
D

Programming with

Sequence and

Context Variables:

Foundations and

Applications

 Besik Dundua

 Programa Doutoral em Ciência de Computadores
 Departamento de Ciência de Computadores

 2014

Orientador
António Mário da Silva Marcos Florido, Professor Associado, Faculdade

de Ciências da Universidade do Porto

Coorientador
Temur Kutsia, Professor, Johannes Kepler University Linz

Resumo

Esta tese aborda a integração de variáveis de sequência e de contexto em linguagens declar-

ativas. As variáveis de sequência podem ser instanciadas por qualquer sequência finita de

termos. As variáveis de contexto são variáveis de segunda ordem para contextos: termos

com uma única ocorrência de uma variávei ligada. Na primeira parte da tese, apresentamos

uma instância do esquema de programação em lógica por restrições (CLP) com variáveis de

sequência e de contexto bem como restrições expressas por expressões regulares. Em seguida

apresentamos a linguagem baseada em reescrita PρLog, que extende o Prolog com regras

de reescrita condicional sobre termos com variáveis de sequência e de contexto. Além disso

PρLog tem uma linguagem de restrições regulares para restringir os valores de variáveis de

sequência e de contexto usando expressões regulares e árvores regulares, respectivamente.

Ilustramos o poder expressivo da linguagem com exemplos de aplicação ao processamento de

dados estruturados (XML), racioćınio sobre a Web e especificação de estratégias de reescrita.

Finalmente, integramos variáveis de sequência num calculo que modela programas funcionais:

o ”pattern calculus”, definindo um novo cálculo e demonstrando propriedades importantes

como a confluência.

3

4

Abstract

In this thesis we study integration of sequence and context variables into declarative program-

ming. These variables are useful in various areas of computer science. Sequence variables can

be instantiated by finite sequences of terms. Context variables are second order variables that

stand for contexts: terms with a single occurrence of a single bound variable (called the hole).

In the first part of the thesis, we develop a constraint solver for equational and membership

constraints over sequences and contexts, incorporate it in the constraint logic programming

schema, and explore the semantics of the obtained language. Next, we propose a rule-based

system PρLog, which extends Prolog with strategic conditional rewriting rules and supports

programming with sequence and context variables. In addition, PρLog permits regular

constraints to restrict possible values of sequence and context variables by regular sequence

expressions and regular tree (context) expressions, respectively. We illustrate expressive

power of the system using examples and show its application in XML transformation, Web

reasoning and for specifying rewriting strategies. Finally, we integrate sequence variables in

pattern calculus (a formalism for functional programming) and propose a generic confluence

proof, where the way pattern abstractions are applied in a non-deterministic calculus is

axiomatized.

5

6

Acknowledgements

First and foremost, particular gratitude goes to my supervisors Mário Florido and Temur

Kutsia. I would like to thank them for their valuable guidance and encouragement during

my PhD studies. I can not speak about my supervisors separately, because both of them

were very supportive and helpful, and without them this doctoral thesis would not exist.

Many thanks to my coauthors Sandra Alves, Jorge Coelho, Mircea Marin and Levan Uridia

for their collaborations and interesting discussions. My office partners Marco Almeida,

Cláudio Amaral, Margarida Carvalho, Bruno Oliveira, David Pereira and Andre Souto were

always helpful and friendly to me and I wish to thank them.

I gratefully acknowledge António Porto, president of the department of computer science at

university of Porto for providing necessary infrastructure and resources to accomplish my

research work. I am very thankful to Sabine Broda for her encouragement and personal

attention. My special thanks go to secretary Alexandra Ferreira for helping me to solve all

kinds of bureaucratic problems in Portugal.

I also would like to thank my parents, wife, children for their patience and understanding.

Financial support is acknowledged from the LIACC through Programa de Financiamento

Plurianual of the Fundação para a Ciência e Tecnologia (FCT) and from the FCT fellowship

(ref. SFRH/BD/62058/2009)

7

8

Contents

1 Introduction 13

2 Term Language 19

2.1 Terms . 19

2.2 Substitutions . 22

2.3 Simple Terms, Contexts, and Simple Substitutions 23

2.4 Equation Solving . 24

3 Constraint Solving 27

3.1 Introduction . 27

3.2 Syntax . 28

3.3 Semantics . 30

3.4 Solver . 33

3.4.1 Logical Rules . 33

3.4.2 Failure Rules . 33

3.4.3 Deletion Rules . 35

3.4.4 Membership Rules . 36

3.4.5 Decomposition Rules . 40

3.4.6 Variable Elimination Rules . 40

9

3.5 Solved and Partially Solved Constraints . 43

3.6 The Algorithm . 44

3.7 Properties of the Constraint Solver . 45

3.8 Solving Constraints in Special Forms . 47

3.8.1 Well-Moded Constraints . 48

3.8.2 Constraints in the form of Knowledge Interchange Format (KIF) . . . 51

4 Constraint Logic Programming for Sequences and Contexts 53

4.1 Introduction . 53

4.2 CLP(SC) Programs . 53

4.3 Operational Semantics . 56

4.4 Well-Moded and KIF Programs . 59

4.4.1 Well-Moded Programs . 59

4.4.2 Programs in the KIF Form . 65

5 Rule-Based Programming 67

5.1 Introduction . 67

5.2 An Overview of PρLog . 68

5.2.1 Programs and Queries . 69

5.2.2 Operational Semantics . 70

5.2.3 Predefined Strategies and Strategy Combinators 72

5.2.4 System Components . 73

5.2.5 Examples Implemented in PρLog . 74

5.3 Case Study 1: XML Processing and Web Reasoning 78

5.3.1 Querying . 78

10

5.3.2 Incomplete Queries . 82

5.3.3 Validation . 84

5.3.4 Basic Web Reasoning . 85

5.4 Case Study 2: Implementation of Rewriting Strategies 87

5.4.1 Leftmost-Outermost and Outermost Rewriting 87

5.4.2 Leftmost-Innermost and Innermost Rewriting 88

6 Pattern Calculi 91

6.1 Introduction . 91

6.2 Core Pattern Calculus with Finitary Matching 92

6.3 Confluence of the Core Pattern Calculus . 95

6.4 Instantiations of solve . 107

6.5 Pattern Calculus with Finitary Matching . 110

7 Conclusion 113

7.1 Constraint Solving . 113

7.2 Constraint Logic Programming . 113

7.3 Rule-based Programming . 114

7.4 Pattern Calculus . 114

7.5 Further Work . 115

Bibliography 117

11

12

1. Introduction

In this thesis, we address the problems of incorporating sequence and context variables into

declarative programming. Sequence variables stand for finite sequences of terms. Context

variables denote contexts that can be seen as unary functions with a single occurrence of the

bound variable. They enhance expressive capabilities of a language, help to write short, neat,

understandable code, hide away many tedious data processing details from the programmer.

Such expressive extensions naturally bring challenges: What are the calculi behind? How

to define declarative and operational semantics? How to solve constraints, unification and

matching problems that arise during computation? Does the evaluation order matter? Under

which conditions do we have confluence and strong normalization? These and other, related

problems are addressed in this thesis for calculi for constraint logic programming, rule-

based programming, and functional programming. We first develop equation and constraint

solving methods (for terms with sequence and context variables), since these techniques

are in the heart of computational mechanisms of various styles of declarative programming.

Then, we address an extension of constraint logic programming with sequence and context

variables, its semantics and special cases. Next, we investigate a similar extension of rule-

based programing. Finally, we study pattern calculi with sequence variables, which can

be seen as a foundation of an extension of functional programming with sequence variables.

Note that in this part we go beyond context variables and consider full higher-order variables.

(Context variables are a special kind of second-order variables.)

Our interest in studying theories that involve sequence and context variables is stipulated

by their interesting applications. In recent years, usefulness of sequence variables has

been illustrated in practical applications related to XML [CF04, KM05a, CF06, CF07b,

CFK07, CFK09], schema transformation operations [RF97, CD97], knowledge representation

[Gen98, HM05, HM01, Men11], automated reasoning [Pau90, Gin91, Kut03, HV06, BCJ+06],

rewriting [Ham97, WB01, JR08], functional, functional logic, and rule-based programming

13

14 FCUP

999. 1. Introduction

[MT03, Bol99, MK03, MK06], Common Logic [Com07], just to name a few. There are

systems for programming with sequence variables. Probably the most prominent one is

Mathematica [Wol03], with a powerful rule-based programming language that uses (essen-

tially first order, equational) matching with sequence variables [Buc96]. Variadic symbols

and sequence variables bring a great deal of expressiveness in this language, permitting

writing a short, concise, readable code. For instance, one can implement a sorting algorithm

(increasing order) in Mathematica just in two lines:

sort({X___,x_,Y___,y_,Y___}):= sort({X,y,Y,x,Y})/;x > y

sort({X___}):={X}

Identifiers with triple underscores such as X___ are Mathematica notation for sequence

variables that can be replaced also with the empty sequence, if necessary. Those with

the single underscore _ are individual variables. (In Mathematica, double underscores are

reserved for variables that can be instantiated with nonempty sequences.) The first rule says

that to sort a list that contains in some places two elements x and y that to not obey the

given order, one should swap them and sort the obtained list. The notation /; x>y stands

for the condition on applicability of the rule. It is applied if x>y holds. If the first rule is

not applicable (that means, the list is sorted), then the second rule returns the list.

Context variables are placeholders for contexts, which are functional expressions whose

applicative behavior is to replace a special constant (called the hole) with the expression given

as argument. Context variables in programming give flexibility of data traversal in arbitrary

depth. They have applications in compositional semantics of natural language [NPR97,

Kol98, NV02, LNV05, NV05], program analysis [GT07], etc. There is a extension of Haskell

programming language that supports programming with context variables [Moh96].

Several formalisms combining sequences and contexts have been proposed recently, moti-

vated by various applications. Forest algebras [BW08] have been developed as an algebraic

framework for classifying regular languages of finite labeled trees. Tree algebras [SW10]

have been used for the characterization of XML database transformations. ρLog [MK06]

was introduced as a rule-based transformation calculus with sequence and context variables.

In what follows, we give a brief summary of our contributions in integrating sequence and

context variables into constraint logic programming, rule-based programming and functional

programming.

FCUP 15

999.

Constraint Logic Programming

Constraint logic programming, CLP, [JM94, JMMS98] is one of the most successful areas of

logic programming, combining logical deduction with constraint solving. In [JL87], Jaffar

and Lassez introduced a CLP schema, denoted CLP(X), parametrized by the constraint

domain X. Since then, various instances of this schema have been introduced and studied,

introducing a new constraint domain, designing an efficient satisfiability and solving proce-

dure for it, and putting it in the general framework. As examples, we could mention CLP(R)

[JMSY92], CLP(FD) [CD96], and RISC-CLP(Real) [Hon91].

The domain we study in this thesis is combination of sequences and contexts. To the

best of our knowledge, there is practically no work on constraint solving in this combined

domain, although sequence unification and disunification [CD97, Kut02, Kut07, CFK07],

context unification and constraint solving [Lev96, SS02, SSS02, Vil04, LSV06, Com98],

and matching in a combined theory [KM05b] have been studied. The problem is difficult:

Both sequence and context unification generalize word unification [Mak77] and have the

infinitary unification type, i.e., some unification equations have infinite minimal complete

set of solutions.

We extend the constraint logic programming schema to work over sequences and contexts.

Constraints are existential formulas, constructed over equations and regular (sequence or con-

text) language membership atoms. The obtained language is called CLP(SC). It generalizes

CLP(Flex) [CF04], where constraints are conjunctions of equations between unranked terms

(they are called flexible arity terms in [CF04]) with sequence variables. Moreover, as both

sequences and contexts generalize words, this extension can be seen also as a generalization

of CLP(S) [Raj94] and of string processing features of Prolog III [Col90]. We describe the

semantics of CLP(SC) and investigate restrictions on programs leading to constraints in a

special form for which the constraint solving algorithm is complete.

Contributions. The main contributions in constraint solving and constraint logic pro-

gramming can be summarized as follows:

• Developing a constraint solving algorithm.

• Proving that the algorithm is sound and terminating, and brings constraints to a

partially solved form.

16 FCUP

999. 1. Introduction

• Identifying fragments of constraints that can be completely solved by the algorithm.

• Studying semantics of CLP(SC) programs.

• Investigating restrictions on programs leading to constraints in a special form for which

the constraint solving algorithm is complete.

Some of these results have been reported in [DFKM14].

Rule-Based Programming

Rule-based programming is a paradigm that advocates usage of rules to program. It is

experiencing a period of growing interest: Sophisticated calculi are being introduced, new

systems are being implemented, interesting applications are being developed. In such pro-

grams, rules are applied, usually exhaustively, to transform an object replacing a sub-object

in it with another one. The description of this sub-object is separated from the calculation

of its replacement. Applicability of the rules can be restricted by conditions. Strategies

provide additional control on transformations.

Some of the formalisms important for rule-based programming are term rewriting [BN98],

rewriting logic [MOM02], rewriting calculus [CK01]. Specific systems that support rule-

based style of programming include symbolic computation system Mathematica [Wol03],

languages like CHR [Frü98], ELAN [BKK+98], Maude [CDE+02], ASF+SDF [vdBvDH+01],

Stratego [BKVV08]. We listed here some of the probably most mature ones: It is hard to

give an exhaustive overview of all formalisms and systems in a brief introduction.

The ρLog calculus [MK06] has been influenced by the rewriting calculus, but there are

some significant differences: ρLog adopts logic programming semantics (clauses are first class

concepts, rules/strategies are expressed as clauses), uses top-position matching, and employs

four different kinds of variables. PρLog (pronounced Pē-rō-log) [DK] is a system based

on ρLog calculus and extends logic programming with strategic conditional transformation

rules. PρLog is written in SWI-Prolog [WSTL10] and is available for downloading from

http://www.risc.jku.at/people/tkutsia/software.html.

Contributions. The contributions in rule-based programming with sequence and context

variables can be briefly summarized as follows:

http://www.risc.jku.at/people/tkutsia/software.html

FCUP 17

999.

• Description of PρLog: a system that extends Prolog with strategic conditional trans-

formation rules, involving sequence and context variables and membership literals.

• Presenting case studies of implementing PρLog programs for XML processing, Web

reasoning and rewriting strategies.

Some of these results have been published in [DKM09, CDFK10, Dun10].

Functional Programming

Lambda calculus, introduced by Alonzo Church in [Chu32], is the basis of functional pro-

gramming languages. Functional languages heavily rely on pattern matching. To reflect

it in lambda calculus, Peyton Jones in [PW87] proposed to generalize variable abstraction

by pattern abstraction, permitting expressions of the form λP.T , where the pattern P is

an arbitrary term, not necessarily a variable. With this extension, the expression such

as λ(xy).(xy) is a well-formed term. The ordinary beta reduction is replaced by the rule

(λP.M)N →β Mσ, where σ is the substitution that matches P with N .

Following this proposal, van Oostrom [vO90] introduced lambda calculus with patterns

(later revisited in [KvOdV08]) and proved that the confluence property holds, provided

that the patterns meet certain requirements. (Confluence means that terms can be reduced

in more than one way, but the reduction eventually yields the same result.) After that,

various calculi that incorporate pattern matching in lambda calculus have been proposed.

Some representative ones are lambda-calculus with constructors [AMR06], rewriting calculus

[CK01], pure pattern calculus [JK06, JK09], basic pattern matching calculus [Kah03], just

to name a few. It turns out that the introduction of patterns, in general, leads to loss of

confluence when no restrictions are imposed. These restrictions can be put on the syntactic

form of patterns or on the reduction relation (with the help of a strategy).

Cirstea and Faure in [CF07a] studied confluence of pattern calculus parametrized by unitary

matching function. Extending confluence results from unitary to non-unitary matching

is very useful in practice but, as it has been underlined in [CF07a], is syntactically and

semantically non-trivial and opens new challenges. This is the problem we approach in

Chapter 6 of this thesis.

Contributions. Our contributions in pattern calculi can be briefly summarized as follows:

18 FCUP

999. 1. Introduction

• Presenting a pattern calculus, where matching function can be finitary. The calculus

permits sequence variables: sequence matching is finitary.

• Establishing sufficient properties the matching function should satisfy in order the

pattern calculus to be confluent.

• Providing a generic confluence proof, from which one can obtain confluence proofs for

concrete instantiations of underline matching.

• Describing concrete instances of the matching function that satisfy the sufficient con-

ditions for confluence.

Some of the results of this chapter have been presented in [ADFK13, ADFK14].

Thesis Outline

The structure of the thesis follows the presentation of the results described above. After

introducing the language in Chapter 2, we present the constraint solving algorithm in Chap-

ter 3, and discuss constraint logic programming over sequences and contexts in Chapter 4.

Chapter 5 is dedicated to rule-based programming over sequences and contexts and the

description of the PρLog system. Chapter 6 is about the pattern calculus. The final chapter

is conclusion.

2. Term Language

In this chapter we present the main syntactic categories of the term language. All the basic

notions used throughout the thesis are defined here: first order terms, contexts, sequences,

lambda terms, substitutions and related notions and operations.

2.1 Terms

We consider the alphabet A consisting of the following pairwise disjoint sets of symbols:

• VT: term variables, denoted by x, y, z, . . .,

• VS: sequence variables, denoted by x, y, z, . . .,

• F: function symbols, denoted by f, g, a, b, . . .,

• Binary function symbol, denoted by o ,

• Auxiliary symbols: parentheses and the comma.

We assume that F is finite. The letter V is used to denote the set of variables V := VT ∪VS.

Terms over the alphabet A are defined inductively as follows:

M,N ::= x | f | (M N) | (M x) | (λχM.N) | (M oN)

where (M N) stands for term to term application and (M x) for term to a sequence variable

application. In the abstraction (λχM.N) we call the term M a pattern. The finite set χ

of variables is supposed to specify which variables are bound by the abstraction. They are

called matchable variables (because, as we will see later, they are available for matching in

reductions). The set of terms over F ∪ {o} and V is denoted by T(F ∪ {o},V).

19

20 FCUP

999. 2. Term Language

For example, terms are ((g a) b), (((f x) a)x), ((λ{y,z,y}((f x) y). (x y)) y), (λ{x} x. (((g y)x)x)),

(λ{x}x. (f (xx))) and (λ{x,x}(((f x) o (g x))x). ((f x) ((g y) o (g x) o (g y)))), while (λ{x} x. (g x))

and (λ{x} x. (xx)) are not.

The letters M , N , Q, P , W are used to denote terms. The letters M , N , Q, P , W

denote sequence variables or terms. Application associates to the left, therefore we can

write (M Q1 · · ·Qn) for (· · · (M Q1) · · · Qn). Note that we do not associate a fixed arity to

symbols (we can say that our alphabet is unranked), hence, in this notation, the same symbol

can be followed with different number of terms in different places.

Application also binds stronger than o. When there is no ambiguity, the outermost paren-

theses are omitted. For example, the terms above are written as follows:

• ((g a) b) as g a b,

• (((f x) a)x) as f x a x,

• ((λ{y,z,y}((f x) y). (x y)) y) as (λ{y,z,y}f x y. (x y)) y,

• (λ{x} x. (((g y)x)x)) as λ{x} x. (g y x x),

• (λ{x,x}(((f x)o(g x))x). ((f x) ((g y)o(g x)o(g y)))) as λ{x,x}(f xog x)x. (f x (g yog xog y)).

The sets of free and bound variables of a term M , denoted fv(M) and bv(M) respectively,

are defined inductively as follows:

fv(x) = {x} bv(x) = ∅

fv(f) = ∅ bv(f) = ∅

fv(N Q) = fv(N) ∪ fv(Q) bv(N Q) = bv(N) ∪ bv(Q)

fv(N x) = fv(N) ∪ {x} bv(N x) = bv(N)

fv(λχP.N) = (fv(P) ∪ fv(N)) \ χ bv(λχP.N) = bv(P) ∪ bv(N) ∪ χ

fv(N oQ) = fv(N) ∪ fv(Q) bv(N oQ) = bv(N) ∪ bv(Q)

For example, the term g a b contains neither free nor bound variables, and the term f x a x

contains x and x as free variables. In the term (λ{y,z,y}f x y. (x y)) y, the variables x, y, x

occur as free variables and y, z, y occur as bound variables. Hence, y has both free and

bound occurrences. The term λ{x} x. (g y x x) contains x as a bound variable and y and x as

free variables. In the term λ{x}x. (f (xx)), the variable x occurs freely, while x is a bound.

FCUP 21

2.1. Terms 999.

Finally, in the term λ{x,x}(f x o g x)x. (f x (g y o g x o g y)) the variable y occurs freely, while

x and x are bound. A term M is called linear with respect to the set of variables V if

each variable from V occurs in M freely at most once. We say a term is closed if there are

no free variables. For example, λ{y,x,y}f x y. (y y) and λ{x}x. (f x) are closed terms, while

(λ{y,z,y}f x y. (x y)) y and λ{x}x. (f (xx)) are not.

Unlike the λ-calculus, we abstract not only on variables but on terms. The abstraction

λχP.N binds those variables that are explicitly mentioned in χ. Note that in [CF07a], χ is

supposed to be a subset of fv(P). We do not require χ ⊆ fv(P). Later, when we define the

notion of reduction, we will see that some reductions under the restriction χ ⊆ fv(P) would

transform terms to non-terms.

We adopt Barendregt’s variable name convention [Bar84], i.e., free and bound variables have

different names. This can be fulfilled by renaming bound variables. For example, a renamed

copy of the term (λ{y,z,y}f x y. (x y) y) will be written as (λ{y′,z,y}f x y
′. (x y)) y. We identify

terms modulo α-equivalence, therefore expressions that differ only in the names of bound

variables are identified. For example, a term λ{z} z. (g y z x) is α-equivalent to the term

λ{x} x. (g y x x).

For a given set S, ds1, . . . , sne denotes a finite sequence of elements s1, . . . , sn of S. In

particular, the empty sequence is written as d e. We do not distinguish between a singleton

sequence and its element and write s instead of dse. Concatenation of sequences ds1, . . . , sne

and ds′1, . . . , s′me, written ds1, . . . , sne ./ ds′1, . . . , s′me, is the sequence ds1, . . . , sn, s′1, . . . , s′me.

Obviously, ./ is associative and the empty sequence plays the role of its unit element.

We use S̃ to denote finite (possible empty) sequences of terms and sequence variables. For

example, dg a b, f x a x, y, λ{x,x}(f x o g x)x. (f x (g y o g x o g y))e is a sequence. The set of

sequences over F ∪ {o} and V is denoted by H(F ∪ {o},V).

The notions of free and bound variables are extended to sequences as follows: fv(x) = {x},

fv(dM1, . . . ,Mne) = ∪ni=1fv(M i), bv(x) = ∅, and bv(dM1, . . . ,Mne) = ∪ni=1bv(M i). We

generalize Barendregt’s variable name convention for sequences, i.e., free and bound variables

have different names in a sequence.

22 FCUP

999. 2. Term Language

2.2 Substitutions

A substitution is a mapping from term variables to terms, and from sequence variables to

sequences, such that all but finitely many variables are mapped to themselves. We use σ,θ

and ρ to denote substitutions.

A substitution σ is represented as a finite set of pairs {v1 7→ σ(v1), . . . , vn 7→ σ(vn)} where

the v’s are all those (term or sequence) variables which are not mapped to themselves by

σ. The sets Dom(σ) = {v1, . . . , vn} and Ran(σ) = {σ(v1), . . . , σ(vn)} are called the domain

and the range of σ, respectively. Obviously, σ(v) = v iff v /∈ Dom(σ).

The set of variables of σ, denoted var(σ), is defined as var(σ) := Dom(σ) ∪ fv(Ran(σ)).

The application of a substitution σ to a term M , written as Mσ, replaces each free occurrence

of a variable v in M with σ(v). It is defined inductively:

xσ = σ(x), if x ∈ Dom(σ). (M x)σ = MσN1 . . . Nn,

xσ = x, if x /∈ Dom(σ). if σ(x) = dN1, . . . , Nne, n > 0.

fσ = f. (M x)σ = Mσ if σ(x) = d e.

(M N)σ = MσNσ. (M y)σ = Mσ y if y 6∈ Dom(σ).

(M oN)σ = Mσ oNσ. (λχP.N)σ = λχPσ.Nσ.

In the abstraction, it is assumed that var(σ) ∩ bv(λχP.N) = ∅. This can be achieved by

properly renaming the bound variables. Hence, the equality here is α-equivalence. Note that

the rule for substituting a sequence variable x by a sequence dN1, . . . , Nne in a term Mx

results into (· · · (MσN1) · · ·Nn), written as MσN1 . . . Nn. When n = 0, then σ(x) = d e

and (M x)σ = Mσ.

The result Mσ of applying a substitution σ to a term M is called an instance of M .

Application of a substitution σ to a sequence is defined as d eσ = d e and dM1, . . . ,Mne =

M1σ ./ · · · ./ Mnσ for n > 0.

Example 2.1. Let M = (λ{y′,z,y}f x y
′. (x y)) y and σ = {x 7→ λ{x} x. (g y x x), x 7→

dg a b, ze, y 7→ λ{x}x. (f (xx)), y 7→ dλ{x} x. (g y x x), f x a xe}. Then Mσ is

Mσ =
(
λ{y′,z,y′}f (g a b) z y′. (λ{x} x. (g y x x)) y′

)
λ{x}x. (f (xx))

FCUP 23

2.3. Simple Terms, Contexts, and Simple Substitutions 999.

The composition of substitutions is defined in the standard way, as the composition of two

mappings. We use juxtaposition to denote it, writing σϑ for the composition of σ and ϑ.

For all M , we have Mσϑ = (Mσ)ϑ.

We say that a substitution σ is more general then θ, denoted σ ≤· θ, if there exist a

substitution ρ such that σρ = θ. The relation ≤· is also called the subsumption ordering.

The restriction of a substitution σ to a set of variables V ⊂ V, denoted σ|V , is defined as a

substitution with σ|V (v) = σ(v) if v ∈ V , and σ|V (v) = v otherwise.

2.3 Simple Terms, Contexts, and Simple Substitutions

In this section we introduce restrictions on terms from T(F ∪ {o},V) to obtain simple terms

and contexts.

We distinguish pairwise disjoint subsets of term variables in the syntactic level:

• VI: individual variables, denoted by X,Y, Z, . . .,

• VF: function variables, denoted by Xf , Yf , Zf , . . .,

• VC: context variables, denoted by Xc, Yc, Zc,

The reason why we make a distinction between these variables is the form of terms they can

be replaced by. We will elaborate on details a bit later, when we will be discussing simple

substitutions. Note that VI ∪ VF ∪ VC ⊂ VT.

Simple terms and contexts over the set of variables VISFC = VI ∪ VS ∪ VF ∪ VC ⊂ V and set

of function symbols F is defined as follows:

Simple term: t ::= X | Xc t | T, where T ::= f | Xf | T t.

Simple term or sequence variable: t ::= t | x.

Context: C ::= λ{X}X.t, where X occurs only once in t.

The letters t, r are used to denote simple terms, t and r denote sequence variables or simple

terms, and C and D stand for contexts. The set of simple terms is denoted by Ts(F,VISFC)

and the set of contexts is denoted by C(F,VISFC).

24 FCUP

999. 2. Term Language

Note that from those terms we have seen earlier, e.g., g a b, f x a x, (λ{y′,z,y}f x y
′. (x y)) y,

λ{x} x. (g y x x), λ{x}x. (f (xx)) and λ{x,x}(f xog x)x. (f x (g y og xog y)), only g a b and f x a x

are simple terms, provided that x ∈ VI. The termλ{x} x. (g y x x) is a context, provided that

x, y ∈ VI.

The term λ{x}x. (f (xx)) is not a context because of the following: Either x /∈ VF and (xx)

is not a simple term, or x ∈ VF and λ{x}x. (f (xx)) does not fall in the definition of contexts.

For notational convenience, contexts are written in a lambda free form, replacing a bound

variable with the meta symbol ◦, called the hole. For instance, the context λ{X}X. g Y X x

will be written as g Y ◦ x. We write simple terms and contexts in a decurried form. For

instance, g a b and f X ax will be written as g(a, b) and f(X, a, x), respectively. The context

g Y ◦ x will be written as g(Y, ◦, x). A context C may be applied to a simple term r (resp.,

context C ′), written C[r] (resp., C[C ′]), and the result is the term (resp., context) obtained

from C by replacing the ◦ with r (resp., with C ′). For example, an application of the context

g(Y, ◦, x) to the term f(X, a, x), written as g(Y, ◦, x)[f(X, a, x)], is a term g(Y, f(X, a, x), x).

Simple sequences are sequences consisting of simple terms and sequence variables. We use s̃

to denote simple sequences. A simple substitution is a substitution that maps individual

variables to simple terms, sequence variables to simple sequences, function variables to

function symbols and function variables, and context variables to contexts, such that all

but finitely many individual, sequence, and function variables are mapped to themselves,

and all but finitely many context variables are mapped to themselves applied to the hole.

Example 2.2. Let t = Xf(x, Y,Xc(X)), C = f(Xc(Y), Xf(y, ◦), X) and σ = {X 7→

f(x, a), x 7→ da, f(b,X), ye, y 7→ de, Xf 7→ f, Xc 7→ g(y, ◦, b)}. Then:

tσ = f(a, f(b,X), y, Y, g(y, f(x, a), b)).

Cσ = f(g(y, Y, b), f(◦), f(x, a)).

2.4 Equation Solving

Solving equations between terms is a key technique used in many areas of theorem proving,

declarative programming, computational linguistics, etc. Unification, matching, and in

general, constraint solving require solving term equations. Below we give a brief overview of

some unification problems that are related to our constraint solving problem in Chapter 3.

FCUP 25

2.4. Equation Solving 999.

For surveys about unification, we refer [BS01, Dow01].

The most basic unification problem is first-order unification, which, in our terminology, can

be seen as the problem of solving equations between simple terms constructed over function

symbols and term variables. If the same function symbol has different number of arguments

in different places, these occurrences are treated as different symbols. Robinson [Rob65]

developed an algorithm for solving first-order unification problems, which is still in use in

various systems despite its exponential complexity. Its improvements have been proposed

in, e.g., [Hue76, PW78, MM82, CB83, EIG88, RP89]. If a first-order unification problem is

solvable, then it has a unique solution modulo subsumption ordering, called a most general

unifier. Such problems are called problems of unitary unification type. First-order unification

is an example of unitary unification.

If we slightly extend the syntax, permitting in the unification problems simple terms built

over function symbols and term and sequence variables, we obtain sequence unification

problems. This “small change”, however, has a dramatic influence on solutions. Solvable

sequence unification problems may have infinitely many solutions that are incomparable with

respect to subsumption ordering. Such problems are called infinitary. Kutsia [Kut04, Kut07]

proved decidability of sequence unification and developed a minimal and complete solving

procedure for it.

If we permit context variables instead of sequence variables, we obtain context unification

problems. Similarly to first-order unification, function symbols are identified not only by the

name but also by the arity. Like sequence unification, context unification is infinitary. Its

decidability turned out to be a very difficult problem, which remained open for more than

20 years, until Jeż [Jeż14] proved that it is in PSPACE. A complete solving procedure is

due to Levy [Lev96]. Kutsia, Levy, and Villaret [KLV07, KLV10] studied the relationship

between sequence and context unification and showed that sequence unification is equivalent

to a variant of the left-hole fragment of context unification.

Permitting function variables in unification problems affects neither decidability nor the

unification type. However, if we consider terms with arbitrary higher-order variables, then

unification quickly becomes undecidable [Gol81].

In this thesis, we consider constraint solving problems over simple terms, as well as some

special matching problems over arbitrary terms.

26 FCUP

999. 2. Term Language

3. Constraint Solving

3.1 Introduction

Various forms of constraint solving are in the center of declarative programming paradigms.

Unification is the main computational mechanism for logic programming. Matching plays

the same role in rule-based and functional programming. Constraints over special domains

are in the heart of constraint logic programming languages.

In this chapter we propose a solving algorithm for equational and membership constraints

over simple terms, contexts, and sequences, as defined in the previous chapter. It will be used

in Chapter 4, where we will be discussing constraint logic programming over sequences and

contexts. Special fragments of this constraint solving problem have applications in rule-based

and pattern-based programming, discussed respectively in Chapter 5 and Chapter 6.

