⋃k
t=1{αt}) is a generating set of Tn1 × Tn2 × · · · × Tnk

of
minimum size. Furthermore, all generating sets of Tn1 × Tn2 × · · · × Tnk

of
minimum size are of this form.

Proposition 8. If Tni
for 1 ≤ i ≤ k are full transformation semigroups,

then
N(Tn1 × Tn2 × · · · × Tnk

) = n1 + n2 + · · ·+ nk − k.
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3.2.2 Wreath product

By the prime decomposition theorem, every finite semigroup is a divisor of
an iterated wreath product of its simple group divisors and the three-element
monoid U2 consisting of two right zeros and one identity element [23]. So
we are looking for the analogues for the wreath product of the results which
we have obtained for the direct product. We consider the wreath product of
transformation monoids as usual, that is

(X,S) o (Y, T ) = (X × Y, SY o T ),

where the action defining the semidirect product is given by

T × SY → SY

(t, f) 7→ tf,

tf : Y → S

y 7→ (yt)f

and the action of SY o T on the set X × Y is described by

(x, y)(f, t) = (x(yf), yt).

Note that we apply functions on the right. Our aim is to give an upper bound
for N(SY o T ) in which (X,S) and (Y, T ) are two transformation monoids
and SY o T is the semigroup of the wreath product (X,S) o (Y, T ). Here we
introduce some notation which we use subsequently. For s ∈ S and y ∈ Y
let (s)y : Y → S be the function defined by

z(s)y =

{
s if z = y
1 otherwise

and for every s ∈ S let s̄ : Y → S be the function defined by ys̄ = s.
For a given monoid S denote by US its group of units . We use the no-

tation
∏n

i=1 si for s1s2 . . . sn even in the case when the multiplication is not
commutative.

Lemma 19. Let (X,S) and (Y, T ) be two transformation monoids. The set

E = {(f, t) : f ∈ ker(S)Y , t ∈ ker(T ), f is a constant map}

is contained in the minimum ideal of SY o T .
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Proof. It is easy to check that every two elements in E are J -related and
ker(S)Y × ker(T ) is an ideal of SY o T . Hence given (f, t) ∈ E and (g, t′) ∈
ker(S)Y × ker(T ), it suffices to show that there exist h, k ∈ SY , t1, t2 ∈ T
such that

(h, t1)(g, t
′)(k, t2) = (f, t).

Since t, t′ ∈ ker(T ), there exist t1, t2 ∈ ker(T ) such that t1t′t2 = t. For
each s, s′ ∈ ker(S), there exist elements hs,s′ , ks,s′ ∈ ker(S) such that s′ =
hs,s′sks,s′ . Define the functions h, k ∈ SY as follows: for each y ∈ Y , let

yh = h(yt1)g,yf ,

yk =

{
k(xt1)g,xf if y = xt1t

′ for some x ∈ Y,
1 otherwise.

Note that the function k is well-defined since, as t1 and t1t′ are in the same
R-class, the equality ker(t1) = ker(t1t

′) holds. Now we have

(h, t1)(g, t
′)(k, t2) = (h t1g t1t

′
k, t1t

′t2) = (f, t)

and the proof is complete.

Note that by Lemma 19, the following inequalities hold:

E ⊆ ker(SY o T ) ⊆ ker(S)Y × ker(T ). (3.18)

The following examples show that for some wreath products the inclusions
in the inequalities (3.18) are proper and for the others are not.

In all the following examples we consider the transformation semigroup
(Y, U2) to be as following. Let Y = {1, 2} and α, β : Y → Y be the constant
functions 1, 2, respectively. Let U2 = {1, α, β}. Then U2 acts faithfully on Y
and so (Y, U2) is a transformation semigroup.

Example 6. Let (X,G) be a finite permutation group. Consider the wreath
product (X,G) o (Y, U2). It is easy to see that the minimum ideal of GY oU2

is the whole ker(G)Y × ker(U2).

Example 7. Let (X,T3) be the full transformation semigroup of degree
three. Consider the wreath product (X,T3) o (Y, U2). Computer calculations
give the minimum ideal of T Y3 o U2 to be the set

E = {(f, t) : f ∈ ker(T3)
Y , t ∈ U2, f is a constant map}.

40



Example 8. Let V be the transformation monoid generated by identity and
two transformations

a =

(
1 2 3 4 5
1 4 1 4 1

)
, b =

(
1 2 3 4 5
3 2 3 2 2

)
. (3.19)

Computer calculations (using the semigroup package in Mathematica) give
the minimum ideal of V Y o U2 to have 16 elements, while E has 8 elements
and ker(V )Y×ker(U2) has 32 elements. Hence in this example the inequalities
(3.18) are proper.

Lemma 20. Let (X,S) and (Y, T ) be two transformation monoids. Then

rank(SY o T ) ≥ rank(SY o UT ) + rank(T )− rank(UT ). (3.20)

Proof. Let S1 = SY o UT and S2 = SY o (T r UT ). It is easy to check that
SY o T = S1 ∪ S2 is a partition into two subsemigroups. Because S2 is an
ideal of SY oT , every generating set of SY oT must contain a generating set
of S1. Moreover, we need at least rank(T )−rank(UT ) elements for generating
S2, since the set of second components of the elements in any generating set
of SY oT is a generating set of T . Combining these two facts gives precisely
the assertion of the lemma.

Lemma 21. If (X,S) is a transformation monoid and (Y,G) is a permuta-
tion group then

rank(SY oG) ≥ |Y |(rank(S)− rank(US)) + rank(UY
S oG). (3.21)

Proof. It is easy to check that

SY oG = ((SY \ UY
S ) oG) ∪ (UY

S oG),

is a partition into two subsemigroups of SY o G. Because (SY \ UY
S ) o G

is an ideal, every generating set of SY oG must contain a generating set of
UY
S oG. To complete the proof, it is enough to show that every generating

set of SY oG has at least |Y |(rank(S)−rank(US)) elements in (SY \UY
S )oG.

Let A be a generating set of SY oG. One can easily check that, denoting by
π1 the projection on the first component,

A′ = {tf : f ∈ Aπ1, t ∈ G}
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is a generating set of SY . The equality

rank(SY ) = rank(UY
S ) + |Y |(rank(S)− rank(US))

has been proved in [31, Theorem 1]. Hence, A′ has at least

|Y |(rank(S)− rank(US))

elements in SY \ UY
S . On the other hand, if f belongs to UY

S and t belongs
to G then tf ∈ UY

S . Therefore Aπ1 must contain at least

|Y |(rank(S)− rank(US))

elements in SY \ UY
S . This implies that A has at least

|Y |(rank(S)− rank(US))

elements in (SY \ UY
S ) oG and the proof is complete.

Proposition 9. Let (X,S) and (Y, T ) be two transformation monoids. Then
the rank of SY o T is greater than or equal to

rank(UY
S o UT ) + |Y |(rank(S)− rank(US)) + rank(T )− rank(UT ). (3.22)

Proof. This is straightforward using Lemmas 20 and 21 .

Proposition 10. Let (X,S) and (Y, T ) be two transformation monoids. Let
A′, A and B be generating sets of minimum size of UY

S o UT , S, and T ,
respectively. The set

C = A′ ∪ {((a)y, 1) : a ∈ A \ US, y ∈ Y } ∪ {(1̄, b) : b ∈ B \ UT}

is a generating set of SY o T with minimum size. Consequently, the rank of
SY o T is equal to

rank(UY
S o UT ) + |Y |(rank(S)− rank(US)) + rank(T )− rank(UT ). (3.23)

Proof. First we show that C is a generating set. Consider a pair

(f, t) ∈ SY o T.
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Because B is a generating set of T , there exist b1, b2, . . . , bk ∈ B such that
t = b1b2 . . . bk. This leads to the following factorization:

(f, t) = (f, 1)(1̄, t) =
∏
y∈Y

((yf)y, 1)
k∏
i=1

(1̄, bi). (3.24)

Because A is a generating set of S and yf ∈ S, for every y ∈ Y there exist
ay1, ay2, . . . , ayky ∈ A such that

yf =

ky∏
i=1

ayi.

