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Abstract

This thesis is related to the study of pattern formation in symmetric physical systems. The
purpose of this thesis is to discuss a possible model, namely the projection model, to explain
the appearance and evolution of regular patterns in symmetric systems of equations.

Results found in Crystallography and Equivariant Bifurcation Theory are used extensively
in our work. In particular, we provide a formalism of how the model of projection can be
used and interpreted to understand experiments of reaction-diffusion systems.

We construct a scenario where systems of symmetric PDEs posed in different dimensions
can be compared as projection. In particular, we show how we can overcome the boundary
conditions imposed by the problems.

We prove a correspondence between irreducible representations and fixed points subspaces,
given by the action of a (n + 1)-dimensional crystallographic group, with the action of its
projection on lower dimension. Such results are the first step to compare typical structures
in dimension (n + 1), after projection, and the typical solutions of the posed problem in
dimension n.

We show that complex structures, as the black-eye pattern, obtained both as projection
and as an experimental observation in CIMA reactions are the same. In particular, we believe
that the projection model provides extra information to the study of pattern forming system,
since it allows us to embed the original problem into one with more symmetry.





Resumo

O trabalho desta tese está relacionado com o estudo de formação de padrões em sistemas físicos
simétricos. O objetivo desta tese é discutir um possível modelo matemático, nomeadamente
“modelo de projeção”, para explicar a aparência e evolução de padrões regulares em sistemas
de equações simétricas.

Nós usamos exaustivamente resultados encontrados na teoria de Cristalografia e na teoria
dos estudos de bifurcações equivariantes. Em particular, nós obtemos um formalismo de
como o modelo de projeção pode ser usado e interpretado para entender experimentos de
reação-difusão.

Construímos um cenário que nos permite comparar, através do modelo de projeção,
sistemas descritos por equações diferenciais parciais simétricas postos em diferentes dimensões.
Em particular, nós mostramos como podemos lidar com as condições de fronteira impostas
pelo problema.

Nós provamos uma correspondência entre representações e subespaços de pontos fixos,
dada pela ação de um grupo cristalográfico de dimensão (n + 1), com aquelas obtidas pela
ação do grupo projetado em dimensão n. Tais resultados nos permitem comparar soluções
típicas de problemas postos em dimensões diferentes.

Mostramos que estruturas complexas, como padrões “black-eye”, obtidos como projeção
de padrões, representam a mesma estrutura obtida em experimentos. Em particular, nós
acreditamos que o modelo de projeção pode prever informações adicionais no estudo de
formação de padrões, pois tal modelo nos permite trabalhar com sistemas que contém mais
simetrias.
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Chapter 1

Introduction

“In this section a mathematical model of
the growing embryo will be described.
This model will be a simplification and
an idealization, and consequently a
falsification. It is to be hoped that the
features retained for discussion are those
of greatest importance in the present
state of knowledge."

Alan Turing, The Chemical Basis of
Morphogenesis

This work is related to the study of pattern formation in symmetric physical systems.
The purpose of this thesis is to discuss a possible model, namely the projection model, to
explain the appearance and evolution of regular patterns in symmetric systems of equations.

Regular patterns are usually seen directly in nature and experiments. Convection,
reaction-diffusion systems and the Faraday waves experiment comprise three commonly
studied pattern-forming systems, see for instance Busse [3], Crawford et al. [11], Turing [41].
The most regular patterns observed, both in nature and in experiments, are stripes, squares
and hexagons.

Here the key word to study patterns and physical systems is symmetry. When symmetry
is present in a physical phenomenon, a rich branch of theories can be used to study the
problem. We are concerned with two main theories and a particular application:

• Crystallography Theory: which gives a primary source for the mathematical description
of patterns;

• Equivariant Bifurcation Theory: which provides tools to relate our model with symmetric
physical systems.

• Reaction-Diffusion Experiments: where we find motivation and wish to apply our
results.

1



2 Introduction

Fig. 1.1 Schematic diagram of the two-side-fed reactor for the reaction-diffusion experiments.
The name "two-side-fed" relates to the fact that the experiment uses two reservoirs. (Reprinted
figure by permission of Gunaratne et al. [24])

1.1 Reaction-Diffusion Experiments

Pattern formation in reaction-diffusion systems was first predicted by Alan Turing in his
manuscript "The Chemical Basis of Morphogenesis", [41]. He suggests the profound idea that
reaction and diffusion of chemicals in an initially uniform state could explain morphogenesis,
that is, how biological patterns arise during growth.

The discussion about the process of morphogenesis is still a challenge in embryology. A
broad discussion can be found in Murray [31]. Even facing this difficulty, Turing proposed a
plausible mechanism towards the understanding of such a complex phenomenon.

The simplest model where a Turing structure is visible is an interaction of two chemicals.
The chemicals will react, acting as an activator and an inhibitor for each other. A Turing
instability occurs when a spatially homogeneous solution of the reaction-diffusion equation is
unstable and yet it is stable under spatially homogeneous perturbations.

Intuitively, diffusion will smooth out spatial variation of the concentration of substances.
Turing showed the opposite, diffusion in a reacting chemical system can actually be a
destabilizing influence. That instability caused by diffusion will provide patterns, giving rise
to a Turing instability and a corresponding Turing pattern.

The first Turing structure was observed in experiments in 1989, by Castets et al. [5]. The
author considered a variant of the chlorite-iodide-malonic-acid (CIMA) reaction. Typically,
reaction-diffusion experiments take place in a so called open spatial reactor , see Figure 1.1.
The reaction occurs in a thin layer of gel, fed by diffusion from one or two faces with chemicals
contained in stirred tanks, the contents of which are continuously renewed by pumps. This
reaction generates a concentration gradient, also called chemical gradient. It corresponds to
a gradual change in molecular density, and is observed in the z direction, see for instance
Gomes [22], Kepper et al. [27]. Thus, variation on the chemical gradient is related to the
thickness of the stratum where patterns are observed.

Although reaction-diffusion systems are ordinarily studied in mathematics, their quanti-
tative comparison with experiments remains difficult, see Borckmans et al. [2], Szalai et al.
[40]. Still, reaction-diffusion systems are such a broad and important class of non-equilibrium
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(a) (b)

Fig. 1.2 Black-eye pattern (a) experimental observation; (b) as a projection into the plane
z = x + y. (Reprinted figure with permission of [24] and [22])

systems - prevalent in biology, chemistry, ecology and engineering - that discussion about
mathematical tools attempting to explain experiments is worthwhile.

In experiments as described before, the pattern itself and its observed state can occur
in different dimensions. This happens for instance when an experiment is done in a 3-
dimensional medium but the patterns are only observed on a surface, a 2-dimensional object,
see [Kepper et al.], Section 4. This is the case for reaction-diffusion systems in the Turing
instability regime, [41], which have often been described using a 2-dimensional representation,
see Ouyang and Swinney [33]. The interpretation of this 2-dimensional outcome is subject
to discussion: the black-eye pattern observed by [33] has been explained both as a mode
interaction, Gunaratne et al. [24], and as a suitable projection of a 3-dimensional into a
2-dimensional lattice Gomes [22], see Figure 1.2. In her article, Gomes [22] shows how a
2-dimensional hexagonal pattern can be produced by a specific projection of a Body Centre
Cubic (bcc) lattice.

Some approaches have been made to show that, in a two-side-fed reactor, the black-eye
corresponds to a quasi-two-dimensional pattern instead of a 3-dimensional one, Yang et al.
[45], Zhou et al. [46]. However, the 3-dimensional characteristics of patterns are difficult to
analyse in experiments.

Two-side-fed reactors show a rich variety of patterns. However, the thickness of the
stratum where patterns are observed cannot be controlled. This is a disadvantage since it
has been shown that the thickness acts both as a bifurcation parameter and on the pattern
dimensionality, see Kepper et al. [27].

To avoid difficulties present in a two-side-fed reaction, recent experiments are performed
in a one-side-fed reactor, see [27]. Whereas such models have produced good agreement
between theory and experiment, both one- or two- side-fed reactor experiments are based on
observations on the projection of a 3-dimensional structures, see [40], from which we quote:

"In this work we obtain results related to the projection introduced by [22].
We obtain theoretical results to interpret the effect of projection on the evolution
of patterns in thin domains. We insist that the projection model can give high
contribution to the understand of the transition of quasi-two- to 3-dimensional
patterns in reaction-diffusion experiments. In particular we attempt to clarify the
issue regarding to black-eye patterns."
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1.2 Projection Model

There is no doubt that patterns observed in experiments, performed in open spatial reactors,
are based on the top surface observations.

What is believed to be the first evidence of projection on CIMA reaction can be found
in Winfree [44], chapter 13. The author gives details about the geometry of the formation
of wave patterns in malonic-acid reaction performed on sufficiently thin layers. Through
mechanical and chemical arguments, the author distinguishes reaction-diffusion systems from
systems like the Faraday wave experiment. The distinction lies in the fact that, of these
systems, only reaction-diffusion results can be interpreted through projection.

Later in 1991, a group in Bordeaux [Kepper et al.] conducted experiments on CIMA
reaction and aimed at describing experimental observations of spontaneous symmetry breaking
phenomena associated with steady-state instabilities. In [Kepper et al.], Section 4, the authors
highlight the natural environment we must consider when we carry out CIMA reactions, in
particular they state that all of their observations were based on projection of 3-dimensional
structures and that the regions where Turing patterns are observed are associated by projection
to a body-centred cubic pattern. More discussion on this can be found in Borckmans et al.
[2], Dulos et al. [17], Kepper et al. [27], Szalai et al. [40].

Given all these evidence, does projection uncover hidden information that is not clear in
experimental observations? If yes, how do we formalize projection in order to understand
Turing patterns? How can projection give contributions to the study of reaction-diffusion
systems?

The Euclidean group comprises the symmetries of the physical systems we are going to
consider in this work. The symmetries of patterns are measured by a group, in our case, an
appropriate subgroup of the Euclidean group: a crystallographic group.

To define a symmetric pattern, we consider the action of a crystallographic group on the
space of functions f ∶ Rn → R. A n-dimensional pattern is the set of all level curves of a
symmetric function f .

To obtain a n-dimensional pattern by projection, for y0 > 0, we consider the restriction of
a symmetric function f ∶ Rn ×R→ R to the region between the hyperplanes y = 0 and y = y0.
The projection of f is given by:

Πy0(f)(x) = ∫
y0

0
f(x, y)dy.

In Figure 1.3, we see an illustration of the projection of functions f ∶ R2 → R, defined as
zero in the white region and one in the black. Projections of the particular functions yield
functions whose value for each x ∈ R is the width of the black region above it.

The previous definition is motivated by the fact that we want to obtain information
concerning the pattern, considering the depth of the stratum corresponding to its formation,
as we see in experiments in open spatial reactors. However, fundamental questions arise:

• what are the symmetries of Πy0(f), once f is symmetric?
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Fig. 1.3 The projection of periodic patterns in R2 restricted to the stripe of width y0 defines
functions with domain R. (Reprinted figure by permission of [38])

• how can we relate a (n + 1)-dimensional pattern to a specific n-dimensional one by
projection?

• how can we study physical systems by interpreting patterns as projection?

Studies related to the projection defined before are recent. The only study performed to
give a formalism of what projection means, in the context we are in, can be found in [38].

Pinho and Labouriau [38] study projections in order to understand how these affect
symmetry. Their necessary and sufficient conditions for identifying projected symmetries are
used extensively in our results.

In this thesis we intend to answer the questions posed in this section. We divided the
problem in chapters. Each chapter makes use of different mathematical tools. As we mentioned
before, Crystallography and Equivariant Bifurcation theories will play an important role in
our work.

1.3 Crystallography Theory

The interdisciplinary nature of crystallography plays an important role in sciences as physics,
chemistry and molecular biology. Despite this, there are few available introductory texts
concerned with the foundation of the subject. An historical review of crystallographic research
can be found in [25], chapter 1.1.

Crystallography aims at studying the structure of matter on an atomic scale. In particular,
crystallography is used to determine, classify and interpret the geometrical structure of crystals
and quasi-crystals. In this thesis we concentrate our ideas on crystals.

The most important characteristic properties in crystals are symmetry and periodicity.
The foundation of studies in crystallography are found in modern algebra. Symmetry of
crystals are expressed by point groups, the periodicity is described by translations and lattices,
and the full structural symmetry is governed by a crystallographic group, usually named by
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crystallographers as space groups. Consequently, crystallography is derived to a large extent
from Euclidean Geometry.

In the study of crystals and quasicrystals, projection is a mathematical tool for lowering
dimension, [39], [28]. A well developed study in crystallographic groups, their subgroups and
the notion of projection used in crystallography can be found in the International Tables
for Crystallography (ITC) volume A [25] and ITC volume E [29]. Tables therein provide
information on projections of elements of crystallographic groups.

However, we intend to use crystallographic groups for a different purpose. The symmetries
of solutions of partial differential equations, under certain boundary conditions, form a
crystallographic group — see, for instance Golubitsky and Stewart [[20], chapter 5].

There are almost no references to give a relation between tools developed in crystallography
and real periodic functions. Projections in [10] are seen as restriction of 3-dimensional periodic
functions on a plane perpendicular to the z direction. Cochran [10] highlights that the full
symmetry properties of periodic functions require symmetry elements which are not taken
into account in the formulation of the usual full symmetry of crystals.

In order to study 3-dimensional patterns observed in a 2-dimensional environment, we
use the projection of symmetric functions as defined in section 1.2. The symmetry group
of the projected functions does not necessarily coincide with that of projections used in
crystallography. The information contained in the ITC [25, 29], has to be organised in a
different way before it can be used for this purpose.

1.4 Equivariant Bifurcation Theory

Group theory turns out to be very useful for analysing systems with symmetry. The application
of group theory to the study of bifurcation problems with symmetry is known as equivariant
bifurcation theory.

Equivariant bifurcation theory has been used extensively to study pattern formation
via symmetry-breaking steady-state bifurcation in various physical systems modelled by
E(n)-equivariant partial differential equations. In Golubitsky and Stewart [[20], chapter 5]
there is a complete description of this method used in Dionne and Golubitsky [15], Dionne
[14], Bosch Vivancos et al. [43], Callahan and Knobloch [4] and Dionne et al. [16], where the
spatially periodic patterns are sometimes called planforms .

Using group theoretic methods, it is possible to understand how the symmetry of the
observed patterns is affected or determined by the symmetry of the experimental set up or
governing equations that produce them. Of central importance are the irreducible representa-
tions of a group. It will be by using representations, given by the action of a crystallographic
group on different dimensional spaces, that we will find a way to relate features of symmetric
systems and projection.

1.5 Description of the Chapters

We organize the thesis in the following way.
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Chapter 2

The model we present involves multidisciplinary knowledge. In order to make the reading of
this thesis easy, in Chapter 2, we restrict our attention to the statement of the necessary defi-
nitions and results that will be used in this work. In Section 2.2 we present many elementary,
but nonetheless important ideas from crystallographic groups: of central importance are the
characterization of a crystallographic group by its translation subgroup. In Section 2.3 we
pay attention to 3-dimensional crystallographic groups, since we attempt to apply results to
the 2- and 3-dimensional reaction-diffusion systems.

After dealing with the symmetries to describe symmetric patterns, in Section 2.4 we
introduce the definition of projection. In Theorem 2.10, contained also in [38], we state the
main result concerning the projection model, which will be extensively used throughout this
thesis. Mainly, it establishes which are the symmetries of Πy0(f), when f is symmetric.

The relation between projection and symmetric systems will be based on the language of
groups too. The use of irreducible representations given by the group of symmetry of the
problem is the main tool in Equivariant Bifurcation Theory. The remaining of Chapter 2 is
related to how we use that tool to find solutions of symmetric systems.

Chapter 3

In Chapter 3, we establish which 3-dimensional patterns can be projected so as to obtain
a 2-dimensional hexagonal pattern. We consider then the problem of how we can relate a
(n + 1)-dimensional pattern to a specific n-dimensional one by projection. We illustrate our
results using the Primitive Cubic lattice.

Chapter 4

Chapter 4 presents our main results. These give us the first concrete evidence of how projection
can be used to study symmetric physical systems, in particular the reaction-diffusion model.
We establish how a 2-dimensional problem can be embedded in a 3-dimensional one by
projection. This chapter involves a high level of group theory techniques. The results
obtained allow us to use projection to compare the solutions involved in problems formulated
in different dimensions. Then, we solve the question of how we can study physical systems by
interpreting patterns as projection.

Chapter 5

The way solutions behave on the problem requires additional concepts from Equivariant
Bifurcation Theory. We present the idea of mode interaction. In particular we conclude that,
both the experimental results obtained by [24] and the theoretical results in [22], regarding
black-eye patterns, are the same.

In the same chapter we interpret how forced symmetry breaking may be used to understand
how the projection of a solution varies in terms of the band of projection. For this purpose,
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we refer to studies made by Parker [34], where the author also studies the model of projection
in this vein.

In the end of the chapter we address future work.



Chapter 2

Preliminaries

In this chapter we are interested in describing the symmetry of objects in the Euclidean
space and in presenting the most relevant results to describe its projection. We will introduce
the overall properties of the Euclidean Group and its crystallographic subgroups. Particular
attention will be paid to 3-dimensional spaces. After that we introduce the model of projection
followed by its main properties that are going to be used in our work. We conclude the
chapter with concepts from Equivariant Bifurcation Theory. Further reading for this chapter
can be found in Miller [30], Armstrong [1] chapter 24 to 26, Senechal [39], the International
Tables for Crystallography (ITC) volume A [25], Pinho [37], Golubitsky et al. [21].

2.1 The Euclidean Group

Consider an object X that is a subset of Rn+1. A permutation of a non-empty set X is a 1-1
mapping of X onto itself. The set SX of all permutations of X forms a group, designated as
the full symmetric group on X. We say that the elements of SX act or operate on elements
of X and a subgroup G of SX is a transformation (permutation) group on X.

Given a transformation group G, we can look for all G-invariant subsets Y of X, where
we say that Y is invariant by the action of G, or G-invariant, if for all g ∈ G, g(Y ) ⊆ Y . On
the other hand, given an arbitrary subset Y of X we can find a transformation subgroup that
fixes Y , K = {k ∈ SX ; k(Y ) = Y }.

In this work X = Rn+1 and its symmetry group is the Euclidean Group, E(n + 1), of
all linear isometries on Rn+1. We are going to describe objects in Rn+1 whose symmetries
form a crystallographic group. In particular, we will use those objects to describe symmetric
patterns.

Denote by Tn+1 the group of all translations in dimension n + 1, (Tn+1 ≅ Rn+1). Let
O(n+1) be the subgroup of the general linear group GL(n+1,R) of all linear length-preserving
transformations. It is well-known that the Euclidean Group is the semi-direct product of
Tn+1 and O(n + 1). Hence, we may think of each isometry of E(n + 1) = Rn+1+̇O(n + 1) as
an ordered pair (v, δ), in which v ∈ Rn+1 and δ ∈ O(n + 1), with multiplication given by:

(v1, δ1) ⋅ (v2, δ2) = (v1 + δ1v2, δ1δ2)

9
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with identity element (0, Idn+1), where Idn+1 the identity mapping of Rn+1, and the inverse
element given by (v, δ)−1 = (−δ−1v, δ−1).

Consider also the group action of E(n + 1) on Rn+1 given by the function:

E(n + 1) ×Rn+1 → Rn+1

((v, δ), (x, y)) ↦ (v, δ) ⋅ (x, y) = v + δ(x, y)
(2.1)

The symmetries of a subset Y in Rn+1 are given by the elements of E(n + 1) that fix Y
under the previous action.

2.2 Crystallographic Groups

Let Γ be a subgroup of E(n + 1). The homomorphism

φ ∶ Γ → O(n + 1)
(v, δ) ↦ δ

has as image a group J, called the point group of Γ, and its kernel forms the translation
subgroup of Γ.