We start with formulating the constraint language and then define its semantics. The

primitive constraints are equations and membership constraints for regular sequence and

context languages. We may have function symbols whose argument order does not matter

(unordered symbols): A kind of generalization of the commutativity property to unranked

terms. The algorithm works on the input in disjunctive normal form and transforms it

to the partially solved form. It is sound and terminating. The latter property naturally

implies that the solver is incomplete for arbitrary constraints, because the problem it solves

is infinitary: There might be infinitely many incomparable solutions to constraints that

involve sequence and context variables, see, e.g., [Kut02, Lev96, Vil04]. However, there

are fragments of constraints for which the solver is complete, i.e., it computes all the

solutions. One of such fragments is so called the well-moded fragment [DFKM14, KM06],

where variables in one side of equations (or in the left hand side of the membership atom) are

guaranteed to be instantiated with ground expressions at some point. This effectively reduces

27

28 FCUP

999. 3. Constraint Solving

constraint solving to sequence matching and context matching (which are known to be NP-

complete [SSS04, KM12]), plus some early failure detection rules. Another fragment for

which the solver is complete is named after the Knowledge Interchange Format, KIF [Gen98],

which is a computer-oriented language for the interchange of knowledge among disparate

computer programs. In KIF, function symbols do not have a fixed arity and sequence

variables are permitted only in the last argument positions. The KIF fragment we consider

in this thesis can be characterized exactly in this way: There we have essentially a first-

order language over unranked function symbols, and sequence variables appear only in the

last argument positions.

3.2 Syntax

The constraint alphabet CA extends the alphabet A by the following symbols:

• The propositional constants true and false, the equality predicate
.
=, and the member-

ship predicate in.

• The set P of predicate symbols, denoted by p, q,

• Regular operators: eps (empty sequence), . (sequence concatenation), | (sequence

choice), ∗ (sequence repetition), • (empty context), · (context concatenation), + (con-

text choice), ? (context repetition).

• Logical connectives and quantifiers: ¬ (negation), ∨ (disjunction), ∧ (conjunction), ⇒

(implication), ⇔ (equivalence), ∃ (existential quantifier), ∀ (universal quantifier).

Regular sequence expressions RS and regular context expressions RC are defined inductively:

RS ::= eps | RS.RS | RS|RS | RS∗ | f(RS)

RC ::= • | RC · RC | RC + RC | RC? | f(RS,RC,RS)

where eps is the regular expression for the empty sequence and is omitted whenever it appears

as an argument of a function symbol. For example, an expression f((a(eps)|b(eps))∗).c(eps)∗

will be written as f((a|b)∗).c∗. The meta symbol R will be used to denote both regular

sequence expressions RS and regular context expressions RC.

FCUP 29

3.2. Syntax 999.

We assume that there is a possibly empty subset of F, whose elements have so called

unordered property: f(x,X, y, Y, z)
.
= f(x, Y, y,X, z) for all x, Y, y,X, z. This property

generalizes commutativity to function symbols that do not have a fixed arity. We call such

symbols unordered function symbols and denote their set by Fu. The meta symbol fu varies

over unordered function symbols. To distinguish, the set Fo := F \ Fu will be called the set

of ordered function symbols. The meta symbol fo will stand for the elements of Fo. We still

use f when the distinction between ordered and unordered symbols does not matter.

Definition 3.1. A formula over the alphabet CA is defined inductively as follows:

a) true and false are formulas.

b) If t and r are simple terms, then t
.
= r is a formula.

c) If C and D are contexts, then C
.
= D is a formula.

d) If s̃ is a simple sequence and RS is a sequence regular expression, then s̃ in RS is a

formula.

e) If C is a context and RC is a context regular expression, then C in RC is a formula.

f) If p is an n-ary predicate symbol and t1, . . . , tn are simple terms, then p(t1, . . . , tn) is

a formula. It is called an atomic formula or simply an atom.

g) If F1 and F2 are formulas, then so are (¬F1), (F1 ∨ F2), (F1 ∧ F2), (F1 ⇒ F2), and

(F1 ⇔ F2).

h) If F is a formula and v ∈ VISFC, then ∃v.F and ∀v.F are formulas.

The formulas defined by the items b)–e) are called primitive constraints. A literal L is an

atom or a primitive constraint. A constraint is an arbitrary formula built over true, false

and primitive constraints. Application of simple substitutions is extended to literals and

conjunctions of literals in a natural way.

For example, Xf(x,Xc(X), b)
.
= f(y,X)∧ false∧(true∨f(Xc(g(◦, X)), x) in f((a|b)∗, g(a, •)))

is a constraint, where Xf(x,Xc(X), b)
.
= f(y,X) and f(Xc(g(◦, X)), x) in f((a|b)∗, g(a, •))

are primitive constraints.

The language generated from CA is denoted by L(CA).

30 FCUP

999. 3. Constraint Solving

The sets of free and bound variables of a formula F, denoted fvar(F) and bvar(F) respec-

tively, are defined inductively as follows:

fvar(true) = ∅.

fvar(false) = ∅.

fvar(t
.
= s) = fv(t) ∪ fv(s).

fvar(C
.
= D) = fv(C) ∪ fv(D).

fvar(̃s in RS) = fv(̃s).

fvar(C in RC) = fv(C).

fvar(p(t1, . . . , tn)) = Σn
i=1fv(ti).

fvar(¬F) = fvar(F).

fvar(F13F2) = fvar(F1) ∪ fvar(F2), where 3 ∈ {∨,∧,⇒,⇔}.

fvar(Qv.F) = fvar(F) \ {v}, where Q ∈ {∃, ∀}.

bvar(F) = ∅, if F is true, false, or a literal.

bvar(¬F) = bvar(F).

bvar(F13F2) = bvar(F1) ∪ bvar(F2), where 3 ∈ {∨,∧,⇒,⇔}.

bvar(Qv.F) = bvar(F) ∪ {v}, where Q ∈ {∃,∀}.

3.3 Semantics

For a given set S, we denote by S∗ the set of finite, possibly empty, sequences of elements

of S, and by Sn the set of sequences of length n of elements of S. Given a sequence s =

ds1, s2, . . . , sne ∈ Sn, we denote by perm(s) the set of sequences {dsπ(1), sπ(2), . . . , sπ(n)e | π

is a permutation of {1, 2, . . . , n}}. The set of functions from a set S1 to a set S2 is denoted

by S1 −→ S2. The notion f : S1 −→ S2 means that f belongs to S1 −→ S2.

A structure S for a language L(CA) is a tuple 〈D, I〉 made of a non-empty carrier set of

individuals D and an interpretation function I that maps each function symbol f ∈ F to

a function I(f) : D∗ −→ D, and each n-ary predicate symbol p ∈ P to an n-ary relation

I(p) ⊆ Dn. Moreover, if f ∈ Fu then I(f)(s) = I(f)(s′) for all s ∈ D∗ and s′ ∈ perm(s).

Given such a structure, we also define the operation Ic : (D∗ −→ D) −→ D∗ −→ D∗ −→

(D −→ D) −→ (D −→ D) by Ic(ψ)(̃s1)(̃s2)(φ)(d) := ψ(̃s1, φ(d), s̃2) for all ψ : D∗ −→ D,

FCUP 31

3.3. Semantics 999.

s̃1, s̃2 ∈ D∗, d ∈ D, and φ : D −→ D.

A variable assignment for such a structure is a function with the domain VISFC that maps

individual variables to elements of D; sequence variable to elements of D∗; function variables

to functions in D∗ −→ D; and context variables to functions in D −→ D.

The interpretations of our syntactic categories with respect to a structure S = 〈D, I〉 and

variable assignment ρ is shown below. The interpretation of simple sequences [[̃s]]S,ρ and of

contexts [[C]]S,ρ are defined as follows:

[[X]]S,ρ := ρ(X).

[[f (̃s)]]S,ρ := I(f)([[̃s]]S,ρ).

[[Xf (̃s)]]S,ρ := ρ(Xf)([[̃s]]S,ρ).

[[Xc(t)]]S,ρ := ρ(Xc)([[t]]S,ρ).

[[x]]S,ρ := ρ(x).

[[dt1, . . . , tne]]S,ρ := [[t1]]S,ρ ./ · · · ./ [[tn]]S,ρ.

[[◦]]S,ρ := IdD.

[[f (̃s1, C, s̃2)]]S,ρ := Ic(I(f))([[̃s1]]S,ρ)([[̃s2]]S,ρ)([[C]]S,ρ).

[[Xf (̃s1, C, s̃2)]]S,ρ := Ic(ρ(Xf))([[̃s1]]S,ρ)([[̃s2]]S,ρ)([[C]]S,ρ).

[[Xc(C)]]S,ρ := ρ(Xc) � [[C]]S,ρ, where � stands for function composition.

Note that terms are interpreted as elements of D, sequences as elements of D∗, and contexts

as elements of D −→ D. We may omit ρ and write simply [[E]]S for the interpretation of a

variable-free (i.e., ground) expression E.

Overloading the notation, we use [[.]] for the interpretation of regular sequence and context

expressions. First, we introduce the following notation:

[[RC]]0S := {IdD}, where IdD : D −→ D is the identity function on D.

[[RC]]n+1
S := {C1 � C2 | C1 ∈ [[RC]]S, C2 ∈ [[RC]]nS} for n ≥ 0.

[[RC]]?S :=
⋃
n≥0

[[RC]]nS.

Now, the interpretation of regular expressions is defined by structural induction as follows:

[[eps]]S := {d e}.

32 FCUP

999. 3. Constraint Solving

[[RS1.RS2]]S := {s̃1 ./ s̃2 | s̃1 ∈ [[RS1]]S, s̃2 ∈ [[RS2]]S}.

[[RS1|RS2]]S := [[RS1]]S ∪ [[RS2]]S.

[[RS∗]]S := [[RS]]∗S.

[[f(RS)]]S := {I(f)(̃s) | s̃ ∈ [[RS]]S}.

[[•]]S := {IdD}.

[[RC1 · RC2]]S := {C1 � C2 | C1 ∈ [[RC1]]S, C2 ∈ [[RC2]]S}.

[[RC1 + RC2]]S := [[RC1]]S ∪ [[RC2]]S.

[[RC?]]S := [[RC]]?S.

[[f(RS1,RC,RS2)]]S := {Ic(I(f))(̃s1)(̃s2)(C) | C ∈ [[RC]]S, s̃1 ∈ [[RS1]]S, s̃2 ∈ [[RS2]]S}.

The formulae true, false, and literals are interpreted with respect to a structure S and a

variable assignment ρ as follows:

S |=ρ true.

Not S |=ρ false.

S |=ρ t1
.
= t2 iff [[t1]]S,ρ = [[t2]]S,ρ.

S |=ρ C1
.
= C2 iff [[C1]]S,ρ = [[C2]]S,ρ.

S |=ρ s̃ in RS iff [[̃s]]S,ρ ∈ [[RS]]S.

S |=ρ C in RC iff [[C]]S,ρ ∈ [[RC]]S.

S |=ρ p(t1, . . . , tn) iff I(p)([[t1]]S,ρ, . . . , [[tn]]S,ρ) holds.

Interpretation of an arbitrary formula with respect to a structure and a variable assignment

is defined in the standard way. Also, the notions S |= F for validity of an arbitrary formula

F in S, and |= F for validity of F in any structure are defined as usual.

An intended structure is a structure I with a carrier set Ts(F) (the set of ground simple

terms) and interpretation I defined for every f ∈ F by I(f)(̃s) := f (̃s). It follows that

Ic(I(f))(̃s1)(̃s2)(C) := f (̃s1, C, s̃2). Thus, intended structures identify terms, sequences and

contexts with themselves. Also, [[R]]I is the same in all intended structures, and will be

denoted by [[R]]. Other remarkable properties of intended structures I are: I |=ρ t1
.
= t2 iff

t1ρ = t2ρ, I |=ρ C1
.
= C2 iff C1ρ = C2ρ, I |=ρ s̃ in RS iff s̃ρ ∈ [[RS]], and I |=ρ C in RC iff

Cρ ∈ [[RC]].

FCUP 33

3.4. Solver 999.

A ground substitution ρ is a solution of a constraint C if I |= Cρ for all intended structures I.

3.4 Solver

In this section we present a constraint solver. It is based on rules, transforming a constraint in

disjunctive normal form (DNF) into a constraint in DNF. We say a constraint is in DNF, if it

has a form K1∨· · ·∨Kn, where K’s are conjunctions of true, false, and primitive constraints.

The number of solver rules is not small (as it is usual for such kind of solvers, cf., e.g.,

[DPPR00, Com98]). To make their comprehension easier, we group them so that similar

ones are collected together in subsections. Within each subsection, for better readability,

the rule groups are put between horizontal lines.

Before going into the details, we introduce a more conventional way of writing expressions,

some kind of syntactic sugar, that should make reading easier. In the rest of this chapter,

the letter F is a meta symbol for function symbols and function variables. The symmetric

closure of
.
= is denoted by '. We write F1

.
= F2 instead of F1()

.
= F2(), Xc

.
= C instead of

Xc(◦)
.
= C, and Xc in RC instead of Xc(◦) in RC.

3.4.1 Logical Rules

The logical rules perform logical transformations of the constraints and have to be applied

in constraints, at any depth modulo associativity and commutativity of disjunction and

conjunction. F stands for any formula. We denote the whole set of rules by Log.

F ∧ F ; F true ∧ F ; F false ∧ F ; false s̃ ' s̃ ; true

F ∨ F ; F true ∨ F ; true false ∨ F ; F C ' C ; true

d e in RS ; true, if d e ∈ [[RS]] ◦ in RC ; true, if ◦ ∈ [[RC]]

3.4.2 Failure Rules

In the second group there are rules for failure detection. The first two rules detect function

symbol clash:

34 FCUP

999. 3. Constraint Solving

(F1) f1(̃s1) ' f2(̃s2) ; false, if f1 6= f2.

(F2) f1(̃s1, C1, s̃2) ' f2(̃s3, C2, s̃4) ; false, if f1 6= f2.

The next three rules perform occurrence check. Peculiarity of this operation for our language

is that the variable occurrence into a term/context does not always leads to failure. For

instance, the equation X
.
= Xc(X), where the variable X occurs in Xc(X), still has a

solution {Xc 7→ ◦}. Therefore, the occurrence check should fail on equations of the form

var
.
= nonvar only if no instance of the non-variable expression nonvar can become the

variable var . To achieve this, the rules below require the non-variable terms to contain

F (the first two rules) and t (the third rule), which can not be erased by a substitution

application:

(F3) X ' C[F (̃s)] ; false, if X ∈ var(C[F (̃s)]).

(F4) Xc ' C1[F (C2)] ; false, if Xc ∈ var(C1[F (C2)]).

(F5) x ' d̃s1, t, s̃2e; false, if x ∈ var(d̃s1, t, s̃2e).

Further, we have two more rules which lead to failure in the case when the hole is unified with

a context whose all possible instances are nontrivial contexts (guaranteed by the presence of

F), and when the empty sequence is attempted to match to an inherently nonempty sequence

(guaranteed by t):

(F6) ◦ ' C1[F (C2)] ; false. (F7) d e ' d̃s1, t, s̃2e; false.

The other rules deals with the membership atoms. The first two of them lead to failure

because the language generated by the regular expression does not contain the empty

sequence (in the first rule) and the hole (in the second rule):

(F8) d e in f(RS) ; false. (F9) ◦ in f(RS1,RC,RS2) ; false.

FCUP 35

3.4. Solver 999.

The following two rules give failure because of the top function symbol clash between a

term/context and the corresponding regular expression:

(F10) f1(̃s) in f2(RS) ; false, if f1 6= f2.

(F11) f1(̃s1, C, s̃2) in f2(RS1,RC,RS2) ; false, if f1 6= f2.

The next two rules are justified by the fact that a nonempty sequence can not belong to

the language consisting of the empty sequence only, and a nontrivial context can not be a

member of the language containing only the hole:

(F12) d̃s1, t, s̃2e in eps ; false. (F13) C1[F (̃s1, C2, s̃2)] in •; false.

We denote this set of rules (F1) – (F13) by Fail.

3.4.3 Deletion Rules

There are five rules which delete identical terms, sequence variables or context variables

from both sides of an equation. They are more or less self-explanatory. Just note that under

unordered head, we delete an arbitrary occurrence of a term (that is not a sequence variable).

(Del1) Xc(t1) ' Xc(t2)∧; t1
.
= t2.

(Del2) Xc(C1) ' Xc(C2) ; C1
.
= C2.

(Del3) fu(̃s1, t, s̃2) ' fu(̃s3, t, s̃4) ; fu(̃s1, s̃2)
.
= fu(̃s3, s̃4).

(Del4) dx, s̃1e ' dx, s̃2e; s̃1
.
= s̃2.

(Del5) x ' d̃s1, x, s̃2e; s̃1
.
= d e ∧ s̃2

.
= d e,

In the last rule s̃1 is not the empty sequence.

We denote the set of rules (Del1) - (Del5) by Del.

36 FCUP

999. 3. Constraint Solving

3.4.4 Membership Rules

We start with membership rules for sequences. When the sequence s̃ in the membership

atom s̃ in RS is ground, then these rules simply provide the membership check. Non-

ground sequences require more special treatment and before giving rules for membership

atom transformation, we elaborate on the form of regular sequence expressions.

To solve membership constraints for sequences of the form dt, s̃e with t a term, we rely on the

possibility of computing the linear form of a regular sequence expression, that is, to express

it as a choice of concatenations of regular sequence expressions that identifies all plausible

membership constraints for t and s̃. Formally, the linear form of a regular expression RS,

denoted lfs(RS), is a finite set of pairs (f(RS1),RS2) called monomials, which is defined

recursively as follows:

lfs(eps) = ∅.

lfs(f(RS)) = {(f(RS), eps)}.

lfs(RS1|RS2) = lfs(RS1) ∪ lfs(RS2).

lfs(RS1.RS2) = lfs(RS1)� RS2, if d e /∈ [[RS1]].

lfs(RS1.RS2) = lfs(RS1)� RS2 ∪ lfs(RS2), if d e ∈ [[RS1]].

lfs(RS∗) = lfs(RS)� RS∗.

These equations involve an extension of concatenation � that acts on a linear form and a

regular expression and returns a linear form. It is defined as l � eps = l, and l � RS =

{(f(RS1),RS2.RS) | (f(RS1),RS2) ∈ l,RS2 6= eps} ∪ {(f(RS1),RS) | (f(RS1), eps) ∈ l}, if

RS 6= eps. Instead of explicitly listing all syntactic conditions to the other rules (e.g., MS1,

MS4, MS5, MS6, MS7 and MS12) that would prevent (MS8) to be their alternative, we

decided to put a syntactically rather implicit condition to (MS8) to guarantee determin-

ism. Note also the intersection in the rule (MS8): RS is closed under this operation, see,

e.g., [CDG+07].

(MS1) dx1, . . . , xne in eps ∧K ; ∧ni=1 xi
.
= d e ∧Kθ,

where n > 0 and θ = {x1 7→ d e, . . . , xn 7→ d e}

(MS2) dt, s̃e in RS ∧K ;
∨

(f(RS1),RS2)∈lfs(RS)

(
t in f(RS1) ∧ s̃ in RS2 ∧K

)
,

FCUP 37

3.4. Solver 999.

where s̃ 6= d e and RS 6= eps.

(MS3) dx, s̃e in f(RS) ∧K ;(
x in f(RS) ∧ s̃

.
= d e ∧K

)
∨
(
x
.
= d e ∧ s̃ in f(RS) ∧K

)
,

where s̃ 6= d e.

(MS4) t in RS∗ ; t in RS.

(MS5) t in RS1.RS2 ∧K ;(
t in RS1 ∧ d e in RS2 ∧K

)
∨
(
d e in RS1 ∧ t in RS2 ∧K

)
.

(MS6) t in RS1|RS2 ∧K ;

(
t in RS1 ∧K

)
∨
(
t in RS2 ∧K

)
.

(MS7) dx, s̃e in RS1|RS2 ∧K ;

(
dx, s̃e in RS1 ∧K

)
∨
(
dx, s̃e in RS2 ∧K

)
.

(MS8) v in RS1 ∧ v in RS2 ; v in RS,

where v ∈ VI ∪ VS, [[RS]] = [[RS1]] ∩ [[RS2]], and neither v in RS1

nor v in RS2 can be transformed by other rules.

Next, we have rules that constrain singleton sequences to be in a term language. They

proceed by the straightforward matching or decomposition of the structure. Note that in

(MS11), we require the arguments of the unordered function symbol to be terms. The rule

(MS9) does not distinguish whether f is ordered or unordered. We also have (MS12), where

a sequence variable is constrained by a regular sequence expression in the form f(RS). It

forces the sequence variable to be instantiated by a single term.

(MS9) Xf (̃s) in f(RS) ∧K ;

Xf
.
= f ∧ f (̃s){Xf 7→ f} in f(RS) ∧K{Xf 7→ f}.

(MS10) fo(̃s) in fo(RS) ; s̃ in RS.

(MS11) fu(̃s) in fu(RS) ∧K ;
∨

s̃′∈perm (̃s)

(
s̃ ′ in RS ∧K

)
,

where s̃ is a sequence of terms.

(MS12) x in f(RS) ∧K ; x
.
= X ∧X in f(RS) ∧K{x 7→ X},where X is fresh.

To solve membership constraints for contexts of the form F (̃s1, C, s̃2), we use a similar

38 FCUP

999. 3. Constraint Solving

approach like we did to the one for solving membership constraints for sequences. We

rely on the possibility to compute the linear form of a regular context expression, that is,

to express it as a choice of concatenations of regular context expressions that identify all

plausible membership constraints for F (̃s1, ◦, s̃2) and C. Formally, the linear form of a

regular context expression RC, denoted lfc(RC), is a finite set of pairs (f(RS1, •,RS2),RC)

called monomials, which is defined recursively as follows:

lfc(•) = ∅.

lfc(RC?) = lfc(RC) � RC?.

lfc(f(RS1,RC,RS2)) = {(f(RS1, •,RS2),RC)}.

lfc(RC1 + RC2) = lfc(RC1) ∪ lfc(RC2).

lfc(RC1 · RC2) = lfc(RC1) � RC2, if • /∈ [[RC1]].

lfc(RC1 · RC2) = lfc(RC1) � RC2 ∪ lfc(RC2), if • ∈ [[RC1]].

These equations involve an extension of concatenation � that acts on a linear form and

a regular expression and returns a linear form. It is defined as l � • = l, and l � RC =

{(f(RS1, •,RS2),RC1 · RC) | (f(RS1, •,RS2),RC1) ∈ l,RC1 6= •} ∪ {(f(RS1, •,RS2),RC) |

(f(RS1, •,RS2), •) ∈ l}, if RC 6= •.

The rules for contexts are given below. Like for their counterparts for sequences, these rules

provide membership test when the contexts in membership atoms are ground. F (̃s1, ◦, s̃2) is

a singleton context and it can be splitted in only one possible way: into F (̃s1, ◦, s̃2) and ◦.

The rules (MC1)–(MC8) are counterparts of the rules (MS1)–(MS8) respectively. Bellow we

do not list syntactic conditions to the rules that would prevent (MC8) to be their alternative.

Instead, we put a syntactically implicit condition to (MC8) to guarantee determinism, like

we have done for the rule (MS8). For the intersection in the rule (MC8) we note that RC is

also closed under this operation. This can be shown by translating the RC expressions into

regular sequence automata.

(MC1) Xc1(· · ·Xcn(◦) · · ·) in • ∧K ; ∧ni=1 Xci
.
= ◦ ∧Kθ

where n > 0 and θ = {Xc1 7→ ◦, . . . , Xcn 7→ ◦}.

(MC2) F (̃s1, C, s̃2) in RC ∧K ;

FCUP 39

3.4. Solver 999.

∨
(f(RS1,•,RS2),RC1)∈lfc(RC)

(
F (̃s1, ◦, s̃2) in f(RS1, •,RS2) ∧ C in RC1 ∧K

)
,

where C 6= ◦ and RC 6= •.

(MC3) Xc(C) in f(RS1, •,RS2) ∧K ;(
Xc in f(RS1, •,RS2) ∧ C ' ◦ ∧K

)
∨
(
Xc ' ◦ ∧ C in f(RS1, •,RS2) ∧K

)
,

where C 6= ◦.

(MC4) F (̃s1, ◦, s̃2) in RC? ; F (̃s1, ◦, s̃2) in RC.

(MC5) F (̃s1, ◦, s̃2) in RC1 · RC2 ∧K ;(
F (̃s1, ◦, s̃2) in RC1 ∧ ◦ in RC2 ∧K

)
∨
(
◦ in RC1 ∧ F (̃s1, ◦, s̃2) in RC2 ∧K

)
.

(MC6) F (̃s1, ◦, s̃2) in RC1 + RC2 ∧K ;(
F (̃s1, ◦, s̃2) in RC1 ∧K

)
∨
(
F (̃s1, ◦, s̃2) in RC2 ∧K

)
.

(MC7) Xc(C) in RC1 + RC2 ∧K ;

(
Xc(C) in RC1 ∧K

)
∨
(
Xc(C) in RC2 ∧K

)
.

(MC8) Xc in RC1 ∧Xc in RC2 ; Xc in RC,

where [[RC]] = [[RC1]] ∩ [[RC2]], and neither Xc in RC1

nor Xc in RC2 can be transformed by other rules.

The next two rules decompose both the structure of the context and the regular expression,

where the regular expression has the form f(RS1,RC,RS2). Note that we do not distinguish

whether f is ordered or unordered. This set of rules corresponds the (MS9)–(MS11) rules

for sequences.

(MC9) f (̃s1, ◦, s̃2) in f(RS1,RC,RS2) ∧K ; f (̃s1, s̃2) in f(RS1,RS2) ∧ ◦ in RC ∧K.

(MC10) Xf (̃s1, ◦, s̃2) in f(RS1,RC,RS2) ∧K ;

Xf ' f ∧ f (̃s1θ, ◦, s̃2θ) in f(RS1,RC,RS2) ∧Kθ,

where θ = {Xf 7→ f}.

We denote the set of rules (MS1)–(MS12) and (MC1)–(MC10) by Memb.

40 FCUP

999. 3. Constraint Solving

3.4.5 Decomposition Rules

Like the membership rules, each of the decomposition rules operates on a conjunction of

constraint literals and gives back either a conjunction again, or a disjunction of conjunctions.

These rules should be applied to disjuncts of constraints in DNF, to preserve the DNF

structure.

(D1) fo(̃s1) ' fo(̃s2) ; s̃1
.
= s̃2.

(D2) fu(̃s1) ' fu(̃s2) ∧K ;
∨

s̃′∈perm(̃s2)

(
s̃1

.
= s̃ ′ ∧K

)
,

where s̃2 is a sequence of terms, s̃1 and s̃2 are disjoint.

(D3) dt1, s̃1e ' dt2, s̃2e; t1
.
= t2 ∧ s̃1

.
= s̃2,

where s̃1 6= d e or s̃2 6= d e.

(D4) f (̃s1, C1, s̃2) ' f (̃s3, C2, s̃4) ; f (̃s1, s̃2)
.
= f (̃s3, s̃4) ∧ C1

.
= C2.

We denote the set of rules (D1)–(D4) by Dec.

3.4.6 Variable Elimination Rules

This set of rules eliminate variables from the given constraint, keeping only a single equation

for them. The first four rules replace a variable with the corresponding expression, provided

that the variable does not occur in the expression:

(E1) X ' t ∧K ; X
.
= t ∧Kθ,

where X 6∈ var(t), X ∈ var(K) and θ = {X 7→ t}. If t is a variable then in addition it is

required that t ∈ var(K).

(E2) x ' s̃ ∧K ; x
.
= s̃ ∧Kθ,

FCUP 41

3.4. Solver 999.

where x 6∈ var (̃s), x ∈ var(K), and θ = {x 7→ s̃}. If s̃ = y for some y, then in addition it is

required that y ∈ var(K).

(E3) Xc ' C ∧K ; Xc
.
= C ∧Kθ,

where Xc 6∈ var(C), Xc ∈ var(K), and θ = {Xc 7→ C}. If C has the form Yc(◦), then in

addition it is required that Yc ∈ var(K).

(E4) Xf ' F ∧K ; Xf
.
= F ∧Kθ,

where Xf 6= F , Xf ∈ var(K), and θ = {Xf 7→ F}. If F is a function variable, then in addition

it is required that F ∈ var(K).

The rules (E5) and (E6) for sequence variable elimination assign to a variable an initial part

of the sequence in the other side of the selected equation. The sequence has to be a sequence

of terms in (E5). In (E6), only a split of the prefix of the sequence is relevant. The rest is

blocked by the term t due to occurrence check: No instantiation of x can contain it.

(E5) dx, s̃1e ' s̃2 ∧K ;
∨

s̃2=d̃s′ ,̃s′′e

(
x
.
= s̃ ′ ∧ s̃1θ

.
= s̃ ′′ ∧Kθ

)

where s̃2 is a sequence of terms, x 6∈ var (̃s2), θ = {x 7→ s̃ ′}, and s̃1 6= d e.

(E6) dx, s̃1e ' d̃s, t, s̃2e ∧K ;∨
s̃=d̃s′ ,̃s′′e

(
x
.
= s̃ ′ ∧ s̃1θ

.
= (̃s ′′, t, s̃2)θ ∧Kθ

)

where s̃ is a sequence of terms, x 6∈ var (̃s), x ∈ var(t), θ = {x 7→ s̃ ′}, and s̃1 6= d e.

The rules (E7) and (E8) below can be seen as counterparts of (E5). In the rule (E8) we need

conservative decomposition of contexts. Before giving those rules, we define the notion of

conservativity.

We will speak about the main path of a context as the sequence of symbols (path) in its

42 FCUP

999. 3. Constraint Solving

tree representation from the root to the hole. For instance, the main path in the context

f(Xc1(a), Xf(Xc2(b), g(◦)), x) is fXfg, and in f(Xc1(a), Xf(Xc2(b), Xc3(◦)), x) – fXfXc3. A

context is called strict if its main path does not contain context variables. For instance, the

context f(Xc1(a), Xf(Xc2(b), g(◦)), x) is strict, while f(Xc1(a), Xf(Xc2(b), Xc3(◦)), x) is not,

because Xc3 is in its main path fXfXc3. We say that a context C is decomposed in two

contexts C1 and C2 if C = C1[C2].

We say that a context C is conservative, if for any instance Cρ of C and for any decomposition

D1[D2] of Cρ there exists a decomposition C1[C2] of C such that D1 = C1ρ and D2 = C2ρ.

Strict contexts satisfy this property. Non-strict contexts violate it, as the following example

shows: The context C = Xc(◦) has two decompositions into C1[C2] with C1 = ◦, C2 = Xc(◦)

and C1 = Xc(◦), C2 = ◦. Let ρ = {Xc 7→ f(g(◦))}. Then Cρ = f(g(◦)). One of its

decomposition with D1 = f(◦), D2 = g(◦) is not an instance of any of the decompositions

of C.

The rules (E7) and (E8) are formulated now as follows:

(E7) Xc(t1) ' t2 ∧K ; ∨t2=C[t]

(
Xc

.
= C ∧ t1θ

.
= t ∧Kθ

)
,

where t2 does not contain individual, sequence, and context variables, t1 6= ◦, and θ = {Xc 7→

C}.

(E8) Xc(C1) ' C2 ∧K ; ∨C2=C[C′]

(
Xc

.
= C ∧ C1θ

.
= C ′θ ∧Kθ

)
,

where C2 is strict, Xc /∈ var(C), C1 6= ◦, and θ = {Xc 7→ C}.

Finally, there are two rules for function variable elimination. Their behavior is standard:

(E9) Xf (̃s1) ' F (̃s2) ∧K ; Xf
.
= F ∧ F (̃s1)θ

.
= F (̃s2)θ ∧Kθ.

where Xf 6= F , θ = {Xf 7→ F}, and s̃1 6= d e or s̃2 6= d e.