Accordingly, we obtain the factorization

((yf)y, 1) =

ky∏
i=1

((ayi)y, 1). (3.25)

Consider the pair ((ayi)y, 1) in (3.25). If ayi ∈ US then ((ayi)y, 1) ∈ UY
S oUT

can be factorized into elements of A′; otherwise, ((ayi)y, 1) ∈ C. This shows
that the first product in (3.24) can be rewritten in terms of elements of C.
Now consider the pair (1̄, bi) in the second product in (3.24). If bi ∈ UT then
(1̄, bi) ∈ UY

S oUT can be factorized into elements of A′; otherwise, (1̄, bi) ∈ C.
This shows that the second product in (3.24) can be rewritten in terms of
elements of C. Thus, (f, t) can be factorized into elements of C, whence C is
a generating set of SY o T , which is the desired conclusion. Now, according
to Proposition 9, the size of C is equal to rank(SY o T ).

Notation 8. For a finite group G denote by diammin(G) the minimum of
diam(G,A) over all generating sets of minimum size.

Theorem 3. Given two transformation monoids (X,S) and (Y, T ), there
exist integers 0 ≤ m1 < N(S) and 0 ≤ m2 < N(T ) such that

N(SY o T ) ≤(m1 +m2)diammin(UY
S o UT )

+|Y |(N(S)−m1) +N(T )−m2. (3.26)

Proof. Let A and B be generating sets of minimum size of S and T , re-
spectively, such that N(S,A) = N(S) and N(T,B) = N(T ). There exist
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a1, a2, . . . , aN(S) ∈ A and b1, b2, . . . , bN(T ) ∈ B such that a1a2 . . . aN(S) ∈
ker(S) and b1b2 . . . bN(T ) ∈ ker(T ). Denote by m1 and m2 the number of
invertible factors in the words a1a2 . . . aN(S) and b1b2 . . . bN(T ), respectively.
Define the function f from Y to ker(S) to be the constant map with image
a1a2 . . . aN(S). By Lemma 19, the pair (f, b1b2 . . . bN(T )) is an element of the
minimum ideal of SY o T .

LetA′ be a generating set of UY
S oUT of minimum size such that diam(UY

S o
UT , A

′) = diammin(UY
S o UT ). By Proposition 10, the set

C = A′ ∪ {((a)y, 1) : a ∈ A \ US, y ∈ Y } ∪ {(1̄, b) : b ∈ B \ UT}

is a generating set of SY o T of minimum size. To establish the inequality
(3.26), it is enough to show that the pair (f, b1b2 . . . bN(T )) is a product of at
most

(m1 +m2)diammin(UY
S o UT ) + |Y |(N(S)−m1) +N(T )−m2

elements of C. We have

(f, b1b2 . . . bN(T )) = (f, 1)(1̄, b1b2 . . . bN(T )) =

N(S)∏
i=1

(āi, 1)

N(T )∏
i=1

(1̄, bi). (3.27)

Consider the pair (āi, 1) in the first product of (3.27). If ai ∈ A \ US, then

(āi, 1) =
∏
y∈Y

((ai)y, 1),

which is a product of |Y | elements in

{((a)y, 1) : a ∈ A \ US, y ∈ Y }.

If ai ∈ US, then (āi, 1) can be written as a product of at most diammin(UY
S o

UT ) elements in A′. Accordingly, the first product in (3.27) can be rewritten
as a product of at most

|Y |(N(S)−m1) +m1diammin(UY
S o UT )

elements in C. Now consider the factor (1̄, bi) of the second product in (3.27).
If bi ∈ B \ UT then (1̄, bi) ∈ C; otherwise, (1̄, bi) ∈ UY

S o UT can be written
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as a product of at most diammin(UY
S oUT ) elements in A′. Thus, the second

product in (3.27) can be rewritten as a product of at most

N(T )−m2 +m2diammin(UY
S o UT )

elements in C. Combining these two facts shows that (f, b1b2 . . . bN(T )) can
be written as a product of at most

(m1 +m2)diammin(UY
S o UT ) + |Y |(N(S)−m1) +N(T )−m2

elements in C, which proves the theorem.

In the rest of this section we study some special cases.

Theorem 4. Given two transformation monoids (X,S) and (Y, T ), suppose
that T 6= {1} has trivial group of units and |Y | = n. Then the following
inequality holds:

N(SY o T ) ≤ max{n, diam(UY
S , A

′)}N(S) +N(T ), (3.28)

where A′ is a generating set of UY
S with minimum size. Furthermore, if

rank(Uk
S) = k rank(US) for k ≥ 1, then

N(SY o T ) ≤ nN(S) +N(T ). (3.29)

Proof. Let A and B be two generating sets of minimum size of S and T ,
respectively, such that N(S,A) = N(S) and N(T,B) = N(T ). There exist
a1, a2, . . . , aN(S) ∈ A and b1, b2, . . . , bN(T ) ∈ B \ {1} such that

a1a2 . . . aN(S) ∈ ker(S)

and
b1b2 . . . bN(T ) ∈ ker(T ).

Define the function f from Y to ker(S) to be the constant map with image
a1a2 . . . aN(S). By Lemma 19, the pair (f, b1b2 . . . bN(T )) is an element of the
minimum ideal of SY o T . Let A′ be a generating set of UY

S with minimum
size. By Proposition 10, the set

C ′ = (A′ × {1}) ∪ {((a)y, 1) : a ∈ A \ US, y ∈ Y } ∪ ({1̄} ×B \ {1})
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is a generating set of SY oT with minimum size. To establish the inequality
(3.28), it is enough to show that the pair (f, b1b2 . . . bN(T )) is a product of at
most

max{n, diam(UY
S , A

′)}N(S) +N(T )

elements of C ′. We have

(f, b1b2 . . . bN(T )) = (f, 1)(1̄, b1b2 . . . bN(T )) =

N(S)∏
i=1

(āi, 1)

N(T )∏
i=1

(1̄, bi). (3.30)

For i = 1, 2, . . . , N(T ), the pair (1̄, bi) belongs to C ′. Consider next the pairs
(āj, 1) with

j = 1, 2, . . . , N(S).

If aj ∈ A\US, then (āj, 1) =
∏

y∈Y ((aj)y, 1), which is a product of n elements
in

{((a)y, 1) : a ∈ A \ US, y ∈ Y }.
If aj ∈ US, then (āj, 1) can be written as a product of at most diam(UY

S , A
′)

elements in {(g, 1) : g ∈ A′}. Therefore, the product on the rightmost side
of (3.30) can be rewritten as a product of at most

max{n, diam(UY
S , A

′)}N(S) +N(T )

elements in C ′ as we required.
Consider the case where rank(UY

S ) = |Y | rank(US). By Proposition 10,
the set

C ′′ = {((a)y, 1) : a ∈ A, y ∈ Y } ∪ {(1̄, b) : b ∈ B \ {1}}

is a generating set of SY o T of minimum size. More precisely, since UT
is trivial and rank(UY

S ) = |Y | rank(US), substituting rank(UY
S o UT ) by

|Y | rank(US) in formula (3.23) in Proposition 10, gives |Y |rank(S) + rank(T )
which is equal to |C ′′|. We can factorize the pair (f, b1b2 . . . bN(T )) in nN(S)+
N(T ) elements of C ′′ as follows:

(f, b1b2 . . . bN(T )) = (f, 1)(1̄, b1b2 . . . bN(T )) =
∏
y∈Y

N(S)∏
i=1

((ai)y, 1)

N(T )∏
i=1

(1̄, bi).

(3.31)
This establishes the inequality (3.29) and completes the proof of the theorem.
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Chapter 4

The diameter of a finite group

Some of the upper bounds of Theorems 2, 3 and 4 involve the diameter of a
group. In this chapter we try to find an upper bound for the diameter of a
direct power of a group. Recall that the diameter of a finite group G with
respect to a generating set A is the maximum over g ∈ G of the length of
the shortest word in A representing g. A simple argument shows that the
diameter of a group with respect to any generating set is bounded above by
the group order minus the group rank (see Proposition 1). The cyclic groups
are examples whose diameter is as large as the group order minus the group
rank. If G is a finite group, then the direct power Gn is not cyclic for n ≥ 2.
Thus the following natural question arises. Is there any smaller upper bound
(less than |Gn| − rank(Gn)) for the diameter of Gn? In fact, |G|n− rank(Gn)
is exponentially large in terms of |G|. The more precise question in which
we are really interested is whether the diameter of a direct power of a finite
group is polynomially bounded. Investigating it, we were led to the following
conjectures. Throughout this chapter, Gn denotes the n-th direct power of
the group G.

Conjecture (strong). Let G be a finite group. Then the diameter D(Gn) is
at most n(|G| − rank(G)).