The definition of a crystallographic group is given in terms of its translation subgroup.
We have the following definitions:

Definition 2.1. We say that the translation subgroup of Γ is a k-dimensional lattice, L, if
it is generated over the integers by k linearly independent elements l1, . . . , lk ∈ Rn+1, where
k ∈ {1, . . . , n + 1}. We write:

L = ⟨l1, . . . , lk⟩Z.

Given a lattice L, the definition of dual lattice is of great importance:

Definition 2.2. The dual lattice of a k-dimensional lattice L is defined as the set given by:

L∗ = {k ∈ Rn+1; ⟨k, l⟩ ∈ Z, for all l ∈ L}.

Definition 2.3. A crystallographic group is a discrete subgroup of E(n + 1), such that its
translation subgroup is an (n + 1)-dimensional lattice.

A description of these concepts can be found in the ITC volume A [25], chapter 8.1, pp.
720-725 and in their suggested bibliography for the chapter; see also Miller [30].

Each isometry in the point group J of a crystallographic group Γ of E(n + 1) maps the
lattice of Γ onto itself, and it is clear that v ⋅L = L if and only if v ∈ L. Therefore, Γ is a group
of symmetry of L. The complete symmetries of L can be obtained by finding all elements
δ ∈ O(n + 1) that leave L invariant. Such elements form a group called the holohedry of L,
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and it is denoted by HL. The holohedry is always a finite group, see Senechal [39], subsection
2.4.2.

Note that the term holohedry used here, as well as in Dionne and Golubitsky [15] and
Golubitsky and Stewart [20], corresponds in [25], chapter 8.2, to the definition of point
symmetry of the lattice.

With this information we can construct any crystallographic group in Rn+1 (up to
isomorphism), because it is just necessary to find a lattice L and a subgroup J of its
holohedry.

In the next sections, we are going to review some important results regarding crystallo-
graphic group. In particular, for the 3-dimensional case we are going to describe representatives
for crystallographic group in dimension 3. The next result shows why it is only necessary to
consider these representatives.

Lemma 2.4. Let ξ = (u, ρ) ∈ E(n + 1) and Γ be a crystallographic group with lattice L
and point group J . Then, ξΓξ−1 is a crystallographic group with lattice Lξ = ρL and point
group Jξ = ρJρ−1. Moreover, the map Φξ ∶ Γ Ð→ ξΓξ−1, given by φξ(γ) = ξγξ−1 is a group
isomorphism.

Proof. For every γ = (v, δ) ∈ Γ, we have

(u, ρ)(v, δ)(u, ρ)−1 = (u, ρ)(v, δ)(−ρ−1u, ρ−1)
= (u, ρ)(v − δρ−1u, δρ−1)
= (u + ρv − ρδρ−1u, ρδρ−1)
= (ρv + (Idn+1 − ρδρ−1)u, ρδρ−1)

Therefore, the point group of ξΓξ−1 is Jξ = ρJρ−1. Its translation subgroup is given when
the orthogonal coordinate of ξγξ−1, ρδρ−1, is the identity Idn+1, which yields Lξ = ρL.

The rest of the proof follows by group theory.

2.2.1 Lattices

We saw in the previous section that the study of lattices is fundamental to describe crystallo-
graphic groups.

A lattice L is a non-trivial discrete subgroup of Rn+1. By Definition 2.1, every a ∈ L can
be written uniquely in the form

a =m1l1 + . . . +mklk

where mi, i = 1, . . . , k are integers. We call l1, . . . , lk basic vectors.
Let x ∈ Rn+1 and P = {m1l1 + ⋯ +mklk} ⊆ L, for mi ∈ {0, 1}. Applying to x those

translations in P , we get a cell in Rk called a primitive or fundamental cell. By applying all
elements of L to x, that is, by constructing the L-orbit containing x, we form a geometrical
lattice of points in Rk. Usually it is most convenient to discuss lattices based on x = 0.

Given s linearly independent vectors b1, . . . , bs ∈ L, the set L′ = ⟨b1, . . . , bs⟩Z, such that
0 ⩽ s ⩽ k, is a sublattice of L. If L′ is k-dimensional, it will coincide with L if and only if
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the volume of the primitive cell, all formed by the bi, is equal to the volume of the primitive
cell generated by the li, otherwise, L′ is a proper sublattice of L . The proof of this claim is
analogous to the one given in Theorem 2.7 in [30]. Observe that if the vectors bi in L satisfy:

bi =
k

∑
j=1

cjilj , i = 1, . . . , k

then the bi are basic vectors if and only if detC = ±1, where C = (cji).
To finish our overview at lattices, in Corollary 2.2 in [30] we can see that a primitive cell

is not unique. In fact, for any s-dimensional sublattice of L, we can construct a primitive cell
of L. The next result is a generalization of the Theorem 2.6 in [30].

Proposition 2.5. Let L be an (n + 1)-dimensional lattice and suppose that L ∩ Rn is an
n-dimensional sublattice of L. Then there exists a primitive cell of L generated by n + 1
linearly independent vectors, such that n of those vectors are in L ∩Rn.

Proof. Let a1, . . . , an+1 be linearly independent vectors in L such that a1, . . . , an ∈ L ∩Rn,
and let P be the cell in Rn+1 determined by these vectors. There are only a finite number of
elements of the discrete group L in P . Let l1 be the shortest non-zero vector in L ∩ P that
is parallel to a1. That is, on the edge of P with the endpoints zero and a1 we choose the
element l1 ≠ 0 of L closest to zero.

Now, let l2 be an element of L in the parallelogram generated by a1, a2 such that the
parallelogram generated by l1, l2 has the smallest possible non-zero area. Continuing with this
method we can choose a ln ∈ L ∩ P such that the cell generated by l1, . . . , ln has the smallest
possible non-zero volume in L∩Rn. Again, choose ln+1 in the cell given by a1, . . . , an+1, such
that the cell Q generated by l1, . . . , ln+1 has the smallest volume in L ∩Rn+1.

We show that for all l ∈ L
l =m1l1 +⋯ +mn+1ln+1

where mi ∈ Z, ∀ i = 1, . . . , n + 1.
Clearly, the vectors {li}n+1

i=1 are linearly independent and given any l ∈ L there exist unique
real numbers αi such that

l = α1l1 +⋯ + αn+1ln+1

Let ni be the largest integer less than αi. Then

l −
n+1
∑
i=1

nili =
n+1
∑
i=1

βili = b (2.2)

with 0 ≤ βi < 1. The vector b defined in (2.2) is clearly an element L ∩Q. We will show that
b = 0.

Suppose 0 < βn+1 < 1. Then the volume V (Q′) of the cell Q′ generated by l1, . . . , ln, b is
strictly less than the volume V (Q). If b ∈ P this is impossible since it contradicts our choice
of ln+1. If b ∉ P we can find integers m1, . . . ,mn such that

b′ = b +m1a1 +⋯ +mnan ∈ P
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and the cell Q′′ generated by l1, . . . , ln, b
′ has volume V (Q′′) < V (Q). This is impossible.

Thus βn+1 = 0 and b lies in the space spanned by a1, . . . , an.
In a similar way we can prove that βi = 0, for all i = 1, . . . , n.

In our work it will be useful to consider a primitive cell of L, when the n-dimensional
sublattice of L is a suspension of a n-dimensional lattice. This idea motivates the following
definition:

Definition 2.6. We say that a lattice L1 is rationally compatible with a lattice L2 if there
exists r ∈ Z ∖ {0} such that rL1 ⊂ L2. A vector v ∈ Rk is rational with respect to a lattice
L ⊂ Rk if ⟨v, ℓ⟩ ∈ Q for all ℓ ∈ L, where ⟨⋅, ⋅⟩ is the usual inner product in Rk. Given a lattice
L̃ ⊂ Rk, we define its suspension L̃s ⊂ Rk+1 as L̃s = {(v,0); v ∈ L̃}.

We conclude with the following result:

Lemma 2.7. Let L be an (n+ 1)-dimensional lattice with dual lattice L∗. Suppose that there
are suspensions of n-dimensional lattices L̃1 and L̃2 that are rationally compatible with L and
L∗, respectively. Then the following conditions hold:

1. there exist bases {(l1,0), . . . , (ln,0), (ln+1, b)} and {(k1,0), . . . , (kn,0), (kn+1, a)} for L
and L∗, respectively.

2. if m ∈ N ∖ {0} is the minimum integer such that (0,mb) ∈ L, then (0,ma) ∈ L∗ and m
is the minimum such that it happens.

Proof. The condition 1. follows from Proposition 2.5.
To see that condition 2. holds, observe that if there is a minimum m ≠ 0, such that

the elements (0,mb) ∈ L, then ⟨(0,mb), (kn+1, a)⟩ ∈ Z ∖ {0}. Then mba ∈ Z ∖ {0}. Therefore
(0,ma) ∈ L∗, due to the system of generators of L.

Suppose that (0, ra) ∈ L∗, for r ∈ Z ∖ {0} and r <m. Then,

⟨(ln+1, b), (0, ra)⟩ ∈ Z ∖ {0}.

Thus, rba ∈ Z ∖ {0}, which implies that (0, rb) ∈ L. Therefore, m = r.

2.3 Crystallographic groups in 3-dimension

The special cases of 2-dimensional (wallpaper groups, see [1]) and 3-dimensional crystallo-
graphic groups are most heavily used in applications. As we will see in the next chapters,
the knowledge of lattices and their holohedries will be of great importance to obtain plane
sub-lattices in a three-dimensional one.

For our purpose it is worth paying more attention to the orthogonal group O(3).
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Fig. 2.1 Action of a side-reversing element.

2.3.1 The Orthogonal Group O(3)

The group O(3) is the group of all linear transformations δ ∶ R3 → R3 which preserve length.
Since all elements in O(3) are linear, we may identify O(3) with the group of orthogonal

matrices {3×3 matrices A; AtA = Id3} (At = transpose of A). Note that detA = ±1, ∀A ∈ O(3)
and the element −Id3, with determinant −1, is in O(3). We call −Id3 the inversion operator .

The subset SO(3) = {A ∈ O(3); detA = 1} forms a normal subgroup of O(3), called the
special orthogonal group in three space or just the group of rotations, and −Id3 ∉ SO(3). So,
O(3) = SO(3) ∪ −Id3SO(3). The elements of SO(3) and −Id3SO(3) are all side-preserving
(proper rotations) and side-reversing (rotations followed by inversion) elements, respectively.

The elements of SO(3) are exactly the possible geometrical rotations about axes in R3

passing through the origin. This means that for any rotation A, there exists an unitary vector
w ∈ R3, such that Aw = w and the rotation axis of A is determined by ±w, by Theorem 2.1,
[30]. It follows that, if H is a subgroup of SO(3) of order n ≥ 2 consisting of rotations about a
fixed axis then H is isomorphic to a cyclic group of order n (Lemma 2.2, [30]). This subgroup
is generated by a rotation through the angle 2π/n and the fixed axis L is an n-fold axis.

A rotation-inversion of −Id3SO(3) is the combination of a rotation about an axis and a
reflection in the plane perpendicular to this axis. We call this plane a mirror plane. It is
equivalent to the combination of a rotation and an inversion about point on the axis.

2.3.2 Bravais Lattices and Their Holohedry

It is easy to find in the literature that, for dimension 3, we have only seven possible holohedries
(up to isomorphism) and the possible lattices of a 3-dimensional crystallographic group form
the well-known 14 Bravais lattices. For this subsection, we refer to [25], chapter 9.1.

Since HL ⋅L = L , an important result about crystallographic groups is the crystallographic
restriction (Theorem 2.8, [30]), which says that not all finite groups are compatible with a
discrete lattice. If g ∈ Γ is of the form g = (−Id3)iδ, i = 0, 1, with δ a non-trivial rotation,
then δ is of order two, three, four, or six. Another observation is that the inversion −Id3 is in
HL and, consequently, if HL contains a cyclic subgroup Cm then it contains the subgroup
C2m = ⟨Cm,−I3⟩.
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The holohedries of the Bravais lattice, due to the crystallographic restriction theorem,
are:

S2 ⊂ C2h ⊂ D2h ⊂ D4h ⊂ Oh

∩ ∩
D3d ⊂ D6h

Here we are using the Schoenflies (or Schönflies) notation, named after the German
mathematician Arthur Moritz Schoenflies. It is one of the two conventions commonly used to
describe point groups.

Symmetry elements are denoted by C for proper rotation axes, σ for mirror planes, and
S for improper rotation axes (rotation-inversion axes). The symbols C and S are usually
followed by a subscript number (abstractly denoted n) denoting the order of rotation possible.

By convention, the axis of proper rotation of greatest order is defined as the principal
axis. All other symmetry elements are described in relation to it. A vertical mirror plane
(containing the principal axis) is denoted σv; a horizontal mirror plane (perpendicular to the
principal axis) is denoted σh.

The general notation for the seven holohedries are:

• S2n (for Spiegel, German for mirror) that contains only a 2n-fold rotation-inversion
axis.

• Cn (for cyclic) has an n-fold rotation axis. Cnh is Cn with the addition of a mirror
(reflection) plane perpendicular to the axis of rotation (horizontal plane). Cnv is Cn
with the addition of n mirror planes containing the axis of rotation (vertical planes).

• Dn (for dihedral, or two-sided) has an n-fold rotation axis plus n twofold axes per-
pendicular to that axis. Dnh has, in addition, a horizontal mirror plane and, as a
consequence, also n vertical mirror planes each containing the n-fold axis and one of
the twofold axes. Dnd has, in addition to the elements of Dn, n vertical mirror planes
which pass between twofold axes (diagonal planes).

• O (the chiral octahedral group) has the rotation axes of an octahedron or cube (three
4-fold axes, four 3-fold axes, and 6 diagonal 2-fold axes). Oh includes horizontal mirror
planes and, as a consequence, vertical mirror planes. It contains also inversion center
and improper rotation operations.

Table 2.1 summarizes the main information about the Bravais lattices and their respective
holohedries.

2.4 Projected Patterns

The study of projections is related to patterns. Patterns are level curves of functions
f ∶ Rn+1 → R. In our work we suppose that these functions are invariant under the action of
a crystallographic group.
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Table 2.1 Bravais lattices and its Holohedry. The following figures were taken from the
internet.

Lattice Family Relations and Holohedry

Triclinic
• Angle relations: α ≠ β ≠

γ

• Edge relation: a ≠ b ≠ c
• Holohedry: S2.

Monoclinic: primitive mon-
oclinic and centred monoclinic
lattices, respectively.

• Angle relations: α ≠
90○, β = γ = 90○

• Edge relation: a ≠ b ≠ c
• Holohedry: C2h

Orthorhombic: simple or-
thorhombic, base-centred or-
thorhombic, body-centred or-
thorhombic and face-centred
orthorhombic, respectively.

• Angle relations: α = β =
γ = 90○

• Edge relation: a ≠ b ≠ c
• Holohedry: D2h

Tetragonal: simple tetrago-
nal and centred tetragonal, re-
spectively.

• Angle relations: α = β =
γ = 90○

• Edge relation a = b ≠ c
• Holohedry D4h

Rhombohedral
• Angle relations: α = β =

γ ≠ 90○

• Edge relation a = b = c
• Holohedry D3d

Hexagonal
• Angle relations: α = β =

90○, γ = 120○

• Edge relation a ≠ c = b
• Holohedry D6h

Cubic: simple cubic, body-
centred cubic (bcc) and the
face-centered cubic (fcc), re-
spectively

• Angle relations: α = β =
γ = 90○

• Edge relation a = b = c
• Holohedry Oh
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The set of all level curves of a function f ∶ Rn+1 → R is defined by:

C(f) = ⋃
c∈R
{(x, y) ∈ Rn+1; f(x, y) = c}

Crystallographic groups are related to symmetries of pattern formation by the action of
the group of symmetries on a space of functions, see Golubitsky and Stewart [20] chapter 5.

To see this, observe that the action (2.1) of the Euclidean group on Rn+1 induces an
action of a crystallographic group Γ on the space of functions f ∶ Rn+1 → R by:

(γ ⋅ f)(x, y) = f(γ−1(x, y)) for γ ∈ Γ and (x, y) ∈ Rn+1.

Thus, we can construct a space XΓ of Γ-invariant functions, that is

XΓ = {f ∶ Rn+1 → R; γ ⋅ f = f, ∀γ ∈ Γ}

In particular a Γ-invariant function is L -invariant.
We have the following result:

Lemma 2.8. let Γ be a crystallographic group. A function f ∶ Rn+1 → R is Γ-inavriant if
and only if the subset C(f) ⊆ Rn+1 is invariant by the action of Γ on Rn+1.

Definition 2.9. A Γ-symmetric pattern consists of the set of all level curves of a Γ-invariant
function f ∶ Rn+1 → R.

In Gomes [22] the black-eye pattern is obtained as a projection of a function, whose set of
all level curves form a bcc-pattern in R3. In terms of symmetries, the black-eye is a hexagonal
pattern, as we can see in [22]. It is the set of all level curves of a function with periods in a
hexagonal plane lattice, that is, a lattice that admits as its holohedry a group isomorphic to
the dihedral group of symmetries of the regular hexagon, D6. Moreover, we expect the point
group of symmetries of the black-eye to be isomorphic to D6.

For y0 > 0, consider the restriction of f ∈ XΓ to the region between the hyperplanes y = 0
and y = y0. The projection operator Πy0 integrates this restriction of f along the width y0,
yielding a new function with domain Rn.

Definition 2.10. (Pinho and Labouriau [38]) For f ∈ XΓ and y0 > 0, the projection operator
Πy0 is given by:

Πy0(f)(x) = ∫
y0

0
f(x, y)dy

The region between y = 0 and y = y0 is called the projection band and Πy0(f) ∶ Rn → R is
the projected function.

The previous definition states that the projections are made in a fixed direction. The
next definition outlines that point.

Let L ⊂ Rn+1 be a lattice and P ⊂ Rn+1 be an n-dimensional hyperspace such that
P ∩ L ≠ ∅. Given v ∈ P ∩ L there is a rotation γ ∈ O(n + 1) such that γ(P − v) is the
hyperspace X0Y = {y = 0} = {(x, y) ∈ Rn+1; y = 0}.
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Definition 2.11. We define the y0-projection of L into P as the lattice γ−1(L̃) ⊂ E(n) where
L̃ is the symmetry group of Πy0(Xγ(L−v)).

The functions Πy0(f) may be invariant under the action of some elements of the group
E(n) ≅ Rn+̇O(n). The relation between the symmetries of f and those of Πy0(f) was
provided by [38].

To find the group of symmetries of the space of projected functions, Πy0(XΓ) = {Πy0(f) ∶
Rn → R; f ∈ XΓ}, the authors consider the following data:

• for α ∈ O(n), the elements of O(n + 1):

σ ∶=
⎛
⎝
In 0
0 −1

⎞
⎠
, α+ ∶=

⎛
⎝
α 0
0 1

⎞
⎠

and α− ∶= σα+; (2.3)

• the subgroup Γ̂ of Γ ⊂ E(n + 1), whose elements are of the form

((v, y), α±) ; α ∈ O(n), (v, y) ∈ Rn ×R.

The translation subgroups of Γ̂ and Γ are the same, while the point group of Γ̂ consists
of those elements of Γ that fix the space Rn × {0}.
For the 3-dimensional case Γ̂ coincides with the scanning group defined in [29], chapter
5.2.

• the projection h ∶ Γ̂→ E(n) ≅ Rn+̇O(n) given by:

h ((v, y), α±) = (v,α)

The group of symmetries of Πy0(XΓ) is the image by the projection h of the group Γy0

defined as:

• If (0, y0) ∈ L then Γy0 = Γ̂.