(E10) Xf (̃s1) ' Xf (̃s2) ∧K ;
∨
f∈F

(
Xf

.
= f ∧ f (̃s1)θ

.
= f (̃s2)θ ∧Kθ

)
,

FCUP 43

3.5. Solved and Partially Solved Constraints 999.

where θ = {Xf 7→ f}, and s̃1 6= s̃2.

We denote the set of rules (E1)–(E10) by Elim.

3.5 Solved and Partially Solved Constraints

We say a variable is solved in a conjunction of primitive constraints K = c1 ∧ · · · ∧ cn, if

there is a ci, 1 ≤ i ≤ n, such that

• the variable is X, ci is X
.
= t, and X occurs neither in t nor elsewhere in K, or

• the variable is x, ci is x
.
= s̃, and x occurs neither in s̃ nor elsewhere in K, or

• the variable is Xf , ci is Xf
.
= F and Xf occurs neither in F nor elsewhere in K, or

• the variable is Xc, ci is Xc
.
= C, and Xc occurs neither in C nor elsewhere in K, or

• the variable is X, ci is X in f(RS) and X does not occur in membership constraints

elsewhere in K, or

• the variable is x, ci is x in RS, x does not occur in membership constraints elsewhere

in K and RS has the form RS1.RS2 or RS∗1, or

• the variable is Xc, ci is Xc in RC, Xc does not occur in membership constraints

elsewhere in K and RC has the form RC1 · RC2, RC∗1, or f(RS1, C,RS2).

In this case we also say that ci is solved in K. Moreover, K is called solved if for any

1 ≤ i ≤ n, ci is solved in it. K is partially solved , if for any 1 ≤ i ≤ n, ci is solved in K, or

has one of the following forms:

• Membership atom:

– fu(̃s1, x, s̃2) in fu(RS).

– Xc(t) in f(RS).

– dx, s̃e in RS where RS has a form RS1.RS2 or RS′∗.

– Xc(C) in RC where RC has a form either RC1 · RC2, RC?1, or f(RS1,RC′,RS2),

where RC′ 6= •.

44 FCUP

999. 3. Constraint Solving

• Equation:

– dx, s̃1e
.
= dy, s̃2e where x 6= y, s̃1 6= d e and s̃2 6= d e.

– dx, s̃1e
.
= d̃s, y, s̃2e, where s̃ is a sequence of terms, x 6∈ var (̃s), s̃1 6= d e, and

s̃ 6= d e. The variables x and y are not necessarily distinct.

– fu(̃s1, x, s̃2)
.
= fu(̃s3, y, s̃4) where d̃s1, x, s̃2e and d̃s3, y, s̃4e are disjoint.

– Xc(t)
.
= r where r 6= Xc(t

′) contains individual, context or sequence variables,

– Xc(C1)
.
= C2 where C2 6= Xc(C3) and C2 is not strict.

A constraint is solved, if it is either true or a non-empty quantifier-free disjunction of solved

conjunctions. A constraint is partially solved, if it is either true or a non-empty quantifier-free

disjunction of partially solved conjunctions.

3.6 The Algorithm

In this section we present an algorithm that converts a constraint with respect to rules

specified in the Section3.4 into a partially solved one. First, we define the rewrite step

step := first(Log, Fail, Del, Dec, Elim, Memb).

When applied to a constraint, step transforms it by the first applicable rule of the solver,

looking successively into the sets Log, Fail, Del, Dec, Elim, and Memb.

The constraint solving algorithm implements the strategy solve which is defined as a repeat-

edly application of the step:

solve := NF(step).

That means, step is applied to a constraint repeatedly as long as possible. It remains to

show that this definition yields an algorithm, which amounts to proving that a normal form

is reached by NF(step) for any constraint C.

FCUP 45

3.7. Properties of the Constraint Solver 999.

3.7 Properties of the Constraint Solver

Termination. We prove that the solver halts for any input constraint.

Theorem 3.2. solve terminates on any input constraint.

Proof. We define a complexity measure cm(C) for quantifier-free constraints in DNF, and

show that cm(C′) < cm(C) holds whenever C′ = step(C).

For a sequence s̃ and for a context C (resp. regular sequence expression RS and regular

context expression RC), we denote by size (̃s) and by size(C) (resp. by size(RS) and by

size(RC)) its denotational length, e.g., size(eps) = 1, size(◦) = 1, size(Xc(f(a)), Xf(x)) =

5, size(Xf(fo(a), f(◦), b, x)) = 7, size(f(f(a.b∗))) = 6, and size(f(a, f(•, b)?, a|b)) = 9.

The complexity measure cm(K) of a conjunction of primitive constraints K is the tuple

〈N1,M1, N2,M2,M3〉 defined as follows ({||} stands for a multiset):

• N1 is the number of unsolved variables in K.

• M1 := {|size (̃s) | s̃ in RS ∈ K, s̃ 6= d e|}] {|size(C) | C in RC ∈ K, C 6= ◦|}.

• N2 is the number of primitive constraints in the form x in RS in K .

• M2 := {|size(RS)) | s̃ in RS ∈ K|}] {|size(RC) | C in RC ∈ K|}.

• M3 := {|size(t1) + size(t2) | t1
.
= t2 ∈ K|}] {|size(C1) + size(C2) | C1

.
= C2 ∈ K|}.

Where] stands for multiset union.

The complexity measure cm(C) of a constraint C = K1 ∨ · · · ∨ Kn is defined as a multiset
{|cm(K1), . . . , cm(Kn)|}. Measures are compared by multiset extension of the lexicographic
ordering on tuples. The Log rules strictly reduce the measure. For the other rules, the table
below shows which rule reduces which component of the measure, which implies termination
of the algorithm solve.

Rule N1 M1 N2 M2 M3

(E1)-(E10),(MS1),(MS9),(MC1),(MC10) >

(F10)-(F13),(MS2),(MS3),(MS8),(MS10),(MS11),(MC2),(MC3),(MC8),(MC9) ≥ >

(MS12) ≥ ≥ >

(F8),(F9),(MS4)-(MS7),(MC4)-(MC7) ≥ ≥ ≥ >

(F1)-(F7),Dec,Del ≥ ≥ ≥ ≥ >

46 FCUP

999. 3. Constraint Solving

Soundness and Partial Completeness. Here we show that the solver reduces a con-

straint to its equivalent constraint.

Lemma 3.3. If step(C) = D, then I |= ∀
(
C⇔ ∃var(C)D

)
for all intended structures I.

Proof. By case distinction on the inference rules of the solver, selected by the strategy first

in the application of step. We illustrate here two cases, when the selected rules are (E5)

and (MS2). For other rules the lemma can be shown in a similar manner. In (E5), C has a

disjunct K = (x, s̃1)
.
= s̃2 ∧ K′ where s̃2 is a sequence of terms, x 6∈ var (̃s2), and D is the

result of replacing K in C with the disjunction C′ =
∨

s̃2=(̃s′ ,̃s′′)(x
.
= s̃ ′ ∧ s̃1θ

.
= s̃ ′′ ∧ K′θ)

where θ = {x 7→ s̃ ′}. Therefore, it is sufficient to show that I |= ∀(K ⇔ ∃var(C)C′). Since

var(C′) = var(K), this amounts to show that for all ground substitutions ρ of var(K) we

have I |= (xρ, s̃1ρ)
.
= s̃2ρ ∧K′ρ iff I |= (

∨
s̃2=(̃s′ ,̃s′′)(x

.
= s̃ ′ ∧ s̃1θ

.
= s̃ ′′ ∧K′θ))ρ.

• Assume I |= (xρ, s̃1ρ)
.
= s̃2ρ ∧ K′ρ. We can split s̃2ρ into s̃ ′ρ and s̃ ′′ρ such that

xρ = s̃ ′ρ and s̃1ρ = s̃ ′′ρ. Now, we show vθρ = vρ for all v ∈ var(x, s̃1, s̃2). Indeed,

if v 6= x, the equality trivially holds. If v = x, we have xθρ = s̃ ′ρ = xρ. Hence,

I |= (
∨

s̃2=(̃s′ ,̃s′′)(x
.
= s̃ ′ ∧ s̃1θ

.
= s̃ ′′ ∧K′θ))ρ.

• Assume I |= (
∨

s̃2=(̃s′ ,̃s′′)(x
.
= s̃ ′ ∧ s̃1θ

.
= s̃ ′′ ∧ K′θ))ρ. Then there exists the split

s̃2 = (̃s ′, s̃ ′′) such that I |= (xρ
.
= s̃ ′ρ ∧ s̃1θρ

.
= s̃ ′′ρ ∧ K′θρ). Again, we can show

vθρ = vρ for all v ∈ var(x, s̃1, s̃2). Hence, I |= (xρ, s̃1ρ) = s̃2ρ ∧K′ρ.

Now, let the selected rule be (MS2). C has a disjunct K = (t, s̃) in RS ∧ K′ with s̃ 6= d e

and RS 6= eps. Then D is the result of replacing K in C with C′ =
∨

(f(RS1),RS2)∈lfs(RS)(t in

f(RS1) ∧ s̃ in RS2 ∧K′). Therefore, to show I |= ∀(C⇔ ∃var(C)D), it is enough to show that

I |= ∀(K⇔ ∃var(C)C′). Since var(C′) = var(K), this amounts to showing that for all ground

substitutions ρ of var(K) we have I |= (tρ, s̃ρ) in RS ∧K′ρ iff I |= (
∨

(f(RS1),RS2)∈lfs(RS)(t in

f(RS1) ∧ s̃ in RS2 ∧K′))ρ.

• Assume I |= (tρ, s̃ρ) in RS ∧K′ρ. Proposition 5 of [Ant96] can be easily extended for

regular sequence expressions, obtaining the following statement: For all RS, [[RS]] =

o(RS) ∪ [[lfs(RS)]], where [[lfs(RS)]] =
⋃
〈f(RS1),RS2〉∈lfs(RS)[[f(RS1).RS2]], and o(RS) is

defined as follows: If d e ∈ [[RS]], then o(RS) = {d e}, otherwise o(RS) = ∅. Then I |=

(tρ, s̃ρ) in RS ∧K′ρ implies I |= (tρ, s̃ρ) in lfs(RS) ∧K′ρ by the definitions of intended

structures and entailment. Hence, we can conclude I |= (
∨

(f(RS1),RS2)∈lfs(RS)(tρ in

f(RS1) ∧ s̃ρ in RS2 ∧K′ρ)).

FCUP 47

3.8. Solving Constraints in Special Forms 999.

• Assume I |= (
∨

(f(RS1),RS2)∈lfs(RS)(tρ in f(RS1) ∧ s̃ρ in RS2 ∧ K′ρ)). Then we have

I |= (tρ, s̃ρ) in lfs(RS) ∧ K′ρ. By the extended version of Proposition 5 of [Ant96],

stated in the previous item, we can conclude I |= (tρ, s̃ρ) in RS ∧K′ρ.

Theorem 3.4. If solve(C) = D, then I |= ∀
(
C ⇔ ∃var(C)D

)
for all intended structures I,

and D is either partially solved or the false constraint.

Proof. I |= ∀
(
C ⇔ ∃var(C)D

)
follows from Lemma 3.3 and the following property: If I |=

∀
(
C1 ⇔ ∃var(C1)C2

)
and I |= ∀

(
C2 ⇔ ∃var(C2)C3

)
, then I |= ∀

(
C1 ⇔ ∃var(C1)C3

)
. The

property itself relies on the fact that I |= ∀
(
∃var(C1)∃var(C2)C3 ⇔ ∃var(C1)C3

)
, which holds

because all variables introduced by the rules of the solver in C3 are fresh not only for C2, but

also for C1.

As for the partially solved constraint, by the definition of solve and Theorem 3.2, D is in a

normal form. Assume by contradiction that it is not partially solved. By inspection of the

solver rules, based on the definition of partially solved constraints, we can see that there is

a rule that applies to D. But this contradicts the fact that D is in a normal form. Hence, D

is partially solved.

Theorem 3.5. If the constraint D is solved, then I |= ∃D for all intended structures I.

Proof. Since D is solved, each disjunct K in it has a form v1
.
= e1 ∧ · · · ∧ vn

.
= en ∧

v′1 in R1 ∧ · · · ∧ v′m in Rm where m,n ≥ 0, vi, v
′
j ∈ VISFC and ei is an expression corresponding

to vi. Moreover, v1, . . . , vn, v
′
1, . . . , v

′
m are distinct and [[Rj]] 6= ∅ for all 1 ≤ j ≤ m. Assume

ρ′i is a grounding substitution for ei for all 1 ≤ i ≤ n, and let e′j be an element of [[Rj]] for

all 1 ≤ j ≤ m. Then ρ = {v1 7→ e1ρ
′
1, . . . , vn 7→ enρ

′
n, v
′
1 7→ e′1, . . . , v

′
m 7→ e′m} solves K.

Therefore, I |= ∃D holds.

3.8 Solving Constraints in Special Forms

As we have seen in the previous section, not all the constraints can be reduced to a solved

form or to false. Therefore, it is interesting to find certain special cases, for which our solver

is complete. This is the problem we address in this section, considering two such fragments:

well-moded and KIF constraints.

48 FCUP

999. 3. Constraint Solving

3.8.1 Well-Moded Constraints

First, we define the notion of well-moded [DFKM14, KM06] sequence of primitive constraints.

Later this notion will be generalized to sequences of arbitrary literals and will be used in the

context of constraint logic programming.

A sequence of primitive constraints c1, . . . , cn is well-moded if the following conditions are

satisfied:

a) If for some 1 ≤ i ≤ n, ci is t1
.
= t2, then var(t1) ⊆

⋃i−1
j=1 var(cj) or var(t2) ⊆⋃i−1

j=1 var(cj).

b) If for some 1 ≤ i ≤ n, ci is C1
.
= C2, then var(C1) ⊆

⋃i−1
j=1 var(cj) or var(C2) ⊆⋃i−1

j=1 var(cj).

c) If for some 1 ≤ i ≤ n, ci is a membership primitive constraint, then the inclusion

var(ci) ⊆
⋃i−1
j=1 var(cj) holds.

A conjunction of primitive constraints K is well-moded if there exists a sequence of prim-

itive constraints c1, . . . , cn which is well-moded and K =
∧n
i=1 ci modulo associativity and

commutativity of ∧. A constraint C = K1 ∨ · · · ∨Kn is well-moded if each Ki, 1 ≤ i ≤ n, is

well-moded.

A remarkable property of well-moded constraints is that the solver can bring them to a

solved form or to false. To show it, we first need to prove the following lemma:

Lemma 3.6. Let C be a well-moded constraint and step(C) = C′, then C′ is either well-moded,

true or false.

Proof. Let C = K1 ∨ · · · ∨Kn be a well-moded constraint. By Theorem 3.4, C′ is either false

or a partially solved constraint (which can be also true, in particular). Assume C′ is neither

true nor false. By the definition of well-modedness, each Ki, 1 ≤ i ≤ n, is well-moded. We

have to show that well-modedness is preserved by each rule of the solver used to perform the

step. In fact, the only nontrivial cases are transformations by the variable elimination rules.

For illustration, assume Ki = dx, s̃1e
.
= s̃2 ∧K′i, where s̃2 is a nonempty sequence of terms,

x /∈ var (̃s2), and we want to show that step(Ki) is well-moded. Then the step is performed

FCUP 49

3.8. Solving Constraints in Special Forms 999.

by the (E5) rule: step(dx, s̃1e
.
= s̃2 ∧ K′i) =

∨
s̃2=d̃s′ ,̃s′′e

(
x
.
= s̃ ′ ∧ s̃1θ

.
= s̃ ′′ ∧ K′iθ

)
, where

θ = {x 7→ s̃ ′}.

By the definition of well-modedness, we can assume c1, . . . , cj−1, dx, s̃1e
.
= s̃2, cj+1, . . . , cn

is a well-moded sequence of primitive constraints, obtained by permutation of primitive

constraints taken from dx, s̃1e
.
= s̃2∧K′i. For brevity, let c̃1 stand for the sequence c1, . . . , cj−1

and c̃2 for cj+1, . . . , cn. Then well-modedness of c̃1, dx, s̃1e
.
= s̃2, c̃2 implies that we have

var(dx, s̃1e) ⊆ var(c̃1) or var (̃s2) ⊆ var(c̃1). We will show that the sequence c̃1θ, x
.
= s̃ ′,

s̃1θ
.
= s̃ ′′, c̃2θ is well-moded.

First, assume var(dx, s̃1e) ⊆ var(c̃1). It implies that c̃1 is not empty. Since x /∈ var (̃s2),

s̃2 = d̃s ′, s̃ ′′e, and θ = {x 7→ s̃ ′}, we have var (̃s ′) ⊆ var(c̃1θ). Also, var (̃s1θ) = var (̃s1) ∪

var (̃s ′) \ {x} ⊆ var(c̃1θ) and var(c̃2θ) = var(c̃2) ∪ var (̃s ′) \ {x}. Therefore, we have that

c̃1θ, x
.
= s̃ ′, s̃1θ

.
= s̃ ′′, c̃2θ is well-moded in this case.

Now assume var (̃s2) ⊆ var(c̃1). Then we have var (̃s2) ⊆ var(c̃1θ), because var(c̃1θ) =

var(c̃1) \ {x} and x /∈ var (̃s2). Then we get var (̃s ′) ⊆ var(c̃1θ) and var (̃s ′′) ⊆ var(c̃1θ),

which implies well-modedness of c̃1θ, x
.
= s̃ ′, s̃1θ

.
= s̃ ′′, c̃2θ also in this case.

Note that the sequence c̃1θ, x
.
= s̃ ′, s̃1θ

.
= s̃ ′′, c̃2θ is a permutation of a disjunct of constraints

taken from step(Ki), as we obtained it by the rule (E5). Since we considered an arbitrary

split of s̃2, we actually proved that step(Ki) is well-moded.

The reasoning is similar, when the selected primitive constraint has the form on which some

other rule of the solver works. We do not consider each of those cases here.

Hence, from the well-modedness of Ki we proved the well-modedness of step(Ki) (when it

is neither true nor false). From this, we conclude that the well-modedness of C implies the

well-modedness of step(C), when the latter is neither true nor false.

Theorem 3.7. Let C be a well-moded constraint and solve(C) = C′, where C′ 6= false. Then

C′ is solved.

Proof. From Lemma 3.6, by simple induction we get that if C′ 6= false, then it is either

true or well-moded. true is already solved. Consider the case when C′ is well-moded. Let

C′ = K1 ∨ · · · ∨ Km. Since C′ 6= false, by Theorem 3.4 C′ is partially solved. So, each Kj ,

1 ≤ j ≤ m, is partially solved and well-moded. By definition, Kj is well-moded if there exists

a permutation of its literals c1, . . . , ci, . . . , cn which satisfies the well-modedness property.

50 FCUP

999. 3. Constraint Solving

Assume c1, . . . , ci−1 are solved. By this assumption and the definition of well-modedness,

each of c1, . . . , ci−1 is an equation whose one side is a variable that occurs neither in its other

side nor in any other primitive constraint. Then well-modedness of Kj guarantees that the

other side of these equations are ground terms. Assume by contradiction that ci is partially

solved, but not solved. If ci is a membership constraint, well-modedness of Kj implies that

ci does not contain variables and, therefore, can not be partially solved. Now let ci be an

equation. Since all variables in c1, . . . , ci−1 are solved, they can not appear in ci. From this

fact and well-modedness of Kj , ci should have at least one ground side. But then it can not

be partially solved. The obtained contradiction shows that C′ is solved.

Example 3.8. Let C = Xc(gu(x, y))
.
= fo(b, gu(a, gu)) ∧Xc in fo(b

∗, •) ∧ x in a∗. Then solve

performs the following derivation (the subscript {Rule1, . . . ,Rulen} of ; specifies which set

of rules are applied in the transformation):

C ;{Elim}Xc
.
= ◦ ∧ gu(x, y) = fo(b, gu(a, gu)) ∧Xc in fo(b

∗, •) ∧ x in a∗∨

Xc
.
= fo(◦, gu(a, gu)) ∧ gu(x, y) = b ∧Xc in fo(b

∗, •) ∧ x in a∗∨

Xc
.
= fo(b, ◦) ∧ gu(x, y) = gu(a, gu) ∧Xc in fo(b

∗, •) ∧ x in a∗∨

Xc
.
= fo(b, gu(◦, gu)) ∧ gu(x, y) = a ∧Xc in fo(b

∗, •) ∧ x in a∗∨

Xc
.
= fo(b, gu(a, ◦)) ∧ gu(x, y) = gu ∧Xc in fo(b

∗, •) ∧ x in a∗

;{Fail}Xc
.
= fo(b, ◦) ∧ gu(x, y) = gu(a, gu) ∧Xc in fo(b

∗, •) ∧ x in a∗∨

Xc
.
= fo(b, gu(a, ◦)) ∧ gu(x, y) = gu ∧Xc in fo(b

∗, •) ∧ x in a∗

;{Elim}Xc
.
= fo(b, ◦) ∧ gu(x, y) = gu(a, gu) ∧ fo(b, ◦) in fo(b

∗, •) ∧ x in a∗∨

Xc
.
= fo(b, gu(a, ◦)) ∧ gu(x, y) = gu∧

fo(b, gu(a, ◦)) in fo(b
∗, •) ∧ x in a∗

;{Memb,Log}Xc
.
= fo(b, ◦) ∧ gu(x, y) = gu(a, gu) ∧ x in a∗∨

Xc
.
= fo(b, gu(a, ◦)) ∧ gu(x, y) = gu∧

fo(b, gu(a, ◦)) in fo(b
∗, •) ∧ x in a∗

;{Memb,Fail}Xc
.
= fo(b, ◦) ∧ gu(x, y) = gu(a, gu) ∧ x in a∗

;{Dec}Xc
.
= fo(b, ◦) ∧ dx, ye = da, gue ∧ x in a∗∨

Xc
.
= fo(b, ◦) ∧ dx, ye = dgu, ae ∧ x in a∗

;{Elim}Xc
.
= fo(b, ◦) ∧ x = d e ∧ y = da, gue ∧ x in a∗∨

Xc
.
= fo(b, ◦) ∧ x = a ∧ y = gu ∧ x in a∗∨

FCUP 51

3.8. Solving Constraints in Special Forms 999.

Xc
.
= fo(b, ◦) ∧ x = da, gue ∧ y = d e ∧ x in a∗∨

Xc
.
= fo(b, ◦) ∧ x = d e ∧ y = dgu, ae ∧ x in a∗∨

Xc
.
= fo(b, ◦) ∧ x = gu ∧ y = a ∧ x in a∗∨

Xc
.
= fo(b, ◦) ∧ x = dgu, ae ∧ y = d e ∧ x in a∗

;{Elim,Memb,Fail,Log}Xc
.
= fo(b, ◦) ∧ x = d e ∧ y = da, gue∨

Xc
.
= fo(b, ◦) ∧ x = a ∧ y = gu∨

Xc
.
= fo(b, ◦) ∧ x = d e ∧ y = dgu, ae

The obtained constraint is solved.

3.8.2 Constraints in the form of Knowledge Interchange Format (KIF)

A simple term is in the KIF form (KIF-term) if it does not contain context variables,

sequence variables occur only below ordered function symbols,∗ and they occupy only the last

argument position in each subterm where they appear. For example, the term fo(X, fo(a, x),

fu(X, b), x) is in the KIF form, while fo(x, a, x), fu(X, fo(a, x), fu(X, b), x), and fo(Xc(X), x)

are not. This fragment originates the language of Knowledge Interchange Format [Gen98],

where sequence variables are subject of this restriction.

A sequence (̃s, t) is in the KIF form, if s̃ is a sequence of KIF-terms and t is either a KIF-term

or a sequence variable. A primitive constraint t1
.
= t2 is in the KIF-form if t1 and t2 are in

the KIF-form, and a membership atom s̃ in RS is in the KIF-form, if s̃ is a KIF-sequence.

The notion of KIF form extends naturally to constraints and states, requiring their literals

should be in the KIF form.

Theorem 3.9. Let C be a KIF-constraint and solve(C) = C′, where C′ 6= false. Then C′ is

solved.

Proof. Note that for KIF-constraints, solve does not use rules that transform context equa-

tions and context membership constraints. solve also never uses the rules (E5), (E6), and

(MS3). As for the other ones, it is easy to see that one of them necessarily applies to a

constraint which is not solved. Hence, at the end we either get false or a solved constraint.

∗If the language does not contain unordered function symbols, then sequence variables are permitted under
function variables as well.

52 FCUP

999. 3. Constraint Solving

We illustrate how to solve a simple KIF constraint:

Example 3.10. Let C = fo(X,x)
.
= fo(go(y), a, y) ∧ x in a∗ ∧ y in a.a(b∗)∗. Then solve

performs the following derivation:

C ;{Dec,Elim}X
.
= go(y) ∧ x .

= da, ye ∧ da, ye in a∗ ∧ y in a.a(b∗)∗

;{Memb,Log} X
.
= go(y) ∧ x .

= da, ye ∧ y in a∗ ∧ y in a.a(b∗)∗

;{Memb} X
.
= go(y) ∧ x .

= da, ye ∧ y in a.a∗

The obtained constraint is solved.

4. Constraint Logic Programming for

Sequences and Contexts

4.1 Introduction

Constraint logic programming (CLP) [JM94, JMMS98] extends logic programming by gener-

alizing the term equations of logic programming to constraints from a given domain. In this

chapter we present constraint logic programming over the domain of sequences and contexts,

CLP(SC). That means, we integrate the constraint solving algorithm studied in the previous

chapter into the constraint logic programming schema to obtain CLP(SC). We describe the

declarative and operational semantics of CLP(SC) and identify two fragments of programs

which give rise to well-moded and KIF constraints.

4.2 CLP(SC) Programs

A CLP(SC) program is a finite set of clauses of the form ∀(L1 ∧ · · · ∧ Ln → A), usually

written as A← L1, . . . ,Ln, where A is an atom and L1, . . . ,Ln are literals (n ≥ 0). A query

is a formula of the form ∃(L1 ∧ · · · ∧ Ln), n ≥ 0, usually written as L1, . . . ,Ln.

Given a program P, its Herbrand base BP is, naturally, the set of all atoms p(t1, . . . , tn),

where p is an n-ary user-defined predicate in P and dt1, . . . , tne ∈ Ts(F)n. Then an intended

interpretation of P corresponds uniquely to a subset of BP. An intended model of P is an

intended interpretation of P that is its model.

As usual, we will write P |= G if G is a query which holds in every model of P. Since our

programs consist of positive clauses, the following facts hold:

53

54 FCUP

999. 4. Constraint Logic Programming for Sequences and Contexts

a) Every program P has a least HC-model, which we denote by lm(P,HC).

b) If G is a query then P |= G iff lm(P,HC) is a model of G.

Bellow, for illustration we give two CLP(SC) program examples: implementation of the

general rewriting and recursive path ordering with status.

Example 4.1. The general rewriting mechanism can be implemented with one CLP(SC)

clauses: rewrite(Xc(X), Xc(Y)) ← rule(X,Y). It is assumed that there are clauses which

define the rule predicate. The rewrite clause says a term Xc(X) can be rewritten to Xc(Y)

if there is a rule such that rule(X,Y) succeeds.

An example of the definition of the rule predicate is

rule(Xf(x1, x2), Xf(y))← x1 in fo(a
∗).b∗, x1

.
= dX, ze, y .

= dX, fo(z)e,

where the constraint x1 in fo(a
∗).b∗ requires x1 to be instantiated by sequences from the

language generated by the regular sequence expression fo(a
∗).b∗ (that is, from the language

{fo, fo(a), fo(a, a), . . . , (fo, b), (fo(a), b), . . . , (fo(a, . . . , a), b, . . . , b), . . .}).

With this program, the query ← rewrite(fo(fo(fo(a, a), b)), X) has two answers: {X 7→

fo(fo(fo(a, a), fo))} and {X 7→ fo(fo(fo(a, a), fo(b)))}.

Example 4.2. The recursive path ordering (rpo) >rpo is a well-known term ordering [Der82]

used to prove termination of rewriting systems. Its definition is based on a precedence order

� on function symbols, and on extensions of >rpo from terms to tuples of terms. There are

two kinds of extensions: lexicographic >lex
rpo, when terms in tuples are compared from left to

right, and multiset >mul
rpo , when terms in tuples are compared disregarding the order. The

status function τ assigns to each function symbol either lex or mul status. Then for all

(ranked) terms r, t, we define r >rpo t, if r = f(r1, . . . , rm) and

a) either ri = t or ri >rpo t for some ri, 1 ≤ i ≤ m, or

b) t = g(t1, . . . , tn), r >rpo ti for all i, 1 ≤ i ≤ n, and either

i) f � g, or (b) f = g and (r1, . . . , rn) >
τ(f)
rpo (t1, . . . , tn).

To implement this definition in CLP(SC), we use the predicate rpo for >rpo between two

terms, and four helper predicates: rpo all to implement the comparison r >rpo ti for all

FCUP 55

4.2. CLP(SC) Programs 999.

i; prec to implement the comparison depending on the precedence; ext to implement the

comparison with respect to an extension of >rpo; and status to give the status of a function

symbol. The predicate lex implements >lex
rpo and mul implements >mul

rpo . The symbol fo

is an unranked ordered function symbol taken from Fo, and fu is an unordered unranked

function symbol taken from Fu. We write both symbols in infix notation. As one can see,

the implementation is rather straightforward and closely follows the definition. >rpo requires

four clauses, since there are four alternatives in the definition:

1. rpo(Xf(x ,X , y),X). rpo(Xf(x ,X , y),Y)← rpo(X ,Y).

2a. rpo(Xf(x),Yf(y))← rpo all(Xf(x), fo(y)), prec(Xf ,Yf).

2b. rpo(Xf(x),Xf(y))← rpo all(Xf(x), fo(y)), ext(Xf(x),Xf(y)).

rpo all is implemented with recursion:

rpo all(X , fo). rpo all(X , fo(Y , y))← rpo(X ,Y), rpo all(X , fo(y)).

The definition of prec as an ordering on finitely many function symbols is straightforward.

More interesting is the definition of ext:

ext(Xf(x),Xf(y))← status(Xf , lex), lex (fo(x), fo(y)).

ext(Xf(x),Xf(y))← status(Xf ,mul),mul(fu(x), fu(y)).

The predicate status can be given as a set of facts, lex needs one clause, and mul requires

three:

lex (fo(x ,X , y), fo(x ,Y , z))← rpo(X ,Y).

mul(fu(X , x), fu). mul(fu(X , x), fu(X , y))← mul(fu(x), fu(y)).

mul(fu(X , x), fu(Y , y))← rpo(X ,Y), mul(fu(X , x), fu(y)).

That’s all. This examples illustrates the benefits of all four kinds of variables we have and

unordered function symbols.

56 FCUP

999. 4. Constraint Logic Programming for Sequences and Contexts

4.3 Operational Semantics

In this section we describe the operational semantics of CLP(SC), following the approach

for the CLP schema given in [JMMS98]. A state is a pair 〈G ‖ C〉, where G is the

sequence of literals and C = K1 ∨ · · · ∨ Kn, where each of the K’s are conjunctions of

true, false, and primitive constraints. The definition of an atom p(t1, . . . , tm) in program

P, defnP(p(t1, . . . , tm)), is the set of rules in P such that the head of each rule has a form

p(r1, . . . , rm). We assume that defnP each time returns fresh variants. We also assume that

� denotes the empty sequence of literals (understood as the empty conjunction).

A state 〈L1, . . . ,Ln ‖ C〉 can be reduced with respect to P as follows: Select a literal Li. Then:

• If Li is true or a primitive constraint literal and solve(C∧Li) 6= false, then it is reduced

to 〈L1, . . . ,Li−1,Li+1, . . . ,Ln ‖ solve(C ∧ Li)〉.

• If Li is true or false or a primitive constraint literal and solve(C∧Li) = false, then it is

reduced to 〈� ‖ false〉.

• If Li is an atom p(t1, . . . , tm), then it is reduced to

〈L1, . . . ,Li−1, t1
.
= r1, . . . , tm

.
= rm,B,Li+1, . . . ,Ln ‖ C〉

for some (p(r1, . . . , rm)← B) ∈ defnP(Li).