Conjecture (weak). Let G be a finite group. There exists a generating set
A for Gn of minimum size such that

diam(Gn, A) ≤ n(|G| − rank(G)). (4.1)

Remark 9. Both conjectures hold for trivial groups.
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As the second conjecture is a consequence of the first one, it may be
easier to establish. Anyway, each of the proposed conjectures has advantages
and disadvantages when attempting to prove them. The difficulty in proving
the weak conjecture is dealing with generating sets of minimum size for the
direct powers of finite groups. Finding a generating set of minimum size for
a direct power of a finite group is itself a problem. Nevertheless, there exist
in the literature many results regarding the computation of the rank of a
direct power of a finite group, e.g., [27, 28, 29, 30, 20]. On the other hand,
every direct power Gn of a finite group has a generating set, called canonical
generating set (Definition 14), which satisfies the inequality (4.1). So, the
weak conjecture for groups whose rank is equal to the size of the canonical
generating set is true. For instance, the canonical generating set for direct
powers of nilpotent groups is a generating set of minimum size (Corollary 5).
Therefore, nilpotent groups satisfy the weak conjecture easily. However, the
canonical generating set is not always a generating set of minimum size. Then
the difficulty of establishing the weak conjecture appears when we consider
the groups for which the rank of their direct powers is not equal to the size
of the canonical generating set. On the other hand, the strong conjecture
concerns arbitrary generating sets. It has the advantage that there are many
results in the literature regarding the computation of the diameter of a finite
group with respect to an arbitrary generating set. Hence, we may use the
upper bounds obtained by other authors to approach the strong conjecture .

This chapter is organized as follows. In the first section, we show that
Abelian groups satisfy the strong conjecture. The second section deals with
generating sets of minimum size for direct powers of finite groups. Finally,
in the last section we present some families of finite groups which satisfy the
weak conjecture.

4.1 Abelian groups and the strong conjecture
During this work I encountered a paper by John Wilson from 2005 which
presents an exact formula for the symmetric diameter of Abelian groups [32].
After studying the paper I found that it is possible to find an upper bound
for the diameter of Abelian groups by using the same methods. But there is
a gap in one of the arguments in that paper. Therefore, it was not possible
to use the same method unless I could fix it. I made some efforts to fix it
but I could not do that. Finally, I decided to write to the author and ask
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him for his help. But at the same time I was thinking about finding another
solution. Meanwhile, I found two other papers in which both the diameter
and the symmetric diameter of Abelian groups had been computed [17, 18].
So I could reach my goal in another way. After a while, John Wilson sent me
a correct argument so in the end I could use the initial idea. In fact, the idea
is to use Theorem 6, which has been published in [18] with another proof.
In this section we show that Abelian groups satisfy the strong conjecture.
Before going to the main result we explain the gap in Wilson’s paper and his
correction.

A canonical decomposition of a finite Abelian group G is an expression
of G as a direct product of cyclic subgroups whose orders m1,m2, . . . ,mk

satisfy mi | mi−1 for i = 1, 2, . . . , k. Then m1,m2, . . . ,mk are the invariants
of G. Following the notation in [17] we say G is of type (m1,m2, . . . ,mk).
The following theorem has been obtained following two different approaches
[32, 17].

Notation 9. Denote by bnc the greatest integer less than or equal to n.

Theorem 5. A finite Abelian group G of type (m1,m2, . . . ,mk) has symmet-
ric diameter

Ds(G) =
k∑
i=1

bmi/2c.

In [32] Wilson proved the following lemma for establishing Theorem 5.

Notation 10. For a finite Abelian group G of type (m1,m2, . . . ,mk), write
s(G) =

∑k
i=1 bmi/2c.

Lemma 22. [32, Lemma 3.2] Let A be a finite Abelian group and B a sub-
group with A/B cyclic of order r. Then

s(B) +
⌊r

2

⌋
≤ s(A).

Unfortunately, there is an error in the argument of the proof in [32,
Lemma 3.2]. In fact, the author claims:

"Let A be a direct product of non-trivial cyclic groups of orders
m1,m2, . . . ,mk with mi+1 | mi for each i and let B be a product
of cyclic groups respectively of order u1, u2, . . . , uk with ui+1 | ui
for each i. We have ui | mi for each i; write mi = uivi. Since
A/B is cyclic, no prime can divide vi, vj for distinct i, j."
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which is not true in general. Consider the following counterexample:

Example 9. Let A = Z8 × Z4 × Z2 and B = {1} × Z4 × Z2. Then A/B is
cyclic of order 8. On the other hand, we have B ∼= Z4×Z2×{1}. Hence the
integers v1 = v2 = v3 are all equal to 2, so they are not pairwise coprime.

Nevertheless, the statement of the lemma is still true. Now we will present
the new proof of Lemma 22 suggested by John Wilson. He used the following
easy observations in his proof. If A has exponent e (i.e. the least common
multiple of the orders of all elements of the group), then any cyclic subgroup
of order e is a factor in a canonical decomposition. If f divides e then the
numbers gcd(f,mi) are the invariants of the subgroup {a | af = 1}.

Lemma 23 (J. Wilson). For each finite Abelian group A and subgroup B we
have

s(B) + s(A/B) ≤ s(A).

Proof. We argue by induction on |A|, with a secondary induction on |A/B|.
First we claim that it suffices to prove the result in the case when A/B is
cyclic. Suppose that A/B is not cyclic and let A1/B be a subgroup in a
canonical decomposition of A/B; thus s(A/B) = s(A1/B) + s(A/A1). By
induction we have s(B) + s(A1/B) ≤ s(A1) and s(A1) + s(A/A1) ≤ s(A).
Therefore,

S(B) + s(A/B) = s(B) + s(A1/B) + s(A/A1) ≤ s(A1) + s(A/A1) ≤ s(A)

as required.
Let A have exponent e. Suppose that B has a cyclic subgroup X of order

e; then A has a canonical decomposition with one factor equal to X; let A1

be the sum of the other factors and B1 = B ∩ A1. Thus B = X × B1 and
A/B ∼= A1/B1, and we have

s(B) + s(A/B) = s(X) + s(B1) + s(A1/B1) ≤ s(X) + s(A1) ≤ s(A).

On the other hand, if A/B has order e then the pre-image of a generator of
A/B generates a factor Y in a canonical decomposition of A; hence A ∼= Y×B
and s(B) + s(A/B) = s(A).

So we can assume that the exponent f of B satisfies f < e and |A/B| < e;
hence f ≤ e/2 and |A/B| ≤ e/2. Let A1 = {a | af = 1}. Let m1,m2, . . . ,mk

be the invariants of A and n1, n2, . . . , nk be the invariants of A1. We know

50



that ni = gcd(f,mi). Since m1 = e then we get n1 = f . Now we have
s(A) =

⌊
e
2

⌋
+
∑k

i=2

⌊
mi

2

⌋
and s(A1) =

⌊
f
2

⌋
+
∑k

i=1

⌊
ni

2

⌋
. Since f ≤ e/2 it

follows that s(A)− s(A1) ≥
⌊
e
2

⌋
−
⌊
e
4

⌋
. Then we have

s(A)− s(B) ≥ s(A)− s(A1) ≥ be/2c − be/4c,

and
s(A/B) ≤ be/4c,

and the conclusion follows.

Analogously, introduce the notation s′ for a finite Abelian group G of
type (m1,m2, . . . ,mk) by letting s′(G) =

∑k
i=1(mi − 1). Then it is easy to

check that the same argument as in the proof of Lemma 23 works for the
following lemma as well.

Lemma 24. For each finite Abelian group A and subgroup B we have

s′(B) + s′(A/B) ≤ s′(A).

Now we have the following theorem.

Theorem 6. Let G be a finite Abelian group of type (m1,m2, . . . ,mk) . We
have

D(G) = s′(G).

Proof. Suppose G = Cm1 × Cm2 × · · · × Cmk
, where Cmi

= 〈ai〉. The set

A = {(1, . . . ,
i th︷︸︸︷
ai , . . . , 1) : ai ∈ Cmi

} is a generating set of G such that
diam(G,A) =

∑k
i=1(mi − 1). Hence we have D(G) ≥ s′(G). Now we show

that D(G) ≤ s′(G). If G is cyclic the result follows immediately. Suppose
that G is not cyclic and let X be a generating set for G. We show that every
element of G can be expressed as a word in X of length at most s′(G). We
argue by induction on |G|. We may suppose that no proper subset of X
generates G. Choose x ∈ X, let H = 〈X \ {x}〉 and let r be the order of x
modulo H. Let a ∈ G. There exists 0 ≤ j ≤ r − 1 such that a = xjb for
some b ∈ H. Since G is not cyclic, H is not trivial. Then b has length at
most s′(H) by induction and therefore a has length at most r − 1 + s′(H)
and so at most s′(G), by Lemma 24.