• If (0, y0) ∉ L then Γy0 contains only those elements of Γ̂ that are either side preserving
((v,0), α+) or side reversing ((v, y0), α−)

The group Γ̂ consists of those elements of Γ that will contribute to the symmetries of the
set of projected functions. Depending on whether the hypotheses above hold, the group Γy0

will be either the whole group Γ̂ or a subperiodic group of Γ̂, that is a subgroup whose lattice
of translations has lower dimension than the space on which the group acts; see [25] chapter
8.1 and [29] chapter 1.2.

The group Γy0 depends on how the elements of Γ are transformed by the projection Πy0

of Γ-invariant functions. The criterion that clarifies the connection between the symmetries
of XΓ and Πy0(XΓ) is provided by the following result:

Theorem 2.12 (Theorem 1.2 in [38]). All functions in Πy0(XΓ) are invariant under the
action of (v,α) ∈ E(n) if and only if one of the following conditions holds:
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I ((v,0), α+) ∈ Γ;

II ((v, y0), α−) ∈ Γ;

III (0, y0) ∈ L and either ((v, y1), α+) ∈ Γ or ((v, y1), α−) ∈ Γ, for some y1 ∈ R.

Remark 2.13. We note that there is a non-trivial relation between the lattice L̃ of periods of
the projected functions and that of the original one. In fact, consider an (n + 1)-dimensional
lattice L and L̃ = Πy0(L). If v ∈ L̃ then (v, In) is a symmetry of Πy0(XΓ). Applying
theorem 2.12 with α = In, one of the following holds for each v ∈ L̃:

I ((v,0), α+) = ((v,0), In+1) ∈ Γ, or equivalently (v,0) ∈ L;

II ((v, y0), α−) = ((v, y0), σ) ∈ Γ then ((v, y0), σ)2 ∈ Γ implying that (2v,0) ∈ L;

III (0, y0) ∈ L and either (v, y1) or (2v,0) is in L , for some y1 ∈ R.

While condition I implies that L ∩ {(x,0) ∈ Rn+1} ⊆ L̃, the other conditions show that
this inclusion is often strict. Furthermore, conditions II and III show that we may have no
element of the form (v, y1) in L and yet v ∈ L̃. This is due to a possible non-zero translation
vector associated to σ ∈ J .

2.5 Lie Groups and Their Representation

So far we have used crystallographic groups to measure the symmetries of functions, but they
are nothing more than the special and well known groups used in the study of equivariant
PDEs: Lie groups. A Lie group is a differentiable manifold, where the group operation is a
differentiable map, as is the inversion operation that gives the inverse of a group element.
For this section we refer to [21].

Let Γ be a Lie group and let V be a vector space (over either R or C). We say that Γ
acts on V if there is a continuous mapping

ρ ∶ Γ × V Ð→ V

(γ, v) z→ γv

such that (a) for each γ ∈ Γ the mapping ργ ∶ V Ð→ V , defined by ργ(v) = γv is linear and
(b) if γ1, γ2 ∈ Γ then γ1(γ2v) = (γ1γ2)v. The map ρ that sends γ to ργ ∈ GL(V ) is called a
representation of Γ on V .

Within the collection of all representations or actions of a group, there are two classes
of special ones: irreducible and absolutely irreducible representations/actions. Absolutely
irreducible real representations/actions are particularly important in the theory of steady-state
bifurcations in symmetric systems.

Consider a Lie group Γ acting on a vector space V . We say that a subspace W ⊆ V is
Γ-invariant if γw ∈W , for all γ ∈ Γ and w ∈W . A representation or action is irreducible if
the only Γ-invariant subspaces are {0} and V . An action or representation of Γ is said to
be absolutely irreducible if the only linear mappings that commute with the corresponding
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action of Γ on V are scalar multiples of the identity. A linear map A ∶ V Ð→ V commutes
with the action of Γ if

γ(Av) = A(γv), ∀v ∈ V, ∀γ ∈ Γ.

We say that the map A is Γ-symmetric.

2.6 Equivariant Bifurcation Problems

In Bifurcation Theory we consider maps g ∶ V ⊆ Cm ×RÐ→ V that are equivariant under the
action of the Euclidean group. The map g is Euclidean equivariant if

γ(g(v, t)) = g(γv, t), ∀(v, t) ∈ V ×R, ∀γ ∈ E(n + 1).

We say that g has Euclidean symmetry.

Definition 2.14. A bifurcation problem with symmetry Γ is represented by a map Γ-
equivariant map g ∶ V ×RÐ→ V , defined in a neighbourhood of the origin (0,0) of the finite
dimensional space V , that satisfies g(0,0) = 0 and (dg)0,0 = 0.

In this vein, we work with the following system of ODEs:

dz

dt
= g(z, λ) (2.4)

where z ∈ V and λ ∈ R is the bifurcation parameter.
In classical bifurcation theory, we seek to understand when a solution of a system of

ODEs can lose stability as a parameter is varied. There are two main behaviours, considered
in the literature, used to describe that loss of stability: steady-state and Hopf bifurcation.
Some assumptions are necessary to define these two terms.

We assume that z = 0 is a trivial solution for all λ ∈ R. We assume also that, this
equilibrium z = 0 is asymptotically stable for λ < 0, that is, all eigenvalues of (dg)0,λ have
negative real part when λ < 0; and that z = 0 loses stability at λ = 0, that is, some eigenvalue
of (dg)0,0 lies on the imaginary axis.

Definition 2.15. We refer to:

• Steady-state bifurcation when (dg)0,0 has only zero eigenvalue and no other imaginary
eigenvalue;

• Hopf bifurcation when (dg)0,0 has simple eigenvalues ±αi (α ≠ 0) and no other imaginary
eigenvalue.

A useful result of equivariant bifurcation theory, that classifies a class of solutions to
generic equations of the form (2.4), is the Equivariant Branching Lemma, proved by [42], [9].
It makes predictions about the symmetry of solutions at steady-state bifurcations, based on
the symmetry of the bifurcation problem. Before stating the theorem, let us see some more
definitions regarding symmetries.
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If z is a solution of equation (2.4) then so is γz for all symmetries, γ ∈ Γ, because

d(γz)
dt

= γg(z, λ) = g(γz, λ).

The point γz is said to lie in the orbit Γz of z ∈ V under the action of Γ, defined by

Γz = {γx; γ ∈ Γ}.

The point z need not be a stationary solution of equation (2.4) in order for its orbit to
be defined. However all stationary solutions on the same orbit have the same existence
properties.

Differentiating the equivariance condition g(γz, λ) = γg(z, λ) gives

γ(dg)z,λ = (dg)γz,λ ⋅ γ, ∀γ ∈ Γ. (2.5)

If v is an eigenvector of (dg)z,λ with eigenvalue µ, then using the linearity of the action of
Γ on V we have that γv is an eigenvector of (dg)γz,λ with eigenvalue µ. Thus the eigenvalues
of (dg)z,λ and (dg)γz,λ are the same. If z and γz are fixed points on the same orbit of Γ they
will have the same stability properties as well as the same existence properties, so they are
the same type of solutions.

Now, as far the map g is concerned, we cannot distinguish between points which lie in
the same orbit. The isotropy group of z ∈ V is

Σz = {γ ∈ Γ; γz = z}.

It provides a measure of how much symmetry a solution z ∈ V has. The calculation of
isotropy subgroups is greatly simplified by observing that points on the same orbit have
conjugate isotropy subgroups, that is

Σγz = γΣzγ
−1,

for all γ ∈ Γ.

The fixed-point subspace, Fix(Σ), associated with a subgroup Σ ⊆ Γ is defined by

FixV (Σ) = Fix(Σ) = {z ∈ V ; σz = z∀σ ∈ Σ}.

Fixed-point subspaces are flow-invariant since

g(z, λ) = g(σz, λ) = σg(z, λ), ∀z ∈ Fix(Σ).

It is easy to see that Fix(Γ) is a Γ-invariant subspace of V . Thus, if Γ acts irreducibly then
either Fix(Γ) = {0} or Fix(Γ) = V . But if Fix(Γ) = V then γ acts trivially, so for non-trivial
actions, we are left with Fix(Γ) = {0}. Moreover, if the action of Γ on V is absolutely
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irreducible, then using (2.5), we have

γ(dg)0,λ = (dg)0,λγ.

Hence (dg)0,λ = c(λ)IV , here IV is the identity matrix on V . Since (dg)0,0 = 0 it follows that
c(0) = 0. Assuming generically that c′(0) ≠ 0, we may now state the fundamental existence
and uniqueness result for steady-state bifurcation problems with symmetry.

Theorem 2.16 (Equivariant Branching Lemma: Lemma 1.31 in [20]). Let Γ be a compact
Lie group acting on V . Assume

(a) Γ acts absolutely irreducibly on V ;

(b) Σ ⊂ Γ is an isotropy subgroup satisfying dim(Fix(Σ)) = 1,

(c) g ∶ V ×RÐ→ V is a Γ-equivariant bifurcation problem satisfying

(dgλ)0,0(v0) ≠ 0

where v0 ∈ Fix(Σ) is non-zero.
Then there exists a unique branch of stady-state solutions (tv0, λ(t)), emanating from
(0,0) and with symmetry Σ, to the equation g(v, λ) = 0.

Using the terminology of [21], we call axial subgroups the isotropy subgroups, Σ, which
satisfy the condition dim(Fix(Σ)) = 1.

2.7 Equivariant Partial Differential Equations (PDEs)

We study PDEs by reducing the system to a bifurcation problem described by a system of
Ordinary Differential Equations (ODEs) which are equivariant under the action of a compact
Lie group. When the reduction is complete, the bifurcation problem may be studied using
some standard techniques. We discuss this point further.

Consider a parametrized family of PDEs, which has the form

∂u

∂t
((x, y), t) = P(u((x, y), t), λ) (2.6)

where P ∶ X ×RÐ→ Y is an operator between suitable function spaces X and Y, and λ ∈ R
is a bifurcation parameter. The function u ∶ Rn+1 × R → R in X is a function of a spatial
variable (x, y) ∈ Rn ×R and time t.

We are interested in time-independent solutions of (2.6) given by

P(u(x, y), λ) = 0. (2.7)

The symmetry of an operator is given by the action of the Euclidean group on the
function spaces. More precisely, we say that an operator P is Euclidean equivariant if for all
γ ∈ E(n + 1)

γ ⋅ P(u,λ) = P(γ ⋅ u,λ),



2.7 Equivariant Partial Differential Equations (PDEs) 23

where the action of E(n + 1) on the functions u is given by

(γ ⋅ u)((x, y), t) = u(γ−1(x, y), t).

We assume that there is an Euclidean invariant time-independent solution for (2.6) for
all values of λ. Without loss of generality we assume that this spatially uniform solution
corresponds to u = 0, that is, P(0, λ) = 0, for all λ ∈ R.

Furthermore, we assume that this solution is stable for λ < 0, unstable for λ > 0 and that
λ = 0 corresponds to a symmetry-breaking bifurcation point. The critical problem when
considering symmetry-breaking bifurcations with E(n + 1) symmetry is that this group is
not compact. This causes great difficulties when attempting to apply the Liapunov-Schmidt
reduction, chapter VII in [19], to the PDE due to the presence of infinite dimensional
representations. The standard method for overcoming this difficulty is to seek spatially
periodic, time-independent solutions to (2.7).

When restricting the solutions of (2.7) to the subspace XL of L-periodic functions in
X , the group of symmetries, Γ, of the problem we have to consider is a compact group.
Specifically, the group Γ is the largest group constructed from E(n+ 1) that leaves the spaces
XL invariant. The group Γ can be written as a semi-direct product

Γ = Tn+1+̇HL,

where HL is the holohedry of the lattice L and Tn+1 = Rn+1/L is the n-torus of translations
modulo the lattice.

Remark 2.17. Observe that we have been using the same notation for the crystallographic
group, which describes the symmetries of the patterns we are working with, and for the
compact Lie group, Γ =HL+̇Tn+1, that is taken into account to describe the symmetries of
the bifurcation problem we are going to consider.

Since (2.6) is assumed to undergo a time-independent bifurcation at λ = 0, we demand
that

V =Ker(DP)(0,0) ≠ {0}

Moreover, since V is Γ-invariant and Γ is compact, the space V is a finite dimensional
subspace of XL. A discussion about this point can be found in [15].

We assume that all the functions u ∶ Rn+1 ×RÐ→ R in XL admit a unique formal Fourier
expansion in terms of the waves

ωk(x, y) = exp(2πi⟨k, (x, y)⟩),

where k is a wave vector in the dual lattice, L∗ = {k ∈ Rn+1; ⟨k, li⟩ ∈ Z, i = 1,⋯, n + 1}, of
L = ⟨l1,⋯, ln+1⟩Z, with wave number ∣k∣ and ⟨⋅, ⋅⟩ is the usual inner product in Rn+1. Thus,

u((x, y), t) = ∑
k∈L∗

C(k, t)ωk(x, y).
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Here C(k, t) is the (time-dependent) amplitude of the kth Fourier mode, for each k ∈ L∗, and
with the constraint C(−k, t) = C̄(k, t), where the bar denotes the complex conjugate as usual.

Thus, the function u can be written in the form:

u((x, y), t) = ∑
k∈L∗

2Re(C(k, t)ωk(x, y))

= ∑
k∈L∗

2[ak(t)Re(ωk(x, y)) − bk(t)Im(ωk(x, y))]
(2.8)

with C(k, t) = ak(t) + ibk(t), for each k ∈ L∗. Here ak, bk ∈ R.
Therefore, we can write

XL = ⊕
k∈L∗

Vk (2.9)

for
Vk = ⟨Re(ωk(x, y))⟩ ⊕ ⟨Im(ωk(x, y))⟩ ≅ C.

In fact, the spaces Vk are isotypic components of the action of translations on X , see [20]
chapter 5.

The kernel of the linearisation of (2.6) at λ = 0 is a sum of subspaces generated by the
waves ωk(x, y), where ∣k∣ = kc, which are called critical or neutral modes, see [14]. The
dimension of the bifurcation problem depends on the number of vectors k ∈ L∗ with ∣k∣ = kc.

Therefore, we may identify V with

V = Vkc = ⊕
∣k∣=kc

Vk =
s

⊕
i=1
Vks ≅ Cs,

where 2s is the number of linearly independent wave vectors. The isomorphism between V

and Cs is defined by
v =

s

∑
i=1
ziwki + ccz→ z = (z1, . . . , zs)

Where cc denotes the complex conjugate. As a real vector space dim(V ) = 2s.
An important result regarding V =Ker(DP )(0,0) is the following:

Proposition 2.18. (Proposition 2.1 in [15]) The space V is Γ-irreducible if and only if the
set of 2s dual vectors {±k1, . . . ,±ks} is an orbit in L∗ under the action of the holohedry HL.

The PDE (2.6), by a Liapunov-Schmidt reduction gives a problem

ż = g(z, λ), g ∶ Cs ×RÐ→ Cs (2.10)

where g(0, 0) = 0 and the Jacobian matrix at the bifurcation point (dg)0,0 is the zero matrix.
In the last section we show the standard method used to find solutions for the system (2.10).



Chapter 3

Hexagonal Projected Symmetries

This chapter has appeared as [32].
In the study of pattern formation in symmetric physical systems a 3-dimensional structure

in thin domains is often modelled as a 2-dimensional one. We are concerned with functions
in R3 that are invariant under the action of a crystallographic group and the symmetries of
their projections into a function defined on a plane. We obtain a list of the crystallographic
groups for which the projected functions have a hexagonal lattice of periods. The proof is
constructive and the result may be used in the study of observed patterns in thin domains,
whose symmetries are not expected in 2-dimensional models, like the black-eye pattern.

3.1 Hexagonal Projected Symmeties

As we saw in the last section, there is a connection between a crystallographic group Γ in
dimension n + 1 and the group of symmetries of the set of projected functions Πy0(XΓ). In
this section we aim to know which crystallographic groups in dimension 3 can yield hexagonal
symmetries after projection. In other words, we want to describe how to obtain hexagonal
plane patterns by projection.

Given a crystallographic group Γ, with an (n + 1)-dimensional lattice L, whose holohedry
is HL, we denote by Πy0(L) = L̃ the translation subgroup of the crystallographic group
Πy0(Γ) = Γ̃ of symmetries of Πy0(XΓ), whose point group, J̃ , is a subset of the holohedry of
Πy0(L). From theorem 2.12 we obtain

Corollary 3.1. Let Γ̃ be a crystallographic group with lattice L̃ ⊂ Rn. Let H
L̃

and HL be
the holohedries of L̃ and L ⊂ Rn+1, respectively. If α ∈ H

L̃
lies in the point group of Γ̃ then

either α+ ∈HL or α− ∈HL.

Proof. Since α ∈H
L̃

implies α lies in the point group of Γ̃, then there exists v ∈ Rn such that
f is (v,α)-invariant for all f ∈ Πy0(XΓ). Hence, one of the three conditions of theorem 2.12
holds. Then, depending on whether (I), (II) or (III) is verified, either (w,α+) or (w,α−) is in
Γ, where w ∈ {(v,0), (v, y0), (v, y1)}. By definition of holohedry, we have either α+ ∈HL or
α− ∈HL.

As a converse to corollary 3.1 we have:
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Corollary 3.2. Let Γ be a crystallographic group with an (n + 1)-dimensional lattice L and
let L̃ = Πy0(L), with H

L̃
and HL the holohedries of L̃ ⊂ Rn and of L ⊂ Rn+1, respectively.

Suppose either α+ or α− is in HL. If one of the following conditions holds

1. σ ∉HL;

2. either (0, α+) or (0, α−) is in Γ;

then, for any y0 ∈ R, α ∈H
L̃

.

Proof. Consider v ∈ L̃ and suppose condition 1 holds. By theorem 2.12, either (v,0) ∈ L or
(0, y0) and (v, y1) ∈ L.

If (v,0) ∈ L then (αv,0) ∈ L. Otherwise, (0, y0) and (αv, y2) ∈ L for y2 ∈ {−y1, y1} .
Applying theorem 2.12 we have αv ∈ L̃ in both cases. Therefore, α is a symmetry of L̃.

Suppose now that condition 2 holds. If (0, α+) ∈ Γ then (0, α) belongs to Γ̃, for all y0 ∈ R,
by condition I of theorem 2.12. The other possibility is that (0, α−) ∈ Γ. If for v ∈ L̃ either
condition I or condition III of theorem 2.12 holds, the proof follows as in the case of condition
1. Suppose then that ((v, y0), σ) ∈ Γ, then ((v, y0), σ) ⋅ (0, α−) = ((v, y0), α+) ∈ Γ. Therefore,
(v,α) ∈ Γ̃, by theorem 2.12, completing the proof.

The analysis in [29] chapter 5.1 aims to find sectional layer groups and penetration rod
groups, by a method of scanning a given crystallographic group.

Sectional layer and penetration rod groups are subgroups of a crystallographic group that
leave a crystallographic plane, defined by two lattice points, and a crystallographic straight
line invariant, respectively,

When a pattern is projected, it is not immediate that the plane of projection is crystallo-
graphic, as it may not contain two lattice points.

The next proposition provides conditions for a suspension of the projected lattice to be
rationally compatible with the original lattice, see Definition 2.6.

Proposition 3.3. Consider a crystallographic group Γ with a lattice L ⊂ Rn+1 and let
L̃ = Πy0(L) ⊂ Rn be the translation subgroup of Πy0(Γ) and denote its suspension by L̃s ⊂ Rn+1.
If (0, y0) /∈ L, then L̃s is always rationally compatible with L.
If (0, y0) ∈ L, then L̃s is rationally compatible with L if and only if the normal vector (0, y0)
to the projection hyperplane is rational with respect to L.

Note that if (0, y0) ∈ L, we are projecting the values of functions on a band of the width
of one (or more) cell along a crystallographic direction. Otherwise the projected group is
smaller. So, we must use different results from the ITC according to the specific case.