• If Li is a atom and defnP(Li) = ∅, then it is reduced to 〈� ‖ false〉.

A derivation from a state S in a program P is a finite or infinite sequence of states S0 �

S1 � · · · � Sn � · · · where S0 is S and there is a reduction from each Si−1 to Si, using

rules in P. A derivation from a query G in a program P is a derivation from 〈G ‖ true〉. The

length of a (finite) derivation of the form S0� S1� · · ·� Sn is n. A derivation is finished

if the last query cannot be reduced, that is, if its last state is of the form 〈� ‖ C〉 where C is

partially solved or false. If C is false, the derivation is said to be failed .

Example 4.3. Consider again the program given in Example 4.1. One of the finished

derivations from the query ← rewrite(fo(fo(fo(a, a), b)), X) is the following:

〈rewrite(fo(fo(fo(a, a), b)), X) ‖ true〉�

〈Xc0(X0)
.
= fo(fo(fo(a, a), b)), Xc0(Y0)

.
= X, rule(X0, Y0) ‖ true〉�

FCUP 57

4.3. Operational Semantics 999.

〈Xc0(Y0)
.
= X, rule(X0, Y0) ‖

Xc0
.
= ◦ ∧X0

.
= fo(fo(fo(a, a), b))∨

Xc0
.
= fo(◦) ∧X0

.
= fo(fo(a, a), b)∨

Xc0
.
= fo(fo(◦, b)) ∧X0

.
= fo(a, a)∨

Xc0
.
= fo(fo(fo(a, a), ◦)) ∧X0

.
= b∨

Xc0
.
= fo(fo(fo(◦, a), b)) ∧X0

.
= a∨

Xc0
.
= fo(fo(fo(a, ◦), b)) ∧X0

.
= a〉�

〈rule(X0, Y0) ‖

Y0
.
= X ∧Xc0

.
= ◦ ∧X0

.
= fo(fo(fo(a, a), b))∨

fo(Y0)
.
= X ∧Xc0

.
= fo(◦) ∧X0

.
= fo(fo(a, a), b)∨

fo(fo(Y0, b))
.
= X ∧Xc0

.
= fo(fo(◦, b)) ∧X0

.
= fo(a, a)∨

fo(fo(fo(a, a), Y0))
.
= X ∧Xc0

.
= fo(fo(fo(a, a), ◦)) ∧X0

.
= b∨

fo(fo(fo(Y0, a), b))
.
= X ∧Xc0

.
= fo(fo(fo(◦, a), b)) ∧X0

.
= a∨

fo(fo(fo(a, Y0), b))
.
= X ∧Xc0

.
= fo(fo(fo(a, ◦), b)) ∧X0

.
= a〉�

〈X0
.
= Xf(x1, x2), Y0

.
= Xf(y), x1 in fo(a

∗).b∗, x1
.
= (X ′, z), y

.
= (X ′, fo(z)) ‖

Y0
.
= X ∧Xc0

.
= ◦ ∧X0

.
= fo(fo(fo(a, a), b))∨

fo(Y0)
.
= X ∧Xc0

.
= fo(◦) ∧X0

.
= fo(fo(a, a), b)∨

fo(fo(Y0, b))
.
= X ∧Xc0

.
= fo(fo(◦, b)) ∧X0

.
= fo(a, a)∨

fo(fo(fo(a, a), Y0))
.
= X ∧Xc0

.
= fo(fo(fo(a, a), ◦)) ∧X0

.
= b∨

fo(fo(fo(Y0, a), b))
.
= X ∧Xc0

.
= fo(fo(fo(◦, a), b)) ∧X0

.
= a∨

fo(fo(fo(a, Y0), b))
.
= X ∧Xc0

.
= fo(fo(fo(a, ◦), b)) ∧X0

.
= a〉�

〈Y0
.
= Xf(y), x1 in fo(a

∗).b∗, x1
.
= (X ′, z), y

.
= (X ′, fo(z)) ‖

Y0
.
= X ∧Xc0

.
= ◦ ∧Xf

.
= fo ∧ x1

.
= fo(fo(a, a), b) ∧ x2

.
= d e∨

Y0
.
= X ∧Xc0

.
= ◦ ∧Xf

.
= fo ∧ x1

.
= d e ∧ x2

.
= fo(fo(a, a), b)∨

fo(Y0)
.
= X ∧Xc0

.
= fo(◦) ∧Xf

.
= fo ∧ x1

.
= d e ∧ x2

.
= dfo(a, a), be∨

fo(Y0)
.
= X ∧Xc0

.
= fo(◦) ∧Xf

.
= fo ∧ x1

.
= fo(a, a) ∧ x2

.
= b∨

fo(Y0)
.
= X ∧Xc0

.
= fo(◦) ∧Xf

.
= fo ∧ x1

.
= dfo(a, a), be ∧ x2

.
= d e∨

fo(fo(Y0, b))
.
= X ∧Xc0

.
= fo(fo(◦, b)) ∧Xf

.
= fo ∧ x1

.
= d e ∧ x2

.
= da, ae∨

fo(Y0)
.
= X ∧Xc0

.
= fo(◦) ∧Xf

.
= fo ∧ x1

.
= a ∧ x2

.
= a∨

58 FCUP

999. 4. Constraint Logic Programming for Sequences and Contexts

fo(Y0)
.
= X ∧Xc0

.
= fo(◦) ∧Xf

.
= fo ∧ x1

.
= da, ae ∧ x2

.
= d e∨

fo(fo(fo(a, a), Y0))
.
= X ∧Xc0

.
= fo(fo(fo(a, a), ◦)) ∧Xf

.
= b ∧ x1

.
= d e ∧ x2

.
= d e∨

fo(fo(fo(Y0, a), b))
.
= X ∧Xc0

.
= fo(fo(fo(◦, a), b)) ∧Xf

.
= a ∧ x1

.
= d e ∧ x2

.
= d e∨

fo(fo(fo(a, Y0), b))
.
= X ∧Xc0

.
= fo(fo(fo(a, ◦), b)) ∧Xf

.
= a ∧ x1

.
= d e ∧ x2

.
= d e〉�

〈x1 in fo(a
∗).b∗, x1

.
= (X ′, z), y

.
= (X ′, fo(z)) ‖

fo(y)
.
= X ∧Xc0

.
= ◦ ∧Xf

.
= fo ∧ x1

.
= fo(fo(a, a), b) ∧ x2

.
= d e∨

fo(y)
.
= X ∧Xc0

.
= ◦ ∧Xf

.
= fo ∧ x1

.
= d e ∧ x2

.
= fo(fo(a, a), b)∨

fo(fo(y))
.
= X ∧Xc0

.
= fo(◦) ∧Xf

.
= fo ∧ x1

.
= d e ∧ x2

.
= dfo(a, a), be∨

fo(fo(y))
.
= X ∧Xc0

.
= fo(◦) ∧Xf

.
= fo ∧ x1

.
= fo(a, a) ∧ x2

.
= b∨

fo(fo(y))
.
= X ∧Xc0

.
= fo(◦) ∧Xf

.
= fo ∧ x1

.
= dfo(a, a), be ∧ x2

.
= d e∨

fo(fo(fo(y), b))
.
= X ∧Xc0

.
= fo(fo(◦, b)) ∧Xf

.
= fo ∧ x1

.
= d e ∧ x2

.
= da, ae∨

fo(fo(y))
.
= X ∧Xc0

.
= fo(◦) ∧Xf

.
= fo ∧ x1

.
= a ∧ x2

.
= a∨

fo(fo(y))
.
= X ∧Xc0

.
= fo(◦) ∧Xf

.
= fo ∧ x1

.
= da, ae ∧ x2

.
= d e∨

fo(fo(fo(a, a), fo(y)))
.
= X ∧Xc0

.
= fo(fo(fo(a, a), ◦)) ∧Xf

.
= b ∧ x1

.
= d e ∧ x2

.
= d e∨

fo(fo(fo(fo(y), a), b))
.
= X ∧Xc0

.
= fo(fo(fo(◦, a), b)) ∧Xf

.
= a ∧ x1

.
= d e ∧ x2

.
= d e∨

fo(fo(fo(a, fo(y)), b))
.
= X ∧Xc0

.
= fo(fo(fo(a, ◦), b)) ∧Xf

.
= a ∧ x1

.
= d e ∧ x2

.
= d e〉�

〈x1
.
= (X ′, z), y

.
= (X ′, fo(z)) ‖

fo(fo(y))
.
= X ∧Xc0

.
= fo(◦) ∧Xf

.
= fo ∧ x1

.
= fo(a, a) ∧ x2

.
= b∨

fo(fo(y))
.
= X ∧Xc0

.
= fo(◦) ∧Xf

.
= fo ∧ x1

.
= dfo(a, a), be ∧ x2

.
= d e∨

〈y .
= (X ′, fo(z)) ‖

fo(fo(y))
.
= X ∧Xc0

.
= fo(◦) ∧Xf

.
= fo ∧X ′

.
= fo(a, a) ∧ z .

= d e ∧ x2
.
= b∨

fo(fo(y))
.
= X ∧Xc0

.
= fo(◦) ∧Xf

.
= fo ∧X ′

.
= fo(a, a) ∧ z .

= b ∧ x2
.
= d e〉�

〈� ‖

fo(fo(fo(a, a), fo))
.
= X ∧Xc0

.
= fo(◦) ∧Xf

.
= fo∧

X ′
.
= fo(a, a) ∧ z .

= d e ∧ x2
.
= b

∨

fo(fo(fo(a, a), fo(b)))
.
= X ∧Xc0

.
= fo(◦) ∧Xf

.
= fo∧

X ′
.
= fo(a, a) ∧ z .

= b ∧ x2
.
= d e〉.

From the obtained solved constraint, we can extract two possible instantiations for the variable

FCUP 59

4.4. Well-Moded and KIF Programs 999.

X: {X 7→ fo(fo(fo(a, a), fo))} and {X 7→ fo(fo(fo(a, a), fo(b)))}.

4.4 Well-Moded and KIF Programs

In this section we consider syntactic restrictions on programs that lead to well-moded and

KIF[Gen98] constraints during derivations. As we have seen in Chapter 3, such constraints

are interesting, because they can be completely solved by solve.

4.4.1 Well-Moded Programs

A mode for an n-ary predicate symbol p is a function mp : {1, . . . , n} −→ {i, o}. If mp(i) = i

(resp. mp(i) = o) then the position i is called an input (resp. output) position of p. The

predicates in and
.
= have only output positions. For a literal L = p(t1, . . . , tn) (where p can

be also in or
.
=), we denote by invar(L) and outvar(L) the sets of variables occurring in

terms in the input and output positions of p.

A sequence of literals L1, . . . ,Ln is well-moded if the following hold:

a) For all 1 ≤ i ≤ n, invar(Li) ⊆
⋃i−1
j=1 outvar(Lj).

b) If for some 1 ≤ i ≤ n, Li is t1
.
= t2, then var(t1) ⊆

⋃i−1
j=1 outvar(Lj) or var(t2) ⊆⋃i−1

j=1 outvar(Lj).

c) If for some 1 ≤ i ≤ n, Li is C1
.
= C2, then var(C1) ⊆

⋃i−1
j=1 outvar(Lj) or var(C2) ⊆⋃i−1

j=1 outvar(Lj).

d) If for some 1 ≤ i ≤ n, Li is a membership atom, then the inclusion var(Li) ⊆⋃i−1
j=1 outvar(Lj) holds.

A conjunction of literals G is well-moded if there exists a well-moded sequence of literals

L1, . . . ,Ln such that G =
∧n
i=1 Li modulo associativity and commutativity. A formula in

DNF is well-moded if each of its disjuncts is. A state 〈L1, . . . ,Ln ‖ K1 ∨ · · · ∨Km〉 is well-

moded, where K’s are conjunctions of true, false, and primitive constraints, if the formula

(L1 ∧ · · · ∧Ln ∧K1)∨ · · · ∨ (L1 ∧ · · · ∧Ln ∧Km) is well-moded. A clause A← L1, . . . ,Ln is

well-moded if the following hold:

60 FCUP

999. 4. Constraint Logic Programming for Sequences and Contexts

a) For all 1 ≤ i ≤ n, invar(Li) ⊆
⋃i−1
j=1 outvar(Lj) ∪ invar(A).

b) outvar(A) ⊆
⋃n
j=1 outvar(Lj) ∪ invar(A).

c) If for some 1 ≤ i ≤ n, Li is t1
.
= t2, then var(t1) ⊆

⋃i−1
j=1 outvar(Lj) ∪ invar(A) or

var(t2) ⊆
⋃i−1
j=1 outvar(Lj) ∪ invar(A).

d) If for some 1 ≤ i ≤ n, Li is C1
.
= C2, then var(C1) ⊆

⋃i−1
j=1 outvar(Lj) ∪ invar(A) or

var(C2) ⊆
⋃i−1
j=1 outvar(Lj) ∪ invar(A).

e) If for some 1 ≤ i ≤ n, Li is a membership atom, then outvar(Li) ⊆
⋃i−1
j=1 outvar(Lj)

∪ invar(A).

A CLP(SC) program is well-moded if all its clauses and query are well-moded.

Example 4.4. In Example 4.1, if the first argument is the input position and the second

argument is the output position in the user-defined predicates, it is easy to see that the

program is well-moded. In Example 4.2, for well-modedness we need to define both positions

in the user-defined predicates to be the input ones.

We now show that well-modedness is preserved by program derivation steps. The first lemma

is the following one:

Lemma 4.5. Let K1∧K2∧v
.
= e be a well-moded conjunction, where K1 and K2 are (maybe

empty) conjunctions of literals, v is a variable and e is the corresponding expression such

that v does not occur in e and θ = {v 7→ e} is a simple substitution. Then K1 ∧K2θ ∧ v
.
= e

is well-moded.

Proof. We consider two cases. First, when v
.
= e is the leftmost literal containing v in a

well-moded sequence corresponding to K1 ∧ K2 ∧ v
.
= e, and second, when this is not the

case.

Case 1. Let L̃1, v
.
= e, L̃2 be a well-moded sequence corresponding to K1 ∧K2 ∧ v

.
= e such

that L̃1 does not contain v. Then well-modedness requires the variables e to appear in L̃1.

Consider the sequence L̃1, v
.
= e, L̃2[θ], where the notation L̃[θ] stands for such an instance

of L̃, in which θ affects only literals from K2. Then L̃1, v
.
= e is well-moded and it can be

safely extended by L̃2[θ] without violating well-modedness, because the variables in v
.
= e

still precede literals from L̃2[θ], and the relative order of the other variables does not change.

Hence, L̃1, v
.
= e, L̃2[θ] is a well-moded sequence that corresponds to K1 ∧K2θ ∧ v

.
= e.

FCUP 61

4.4. Well-Moded and KIF Programs 999.

Case 2. Let L̃1,L, L̃2, v
.
= e, L̃3 be a well-moded sequence corresponding to K1∧K2∧ v

.
= e,

where L is the leftmost literal that contains v in an output position. Then L̃1,L, v
.
= e, L̃2, L̃3

is also a well-moded sequence (corresponding to K1 ∧K2 ∧ v
.
= e), because v still appears in

an output position in L left to v
.
= e, the variables in e still precede literals from L̃3, and the

relative order of the other variables does not change. For literals in L̃2 that contain variables

from e such a reordering does not matter.

Note that v does not appear in L̃1: If it was there in some literal in an output position, then L

would not be the leftmost such literal. If it was there in some literal L′ in an input position,

then well-modedness of the sequence would require v to appear in an output position in

another literal L′′ that is even before L′, i.e., to the left of L and it would again contradict

the assumption that L is the leftmost literal containing v in an output position.

Let L̃1,L[θ], v
.
= e, L̃2[θ], L̃3[θ] be a sequence of all literals taken from K1 ∧K2 ∧ v

.
= e. we

distinguish two cases, depending whether θ affects L or not.

θ affects L. Then it replaces v in L with e, i.e., L[θ] = Lθ. Then the variables of e appear

in output positions in Lθ and, hence, placing v
.
= e after Lθ in the sequence would not

destroy well-modedness. As for the Lθ itself, we have two alternatives:

a) Lθ is an equation, say s
.
= tθ, obtained from L = (s

.
= t) by replacing occurrences

of v in t by e. In this case, by well-modedness of L̃1,L, v
.
= e, L̃2, L̃3, variables of

s appear in L̃1 and s does not contain v. Then the same property is maintained

in L̃1,Lθ, v
.
= e, L̃2[θ], L̃3[θ], since s remains in Lθ and L̃1 does not change.

b) Lθ is an atom. Then replacing v by e in an output position of L, which gives Lθ,

does not affect well-modedness.

Hence, we got that L̃1,L, v
.
= e is well-moded. Now we can safely extend this sequence

with L̃2[θ], L̃3[θ], because variables in new occurrences of e in L̃2[θ], L̃3[θ] are preceded

by v
.
= e, and the relative order of the other variables does not change. Hence, the

sequence L̃1,Lθ, v
.
= e, L̃2[θ], L̃3[θ] is well-moded.

θ does not affects L. Then L[θ] = L, the sequence L̃1,L, v
.
= e is well-moded and it can

be safely extended with L̃2[θ], L̃3[θ], obtaining the well-moded sequence L̃1,L, v
.
= e,

L̃2[θ], L̃3[θ].

Hence, we showed also in Case 2 that there exists a well-moded sequence of literals, namely,

62 FCUP

999. 4. Constraint Logic Programming for Sequences and Contexts

L̃1,L[θ], v
.
= e, L̃2[θ], L̃3[θ], that corresponds to K1 ∧K2θ ∧ v

.
= e. Hence, K1 ∧K2θ ∧ v

.
= e

is well-moded.

Lemma 4.6. Let P be a well-moded CLP(SC) program and 〈G ‖ C〉 be a well-moded state.

If 〈G ‖ C〉 � 〈G′ ‖ C′〉 is a reduction using clauses in P, then 〈G′ ‖ C′〉 either is also a

well-moded state, or G′ = � and C′ = false, or G′ = � and C′ = true.

Proof. Let G = L1, . . . ,Li, . . . ,Ln, C = K1 ∨ · · · ∨Km, and 〈G ‖ C〉 be a well-moded state.

Assume that Li is the selected literal in the reduction that gives 〈G′ ‖ C′〉 from 〈G ‖ C〉. We

consider four possible cases, according to the definition of the operational semantics:

Case 1. Let Li be a primitive constraint and C′ 6= false. Let D denote the DNF of C ∧ Li.

Then C′ = solve(D).

In order to prove that 〈G′ ‖ C′〉 = 〈G′ ‖ solve(D)〉 is well-moded, by the definition of solve,

it is sufficient to prove that 〈G′ ‖ step(D)〉 is well-moded. Since, obviously, 〈G′ ‖ D〉 is a

well-moded state, we have to show that state well-modedness is preserved by each rule of

the solver.

Since C′ 6= false, the step is not performed by any of the failure rules of the solver. For

the rules MS1–MS8, MS10–MS11, MC1–MC9, D1–D4, it is pretty easy to verify that 〈G′ ‖

step(D)〉 is well-moded. Therefore, we consider the other rules in more detail. We denote

the disjunct of D on which the rule is applied by KD. The cases below are distinguished by

the rules:

Del. Here the same variable is removed from both sides of the selected equation. Assume

L̃1, s
.
= t, L̃2 is a well-moded sequence corresponding to G′ ∧ KD, and s

.
= t is the

selected equation affected by one of the deletion rules. Well-modedness of L̃1, s
.
= t, L̃2

requires that the variable deleted at this step from s
.
= t should occur in an output

position in some other literal in L̃1. Let s′
.
= t′ be the equation obtained by the

deletion step from s
.
= t. Then L̃1, s

′ .= t′, L̃2 is again well-moded, which implies that

G′ ∧ step(KD) is well-moded and, therefore, that 〈G′ ‖ step(D)〉 is well-moded.

MS9. Let G′ ∧KD be represented as G′ ∧Xf (̃s) in f(RS) ∧K′, where Xf (̃s) in f(RS) is the

equation affected by the rule. Note that then G′ ∧Xf (̃s) in f(RS)∧Xf
.
= f ∧K′ is also

well-moded. Applying Lemma 4.5, we get that G′ ∧ Xf (̃s)θ in f(RS) ∧ Xf
.
= f ∧ K′θ

FCUP 63

4.4. Well-Moded and KIF Programs 999.

is well-moded, where θ = {Xf 7→ f}. But it means that G′ ∧ step(KD) is well-moded,

which implies that 〈G′ ‖ step(D)〉 is well-moded.

MS12. Let G′ ∧KD be represented as G′ ∧ x in f(RS) ∧K′, where x in f(RS) is the equation

affected by the rule. Note that then G′ ∧ x .
= X ∧X in f(RS) ∧K′ is also well-moded.

Applying Lemma 4.5, we get that G′ ∧ x .
= X ∧ X in f(RS) ∧ K′θ is well-moded,

where θ = {x 7→ X}. Then we get well-modedness of G′ ∧ step(KD), which implies

well-modedness of 〈G′ ‖ step(D)〉.

MC10. Analogous to the MS12 rule above.

E1–E4. Well-modedness of G′ ∧ step(KD) is a direct consequence of Lemma 4.5.

E5. Let G′ ∧KD be represented as G′ ∧ dx, s̃1e ' s̃2 ∧K′, where dx, s̃1e ' s̃2 is the equation

affected by the rule and x 6∈ var (̃s2). Note that then G′ ∧ x .
= s̃ ′ ∧ s̃1

.
= s̃ ′′ ∧K′ is also

well-moded for some s̃ ′ and s̃ ′′ with d̃s ′, s̃ ′′e = s̃2. Applying Lemma 4.5, we get that

G′ ∧ x .
= s̃ ′ ∧ s̃1θ

.
= s̃ ′′ ∧K′θ is well-moded, where θ = {x 7→ s̃ ′}. Since s̃ ′ and s̃ ′′ were

arbitrary, it implies that G′ ∧ step(KD) and, therefore, 〈G′ ‖ step(D)〉 is well-moded.

E6–E8. Similar to the case of the rule E5.

Case 2. Let Li be a primitive constraint and C′ = false, where C′ = solve(C ∧ Li). Then by

the operational semantics we have G′ = � and the theorem trivially holds.

Case 3. Let Li be an atom p(t1, . . . , tk, . . . , tl). Assume that P contains a clause of the

form p(r1, . . . , rk, . . . , rl) ← B. Assume also {1, . . . , k} are the input positions of p and

{k + 1, . . . , l} are the output ones. Then we have

G = L1, . . . ,Li−1, p(t1, . . . , tk, . . . , tl),Li+1, . . . ,Ln,

G′ = L1, . . . ,Li−1, t1
.
= r1, . . . , tk

.
= rk, . . . , tl

.
= rl,B,Li+1, . . . ,Ln,

C′ = C = K1 ∨ · · · ∨Km.

From well-modedness of 〈G ‖ C〉, we know that for all 1 ≤ j ≤ m there exists a sequence

L̃j of literals taken from L1, . . . ,Li−1,Li+1, . . . ,Ln and Kj such that var(dt1, . . . , tke) ⊆

outvar(L̃j). From well-modedness of p(r1, . . . , rk, . . . , rl)← B, we know var(drk+1, . . . , rle) ⊆

outvar(B) ∪ var(dr1, . . . , rke). Input variables of literals from B remain within output

variables of literals from B and in terms r1, . . . , rk. Therefore, we can construct a well-

64 FCUP

999. 4. Constraint Logic Programming for Sequences and Contexts

moded sequence from all literals in G′ ∧ Kj for all 1 ≤ j ≤ m. It means that 〈G′ ‖ Kj〉 is

well-moded for all 1 ≤ j ≤ m, which implies that 〈G′ ‖ C′〉 is well-moded.

Case 4. If defnP (Li) = ∅, then G′ = �, C′ = false, and the theorem trivially holds.

The theorem below is the main theorem for well-moded CLP(SC) programs. It states that

any finished derivation from a well-moded query leads to a solved constraint or to a failure:

Theorem 4.7. Let 〈G ‖ true〉 � · · · � 〈� ‖ C′〉 be a finished derivation with respect to a

well-moded CLP(SC) program, starting from a well-moded query G. If C′ 6= false, then C′ is

solved.

Proof. We prove a slightly more general statement: If 〈G ‖ true〉 � · · · � 〈G′ ‖ C′〉 is

a derivation with respect to a well-moded program, starting from a well-moded query G

and ending with G′ that is either � or consists only of atomic formulas without arguments

(propositional constants). If C′ 6= false, then C′ is solved.

To prove this statement, we use induction on the length n of the derivation. When n = 0,

then C′ = true and it is solved. Assume the statement holds when the derivation length is n,

and prove it for the derivation with the length n+ 1. Let such a derivation be 〈G ‖ true〉�

· · ·� 〈Gn ‖ Cn〉� 〈Gn+1 ‖ Cn+1〉. There are two possibilities to make the last step:

a) Gn has a form (modulo permutation) L, p1, . . . , pn, where L is primitive constraint, the

p’s are propositional constants, Gn+1 = p1, . . . , pn, and Cn+1 = solve(Cn ∧ L).

b) Gn has a form (modulo permutation) q, p1, . . . , pn, where q and p’s are propositional

constants, Gn+1 = p1, . . . , pn, and Cn+1 = Cn.

In the first case, note that by Lemma 4.6, 〈Gn ‖ Cn〉 is well-moded. Since the p’s have no

influence on well-modedness (they are just propositional constants), Cn ∧ L is well-moded

and hence it is solvable. By Lemma 3.7 we get that if Cn+1 = solve(Cn ∧ L) 6= false then

Cn+1 is solved.

In the second case, since Gn consists of propositional constants only, by the induction

hypothesis we have that if Cn is not false, then it is solved. But Cn = Cn+1. It finishes

the proof.

FCUP 65

4.4. Well-Moded and KIF Programs 999.

4.4.2 Programs in the KIF Form

An atom p(t1, . . . , tn) is in the KIF form, if each ti, 1 ≤ i ≤ n, is a KIF-term. A CLP(SC)

program is in the KIF form, if it is constructed from literals in the KIF form. Note that the

programs in examples 4.1 and 4.2 are not KIF programs. One could rewrite them in this

form, but the code size would become a bit larger. KIF programs, like the well-moded ones

discussed above, also show a good behavior: Reductions preserve the KIF form, and finished

non-failed derivations lead to solved constraints. These results are formally stated below.

Lemma 4.8. Let P be a CLP(SC) program in the KIF form and 〈G ‖ C〉 be a KIF state. If

〈G ‖ C〉� 〈G′ ‖ C′〉 is a reduction using clauses in P, then 〈G′ ‖ C′〉 is also a KIF state or

G′ = � and C′ = false or G′ = � and C′ = true.

Proof. Inspecting the rules of the solver, one can easily see that KIF constraints are trans-

formed into KIF constraints, which implies the lemma.

Theorem 4.9. Let 〈G ‖ true〉 � · · · � 〈� ‖ C′〉 be a finished derivation with respect to a

CLP(SC) program in the KIF form, starting from a KIF query G. If C′ 6= false, then C′ is

solved.

Proof. Similar to the proof of Theorem 4.7.

66 FCUP

999. 4. Constraint Logic Programming for Sequences and Contexts

5. Rule-Based Programming

5.1 Introduction

This chapter is about the rule-based programming tool PρLog, based on the ρLog calcu-

lus [MK06] for conditional transformations of unranked sequences.

Programming with rules has been experiencing a period of growing interest since the nineties

when rewriting logic [MOM02] and rewriting calculus [CK01] have been developed and

several systems and languages (ASF-SDF [vdBvDH+01], CHR [Frü98], Claire [CJL04],

ELAN [BKK+98], Maude [CDE+02], Stratego [BKVV08], just to name a few) emerged. The

ρLog calculus has been influenced by the rewriting calculus, but there are some significant

differences: ρLog adopts logic programming semantics (clauses are first class concepts,

rules/strategies are expressed as clauses), uses top-position matching, and employs four

different kinds of variables that we have already seen in the previous chapter.

PρLog (pronounced Pē-rō-log) [DK] is an experimental tool that extends logic programming

with strategic conditional transformation rules, combining Prolog with ρLog calculus. PρLog

programs consist of clauses. Like CLP(SC), it supports programming with individual, se-

quence, function, and context variables. The clauses either define user-constructed strategies

by (conditional) transformation rules or are ordinary Prolog clauses. Prolog code can be

used freely within PρLog programs. One can include its predicates in PρLog rules, which is

especially convenient when arithmetic calculations or input-output features are needed.

PρLog inference mechanism is essentially the same as SLDNF-resolution, multiple results

are generated via backtracking, its semantics is compatible with semantics of normal logic

programs [Llo87] and, hence, Prolog was a natural choice to base PρLog on: The inference

mechanism comes for free, as well as the built-in arithmetic and many other useful features

of the Prolog language. Following Prolog, PρLog is also untyped, but values of sequence

67

68 FCUP

999. 5. Rule-Based Programming

and context variables can be constrained by regular sequence or context languages (as

in CLP(SC)). Essentially, the matching mechanism used in PρLog can be seen as an

implementation of the well-moded constraint solving from Chapter 3.

5.2 An Overview of PρLog

As it has already been mentioned, PρLog is an implementation of the ρLog calculus in Prolog,

extending the host language with strategy-based conditional sequence transformation rules.

ρLog deals with simple sequences, transforming them by conditional rules. Transformations

are non-deterministic and may yield several results. Logic programming seems to be a

suitable framework for such non-deterministic computations. Strategies provide a control on

rule applications in a declarative way. Strategy combinators help the user to construct more

complex strategies from simpler ones. Rules apply matching to the whole input sequence

(or, if it is a single term, apply at the top position).

In this chapter we follow the PρLog language notation, writing in the typewriter font

the syntactic categories given in Section 2.3. PρLog uses the following conventions for the

variables names: Individual variables start with i_ (like, e.g., i_Var for a named variable

or i_ for the anonymous variable), sequence variables start with s_, function variables start

with f_, and context variables start with c_. PρLog also uses prolog variables (named

prolog variables beginning with the capital letters and anonymous prolog variables are

printed as the underscore) written in the typewriter font. The symbol Van stands for

the set of anonymous variables. The function symbols and the hole symbol is written as

f,g,h and hole. Regular operators are written as: eps (empty sequence), sconc (sequence

concatenation), sor (sequence choice), sstar (sequence repetition), hole (empty context),

cconc (context concatenation), cor (context choice), and cstar (context repetition). Note,

that we use the same symbol hole for a context constructor and for a regular operator.

Note also, PρLog syntax requires simple sequences to be put within round brackets instead

of ceiling corner brackets.

In this section we give a brief overview of basic features of PρLog, explaining them mostly

on examples instead of giving formal definitions.

FCUP 69

5.2. An Overview of PρLog 999.

5.2.1 Programs and Queries

A ρLog atom (ρ-atom) is a quadruple consisting of a simple term st (a strategy), two simple

sequences s̃1 and s̃2, and a set of regular constraints R where each variable is constrained

only once, written as st :: s̃1 ==> s̃2 where R. Intuitively, it means that the strategy st

transforms s̃1 to s̃2 when the variables satisfy the constraint R. We call s̃1 the left hand side

and s̃2 the right hand side of this atom. When R is empty, we omit it and write st :: s̃1 ==>

s̃2. The negated atom is written as st :: s̃1 =\=> s̃2 where R. A ρLog literal (ρ-literal) is

a ρ-atom or its negation. Literals, denoted by L is a common name for ρ- or Prolog literals.

A PρLog clause is either a Prolog clause, or a clause of the form st :: s̃1 ==> s̃2 where

R :-B (in the sequel called a ρ-clause) where B is a (possibly empty) conjunction of literals.

A PρLog program is a sequence of PρLog clauses and a query is a conjunction of ρ- and

Prolog literals. There is a restriction on variable occurrence imposed on clauses: ρ-clauses

and queries can contain only individual, sequence, function and context variables, while

Prolog clauses and queries can contain only Prolog variables. If a Prolog literal occurs in a

ρ-clause or query, it may contain only ρLog individual variables that internally get translated

into Prolog variables.