Another proof of Theorem 6 has been published in [18].
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Corollary 4. Let Gn be a direct power of a finite Abelian group G. The
following inequality holds

D(Gn) = nD(G) ≤ n (|G| − rank(G)).

Proof. Let G = C1 × C2 × · · · × Ck be a canonical decomposition of G. We
have

Gn ∼= Cn
1 × Cn

2 × · · · × Cn
k .

Using Theorem 6, we obtain

D(Gn) = s′(Gn) =
k∑
i=1

n (|Ci|−1) = n

k∑
i=1

(|Ci|−1) ≤ n (|G|− rank(G)).

4.2 Generating sets of minimum size
In this section we exhibit generating sets of minimum size for the direct
powers of some families of finite groups.

Definition 14. Let G be a finite group with a generating set A. By the
canonical generating set of Gn with respect to A, we mean the set

Cn(A) := {(1, . . . ,
i th︷︸︸︷
a , . . . , 1) : i ∈ {1, 2, . . . , n}, a ∈ A}.

Lemma 25. Let G be a finite group with a generating set A. For n ≥ 1 we
have diam(Gn, Cn(A)) ≤ n diam(G,A).

Proof. For given (g1, g2, . . . , gn) ∈ Gn we have

(g1, g2, . . . , gn) =
n∏
i=1

(1, . . . , gi, . . . , 1).

Then lCn(A)(g1, g2, . . . , gn) ≤
∑n

i=1 lCn(A)(1, . . . , gi, . . . , 1). By the definition
of Cn(A), for i ≥ 1, we have lCn(A)(1, . . . , gi, . . . , 1) ≤ diam(G,A) which gives
the desired conclusion.

Lemma 26. [27] Let G be a finite group and k be a positive integer. Then

k rank(G/G′) ≤ rank(Gk) ≤ k rank(G), (4.2)

where G′ is the commutator subgroup of G.
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The following is an application of Lemma 26.

Corollary 5. Let G be a finite group. If rank(G) = rank(G/G′), then the
following equality holds:

rank(Gn) = n rank(G). (4.3)

In particular, nilpotent groups satisfy this property.

Proof. The first statement is an immediate consequence of Lemma 26. We
prove the second statement. Note that, if H is a homomorphic image of a
finite group G, then rank(H) ≤ rank(G). Therefore, it is enough to show
that rank(G) ≤ rank(G/G′) for every finite nilpotent group G. Let A =
{g1G′, g2G′, . . . , gkG′} be a generating set of G/G′ of minimum size. Consider
an arbitrary element g ∈ G. There exist some i1, i2, . . . , il ∈ {1, 2, . . . , k} such
that gG′ = gi1gi2 . . . gilG

′. This shows that G is generated by {g1, g2, . . . , gk}
together with some elements in G′. Because G is nilpotent, it is generated by
{g1, g2, . . . , gk} alone, see [19, page 350]. Therefore, rank(G) ≤ rank(G/G′),
which completes the proof.

Definition 15. A group is said to be perfect if it equals its own commutator
subgroup.

Lemma 27. Let G be a finite group which is not perfect. If G can be gener-
ated by k elements of mutually coprime orders, then

rank(Gn) = n,

for n ≥ k.

Proof. Because G is not perfect, it follows from Lemma 26 that rank(Gn) ≥
n. Suppose

A = {a1, a2, . . . , ak}
is a generating set of G such that the ai’s are of mutually coprime orders.
Let n ≥ k. We construct a generating set of size n for Gn. For 1 ≤ i ≤ n,
define the elements gi ∈ Gn as follows:

gi = (1, . . . ,
i th︷︸︸︷
a1 , a2, . . . , ak, . . . , 1) for 1 ≤ i ≤ n− k + 1,

gi = (an−i+2, an−i+3, . . . , ak, 1, . . . , 1,
i th︷︸︸︷
a1 , . . . , an−i+1) for n− k + 2 ≤ i ≤ n.
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We prove that
C = {g1, g2, . . . , gn}

is a generating set of Gn. If we show that C generates Cn(A), then we are
done. Choose an arbitrary element (1, . . . , ai, . . . , 1) ∈ Cn(A). Since the ai’s
are of mutually coprime orders, there exists a positive integer ` such that

(1, . . . , ai, . . . , 1) = (1, . . . , a1, . . . , ai, . . . , ak, . . . , 1)`.

This yields the desired conclusion.

4.2.1 Symmetric groups Sn

Denote by ord(g) the order of a group element g.

Corollary 6. For k ≥ 2, the equality

rank(Skn) = k,

holds.

Proof. Since the derived subgroup of Sn is An, Sn is not perfect. Now the
assertion follows immediately by Lemmas 27 and 15.

4.2.2 Dihedral groups Dn

Definition 16. The dihedral group Dn is the group of symmetries of a
regular polygon with n sides.

We consider the dihedral group Dn as a subgroup of Sn.

Proposition 11. For odd n and k ≥ 2, the rank of Dk
n is k and, for even n,

the rank of Dk
n is 2k.

Proof. Suppose for the moment that n is odd. Let

a =

(
1 2 3 . . . n
2 3 4 . . . 1

)
, b =

(
1 2 3 . . . n− 1 n
1 n n− 1 . . . 3 2

)
.

It is easy to check that A = {a, b} is a generating set of Dn. Because a, b
have coprime orders, Lemma 27 gives the desired conclusion.
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Now let n be even. The commutator subgroup of Dn is a cyclic group of
order n

2
, and the quotient group is the Klein four-group and thus

rank(
Dn

D′n
) = 2.

On the other hand,
rank(Dn) = 2.

Using Corollary 5, we get rank(Dk
n) = 2k.

4.2.3 Alternating groups An

The following example gives a generating set of minimum size for a direct
power of the alternating group A4.

Example 10. It is easy to see that A4 is generated by the two elements

α = (1 2)(3 4), β = (1 2 3).

Since A4 is not perfect and α, β have coprime orders by Lemma 27, the rank
of An4 is equal to n, for n ≥ 2.

Recall that the alternating groups An for n ≥ 5 are simple. Since non-
Abelian simple groups are perfect, the alternating groups An for n ≥ 5 are
perfect. There is a different approach to compute the rank of the direct
power of perfect groups using the Eulerian function of a group (see [11, 27]).
The following lemma is a consequence of the results in [11].

Lemma 28. Let G be a non-Abelian simple group. If G is generated by n
elements, then the set {(ai1, ai2 . . . , aik) : i = 1, . . . , n} will generate Gk if
and only if the following conditions are satisfied:

1. the set {a1i, a2i, . . . , ani} is a generating set of G for i = 1, . . . , k;

2. there is no automorphism f : G → G which maps (a1i, a2i, . . . , ani) to
(a1j, a2j, . . . , anj) for any i 6= j.

Furthermore, in [11] Hall shows that the alternating group A5 satisfies
Lemma 28 with n = 2 for 1 ≤ k ≤ 19 and not for k ≥ 20.

Therefore, the following is an immediate consequence of Lemma 28.
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Corollary 7. A pair (s1, . . . , sk), (t1, . . . , tk) will generate Ak5 if and only if
the following conditions are satisfied:

1. the set {si, ti} is a generating set of A5 for i = 1, ..., k;

2. there is no automorphism f : A5 → A5 which maps (si, ti) to (sj, tj)
for any i 6= j.

Furthermore, k = 19 is the largest number for which these conditions can be
satisfied. That is, the rank of Ak5 is equal to 2, if and only if 1 ≤ k ≤ 19.

4.2.4 Solvable Groups

The following theorem has been proved by Wiegold in [28].

Theorem 7. [28] Let G be a finite non-trivial solvable group, and set

rank(G) = α, rank(G/G′) = β.

Then
rank(Gn) = βn,

for n ≥ α/β.

4.3 Diameter of direct powers of groups
Here, we present some families of groups which satisfy the weak conjecture.

Remark 10. Every group G with the property

rank(Gn) = n rank(G), (4.4)

satisfies the weak conjecture. More precisely, if A is a generating set of G
with minimum size then Cn(A) is a generating set of minimum size for Gn.
So the statement is obvious by Lemma 25.