Proof. If (0, y0) /∈ L, then only conditions I or II of remark 2.13 are applicable. Therefore, if
v ∈ L̃ then (2v,0) ∈ L. Hence, L̃s is rationally compatible with L.

If (0, y0) ∈ L, then, using remark 2.13, it follows that v ∈ L̃ for all v such that (v, y1) ∈ L
for some y1 ∈ R.

Suppose first that L̃s is rationally compatible with L and let (v, y1) ∈ L . Then r(v, 0) ∈ L
and hence (0, ry1) ∈ L for some r ∈ Z. It follows that y1 = p

qy0 for some p, q non-zero integers.
Therefore (0, y0) is rational with respect to L.
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Now suppose (0, y0) is rational with respect to L. We claim that for each l̃j one of the
following conditions holds:

(i) ((l̃j ,0), In+1) ∈ Γ;

(ii) ((l̃j , y1), σ) ∈ Γ, for some y1 ∈ R;

(iii) (0, y0), and (l̃j , pqy0) ∈ L, for some p, q non-zero integers.

Condition (iii) is a stronger version of condition III in remark 2.13. The other conditions
follow from remark 2.13. Any generator l̃j of L̃ such that (l̃j , y) ∈ L must satisfy either (i)
or (iii) above, because (0, y0) is rational with respect to L. Any other generator of L̃ must
satisfy (ii), proving our claim.

Conversely, if one of the conditions (i) or (ii) is true, then (2v, 0) ∈ L, using remark 2.13.
If condition (iii) holds for some j ∈ {1,⋯, n}, then (0, y0), (l̃j , pjqj y0) ∈ L, where pj , qj are
non-zero integers. Since L is a lattice (qj l̃j ,0) ∈ L. Therefore L̃s is rationally compatible
with L.

As an illustration, take Γ = L = ⟨(0,1), (
√

2,1/2)⟩Z, for which L̃s = ⟨(
√

2,0)⟩Z is always
rationally compatible with L, independently of y0. Another example is given by Γ = L =
⟨(0,1), (1,

√
2)⟩Z. For y0 = 1 we have that L̃s = ⟨(1,0)⟩Z is not rationally compatible with L,

whereas for y0 ∉ Z, we get L̃s = {(0,0)}.
For 3-dimensional lattices, if the generators of L̃ are related by an orthogonal transforma-

tion, we can remove the condition on (0, y0) from the statement of proposition 3.3, at the
price of having some more complicated conditions. This provides an alternative means of
obtaining rational compatibility.

Our starting point is a specific 2-dimensional lattice L̃ and we want to characterize the
3-dimensional lattices L that project onto this. The first step is to establish that L must
have a non-trivial intersection with the plane X0Y = {(x, y,0); x, y ∈ R}.

Theorem 3.4. Let Γ be a crystallographic group with a lattice L ⊂ R3 such that its projection
Γ̃ = Πy0(Γ) has a plane lattice L̃ = Πy0(L) generated by two linearly independent vectors

l̃1 and l̃2 = ρl̃1

for ρ in the point group, J̃ , of Γ̃.
Then the suspension L̃s ⊂ R3 is rationally compatible with L if
for each v ∈ {l̃1, l̃2} one of the following conditions holds:

a. ((v,0), I3) ∈ Γ;

b. ((v, y1), σ) ∈ Γ, for some y1 ∈ R;

c. (v, y1) ∈ L, for some y1 ∈ R.

That the conditions are also necessary is immediate from remark 2.13. Note that the
statement of theorem 3.4 excludes oblique and primitive rectangular lattices.
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Proof. Since l̃2 = ρl̃1, it is sufficient to show that one of r(l̃1,0) or r(l̃2,0) is in L . To see
this, suppose, without loss of generality, that r(l̃1,0) ∈ L. Then since ρ ∈ J̃ , by corollary 3.1,
either ρ+ ∈HL or ρ− ∈HL. As ρ+(rl̃1, 0) = ρ−(rl̃1, 0) = (rl̃2, 0), it implies that r(l̃2, 0) ∈ L and
therefore, L has a sublattice Lr.

If for some v ∈ {l̃1, l̃2} one of the conditions a or b is true then, by remark 2.13,
(rv, 0) ∈ L, for r = 1 or r = 2. Hence, all that remains to prove is the case when l̃1 and l̃2 only
satisfy condition c.

By hypothesis,

(l̃1, y1) and (l̃2, y2) are in L, for some y1, y2 ∈ R. (3.1)

This implies that
(l̃1 + l̃2, y1 + y2) ∈ L. (3.2)

Using (3.1) and corollary 3.1

either ρ+(l̃1, y1) = (l̃2, y1) ∈ L or ρ−(l̃1, y1) = (l̃2,−y1) ∈ L.

If (l̃2, y1) ∈ L then
(l̃2, y1) + (l̃2, y2) = (2l̃2, y1 + y2) ∈ L.

Thus, using (3.2)
(l̃1 + l̃2, y1 + y2) − (2l̃2, y1 + y2) = (l̃1 − l̃2,0) ∈ L.

Since {l̃1, l̃2} is a basis of L̃ and ρ ∈ J̃ then

ρ(l̃1 − l̃2) =ml̃1 + nl̃2, m, n ∈ Z

where m, n are not both equal to zero. Suppose that n ≠ 0, then

n(l̃1 − l̃2,0), (ml̃1 + nl̃2,0) ∈ L (3.3)

implying that the sum of these last two vectors ((n +m)l̃1,0) ∈ L. Therefore, if n ≠ −m, Lr
is a sublattice of L , where r =m + n ∈ Z. If n = −m, we subtract the two expressions in (3.3)
to get (2nl̃1,0) ∈ L.

If (l̃2,−y1) ∈ L then
−(l̃2,−y1) + (l̃2, y2) = (0, y1 + y2) ∈ L.

Thus, using (3.2)
(l̃1 + l̃2, y1 + y2) − (0, y1 + y2) = (l̃1 + l̃2,0) ∈ L.

An analogous argument applied to ρ(l̃1 + l̃2,0) finishes the proof.

By Definition 2.11, we have:

Definition 3.5. We say that the y0-projection of L into the plane P is a hexagonal plane
lattice if and only if the lattice L̃ admits as its holohedry a group isomorphic to D6.
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Our main result is the following theorem. Note that the hypothesis of having a 3-fold
rotation is not restrictive when one is looking for projections yielding a pattern with D6

symmetry.

Theorem 3.6. Let L ⊂ R3 be a lattice of a crystallographic group Γ. Suppose that for some
y∗ the group Πy∗(Γ) contains a 3-fold rotation. Then for any y0, the y0-projection of L into
the plane P is a hexagonal plane lattice if and only if:

(1) P ∩ L contains at least two elements;

(2) there exists β ∈HL such that:

– β is a 3-fold rotation;
– P is β-invariant.

Proof. Suppose first that (0, 0, 0) ∈ P ∩ L. To show that conditions (1) and (2) are necessary
let us consider, without loss of generality, that P =X0Y . Therefore, the conditions hold by
theorem 3.4.

To prove that condition (1) and (2) are sufficient consider the 3-fold rotation β ∈ HL.
By [30], theorem 2.1 and the proof of the crystallographic restriction theorem, in the same
reference, there exists only one subspace of dimension 2 invariant by β. Such a plane is the
plane perpendicular to its rotation axis. So, let P be this plane.

Since P ∩ L ≠ {(0,0,0)}, let v be a nonzero element of minimum length in P ∩ L and
consider the sublattice L′ = ⟨v, βv⟩Z. As β has order 3, the sublatice L′ is a hexagonal plane
lattice.

To finish the proof, consider y0 ∈ R; we prove that the y0-projection of L into the plane
P is a hexagonal plane lattice. Let (0, α) ∈ Πy∗(Γ), where α is a 3-fold rotation. Then by
theorem 2.12, one of the conditions holds:

1 (0, α+) ∈ Γ;

2 ((0, y∗), α−) ∈ Γ;

3 (0, y∗) ∈ L and either ((0, y1), α+) or ((0, y1), α−) is in Γ.

Since the order of α is finite , we have that either (0, α+) ∈ Γ or (0, α−) ∈ Γ. Then, the
result follows by condition 2 of corollary 3.2.

If (0, 0, 0) ∉ P ∩L, note that the proof can be reduced to the previous case by a translation.

Remark 3.7. Theorem 3.6 shows that a possible way to obtain patterns with hexagonal
symmetry, by y0-projection, is to project the functions f ∈ XL in a plane invariant by the
action of some element β ∈HL with order three. After finding one of those planes, in order
to obtain projections as in Definition 2.10, we only need to change coordinates. The reader
can see an example with the bcc lattice in [22].

For certain specific widths of the projection this can be obtained by other means. However,
in these cases the symmetry group of the projected functions, for most y0, has a very small
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point group and this is not interesting for the study of bifurcating patterns. More specifically,
we are interested in relating hexagonal patterns of different complexity in solutions of the
same differential equation with symmetry. As the projection width y0 varies, one may obtain
hexagonal patterns with different symmetry groups, corresponding to different patterns, as
illustrated by the figures at the end of this chapter. Bifurcation occurs via symmetry-breaking
and hence, more symmetry (a bigger point group) makes the bifurcation problem more
interesting.

As a consequence of Theorem 3.6, we are able to list all the Bravais lattices that may be
projected to produce a 2-dimensional hexagonal pattern.

Theorem 3.8. The Bravais lattices that project to a hexagonal plane lattice, under the
conditions of theorem 3.6 are:

1. Primitive Cubic lattice;

2. Body-centred Cubic lattice;

3. Face-centred Cubic lattice;

4. Hexagonal lattice; and

5. Rhombohedral lattice.

Moreover, up to change of coordinates, for the first three lattices the plane of projection must
be parallel to one of the planes in Table ??. For the Hexagonal and Rhombohedral lattices the
plane of projection must be parallel to the plane X0Y .

Proof. It is immediate from theorem 3.6 that we can exclude the following Bravais lattices:
triclinic, monoclinic, orthorhombic and tetragonal, since the holohedries of these lattices do
not have elements of order three.

To see if the other Bravais lattices have hexagonal projected symmetries, we need to
examine the rotations of order three in their holohedries and see if the plane perpendicular
to their rotation axes intersects the lattice.

The group of rotational symmetries of the Cubic lattice (as well as the Body Centred Cubic
lattice and the Face Centred Cubic lattice) is isomorphic to S4, the group of permutation of
four elements. So, in the holohedry of the Cubic lattice we only have rotations of order one,
two or three. Consider a systems of generators for a representative for the Cubic lattice L ,
in the standard basis of R3, given by:

(1,0,0), (0,1,0), (0,0,1)

Then, the matrix representations of the rotations of order 3 in HL are:

γ1 =
⎛
⎜⎜
⎝

0 −1 0
0 0 1
−1 0 0

⎞
⎟⎟
⎠
, γ2 =

⎛
⎜⎜
⎝

0 1 0
0 0 −1
−1 0 0

⎞
⎟⎟
⎠
,
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Table 3.1 Two-dimensional spaces perpendicular to the rotation axis of each one of the
rotations γi. Here we denote by ⟨v⟩, v ∈ R3 the subspace generated by v.

Rotation Rotation Axis Perpendicular Plane

γ1 ⟨(1,1,−1)⟩ P1 = {(x, y, z); z = x + y}
γ2 ⟨(1,−1,−1)⟩ P2 = {(x, y, z); z = x − y}
γ3 ⟨(1,−1,1)⟩ P3 = {(x, y, z); z = −x + y}
γ4 ⟨(1,1,1)⟩ P4 = {(x, y, z); z = −(x + y)}

γ3 =
⎛
⎜⎜
⎝

0 0 1
−1 0 0
0 −1 0

⎞
⎟⎟
⎠
, γ4 =

⎛
⎜⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟⎟
⎠
.

Two-dimensional spaces perpendicular to the rotation axis of each one of these rotations
are given in Table 3.1.

This means that for the first three lattices in the list, the projection of functions f ∈ XL
into a plane have hexagonal symmetries only if the plane is parallel to one of the plane
subspaces given in Table 3.1.

Consider now a 3-dimensional Hexagonal lattice. Its group of rotational symmetries has
order twelve and it has a subgroup of order six consisting of the rotational symmetries of the
Rhombohedral lattice.

Let the representatives for the Hexagonal and Rhombohedral lattices be generated by:

(1,0,0), (1
2
,

√
3

2
,0), (0,0, c) c ≠ 0, ±1.

(1,0,1), (−1
2
,

√
3

2
,1), (−1

2
,−
√

3
2
,1)

respectively. Then, the twelve rotations in the holohedry of the Hexagonal lattice are generated
by:

ρz =
⎛
⎜⎜
⎝

1
2 −

√

3
2 0

√

3
2

1
2 0

0 0 1

⎞
⎟⎟
⎠

and γx =
⎛
⎜⎜
⎝

1 0 0
0 −1 0
0 0 −1

⎞
⎟⎟
⎠

The generators of the group of rotational symmetries of the Rhombohedral lattice are
then ρ2

z and γx.
We conclude that the only rotations of order 6 in the holohedry of the Hexagonal lattice

are ρz and ρ5
z, and of order 3 ρ2

z and ρ4
z.

Therefore, the y0-projection of the Hexagonal and Rhombohedral lattices is a hexagonal
plane sublattice if and only if the y0-projection is made into a plane parallel to the plane
X0Y .



32 Hexagonal Projected Symmetries

3.2 Hexagonal projected symmetries of the Primitive Cubic
lattice

We conclude the chapter with an example to illustrate the hexagonal symmetries obtained by
z0-projection of functions with periods in the Primitive Cubic lattice, for all z0 ∈ R.

Consider a 3-dimensional crystallographic group, Γ = L+̇HL, where L is the Primitive
Cubic Lattice generated by the vectors (1,0,0), (0,1,0) and (0,0,1) over Z, and HL its
holohedry.

Without loss of generality, consider the projection of Γ on P1 (see Table 3.1).

From Theorem 3.8, the Cubic lattice has a hexagonal plane sublattice that intersects P1.
This sublattice is generated by:

(0,1,1), (1,0,1) (3.4)

To make our calculations easier and to set up the hexagonal symmetries in the standard
way consider the new basis {(0,1,1), (1,0,1), (0,0,1)} for the lattice L . Now multiply
L by the scalar 1

√

2 in order to normalise the vectors of (3.4). With these changes the
crystallographic group Γ has the new translational subgroup generated by the vectors:

v1 = (0,
1√
2
,

1√
2
), v2 = (

1√
2
,0, 1√

2
), v3 = (0,0,

1√
2
)

Projection of Γ on P1, as in definition 2.10, can be done after a change of coordinates
that transforms P1 into X0Y . Consider that change given by the orthonormal matrix

A =
⎛
⎜⎜⎜
⎝

0 1
√

2
1
√

2
2
√

6
−1
√

6
1
√

6
1
√

3
1
√

3
−1
√

3

⎞
⎟⎟⎟
⎠

Then, in the new system of coordinates X = Ax, we obtain the base for the Primitive
Cubic lattice given by:

l1 = (1,0,0), l2 = (
1
2
,

√
3

2
,0), l3 = (

1
2
,

√
3

6
,
−
√

6
6
) (3.5)

Observe that we changed the position of L as prescribed by theorem 3.6.

We proceed to describe the symmetries of the space Πz0(XΓ), for each z0 ∈ R. For this,
we need to obtain the subgroups Γ̂ and Γz0 of Γ. Denote by Σz0 = Lz0 +̇Jz0 the subgroup of
E(2) of all symmetries of Πz0(XΓ).

It is straightforward to see that the elements of Γ with orthogonal part α±, as in (2.3),
are in the group

Γ̂ = {((v, z), ρ); (v, z) ∈ L, ρ ∈ Ĵ}
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Table 3.2 Projection of Γ = L+̇HL, for each z0 ∈ R.

z0 ∈ R Γz0 Σz0 = Lz0 +̇Jz0

z0 = 3n
√

6 , n ∈ Z/{0}

then (0,0, 3n
√

6) ∈ L Γz0 = Γ̂
Lz0 = ⟨(1

2 ,
√

3
6 ), (

1
2 ,
−

√

3
6 )⟩Z

Jz0 =D6 = ⟨γ
′
, κ

′⟩

z0 = 3n−1
√

6 , n ∈ Z/{0}

then (1
2 ,
√

3
6 ,

3n−1
√

6 ) ∈ L
Γz0 contains
((1

2 ,
√

3
6 ,

3n−1
√

6 ), γ)
Lz0 = ⟨(1,0), (1

2 ,
√

3
2 )⟩Z

Jz0 = ⟨((1
2 ,
√

3
6 ), γ

′), κ′⟩

z0 = 3n+1
√

6 , n ∈ Z/{0}

then (1
2 ,
−

√

3
6 , 3n+1

√

6 ) ∈ L
Γz0 contains
((1

2 ,
−

√

3
6 , 3n+1

√

6 ), γ)
Lz0 = ⟨(1,0), (1

2 ,
√

3
2 )⟩Z

Jz0 = ⟨((1
2 ,
−

√

3
6 ), γ

′), κ′⟩

For z0 different

from the cases before Γz0 =H
Lz0 = ⟨(1,0), (1

2 ,
√

3
2 )⟩Z

Jz0 = ⟨−γ
′
, κ

′⟩

where Ĵ is the group generated by

γ =
⎛
⎜⎜
⎝

1
2 −

√

3
2 0

√

3
2

1
2 0

0 0 −1

⎞
⎟⎟
⎠

and κ =
⎛
⎜⎜
⎝

−1 0 0
0 1 0
0 0 1

⎞
⎟⎟
⎠

and the group Γz0 has a subgroup H = L +̇ J , for all z0 ∈ R, where L is the translation
subgroup L = ⟨l1, l2⟩Z and J is the subgroup generated by ((0,0,0), κ) and ((0,0,0),−γ).
Using statement I of Theorem 2.12, for all z0 ∈ R all the functions f ∈ Πz0(XΓ) are (1, 0), and
(1

2 ,
√

3
2 ) periodic and invariant under the action of

κ′ =
⎛
⎝
−1 0

0 1
⎞
⎠

and − γ′ =
⎛
⎝
−1

2

√

3
2

−
√

3
2 −1

2

⎞
⎠

In Table 3.2 we list the group Γz0 , for each z0 ∈ R, and describe the respective projected
symmetries.

To illustrate our results, we choose planforms obtained in [14] and show its projections in
different bands, in the hexagonal symmetry direction.

In [14] it is shown that there exists an isotropy subgroup with a one dimensional fixed-point
subspace in a 6-dimensional representation of the action of Γ on the space XL. As in Section



34 Hexagonal Projected Symmetries

(a) (b) (c) (d)

Fig. 3.1 Projection of pattern u in a 6-dimensional representation with Primitive Cubic lattice
periodicity. Contour plots of the integral of u over different depths z0. (a) z0 = 1

2
√

6 . (b)
z0 = 1

√

6 . (c) z0 = 2
√

6 . (d) z0 = 3
√

6 .

(a) (b) (c) (d)

Fig. 3.2 Projection of pattern u in a 12-dimensional representation with Body Centred Cubic
lattice periodicity. Contour plots of the integral of u over different depths z0. (a) z0 = 1

2
√

6 .
(b) z0 = 1

√

6 . (c) z0 = 3
2
√

6 . (d) z0 = 2
√

6 .

2.7, the 6-dimensional representation is given by:

V = ⊕
∣k∣=
√

2
Vk

A straightforward calculation shows that the function

u(x, y, z) = ∑
∣k∣=
√

2
exp(2πik ⋅ (x, y, z)) (3.6)

is Γ-invariant function in V .
The contour plots of the projections of u are shown in Figure 3.1, with the symmetries

given in Table 3.2. The same pictures occur for the projection of a strip of half this height of
a pattern in an 8-dimensional representation with face centred cubic periodicity.