Example 5.1. The following code illustrates how factorial can be written in PρLog

factorial :: 0 ==> 1.

factorial :: i_N ==> i_Fact :-

i_N > 0,

i_N1 is i_N - 1,

factorial :: i_N1 ==> i_Fact1,

i_Fact is i_Fact1 * i_N.

A sample PρLog query can have a form:

?((i_N is 2*3, factorial :: i_N ==> i_X), Subst).

It combines Prolog and PρLog subqueries: The first one computes 2 ∗ 3, the second one gives

the factorial of 6. The solving substitution is returned in Subst.

70 FCUP

999. 5. Rule-Based Programming

5.2.2 Operational Semantics

PρLog inference mechanism is based essentially on SLDNF-resolution adapted to ρ-clauses.

Sequence solving algorithm integrated in the PρLog system is obtained by reformulation of

the constraint solver studied in Chapter 3. The algorithm takes as an input a constraint

and returns as an output a substitution which solves the constraint. In these rules below,

P stands for a program, Q denotes a query and solve is the sequence solving algorithm.

The strategy id is the built-in and stands for identity. The rules have the form G1 G2,

transforming the query G1 into a new query G2.

R: Resolvent

st :: s̃1 ==> s̃2 where R ∧ G

σ(B ∧ (id :: s̃ ′2 ==> s̃2 where R) ∧ G)

where st is not id, there exists a clause st′ :: s̃ ′1 ==> s̃ ′2 where R′ :- B in P such that

σ ∈ solve(st′
.
= st ∧ s̃ ′1

.
= s̃1 ∧ R′).

Id: Identity

id :: s̃1 ==> s̃2 where R ∧ G σ(G) if σ ∈ solve(̃s2
.
= s̃1 ∧ R)

NF: Negation as Failure

(st :: s̃1 =\=> s̃2 where R) ∧ G G

if there exists a finitely failed SLDNF-derivation tree for st :: s̃1 ==> s̃2 where R with

respect to P.

We do not define here the standard notions like derivations, finitely failed SLDNF-derivation

tree, etc. They can be found in the literature elsewhere, see, e.g, [AB94] for a survey. For

Prolog clauses the usual SLDNF-resolution rules apply.

These rules can be applied in different (finitely many) ways to the same selected query and the

same program clause, because there can be more than one solution σ. We need to impose

well-modedness restrictions on ρ-clauses and queries to guarantee that in the derivations

generated constraints has finite solutions.

More specifically, well-modedness for PρLog programs extends the same notion for constraint

logic programs, given in Chapter 4, to negative literals and literals with anonymous variables.

The input and the output position of the relation · :: · ==> · is i(· :: · ==> ·) = {1, 2} and

o(· :: · ==> ·) = {3} respectively. A mode is defined (uniquely) for a Prolog predicate as

well. A clause is moded if all its predicate symbols are moded. We assume that all ρ-clauses

FCUP 71

5.2. An Overview of PρLog 999.

are moded. As for the Prolog clauses, we require modedness only for those ones that define

a predicate that occurs in the body of some ρ-clause. If a Prolog literal occurs in a query

in conjunction with a ρ-clause, then its relation and the clauses that define this relation are

also assumed to be moded.

Definition 5.2. A query L1, . . . ,Ln is well-moded iff it satisfies the following conditions for

each 1 ≤ i ≤ n:

• invar(Li) ⊆ ∪i−1j=1outvar(Lj) \ Van.

• If Li is a negative literal, then outvar(Li) ⊆ ∪i−1j=1outvar(Lj) ∪ Van.

• If Li is a ρLog literal, then its strategy term is ground.

A clause L0:-L1, . . . ,Ln is well-moded, iff the following conditions are satisfied for each

1 ≤ i ≤ n:

• invar(Li) ∪ outvar(L0) ⊆ ∪i−1j=0outvar(Lj) \ Van.

• If Li is a negative literal, then outvar(Li) ⊆ ∪i−1j=1outvar(Lj) ∪ Van ∪ invar(L0).

• If L0 and Li are ρLog literals with the strategy terms st0 and sti, respectively, then

var(sti) ⊆ var(st0).

A PρLog program is well-moded if all its clauses and query are well-moded.

PρLog allows only well-moded program clauses and queries. There is no restriction on the

Prolog clauses if the predicate they define is not used in a ρ-clause.

Example 5.3. The query str1 :: a ==> i_X, str2 :: i_Y ==> i_Z is not well-moded,

because the variable i_Y in the input position of the second subgoal does not occur in the out-

put position of the first subgoal. On the other hand, str1 :: a ==> i_X, str2 :: i_X ==>

i_Z is well-moded.

If we change the last goal by str1 :: a ==> i_X, str2 :: i_X =\=> i_Z, well-modedness

will get violated again, because the variable i_Z, occurring in the negative literal, does not

appear in the output position of the previous subgoal. Examples of well-moded queries involv-

ing negative literals are, e.g., str1 :: a ==> (i_X, i_Z), str2 :: i_X =\=> i_Z and

str1 :: a ==> i_X, str2 :: i_X =\=> i_.

72 FCUP

999. 5. Rule-Based Programming

5.2.3 Predefined Strategies and Strategy Combinators

Strategies can be combined to express in a compact way many tedious small step transforma-

tions. These combinations give more control on transformations. PρLog provides a library

of several predefined strategy combinators. Most of them are standard. The user can write

her own strategies in PρLog or extend the Prolog code of the library. Some of the predefined

strategies and their intuitive meanings are the following:

• id :: s̃1 ==> s̃2 succeeds if the sequence s̃1 and s̃2 are identical (or can be made

identical by s̃2 matching s̃1) and fails otherwise.

• compose(st1, st2, . . . , stn), n ≥ 2, first transforms the input sequence by st1 and

then transforms the result by compose(st2, . . . , stn) (or by st2, if n = 2). Via

backtracking, all possible results can be obtained. The strategy fails if either st1

or compose(st2, . . . , stn) fails.

• choice(st1, . . . , stn), n ≥ 1, returns a result of a successful application of some

strategy sti to the input sequence. It fails if all sti’s fail. By backtracking it can

return all outputs of the applications of each of the strategies st1, . . . , stn.

• first_one(st1, . . . , stn), n ≥ 1, selects the first sti that does not fail on the input

sequence and returns only one result of its application. first_one fails if all sti’s fail.

Its variation, first_all, returns via backtracking all the results of the application to

the input sequence of the first strategy sti that does not fail.

• nf(st), when terminates, computes a normal form of the input sequence with respect

to st. It never fails because if an application of st to a sequence fails, then nf(st)

returns that sequence itself. Backtracking returns all normal forms.

• iterate(st,N) starts transforming the input sequence with st and returns a result

(via backtracking all the results) obtained after N iterations for a given natural number

N .

• map1(st) maps the strategy st to each term in the input sequence and returns the result

sequence. Backtracking generates all possible output sequences. st should operate on

a single term and not on an arbitrary sequence. map1(st) fails if st fails on at least

one term from the input sequence. map is a variation of map1 where the single-term

FCUP 73

5.2. An Overview of PρLog 999.

restriction is removed. It should be used with care because of high non-determinism.

Both map1 and map, when applied to the empty sequence, return the empty sequence.

• interactive takes a strategy from the user, transforms the input sequence by it

and waits for further user instruction (either to apply another strategy to the result

sequence or to finish).

• rewrite(st) applies to a single term (not to an arbitrary sequence) and rewrites it by

st (which also applies to a single term). Via backtracking, it is possible to obtain all

the rewrites. The input term is traversed in the leftmost-outermost manner. Note that

rewrite(st) can be easily implemented inside PρLog:

rewrite(i_Str) :: c_Context(i_Redex) ==> c_Context(i_Contractum) :-

i_Str :: i_Redex ==> i_Contractum.

5.2.4 System Components

The system consists of the following parts:

a) the parser, in file parse.pl,

b) the library library.pl that implements a collection of common strategy operators,

such as, e.g., compose, choice, nf, first one, rewrite, map1, etc.

c) the compiler compile.pl which translates PρLog clauses and queries into Prolog

clauses and goals, and

d) the solver solve.pl that implements the matching algorithm.

A typical PρLog session consists of the following steps: (1) Write a PρLog program in a file,

say, filename.rho; (2) Start Prolog and load the main PρLog file prholog.pl; (3) Compile

the PρLog program, by calling consult(filename.rho’); and (4) Query PρLog to answer

a goal G by calling

?(G,R).

where R is a fresh logic variable. This call translates G into a semantically equivalent Prolog

goal, solves it by SLDNF resolution, and translates the Prolog result into a list of PρLog

74 FCUP

999. 5. Rule-Based Programming

bindings that are assigned to R. In the next subsections we will give more insights of each

system component.

5.2.5 Examples Implemented in PρLog

We give below few examples that demonstrate the use some of the PρLog features, including

the strategies we just mentioned. The users can define own strategies in a program either

by writing clauses for them or using abbreviations of the form str_1 := str_2. Such an

abbreviation stands for the clause str_1 :: s_X ==> s_Y :- str_2 :: s_X ==> s_Y.

Example 5.4. Let str1 and str2 be two strategies defined as follows:

str1 :: (s_1, a, s_2) ==> (s_1, f(a), s_2).

str2 :: (s_1, i_x, s_2, i_x, s_3) ==> (s_1, i_x, s_2, s_3).

Manipulating strategies in the goal we get different answers:

• The goal str1 :: (a, b, a, f(a)) ==> s_X returns two answers (instantiations of

the sequence variable s_X): (f(a), b, a, f(a)) and (a, b, f(a), f(a)). Multiple

answers are computed by backtracking. They are two because (s_1, a, s_2) matches

(a, b, a, f(a)) in two ways, with the matchers {s_1 7→eps, s_2 7→(b, a, f(a))}

and {s_1 7→(a, b), s_27→f(a)}, respectively.

• If we change the previous goal by str1 :: (a, b, a, f(a)) ==> (s_X, f(a), s_Y),

then PρLog will return four answers that correspond to the following instantiations of

s_X and s_Y:

a) s_X7→eps, s_Y7→(b, a, f(a)).

b) s_X7→(f(a), b, a), s_Y7→eps.

c) s_X7→(a, b), s_Y 7→f(a).

d) s_X7→(a, b, f(a)), s_Y7→eps.

• The goal str1 :: (a, b, a, f(a)) =\=> s_ fails, because its positive counterpart

succeeds. On the other hand, str1 :: (a, b, a, f(a)) =\=> (b, s_) succeeds.

• The composition compose(str1, str2) :: (a, b, a, f(a)) ==> s_X gives two an-

swers: (f(a), b, a) and (a, b, f(a)),

FCUP 75

5.2. An Overview of PρLog 999.

• On the goal choice(str1, str2) :: (a, b, a, f(a)) ==> s_X we get three an-

swers: (f(a), b, a, f(a)), (a, b, f(a), f(a)), and (a, b, f(a)).

• nf(compose(str1, str2)) :: (a, b, a, f(a)) ==> s_X, which computes a nor-

mal form of the composition, returns (f(a), b) twice, computing it in two different

ways.

• The goal first_one(str1, str2) :: (a, b, a, f(a)) ==> s_X returns only one

answer (f(a), b, a, f(a)). This is the first output computed by the first applicable

strategy, str1.

• Finally, first_all(str1, str2) :: (a, b, a, f(a)) ==> s_X computes two in-

stantiations: (f(a), b, a, f(a)) and (a, b, f(a), f(a)). These are all the an-

swers returned by the first applicable strategy, str1.

Example 5.5. The two PρLog clauses below flatten nested occurrences of the head function

symbol of a term. The code is written using function and sequence variables, which makes it

reusable, since it can be used to flatten terms with different heads and different numbers of

arguments:

flatten_one :: f_Head(s_1, f_Head(s_2), s_3) ==> f_Head(s_1, s_2, s_3).

flatten := nf(flatten_one).

The first clause flattens one occurrence of the nested head. The second one (written in the

abbreviated form) defines the flatten strategy as the normal form of flatten_one. Here

are some examples of queries involving these strategies:

• flatten_one :: f(a, f(b, f(c)), f(d)) ==> i_X gives f(a, b, f(c), f(d)).

• flatten :: f(a, f(b, f(c)), f(d)) ==> i_X returns f(a, b, c, d).

• We can map the strategy flatten to a sequence, which results in flattening each element

of the sequence. For instance, the goal map1(flatten) :: (a,f(f(a)),g(a, g(b)))

==> s_X returns the sequence (a, f(a), g(a, b)).

Example 5.6. The replace strategy takes a term and a sequence of replacement rules in

the form (lhs_1 -> rhs_1 ... lhs_n -> rhs_n), chooses a subterm in the given term

that can be replaced by a rule lhs_i -> rhs_i, and returns the result of the replacement.

replace_all computes a normal form with respect to the given replacement rules.

76 FCUP

999. 5. Rule-Based Programming

replace :: (c_Context(i_X), s_1, i_X -> i_Y, s_2) ==>

(c_Context(i_Y), s_1, i_X -> i_Y, s_2).

replace_all :: (i_Term, s_Rules) ==> i_Instance :-

nf(replace) :: (i_Term, s_Rules) ==> (i_Instance, s_).

With replace_all, one can, for example, compute an instance of a term under an idem-

potent substitution: replace_all :: (f(x, g(x, y)), x -> z, y -> a) ==> i_X gives

f(z, g(z, a)). (We can take the conjunction of this goal with the cut predicate to avoid

recomputing the same instance several times.) The same code can be used to compute a

normal form of a term under a ground rewrite system, the sort of a term if the rules are

sorting rules, etc.

Example 5.7. This is a bit longer example that shows how one can specify a simple proposi-

tional proving procedure in PρLog. We assume that the propositional formulas are built over

negation (denoted by ‘-’) and disjunction (denoted by ‘v’). The corresponding PρLog program

starts with the Prolog operator declaration that declares disjunction an infix operator:

:- op(200, xfy, v).

Next, we describe inference rules of a Gentzen-like sequent calculus for propositional logic.

The rules operate on sequents and are represented as sequent(ant(sequence of formulas),

cons(sequence of formulas)). ant and cons are tags for the antecedent and consequent,

respectively. There are five inference rules in the calculus: The axiom rule, negation left,

negation right, disjunction left, and disjunction right.

axiom :: sequent(ant(s_, i_Formula, s_), cons(s_, i_Formula, s_)) ==> eps.

neg_left :: sequent(ant(s_F1, -(i_Formula), s_F2), cons(s_F3)) ==>

sequent(ant(s_F1, s_F2), cons(i_Formula, s_F3)).

neg_right :: sequent(ant(s_F1), cons(s_F2, -(i_Formula), s_F3)) ==>

sequent(ant(s_F1, i_Formula), cons(s_F2, s_F3)).

disj_left :: sequent(ant(s_F1, i_Formula1 v i_Formula2, s_F2), i_Cons) ==>

FCUP 77

5.2. An Overview of PρLog 999.

(sequent(ant(s_F1, i_Formula1, s_F2), i_Cons),

sequent(ant(s_F1, i_Formula2, s_F2), i_Cons)).

disj_right :: sequent(i_ant, cons(s_F1, i_Formula1 v i_Formula2, s_F2)) ==>

sequent(i_ant, cons(s_F1, i_Formula1, i_Formula2, s_F2)).

Next, we need to impose control on the applications of the inference rules and define success

and failure of the procedure. The control is pretty straightforward: To perform an inference

step on a given sequence of sequents, we select the first sequent and apply to it the first

applicable inference rule, in the order specified in the arguments of the strategy first_one

below. When there are no sequents left, the procedure ends with success. Otherwise, if no

inference step can be made, we have failure.

success :: eps ==> true.

inference_step :: (sequent(i_Ant, i_Cons), s_Sequents) ==>

(s_New_sequents, s_Sequents) :-

first_one(axiom, neg_left, neg_right, disj_left, disj_right) ::

sequent(i_Ant, i_Cons) ==> s_New_sequents.

failure :: (sequent(i_Ant, i_Cons), s_Sequents) ==> false.

Finally, we specify the proof procedure as repeatedly applying the first possible strategy between

success, inference_step, and failure (in this order) until none of them is applicable:

prove := nf(first_one(success, inference_step, failure)).

Note that it does matter in which order we put the clauses for the inference rules or the

control in the program. What matters, is the order they are combined (e.g. as it is done in

the strategy first_one).

What we described here is just one way of implementing the given propositional proof pro-

cedure in PρLog. One could do it differently as well, for instance, by writing recursive

clauses like it has been shown in [MK06]. However, we believe that the version above is more

declarative and naturally corresponds to the way the procedure is described in textbooks.

78 FCUP

999. 5. Rule-Based Programming

Note that there can be several clauses for the same strategy in a PρLog program. In this

case they behave as usual alternatives of each other (when a query with this strategy is being

evaluated) and are tried in the order of their appearance in the program, i.e. top-down.

Example 5.8. The following program illustrates how bubble sort can be implemented in

PρLog.

swap(f_Ordering) :: (s_X, i_I, s_Y, i_J, s_Z) ==>

(s_X, i_J, s_Y, i_I, s_Z) :-

not(f_Ordering(i_I,i_J)).

bubble_sort(f_Ordering) := first_one(nf(swap(f_Ordering))).

This algorithm takes two elements from a given sequence and compares them with respect to

f_Ordering. If the elements are not determined to be ordered by f_Ordering, then they are

swapped. nf applies swap repeatedly until impossible, which leads to a sorted sequence.

Note that, bubble_sort(f_Ordering) := first_one(nf(swap(f_Ordering))) is an ab-

breviation of the clause

bubble_sort(f_Ordering) :: s_X ==> s_Y :-

first_one(nf(swap(f_Ordering))) :: s_X ==> s_Y.

The query bubble_sort(=<)::(1,3,4,3,2) ==> s_X returns s_X = (1, 2, 3, 3, 4).

5.3 Case Study 1: XML Processing and Web Reasoning

In this section, we illustrate how PρLog can be used in XML querying, validation, and

reasoning, pretty naturally and concisely expressing problems coming from these areas. For

these applications, PρLog uses the unranked tree model, represented as a Prolog term. Below

we assume that the XML input is provided in the translated form.

5.3.1 Querying

Maier in [Mai98] gives a list of query operations that are desirable for an XML query

language: selection, extraction, reduction, restructuring, and combination. They all should

FCUP 79

5.3. Case Study 1: XML Processing and Web Reasoning 999.

be expressible in a single query language. A comparison of five query languages on the basis

of these queries is given in [BC00]. Here we demonstrate, on the car dealer office example,

how these queries can be expressed in PρLog.

Example 5.9. A car dealer office contains documents from different car dealers and brokers.

There are two kinds of documents. The manufacturer documents list the manufacturer’s

name, year, and models with their names, front rating, side rating, and rank. The vehicle

documents list the vendor, make, model, year, color and price. They are presented by XML

data of the following form:

<manufacturer> <vehicle>

<mn-name>Mercury</mn-name> <vendor>

<year>1998</year> Scott Thomason

<model> </vendor>

<mo-name>Sable LT</mo-name> <make>Mercury</make>

<front-rating> <model>Sable LT</model>

3.84 <year>1999</year>

</front-rating> <color>

<side-rating> metallic blue

2.14 </color>

</side-rating> <price>26800</price>

<rank>9</rank> </vehicle>

</model> ...

</manufacturer>

We assume that sequences of these elements are wrapped respectively by <list-manuf> and

<list-vehicle> tags. To save space, in the queries below we use metavariable M to refer

to the document consisting of the list of manufacturers, i.e., the document with the root

tag <list-manuf>. Similarly, the metavariable V denotes the document with the root tag

<list-vehicle>.

Selection and Extraction: We want to select and extract <manufacturer> elements

where some <model> has <rank> less or equal to 10.

select_and_extract :: list_manuf(s_,c_Manuf(rank(i_Rank)),s_) ==>

80 FCUP

999. 5. Rule-Based Programming

c_Manuf(rank(i_Rank)) :-

i_Rank =< 10.

Given the goal select_and_extract :: M ==> i_M, this code generates all solutions, one

after the other, via backtracking. The alternatives are generated according to the ways

the term list_manuf(s_,c_Manuf(rank(i_Rank)), s_) matches M . If a <manufacturer>

element contains two or more models with the rank ≤ 10, it will be returned several times.

However, with a little modification of the code we can make sure that no such duplicated

answers are computed:

select_and_extract :: list_manuf(s_,manufacturer(s_X),s_) ==>

manufacturer(s_X) :-

select :: manufacturer(s_X) ==> manufacturer(s_X).

select :: c_Manuf(rank(i_Rank)) ==> c_Manuf(rank(i_Rank)) :-

i_Rank =< 10,

!.

Reduction: From the <manufacturer> elements, we want to drop the <model> subele-

ments whose <rank> is greater than 10. Besides that, we also want to elide the <front_

rating> and <side_rating> elements from the remaining models. It can be done in various

ways in PρLog. One of such implementations is given below. reduction is defined as

the normal form of transforming each manufacturer element inside list_manuf. A single

manufacturer element is transformed by reduction_step depending whether it contains a

model with the rank ≤ 10:

reduction :: list_manuf(s_1) ==> list_manuf(s_2) :-

map1(nf(reduction_step)) :: s_1 ==> s_2,

!.

reduction_step :: manufacturer(s_1,model(s_,rank(i_R)),s_2) ==>

manufacturer(s_1,s_2) :-

i_R > 10.

reduction_step :: manufacturer(s_1,model(i_Name,i_,s_,rank(i_R)),s_2) ==>

FCUP 81

5.3. Case Study 1: XML Processing and Web Reasoning 999.

manufacturer(s_1,model(i_Name,rank(i_R)),s_2) :-

i_R =< 10.

Then the query reduction :: M ==> i_List produces the list of reduced manufacturer

elements.

Join: We want our query to generate pairs of <manufacturer> and <vehicle> elements

where <mn-name> = <make>, <mo-name> = <model> and <year> = <year>. The implemen-

tation is straightforward:

join :: (list_manuf(s_,

manufacturer(mn_name(i_Manuf_Name),year(i_Year),

s_,model(mo_name(i_Model_Name),s_X),s_),s_),

list_vehicle(s_,

vehicle(i_Vendor,make(i_Manuf_Name),

model(i_Model_Name),year(i_Year),i_Price),s_)

) ==>

(manufacturer(mn_name(i_Manuf_Name),year(i_Year),

model(mo_name(i_Model_Name),s_X)),

vehicle(i_Vendor,make(i_Manuf_Name),

model(i_Model_Name),year(i_Year),i_Price)

).

The query join :: (M,V) ==> (i_Manuf,i_Vehicle) returns a desired pair. One can

compute all such pairs via backtracking.

Restructuring: We want our query to collect <car> elements listing their make, model,

vendor, rank, and price subelements, in this order.

restructuring :: (list_manuf(s_,

manufacturer(mn_name(i_Manuf_Name),s_,

model(mo_name(i_Model_Name),s_X,i_Rank),

s_),

s_),

82 FCUP

999. 5. Rule-Based Programming

list_vehicle(s_,

vehicle(i_Vendor,make(i_Manuf_Name),

model(i_Model_Name),year(i_Year),

i_Color,i_Price),

s_)

) ==>

car(make(i_Manuf_Name),model(i_Model_Name),

i_Vendor,i_Rank,i_Price).

The query restructuring :: (M,V) ==> i_Car returns a car element. Backtracking

gives all the answers.

5.3.2 Incomplete Queries

Often, the structure of a Web document to be queried is unknown to a query author, even

if the schema to which the document conforms is familiar to her. The reason is that the

schemas allow much flexibility for documents, expressed in terms of arbitrary repetition

of substructures, or optional or alternative structures. Even more often, the query author

is interested not in the entire structure of the document but only in its relevant parts.

Therefore, a pattern-based Web querying language should be able to express such incomplete

queries. Schaffert in [Sch04] classifies incomplete queries (four kinds of incompleteness: in

breadth, in depth, with respect to order and with respect to optional elements) and explains

how they are dealt with in the Xcerpt Language. Here we show how they can be expressed

in PρLog. As we will see, it can be done pretty naturally, without introducing additional

constructs for them.

Incompleteness in Breadth. In languages that have wildcards only for single terms,

expressing incompleteness in breadth requires a special construct that allows to omit those

wildcards for neighboring nodes in the data tree. In PρLog, we do not need any extra con-

struct because of sequence variables. Anonymous sequence variables can be used as wildcards

for arbitrary sequence of nodes. Furthermore, if needed, we can use named sequence variables

to extract arbitrary sequence of nodes without knowing the exact structure. This is a very

convenient feature. The second select_and_extract clause from the previous section is a

good example. There the anonymous sequence variable s_ helps to omit the irrelevant part

FCUP 83

5.3. Case Study 1: XML Processing and Web Reasoning 999.

of the document. The named sequence variable s_X helps to extract a sequence of nodes,

without knowing its length and structure.

Incompleteness in Depth. This kind of incompleteness allows to select data items that

are located at arbitrary, unknown depth and skip all structure in between. The context

variables in PρLog make this operation straightforward: Just place the query subterm you

are interested in under an anonymous context variable. For instance, to extract only the

rank values from the manufacturer elements in Example 5.9, we can write a simple clause:

select_rank :: c_(rank(i_Rank)) ==> i_Rank.

Here the anonymous context variable c_ helps to descend to arbitrary depth, ignoring all

the structure in between. We can do even more: If needed, we can extract the entire context

above the query subterm without knowing the depth and the structure of the context. For

this, it is enough just to put there a named context variable. This has been done in the first

select_and_extract clause in the previous section with the c_Manuf variable:

select_and_extract :: list_manuf(s_,c_Manuf(rank(i_Rank)),s_) ==>

c_Manuf(rank(i_Rank)) :-

i_Rank =< 10.

In fact, this clause also demonstrates how incompleteness in breadth and depth can be

combined in a single rule in PρLog.

Incompleteness with respect to Order. It allows to specify neighboring nodes in a

different order than the one in that they occur in the data tree. Since PρLog syntax does

not allow unordered function symbols, we need a bit of more coding to express incomplete

queries with respect to order. For instance, assume that we do not know in which order the

front_rating and side_rating elements occur in the model in Example 5.9 and write the

clause that extract them:

extract_ratings :: c_(model(s_X)) ==> (i_Front,i_Side) :-

id :: model(s_X) ==> model(s_1,front_rating(i_Front),s_2),

id :: model(s_1,s_2) ==> model(s_,side_rating(i_Side),s_).

84 FCUP

999. 5. Rule-Based Programming

In the first subgoal of the body of this rule, the id strategy forces the term model(s_1,

front_rating(i_Front),s_2) to match model(s_X), extracting the value for front rating

i_Front. To find the side rating, we force matching model(s_,side_rating(i_Side),s_)

to model(s_1,s_2) that is obtained from model(s_X) by deleting front_rating(i_Front).

This deletion comes for free from the previous match and we can take an advantage of it,

since there is no need to keep front_rating in the structure where side_rating is looked

for. One can notice that in this example we also used incomplete queries in depth and

breadth.

Incompleteness with respect to Optional Elements. It allows to query for certain

substructures if they exist, but still let the query succeed if they do not exist. Since sequence

variables can be instantiated with the empty sequence as well, such incomplete queries can

be trivially expressed in PρLog.

5.3.3 Validation

PρLog permits regular constraints in its clauses for context and sequence variables. They,

in particular, can be used to check whether an XML document conforms to certain DTD

that can be expressed by means of regular sequence expressions. We demonstrate this in the

following example:

Example 5.10. Let the DTD below define the structure of XML documents, which contain

manufacturer elements.

<!ELEMENT list-manuf (manufacturer*)>

<!ELEMENT manufacturer (mn-name, year, model*)>

<!ELEMENT model (mo-name, front-rating, side-rating, rank)>

<!ELEMENT mn-name (#PCDATA)>

<!ELEMENT year (#PCDATA)>

<!ELEMENT front-rating (#PCDATA)>

<!ELEMENT side-rating (#PCDATA)>

<!ELEMENT rank (#PCDATA)>

Then the validation task becomes a PρLog clause where the DTD is encoded in a regular

constraint:

FCUP 85

5.3. Case Study 1: XML Processing and Web Reasoning 999.

validate :: s_X ==> true

where [s_X in list_manuf(manufacturer(mn_name(i_),year(i_),

model(mo_name(i_),front_rating(i_),

side_rating(i_),rank(i_))*)*)]

(With i_ in the constraint we abbreviate the set of all ground terms with respect to the given

finite alphabet.) To check whether a certain document conforms this DTD, we take a PρLog

term T that represents that document and write the query validate :: T ==> true. The

matching algorithm will try to match s_X to T and check whether the constraints are satisfied.

If the document conforms the DTD, the query will succeed, otherwise it will fail.

Validation test can be tailored in XML transformations, to make sure that the result of

the transformation conforms a given schema. Similar to the validate clause above, it is

straightforward to express such tasks in PρLog. We do not elaborate on the details here.

5.3.4 Basic Web Reasoning

Reasoning plays a crucial role in making data processing on the Web more “intelligent”.

Semantic Web adds metadata to Web resources, which can be used to make retrieval “se-

mantic”. To query both data and metadata, languages need to have certain reasoning

capabilities. In this section we demonstrate basic reasoning capabilities of PρLog using the

Clique of Friends example from [Sch04].

Example 5.11 (Clique of Friends). This example illustrates some basic reasoning for the

Semantic Web. It does not use any particular Semantic Web language itself.

Consider a collection of address books where each address book has an owner and a set of

entries, some of which are marked as friend to indicate that the person associated with

this entry is considered a friend by the owner of the address book. In XML, this collection

of address books can be represented in a straightforward manner as the following example

illustrates:

<address-books>

<address-book>

<owner>Donald Duck</owner>

<entry>

86 FCUP

999. 5. Rule-Based Programming

<name>Daisy Duck</name>

<friend/>

</entry>

<entry>

<name>Scrooge McDuck</name>

</entry>

</address-book>

<address-book>

<owner>Daisy Duck</owner>

<entry>

<name>Gladstone Duck</name>

<friend/>

</entry>

<entry>

<name>Ratchet Gearloose</name>

<friend/>

</entry>

</address-book>

</address-books>

The collection contains two address books, the first owned by Donald Duck and the second by

Daisy Duck. Donalds address book has two entries, one for Scrooge, the other for Daisy,

and only Daisy is marked as friend. Daisys address book again has two entries, both marked

as friend.

The clique-of-friends of Donald is the set of all persons that are either direct friends of Donald

(i.e. in the example above only Daisy) or friends of a friend (i.e. Gladstone and Ratchet),

or friends of friends of friends (none in the example above), and so on. To retrieve these

friends, we have to define the relation “being a friend of” and its transitive closure.

Transitive closure of a relation can be easily defined in PρLog. It can be even written in a

generic way, parametrized by the strategy that defines the relation:

transitive_closure(i_Strategy) :: s_X ==> s_Y :-

i_Strategy :: s_X ==> s_Y.

transitive_closure(i_Strategy) :: s_X ==> s_Z :-

FCUP 87

5.4. Case Study 2: Implementation of Rewriting Strategies 999.

i_Strategy :: s_X ==> s_Y,

transitive_closure(i_Strategy) :: s_Y ==> s_Z.

The relation of “being a friend of” with respect to the address books document is defined as

follows:

friend_of(address_books(s_,

address_book(owner(i_X),s_,entry(name(i_Y),friend),s_),

s_)) :: i_X ==> i_Y.

The query transitive_closure(friend_of(T)) :: Donald_Duck ==> i_Y, where T is

the PρLog term corresponding to the address book XML document above, will return one

after the other the friend and the friends of the friend of Donald_Duck: Daisy_Duck,

Gladstone_Duck, and Ratchet_Gearloose.

5.4 Case Study 2: Implementation of Rewriting Strategies

In this section we illustrate how rewriting strategies can be implemented in PρLog. It can

be done in a pretty succinct and declarative way. The code for leftmost-outermost and

outermost rewriting is shorter than the one for leftmost-innermost and innermost rewriting,

because it takes an advantage of PρLog’s built-in term traversal strategy.