Then it suffices to justify the weak conjecture for groups that do not
have property (4.4). In particular, by Corollary 5, every nilpotent group has
property (4.4) .

Proposition 12. Let G be a solvable group such that α = rank(G) and
β = rank(G/G′). Then Gn satisfies the weak conjecture for n ≥ α

β
.
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Proof. By Theorem 7, we have rank(Gn) = nrank(G/G′). Since G/G′ is
Abelian, we have rank((G/G′)n) = nrank(G/G′). Moreover, sinceGn/(G′)n ∼=
(G/G′)n and (G′)n ∼= (Gn)′ we get rank(Gn) = rank(Gn/(Gn)′). It means
Gn satisfies the property of Corollary 5. Now the result follows from Remark
10.

Remark 11. Let (g1, g2, . . . , gn) ∈ Gn = 〈A〉. Since (g1, g2, . . . , gn) is a
product of n elements of the form (1, . . . , gi, . . . , 1), then we have

lA(g1, g2, . . . , gn) ≤
n∑
i=1

lA(1, . . . , gi, . . . , 1). (4.5)

The following easy lemma gives an upper bound for the diameter of a
direct power of a finite group G in terms of the diameter of the group G.
We use this lemma in the next section to prove that the symmetric group Sn
satisfies the weak conjecture.

Lemma 29. For a given generating set A of Gn,

diam(Gn, A) ≤MlA(Cn(X))
n∑
i=1

diam(G,Aπi),

where

X =
n⋃
i=1

(Aπi \ {1}),

and πi : Gn → G maps each element to its i-th cordinate.

Proof. Let (g1, g2, . . . , gn) ∈ Gn. Since, for i = 1, 2, . . . , n, Aπi \ {1} is a
generating set of G, there exist

gi1, gi2, . . . , giki ∈ Aπi \ {1}, for some ki ≤ diam(G,Aπi),

such that
gi = gi1gi2 . . . giki .

This gives

(1, . . . , gi, . . . , 1) =

ki∏
j=1

(1, . . . , gij, . . . , 1),
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hence,

lA(1, . . . , gi, . . . , 1) ≤
ki∑
j=1

lA(1, . . . , gij, . . . , 1). (4.6)

Substituting (4.6) into (4.5), we get

lA(g1, g2, . . . , gn) ≤
n∑
i=1

ki∑
j=1

lA(1, . . . , gij, . . . , 1)

≤
n∑
i=1

ki∑
j=1

MlA(Cn(X))

= MlA(Cn(X))
n∑
i=1

ki

≤MlA(Cn(X))
n∑
i=1

diam(G,Aπi),

in which the second inequality is due to the fact that

(1, . . . , gij, . . . , 1) ∈ Cn(X).

This finishes the proof.

4.3.1 Symmetric groups Sn and the weak conjecture

Here, our goal is to show that the symmetric group Sn satisfies the weak
conjecture. First, we apply Lemma 29 to show that Sn satisfies the weak
conjecture for n ≥ 7. Then we discuss the case n ≤ 6.

Example 11. Let A,A′ be the generating sets defined in Lemma 15 and
C,C ′ be the corresponding generating sets of Skn constructed in the proof of
Lemma 27, for odd and even n, respectively. Note that

X =
k⋃
i=1

(Cπi \ {1}) = {a, b}, X ′ =
k⋃
i=1

(C ′πi \ {1}) = {a′, b}.
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Therefore, we have

Ck(X) = {(1, . . . , a, . . . , 1) : 1 ≤ i ≤ k} ∪ {(1, . . . , b, . . . , 1) : 1 ≤ i ≤ k}
Ck(X ′) = {(1, . . . , a′, . . . , 1) : 1 ≤ i ≤ k} ∪ {(1, . . . , b, . . . , 1) : 1 ≤ i ≤ k}.

If n is odd, for i = 1, 2, . . . , k, we have

(1, . . . , a, . . . , 1) = (1, . . . , a, b, . . . , 1)n+1,

(1, . . . , b, . . . , 1) = (1, . . . , a, b, . . . , 1)n.

If n is even, for i = 1, 2, . . . , k, we have

(1, . . . , a′, . . . , 1) = (1, . . . , a′, b, . . . , 1)n,

(1, . . . , b, . . . , 1) = (1, . . . , a′, b, . . . , 1)n−1.

It follows that

MlC(Ck(X)) ≤ n+ 1, if n is odd, (4.7)

MlC′(C
k(X ′)) ≤ n, if n is even. (4.8)

Lemma 30. Let A,A′ be the generating sets defined in Lemma 15. Then the
following inequalities hold:

diam(Sn, A) ≤ (n− 1)(2n− 3)(n+ 1),

diam(Sn, A
′) ≤ (n− 1)(2n− 3)(2n+ 1).

Proof. A simple calculation shows that, for 1 ≤ i ≤ n− 1,

an−i+1bai−1 = (a′b)n−i+1b(a′b)i−1 = (i, i+ 1).

Therefore, we have

lA(i, i+ 1) ≤ n+ 1, lA′(i, i+ 1) ≤ 2n+ 1.

Let (i, i+ k) be an arbitrary transposition in Sn. Since

(i, i+ k) = (i, i+ 1)(i+ 1, i+ 2) · · · (i+ k − 1, i+ k)(i+ k − 2, i+ k − 1)
· · · (i+ 1, i+ 2)(i, i+ 1),
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every transposition is a product of at most 2n− 3 transpositions of the form
(i, i+ 1). It follows that

lA(i, i+ k) ≤ (2n− 3)(n+ 1), lA′(i, i+ k) ≤ (2n− 3)(2n+ 1).

Consider a permutation σ in Sn. Because every permutation in Sn is a
product of at most n− 1 transpositions, we have

MlA(σ) ≤ (n− 1)(2n− 3)(n+ 1), MlA′(σ) = (n− 1)(2n− 3)(2n+ 1).

The proof is complete.

Lemma 31. Let A and A′ be the generating sets defined in Lemma 15 and
C and C ′ be the corresponding generating sets of Skn constructed in the proof
of Lemma 27, for odd and even n, respectively. For n ≥ 3 and k ≥ 2, we
have

diam(Skn, C) ≤ k(n− 1)(2n− 3)(n+ 1)2,

provided that n is odd, and we have

diam(Skn, C
′) ≤ kn(n− 1)(2n− 3)(2n+ 1),

provided that n is even.

Proof. Using Lemmas 29, 30 and the inequalities (4.7),(4.8) in Example 11,
we have

diam(Skn, C) ≤MlC(Ck(A))
k∑
i=1

diam(Sn, A)

≤ k MlC(Ck(A)) diam(Sn, A)

≤ k MlC(Ck(A))(n− 1)(2n− 3)(n+ 1)

≤ k (n+ 1)(n− 1)(2n− 3)(n+ 1),

provided that n is odd. Similar arguments apply to the case where n is even,
which yields the second inequality.

Corollary 8. The symmetric group Sn satisfies the weak conjecture for n ≥
7.
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Proof. We have (n − 1)(2n − 3)(n + 1)2 ≤ 2(n2 − 1)2 ≤ 2n4. We induct on
n ≥ 7 to show that 2n4 ≤ n!− 2. The inequality holds for n = 7. For n > 7,
since 2(n + 1)4 = 2n4 + 8n3 + 12n2 + 8n + 2 ≤ 10n4, then the induction
hypothesis gives the required conclusion. Whence, for n ≥ 7, we have

(n− 1)(2n− 3)(n+ 1)2 ≤ n!− 2.

Also we know n(n− 1)(2n− 3)(2n+ 1) ≤ 4(n2− 1)2 ≤ 4n4. By induction
on n ≥ 8 we show that 4n4 ≤ n! − 2. The inequality holds for n = 8. For
n > 8, since 4(n + 1)4 = 4n4 + 16n3 + 24n2 + 16n + 4 ≤ 20n4, then the
induction hypothesis gives the required conclusion. Whence, for n ≥ 8, we
have

n(n− 1)(2n− 3)(2n+ 1) ≤ n!− 2.

Now the result is immediate by Lemma 31.

Note that the symmetric group S2 is Abelian so satisfies the weak con-
jecture. We show that the weak conjecture is true for the symmetric group
Sn, for n = 4, 5, 6. Let A,A′ be the generating sets defined in Lemma 15
and C,C ′ be the corresponding generating sets constructed in the proof of
Lemma 27. We can calculate the diameter of Sn with respect to A,A′ for
small values of n by using a package called GRAPE in GAP. Here is the
result:

diam(S4, A
′) = 7,

diam(S5, A) = 11,

diam(S6, A
′) = 17.