The Body Centred Cubic lattice shows a different configuration, illustrated in Figure 3.2.
As an illustration, consider a systems of generators

l1 = (1,0,0), l2 = (
1
2
,

√
3

2
,0), l3 = (0,0, c) c ≠ 0, ±1

r1 = (1,0,0), r2 = (
1
2
,

√
3

2
,0), r3 = (

−1
2
,

√
3

6
,
a

3
), a ≠ 0

for the Hexagonal and Rhombohedral lattices, respectively. A construction similar to that
used for the Primitive Cubic lattice may be applied to these two cases, but here the parameters
a and c will change the pattern of the projected functions. Examples are shown in Figures 3.3
and 3.4.
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(a) (b) (c) (d)

Fig. 3.3 Projection of pattern u in a 6-dimensional representation with Rhombohedral lattice
periodicity. Contour plots of the integral of u over different depths z0 with parameter a = 2 .
(a) z0 = 2

6 . (b) z0 = 2
3 . (c) z0 = 4

3 . (d) z0 = 2.

(a) (b)

Fig. 3.4 Projection of pattern u in a 12-dimensional representation with Hexagonal lattice
periodicity. Contour plots of the integral of u over different depths z0 with parameter c = 2 .
(a) z0 = 1. (b) z0 = 2.





Chapter 4

Projected Functions and Functions
on Projections

When we study physical models in equivariant bifurcation theory, we are interested in results
that are based on generic arguments, that is, on typical behaviour that is not destroyed by
small perturbations of the equation that governs the system. The reason for considering
genericity is simple: physical systems are often subject to perturbations. To proceed with
the study of the problem, a first step is to describe the appropriate symmetries of the system.
Then, by applying some mathematical tools, we can analyse what generic behaviour the
system has.

Many authors have studied how to uncover the appropriate symmetries. In Crawford
et al. [12], Golubitsky and Stewart [20], Gomes et al. [23] and references therein, we can
see the description of how to obtain the desired symmetries taking into account some more
features of the problem, as boundary conditions. Experimental and numerical results are also
shown to illustrate the theory. The keyword in these works is Hidden Symmetries.

The theory of hidden symmetries is a method to identify all the symmetries in the
Euclidean group that leave the PDE and the boundary condition, posed in a certain domain,
invariant. It can be found in [23] and Crawford et al. [13] for the case of multidimensional
rectangular domains and Field et al. [18] for spherical domains. The general idea of the
method is to obtain information by doing an extension of the domain to the whole Euclidean
space Rn, by reflections on the boundaries and periodic replication. The result is that the
original problem is embedded in a larger abstract one. The extended problem will typically
have a larger class of solutions. The way back to the original problem will be by selecting,
from this large class, the solutions that satisfy the original boundary conditions.

In Gomes [22] we can see a perspective of hidden symmetries and projections. The author
proposes that projection can be developed into a variant of standard hidden symmetries
methods as cited before. In this chapter we give a formalism of how we can do such an
extension and how we can relate the solution of the extended problem to the original one. By
the use of Equivariant Bifurcation Theory, we examine the effect of projection on bifurcation
problems.

37



38 Projected Functions and Functions on Projections

To formalise these ideas, consider an Equivariant PDE

∂u

∂t
(x, t) = P(u(x, t), λ) (4.1)

where P ∶ X ×RÐ→ Y is an operator between suitable function spaces X and Y, and λ ∈ R
is a bifurcation parameter. The function u ∶ Rn × R → R in X is a function of a spatial
variable x ∈ Rn and time t. We are interested in time-independent solutions of (4.1) given by
P(u(x, t), λ) = 0.

The standard method used in Equivariant Bifurcation Theory reduces the problem posed
before to a steady-states of Γ-equivariant bifurcation problem

ż = g(z, λ), g ∶ Cs ×RÐ→ Cs (4.2)

where Γ is a a Lie group. The first approach to find solutions for g(z, λ) = 0, and then for the
problem (4.1), is by applying the Equivariant Branching Lemma.

As we see in Theorem 2.16, we can start looking for irreducible representations given by
the action of the group Γ on XL. After establishing these irreducible representations, we
describe Γ-absolutely representations on V , the kernel of the linearisation of (4.1), which
we suppose to be a Γ-irreducible subspace of XL. Then, we reduce the symmetry of the
problem by looking for fixed point subspaces of a subgroup Σ of Γ. Fixed point subspaces are
flow-invariant, so we can restrict the bifurcation problem to Fix(Σ) and look for solutions
there.

Now, we have a symmetric n-dimensional model and a tool to find typical solutions for that
problem. Suppose then that we can extend that model to a symmetric (n + 1)-dimensional
problem, where in the same way we can apply the previous tool to obtain its typical solutions,
then the question must be asked:

"Is there a relation between the typical solutions of the n-dimensional problem
and the ones that come from the projection of the extended one?"

In this chapter we give the first necessary condition to make such a relation. We aim to
establish, by using the projection method:

• a relation between irreducible representations posed in different dimensions;

• and a relation between the fixed point subspaces contained there in.

In the next sections we introduce a possible method to understand bifurcation problems
from the point of view of projections. Although most of the technical results we prove in
this chapter are independent of the dimension, we will be paying particular attention to the
extension of 2- to 3-dimension problems.

We organise the chapter as follows. In section 4.1 we formulate how we extend 2- to
3-dimensional bifurcation problems in the point of view of hidden symmetries. We cover
questions regarding the boundary conditions imposed by the problem. In particular, this
section gives motivation for the application of our theory.
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Once we have an idea of how to embed a n- in a (n + 1)-dimensional problem, we wish
to study how we can relate their solutions. To achieve this aim in Sections 4.2 and 4.3 we
prove technical results that allow us to compare irreducible representations of the action of
crystallographic groups, on the space of periodic functions, posed in different dimensions. We
state the final results in Sections 4.4 and 4.5. We show how the projection of irreducible
representations changes as the band of projection varies.

4.1 Hidden Symmetry

In this section we approach the theory of projection developed until now from the point of
view of hidden symmetries. References for this section are [23] and [20], chapter 7.

To better understand the connection of this section and the remaining content of the
chapter, let us come back to the motivation of our work: the black-eye pattern. We see
in [22] that the 2-dimensional pattern, observed in the CIMA (chlorite-iodite-malonic-acid)
experiment, is described as a slice of a fully 3-dimensional one by projection. The main
challenge is to find out if the experimental black-eye pattern and its representation as
projection are the same. To interpret this problem we must start looking for the effect of
projection in the system we are considering, in this case a reaction-diffusion system.

When the problem is posed in the whole plane, we want to understand how to extend it to
a 3-dimensional environment, so that we can obtain information concerning the 2-dimensional
problem by the use of the projection method. It turns out that this extension has several
points to be clarified.

The problem is posed as follows: we want to extend a hexagonal periodic pattern ũ, to a
3-dimensional pattern u. The first intuitive question is how the boundary conditions of ũ
are related to the 3-dimensional pattern. In other words, which boundary conditions should
we impose on u such that its projection will satisfy periodic boundary condition (PBC) on
the fundamental cell of L? The answers to those questions are in chapter 3, where we relate
periodic boundary conditions to symmetries by solving the question: suppose that there exist
u ∶ R3 Ð→ R and y0 ∈ R such that Πy0(u) = ũ, which are the symmetries of u?

The boundary condition problem is clarified in Theorem 3.8, stating that if ũ is invariant
under the action of a crystallographic group with a hexagonal lattice and a point group
containing a 3-fold rotation, then the possible symmetries of u are given by a 3-dimensional
crystallographic group with one of the following lattices: simple cubic, ffc, bcc, hexagonal or
rhombohedral.

Our next step is to understand what we can say about u, Πy0(u) and y0 if ũ is a solution
for the PBC problem in the plane. In the previous section we saw the first approach to find
typical solutions for a bifurcation problem is by finding fixed-point subspaces with dimension
one in irreducible representations of the action of the group. The idea is then to look at
what happens to the projection of functions in invariant subspaces given by the action of the
imposed crystallographic group in higher dimension. We will deal with this second issue in
the next section.
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4.1.1 Reaction-Diffusion Systems and Boundary Conditions

Reaction-diffusion equations are usually defined on a bounded domain with Neumann or
Dirichlet Boundary condition (NBC or DBC, respectively). Such equations have hidden
symmetries that affect the form of the bifurcation equation. See [13], [18] and [23].

We can see in [13] and [23] that if u′ is a solution, defined in a cell of a multi-rectangular
lattice, of the NBC/DBC problem, then we can extend it to a periodic function, u, so that
it will be a solution for the PBC problem. In the other way around, if we start with a
solution, u, of the PBC problem, then we have to impose some symmetries on u such that
its restriction in the initial bounded domain is a solution for the NBC/DBC problem. We
explain here how the transition from NBC to PBC goes when the selected solution is defined
in a fundamental cell of a plane hexagonal lattice.

4.1.2 Neumann Boundary conditions

Let us start with a hexagonal lattice L̃ generated by:

l̃1 = (1,0), l̃2 = (
−1
2
,

√
3

2
)

Consider the domain

D′ = {(x, y) ∈ R2; (x, y) =ml̃1 + nl̃2, m, n ∈ [0,1]} (4.3)

and an operator P ′ ∶ X̃ ×R→ Ỹ between function spaces X̃ and Ỹ. Define a PDE

∂u

∂t
= P ′(u,λ) (4.4)

where u ∶ D′ → R in X̃ , λ ∈ R is a bifurcation parameter.
The NBC problem is given by:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

P ′(u,λ) = 0
∂u
∂n(x, y) = ∇u(x, y) ⋅ n = 0, ∀(x, y) ∈ ∂D′ and ∀n�∂D′

(4.5)

where here ∂D′ is the boundary of the domain D′.
In [23] solutions of a PDE with Newman boundary conditions on a rectangle are shown

to be in one-to-one correspondence with solutions defined on the whole plane with some
symmetries. We want to do a similar construction for the domain D′.

By virtue of the NBC, solutions for the problem (4.5) can be smoothly extended by
reflection across the side walls to functions on a larger domain, see [13]. In our case, consider
the following reflections

τ1 =
⎛
⎝

1 0
0 −1

⎞
⎠
, τ2 =

⎛
⎝
−1

2 −
√

3
2

−
√

3
2

1
2

⎞
⎠
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Fig. 4.1 The extended cell D. The red highlighted cell represents the set D′. The blue and
green one represent its reflections given by τ1 and τ2 respectively.

across the x-axis and the line y = −
√

3x, respectively. We extend a solution u′, of the problem
(4.5), to the hexagon

D = {(x, y) ∈ R2; (x, y) =ml̃1 + nl̃2, m, n ∈ [−1,1]}

by defining u(τi(x, y)) = u′(x, y), i = 1,2. That is, by forcing u to be invariant under the
two reflections. We proceed by extending the problem to the whole plane by doing periodic
replication of the domain D.

Now consider an operator P̃ ∶ X̃
L̃
× R → Ỹ

L̃
, where a vector valued function u ∈ X̃

L̃
is

defined on the whole plane. Here we denote by X̃
L̃

and Ỹ
L̃

the spaces of L̃–periodic functions
in X̃ and Ỹ, respectively.

Given the periodic boundary value problem:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

P̃(u,λ) = 0
u((x, y) + l̃) = u(x, y) ∀l̃ ∈ L̃,

(4.6)

we have the following:

Lemma 4.1. Solutions satisfying the Neumann boundary condition problem (4.5) on the
domain D′ are in 1–1 correspondence with solutions satisfying the periodic boundary value
problem on D having D3 symmetry.

Proof. Let u′ ∶ D′ Ð→ R be a solution for the NBC problem (4.5). Define the extension u of
u′ to the whole plane by:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u(x, y) ≡ u′(x, y) if (x, y) ∈ D′

u(τi(x, y)) = u′(x, y) for i = 1,2 and ∀(x, y) ∈ D′

u((x, y) + l̃) = u(x, y) ∀(x, y) ∈ D and l̃ ∈ L̃
(4.7)
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By construction, u is differentiable along the segments

φi ∶ (0,1) ⊂ R Ð→ R2

t z→ t̃li
, i = 1,2

Also by construction, u satisfies the PBC problem (4.6) and is invariant under the group D3

generated by τ1 and τ2.

Now let u be a solution to the PBC problem (4.6), we show that if u is D3 invariant then
u∣D′ satisfies NBC on ∂D′.

The boundary ∂D′ is the set

∂D′ = d1 ∪ d2 ∪ d3 ∪ d4

for
d1 ={(x,0) ∈ R2; x ∈ [0,1]}

d2 ={x(
−1
2
,

√
3

2
) ∈ R2; x ∈ [0,1]}

d3 ={(x,
√

3
2
) ∈ R2; x ∈ [−1

2
,
1
2
]}

d4 ={(
−x
2
+ 1, x

√
3

2
) ∈ R2; x ∈ [0,1]}

Thus, u satisfies NBC on ∂D if

∇u(x, y) ⋅ n = 0, ∀(x, y) ∈ ∂D and ∀n�∂D.

This is equivalent to prove that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇u(x, y) ⋅ (0,1) = 0, for(x, y) ∈ d1 ∪ d3;
∇u(x, y) ⋅ (1, 1

√

3) = 0, for(x, y) ∈ d2 ∪ d4

that is,
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂u
∂y (x, y) = 0 for(x, y) ∈ d1 ∪ d3;
∂u
∂y (x, y) =

√
3∂u∂x(x, y) for(x, y) ∈ d2 ∪ d4

(4.8)

By τ1-invariance,

u(x, y) = u(x,−y) ⇒ ∂u

∂y
(x,0) = −∂u

∂y
(x,0) = 0

Moreover, (x, y) ∈ d3 ⇔ (x, y) = (x̂, ŷ) + l̃2, for some (x̂, ŷ) ∈ d1, hence, using the PBC,
u(x, y) = u(x̂, ŷ) and

∂u

∂y
(x, y) = ∂u

∂y
(x̂, ŷ) = 0

proving the first equality in (4.8).
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Now, τ2-invariance gives u(x, y) = u(φ(x, y), ψ(x, y)), where φ, ψ ∶ R2 → R are given by

φ(x, y) = −x
2
− y
√

3
2

and ψ(x, y) = −x
√

3
2
+ y

2
.

Note that, the functions φ and ψ are related by ψ =
√

3φ, for (x, y) ∈ d2 ∪ d4. Then

u(φ,ψ) = u(φ,
√

3φ) ∀(x, y) ∈ d2 ∪ d4.

Differentiating this last equality with respect to x and y, we obtain

∂u

∂x
(φ,ψ) = 1

2
∂u

∂φ
(φ,ψ) −

√
3

2
∂u

∂ψ
(φ,ψ)

∂u

∂y
(φ,ψ) =

√
3

2
∂u

∂φ
(φ,ψ) − 3

2
∂u

∂ψ
(φ,ψ).

By multiplying the first equation by
√

3 we obtain ∂u
∂y (x, y) =

√
3∂u∂x(x, y) for (x, y) ∈ d2 ∪d4,

finishing the proof.

4.1.3 Dirichlet Boundary conditions

Consider now the DBC problem given by:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

P ′(u,λ) = 0
u ≡ c on ∂D′

(4.9)

where c is a constant.
We extend a solution u′, of the problem (4.9), to the hexagon D, by defining u(τi(x, y)) =

−u′(x, y), i = 1, 2. We proceed by extending the problem to the whole plane by doing periodic
replication of the domain D.

Lemma 4.2. Suppose that the operator in (4.6) satisfies P̃(−u,λ) = −P̃(u,λ). Then, solu-
tions satisfying the Dirichlet boundary condition problem (4.9) on the domain D′ are in 1–1
correspondence with solutions satisfying the periodic boundary value problem on D having D6

symmetry.

Proof. As a contrast of the NBC problem, a solution of the DBC problem (4.9) satisfies the
PBC if we require P̃(−u,λ) = −P̃(u,λ).

The remaining of the prove is similar to the NBC problem.

Both in the NBC and DBC problem, we have been assuming that all the components
of u′ have the same boundary condition. As in [18] and [13], similar ideas hold if we have
different boundary conditions for diferent components of u′.
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4.2 Generators for the space of invariant functions

An interpretation of how to identify a projected pattern as a 2- or 3-dimensional object can
be given by understanding when the space Πy0(XΓ) coincides with XΠy0(Γ).

Consider an (n + 1)-dimensional crystallographic group Γ with point group J and lattice
L with holohedry HL. The point group J can be any subgroup of HL. Let XΓ be the space
of Γ-invariant functions.

Let P ∶ Rn+1 → Rn be the usual projection given by P (x, y) = x. The projection of f ∈ XΓ

is given by
Πy0(f)(x) = ∑

k1∈P (L∗)
D(k1)ωk1(x) (4.10)

where
D(k1) = ∑

k2; (k1,k2)∈L∗
C(k1, k2)∫

y0

0
ωk2(y)dy.

For each y0 ∈ R, we write the space of projected functions

Πy0(XΓ) = {Πy0(f) ∶ Rn → R; f ∈ XΓ}.

In contrast, for each y0 ∈ R, consider the projection of the crystallographic group Γ,
Πy0(Γ) = Γ̃ , with the respective projections Πy0(L) = L̃ and Πy0(J) = J̃ , as in chapter 3,
section 3.1. If it is important to display the value y0 explicitly we write Γ̃y0 , L̃y0 and J̃y0 ,
respectively. Then, we have the space of Γ̃-invariant functions

XΠy0(Γ) = {f̃ ∶ R
n → R; f̃ is Γ̃ − invariant} = XΓ̃.

In chapter 3, section 3.2, we saw an example of the projection, for different bands y0, of
the crystallographic group with simple cubic lattice. In general the projected group changes
as the projection height varies. Here we can ask what happens with the space of functions. A
natural question is: does the space of projected functions coincide with the space of functions
that are invariant under the action of the projected group? One inclusion is clear, that is
Πy0(XΓ) ⊆ XΠy0(Γ). In this section we aim at establishing conditions under which the other
one is true.

The results of this chapter are technical but with a deep consequence. We establish, by
using the projection model, a relation between representations of the action of the group Γ
on the space XL and the action of Πy0(Γ) on X

L̃
. That is, we are looking to explain, via the

projection model, three main concepts:

• Γ- and Γ̃-invariance of subspaces in XL and X
L̃

, respectively;

• Γ- and Γ̃-fixed point subspaces in XL and X
L̃

, respectively;

• Γ- and Γ̃-irreducible representations in XL and X
L̃

, respectively.

For Γ- and Γ̃-invariance of subspaces in XL and X
L̃

, respectively, we have the following:
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Lemma 4.3. Let Γ be a (n+1)-dimensional crystallographic group, with projection Γ̃ = Πy0(Γ).
If V is a Γ-invariant subspace of XL then Ṽ = Πy0(V ) is a Γ̃-invariant subspace of X

L̃
.

Proof. The arguments in the proof are analogous to those in the proof of Lemma 3.1 of [38].
Let V be a Γ-invariant subspace of XL and f̃ ∈ Ṽ . Then, there exists f ∈ V such that

Πy0(f) = f̃ .
For all (v,α) ∈ Γ̃, there exists an element ((v, y1), α±), depending on whether conditions

(i) − (iii) in Theorem 1.2 in [38] is verified. It follows that Πy0(((v, y1), α±)f) = (v,α)f̃ .