5.4.1 Leftmost-Outermost and Outermost Rewriting

As mentioned above, the rewrite strategy traverses a term in leftmost-outermost order to

rewrite subterms. For instance, if the strategy strat is defined by two rules

strat :: f(i_X) ==> g(i_X).

strat :: f(f(i_X)) ==> i_X.

then for the goal rewrite(strat) :: h(f(f(a)), f(a)) ==> i_X we get, via backtrack-

ing, four instantiations for i_X, in the following order: h(g(f(a)), f(a)), h(a, f(a)),

h(f(g(a)), f(a)), and h(f(f(a)), g(a)).

88 FCUP

999. 5. Rule-Based Programming

If we want to obtain only one result, then it is enough to add the cut predicate at the

end of the goal. Indeed, rewrite(strat) :: h(f(f(a)), f(a)) ==> i_X, ! returns only

h(g(f(a)), f(a)).

To get all the results of leftmost-outermost rewriting, we have to find the first redex and

rewrite it in all possible ways (via backtracking), ignoring all the other redexes. This can be

done by using an anonymous variable for checking reducibility, and then putting the cut:

rewrite_left_out(i_Str) :: c_Context(i_Redex) ==> c_Context(i_Contractum) :-

i_Str :: i_Redex ==> i_,

!,

i_Str :: i_Redex ==> i_Contractum.

The goal rewrite_left_out(strat) :: h(f(f(a)), f(a)) ==> i_X gives two instantia-

tions for i_X: h(g(f(a)), f(a)) and h(a, f(a)).

To return all the results of outermost rewriting we find an outermost redex and rewrite it.

Backtracking returns all the results for all outermost redexes.

rewrite_out(i_Str) :: i_X ==> i_Y :-

i_Str :: i_X ==> i_,

!,

i_Str :: i_X ==> i_Y.

rewrite_out(i_Str) :: f_F(s_1, i_X, s_2) ==> f_F(s_1, i_Y, s_2) :-

rewrite_out(i_Str) :: i_X ==> i_Y.

The goal rewrite_out(strat) :: h(f(f(a)), f(a)) ==> i_X gives three answers, in this

order: h(g(f(a)), f(a)), h(a, f(a)), and h(f(f(a)), g(a)).

5.4.2 Leftmost-Innermost and Innermost Rewriting

Implementation of innermost strategy in PρLog is slightly more involved than the imple-

mentation of outermost rewriting. It is not surprising since the outermost strategy takes an

advantage of the PρLog built-in term traversal strategy. For innermost rewriting, we could

have modified the PρLog source by simply changing the order of two rules in the matching

FCUP 89

5.4. Case Study 2: Implementation of Rewriting Strategies 999.

algorithm to give preference to the rule that descends deep in the term structure. It would

change the term traversal strategy from leftmost-outermost to leftmost-innermost. Another

way would be to build term traversal strategies into PρLog (like it is done in ELAN and

Stratego, for instance) that would give the user more control on traversal strategies, giving

her a possibility to specify the needed traversal inside a PρLog program.

However, here our aim is different: We would like to demonstrate that rewriting strategies

can be implemented quite easily inside PρLog. For the outermost strategy it has already

been shown. As for the innermost rewriting, if we want to obtain only one result by leftmost-

innermost strategy, we first check whether any argument of the selected subterm rewrites. If

not, we try to rewrite the subterm and if we succeed, we cut the alternatives. The way how

matching is done guarantees that the leftmost possible redex is taken:

rewrite_left_in_one(i_Str) :: c_Ctx(f_F(s_Args)) ==> c_Ctx(i_Contractum) :-

rewrites_at_least_one(i_Str) :: s_Args =\=> i_,

i_Str :: f_F(s_Args) ==> i_Contractum,

!.

rewrites_at_least_one(i_Str) :: (s_, i_X, s_) ==> true :-

rewrite(i_Str) :: i_X ==> i_,

!.

To get all results of leftmost-innermost rewriting, we first check whether the selected subterm

is an innermost redex. If yes, the other redexes are cut off and the selected one is rewritten

in all possible ways:

rewrite_left_in(i_Str) :: c_Context(f_F(s_Args)) ==>

c_Context(i_Contractum) :-

rewrites_at_least_one(i_Str) :: s_Args =\=> i_,

i_Str :: f_F(s_Args) ==> i_,

!,

i_Str :: f_F(s_Args) ==> i_Contractum.

If strat is the strategy defined in the previous section, then we have only one answer

for the goal rewrite_left_in(strat) :: h(f(f(a)),f(a)) ==> i_X and it is the term

h(f(g(a)), f(a)). The same term is returned by rewrite_left_in_one.

90 FCUP

999. 5. Rule-Based Programming

Finally, rewrite_in computes all results of innermost rewriting via backtracking:

rewrite_in(i_Str) :: f_F(s_Args) ==> i_Y :-

rewrites_at_least_one(i_Str) :: s_Args =\=> i_,

i_Str :: f_F(s_Args) ==> i_Y.

rewrite_in(i_Str) :: f_F(s_1, i_X, s_2) ==> f_F(s_1, i_Y, s_2) :-

rewrite_in(i_Str) :: i_X ==> i_Y.

The goal rewrite_in(strat) :: h(f(f(a)), f(a)) ==> i_X returns two instantiations

of i_X: h(f(g(a)), f(a)) and h(f(f(a)), g(a)).

6. Pattern Calculi

6.1 Introduction

Pattern calculi extend the λ-calculus with pattern matching capabilities. Instead of ab-

stracting from a variable, they permit abstractions from a pattern: a λ-term that specifies

the form of the argument. The more flexible the patterns are, the more powerful the

calculus is. Patterns are the most expressive ones: They can be instantiated, generated, and

reduced. λ-calculus with patterns [vO90, KvOdV08], pure pattern calculus [JK06, JK09], ρ-

calculus [CK01], λ-calculus with first-order constructor patterns [PW87] are some examples

of the integration of pattern matching and λ-calculus.

Pattern calculi are expressive, but there is also a price to pay for that: Confluence is lost and

various restrictions have to be imposed to recover it. Some restrictions concern the form of

patterns (e.g., rigid pattern condition of [vO90]). Some others permit arbitrary patterns, but

affect matching. [JK09] gives an abstract confluence proof, where patterns can be any term,

but matching should satisfy a so called rigid matching condition. This approach is general

and captures different pattern calculi, such as the pure pattern calculus, λ-calculus with

patterns, and ρ-calculus. Yet another abstract proof of confluence is presented in [CF07a].

This approach can also be applied to various calculi, including λ-calculus with patterns,

ρ-calculus, and a simplified version of the pure pattern calculus. All the mentioned papers

consider unitary matching.

In this chapter we study confluence of pattern calculus parametrized with finitary matching.

Computing finitely many matchers makes the resulting calculus non-deterministic, but rather

than having a purely non-deterministic evaluation, we define a reduction which introduces a

formal sum of terms, representing all possible results of a non-deterministic computation.

Our patterns, like those in [JK09], can be any term. They may contain both free and bound

91

92 FCUP

999. 6. Pattern Calculi

variables and redexes and, hence, can be instantiated and reduced. To prove confluence, we

impose restrictions on the matching function. They guarantee that no new free variable

appears during reduction, and that reductions are stable both by substitution and by

reduction. These properties, denoted by H0, H1, and H2, in their turn, make sure that

the calculus is confluent. The matching function restrictions generalize the analogous ones,

introduced for the unitary case in [CF07a]. The proof uses the method due to Tait and

Martin-Löf [Bar84].

6.2 Core Pattern Calculus with Finitary Matching

In this section we use syntactic categories and notions introduced in Section 2.1 and in

Section 2.2. We consider the binary functional symbol o to be associative, commutative, and

idempotent. Moreover, term application distributes over o both from the left and from the

right and we write ACID for this property. First-order ACID unification and matching

are decidable and the rewrite system corresponding to the ACID equations is convergent

[ANR04]. Normal forms of terms, obtained from this system, are called ACID normal

forms.We consider terms in the ACID normal form with respect to o and application. For

example, the ACID normal form of the term λ{x,x}(f x o g x)x. f x (g y o g x o g y) is a term

λ{x,x}(f x x o g x x). (f x g y o f x g x).

Evaluation in the core pattern calculus is given by three binary relations βp, Dl, and Dr on

terms, written in the form of reduction rules below. The relation βp defines the way how

pattern-abstractions are applied. It is parametrized by a pattern matching function solve,

which is defined on o free terms P,Q and returns a finite set of substitutions. We denote it

by solve(P �χ Q). The relations Dl and Dr define how abstraction distributes over o:

βp : (λχP.N)Q→ Nσ1 o · · · oNσn, where solve(P �χ Q) = {σ1, . . . , σn}, n ≥ 1.

Dl : λχ(P1 o P2).N → λχP1.N o λχP2.N.

Dr : λχP.(N1 oN2)→ λχP.N1 o λχP.N2.

A reducible expression, or redex, is any expression to which these rules can be applied.

A binary relation→R on sequences is compatible if it is defined by the inference rules below.

FCUP 93

6.2. Core Pattern Calculus with Finitary Matching 999.

Because of commutativity of o, one rule for the sum is sufficient.

M →R M
′

MN →R M ′N

M →R M
′

NM →R NM ′
M →R M

′

Mx→R M ′x

M →R M
′

M oN →R M ′ oN
P →R P

′

λχP.N →R λχP ′.N

N →R N
′

λχP.N →R λχP.N ′

M1 →R M
′
1, . . . ,Mn →R M

′
n n > 0

dS̃1,M1, S̃2,M2, . . . , S̃n,Mn, S̃n+1e →R dS̃1,M ′1, S̃2,M ′2, . . . , S̃n,M
′
n, S̃n+1e

In what follows, →C denotes the compatible closure of the union of the relations βp,Dl and

Dr. The relation �C denotes the reflexive and transitive closure of →C .

We say that →C is confluent , if for all terms M , N , and Q, M �C N and M �C Q implies

that there exists a term W such that N �C W and Q �C W . Confluence of a calculus

means confluence of the relation →C for that calculus.

We are interested in particular instantiations of the solve function for studying confluence.

The first such example is sequence matching:

Example 6.1 (Matching with Sequence Variables). As a concrete example, consider match-

ing between terms P and Q together with the set of variables χ. A matching equation is

written as P �?
χ Q. Its solution (a matcher) is a substitution σ such that Pσ = Q.

A matching problem Π is a finite set of matching equations. A state is a pair 〈Π, θ〉

of a matching problem and a substitution. The matching procedure [Kut07, KM12] with

sequence variables is reformulated here as a set of state transformations of the form 〈{P �?
χ

Q} ∪ Π, θ〉 〈(Π ∪ Π′)σ, θσ〉. Each of the transformations is characterized by a rule of the

form M �?
χ N σ Π′. There are four rules, for deletion, decomposition, term and sequence

variable elimination: (ε stands for the identity substitution. Rules are applied modulo α-

equivalence.)

Del : M �?
χ M ε ∅, where fv(M) ∩ χ = ∅.

Dec : M1M2 �?
χ N1N2 ε {M1 �?

χ N1,M2 �?
χ N2},

TVE : x�?
χ N {x 7→N} ∅, where x ∈ χ.

SVE : M x�?
χ N N1 · · ·Nn {x 7→dN1,...,Nne} {M �

? N},

where x ∈ χ and n ≥ 0.

94 FCUP

999. 6. Pattern Calculi

We can define solve(P �χ Q) as a partial function from the triple P,Q, χ to a set of

substitutions with the following conditions:

C1. If P = x for some variable x, Q is o-free and does not contain bound sequence variables,

then we have one of the following cases:

• If χ = ∅ and Q = x, then solve(P �χ Q) = {ε}.

• If χ = {x}, then solve(P �χ Q) = {{x 7→ Q}}.

• If the conditions in the previous two items do not hold, then solve(P �χ Q) is

undefined.

C2. If P 6= x for any x, assume the following conditions are satisfied:

C2.1: χ ⊆ fv(P).

C2.2: P and Q are redex-free and o-free.

Then we transform P �?
χ Q by the rules above in all possible ways as long as possible

and substitutions σ from the success states 〈∅, σ〉 are collected in the set M of computed

matchers (which is complete and finite [KM12]).

C3. Otherwise, solve(P �χ Q) is undefined.

Now we give an example that explains why we do not require χ ⊆ fv(P) in the term λχP.N .

Example 6.2. As we noted in Chapter 2, in the definition of terms we do not require

χ ⊆ fv(P) in λχP.N . We also remarked that otherwise the set of terms would not be closed

under reduction. Now, when reduction is defined, we can illustrate this point. Consider a

term λ{x}((λ{y} y. z)x).M . If we reduce the redex by the βp rule, we get λ{x}z.M . However,

{x} ⊆ fv(z) does not hold. Hence, λ{x}z.M would not be a term, had we defined terms

λχP.N under the requirement χ ⊆ fv(P).

Our goal is to study confluence of the core pattern calculus. It is tempting to leave out χ

from λχP.N and assume that the abstraction binds all variables in the pattern. However, it

causes a serious problem: Bound variables can be freed and confluence does not hold even

for the following simple case:

λ(λx.c)y.y →βp λc.y

FCUP 95

6.3. Confluence of the Core Pattern Calculus 999.

λ(λx.c)y.y =α λ(λx.c)z.z →βp λc.z

In comparison, having χ explicit, λ{y}(λ{x}x.c)y.y reduces to two α-equivalent terms:

λ{y}(λ{x}x.c)y.y →βp λ{y}c.y

λ{y}(λ{x}x.c)y.y =α λ{z}(λ{x}x.c)z.z →βp λ{z}c.z

Example 6.3. We show a maximal sequence of →C reductions which involves solve defined

in the Example 6.1 and the ACID property of o.

λ{x} x. (x((λ{x,y}f x y. (g x)) (f a)))→C (by βp)

λ{x} x. (x (g o g a)) = (by the ACID property of o)

λ{x} x. (x g o x g a)→C (by Dr)

(λ{x} x. (x g)) o (λ{x} x. (x g a)). (normal form)

Note that o is introduced at the βp step by solve: We have solve(f x y �{x,y} f a) = {{x 7→

d e, y 7→ a}, {x 7→ a, y 7→ d e}}. The SVE rule is responsible for that.

6.3 Confluence of the Core Pattern Calculus

The function solve defined in Example 6.1 above leads to diverging reductions:

Example 6.4. Let solve be the function based on the matching with sequence variables as

defined in Example 6.1. Then M = (λ{z}f z. (λ{x,y}f x y. f x)(f z)) (f a b) reduces to two

different normal forms:

a) M →C (λ{z}f z. (f o f z)) (f a b)→C f o f a b.

b) M →C (λ{x,y}f x y. f x) (f a b)→C f o fa o f a b.

Example 6.5. This example shows that if in (λχP.N)Q a free variable appears in Q,

reduction may be non-confluent. Let solve be the function as defined in Example 6.1. Then

the term M = (λ{x} x. (λ{x,y}f x x y. f x)(f a x b)) a reduces to two different normal forms:

a) M →C (λ{x} x. (f a)) a→C f a.

b) M →C (λ{x,y}f x a y. (f x))(f a a b)→C f o fa.

96 FCUP

999. 6. Pattern Calculi

Note that the condition “Q does not contain bound sequence variables” required in C1 is

crucial, since without it the confluence is lost:

Example 6.6. M = (λ{x} x.(xx))((λ{x,y}f x y. (f x))(f a)) reduces to two different normal

forms:

a) M →C (λ{x} x.(xx)) f o (λ{x} x.(xx))(f a)→C f f o f a (f a).

b) M →C ((λ{x,y}f x y. (f x))(f a))((λ{x,y}f x y. (f x))(f a))→C f f of (f a)of a f of a (f a)

Our goal is to impose restrictions on solve so that confluence is guaranteed. They will be

sufficient conditions: For each solve, which satisfies them, the calculus will be confluent. For

this, some more notions have to be defined.

The confluence proof will be based on the method due to Tait and Martin-Löf [Bar84] . It

requires the notion of parallel reduction which is defined as follows:

M ⇒C M

M1 ⇒C M
′
1 . . . Mn ⇒C M

′
n

dM1, . . . ,Mne⇒C dM
′
1, . . . ,M

′
ne

M ⇒C M
′ M ⇒C M

′

MM ⇒C M ′M
′

P ⇒C P
′ N ⇒C N

′

λχP.N ⇒C λχP ′.N ′
P1 ⇒C P

′
1 P2 ⇒C P

′
2 N ⇒C N

′

λχ(P1 o P2).N ⇒C λχP ′1.N
′ o λχP ′2.N ′

M ⇒C M
′ N ⇒C N

′

M oN ⇒C M ′ oN ′
P ⇒C P

′ N1 ⇒C N
′
1 N2 ⇒C N

′
2

λχP.(N1 oN2)⇒C λχP ′.N ′1 o λχP ′.N ′2
P ⇒C P

′ N ⇒C N
′ Q⇒C Q

′

(λχP.N)Q⇒C N ′σ1 o · · · oN ′σn
, where solve(P ′ �χ Q

′) = {σ1, . . . , σn}, n ≥ 1.

The definition is extended to substitutions having the same domain by setting σ ⇒C σ′ if

for all v ∈ dom(σ) = dom(σ′), we have vσ ⇒C vσ
′.

Now we define the conditions to be imposed on solve. As already mentioned, the terms are

in the ACID normal form.

H0: If σ ∈ solve(P �χ Q), then dom(σ) = χ and fv(Ran(σ)) ⊆ fv(Q) ∪ (fv(P) \ χ).

H1: If solve(P �χ Q) = {σ1, . . . , σn}, n ≥ 1, then for all θ with var(θ) ∩ χ = ∅, we have

solve(Pθ �χ Qθ) = {(σ1θ)|χ, . . . , (σnθ)|χ}.

H2: If solve(P �χ Q) = {σ1, . . . , σn}, n ≥ 1, P ⇒C P ′, and Q ⇒C Q′, then solve(P ′ �χ

Q′) = {σ′1, . . . , σ′m}, m ≥ 1, and

FCUP 97

6.3. Confluence of the Core Pattern Calculus 999.

(a) for all 1 ≤ i ≤ n there exists 1 ≤ j ≤ m such that σi ⇒C σ
′
j and

(b) for all 1 ≤ j ≤ m there exists 1 ≤ i ≤ n such that σi ⇒C σ
′
j .

These conditions extend those for the core dynamic pattern calculus from [CF07a]. They

correspond to the preservation of free variables, stability by substitution, and stability by

reduction in the finitary matching case. We briefly explain the intuition behind them:

• Preservation of free variables: H0 guarantees that no new free variables appear during

reduction, which is a natural requirement when one defines a higher-order calculus.

When the term (λχP.N)Q is reduced with the help of solve(P �χ Q) = {σ1, . . . , σn},

we want to have ∪ni=1fv(Nσi) ⊆ fv((λχP.N)Q). It is easy to check that that the

algorithms solving higher-order matching problems or matching problems in non-

regular theories do not verify H0.

• Stability by substitution: When we have an application (λχP.N)Q, it may happen that

Q contains free variables. Either we wait until those free variables get instantiated and

then perform reduction, or we reduce (λχP.N)Q and then instantiate the variables

which come from the set fv(Q) ∪ (fv(P) \ χ). The results in both cases should be the

same. This is what H1 requires.

• Stability by reduction: When the application term (λχP.N)Q is reduced, it is not

necessary P and Q to be in a normal form. One can either reduce the application

immediately, or first transform P and Q into P ′ and Q′ and only afterwards try to

reduce the application. This subsequent reduction of application should not fail. Even

more, each substitution in solve(P ′ �χ Q′) should be derivable from a substitution

in solve(P �χ Q), and each substitution in solve(P �χ Q) should be reducible to a

substitution in solve(P ′ �χ Q
′). It is not necessary these two sets to contain the same

number of elements. Stability of reduction is required by H2.

When these conditions do not hold, confluence, in general, is not guaranteed. For instance,

looking back to Example 6.4, we see that the solve there, which was based on sequence

matching, violates H1. Just take P = f(x, y), Q = f(z), and θ = {z 7→ da, be}. Then we get

solve(P �{x,y} Q) = {{x 7→ ε, y 7→ z}, {x 7→ z, y 7→ ε}} and solve(P �{x,y} Qθ) = {{x 7→

ε, y 7→ da, be}, {x 7→ a, y 7→ b}, {x 7→ da, be, y 7→ ε}}.

98 FCUP

999. 6. Pattern Calculi

Example 6.7. Sometimes, non-confluence is caused by so called “redex breaking”. For

instance, (λ{x,y}(x y).(y x))(λ{z}z.z)(f a) is transformed either to (f a)λ{z}z.z or to (a f)

and the redex (λ{z}z.z)(f a) breaks. Note that in this case H2 is violated: Take P = (x y),

Q = (λ{z}z.z)(f a). Then P ⇒C P ′ = P , Q ⇒C Q′ = (f a), solve(P �{x,y} Q) = {{x 7→

λ{z}z.z, y 7→ (f a)}}, solve(P ′ �{x,y} Q′) = {{x 7→ f, y 7→ a}} and the violation of H2 is

obvious.

Now we will show that H0,H1, and H2 are sufficient for proving confluence of our calculus.

We assume that the relations →C and ⇒C in the lemmas and in the theorem below use a

solve which satisfies H0, H1, and H2. The notation oni=1Mi abbreviates M1 o · · · oMn.

Lemma 6.8. The following inclusion hold: →C ⊆⇒C ⊆�C .

Proof. First we prove →C⊆⇒C .

When the reduction occurs at the head position, the inclusion follows from the definition of

⇒C . Indeed, assumeM = (λχM1.M2)M3 reduces by βp toN = oni=1M2σi, where Sol(M1 �χ

M3) = {σ1, . . . , σn}. Then M ⇒C N holds, because⇒C is reflexive. If M = λχ(M1 oM2).M3

reduces to N = λχM1.M3 oλM2.M3 by Dl or M = λχM1.(M2 oM3) reduces to N = λχM1.M2 o

λχM1.M3 by Dr then again by reflexivity of ⇒Cwe have M ⇒C N . If the reduction does

not occur at the head position, the inclusion follows from the compatibility of ⇒C .

Now we prove ⇒C⊆�C , that is we show h1 ⇒C h2 implies h1 �C h2 by induction on the

derivation length of h1 ⇒C h2.

• Let S̃1 = M = S̃2 = N . Then the result follows from reflexivity of �C .

• Let S̃1 = dM1, . . . ,Mne ⇒C S̃2 = dM ′1, . . . ,M
′
ne with M1 ⇒C M

′
1, . . . ,Mn ⇒C M

′
n.

Then by the induction hypothesis (IH) we have M1 �C M
′
1, . . . ,Mn �C M

′
n. By

compatibility of �C we can conclude dM1, . . . ,Mne�C dM
′
1, . . . ,M

′
ne.

• Let S̃1 = M1X ⇒C S̃2 = N1X with M1 ⇒C N1. Then by IH we have M1 �C N1. By

compatibility of �C we also have M1X �C N1X.

• Let S̃1 = M1M2 ⇒C S̃2 = N1N2 with M1 ⇒C N1 and M2 ⇒C N2. Then by IH we have

M1 �C N1 and M2 �C N2. By compatibility of �C we also have M1M2 �C N1M2

and N1M2 �C N1N2. By transitivity of �C we finally get M1M2 �C N1N2.

FCUP 99

6.3. Confluence of the Core Pattern Calculus 999.

• If S̃1 = λχM1.M2 ⇒C S̃2 = λχN1.N2 with M1 ⇒C N1 and M2 ⇒C N2. Similar to the

previous case.

• Let S̃1 = λχ(M1 oM2).M3 ⇒C S̃2 = λχN1.N3 o λχN2.N3 with M1 ⇒C N1, M2 ⇒C N2

and M3 ⇒C N3. Then by IH we have M1 �C N1, M2 �C N2 and M3 �C N3.

By compatibility of �C we have λχ(M1 o M2).M3 �C λχ(N1 o N2).N3. By Dl we

have λχ(N1 o N2).N3 reduces to λχN1.N3 o λχN2.N3 and hence we conclude λχ(M1 o

M2).M3 �C λχN1.N3 o λχN2.N3.

• If S̃1 = λχM1.(M2 oM3) ⇒C S̃2 = λχN1.N2 o λχN1.N3 with M1 ⇒C N1, M2 ⇒C N2

and M3 ⇒C N3. Similar to the previous case.

• Let S̃1 = M1 oM2 ⇒C S̃2 = N1 o N2 with M1 ⇒C N1 and M2 ⇒C N2. Then by IH

we have M1 �C N1 and M2 �C N2. By compatibility of �C , M1 oM2 �C N1 oM2

and M2 o N1 �C N2 o N1. Since o is ACID, we can write M2 o N1 �C N2 o N1 as

N1 oM2 �C N1 oN2. By the transitivity of �C we get M1 oM2 �C N1 oN2.

• Let S̃1 = (λχM1.M2)M3 ⇒C S̃2 = oni=1N2σi with M1 ⇒C N1, M2 ⇒C N2, M3 ⇒C N3

and solve(N1 �χ N3) = {σ1, . . . , σn}. By the IH, M1 �C N1, M2 �C N2, M3 �C

N3. By compatibility and transitivity of �C we have λχM1.M2 �C λχN1.N2, hence,

(λχM1.M2)M3 �C (λχN1.N2)N3. By βp we have (λχN1.N2)N3 →C oni=1N2σi. Hence,

(λχM1.M2)M3 �C oni=1N2σi.

Lemma 6.9 (Fundamental Lemma). For all terms M,M ′ and substitutions θ, θ′ with

dom(θ) = dom(θ′), if M ⇒C M
′ and θ ⇒C θ

′, then Mθ ⇒C M
′θ′.

Proof. By induction on the length of derivation of M ⇒C M
′.

• If M = M ′, we can proceed by structural induction on M , using the definitions of

substitution application and parallel reduction.

– Let M = x and x ∈ dom(θ). By the definition of parallel reduction for substitu-

tions we have xθ ⇒C xθ
′.

– Let M = y and y 6∈ dom(θ). By the assumptions θ ⇒C θ′ and y 6∈ dom(θ), and

by the definition of parallel reduction for substitutions we have y 6∈ dom(θ′). By

100 FCUP

999. 6. Pattern Calculi

the definition of substitution application we also have yθ = yθ′ = y and hence by

reflexivity of ⇒C we conclude yθ ⇒C yθ
′.

– Let M = f . By the definition of substitution application we have fθ = f and

fθ′ = f . By reflexivity of ⇒C we can conclude fθ ⇒C fθ
′.

– Let M = M1x with M1 ⇒C M1. By the IH we have M1θ ⇒C M1θ
′. We consider

two cases:

∗ x 6∈ dom(θ). By the definition of parallel reduction for substitutions we have

x 6∈ dom(θ′). Therefore, by the definitions of substitution application we also

have (M1x)θ = (M1θ)x and (M1x)θ′ = (M1θ
′)x. Since M1θ ⇒C M1θ

′, by

the definition of parallel reduction we conclude (M1x)θ ⇒C (M1x)θ′.

∗ x ∈ dom(θ). By the definition of parallel reduction for substitutions and

by the assumption θ ⇒C θ′, we have xθ ⇒C xθ′. We have two sub-cases:

(1) xθ = ε and xθ′ = ε. Since M1θ ⇒C M1θ
′, by the definition of sub-

stitution application we have (M1x)θ = M1θ ⇒C M1θ
′ = (M1x)θ′. (2)

xθ = (N1, . . . , Nn) and xθ′ = (N
′
1, . . . , N

′
n) with N1 ⇒C N

′
1, . . . , Nn ⇒C

N
′
n. Since M1θ ⇒C M1θ

′, by the definition of substitution application

and by n time application of the definition of parallel reduction we have

(M1x)θ = (· · · ((M1θ)N1) · · ·Nn)⇒C (· · · ((M1θ
′)N

′
1) · · ·N

′
n) = (M1x)θ′.

– Let M = M1M2 with M1 ⇒C M1 and M2 ⇒C M2. By the IH we have M1θ ⇒C

M1θ
′ and M2θ ⇒C M2θ

′. By the definitions of parallel reduction and substitution

application, we conclude (M1M2)θ ⇒C (M1M2)θ
′.

– Let M = λχM1.M2 with M1 ⇒C M1 and M2 ⇒C M2. We proceed similarly to

the previous case.

– Let M1 oM2 ⇒C M1 oM2 with M1 ⇒C M1 and M2 ⇒C M2. We proceed similarly

to the previous cases.

– Let (λχM1.M2)M3 ⇒C (λχM1.M2)M3 with M1 ⇒C M1,M2 ⇒C M2 and M3 ⇒C

M3. By the IH we have M1θ ⇒C M1θ
′, M2θ ⇒C M2θ

′ and M3θ ⇒C M3θ
′.

By the definitions of parallel reduction and substitution application, we conclude

((λχM1.M2)M3)θ ⇒C ((λχM1.M2)M3)θ
′.

– Let λχ(M1 o M2).M3 ⇒C λχ(M1 o M2).M3 with M1 ⇒C M1,M2 ⇒C M2 and

M3 ⇒C M3. By the IH we have M1θ ⇒C M1θ
′,M2θ ⇒C M2θ

′ and M3θ ⇒C

M3θ
′M3θ ⇒C M3θ

′. By the definitions of parallel reduction and substitution

application, we conclude (λM1 oM2.M3)θ ⇒C (λM1 oM2.M3)θ
′.

FCUP 101

6.3. Confluence of the Core Pattern Calculus 999.

– If λM1.(M2 oM3)⇒C λM1.(M2 oM3) with M1 ⇒C M1,M2 ⇒C M2 and M3 ⇒C

M3. We proceed similar to the previous cases.

• If M 6= M ′, we need to consider cases depending on the rules of parallel reduction.

– Let M = M1x ⇒C M ′ = M ′1x with M1 ⇒C M ′1. By the IH we have M1θ ⇒C

M ′1θ
′. We consider two cases:

∗ x 6∈ dom(θ). By the definition of parallel reduction for substitutions we have

x 6∈ dom(θ′). Therefore, by the definitions of substitution application we also

have (M1x)θ = (M1θ)x and (M ′1x)θ′ = (M ′1θ
′)x. Since M1θ ⇒C M ′1θ

′, by

the definition of parallel reduction we conclude (M1x)θ ⇒C (M ′1x)θ′.

∗ x ∈ dom(θ). By the definition of parallel reduction for substitutions and

by the assumption θ ⇒C θ′, we have xθ ⇒C xθ′. We have two sub-cases:

(1) xθ = ε and xθ′ = ε. Since M1θ ⇒C M ′1θ
′, by the definition of sub-

stitution application we have (M1x)θ = M1θ ⇒C M ′1θ
′ = (M ′1x)θ′. (2)

xθ = (N1, . . . , Nn) and xθ′ = (N
′
1, . . . , N

′
n) with N1 ⇒C N

′
1, . . . , Nn ⇒C

N
′
n. Since M1θ ⇒C M ′1θ

′, by the definition of substitution application

and by n time application of the definition of parallel reduction we have

(M1x)θ = (· · · ((M1θ)N1) · · ·Nn)⇒C (· · · ((M ′1θ′)N
′
1) · · ·N

′
n) = (M1x)θ′.

– Let M = M1M2 ⇒C M ′ = M ′1M
′
2 with M1 ⇒C M ′1 and M2 ⇒C M ′2. By the

IH we have M1θ ⇒C M ′1θ
′ and M2θ ⇒C M ′2θ

′. By the definitions of parallel

reduction and substitution application, we conclude (M1M2)θ ⇒C (M ′1M
′
2)θ
′.

– Let M = λχM1.M2 ⇒C M ′ = λχM
′
1.M

′
2 with M1 ⇒C M ′1 and M2 ⇒C M ′2. We

proceed similarly to the previous case.

– Let M = M1 oM2 ⇒C M ′ = M ′1 oM ′2 with M1 ⇒C M ′1 and M2 ⇒C M ′2. We

proceed similarly to the previous cases.