Therefore, by Lemma 29 and the inequalities (4.7), (4.8) we have

diam(Sk4 , C
′) ≤ 28k

diam(Sk5 , C) ≤ 66k

diam(Sk6 , C
′) ≤ 102k.

It follows that the symmetric group Sn satisfies the weak conjecture for n =
5, 6 but the above upper bound for S4 is greater than the upper bound of the
weak conjecture. We perform an alternative computation to establish the
weak conjecture for S4. By Remark 11, it suffices to show that for 1 ≤ i ≤ k,
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the elements (1, . . . , gi, . . . , 1) may be presented as products of at most 22
generators in the generating set C ′. Since we have

(1, . . . , a′, b, . . . , 1)2 = (1, . . . , 1, b2, . . . , 1), (4.9)
(1, . . . , a′, b, . . . , 1)4 = (1, . . . , 1, b, . . . , 1), (4.10)

(1, . . . , a′, b, . . . , 1)3 = (1, . . . , a′, 1, . . . , 1), (4.11)

then

lC′(1, . . . , b
2, . . . , 1) ≤ 2, (4.12)

lC′(1, . . . , b, . . . , 1) ≤ 4, (4.13)
lC′(1, . . . , a

′, . . . , 1) ≤ 3, (4.14)

for 1 ≤ i ≤ n. On the other hand, the elements of S4 in the generating set
{a′, b} can be represented as follows:

S4 ={a′, b, a′2, a′b, ba′, b2, a′ba′, a′b2, ba′b, b2a′, (a′b)2, a′b2a′, (ba′)2,
ba′b2, b2a′b, (a′b)2a′, (a′b)2b, a′b2a′b, ba′b2a′, b2a′ba′, (a′b)2ba′,

a′b2a′ba′, ba′b2a′b, (a′b)2ba′}.

Now it is easy to check that for every g ∈ S4 and for 1 ≤ i ≤ k the elements
(1, . . . , g, . . . , 1) can be written as a product of at most 19 generators in the
generating set C ′ as we required.

4.3.2 Upper bound for the diameter of direct power of
dihedral groups

Proposition 13. For n ≥ 3 and k ≥ 1, there exists a generating set C of
minimum size for Dk

n such that

diam(Dk
n, C) ≤

{
k(2n− 2) if n is even,
n+1
2

+ (k − 1)(2n− 1) if n is odd. (4.15)

Proof. According to Proposition 11 and Remark 10, it is enough to consider
the case where n is odd. Let A = {a, b} be the generating set defined in
Proposition 11 and C be the associated generating set of Dk

n constructed in
the proof of Lemma 27. We prove that

diam(Dk
n, C) ≤ n+ 1

2
+ (k − 1)(2n− 1).
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Note that every rotation in Dn is a power of a and every reflection in Dn

is a power of a multiplied by b. It follows that every element in Dn can be
written in the form arbs for some 0 ≤ r ≤ n − 1 and s ∈ {0, 1}. Choose an
arbitrary element (x1, x2, . . . , xk) ∈ Dk

n. In view of the relations aib = ban−i

and ai = ban−ib, we may write x1 as a word of length ≤ n+1
2

on A. Then
there exist y2, y3, . . . , yk ∈ Dn such that

(x1, x2, . . . , xk) = (x1, y2, . . . , yk)(1, y
−1
2 x2, y

−1
3 x3, . . . , y

−1
k xk),

and
lC(x1, y2, . . . , yk) ≤

n+ 1

2
.

Write y−1i xi = aribsi with 0 ≤ ri ≤ n− 1 and si ∈ {0, 1}. By Remark 11, the
proof is completed by showing that for 2 ≤ i ≤ k,

MlC(1, . . . , aribsi , . . . , 1) ≤ 2n− 1.

We will do this by considering the following four cases. The case where
si = 0, ri is even:

(1, . . . , aribsi , . . . , 1)

= (1, . . . , ari , . . . , 1) = (1, . . . , ari , bri , . . . , 1) = (1, . . . , a, b, . . . , 1)ri .

Hence, we have

lC(1, . . . , aribsi , . . . , 1) ≤ ri ≤ n− 1 ≤ 2n− 1.

The case where si = 0, ri is odd. We have

(1, . . . , aribsi , . . . , 1)

= (1, . . . , ari , . . . , 1) = (1, . . . , ari+n, bri+n, . . . , 1) = (1, . . . , a, b, . . . , 1)ri+n.

Hence, we have

lC(1, . . . , aribsi , . . . , 1) ≤ ri + n ≤ 2n− 1.

The case where si = 1, ri is even:

(1, . . . , arib, . . . , 1)

=(1, . . . , ari , . . . , 1)(1, . . . ,

i th︷︸︸︷
b , . . . , 1)

=(1, . . . , ari , bri , . . . , 1)(1, . . . , an,

i th︷︸︸︷
bn , . . . , 1)

=(1, . . . , a, b, . . . , 1)ri(1, . . . , a,

i th︷︸︸︷
b , . . . , 1)n.
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Hence
lC(1, . . . , aribsi , . . . , 1) ≤ ri + n ≤ 2n− 1.

It remains to consider the case where si = 1, ri is odd. Note that

arib = ban−ri ,

which entails

(1, . . . , arib, . . . , 1) = (1, . . . , ban−ri , . . . , 1)

= (1, . . . ,

i th︷︸︸︷
b , . . . , 1)(1, . . . , an−ri , . . . , 1)

= (1, . . . , an,

i th︷︸︸︷
bn , . . . , 1)(1, . . . , an−ri , bn−ri , . . . , 1)

= (1, . . . , a,

i th︷︸︸︷
b , . . . , 1)n(1, . . . , a,

i+1−th︷︸︸︷
b , . . . , 1)n−ri .

Hence, we have

lC(1, . . . , aribsi , . . . , 1) ≤ 2n− ri ≤ 2n− 1.

The proof is complete.

Now the following corollary is immediate by Proposition 13.

Corollary 9. The weak conjecture holds for Dk
n if n is even or k ≤ 3(n−1)

2
.

4.3.3 Alternating groups and the weak conjecture

Proposition 14. The alternating group A4 satisfies the weak conjecture.

Proof. As we mentioned before in Example 10, the generating set C con-
structed in Lemma 27 is a generating set of minimum size for An4 for n ≥ 2.
We show that diam(An4 , C) ≤ 10n. Let (g1, g2, . . . , gn) ∈ An4 . By Remark 11,
it is enough to show that lC(1, . . . , 1, gi, 1, . . . , 1) ≤ 10, for 1 ≤ i ≤ n. Since

(1, . . . ,
i th︷︸︸︷
α , β, . . . , 1)3 = (1, . . . ,

i th︷︸︸︷
α , 1, . . . , 1),

(1, . . . , α,

i th︷︸︸︷
β , . . . , 1)4 = (1, . . . , 1,

i th︷︸︸︷
β , . . . , 1),

(1, . . . , α,

i th︷︸︸︷
β , . . . , 1)2 = (1, . . . , 1,

i th︷︸︸︷
β2 , . . . , 1),
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then

lC(1, . . . ,
i th︷︸︸︷
α , . . . , 1) ≤ 3,

lC(1, . . . ,

i th︷︸︸︷
β , . . . , 1) ≤ 4,

lC(1, . . . ,

i th︷︸︸︷
β2 , . . . , 1) ≤ 2.

On the other hand, the elements of A4 can be represented over the generating
set {α, β} as follows:

A4 = {α, β, α2, αβ, βα, β2, αβα, αβ2, βαβ = αβ2α, β2α, β2αβ, βαβ2}.

Now similarly to the proof of Proposition 13 the length of (1, . . . ,
i th︷︸︸︷
g , . . . , 1)

in the generating set C is at most 10 for every element g ∈ A4, which com-
pletes the proof.

Definition 17. By an n-basis of a group G we mean any ordered set of n
elements x1, x2, . . . , xn of G which generates G. Furthermore, two n-bases
x1, x2, . . . , xn and y1, y2, . . . , yn of G will be called equivalent if there exists
an automorphism θ of G which transforms one into the other:

xiθ = yi,

for each i = 1, 2, . . . , n. Otherwise the two bases will be called non-equivalent.

Example 12. We show that the weak conjecture is true for Ak5 for k = 2, 3, 4.