In order to study how invariant, irreducible and fixed point subspaces are transformed by
projection, we must pay attention to the system of generators for such spaces. In our work
we use the basis Ik, k ∈ L∗, for the space of functions that are invariant under the action of a
crystallographic group Γ. The functions Ik are obtained in the following way:

As in section 2.7, we assume that all the functions f ∶ Rn+1 → R in XΓ admit a unique
formal Fourier expansion in terms of the waves ω(k1,k2)(x, y) = exp(2πi⟨(k1, k2) ⋅ (x, y)⟩)

f(x, y) = ∑
(k1,k2)∈L∗

C(k1, k2)ω(k1,k2)(x, y),

where L∗ is the (n + 1)-dimensional dual lattice of L. To simplify our notation we write here
the coefficients C(k1, k2) ∶= C((k1, k2), t), since the projection of f does not interfere with
the temporal variable t. We write,

XL = ⊕
k∈L∗

Vk = ⟨Re(ωk(x, y))⟩ ⊕ ⟨Im(ωk(x, y))⟩.

Now, given a crystallographic group Γ with point group J and lattice L, we know by
definition that for each δ ∈ J there exists v ∈ Rn+1, such that the pair (v, δ) ∈ Γ. Since for
each l ∈ L, the element (l, Idn+1)(v, δ) = (v + l, δ) ∈ Γ and Γ is a discrete group, we can choose
the smallest vδ ∈ Rn+1 such that (vδ, δ) ∈ Γ. We call vδ the translation vector associated to δ.
For more details see [37] chapter 2, section 2.1, or [25].

Now, the action of the element (vδ, δ) on the wave function ω(k1,k2) yields:

(vδ, δ)ω(k1,k2)(x, y) = ω(k1,k2)((vδ, δ)
−1(x, y)) = ωδ(k1,k2)(−vδ)ωδ(k1,k2)(x, y).

Therefore, if f ∈ XΓ, then we can associate the sum of all elements in the orbit of ω(k1,k2)

under the action of Γ in its Fourier expansion, that is, we can write f ∈ XΓ in terms of the
real and imaginary components of the function

I(k1,k2)(x, y) = ∑
δ∈J

ωδ(k1,k2)(x, y)ωδ(k1,k2)(−vδ).

Observe that, the choice of I(k1,k2) does not depend on the choice of vδ, since ωδ(k1,k2)(−vδ+l) =
ωδ(k1,k2)(−vδ), for all l ∈ L.
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As we saw in Section 2.7, given a wave ωk ∈ XL, we can construct the subspace Vkc of XL
given by:

Vkc = ⊕
∣k∣=kc

Vk =
s

⊕
i=1
Vks .

An adptaion of Proposition 2.18 is in the following:

Proposition 4.4. The space Vkc is Γ-invariant if and only if the set of 2s dual vectors
{±k1, . . . ,±ks} ⊂ L∗ is invariant under the action of the point group J of Γ in L∗. Moreover,
this holds in particular if {±k1, . . . ,±ks} ⊂ L∗ is a single J-orbit.

Remark 4.5. As a contrast of Proposition 2.1 in [15], see Remark 2.17, the space Vkc is
Γ-invariant, but it is not Γ-irreducible. To see this, consider the subspace of Vkc , generated by
the by a function Ik. This subspace is a complex 1-dimensional Γ-invariant subspace of Vkc .

Note that, the space generated by the real or the imaginary part of the function Ik is
Γ-irreducible. Moreover, when {±k1, . . . ,±ks} ∈ L∗ is a single J-orbit, we can decompose
Vkc = ⟨Re(Ik(x, y))⟩ ⊕ ⟨Im(Ik(x, y))⟩⊕W , where W ∩ XΓ = {0}.

We proceed now by analysing Γ- and Γ̃-fixed point spaces. As a reminder, we want to
show if for all function f̃ in XΓ̃ = FixXL̃(Γ̃), there is a Γ-invariant function in f ∈ XΓ, whose
projection yields f̃ .

In order to analyse if Πy0(XΓ) ⊇ XΠy0(Γ), we will work with the functions I(k1,k2). As a
consequence, it is necessary to obtain more information about:

• the the dual lattice L̃∗ and L∗;

• and the orbit of a dual vector (k1, k2) ∈ L∗ under the action of J .

In particular, by Remark 4.5, an approach to analyze the projection of Γ-irreducible
representations in XL can be done by looking for the functions Ik.

4.2.1 Projection of Dual Lattices

As long as we work with Γ-invariant function, dual lattices play an important rule in
determining its Fourier terms. The results presented before and in chapter 3 only give direct
information about a crystallographic group Γ, its translation subgroup L, and its projection.
In this subsection we will show the relation between L∗ and the dual of the projected lattice,
L̃∗ for each y0.

Consider a lattice L ⊂ Rn+1, with dual lattice L∗, and let L̃ = Πy0(L) ⊂ Rn be its projection
with suspension L̃s = {(v, 0); v ∈ L̃} ⊂ Rn+1. Denote by L̃∗ the dual lattice of L̃ with respective
suspension L̃∗s .

As mentioned in chapter 3, the projection of a crystallographic group does not always yield
a crystallographic group. Proposition 3.6 gives conditions to analyse the effect of projection
in the lattice L of a crystallographic group Γ. The conditions in that proposition are stated
in terms of rational compatibility. Here, the importance of that definition is to establish how
compatible the dual lattice L∗ and the suspension L̃∗s are.
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Remark 2.13 says that for each ṽ ∈ L̃, that is, for each symmetry (ṽ, Idn) of Πy0(XΓ), we
have, by Theorem 2.12 with α = Idn, that one of the following conditions holds:

I (ṽ,0) ∈ L;

II ((ṽ, y0), σ) ∈ Γ;

III (0, y0) ∈ L and either (ṽ, y1) ∈ L or ((ṽ, y1), σ) ∈ Γ, for some y1 ∈ R.

A useful and immediate observation from this remark is that, if σ ∉HL, then one of the
conditions holds:

• (0, y0) ∈ L and L̃ = P (L);

• L̃ = P (L ∩ {y = 0})

where, from now on, we denote {y = 0} = {(x, y) ∈ Rn+1; y = 0}.
An analogous description, under certain conditions, will also hold when (0, σ) ∈ Γ, as we

will see in the Lemma 4.12.
The first relation between the lattices L∗ and L̃∗ is given in the next proposition.

Proposition 4.6. Let Γ be a crystallographic group with lattice L and L̃ = Πy0(L). If L̃s is
rationally compatible with L, then for all k̃ ∈ L̃∗, there exists z ∈ R such that (k̃, z) ∈ L∗, that
is, L̃∗ ⊆ P (L∗).

Proof. By Proposition 2.5, we can choose a system of generators of L given by:

(l1,0), . . . , (ln,0), (l, y)

Denote by L̄ the n-dimensional lattice generated by {li}, for i = 1, . . . , n, and let (L̄)∗ = ⟨k̃i⟩Z
be its dual. Then, the vectors

ki = (k̄1i,
⟨−k̄1i, l⟩

y
), i = 1, . . . , n, and kn+1 = (0,

1
y
)

generate L∗.
Since, by Theorem 2.12, if (v,0) ∈ L then v ∈ L̃. This implies L̄s ⊆ L̃s, for all y0. By

properties of duality (L̃s)∗ ⊆ (L̄s)∗ = ⟨(k̃i,0)⟩Z + ⟨(0, y)⟩R. Therefore, for all k̃ ∈ L̃∗, there
exists z ∈ R such that (k̃, z) ∈ L∗.

Lemma 4.7. Let Γ be a crystallographic group with lattice L and L̃ = Πy0(L). If (0, y0) ∈ L
then L̃∗ ⊆ P (L∗ ∩ {y = 0}).

Proof. If (0, y0) ∈ L, then P (L) ⊆ L̃. By duality, L̃∗ ⊆ P (L)∗ = P (L∗ ∩ {y = 0}).

Lemma 4.8. Let Γ be a crystallographic group with lattice L and L̃ = Πy0(L). If L̃ =
P (L ∩ {y = 0}) then L̃∗ = P (L∗).
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Proof. By Proposition 4.6, we only need to prove that P (L∗) ⊆ L̃∗.
Wherever v ∈ L̃, then (v, 0) ∈ L. Thus we have that < k1, v >=< (k1, k2), (v, 0) >∈ Z, for all

(k1, k2) ∈ L∗. Hence, k1 ∈ L̃∗.

Remark 4.9. Observe that, if L̃ = P (L), then for all (k,0) ∈ L∗ and for each v ∈ L̃ we have
⟨v, k⟩ ∈ Z, and hence L̃∗ ⊇ P (L∗ ∩ {y = 0}).

When (0, y0) ∈ L, then by Remark 2.13, the vector ṽ ∈ L̃ if and only if either (v, y1) ∈ L
or ((v, y1), σ) ∈ Γ. It is immediate that L̃ ⊇ P (L). If the equality holds, that is L̃ = P (L),
then by Proposition 4.6, we have L̃∗ = P (L∗ ∩ {y = 0}).

Moreover, as we saw before, we can conclude, by Proposition 4.6 and Lemma 4.8, that for
any band of projection and any crystallographic group with lattice L and point group J , if
σ ∉ J then one of the conditions holds:

• (0, y0) ∈ L, L̃ = P (L) and L̃∗ = P (L∗ ∩ {y = 0});

• L̃ = P (L ∩ {y = 0}) and L̃∗ = P (L∗).

Define Ay0 to be the affine space Ay0 = {(x, y0) ∈ Rn+1}. In the next Lemma we work
with the case when the crystallographic group Γ contains the element (0, σ).

Lemma 4.10. Let Γ be a crystallographic group with lattice L and L̃ = Πy0(L). Suppose that
(0, σ) ∈ Γ, the lattice L̃s is rationally compatible with L, and the affine Ay0 contains a point
of the lattice. Then L̃∗ = P (L∗ ∩ {y = 0}).

Proof. Since L̃s is rationally compatible with L, there exists a basis for L given by:

(l1,0), . . . , (ln,0), (l, y)

where (l, y) is the vector with smallest norm in this direction.
If l = 0, then L̃ does not depend on y0. In this case Ay0 contains a point of the lattice if

and only if y0 = my, m ∈ Z. Otherwise, if l ≠ 0, then (0,2y) = (l, y) − σ(l, y) is the smallest
vector in the direction of projection.

Take (x, y0) ∈ Ay0 ∩ L, then (x, y0) = m1(l1,0) + ⋯ + mn(ln,0) + mn+1(l, y), mj ∈ Z.
Consequently y0 =mn+1y.

If mn+1 is even then (0, y0) = (0,mn+1y) ∈ Ay0 ∩L. Thus, by Remark 4.9, L̃∗ = P (L∗∩{y =
0}).

If mn+1 is odd, then (l,mn+1y) = (l, y) + (0, (mn+1 − 1)y) ∈ Ay0 ∩ L. Since (0, σ) ∈ Γ, we
have ((l,mn+1y), σ) ∈ Γ, implying that l ∈ L̃ = Πy0(L). Therefore, Πy0(L) = Πb(L) = P (L),
and the result follows as in Remark 4.9.

The next theorem summarizes the previous results.

Theorem 4.11. Let Γ be a crystallographic group with point group J , lattice L and L̃ =
Πy0(L). Suppose that the lattice L̃s is rationally compatible with L and if σ ∈ J then (0, σ) ∈ Γ.
Then we have the following relation between the lattices L, L∗, L̃ and L̃∗:

1. If σ ∉ J , then one and only one of the conditions holds
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• (0, y0) ∈ L, L̃ = P (L) and L̃∗ = P (L∗ ∩ {y = 0});
• L̃ = P (L ∩ {y = 0}) and L̃∗ = P (L∗)

2. If (0, σ) ∈ Γ then one and only one of the conditions holds

• Ay0 ∩ L ≠ ∅, L̃ = P (L) and L̃∗ = P (L∗ ∩ {y = 0});
• L̃ = P (L ∩ {y = 0}) and L̃∗ = P (L∗)

Proof. The proof follows from the previous results.

In general, if (0, y0) ∈ L, then L̃∗ = P (L∗ ∩ {y = 0}). The criterion to find this equality is
given in the following lemma. It aims to analyse what happens when the projected lattice
contains an element that comes from the translation vector associated to σ.

Lemma 4.12. Let Γ be a crystallographic group with lattice L and point group J , with
L̃ = Πy0(L). Suppose that L̃s is rationally compatible with L. Suppose also that (0, y0) ∈ L
and (vσ, σ) ∈ Γ. Then, L̃∗ = P (L∗∩{y = 0}) if and only if ⟨(k, 0), vσ⟩ ∈ Z, for each (k, 0) ∈ L∗.

Proof. By Lemma 4.7, we only need to show L̃∗ ⊇ P (L∗ ∩{y = 0}), that is, (k, 0) ∈ L∗ implies
k ∈ L̃∗.

Since (0, y0) ∈ L, then by Theorem 2.12, for each v ∈ L̃ one of the following conditions
holds for some y1 ∈ R:

(1) (v, y1) ∈ L;

(2) ((v, y1), σ) ∈ Γ.

In case (1), if (k,0) ∈ L∗ then ⟨k, v⟩ ∈ Z.
If (2) holds, then

(vσ, σ) ⋅ ((v, y1), σ) = (vσ + (v,−y1), Idn+1) ∈ Γ.

Thus, vσ + (v,−y1) ∈ L. Therefore, ⟨(k,0), (v,−y1)⟩ ∈ Z if and only if ⟨(k,0), vσ⟩ ∈ Z.
Hence, k ∈ L̃∗ if and only if ⟨(k,0), vσ⟩ ∈ Z.

Note that it is always true that 2⟨(k, 0), vσ⟩ ∈ Z, because vσ+σvσ ∈ L and ⟨(k, 0), vσ+σvσ⟩ =
2⟨(k,0), vσ⟩.

4.2.2 The orbit J(k̃, z)

In this subsection we show how the orbit J(k̃, z) is related to the orbit of J̃ ⋅ k̃.
We want to decompose P (J(k̃, z)) into J̃-orbits. To do this, we decompose J in subsets

such that the orbit of (k̃, z) under each of these subsets is projected into exactly one J̃-orbit.
Consider the subset J̃↑ of J given by

J̃↑ = {α+ ∈ J ; α ∈ J̃} ∪ {α− ∈ J ; α ∈ J̃}. (4.11)

Then for every (k̃, z) ∈ L∗ the projection P (J̃↑(k̃, z)) ⊂ J̃ k̃.
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By checking the group axioms, it is easy to see that the set J̃↑ is a subgroup, but not
necessarily a normal subgroup of J . To see this, recall from chapter 3 the subgroup Γ̂ of Γ,
whose elements are of the form

((v, y), α±) ; α ∈ O(n), (v, y) ∈ Rn ×R. (4.12)

As we can see, the set J̃↑ is a subgroup of the point group Ĵ of Γ̂. In particular, when the
band of projection satisfies (0, y0) ∈ L, then J̃↑ = Ĵ .

Observe that, for a given (k̃, z) ∈ L∗, the set of δ ∈ J such that P (δ(k̃, z)) ∈ J̃ k̃ is in
general larger than J̃↑. It is necessary to introduce some more notation in order to describe
the complete set where its projection coincides with J̃ k̃.

Given (k̃, z) ∈ L∗ and α ∈ J̃ , denote by Jα
k̃

the subset of J given by:

Jα
k̃
= {δ ∈ J ; δ(k̃, z)∣1 = αk̃}.

Denote the union of the sets Jα
k̃

by
Sk̃ = ⋃

α∈J̃

Jα
k̃
.

Then the projection of P (Sk̃(k̃, z)) ⊆ J̃ k̃. We will show that J(k̃, z) is decomposed into
orbits given by the Sk̃ sets and that P (Sk̃(k̃, z)) = J̃ k̃.

Let us give a close look to the sets Jα
k̃

.

Lemma 4.13. Given (k̃, z) ∈ L∗, if δ ∈ JIdn
k̃

, then δ(k̃, z)∣2 = ±z.

Proof. For δ ∈ JIdn
k̃

, δ(k̃, z) = (k̃, δ(k̃, z)∣2). Then by orthogonality of J :

∥(k̃, z)∥ = ∥δ(k̃, z)∥ = ∥(k̃, δ(k̃, z)∣2∥

Therefore ∣δ(k̃, z)∣2∣ = ∣ ± z∣.

Corollary 4.14. JIdn
k̃

does not depend of the choice of z.

Corollary 4.15. Let Σ
(k̃,z) be the isotropy subgroup of (k̃, z) in J . Then either JIdn

k̃
= Σ

(k̃,z)

or it is the disjoint union Σ
(k̃,z) ⊍ β−Σ(k̃,z), for some β− ∈ J , with βk̃ = k̃.

Denote the order of Jα
k̃

by ∣Jα
k̃
∣.

Lemma 4.16. The order ∣Jα
k̃
∣ = ∣JIdn

k̃
∣, for all α such that α+ or α− ∈ Ĵ . Moreover, Jα

k̃
=

γ ⋅ JIdn
k̃

, for γ = α+ or γ = α−, when α+ or α− ∈ Ĵ .

Proof. To prove our claim, consider the map

φ ∶JIdn
k̃
→ Jα

k̃

δ ↦ φ(δ) = α±δ

depending whether either α+ or α− is in J .



4.2 Generators for the space of invariant functions 51

We show that φ is injective and onto.
If φ(δ1) = φ(δ2), for some δ1, δ2 ∈ JIdn , then α±δ1 = α±δ2, implying that δ1 = δ2. Thus φ

is injective.
Now consider ρ ∈ Jα

k̃
, then there exist α−1

±
ρ ∈ J and k̃2, such that

α−1
±
ρ(k̃, z) = α−1

±
(αk̃, k̃2) = (k̃,±k̃2)

that is, α−1
±
ρ ∈ JIdn

k̃
and φ(α−1

±
ρ) = ρ.

Corollary 4.17. The set Sk̃ = ⋃
α∈J̃

Jα
k̃
= J̃↑JIdn

k̃
. Moreover, Sk̃(k̃, z) = J̃↑(k̃, z).

Observe that Sk̃ is a subgroup of J if and only if J̃↑JIdn
k̃
= JIdn

k̃
J̃↑.

Example 4.18. Consider a 3-dimensional crystallographic group Γ1 = L1+̇HL1 , where L1

is the simple cubic lattice generated by (1,0,0), (0,1,0), (0,0,1), with dual lattice L∗1
generated by the same vectors.

It is well known that the holohedry HL1 has 24 rotations, they are: the identity Id3, and

Rx =
⎛
⎜⎜
⎝

1 0 0
0 0 −1
0 1 0

⎞
⎟⎟
⎠
, R2

x =
⎛
⎜⎜
⎝

1 0 0
0 −1 0
0 0 −1

⎞
⎟⎟
⎠
, R3

x =
⎛
⎜⎜
⎝

1 0 0
0 0 1
0 −1 0

⎞
⎟⎟
⎠
,

Ry =
⎛
⎜⎜
⎝

0 0 −1
0 1 0
1 0 0

⎞
⎟⎟
⎠
, R2

y =
⎛
⎜⎜
⎝

−1 0 0
0 1 0
0 0 −1

⎞
⎟⎟
⎠
, R3

y =
⎛
⎜⎜
⎝

0 0 1
0 1 0
−1 0 0

⎞
⎟⎟
⎠
,

Rz =
⎛
⎜⎜
⎝

0 −1 0
1 0 0
0 0 1

⎞
⎟⎟
⎠
, R2

z = −σ =
⎛
⎜⎜
⎝

−1 0 0
0 −1 0
0 0 1

⎞
⎟⎟
⎠
, R3

z =
⎛
⎜⎜
⎝

0 1 0
−1 0 0
0 0 1

⎞
⎟⎟
⎠
,

R(1,1,1) =
⎛
⎜⎜
⎝

0 0 1
1 0 0
0 1 0

⎞
⎟⎟
⎠
, R2

(1,1,1) =
⎛
⎜⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟⎟
⎠
,

R(1,0,−1) =
⎛
⎜⎜
⎝

0 1 0
0 0 −1
−1 0 0

⎞
⎟⎟
⎠
, R2

(1,0,−1) =
⎛
⎜⎜
⎝

0 0 −1
1 0 0
0 −1 0

⎞
⎟⎟
⎠
,

R(1,−1,1) =
⎛
⎜⎜
⎝

0 −1 0
0 0 −1
1 0 0

⎞
⎟⎟
⎠
, R2

(1,−1,1) =
⎛
⎜⎜
⎝

0 0 1
−1 0 0
0 −1 0

⎞
⎟⎟
⎠
,

R(1,−1,−1) =
⎛
⎜⎜
⎝

0 0 −1
−1 0 0
0 1 0

⎞
⎟⎟
⎠
, R2

(1,−1,−1) =
⎛
⎜⎜
⎝

0 −1 0
0 0 1
−1 0 0

⎞
⎟⎟
⎠
,
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R(1,1,0) =
⎛
⎜⎜
⎝

0 1 0
1 0 0
0 0 −1

⎞
⎟⎟
⎠
, R(1,−1,0) =

⎛
⎜⎜
⎝

0 −1 0
−1 0 0
0 0 −1

⎞
⎟⎟
⎠
,

R(1,0,1) =
⎛
⎜⎜
⎝

0 0 1
0 −1 0
1 0 0

⎞
⎟⎟
⎠
, R(1,0,−1) =

⎛
⎜⎜
⎝

0 0 −1
0 −1 0
−1 0 0

⎞
⎟⎟
⎠
,

R(0,1,1) =
⎛
⎜⎜
⎝

−1 0 0
0 0 1
0 1 0

⎞
⎟⎟
⎠
, R(0,1,−1) =

⎛
⎜⎜
⎝

−1 0 0
0 0 −1
0 −1 0

⎞
⎟⎟
⎠

the remaining elements of HL1 can be obtained by multiplying these matrices by −Id3.