– Let M = λχ(M1 o M2).M3 ⇒C M ′ = λχM
′
1.M

′
3 o λχM ′2.M ′3 with M1 ⇒C M ′1,

M2 ⇒C M ′2 and M3 ⇒C M ′3. By the IH we have M1θ ⇒C M ′1θ
′,M2θ ⇒C M ′2θ

′

and M3θ ⇒C M ′3θ
′. By the definitions of parallel reduction and substitution

application, we conclude (λχ(M1 oM2).M3)θ ⇒C (λχM
′
1.M

′
3 o λχM ′2.M ′3)θ′.

– LetM = λχM1.(M2oM3)⇒C M
′ = λχM

′
1.M

′
2oλχM ′1.M ′3 withM1 ⇒C M

′
1,M2 ⇒C

M ′2 and M3 ⇒C M
′
3. We proceed similarly to the previous case.

– Let M = (λχM1.M2)M3 ⇒C M ′ = oni=1M
′
2σi with M1 ⇒C M ′1, M2 ⇒C M ′2,

M3 ⇒C M ′3 and solve(M ′1 �χ M ′3) = {σ1, . . . , σn} where M ′1 and M ′3 do not

102 FCUP

999. 6. Pattern Calculi

contain o. By the IH, we have M1θ ⇒C M ′1θ
′, M2θ ⇒C M ′2θ

′ and M3θ ⇒C

M ′3θ
′. By the definition of parallel reduction we have (λM1θ.M2θ)M3θ ⇒C

oki=1(M
′
2θ
′)ηi, where solve(M ′1θ

′ �χ M ′3θ
′) = {η1, . . . , ηk}. We want to show

(oni=1M
′
2σi)θ

′ = oki=1(M
′
2θ
′)ηi. Since solve(M ′1 �χ M

′
3) = {σ1, . . . , σn}, by H1 we

have solve(M ′1θ
′ �χ M

′
3θ
′) = {(σ1θ′)|χ, . . . , (σnθ

′)|χ} (one can always guarantee

var(θ′) ∩ χ = ∅, renaming bound variables). Since solve(M ′1θ
′ �χ M ′3θ

′) =

{η1, . . . , ηk}, we have {(σ1θ′)|χ, . . . , (σnθ′)|χ} = {η1, . . . , ηk} and, hence, n ≥ k.

So, we have to show that σiθ
′ = θ′(σiθ

′)|χ holds for all 1 ≤ i ≤ n, i.e., for all v,

we have to show vσiθ
′ = vθ′(σiθ

′)|χ. (Then the claim will follow by the ACID

property of o.) There are two cases:

∗ v ∈ χ. Then v ∈ dom(σi) by H0. We show vθ′(σiθ
′)|χ = vσiθ

′. Since we can

assume dom(θ′)∩χ = ∅, by the substitution application we have vθ′(σiθ
′)|χ =

v(σiθ
′)|χ. Since dom(θ′)∩ dom(σi) = ∅ (it can always be guaranteed through

a renaming of bound variables), and since v ∈ dom(σi), by the substitution

composition we get v(σiθ
′)|χ = vσiθ

′.

∗ v /∈ χ. Then v 6∈ dom(σi) by H0. We show vθ′(σiθ
′)|χ = vσiθ

′. By the

substitution application, vσiθ
′ = vθ′. Since dom(σiθ

′)|χ = χ, we can rename

bound variables so that dom(σiθ
′)|χ ∩ fv(Ran(θ′)) = ∅. By substitution

application and composition, we get vθ′(σiθ
′)|χ = vθ′.

Lemma 6.10 (Diamond Property). For all M , N , and Q, if M ⇒C N and M ⇒C Q, then

there exists W such that N ⇒C W and Q⇒C W .

Proof. The proof is by induction on the structure of M .

• Let M = x or M = f . Since we necessarily have M = N = Q, the result holds trivially.

• Let M is an abstraction. We consider the following cases:

– If M = λχM1.M2 then we have N = λχN1.N2 with M1 ⇒C N1,M2 ⇒C N2 and

Q = λχQ1.Q2 with M1 ⇒C Q1,M2 ⇒C Q2. Applying the IH to M1 and to M2

we get that there exist two terms W1 and W2 such that N1 ⇒C W1, Q1 ⇒C W1

and N2 ⇒C W2, Q2 ⇒C W2. So, by the definition of parallel reduction, we can

conclude N = λχN1.N2 ⇒C λχW1.W2 = W and Q = λχQ1.Q2 ⇒C λχW1.W2 =

W .

FCUP 103

6.3. Confluence of the Core Pattern Calculus 999.

– If M = λχ(M1 oM2).M3 then we have the following possible cases:

a) N = λχN1.N3 o λχN2.N3 with M1 ⇒C N1,M2 ⇒C N2,M3 ⇒C N3 and

Q = λχQ1.Q3 o λχQ2.Q3 with M1 ⇒C Q1,M2 ⇒C Q2,M3 ⇒C Q3. Applying

the IH to M1,M2 and M3 we get that there exist terms W1,W2 and W3

such that N1 ⇒C W1, Q1 ⇒C W1, N2 ⇒C W2, Q2 ⇒C W2 and N3 ⇒C

W3, Q3 ⇒C W3. So, by the definition of parallel reduction, we can conclude

N = λχN1.N3 o λχN2.N3 ⇒C λχW1.W3 o λχW2.W3 = W and Q = λχQ1.Q3 o

λχQ2.Q3 ⇒C λχW1.W3 o λχW2.W3 = W .

b) N = λχ(N1 o N2).N3 with M1 ⇒C N1,M2 ⇒C N2,M3 ⇒C N3 and Q =

λχQ1.Q3 o λχQ2.Q3 with M1 ⇒C Q1,M2 ⇒C Q2,M3 ⇒C Q3. Applying

the IH to M1,M2 and M3 we get that there exist terms W1,W2 and W3

such that N1 ⇒C W1, Q1 ⇒C W1, N2 ⇒C W2, Q2 ⇒C W2 and N3 ⇒C

W3, Q3 ⇒C W3. So, by the definition of parallel reduction we can conclude

N = λχ(N1 o N2).N3 ⇒C λχW1.W3 o λχW2.W3 = W and Q = λχQ1.Q3 o

λχQ2.Q3 ⇒C λχW1.W3 o λχW2.W3 = W . The proof proceeds similarly, when

N = λχN1.N3 o λχN2.N3 and Q = λχQ1 oQ2.Q3.

c) The case for N = λχ(N1 oN2).N3 and Q = λχ(Q1 oQ2).Q3 is covered by the

case for M = λχM1.M2.

– If M = λχM1.(M2 oM3) then we have the following cases:

a) N = λχN1.N2 o λχN1.N3 with M1 ⇒C N1,M2 ⇒C N2,M3 ⇒C N3 and

Q = λχQ1.Q2 o λχQ1.Q3 with M1 ⇒C Q1,M2 ⇒C Q2,M3 ⇒C Q3. Applying

the IH to M1,M2 and M3 we get that there exist terms W1,W2 and W3

such that N1 ⇒C W1, Q1 ⇒C W1, N2 ⇒C W2, Q2 ⇒C W2 and N3 ⇒C

W3, Q3 ⇒C W3. So, by the definition of parallel reduction we can conclude

N = λχN1.N2 o λχN1.N3 ⇒C λχW1.W2 o λχW1.W3 = W and Q = λχQ1.Q2 o

λχQ1.Q3 ⇒C λχW1.W2 o λχW1.W3 = W .

b) N = λχN1.(N2 o N3) with M1 ⇒C N1,M2 ⇒C N2,M3 ⇒C N3 and Q =

λχQ1.Q2 o λχQ1.Q3 with M1 ⇒C Q1,M2 ⇒C Q2,M3 ⇒C Q3. Applying

the IH to M1,M2 and M3 we get that there exist terms W1,W2 and W3

such that N1 ⇒C W1, Q1 ⇒C W1, N2 ⇒C W2, Q2 ⇒C W2 and N3 ⇒C

W3, Q3 ⇒C W3. So, by the definition of parallel reduction, we can conclude

N = λχN1.(N2 o N3) ⇒C λχW1.W2 o λχW1.W3 = W and Q = λχQ1.Q2 o

λχQ1.Q3 ⇒C λχW1.W2 o λχW1.W3 = W . The proof proceeds similarly, when

N = λχN1.N3 o λχN2.N3 and Q = λχQ1.(Q2 oQ3).

104 FCUP

999. 6. Pattern Calculi

c) The case for N = λχN1.(N2 oN3) and Q = λχQ1.(Q2 oQ3) is covered by the

case for M = λχM1.M2.

• Let M is a term application, then we have following cases:

– If M = M1x and N = N1x and Q = Q1x with M1 ⇒C N1 and M1 ⇒C Q1 then

by IH to M1 there exist W1 such that N1 ⇒C W1, Q1 ⇒C W1. By the definition

of parallel reduction, we can conclude N1x⇒C W1x and Q1x⇒C W1x.

– If M = M1M2 and N = N1N2 and Q = Q1Q2 with M1 ⇒C N1, M2 ⇒C N2 and

M1 ⇒C Q1, M2 ⇒C Q2, then by IH to M1 and M2 we get that there exist two

terms W1 and W2 such that N1 ⇒C W1, Q1 ⇒C W1 and N2 ⇒C W2, Q2 ⇒C W2.

We conclude that N = N1N2 ⇒C W1W2 and Q = Q1Q2 ⇒C W1W2.

– If M = (λχM1.M2)M3 we consider the following cases:

a) N = oni=1N2θi and Q = oki=1Q2θ
′
i with

∗ M1 ⇒C N1 and M1 ⇒C Q1

∗ M2 ⇒C N2 and M2 ⇒C Q2

∗ M3 ⇒C N3 and M3 ⇒C Q3

∗ solve(N1 �χ N3) = {θ1, . . . , θn}

∗ solve(Q1 �χ Q3) = {θ′1, . . . , θ′k}

then we apply the IH on M1,M2 and M3 and get

∗ N1 ⇒C W1 and Q1 ⇒C W1

∗ N2 ⇒C W2 and Q2 ⇒C W2

∗ N3 ⇒C W3 and Q3 ⇒C W3

Applying H2 to N1 and N3 we get solve(W1 �χ W3) = {θ′′1 , . . . , θ′′m} where

each θi reduces with the parallel reduction to at least one θ′′j and every θ′′j is

the parallel reduction of some θi. Then by applying Lemma 6.9 we conclude

that N2θi ⇒C W2θ
′′
j . By the definition of parallel reduction and by the ACID

property of o, we have oni=1N2θi ⇒C oni=1W2θ
′′
i . Again by applying H2 to Q1

and Q3 we have solve(W1 �χ W3) = {θ′′1 , . . . , θ′′m} with each θi reduces with

parallel reduction to at least one θ′′j and every θ′′j is the parallel reduction of

some θi. By Lemma 6.9, we conclude that (i) for each 1 ≤ i ≤ n there exists

1 ≤ j ≤ m such that Q2θ
′
i ⇒C W2θ

′′
j , and (ii) for each 1 ≤ j ≤ m there exists

1 ≤ i ≤ n such that Q2θ
′
i ⇒C W2θ

′′
j . Therefore, by the definition of parallel

reduction and by the ACID property of o, we have oki=1Q2θ
′
i ⇒C oni=1W2θ

′′
i .

FCUP 105

6.3. Confluence of the Core Pattern Calculus 999.

b) N = oni=1N2θi and Q = (λχQ1.Q2)Q3 where Q3 is o-free with

∗ M1 ⇒C N1 and M1 ⇒C Q1,

∗ M2 ⇒C N2 and M2 ⇒C Q2,

∗ M3 ⇒C N3 and M3 ⇒C Q3,

∗ solve(N1 �χ N3) = {θ1, . . . , θn}.

Then we apply the IH to M1,M2 and M3 and get

∗ N1 ⇒C W1 and Q1 ⇒C W1,

∗ N2 ⇒C W2 and Q2 ⇒C W2,

∗ N3 ⇒C W3 and Q3 ⇒C W3.

Applying H2 to N1 and N3 we get solve(W1 �χ W3) = {θ′′1 , . . . , θ′′m}, where

each θi reduces by the parallel reduction to at least one θ′′j , and each θ′′j is the

parallel reduction of some θi. By Lemma 6.9, we get (i) for each 1 ≤ i ≤ n

there exists 1 ≤ j ≤ m such that N2θi ⇒C W2θ
′′
j , and (ii) for each 1 ≤ j ≤ m

there exists 1 ≤ i ≤ n such that N2θi ⇒C W2θ
′′
j . By the definition of parallel

reduction and by the ACID property of o, we have oni=1N2θi ⇒C omi=1W2θ
′′
i .

On the other hand, we have (λχQ1.Q2)Q3 ⇒C omi=1W2θ
′′
i . The proof proceeds

similarly, when N = (λχN1.N2)N3 and Q = oni=1Q2θi, where N3 is o-free.

c) N = oni=1N2θi and Q = (λχQ1.Q2)Q
′
3 o(λχQ1.Q2)Q

′′
3 where Q′3 oQ′′3 = Q3 with

∗ M1 ⇒C N1 and M1 ⇒C Q1,

∗ M2 ⇒C N2 and M2 ⇒C Q2,

∗ M3 ⇒C N3 and M3 ⇒C Q3,

∗ solve(N1 �χ N3) = {θ1, . . . , θn}.

Then we apply the IH to M1,M2 and M3 and get

∗ N1 ⇒C W1 and Q1 ⇒C W1,

∗ N2 ⇒C W2 and Q2 ⇒C W2,

∗ N3 ⇒C W3 and Q3 ⇒C W3.

Applying H2 to N1 and N3 we get solve(W1 �χ W3) = {θ′′1 , . . . , θ′′m}, where

each θi reduces by the parallel reduction to at least one θ′′j and every θ′′j

is the parallel reduction of some θi. By Lemma 6.9, we get (i) for each

1 ≤ i ≤ n there exists 1 ≤ j ≤ m such that N2θi ⇒C W2θ
′′
j , and (ii) for

each 1 ≤ j ≤ m there exists 1 ≤ i ≤ n such that N2θi ⇒C W2θ
′′
j . By

the definition of parallel reduction and by the ACID property of o, we have

106 FCUP

999. 6. Pattern Calculi

oni=1N2θi ⇒C omi=1W2θ
′′
i . On the other hand, we know Q′3 oQ′′3 = Q3 ⇒C W3,

which means there exist W ′3 and W ′′3 such that Q′3 ⇒C W ′3, Q
′′
3 ⇒C W ′′3 ,

and W ′3 o W ′′3 = W3. But since W3 is o-free, we have W3 = W ′3 = W ′′3 .

Hence, we can conclude that (λχQ1.Q2)Q
′
3 o(λχQ1.Q2)Q

′′
3 ⇒C (λχW1.W2)W

′
3 o

(λχW1.W2)W
′′
3 = (λχW1.W2)W3 ⇒C omi=1W2θ

′′
i .

d) The case when N = (λχN1.N2)N3 and Q = (λχQ1.Q2)Q3 is covered by the

case M = M1M2.

• Let M = M1 oM2 and N = N1 oN2 and Q = Q1 oQ2 with M1 ⇒C N1,M2 ⇒C N2 and

M1 ⇒C Q1,M2 ⇒C Q2, then applying IH to M1 and M2 we get that there exist two

terms W1 and W2 such that N1 ⇒C W1, Q1 ⇒C W1 and N2 ⇒C W2, Q2 ⇒C W2. We

conclude that N = N1 oN2 ⇒C W1 oW2 and Q = Q1 oQ2 ⇒C W1 oW2.

Theorem 6.11. The core pattern calculus with finitary matching is confluent if solve satisfies

H0, H1, and H2.

Proof. We need to show that the relation �C is confluent. From Lemma 6.8 we get that

the reflexive-transitive closure of the relations →C and ⇒C are the same. By Lemma 6.10,

the relation ⇒C has the diamond property and, therefore, its reflexive-transitive closure is

confluent. Hence, �C is confluent.

Remark 6.12. In λχP.M , we say that the pattern P is linear if it is a linear term with

respect to χ. In pattern calculi, non-linear patterns usually lead to non-confluent reductions,

which is a variation of Klop’s counterexample [Klo80]. Since we do not impose any syntactic

restrictions on patterns in general, Klop’s counterexample can be encoded in our calculus

as it is done for the ρ-calculus [Wac03]. However, the conditions H0,H1 and H2 are

strong enough to restrict non-joinable reductions of the given term. For example, consider

solve(f x x �{x} f M M) where M is a redex. If we reduce M to M ′ 6= M by parallel

reduction, the condition H2 is violated: We have f M M ⇒C f M
′M and f x x⇒C f x x.

FCUP 107

6.4. Instantiations of solve 999.

6.4 Instantiations of solve

Sequence Matching

We now define solve slightly differently from that in Example 6.1. In particular, we add one

more item in the condition C2:

C2.3. Q does not contain free variables.

Now we show that this solve satisfies H0, H1, and H2 (and, thus, makes the calculus

confluent). They trivially hold when solve(P �χ Q) is undefined or is empty. Otherwise,

H0 follows from the C1, C2.1 and the conditions that require that TVE and SVE rules are

applied if x and x are from χ. If solve(P �χ Q) is defined, then both P and Q are redex-

and o-free, or P = x and Q is o-free. If P,Q are both redex- and o-free then H2 trivially

holds. If P = x then by condition C1 we know Q does not contain bound sequence variables

and is o-free, which means that Q necessarily reduces by parallel reduction to a o-free term

Q′. Then we have solve(x �{x} Q) = {{x 7→ Q}} and solve(x �{x} Q′) = {{x 7→ Q′}}. By

the definition of parallel reduction for substitutions, we have {x 7→ Q} ⇒C {x 7→ Q′} and,

hence, H2 holds. The condition H1 holds trivially.

Example 6.13. Let solve be the function based on the matching with sequence variables

as defined in this section, then solve makes the first reduction in Example 6.4 impossible,

i.e. M = (λ{z}f z. (λ{x,y}f x y. (f x))(f z)) (f a b) reduces to the normal form only via this

reduction: M →C (λ{x,y}f x y. (f x)) (f a b)→C f o fa o f a b.

Remark 6.14. Sequence matching, as we defined it, permits an encoding of untyped λ-

calculus in our core pattern calculus: solve(P �χ Q) always succeeds when P = x with

χ = {x} and Q is a λ-term with the computed matcher {x 7→ Q}. Hence, for each β-

reduction of a λ-term there exists a →C reduction of the corresponding pattern-term.

A term is a rigid value if it is a closed term that contains no redexes. For instance, the

term Q that satisfies the conditions C2.2 and C2.3 of the sequence matching function defined

above is a rigid value. Given a reduction (λχP.N)Q →βp Nσ1 o · · · o Nσn, we say that it is

performed by the call-by-rigid-value strategy, if the term Q is a rigid value.

Remark 6.15. The sequence matching function solve above is undefined when P is not a

variable and Q is not a rigid value. Reductions performed based on that solve are call-by-

108 FCUP

999. 6. Pattern Calculi

rigid-value reductions for non-variable patterns. Note that those patterns do not contain

redexes, but can be non-linear (in the sense of pattern linearity as defined in Remark 6.12)

above. Nevertheless, Klop’s counterexample to confluence can not be encoded due to the

call-by-rigid-value strategy imposed by the conditions C2.2 and C2.3.

Unordered Sequence Matching

As we have seen in Chapter 3 some elements of F can have unordered property and the meta

symbol fu is used to vary over those elements. Matching between terms where some symbols

may have unordered property generalizes the commutative matching and is called unordered

sequence matching. To deal with unordered function symbols in a matching equation, the

sequence matching algorithm given in Example 6.1 can be reformulated in following way:

Del : M �?
χ M ε ∅, where fv(M) ∩ χ = ∅.

Dec : M1M2 �?
χ N1N2 ε {M1 �?

χ N1,M2 �?
χ N2},

where N1 does not have a form fuN1 · · ·Nn.

FSU : fuM1 . . .Mm �?
χ fuN1 . . . Nn ε {foM1 . . .Mm �?

χ foNπ(1) . . . Nπ(n)},

where m or n is not 0, π is a permutation of (1, . . . , n), and

fo is some ordered function symbol.

TVU : xM1 . . .Mm �?
χ fuN1 . . . Nn {x 7→fu} {foM1 . . .Mm �?

χ foNπ(1) . . . Nπ(n)},

where m > 0, π is a permutation of (1, . . . , n) and fo is some ordered

function symbol.

TVE : x�?
χ N {x 7→N} ∅, where x ∈ χ.

SVE : M x�?
χ N N1 · · ·Nn {x 7→dN1,...,Nne} {M �

? N}, where x ∈ χ and n ≥ 0.

solve here is defined slightly differently than in Example 6.1. The conditions C1–C3 are

inherited from the sequence matching function in that example and, in addition, one more

restriction is added to C1: Q should not contain unordered symbols. With the arguments

similar to that for the sequence matching above we can show that the solve defined for the

unordered sequence matching verifies H0,H1 and H2.

Remark 6.16. Unordered sequence matching like free sequence matching verifies H0,H1,

and H2, when the reduction is applied with the call-by-rigid-value strategy. Hence, the

core pattern calculus with the unordered sequence matching is confluent and generalizes the

FCUP 109

6.4. Instantiations of solve 999.

confluence result for the (left-)distributive ρ-calculus, formulated for finitary matching with

algebraic patterns and the call-by-rigid-value strategy in, e.g., [Fau07].

Example 6.17. Let M = (λ{z}fu z. (λ{x,y}fu x y. (g x))(fu z)) (fu a b) and solve be the func-

tion based on the unordered sequence matching as defined in this section. Then M reduces

in only one way: M →C (λ{x,y}fu x y. (g x)) (fu a b)→C g o g a o g a b o g b o g b a.

Sequence Matching with Linear Algebraic Patterns.

The free and unordered sequence matching functions above require Q to be a rigid value in

solve(P �χ Q) (unless P is a variable). We now try to relax this restriction on Q. Instead,

the form of patterns will be constrained.

Algebraic terms are defined by the grammar A := x | fq1 · · · qn, n ≥ 0, where q is defined as

q := x | A.

In a term λχP.M , the pattern P is an algebraic pattern if it is an algebraic term. It is a

linear algebraic pattern if it is algebraic and linear with respect to χ.

For the definition of solve(P �?
χ Q), we take the solve for sequence matching, but make

three modifications: Q may contain redexes, Q may not contain bound sequence variable

occurrences, and P should be a linear algebraic term with respect to χ. Such solving problems

arise when one tries to reduce (λχP.M)Q, where P is a linear algebraic pattern in λχP.M ,

and Q contains no bound sequence variables.

To make the conditions for solve more precise, now they look as follows:

C0. Q is o-free and does not contain bound sequence variables.

C1. If P = x for some variable x, then we have one of the following cases:

• If χ = ∅ and Q = x, then solve(P �χ Q) = {ε}.

• If χ = {x}, then solve(P �χ Q) = {{x 7→ Q}}.

• If the conditions in the previous two items do not hold, then solve(P �χ Q) is

undefined.

C2. If P 6= x for any x, assume the following conditions are satisfied:

C2.1: χ ⊆ fv(P).

110 FCUP

999. 6. Pattern Calculi

C2.2: P is a linear algebraic term with respect to χ.

C2.3. Q does not contain free variables.

Then we transform P �?
χ Q by the rules above in all possible ways as long as possible

and substitutions σ from the success states 〈∅, σ〉 are collected in the set M of computed

matchers (which is complete and finite [KM12]).

C3. Otherwise, solve(P �χ Q) is undefined.

Then the conditions H0 and H1 remain valid. For H2, note that even if Q may contain

redexes, they are never propagated to the left-hand side of matching problems (due to

linearity of patterns), and the redexes are not broken between pattern variables (due to

the algebraic property). Linearity of the pattern P together with the restriction of bound

sequence variable occurrences in Q guarantee that from solvable problems one can not obtain

unsolvable ones by parallel reduction: Q never reduces to a term that contains the o operator

and we can not have cases similar to that in Remark 6.12 above. Hence, in the matching

process, the left-hand sides of matching equations remain algebraic patterns (and, therefore,

redex-free and o-free), the redexes from Q are preserved in the ranges of the matchers (and

do not reduce to terms with o), and the instantiations of free variables in the pattern are not

considered for matching again (since the variables occur only once).

These conditions imply H2. Sequence matching with algebraic patterns is an example of the

matching function that does not require the call-by-value strategy.

6.5 Pattern Calculus with Finitary Matching

Pattern calculus with finitary matching extends the core pattern calculus by a set ξ of rewrite

rules. This set, like solve, is a parameter of the calculus and serves the purpose of expressing

some pattern-based calculi as instances of the pattern calculus with finitary matching. The

core calculus might not be expressive enough for them.

The proof of confluence of the pattern calculus with finitary matching is analogous to the

proof of the same result for the pattern calculus with unitary matching from [Fau07]. It

uses the Yokouchi-Hikita’s lemma [YH90, CHL96], which states that if R1 and R2 are two

relations defined on the same set T(F ∪ {o},V) of terms such that (a) R1 is confluent and

strongly normalizing, (b) R2 verifies the diamond property, and (c) R1 and R2 form the

FCUP 111

6.5. Pattern Calculus with Finitary Matching 999.

Yokouchi-Hikita’s diagram, then the relation R∗1R2R
∗
1 is confluent. What it means R1 and

R2 to form the Yokouchi-Hikita’s diagram, is that for all M,N,Q ∈ T(F ∪ {o},V) such that

M→R1N and M→R2Q there should exist W ∈ T(F ∪ {o},V) such that N→R∗1R2R∗1
W and

Q→R∗1
W .

The confluence theorem is now formulated as follows:

Theorem 6.18. The pattern calculus with finitary matching is confluent if

• solve satisfies H0,H1,H2,

• the set ξ of reduction rules is strongly normalizing and confluent, and

• the relations ⇒C and ξ satisfy Yokouchi-Hikita’s diagram.

Proof. Using the same argument as in the proof of Theorem 6.11 in [Fau07]: Apply Yokouchi-

Hikita’s lemma with R1 being the compatible relation induced by ξ and with R2 being ⇒C .

The diamond property of ⇒C has been proved in Lemma 6.10. To conclude the proof, as a

consequence of Lemma 6.8, we can remark that the reflexive-transitive closure of →C∪ξ and

�ξ⇒C�ξ are equal.

112 FCUP

999. 6. Pattern Calculi

7. Conclusion

In this thesis we showed that incorporating sequence and context variables in declarative

programing yields flexible, expressive framework with interesting and useful applications.

Below we make the contributions more detailed and discuss ideas for future work.

7.1 Constraint Solving

We contributed with a new algorithm for solving equational and membership constraints over

simple sequences and contexts. The problem generalizes both sequence and context unifica-

tion, hence any complete solving procedure is non-terminating, because those problems are

infinitary. Our algorithm is sound, terminating, and incomplete, computing partially solved

constraints. Those partially solved constraints still may have infinitely many solutions or,

in some cases when the solution set is finite, may explicitly provide a complete solution. We

identified two such finitary fragments: well-moded and KIF, and showed how the algorithm

computes a completely solved form for them. Both fragments are practically interesting and

important. The well-moded fragment may arise in conditional rewriting over sequences and

context, and the KIF fragment provides an expressive language for ontologies.

7.2 Constraint Logic Programming

We integrated the constraint solving algorithm into the constraint logic programming schema,

obtaining a constraint logic programming language CLP(SC) over the domain of sequences

and contexts. We studied the semantics of this language and identified two special cases

of CLP(SC) programs, well-moded and KIF programs, that lead to constraints with the

corresponding names, for which the solver computes a complete set of solutions. Although

113

114 FCUP

999. 7. Conclusion

the constraints we consider in this thesis are positive, in well-moded and KIF fragments we

can easily enrich them with negation. Well-modedness then guarantees that the eventual test

for disequality and non-membership in constraints will be performed on ground sequences and

contexts, which can be effectively decided. In the KIF case, disequality and non-membership

concerns a single sequence or context variable.

With the help of free and unordered unranked function symbols and sequence variables,

we can easily express such well-known data structures as lists and multisets. This gives us

the possibility to encode problems over those domains in CLP(SC). Context and function

variables give additional expressive power to for making the encoding more compact and

flexible. This expressive power, combined with the powerful constraint solving mechanism,

makes CLP(SC) an useful tool.

7.3 Rule-based Programming

We described PρLog, a system for conditional rule-based transformation of sequences with

strategies. It is built on top of Prolog and supports programming with individual, sequence,

function, and context variables. The inference mechanism is based on Prolog’s. The pro-

grams may contain Prolog clauses and predicates alongside the clauses specific to PρLog. We

described the operational semantics and the strategy language of this system, and illustrated

its applications on two use cases: XML processing and Web reasoning, and implementation

of rewriting strategies. The PρLog code is usually compact and declaratively clear. The

users familiar with logic programming and Prolog can very quickly start using it since its

syntax is similar to that of Prolog and the semantics is based on logic programming.

7.4 Pattern Calculus

Pattern calculus is a formalism for functional programming. Confluence is one of the most

important desirable properties for such formalisms. Being established earlier for pattern

calculi with unitary matching, it was a challenging task to find conditions that guarantee

confluence when matching is finitary. We studied such an extension, considering a pattern

calculus with sequence variables, where even syntactic matching is finitary. Even if one

collects all alternative reductions into one term, confluence does not hold in general and

FCUP 115

7.5. Further Work 999.

special conditions are need to guarantee it. The conditions that we established are sufficient

not only for calculi with sequence matching, but for arbitrary calculi with finitary matching.

We gave three concrete instances of the matching function that satisfy these conditions:

free and unordered sequence matchings, and the sequence matching with linear algebraic

patterns.

7.5 Further Work

There are a couple of directions of research on the thesis topics that can be further explored.

For instance, it would be interesting to find other fragments of constraints over sequences

and contexts that can be solved efficiently. Applying CLP(SC) to problems in bioinformatics

(e.g., modeling membrane computing) is another interesting idea. As for PρLog, one can

think about implementing the matching module in some lower-level language to make it

more efficient. Currently matching, like the whole PρLog system, is implemented in Prolog.

Adding types to the pattern calculus with sequence variables and investigating conditions

for strong normalization is yet another challenging task.

116 FCUP

999. 7. Conclusion

Bibliography

[AB94] Krzysztof R. Apt and Roland Bol. Logic programming and negation: A

survey. J. Logic Programming, 19:9–71, 1994. 5.2.2

[ADFK13] Sandra Alves, Besik Dundua, Mário Florido, and Temur Kutsia. A confluent

pattern calculus with hedge variables. In N. Hirokawa and V. van Oostrom,

editors, 2nd International Workshop on Confluence, IWC 2013, pages 41–45,

2013. 1

[ADFK14] Sandra Alves, Besik Dundua, Mário Florido, and Temur Kutsia. Confluence

of pattern-based calculi with finitary matching. In Tudor Jebelean, Wei

Li, and Dongming Wang, editors, Third International Seminar on Program

Verification, Automated Debugging and Symbolic Computation, PAS 2014,

2014. 1

[AMR06] Ariel Arbiser, Alexandre Miquel, and Alejandro Ŕıos. A lambda-calculus with

constructors. In Frank Pfenning, editor, Term Rewriting and Applications,

17th International Conference, RTA 2006, Seattle, WA, USA, August 12-14,

2006, Proceedings, volume 4098 of Lecture Notes in Computer Science, pages

181–196. Springer, 2006. 1

[ANR04] Siva Anantharaman, Paliath Narendran, and Michaël Rusinowitch. Unifica-

tion modulo acui plus distributivity axioms. J. Autom. Reasoning, 33(1):1–28,

2004. 6.2

[Ant96] Valentin Antimirov. Partial derivatives of regular expressions and finite

automaton constructions. Theor. Comput. Sci., 155(2):291–319, March 1996.