Proof. Let a = (1 2)(3 4), b = (1 2 3 4 5). It is easy to see that the pairs

(a, b), (b, a), (a, b2), (b2, a)

are four non-equivalent 2-basis of A5. Using Corollary 7 we build generating
sets of size two for Ak5, k = 2, 3, 4. The result is as follows. Let

C1 = {a, b},
C2 = {(a, a), (b, b2)},
C3 = {(a, b, a), (b, a, b2)},
C4 = {(a, b, a, b2), (b, a, b2, a)}.
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Then the sets C1, C2, C3 and C4 are generating sets of minimum size for
the groups A5, A

2
5, A

3
5 and A4

5, respectively. Using GAP we check that
diam(A5, C1) = 10 and diam(A2

5, C2) = 18. Let (x, y, z) be an arbitrary
element in A3

5. Since (x, z) ∈ A2
5 = 〈(a, a), (b, b2)〉, there exists a word w

representing (x, z) over the generating set C2 of length at most 18. Hence,
(x, y, z) = (w1, w̄, w2)(1, w̄

−1y, 1), where w1, w2 are the first and second com-
ponents of w = (x, z), respectively. The word w̄ is a word in the alphabet a, b
corresponding to the word w, in which the pairs (a, a), (b, b2) are substituted
by b, a, respectively. It follows that

lC3(x, y, z) ≤ lC3(w1, w̄, w2) + lC3(1, w̄
−1y, 1).

It is clear that
lC3(w1, w̄, w2) ≤ 18.

On the other hand, lC3(1, w̄
−1y, 1) ≤ 60, since

diam(A5, C1) = 10, (1, b, 1) = (a, b, a)6, (1, a, 1) = (b, a, b2)5.

Therefore lC3(x, y, z) ≤ 18 + 60 = 78, which implies diam(A3
5, C3) ≤ 78.

Let (x, y, z, w) ∈ A4
5. Consider the factorization

(x, y, z, w) = (x, 1, z, 1)(1, y, 1, w)

and the equalities

(1, b, 1, b2) = (a, b, a, b2)6, (a, 1, a, 1) = (a, b, a, b2)5,

(1, a, 1, a) = (b, a, b2, a)5, (b, 1, b2, 1) = ((b, a, b2, a)6.

This leads to the following inequalities,

lC4(x, y, z, w) ≤ lC4(x, 1, z, 1) + lC4(1, y, 1, w)

≤ diam(A2
5, C2)MlC4{(a, 1, a, 1), (b, 1, b2, 1)}

+ diam(A2
5, C2)MlC4{(1, a, 1, a), (1, b, 1, b2)}

≤ 18× 6 + 18× 6 = 216,

which gives diam(A4
5, C4) ≤ 216.
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4.3.4 Upper bounds for the diameter of a direct power
of a solvable group

Despite our attempts to establish the strong conjecture and the weak con-
jecture for solvable groups, we could not do it yet. In this section we will
present two upper bounds for the diameter of Gn, where G is a solvable
group. Although these upper bounds do not coincide with the proposed
upper bound in the conjectures, they grow polynomially with respect to n.
Since solvable groups have a derived series of finite length our strategy is to
find a relation between the diameter of a solvable group and the diameter of
its derived subgroup. For this we need to establish a relation between the
generating sets of the group and the generating sets of its subgroups. The
following lemma, well known as Schreier Lemma, gives a generating set for
a subgroup of a group with respect to a generating set of the whole group.
The generators of the subgroup are usually called Schreier generators. Using
Schreier generators we derive a relation between the diameter of a group and
the diameter of its subgroup.

Definition 18. Let H be a subgroup of a group G. By a right transversal
for G mod H, we mean a subset of G which intersects every right coset Hg
in exactly one element.

Remark 12. Let G be a finite group with a generating set X and a normal
subgroup H. It is easy to see that the set HX = {Hx : x ∈ X} is a
generating set of G/H. Given an arbitrary element Hg ∈ G/H, Hg can
be written as a product of at most D(G/H) elements in HX. Hence, there
exist x1, x2, . . . , xD(G/H) ∈ X such that Hg = Hx1Hx2H . . .HxD(G/H) =
Hx1x2 . . . xD(G/H). It shows that there always exists a right transversal T for
G mod H such that

MlX(T ) ≤ D(G/H), 1 ∈ T.

Lemma 32. [26] Let H ≤ G = 〈X〉 and let T be a right transversal for G
mod H, with 1 ∈ T. Then the set

{txt−11 | t, t1 ∈ T, x ∈ X, txt−11 ∈ H}

generates H.

Using Schreier’s Lemma leads to the following observations which we are
going to apply for establishing the main result. The first one is [3, Lemma
5.1].
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Lemma 33. If 1 6= N , N / G, then the following inequalities hold:

Ds(G) ≤ 2Ds(G/N)Ds(N) +Ds(G/N) +Ds(N) ≤ 4Ds(G/N)Ds(N).

Here we prove the non symmetric version of Lemma 33.

Lemma 34. Let G be a finite group with a generating set X and a normal
subgroup H. Let T be a right transversal of G/H such that

MlX(T ) ≤ D(G/H), 1 ∈ T.

The following inequality holds:

diam(G,X) ≤ D(G/H) + (D(G/H) + 1 +MlX({t−1 | t ∈ T}))D(H).

Furthermore, we have

D(Gn) ≤ D(Gn/Hn) + (1 + |G|D(Gn/Hn))D(Hn).

Proof. Given g ∈ G, we have g = ht for some h ∈ H and t ∈ T . Hence

lX(g) ≤ lX(t) + lX(h).

Since MlX(T ) ≤ D(G/H), then lX(g) ≤ D(G/H) + lX(h). Using Lemma
32 we get lX(h) ≤ (D(G/H) + 1 + MlX({t−1 | t ∈ T}))D(H). Combining
these two facts gives the upper bound in the first inequality. Now we prove
the second statement. Let X ′ be a generating set of Gn and let T ′ be a right
transversal of Gn/Hn such that

MlX′(T
′) ≤ D(Gn/Hn).

Proceeding as above for the case n = 1, it suffices to show that

MlX′({t−1 | t ∈ T ′}) ≤ (|G| − 1)D(Gn/Hn).

For given t ∈ T ′ we have

lX′(t) ≤ D(Gn/Hn).

Since
t−1 = to(t)−1,
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then we obtain
lX′(t

−1) ≤ (o(t)− 1)lX′(t).

Hence, we have
lX′(t

−1) ≤ (|G| − 1)D(Gn/Hn),

since
o(g) ≤ |G|,

for every element g ∈ Gn. The proof is complete.

Now we are ready to present two upper bounds for the diameter of a direct
power of a solvable group. First we need to prove the following elementary
observation.

The following corollary is straightforward by using Lemma 34.

Corollary 10. Let G be a non Abelian solvable group. Let

{1} = G(l) / G(l−1) / . . . / G′′ / G′ / G

be the derived series of G. The following inequality holds:

D(Gn) ≤ nl|G|
l−2∏
i=0

(|G(i)|+ 1).

Proof. For n = 1 it is obvious. Let n ≥ 2. Since (Gk)′ = (G′)k for k ≥ 1,
then the derived series of Gn is

{1} = (G(l))n / (G(l−1))n / . . . / (G′′)n / (G′)n / Gn. (4.16)

Applying Lemma 34 to the group Gn with the subgroup (G′)n gives

D(Gn) ≤ D(Gn/(G′)n) + (1 + |G|D(Gn/(G′)n)D((G′)n)

= D(Gn/(G′)n) +D((G′)n) + |G|D(Gn/(G′)n)D((G′)n)

≤ D(Gn/(G′)n)D((G′)n) + |G|D(Gn/(G′)n)D((G′)n)

= D(Gn/(G′)n)D((G′)n)(1 + |G|),

the second inequality follows from the fact that D(Gn/(G′)n), D((G′)n) > 1
and this is because the quotient group G/G′ and the commutator subgroup
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G′ are not trivial and n ≥ 2. By repeating the process for the other subgroups
in the series (4.16) we have

D(Gn) ≤ D(Gn/(G′)n)D((G′)n/(G′′)n) . . . D((G(l−1))n)
l−2∏
i=0

(|G(i)|+ 1).