The projection of Γ yields a plane crystallographic group, Γ̃ = Πz0(Γ) = L̃+̇D4, for all
z0 ∈ R, where the lattice L̃ is generated by the vectors (1, 0), (0, 1), its dual, L̃∗ is generated
by the same vectors.

The orbit of an element (a, b,0) ∈ L by J =HL1 is given by:

J(a, b,0) = {(±a,±b,0), (±b,±a,0)} ∪ {(±a,0,±b), (0,±a,±b)} ∪ {(±b,0,±a), (0,±b,±a)}

Then, the elements given by the two first coordinates of the elements in J(a, b,0) are

P (J(a, b,0)) = {(±a,±b), (±b,±a)} ∪ {(±a,0), (0,±a)} ∪ {(0,±b), (±b,0)}

On the other hand, we have that the projection of Γ has point group J̃ =D4, for all z0 ∈ R,
where D4 is the dihedral group of symmetries of the square generated by:

γ =
⎛
⎝

0 1
−1 0

⎞
⎠
, κ =

⎛
⎝

0 1
1 0

⎞
⎠

The orbit J̃(a, b) is {(±a,±b), (±b,±a)}.

The subgroup Ĵ is Ĵ = {±Id3, ±R2
x, ±R2

y, ±Rz, ±R2
z, ±R3

z, ±R(1,1,0), ±R(1,−1,0)}. As we
can see, Ĵ = J̃↑.

Note that, for all (a, b,0) ∈ L∗, we have JId2
(a,b)
= Σ(a,b,0). Moreover, by Lemma 4.16, for

each α ∈ J̃ , the set Jα
(a,b) = αJ

I2
(a,b)

.

In Table 4.1 we describe the subgroups JId2
(a,b)

and the relation between the set S(a,b) and
the group J , for all (a, b) ∈ L∗.
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Table 4.1 Relation between the set S(a,b) and the group J for Example 4.18

Relations between the val-
ues a and b

Isotropy subgroup of (a, b,0) The set S(a,b)

a ≠ 0 and b = 0
JId2
(a,0) = {Id3, σ,Rx,R

2
x,R

3
x,

−R2
y,−R(0,1,1),−R(0,1,−1)}

∣S(a,b)∣ = 32, then
S(a,b) ≰ J

a = b ≠ 0 JId2
(a,a)

= {Id3, σ,R(1,1,0),−R(1,−1,0)} S(a,a) = Ĵ

a ≠ 0 ≠ b and a ≠ b JI2
(a,b)
= {I3, σ} S(a,b) = Ĵ

Example 4.19. Consider now a crystallographic group Γ2 obtained from Γ1, given in the
previous example, by a change of coordinate given by the matrix

A = 1√
2

⎛
⎜⎜⎜
⎝

1
√

2 − 1
√

2 0
1
√

6
1
√

6
2
√

6
1
√

3
1
√

3 − 1
√

3

⎞
⎟⎟⎟
⎠
.

After the change, the crystallographic group has a lattice L2 = AL1 given by:

L2 = ⟨(1,0,0), (
1
2
,

√
3

2
,0), (1

2
,

√
3

6
,

1√
6
)⟩

Z
,

with holohedry HL2 = AHL1A
t. Here t denotes the transpose of the matrix.

If (0, y0) ∈ L2, then J̃↑ = Ĵ , where Ĵ is isomorphic to D6, the dihedral group of symmetries
of the hexagon.

Consider the vector (k̃, z) = (2,0,0) ∈ L∗2 . By doing some calculations, we can see that
the product S(2,0) = J̃↑JIdn(2,0) is not a subgroup of J , since the element ARxAt ∈ S(2,0) does
not have an inverse in S(2,0).

Now that we have established the notation Sk̃, we are ready to state the main result of
this subsection:

Theorem 4.20. Given δ ∈ J , the J̃-orbit of P (δ(k̃, z)) is P ((Suδ)(k̃, z)), where u =
P (δ(k̃, z)). It follows that P (J(k̃, z)) is a disjoint union of J̃-orbits, all of which have
the same number of elements, counted with multiplicity.

Proof. The first statement follows by definition.
To prove the second statement, consider J = Sk̃ ⊍ Sck̃ and δ1 ∈ Sck̃, where Sc

k̃
is the

complement of Sk̃. Thus, for all α ∈ J̃ , either α+δ1 or α−δ1 is in J . We show that α±δ1 ∈ Sck̃.
In fact, if α±δ1 ∈ Sk̃, then α±δ1(k̃, z) = β±(k̃, z), with β ∈ J̃ , implying that δ1(k̃, z) =

α−1
±
β±(k̃, z), which is a contradiction, since δ1 ∉ Sk̃.
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Therefore, by Corollary (4.17), the set J̃↑(δ(k̃, z)) = Su1(u1, u2) ⊂ J(k̃, z), where (u1, u2) =
δ1(k̃, z). Thus, we can write

J(k̃, z) = Sk̃(k̃, z) ∪ Su1δ1(k̃, z) ∪ (Sk̃ ∪ Su1δ1)c(k̃, z).

Since J is a finite group, we can repeat the process till we get the expression:

J(k̃, z) = Sk1(k̃, z) ∪ Su1δ1(k̃, z) ∪ . . . ∪ Surδr(k̃, z). (4.13)

Then, by corollary (4.17)

P (J(k̃, z)) = J̃k1 ∪ J̃u1 ∪ . . . ∪ J̃ur. (4.14)

By construction the union is disjoint.

The number of different J̃-orbits in P (J(k̃, z)) is given in the next lemma. The lemma
gives a relation between the number r in the equation(4.14) and the order of the groups we
use in this section.

Lemma 4.21. Let (k̃, z) ∈ L∗. Then, the number r in the equation 4.14 is

r =
∣J ∣ ⋅ ∣J̃↑ ∩Σ

(k̃,z)∣
∣J̃↑∣∣Σ

(k̃,z)∣
− 1.

where Σ
(k̃,z) = {δ ∈ J ; δ(k̃, z) = (k̃, z)} is the isotropy subgroup of (k̃, z).

Proof. We know that the cardinal number of the orbit of (k̃, z) by J is the index

∣J(k̃, z)∣ = ∣J ∣
∣Σ
(k̃,z)∣

. (4.15)

By Theorem (4.20),
∣J(k̃, z)∣ = (r + 1)∣Sk̃(k̃, z)∣. (4.16)

Then combining (4.15) and (4.16), we have

r + 1 = ∣J ∣
∣Sk̃(k̃, z)∣∣Σ(k̃,z)∣

=
∣J ∣ ⋅ ∣J̃↑ ∩Σ

(k̃,z)∣
∣J̃↑∣∣Σ

(k̃,z)∣

where we are using the fact that Sk̃(k̃, z) = J̃↑(k̃, z) and that the isotropy subgroup of (k̃, z)
in J̃↑ is J̃↑ ∩Σ

(k̃,z).
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4.3 Projected Functions and Functions of the Projected Group

The aim of this section is to describe conditions under which the two spaces Πy0(XΓ) and XΓ̃
coincide.

For this purpose, we intend to obtain conditions under which the projections of the
functions I

(k̃,z) generate the space XΓ̃, when (k̃, z) varies in L∗.
As denoted in the beginning of section 4.2,

I
(k̃,z)(x, y) = ∑

δ∈J

ωδ(k̃,z)(x, y)ωδ(k̃,z)(−vδ)

Thus, the projection of I
(k̃,z) is given by:

Πy0(I(k̃,z))(x) = ∑
δ∈J

ωδ(k̃,z)∣1(x)ωδ(k̃,z)(−vδ)∫
y0

0
ωδ(k̃,z)∣2(y)dy (4.17)

A first issue is: is the projection Πy0(I(k̃,z)) = Ĩk̃? To answer this question we have two
main steps:

1. rewrite 4.17 as a linear combination of the functions Ĩk̃, for k̃ ∈ L̃∗;

2. understand how the previous linear combination changes when the height y0 varies.

To analyse 1. before, consider the orbit of (k̃, z) by J given by J(k̃, z) = {δ(k̃, z) =
(k̃1, k̃2); δ ∈ J}. Then we can rewrite (4.17) as:

Πy0(I(k̃,z))(x) = ∑
k̃1∈P (J(k̃,z))

ωk̃1
(x) ∑

δ∈JIdn
k̃1
∶

k̃2=δ(k̃,z)∣2

D
′(δ, k̃2) (4.18)

where
D
′(δ, k̃2) = ωδ(k̃,z)(−vδ)∫

y0

0
ωk̃2
(y)dy.

In the next examples we can see when the method of projecting the functions I
(k̃,z) can

contribute to get information about the equality of the spaces Πy0(XΓ) and XΠy0(Γ). The
examples will also illustrate the use of the notations considered in this section.

Example 4.22. For the lattice L1 of Example 4.18, let us consider first the functions Ik,
for k = (k̃,0) ∈ L∗ and k̃ ∈ {(a,0), (0, a)}, a ≠ 0. Observe that I(a,0,0) = I(0,a,0), since the
orbit J(a,0,0) = J(0, a,0) = {δ(a,0,0); δ ∈ J} = {(±a,0,0), (0,±a,0), (0,0,±a)}. The set
of elements with 2 first coordinates of the elements in J(a,0,0) is given by J(a,0,0)∣1 =
{δ(a,0,0)∣1; δ ∈ J} = {(±a,0), (0,±a), (0,0)}. Therefore,

I(a,0,0)(x, y, z) = ∑
δ∈J

wδ(a,0,0)(x, y, z)wδ(a,0,0)(−vδ)

= ∑
k∈J(a,0,0)

wk(x, y, z) ⋅ 1

= 4 (w(a,0,0) +w(0,a,0) +w(0,0,a) +w(−a,0,0) +w(0,−a,0) +w(0,0,−a)) (x, y, z)
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where, in the second summation we are using the fact that for all δ ∈ J , ((0,0,0), δ) ∈ Γ.
Thus,

Πz0(I(a,0,0))(x, y) = 4z0 (w(a,0) +w(−a,0) +w(0,a) +w(0,−a)) (x, y) + 4(∫
z0

0
wa(z)dz + ∫

z0

0
w−a(z)dz)

= a1Ĩ(a,0)(x, y) + a2 + a2

where, a1 = 4z0, a2 = 4(∫ z0
0 wa(z)dz + ∫ z0

0 w−a(z)dz) and a2 is the complex conjugate of a2.
Therefore, Ĩ(a,0)(x, y) = Πz0(I(a,0,0) − a2 − a2)(x, y)/a1.

Another example is, for a ≠ b, a ≠ 0 and b ≠ 0:

I(a,b,0) = w(a,0,b) +w(a,0,−b) +w(0,a,b) +w(0,a,−b)
+w(0,−a,−b) +w(0,−a,b) +w(−a,0,b) +w(−a,0,−b)
+w(0,b,a) +w(0,b,−a) +w(b,0,a) +w(b,0,−a)
+w(−b,0,a) +w(−b,0,−a) +w(0,−b,a) +w(0,−b,−a)
+w(a,−b,0) +w(−a,b,0) +w(−b,a,0) +w(−a,−b,0)
+w(b,−a,0) +w(b,a,0) +w(−b,−a,0) +w(a,b,0) + cc

then the projection is

Πz0(I(a,b,0)) = z0 (w(a,−b) +w(−a,b) +w(−b,a) +w(−a,−b) +w(b,−a) +w(b,a) +w(−b,−a) +w(a,b))

+ (w(0,b) +w(b,0) +w(−b,0) +w(0,−b))(∫
z0

0
exp(2πaz)dz + ∫

z0

0
exp(−2πaz)dz)

+ (w(a,0) +w(0,a) +w(0,−a) +w(−a,0))(∫
z0

0
exp(2πbz)dz + ∫

z0

0
exp(−2πbz)dz)

= c1Ĩ(a,0) + c2Ĩ(0,b) + z0Ĩ(a,b)

where
c1 = ∫

z0

0
exp(2πbz)dz + ∫

z0

0
exp(−2πbz)dz

and
c2 = ∫

z0

0
exp(2πaz)dz + ∫

z0

0
exp(−2πaz)dz

Therefore,

Ĩ(a,b) = Πz0(I(a,b,0)) − c1Ĩ(a,0) − c2Ĩ(0,b)

= Πz0(I(a,b,0)) −
c1
a1

Πz0(I(a,0,0) + a2 + a2) −
c2
b1

Πz0(I(0,b,0) + b2 + b2)

= Πz0[I(a,b,0) −
c1
a1
(I(a,0,0) + a2 + a2) −

c2
b1
(I(0,b,0) + b2 + b2).]

This completes the proof that for a 3-dimensional crystallographic group Γ = L+̇HL, where L
is the simple cubic lattice, we have Πy0(XΓ) = XΓ̃.

The next example shows that we cannot always obtain a direct correspondence between
the functions I

(k̃,z) and Ĩk̃.
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Example 4.23. Consider the plane crystallographic group Γ = L+̇HL, with elements (v, δ),
for v ∈ L and δ ∈HL, where

L = ⟨(1
2
,

√
3

6
), (1

2
,
−
√

3
6
)⟩Z, with dual L∗ = ⟨(1,

√
3), (1,−

√
3)⟩Z

and

HL =D6 = ⟨γ =
⎛
⎝

1
2

−

√

3
2√

3
2

1
2

⎞
⎠
, κ = −σ⟩ = {±Id2, ±γ, ±γ2, ±σ, ±γσ, ±γ2σ}

In contrast with the previous example, projections of the group Γ yield different groups
for different values of y0. In fact, for y0 = m

√

3
6 , m ∈ Z, the projected group is Γ̃1 = Πy0(Γ) =

⟨12⟩Z+̇Z2, otherwise it is Γ̃2 = Πy0(Γ) = ⟨1⟩Z+̇Z2. The dual lattices of the lattices of the groups
Γ̃1 and Γ̃2 are ⟨2⟩Z and ⟨1⟩Z, respectively.

Consider the vector (k̃, z) = (1,
√

3) ∈ L∗. We will calculate the projection of I
(1,
√

3).

By definition of the functions Ik, we have that Ik = Iδk, for all δ ∈ J , the point group of Γ.

The orbit of (1,
√

3) by J is given by:

J(1,
√

3) = {(±1,±
√

3), (±2,0)}

Thus,
I
(1,
√

3)(x, y) = ∑
δ∈J

wδ(1,
√

3)(x, y)

= 2 (w
(1,
√

3) +w(1,−√3) +w(−1,
√

3) +w(−1,−
√

3)) (x, y)

+ 2 (w(2,0) +w(−2,0)) (x, y)

with projection

Πy0(I(1,√3))(x) = 2 (w(1)(x) +w(−1)(x)) (∫
y0

0
w
(

√

3)(y)dy + ∫
y0

0
w
(−

√

3)(y)dy)

+ 2y0 (w(2)(x) +w(−2)(x)) .

If either y0 = m
√

3
3 , that is (0, y0) ∈ L, or y0 = m

√

3
6 , for m ∈ Z, then

∫
y0

0
w
(

√

3)(y)dy + ∫
y0

0
w
(−

√

3)(y)dy) = 0

and therefore, Πy0(I(1,√3))(x) = Πy0(I(2,0))(x) = 2y0Ĩ(2)(x). Therefore, for y0 = m
√

3
6 , m ∈ Z,

we have Πy0(XΓ) = XΓ̃.

If y0 ≠ m
√

3
6 , for m ∈ Z, then the projection of I

(1,
√

3) corresponds to the superposition of
the functions Ĩ(1) and Ĩ(2). However, we can prove the equality of the spaces Πy0(XΓ) and
XΓ̃ by constructing a Hilbert basis for XΓ̃ by the projection of the functions Ik. To see this,
observe that, like in the previous case, we have the orbit of the vectors n(1,

√
3), for n ∈ Z,
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by J given by:
J(n,n

√
3) = {(±n,±n

√
3), (±2n,0)}.

Thus,
I
(n,n

√

3)(x, y) = ∑
δ∈J

wδ(n,n
√

3)(x, y)

= 2 (w
(n,n

√

3) +w(n,−n√3) +w(−n,n√3) +w(−n,−n√3)) (x, y)

+ 2 (w(2n,0) +w(−2n,0)) (x, y)

.

Therefore,

Πy0(I(n,n√3))(x) = 2 (w(n)(x) +w(−n)(x)) (∫
y0

0
w
(n
√

3)(y) +w(−n√3)(y)dy)

+ 2y0 (w(2n)(x) +w(−2n)(x))
= c1Ĩn + c2Ĩ2n

where c1 = ∫ y0
0 w

(n
√

3)(y) +w(−n√3)(y)dy ≠ 0 and c2 = 2y0. Then the set

{c1Ĩn + c2Ĩ2n}n∈Z

forms a Hilbert basis for XΓ̃. Thus we have shown that for y0 ≠ m
√

3
6 , m ∈ Z, we have

Πy0(XΓ) = XΓ̃.

4.3.1 Projection of the functions I(k1,k2)

We are now able to prove the main result of this chapter to establish a correspondence
between the functions I

(k̃,z) and its projection.

From (4.18), we have

Πy0(I(k̃,z))(x) = ∑
k̃1∈P (J(k̃,z))

ωk̃1
(x) ∑

δ∈JIdn
k̃1
∶

k̃2=δ(k̃,z)∣2

D
′(δ, k̃2)

where
D
′(δ, k̃2) = ωδ(k̃,z)(−vδ)∫

y0

0
ωk̃2
(y)dy.



4.3 Projected Functions and Functions of the Projected Group 59

Using Theorem 4.20, equation (4.14), we can rewrite (4.18) as:

Πy0(I(k̃,z))(x) = ∑
k̃1∈J̃ k̃

ωk̃1
(x) ∑

δ∈JIdn
k̃1
∶

k̃2=δ(k̃,z)∣2

D
′(δ, k̃2)

+ ∑
k̃1∈J̃u1

ωk̃1
(x) ∑

δ∈JIdn
k̃1
∶

k̃2=δ(k̃,z)∣2

D
′(δ, k̃2)

⋮
+ ∑
k̃1∈J̃ur

ωk̃1
(x) ∑

δ∈JIdn
k̃1
∶

k̃2=δ(k̃,z)∣2

D
′(δ, k̃2)

(4.19)

Now observe that, for u0 = k̃ and for i = 0, . . . , r, given k̃1 ∈ J̃ui, there exists α ∈ J̃ such
that:

∑
δ∈JIdn

k̃1
∶

k̃2=δ(k̃,z)∣2

D
′(δ, k̃2) = ∑

δ∈Jαui

D
′(δ, k̃2).