3.7

117

118 FCUP

999. BIBLIOGRAPHY

[Baa07] Franz Baader, editor. Term Rewriting and Applications, 18th International

Conference, RTA 2007, Paris, France, June 26-28, 2007, Proceedings, volume

4533 of Lecture Notes in Computer Science. Springer, 2007. 7.5

[Bar84] Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-

Holland, 1984. Revised edition. 2.1, 6.1, 6.3

[BC00] Angela Bonifati and Stefano Ceri. Comparative analysis of five xml query

languages. SIGMOD Rec., 29(1):68–79, March 2000. 5.3.1

[BCJ+06] Bruno Buchberger, Adrian Craciun, Tudor Jebelean, Laura Kovács, Temur

Kutsia, Koji Nakagawa, Florina Piroi, Nikolaj Popov, Judit Robu, Markus

Rosenkranz, and Wolfgang Windsteiger. Theorema: Towards computer-aided

mathematical theory exploration. J. Applied Logic, 4(4):470–504, 2006. 1

[BKK+98] Peter Borovanský, Claude Kirchner, Hélène Kirchner, Pierre-Etienne Moreau,

and Christophe Ringeissen. An overview of ELAN. Electr. Notes Theor.

Comput. Sci., 15:55–70, 1998. 1, 5.1

[BKVV08] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser.

Stratego/XT 0.17. a language and toolset for program transformation. Sci.

Comput. Program., 72(1-2):52–70, 2008. 1, 5.1

[BN98] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge

University Press, 1998. 1

[Bol99] Harold Boley. A Tight, Practical Integration of Relations and Functions,

volume 1712 of Lecture Notes in Computer Science. Springer, 1999. 1

[BS01] Franz Baader and Wayne Snyder. Unification theory. In Robinson and

Voronkov [RV01], pages 445–532. 2.4

[Buc96] Bruno Buchberger. Mathematica as a rewrite language. In Tetsuo Ida, Atsushi

Ohori, and Masato Takeich, editors, Functional and Logic Programming - 2nd

Fuji International Workshop, FLOPS 1996, Shonan Village, Japan, June 4-6,

1996. Proceedings, Lecture Notes in Computer Science, pages 1–13. Springer,

1996. 1

[BW08] Mikolaj Bojanczyk and Igor Walukiewicz. Forest algebras. In Jörg Flum,

Erich Grädel, and Thomas Wilke, editors, Logic and Automata, volume 2

FCUP 119

BIBLIOGRAPHY 999.

of Texts in Logic and Games, pages 107–132. Amsterdam University Press,

2008. 1

[CB83] Jacques Corbin and Michel Bidoit. A rehabilitation of robinson’s unification

algorithm. In Richard E. Mason, editor, Information Processing 83, pages

909–914. Elsevier Science Publishers Ltd., 1983. 2.4

[CD96] Philippe Codognet and Daniel Diaz. Compiling constraints in clp(FD). J.

Log. Program., 27(3):185–226, 1996. 1

[CD97] Eric Chasseur and Yves Deville. Logic program schemas, constraints, and

semi-unification. In Fuchs [Fuc98], pages 69–89. 1

[CDE+02] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-

Oliet, José Meseguer, and Jose F. Quesada. Maude: specification and

programming in rewriting logic. Theor. Comput. Sci., 285(2):187–243, 2002.

1, 5.1

[CDFK10] Jorge Coelho, Besik Dundua, Mário Florido, and Temur Kutsia. A rule-

based approach to XML processing and web reasoning. In Pascal Hitzler

and Thomas Lukasiewicz, editors, Web Reasoning and Rule Systems - Fourth

International Conference, RR 2010, Bressanone/Brixen, Italy, September 22-

24, 2010. Proceedings, volume 6333 of Lecture Notes in Computer Science,

pages 164–172. Springer, 2010. 1

[CDG+07] Hubert Comon, Max Dauchet, Remi Gilleron, Cristof Löding, Florent

Jacquemard, Denis Lugiez, Sophie Tison, and Marc Tommasi. Tree au-

tomata techniques and applications. Available from: http://www.grappa.

univ-lille3.fr/tata, 2007. release October, 12th 2007. 3.4.4

[CF04] Jorge Coelho and Mário Florido. CLP(Flex): Constraint Logic Program-

ming applied to XML processing. In Robert Meersman and Zahir Tari,

editors, CoopIS/DOA/ODBASE (2), volume 3291 of LNCS, pages 1098–1112.

Springer, 2004. 1

[CF06] Jorge Coelho and Mário Florido. Veriflog: A constraint logic programming

approach to verification of website content. In Heng Tao Shen, Jinbao Li,

Minglu Li, Jun Ni, and Wei Wang, editors, Advanced Web and Network Tech-

nologies, and Applications, APWeb 2006 International Workshops: XRA,

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata

120 FCUP

999. BIBLIOGRAPHY

IWSN, MEGA, and ICSE, Harbin, China, January 16-18, 2006, Proceedings,

volume 3842 of Lecture Notes in Computer Science, pages 148–156. Springer,

2006. 1

[CF07a] Horatiu Cirstea and Germain Faure. Confluence of pattern-based calculi. In

Baader [Baa07], pages 78–92. 1, 2.1, 6.1, 6.3

[CF07b] Jorge Coelho and Mário Florido. XCentric: logic programming for XML

processing. In Irini Fundulaki and Neoklis Polyzotis, editors, 9th ACM

International Workshop on Web Information and Data Management (WIDM

2007), Lisbon, Portugal, November 9, 2007, pages 1–8. ACM, 2007. 1

[CFK07] Jorge Coelho, Mário Florido, and Temur Kutsia. Sequence disunification

and its application in collaborative schema construction. In Mathias Weske,

Mohand-Said Hacid, and Claude Godart, editors, WISE Workshops, volume

4832 of Lecture Notes in Computer Science, pages 91–102. Springer, 2007. 1

[CFK09] Jorge Coelho, Mário Florido, and Temur Kutsia. Collaborative schema

construction using regular sequence types. In Proceedings of the IEEE

International Conference on Information Reuse and Integration, IRI 2009,

10-12 August 2009, Las Vegas, Nevada, USA, pages 290–295. IEEE Systems,

Man, and Cybernetics Society, 2009. 1

[CHL96] Pierre-Louis Curien, Thérèse Hardin, and Jean-Jacques Lévy. Confluence

properties of weak and strong calculi of explicit substitutions. J. ACM,

43(2):362–397, 1996. 6.5

[Chu32] Alonzo Church. A set of postulates for the foundation of logic. Part I. Annals

of Mathematics, 33(2):346–366, 1932. 1

[CJL04] Yves Caseau, François-Xavier Josset, and François Laburthe. Claire: Combin-

ing sets, search and rules to better express algorithms. CoRR, cs.PL/0405091,

2004. 5.1

[CK01] Horatiu Cirstea and Claude Kirchner. The rewriting calculus - parts I and

II. Logic Journal of the IGPL, 9(3), 2001. 1, 1, 5.1, 6.1

[Col90] Alain Colmerauer. An introduction to Prolog III. Commun. ACM, 33(7):69–

90, 1990. 1

FCUP 121

BIBLIOGRAPHY 999.

[Com98] Hubert Comon. Completion of rewrite systems with membership constraints.

Part II: constraint solving. J. Symb. Comput., 25(4):421–453, 1998. 1, 3.4

[Com07] Common Logic Working Group. Common Logic Working Group Documents:

Common Logic Standard. http://common-logic.org/, 2007. 1

[Der82] Nachum Dershowitz. Orderings for term-rewriting systems. Theor. Comput.

Sci., 17:279–301, 1982. 4.2

[DFKM14] Besik Dundua, Mário Florido, Temur Kutsia, and Mircea Marin. Constraint

logic programming for hedges: A semantic reconstruction. In Michael

Codish and Eijiro Sumii, editors, Functional and Logic Programming - 12th

International Symposium, FLOPS 2014, Kanazawa, Japan, June 4-6, 2014.

Proceedings, volume 8475 of Lecture Notes in Computer Science, pages 285–

301. Springer, 2014. 1, 3.1, 3.8.1

[DK] Besik Dundua and Temur Kutsia. PρLog. Version 0.9. Available from:

http://www.risc.uni-linz.ac.at/people/tkutsia/software.html. 1, 5.1

[DKM09] Besik Dundua, Temur Kutsia, and Mircea Marin. Strategies in PρLog. In

Maribel Fernández, editor, International Workshop on Reduction Strategies

in Rewriting and Programming, WRS 2009, volume 15 of EPTCS, pages 32–

43, 2009. 1

[Dow01] Gilles Dowek. Higher-order unification and matching. In Robinson and

Voronkov [RV01], pages 1009–1062. 2.4

[DPPR00] Agostino Dovier, Carla Piazza, Enrico Pontelli, and Gianfranco Rossi. Sets

and constraint logic programming. ACM Trans. Program. Lang. Syst.,

22(5):861–931, 2000. 3.4

[Dun10] Besik Dundua. Inference mechanism of PρLog. In Reports of Enlarged Session

of the Seminar of I. Vekua Institute of Applied Mathematics, 2010. 1

[EIG88] Gonzalo Escalada-Imaz and Malik Ghallab. A practically efficient and almost

linear unification algorithm. Artif. Intell., 36(2):249–263, 1988. 2.4

[Fau07] Germain Faure. Structures et modèles de calculs de réécriture. PhD thesis,

Université Henri Poincaré, Nancy, France, 2007. 6.16, 6.5, 6.5

122 FCUP

999. BIBLIOGRAPHY

[Frü98] Thom W. Frühwirth. Theory and practice of constraint handling rules. J.

Log. Program., 37(1-3):95–138, 1998. 1, 5.1

[Fuc98] Norbert E. Fuchs, editor. Logic Programming Synthesis and Transformation,

7th International Workshop, LOPSTR’97, Leuven, Belgium, July 10-12,

1997, Proceedings, volume 1463 of Lecture Notes in Computer Science.

Springer, 1998. 7.5

[Gen98] Michael R. Genesereth. Knowledge Interchange Format, draft proposed

American National Standard (dpANS). Technical Report NCITS.T2/98-004,

1998. Available from http://logic.stanford.edu/kif/dpans.html. 1, 3.1, 3.8.2,

4.4

[Gin91] Matthew L. Ginsberg. The MVL theorem proving system. SIGART Bull.,

2(3):57–60, 1991. 1

[Gol81] Warren D. Goldfarb. The undecidability of the second-order unification

problem. Theor. Comput. Sci., 13:225–230, 1981. 2.4

[GT07] Sumit Gulwani and Ashish Tiwari. Computing procedure summaries for

interprocedural analysis. In Rocco De Nicola, editor, Programming Languages

and Systems, 16th European Symposium on Programming, ESOP 2007,

Held as Part of the Joint European Conferences on Theory and Practics

of Software, ETAPS 2007, Braga, Portugal, March 24 - April 1, 2007,

Proceedings, volume 4421 of LNCS, pages 253–267. Springer, 2007. 1

[Ham97] Makoto Hamana. Term rewriting with sequences. In Proceedings of the First

International Theorema Workshop, number 97-20 in RISC Technical Report

series, Hagenberg, Austria, 1997. 1

[HM01] Pat J. Hayes and Christopher Menzel. Semantics of Knowledge In-

terchange Format. http://reliant.teknowledge.com/IJCAI01/HayesMenzel-

SKIF-IJCAI2001.pdf, 2001. 1

[HM05] Pat J. Hayes and Christopher Menzel. Simple Common Logic. In W3C

Workshop on Rule Languages for Interoperability. W3C, 2005. 1

[Hon91] Hoon Hong. RISC-CLP(Real): logic programming with non-linear constraints

over the reals. In Frédéric Benhamou and Alain Colmerauer, editors, WCLP,

pages 133–159, 1991. 1

FCUP 123

BIBLIOGRAPHY 999.

[Hue76] Gerard Huet. Résolution d’Équations dans des langages d’ordre 1, 2, . . . , ω.

These d’État, Université de Paris VII, 1976. 2.4

[HV06] Ian Horrocks and Andrei Voronkov. Reasoning support for expressive

ontology languages using a theorem prover. In Jürgen Dix and Stephen J.

Hegner, editors, Foundations of Information and Knowledge Systems, 4th

International Symposium, FoIKS 2006, Budapest, Hungary, February 14-17,

2006, Proceedings, volume 3861 of Lecture Notes in Computer Science, pages

201–218. Springer, 2006. 1

[Jeż14] Artur Jeż. Context unification is in PSPACE. In Javier Esparza, Pierre

Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata,

Languages, and Programming - 41st International Colloquium, ICALP 2014,

Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II, volume 8573 of

Lecture Notes in Computer Science, pages 244–255. Springer, 2014. 2.4

[JK06] C. Barry Jay and Delia Kesner. Pure pattern calculus. In Peter Sestoft,

editor, Programming Languages and Systems, 15th European Symposium on

Programming, ESOP 2006, Held as Part of the Joint European Conferences

on Theory and Practice of Software, ETAPS 2006, Vienna, Austria, March

27-28, 2006, Proceedings, volume 3924 of Lecture Notes in Computer Science,

pages 100–114. Springer, 2006. 1, 6.1

[JK09] C. Barry Jay and Delia Kesner. First-class patterns. J. Funct. Program.,

19(2):191–225, 2009. 1, 6.1

[JL87] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In

Conference Record of the Fourteenth Annual ACM Symposium on Principles

of Programming Languages, Munich, Germany, January 21-23, 1987, pages

111–119. ACM Press, 1987. 1

[JM94] Joxan Jaffar and Michael J. Maher. Constraint logic programming: A survey.

J. Log. Program., 19/20:503–581, 1994. 1, 4.1

[JMMS98] Joxan Jaffar, Michael J. Maher, Kim Marriott, and Peter J. Stuckey. The

semantics of constraint logic programs. J. Log. Program., 37(1-3):1–46, 1998.

1, 4.1, 4.3

124 FCUP

999. BIBLIOGRAPHY

[JMSY92] Joxan Jaffar, Spiro Michaylov, Peter J. Stuckey, and Roland H. C. Yap. The

CLP(R) language and system. ACM Trans. Program. Lang. Syst., 14(3):339–

395, 1992. 1

[JR08] Florent Jacquemard and Michaël Rusinowitch. Closure of hedge-automata

languages by hedge rewriting. In Voronkov [Vor08], pages 157–171. 1

[Kah03] Wolfram Kahl. Basic pattern matching calculi: Syntax, reduction, conflu-

ence, and normalisation. Technical Report 16, Software Quality Research

Laboratory, McMaster Univ., 2003. 1

[Klo80] Jan Willem Klop. Combinatory reduction systems. PhD thesis, Mathematisch

Centrum, Amsterdam, 1980. 6.12

[KLV07] Temur Kutsia, Jordi Levy, and Mateu Villaret. Sequence unification through

currying. In Baader [Baa07], pages 288–302. 2.4

[KLV10] Temur Kutsia, Jordi Levy, and Mateu Villaret. On the relation between

context and sequence unification. J. Symb. Comput., 45(1):74–95, 2010. 2.4

[KM05a] Temur Kutsia and Mircea Marin. Can context sequence matching be used

for querying XML? In Laurent Vigneron, editor, Proceedings of the 19th

International Workshop on Unification UNIF’05, pages 77–92, Nara, Japan,

22 April 2005. 1

[KM05b] Temur Kutsia and Mircea Marin. Matching with regular constraints. In Geoff

Sutcliffe and Andrei Voronkov, editors, Logic for Programming, Artificial

Intelligence, and Reasoning, 12th International Conference, LPAR 2005,

Montego Bay, Jamaica, December 2-6, 2005, Proceedings, volume 3835 of

Lecture Notes in Computer Science, pages 215–229. Springer, 2005. 1

[KM06] Temur Kutsia and Mircea Marin. Solving regular constraints for hedges

and contexts. In Jordi Levy, editor, Proceedings of the 20th International

Workshop on Unification UNIF’06, pages 89–107, Seattle, USA, 11 August

2006. 3.1, 3.8.1

[KM12] Temur Kutsia and Mircea Marin. Solving, reasoning, and programming in

common logic. In 14th International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing, SYNASC 2012, Timisoara, Romania,

FCUP 125

BIBLIOGRAPHY 999.

September 26-29, 2012, pages 119–126. IEEE Computer Society, 2012. 3.1,

6.1, 6.4

[Kol98] Alexander Koller. Evaluating context unification for semantic underspecifi-

cation. In Proceedings of the Third ESSLLI Student Session, pages 188–199,

1998. 1

[Kut02] Temur Kutsia. Solving and Proving in Equational Theories with Sequence

Variables and Flexible Arity Symbols. RISC Report Series 02-09, Research

Institute for Symbolic Computation (RISC), University of Linz, Schloss

Hagenberg, 4232 Hagenberg, Austria, May 2002. PhD Thesis. 1, 3.1

[Kut03] Temur Kutsia. Equational prover of THEOREMA. In Robert Nieuwenhuis,

editor, Rewriting Techniques and Applications, 14th International Confer-

ence, RTA 2003, Valencia, Spain, June 9-11, 2003, Proceedings, volume 2706

of Lecture Notes in Computer Science, pages 367–379. Springer, 2003. 1

[Kut04] Temur Kutsia. Solving equations involving sequence variables and sequence

functions. In Bruno Buchberger and John A. Campbell, editors, Artificial

Intelligence and Symbolic Computation, 7th International Conference, AISC

2004, Linz, Austria, September 22-24, 2004, Proceedings, volume 3249 of

Lecture Notes in Computer Science, pages 157–170. Springer, 2004. 2.4

[Kut07] Temur Kutsia. Solving equations with sequence variables and sequence

functions. J. Symb. Comput., 42(3):352–388, 2007. 1, 2.4, 6.1

[KvOdV08] Jan Willem Klop, Vincent van Oostrom, and Roel C. de Vrijer. Lambda

calculus with patterns. Theor. Comput. Sci., 398(1-3):16–31, 2008. 1, 6.1

[Lev96] Jordi Levy. Linear second-order unification. In Harald Ganzinger, editor,

Rewriting Techniques and Applications, 7th International Conference, RTA-

96, New Brunswick, NJ, USA, July 27-30, 1996, Proceedings, volume 1103

of Lecture Notes in Computer Science, pages 332–346. Springer, 1996. 1, 2.4,

3.1

[Llo87] John Wylie Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd

edition, 1987. 5.1

126 FCUP

999. BIBLIOGRAPHY

[LNV05] Jordi Levy, Joachim Niehren, and Mateu Villaret. Well-nested context

unification. In Robert Nieuwenhuis, editor, Automated Deduction - CADE-

20, 20th International Conference on Automated Deduction, Tallinn, Estonia,

July 22-27, 2005, Proceedings, volume 3632 of Lecture Notes in Computer

Science, pages 149–163. Springer, 2005. 1

[LSV06] Jordi Levy, Manfred Schmidt-Schauß, and Mateu Villaret. Stratified context

unification is np-complete. In Ulrich Furbach and Natarajan Shankar, editors,

Automated Reasoning, Third International Joint Conference, IJCAR 2006,

Seattle, WA, USA, August 17-20, 2006, Proceedings, volume 4130 of Lecture

Notes in Computer Science, pages 82–96. Springer, 2006. 1

[Mai98] David Maier. Database desiderata for and XML query language. Available

from: http://www.w3.org/TandS/QL/QL98/pp/maier.html, 1998. 5.3.1

[Mak77] Gennady S. Makanin. The problem of solvability of equations in a free

semigroup. Math. USSR Sbornik, 32(2):129–198, 1977. In AMS, (1979). 1

[Men11] Christopher Menzel. Knowledge representation, the World Wide Web, and

the evolution of logic. Synthese, 182(2):269–295, 2011. 1

[MK03] Mircea Marin and Temur Kutsia. On the implementation of a rule-based

programming system and some of its applications. In Boris Konev and

Renate Schmidt, editors, Proceedings of the 4th International Workshop on

the Implementation of Logics, pages 55–69, Almaty, Kazakhstan, 2003. 1

[MK06] Mircea Marin and Temur Kutsia. Foundations of the rule-based system ρLog.

Journal of Applied Non-Classical Logics, 16(1-2):151–168, 2006. 1, 1, 5.1, 5.7

[MM82] Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM

Trans. Program. Lang. Syst., 4(2):258–282, 1982. 2.4

[Moh96] Markus Mohnen. Context patterns in haskell. In Werner E. Kluge,

editor, Implementation of Functional Languages, 8th International Workshop,

IFL’96, Bad Godesberg, Germany, September 16-18, 1996, Selected Papers,

volume 1268 of Lecture Notes in Computer Science, pages 41–57. Springer,

1996. 1

[MOM02] Narciso Mart́ı-Oliet and José Meseguer. Rewriting logic: roadmap and

bibliography. Theor. Comput. Sci., 285(2):121–154, 2002. 1, 5.1

FCUP 127

BIBLIOGRAPHY 999.

[MT03] Mircea Marin and Dorin Tepeneu. Programming with sequence variables:

The Sequentica package. In Peter Mitic, Philip Ramsden, and Janet Carne,

editors, Challenging the Boundaries of Symbolic Computation. Proceedings

of 5th International Mathematica Symposium, pages 17–24, London, 2003.

Imperial College Press. 1

[NPR97] Joachim Niehren, Manfred Pinkal, and Peter Ruhrberg. A uniform approach

to underspecification and parallelism. In Philip R. Cohen and Wolfgang

Wahlster, editors, 35th Annual Meeting of the Association for Computational

Linguistics and 8th Conference of the European Chapter of the Association

for Computational Linguistics, Proceedings of the Conference, 7-12 July 1997,

Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain.,

pages 410–417. Morgan Kaufmann Publishers / ACL, 1997. 1

[NV02] Joachim Niehren and Mateu Villaret. Parallelism and tree regular constraints.

In Matthias Baaz and Andrei Voronkov, editors, Logic for Programming,

Artificial Intelligence, and Reasoning, 9th International Conference, LPAR

2002, Tbilisi, Georgia, October 14-18, 2002, Proceedings, volume 2514 of

Lecture Notes in Computer Science, pages 311–326. Springer, 2002. 1

[NV05] Joachim Niehren and Mateu Villaret. Describing lambda terms in context

unification. In Philippe Blache, Edward P. Stabler, Joan Busquets, and

Richard Moot, editors, Logical Aspects of Computational Linguistics, 5th

International Conference, LACL 2005, Bordeaux, France, April 28-30, 2005,

Proceedings, volume 3492 of Lecture Notes in Computer Science, pages 221–

237. Springer, 2005. 1

[Pau90] Lawrence C. Paulson. Isabelle: The next 700 theorem provers. In Logic and

Computer Science, pages 361–386. Academic Press, 1990. 1

[PW78] Mike Paterson and Mark N. Wegman. Linear unification. J. Comput. Syst.

Sci., 16(2):158–167, 1978. 2.4

[PW87] Simon L. Peyton Jones and Philip Wadler. The Implementation of Functional

Programming Languages, chapter 4: Structured Types and the Semantics of

Pattern Matching. Prentice Hall, 1987. 1, 6.1

[Raj94] Arcot Rajasekar. Constraint logic programming on strings: Theory and

applications. In Maurice Bruynooghe, editor, Logic Programming, Proceedings

128 FCUP

999. BIBLIOGRAPHY

of the 1994 International Symposium, Ithaca, New York, USA, November 13-

17, 1994, page 681. MIT Press, 1994. 1

[RF97] Julian Richardson and Norbert E. Fuchs. Development of correct transfor-

mation schemata for Prolog programs. In Fuchs [Fuc98], pages 263–281. 1

[Rob65] John Alan Robinson. A machine-oriented logic based on the resolution

principle. J. ACM, 12(1):23–41, 1965. 2.4

[RP89] Peter Ruzicka and Igor Pŕıvara. An almost linear Robinson unification

algorithm. Acta Inf., 27(1):61–71, 1989. 2.4

[RV01] John Alan Robinson and Andrei Voronkov, editors. Handbook of Automated

Reasoning (in 2 volumes). Elsevier and MIT Press, 2001. 7.5

[Sch04] Sebastian Schaffert. Xcerpt: a rule-based query and transformation language

for the web. PhD thesis, University of Munich, 2004. 5.3.2, 5.3.4

[SS02] Manfred Schmidt-Schauß. A decision algorithm for stratified context unifica-

tion. J. Log. Comput., 12(6):929–953, 2002. 1

[SSS02] Manfred Schmidt-Schauß and Klaus U. Schulz. Solvability of context

equations with two context variables is decidable. J. Symb. Comput.,

33(1):77–122, 2002. 1

[SSS04] Manfred Schmidt-Schauß and Jürgen Stuber. The complexity of linear and

stratified context matching problems. Theory Comput. Syst., 37(6):717–740,

2004. 3.1

[SW10] Klaus-Dieter Schewe and Qing Wang. XML database transformations. J.

UCS, 16(20):3043–3072, 2010. 1

[vdBvDH+01] Mark van den Brand, Arie van Deursen, Jan Heering, Hayco de Jong, Merijn

de Jonge, Tobias Kuipers, Paul Klint, Leon Moonen, Pieter A. Olivier, Jeroen

Scheerder, Jurgen J. Vinju, Eelco Visser, and Joost Visser. The asf+sdf meta-

environment: a component-based language development environment. Electr.

Notes Theor. Comput. Sci., 44(2):3–8, 2001. 1, 5.1

[Vil04] Mateu Villaret. On Some Variants of Second-Order Unification. PhD thesis,

Technical University of Catalonia, Barcelona, 2004. 1, 3.1

FCUP 129

BIBLIOGRAPHY 999.

[vO90] Vincent van Oostrom. Lambda calculus with patterns. Technical Report

IR-228, Vrije Universiteit, Amsterdam, 1990. 1, 6.1

[Vor08] Andrei Voronkov, editor. Rewriting Techniques and Applications, 19th

International Conference, RTA 2008, Hagenberg, Austria, July 15-17, 2008,

Proceedings, volume 5117 of Lecture Notes in Computer Science. Springer,

2008. 7.5

[Wac03] Benjamin Wack. Klop counter example in the ρ-Calculus. Draft notes,

LORIA, Nancy, 2003. 6.12

[WB01] Manfred Widera and Christoph Beierle. A term rewriting scheme for function

symbols with variable arity. Technical Report 280, Praktische Informatik

VIII, FernUniversität Hagen, Germany, 2001. 1

[Wol03] Stephen Wolfram. The Mathematica Book. Wolfram Media, 5th edition, 2003.

1, 1

[WSTL10] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. SWI-

Prolog. CoRR, abs/1011.5332, 2010. 1

[YH90] Hirofumi Yokouchi and Teruo Hikita. A rewriting system for categorical

combinators with multiple arguments. SIAM J. Comput., 19(1):78–97, 1990.

6.5

130 FCUP

999. BIBLIOGRAPHY

Index

Q→R∗1
, 111

V , 23

F, 19

Fo, 29

Fu, 29

H(,) , 21

P, 28

T(,) , 19

C(F,VISFC) , 23

Ts(F,VISFC) , 23

A, 19

→R∗1R2R∗1
, 111

→C∪ξ, 111

./, 21

�, 38

�, 56

bv(), 20

χ, 19

VC, 23

VF, 23

VS, 19

VI, 23

VISFC, 23

VT, 19

V, 19

+, 28

|, 28

CLP(SC), 53

cm(C), 45

·, 28

., 28

C[r], 24

defnP(), 56

Dom, 22

d e, 21

eps, 28
.
=, 28

fv(), 20

◦, 24

•, 28

in, 28

invar , 59

λχM.N , 19

L(CA), 29

〈, ‖, 〉, 56

�C , 93

7→, 22

�?
χ, 93

CA, 28

solve, 92

S, 30

�, 36

→C , 93

outvar , 59

⇒C , 96

perm(s), 30

131

132 FCUP

999. INDEX

S̃ , 21

Ran, 22

RC, 28

R, 28

RS, 28

→R, 92

H0, 96

H1, 96

H2, 96

βp, 92

Dl, 92

Dr, 92

D, 30

I, 30

solve, 92

S, 56

?, 28

∗, 28

o, 19

σ, 22

σ|V , 23

θ, 22

ρ, 22

�, 31

ξ, 111

ACID, 92

ACID normal form, 92

abstraction, 19

algebraic pattern, 109

algebraic term, 109

alphabet, 19

application, 22

atom, 29, 69

auxiliary symbols, 19

binary function symbol, 19

bound variables, 20, 30

call-by-rigid-value, 107

carrier set, 30

clause, 53, 69

closed term, 21

compatibile relation, 92

complexity measure, 45

composition, 23

confluence of →C , 93

conservative, 42

constraint, 29

DNF, 33

KIF, 51

primitive, 29

well-moded, 48

context, 23

context variable, 23

derivation

failed, 56

finished, 56

from a query, 56

from a state, 56

length, 56

derivation from a query, 56

derivation from a state, 56

disjunctive normal form, 33

DNF, 33

domain, 22

empty sequence of literals, 56

equality predicate, 28

expression

regular context, 28

FCUP 133

INDEX 999.

regular sequence, 28

failed derivation, 56

finished derivation, 56

formula, 29

atomic, 29, 69

constraint, 29

primitive constraint, 29

free variables, 20, 30

function

pattern matching, 92

function symbol, 19

function variable, 23

individual variable, 23

instance, 22

intended structure, 32

interpretation

of contexts, 31

of primitive constraints, 32

of regular expressions, 31

of sequences, 31

KIF, 51

length of a derivation, 56

linear algebraic term, 109

linear form, 36, 38

linear pattern, 106

linear term, 21

literal, 29, 69

empty sequence, 56

matchable variable, 19

membership predicate, 28

monomials, 36, 38

more general substitution, 23

ordering

subsumption, 23

parallel reduction, 96

partially solved, 43

pattern, 19

algebraic, 109

linear, 106

pattern matching function, 92

predicate

equality, 28

membership, 28

predicate symbol, 28

primitive constraint, 29

program

PρLog, 69

constraint logic, 53

well-moded, 60, 71

query, 53

range, 22

regular context expression, 28

regular operators, 28

regular sequence expression, 28

relation

compatibile, 92

restriction, 23

rigid value, 107

sequence, 21

simple, 24

sequence variable, 19

simple sequence, 24

simple substitution, 24

simple term, 23

134 FCUP

999. INDEX

solved, 43

state, 56

strategy, 69

structure, 30

substitution, 22

more general, 23

simple, 24

subsumption ordering, 23

symbol

auxiliary, 19

binary function, 19

function, 19

predicate, 28

term, 19

algebraic, 109

closed, 21

linear, 21

linear algebraic, 109

simple, 23

term to a sequence variable application, 19

term to term application, 19

term variable, 19

unranked, 20

value

rigid, 107

variable

assignment, 31

bound, 20, 30

context, 23

free, 20, 30

function, 23

individual, 23

matchable, 19

sequence, 19

solved, 43

term, 19

variable assignment, 31

well-moded, 48, 60, 71

PρLog, 70

CLP, 59

Yokouchi-Hikita’s diagram, 111

Yokouchi-Hikita’s lemma, 110

	thesis.pdf
	thesis.pdf
	Introduction
	Term Language
	Terms
	Substitutions
	Simple Terms, Contexts, and Simple Substitutions
	Equation Solving

	Constraint Solving
	Introduction
	Syntax
	Semantics
	Solver
	Logical Rules
	Failure Rules
	Deletion Rules
	Membership Rules
	Decomposition Rules
	Variable Elimination Rules

	Solved and Partially Solved Constraints
	The Algorithm
	Properties of the Constraint Solver
	Solving Constraints in Special Forms
	Well-Moded Constraints
	Constraints in the form of Knowledge Interchange Format (KIF)

	Constraint Logic Programming for Sequences and Contexts
	Introduction
	CLP(SC) Programs
	Operational Semantics
	Well-Moded and KIF Programs
	Well-Moded Programs
	Programs in the KIF Form

	Rule-Based Programming
	Introduction
	An Overview of PLog
	Programs and Queries
	Operational Semantics
	Predefined Strategies and Strategy Combinators
	System Components
	Examples Implemented in PLog

	Case Study 1: XML Processing and Web Reasoning
	Querying
	Incomplete Queries
	Validation
	Basic Web Reasoning

	Case Study 2: Implementation of Rewriting Strategies
	Leftmost-Outermost and Outermost Rewriting
	Leftmost-Innermost and Innermost Rewriting

	Pattern Calculi
	Introduction
	Core Pattern Calculus with Finitary Matching
	Confluence of the Core Pattern Calculus
	Instantiations of solve
	Pattern Calculus with Finitary Matching

	Conclusion
	Constraint Solving
	Constraint Logic Programming
	Rule-based Programming
	Pattern Calculus
	Further Work

	Bibliography