(4.17)
Since for every group G with a normal subgroup H we have Gn/Hn ∼=
(G/H)n, then

D(Gn) ≤ D((G/G′)n)D((G′/G′′)n) . . . D((G(l−1))n)
l−2∏
i=0

(|G(i)|+ 1). (4.18)

Since all the quotient groups in the inequality (4.18) and the group G(l−1)

are Abelian by Corollary 4 we get

D(Gn) ≤ nlD(G/G′)D(G′/G′′) · · ·

D(G(l−2)/G(l−1))D((G(l−1))
l−2∏
i=0

(|G(i)|+ 1)

≤ nl|G/G′||G′/G′′| · · · |G(l−2)/G(l−1)||G(l−1)|
l−2∏
i=0

(|G(i)|+ 1)

= nl|G|
l−2∏
i=0

(|G(i)|+ 1).

For finding the second upper bound we start by presenting an upper
bound for the symmetric diameter of a direct power of a solvable group and
then we apply this to find an upper bound for the diameter of such a group.

Proposition 15. If G is a solvable group then

Ds(Gn) ≤ 4l−1nl |G|,

where l is the length of the derived series of G.

Proof. Let
{1} = G(l) / G(l−1) / · · · / G′′ / G′ / G

be the derived series of the group G. Since for 1 ≤ i ≤ l we have

(G(i))n = (Gn)(i),
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the series

{1} = (G(l))n / (G(l−1))n / · · · / (G′′)n / (G′)n / Gn

is the derived series of the group Gn. Using the second inequality in Lemma
33, the maximum of the diameter of the group Gn is bounded above by

4l−1Ds(Gn/(G′)n)Ds((G′)n/(G′′)n) · · ·Ds((G(l−2))n/(G(l−1))n)Ds((G(l−1))n).

(4.19)

Whereas, for 0 ≤ i ≤ l − 2 we have

(G(i))n/(G(i+1))n ∼= (G(i)/G(i+1))n

and the factors in a derived series are Abelian, by Corollary 4 we get

Ds(G(i))n/(G(i+1))n ≤ n |G(i)/G(i+1)| = n |G(i)|/|G(i+1)| (4.20)

for 0 ≤ i ≤ l − 2 and

Ds((G(l−1))n) ≤ n |G(l−1)|. (4.21)

Substituting the inequalities (4.20) and (4.21) in (4.19), we get

Ds(Gn) ≤ 4l−1nl |G|,

which is the desired conclusion.

We apply the following Lemma to give an upper bound for the diameter
by using the symmetric diameter.

Lemma 35. Let G be a finite group and X be a set of generators. The
diameter and the symmetric diameter are related as follows:

diam(G,X) ≤ 2(diams(G,X) + 1)(|X|+ 1) ln |G|.

Proof. See [2, Corollary 2.2].

Corollary 11. Let G be a solvable group of derived length l and let A be a
generating set of Gn of minimum size. Set rank(G) = α, rank(G/G′) = β.
The following inequality holds,
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diam(Gn, A) ≤ 2(4l−1nl |G|+ 1)(nβ + 1)n ln |G|,
for n ≥ α/β. In particular, if G is a p-group, then

D(Gn) ≤ 2(4l−1nl |G|+ 1)(nβ + 1)n ln |G|,

for n ≥ 1.

Proof. By Lemma 35 we have,

diam(Gn, A) ≤ 2(diams(Gn, A) + 1)(|A|+ 1)n ln |G|.

In addition, diams(Gn, A) ≤ Ds(Gn) by definition. Now by using Proposition
15 and Theorem 7 we get the desired conclusion. The second statement
follows from these two facts: First, if G is a p-group then every minimal
generating set is a generating set of minimum size, which follows from the
Burnside’s Basis Theorem [10]. Second, by Corollary 5, if G is a nilpotent
group (note that every p-group is nilpotent) then rank(G) = rank(G/G′).

As an example of a non Abelian solvable group which is also a 2-group we
verify the quaternion group Q8. LetQ8 = {±1,±i,±j,±k} be the quaternion
group in which

i2 = j2 = k2 = −1

and
ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j.

We have Q′8 ∼= Z2 and Q8/Q
′
8
∼= Z2 × Z2. The length of the derived series

of Q8 is 2. Hence, l = 2 and β = rank(Z2 × Z2) = 2 in the notations of
corollaries 10,11. Therefore we have

D(Qn
8 ) ≤ 72n2

by Corollary 10 and

D(Qn
8 ) ≤ 2n(32n2 + 1)(2n+ 1)ln(8)

by Corollary 11.
We now present another upper bound for the diameter of the direct power

of the quaternion group Q8 in the following example.

Example 13. For n ≥ 1 we have D(Qn
8 ) ≤ 8n2 + 3n.
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Proof. Consider the normal subgroup H = {1,−1}. Let X be a generating
set of Qn

8 . We have Hn / Qn
8 . Let T be a right transversal of Qn

8 mod Hn

such that
1 ∈ T,MlX(T \ {1}) ≤ D(Qn

8/H
n).

Using Lemma 34 we have

diam(Qn
8 , X) ≤ D(Qn

8/H
n) + (D(Qn

8/H
n) + 1 +MlX({t−1 | t ∈ T}))D(Hn).

On the other hand, since H ∼= Z2 , Q8/H ∼= Z2 × Z2, we have

diam(Qn
8 , X) ≤ 2n+ (2n+ 1 +MlX({t−1 | t ∈ T})n. (4.22)

Since for every g ∈ Qn
8 , g

4 = 1, for every t ∈ T, t−1 = t3. Hence, the
following inequality holds:

lX(t−1) ≤ 3lX(t) ≤ 3D(Qn
8/H

n) ≤ 6n.

Substituting 6n for MlX({t−1|t ∈ T} in (4.22) we get

D(Qn
8 ) ≤ 8n2 + 3n.
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Chapter 5

Final remarks

We collect here plenty of questions which remain open:

Question 1. In Lemma 4 we have just found an upper bound for M ′(S)
where S is a completely regular semigroup. When does equality hold? What
may we say for the other depth parameters?

Question 2. Theorem 1 gives a lower bound for N ′(S) where S is a finite
transformation semigroup. Similarly, it would be nice to find an upper bound
for M(S) where S is a finite transformation semigroup.

Question 3. In Corollary 3 the parameters N and N ′ are computed for the
transformation semigroups Tn, PTn and In. What can we say about M,M ′

for them?

Question 4. The equalities N = N ′ and M = M ′ hold in all the semi-
groups which we have verified. Is there any example of a semigroup for which
N ′ < N and M < M ′?

Question 5. In Section 3.1 we estimate the depth parameters for the families
of transformation semigroups whose rank has been determined already in the
literature. Other natural candidates who may be easy to verify are the semi-
groups SPn, SPOn or semigroups of orientation preserving transformations
such as POPn, OPn or POPIn.

Question 6. We have established upper bounds for N(S) where S is a direct
product or wreath product of two finite monoids. It would be interesting to
obtain analogous results for the other depth parameters.
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Question 7. Give examples to show that the inequalities in Theorems 2, 3
and 4 may not be improved.

Question 8. Prove or disprove the weak conjecture for dihedral groups and
alternating groups.

Question 9. Improve the upper bounds in Corollaries 10 and 11 for solvable
groups.

And a very general question is

Question 10. Prove or disprove the weak conjecture and the strong conjec-
ture.
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semilattice, 7
strongly connected, 12
subsemigroup, 5
symmetric diameter, 3, 11
symmetric length, 11
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input word, 10
reset word, 10
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Notation

(X,S), 8
(X,S) o (Y, T ), 39
(s)y, 39
Cn(A), 52
Ci,n, 7
D(G), 11
Ds(G), 11
G′, 52
I(S), 7
In, 9
JM , 29
L(n, r), 9
M ′(S), 6
M(S), 6
MlA(T ), 6
N ′(S), 6
N(S), 6
N(S,A), 6
On, 9
POIn, 9
POn, 9
Q8, 72
SY o T , 39
Tn, 9
US, 39
Xn, 8
Cay(G,A), 11
1̄, 39

din(v), 8
dout(v), 8
diammin(G), 43
`J , 29
ker(S), 5
〈A〉, 5
dke, 19
bnc, 49
N, 8
IRD(S), 17
ord(g), 54
−−→
Cay(G,A), 12∏n

i=1 si, 39
rank(S), 5
tf , 39
hJ , 29
k′(n, r), 9
k(n, r), 9
lsA(g), 11
lA(s), 6
mlA(T ), 6
r(S), 18
r(S,A), 17
rJ , 29
t(S), 17
PT n, 8
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