Lemma 4.24. Let Γ̃ = Πy0(Γ). Then, for i = 0, . . . , r and β ∈ J̃

∑
δ∈Jβui

D
′(δ, k̃2) = ωβui(−vβ) ∑

δ∈JIdnui

D
′(δ, k̃2),

for all (vβ, β) ∈ Γ̃.

Proof. Observe that in (4.19), each term

∑
k̃1∈J̃ui

ωk̃1
(x) ∑

δ∈JIdn
k̃1
∶

k̃2=δ(k̃,z)∣2

D
′(δ, k̃2)

is Γ̃-invariant. Thus, we have

∑
αui∈J̃ui

ωαui(x) ∑
δ∈Jαui

D
′(δ, k̃2) = (vβ, β) ∑

αui∈J̃ui

ωαui(x) ∑
δ∈Jαui

D
′(δ, k̃2)

= ∑
αui∈J̃ui

ωαui(β−1x − β−1vβ) ∑
δ∈Jαui

D
′(δ, k̃2)

= ∑
αui∈J̃ui

ωβαui(x)ωβαui(−vβ) ∑
δ∈Jαui

D
′(δ, k̃2).

Comparing the right and the left side in the sum before, the term containing β in the left
hand side is

ωβui(x) ∑
δ∈Jβui

D
′(δ, k̃2).
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On the last row of the right hand side terms containing β appear when α = Idn. Hence,

∑
δ∈Jαui

D
′(δ, k̃2) = ωβui(−vβ) ∑

δ∈JIdnui

D
′(δ, k̃2).

Denote the terms in (4.19) by:

si = ∑
αui∈J̃ui

wαui(x) ∑
δ∈Jαui

D
′(δ, k̃2)

for i = 0, . . . , r, where u0 = k̃.

Lemma 4.25. Let Γ̃ = Πy0(Γ) and (k̃, z) ∈ L∗, such that k̃ ∈ L̃∗. The projection Πy0(I(k̃,z))
is a linear combination of functions Ĩk̃ ∈ XΓ̃. Specifically, Πy0(I(k̃,z)) is the sum of the terms
s0 = c0Ĩk̃ and sj = cj Ĩuj . Moreover, if z = 0 then the constant c0 ≠ 0.

Proof. By Lemma 4.24, we have:

si = ∑
αui∈J̃ui

wαui(x) ∑
δ∈Jαui

D
′(δ, k̃2)

= ∑
αui∈J̃ui

wαui(x)wαui(−vα) ∑
δ∈JIdnui

D
′(δ, k̃2).

Now, recall from (4.13) that the ui’s in equation 4.19 are given by the projection P (δi(k̃, z)).
Let us write δi(k̃, z) = (ui, ui2). Then δ(ui, ui2)∣2 = ±ui2, for all δ ∈ JIdnui . Thus,

ci = ∑
δ∈JIdnui

D
′(δ, k̃2) = ∑

δ∈JIdnui

D
′(δ, δ(ui, ui2)∣2)

is a constant. Therefore, s0 = c0Ĩk̃(x) and sj = cj Ĩuj(x).
Now, observe that

c0 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∣ JIdn
k̃
∣ ∫ y0

0 wz(y)dy if JIdn
k̃
= Σ

(k̃,z);
∣JIdn
k̃
∣

2 [∫ y0
0 wz(y)dy + ∫ y0

0 w−z(y)dy] otherwise.
(4.20)

Note that if (k̃, 0) ∈ L∗, then c0 ≠ 0 by Lemma 4.25. This holds in particular if (0, y0) ∈ L
(Lemma 4.7), or if (0, σ) ∈ Γ and (v, y0) ∈ L (Lemma 4.10).

It remains to find out if c0 ≠ 0 when this fails either because there does not exist an
element of the form (v, y0) ∈ L, or because both (0, y0) ∉ L and (0, σ) ∉ Γ.

Lemma 4.26. Let L̃ = Πy0(L), suppose that L̃s is rationally compatible with L and that a
n-dimensional lattice in L∗ ∩ {y = 0} is rationally compatible with L∗. Suppose there does not
exist m ∈ Z ∖ {0,±1}, such that (0,my0) ∈ L. Then, given k̃ ∈ L̃∗ there exists z ∈ R such that
(k̃, z) ∈ L∗ and the constant c0 in the projection Πy0(I(k̃,z)) is non-zero.
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Proof. Using the hypotheses of rational compatibility and Proposition 2.5, there exists a
basis for L∗ given by the vectors:

(k1,0), . . . , (kn,0), (kn+1, a) (4.21)

Consider also the systems of generators for L given by:

(l1,0), . . . , (ln,0), (ln+1, b). (4.22)

Now, given (k̃, z) ∈ L∗, we have c0 = 0 if and only if 2zy0 ∈ Z ∖ {0}, by the formula (4.20).
Next we show that if c0 = 0, then there exists m ∈ Z ∖ {0,±1}, such that (0,my0) ∈ L.
To see this, since L∗ is generated by (4.21), there exist an m ∈ N ∖ {0} where z = ma.

Now, c0 = 0, if and only if, 2zy0 ∈ Z ∖ {0}. Or equivalently,

2zy0 = 2may0 ∈ Z ∖ {0}.

Then, (0,2my0) ∈ L, because ⟨(0,2my0), k⟩ ∈ Z, for all k ∈ L∗.

If L has generators of the form (4.22) and if (0, d) ∈ L, d > 0, then d = nb for some
n ∈ Z∖{0}. We may take r > 0 in Z minimal such that (0, rb) ∈ L. If L∗ has generators of the
form (4.21), then by Lemma 2.7, the positive integer r is also minimal such that (0, ra) ∈ L∗,
and it is also the minimal such that rab ∈ Z ∖ {0}.

Lemma 4.27. Let L̃ = Πy0(L), suppose that L̃s is rationally compatible with L and that a
n-dimensional lattice in L∗ ∩{y = 0} is rationally compatible with L∗. Suppose also that there
exists (0, d) ∈ L, d > 0. If for some k̃ ∈ L̃∗, with (k̃, z) ∈ L∗ we have the constant c0 = 0, then
there exists m ∈ Z ∖ {0}, such that 2zy0 =mrab ∈ Z ∖ {0}.

Proof. Since r is the least positive integer such that (0, rb) be in L, then for each (k̃, z) ∈ L∗
we can write

z = sa + rna (4.23)

where s, n ∈ Z and 0 ⩽ s < r.
If z = rna, then (0, z) ∈ L∗, then (k̃,0) ∈ L∗. Thus, the projection Πy0(I(k̃,0)) = c0Ĩk̃ +

∑ri=1 ciĨui yields c0 ≠ 0.
If z = sa + rna, with s > 0, then (k̃, z) − (0, rna) = (k̃, sa) ∈ L∗.
Thus, without loss of generality we consider (k̃, z) ∈ L∗ with z = sa, for some s ∈ Z,

0 < s < r.
If c0 = 0, then by formula (4.20) we have 2zy0 ∈ Z ∖ {0}, and hence for z = sa we get

2say0 ∈ Z∖{0}. Then (0, 2sy0) ∈ L. Therefore 2sy0 =mrb, for some m ∈ Z∖{0}, or 2y0 = mbr
s .

Then 2zy0 = 2sambr
s =mrab ∈ Z ∖ {0}.

Lemma 4.28. Let L̃ = Πy0(L), suppose that L̃s is rationally compatible with L and that a
n-dimensional lattice in L∗ ∩ {y = 0} is rationally compatible with L∗ and that there exists
(0, d) ∈ L, d > 0. Suppose also that y0 =mb and for some k̃ ∈ L̃ with (k̃, z) ∈ L∗, we have the
constant c0 = 0 and that z = sa, for some s ∈ Z, 0 < s < r. Then 2ms is divisible by r.
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Proof. By Lemma 4.7, we can suppose m is not divisible by r, otherwise (0, y0) ∈ L.
Writing 2ms = n1r + n2, 0 ⩽ n2 < r we obtain

2zy0 = n1rab + n2ab ∈ Z,

hence n2ab ∈ Z. Since n2ab = ⟨(0, n2b), (kn+1, a)⟩ ∈ Z. This contradicts the minimality of
(0, rb) unless n2 = 0.

Lemma 4.29. Let L̃ = Πy0(L), suppose that L̃s is rationally compatible with L and that a
n-dimensional lattice in L∗ ∩ {y = 0} is rationally compatible with L∗ and that there exists
(0, d) ∈ L, d > 0. Suppose also that y0 = mb

s and for some k̃ ∈ L̃ with (k̃, z) ∈ L∗, we have
the constant c0 = 0 and that z = sa, for some s ∈ Z, 0 < s < r. Then 2m is divisible by r.
Moreover, if 2mrab

s ∉ Z, then there exists z′ ∈ R such that (k̃, z′) ∈ L∗ and for this element of
L∗ the constant c0 is not zero.

Proof. Let y0 = mb
s , with m/s ∉ Z, m ∈ Z and 1 < s < r. Writing 2m = s1r + s2, 0 ⩽ s2 < r,

we obtain 2zy0 = s1rab + s2ab ∈ Z, hence s2ab ∈ Z. It is a contradiction of the minimality of
rab ∈ Z, unless s2 = 0.

If s2 = 0, then y0 = s1rb
2s . Write,

(k̃, z′) = (k̃, z) + (0, ra) ∈ L∗,

Then 2y0z
′ = 2y0z + s1rrab

s = 2y0z + 2mrab
s . Thus z′ is as desired.

We finish this section with some examples to illustrate the previous results.

Example 4.30. Consider the crystallographic group Γ2, given in Example 4.19, whose lattice
forms the simple cubic lattice positioned as

L2 = ⟨(1,0,0), (
1
2
,

√
3

2
,0), (1

2
,

√
3

6
,

1√
6
)⟩

Z
.

Let k̃ ∈ L̃∗. We will show that there exists z ∈ R, such that (k̃, z) ∈ L∗ and the constant c0 in
the projection Πz0(I(k̃,z)) is non-zero, for all z0 ∈ R.

We have that, the values a = 2
√

6 , b = 1
√

6 and the minimum positive integer r, such that
rab ∈ Z ∖ {0} is r = 3. Let k̃ ∈ L̃∗, where z = sa, for some 0 < s < 3.

Note that σ is not an element of the holohedry of L2 and the elements (0,0, z0) =
(0,0, 3m

√

6) ∈ L2. We need to show that the constant c0 is non-zero, for z0 ≠ 3m
√

6 . For this
purpose, we just need to check the condition when z0 = mb, where m is not divisible by 3,
and when z0 = mb

s , for s ∈ {1,2}, by Lemma 4.28 and 4.29 respectively.
Let (k̃, z) ∈ L∗. If z = a we can obtain a contradiction, since (0, z0) ∉ L. If z = 2a, then

since (k̃,−a) = (k̃, 2a) − (0, 3a), we can choose z′ = −a, so that the projection of I
(k̃,−a) yields

a non-zero constant c0.
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4.4 Equality of the spaces Πy0(XL) and XL̃
The results presented before are intended to give tools to work with crystallographic groups
with arbitrary point group. A particular case is when the point group is just the identity. In
this case, the functions I

(k̃,z) are just the wavefunctions ω
(k̃,z), for all (k̃, z) ∈ L∗.

Theorem 4.31. Let Γ be a crystallographic group with point group J , lattice L and L̃ =
Πy0(L). Suppose that the lattice L̃s is rationally compatible with L and if σ ∈ J then (0, σ) ∈ Γ.
Suppose also that given k̃ ∈ L̃∗ there exists z ∈ R such that (k̃, z) ∈ L∗ and zy0 ∉ Z∖{0}. Then
Πy0(XL) = XL̃.

Proof. Any function in X
L̃

is generated by the wavefunctions ωk̃.
By Proposition 4.6, for all k̃ ∈ L̃∗ there exist z ∈ R, such that (k̃, z) ∈ L∗. Then,

Πy0(ω(k̃,z)) = ∫
y0

0
wz(y)dyωk̃ = c0ωk̃.

By hypothesis zy0 ∉ Z∖{0}. Thus we can chose z ∈ R such that the constant c0 is non-zero.

The decomposition of the projection of Γ-invariant subspace of XL is given in the following:

Lemma 4.32. Let Γ be a (n + 1)-dimensional crystallographic group, with projection Γ̃ =
Πy0(Γ). If V is a Γ-invariant subspace of XL, then Πy0(V ) is a sum of Γ̃-invariant subspaces
of X

L̃
, that is, Πy0(V ) is decomposed in terms of

r

⊕
i=0
( ⊕
k∈J̃ki

Vk).

Moreover, the number r is given by:

r =
∣J ∣ ⋅ ∣J̃↑ ∩Σ

(k̃,z)∣
∣J̃↑∣∣Σ

(k̃,z)∣
− 1.

where (k̃, z) defines the orbit of the wave vectors of the Γ-irreducible subspace V and Σ
(k̃,z) =

{δ ∈ J ; δ(k̃, z) = (k̃, z)} is its isotropy subgroup.

Proof. Let V be a Γ-invariant subspace of XL. By Proposition 4.4, we can decompose the
space V in terms of

⊕
k∈J(k̃,z)

Vk (4.24)

where J is the point group of Γ and (k̃, z) ∈ L∗. Note that here a priori we do not require
k̃ ∈ L̃∗.

Note that, since V is Γ-invariant, by Lemma 4.3 the projection Ṽ = Πy0(V ) is a Γ̃-invariant
set of XL. We will show how the subspace given in (4.24) is decomposed after projection.

We have two cases:

1. either for all (k1, k2) ∈ J(k̃, z), the product 2k2y0 ∈ Z ∖ {0};
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2. or there exists at least one element (k1, k2) ∈ J(k̃, z), the product 2k2y0 ∉ Z ∖ {0}.
Without loss of generality, suppose that (k1, k2) = (k̃, z).

If 1. holds, this means that for all wavefunctions ω(k1,k2) ∈ V , the projection Πy0(ω(k1,k2)) =
0. Therefore, Ṽ = Πy0(V ) = {0}.

Suppose that 2. holds. Then, for each f ∈ V , written as f(x, y) = ∑
k∈J(k,z)

C(k)ωk(x, y),

the projection of f has terms given by wavefunctions ωk1 , where k1 ∈ P (J(k, z)) =
r

⋃
i=0
J̃ui and

u0 = k. Therefore, Ṽ decomposes in terms of

Πy0(V ) =
r

⊕
i=0
( ⊕
k∈J̃ki

Vk).

The remaining of the proof follows by Lemma 4.21.

4.5 Equality of the spaces Πy0(XΓ) and XΓ̃

The idea to prove the equality between the spaces Πy0(XΓ) and XΓ̃, is to show that there
exists a Hilbert basis

B = Πy0({φi}i∈N) (4.25)

for XΓ̃, for {φi}i∈N ⊆ XΓ.
To find the set {φi}i∈N, we will still use the functions Ik. To construct B we have to

consider an "order" in L̃∗ and L∗.
The possible lengths of dual wave vectors in L̃∗ form a sequence

0 < p0 < p1 < ⋯, (4.26)

as we can see in the Theorem 5.6 in [20]. Then, define

Ẽpi = {x ∈ L∗; ∥x∥ = pi},

see Figure 4.2.
Now, every k̃ defines a number pi. It can be useful to use the following notation Ẽk̃

instead of Ẽpi .
The set Ẽpi is finite and J̃- invariant. Thus we can write:

Ẽpi = J̃ k̃i0 ∪ J̃ k̃i1 ∪ . . . ∪ J̃ k̃is

where the k̃ij ’s are vectors in different orbits given by the action of J̃ on Ẽpi . Analogously,
we can define Epi in L∗.
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Fig. 4.2 Possible lengths of dual wave vectors in L̃∗. The circles represents the set of points
Epi .

Comparing Ẽk̃ and orbits of (k̃, z) by J

Let (k̃, z) ∈ L∗, such that k̃ ∈ L̃∗. By the formulas (4.13) and (4.14), we have:

J(k̃, z) = Sk1(k̃, z) ∪ Su1δ1(k̃, z) ∪ . . . ∪ Surδr(k̃, z)

and
P (J(k̃, z)) = J̃k1 ∪ J̃u1 ∪ . . . ∪ J̃ur.

Denote by δi(k̃, z) = (ui, zi), for i = 1, . . . , r. Without loss of generality, using (4.26), we can
assume

∥k̃∥ ⩽ ∥u1∥ ⩽ . . . ⩽ ∥ur∥. (4.27)

Hence,
∣z∣ ⩾ ∣z1∣ ⩾ . . . ⩾ ∣zr ∣. (4.28)

As we can see in (4.27), the projection of P (J(k̃, z)) may intersect more then one set Ẽpi .
Moreover, its also may have elements in different orbits given by J̃ in Ẽk̃.

We will see that, it is useful to know when the inequalities in (4.27) are strict.

Remark 4.33. Let Γ be a crystallographic group with point group J and projection Γ̃ =
Πy0(Γ). The set P (J(k̃, z)) ∩ Ẽk̃ = J̃ k̃ if and only if all the inequalities in (4.27) and (4.28)
are strict.
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Fig. 4.3 Cases to analyse the projection of the spaces: (Red dashed line) (v, y0) ∈ L; (Green
dashed line) (0, y0) ∈ L; (Blue dashed line) there does not exist (v, y0) ∈ L.

Now, we aim to understand how the previous linear combination changes when the height
y0 varies. The results that follows are separated in the following cases:

I Proposition 4.34, if (0, y0) ∈ L;

II Proposition 4.35, if (0, σ) ∈ Γ and there exists (v, y0) ∈ L;

III Proposition 4.36, if either there does not exist (v, y0) ∈ L or there exists (v, y0) ∈ L, but
(0, σ) ∉ Γ.

4.5.1 Case 1. The band of projection intersects a point (0, y0) ∈ L

Proposition 4.34. Suppose that L̃s is rationally compatible with L. If (0, y0) ∈ L then
Πy0(XΓ) = XΓ̃ if and only if for each k̃ ∈ L̃∗ we have P (J(k̃, z)) ∩ Ẽk̃ = J̃ k̃.

Proof. To prove that Πy0(XΓ) = XΓ̃, we show that Πy0(I(k̃,0)) = cĨk̃, where c is a non-zero
constant, for all k̃ ∈ L̃∗.

By Lemma 4.7, L̃∗ ⊆ P (L∗ ∩{y = 0}). Consider (k̃, 0) ∈ L∗, for k̃ ∈ L̃∗. By Lemma 4.13, if
δ ∈ Jα

k̃
then δ(k̃,0) = (αk̃,0).

By Lemma (4.25),

Πy0(I(k̃,0))(x) = c0Ĩk̃ +
r

∑
i=1
ciĨui .

Since (0, y0) ∈ L the constant c0 ≠ 0. Moreover, we have that ⟨(0, y0), (k̃1, k̃2)⟩ ∈ Z, that
is, y0k̃2 ∈ Z, for all (k̃1, k̃2) ∈ L∗. Then, if k̃2 ≠ 0

D
′(δ, k̃2) = wδ(k̃,0)(−vδ)∫

y0

0
wk̃2
(y)dy

= wδ(k̃,0)(−vδ)(e
2πk̃2y0 − 1)

= 0
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If P (J(k̃, z)) ∩ Ẽk̃ = J̃ k̃, then reordering the sequence given in (4.28), we have ci = 0, for
all i = 1, . . . , r. Thus, the projection Πy0(I(k̃,0))(x) = c0Ĩk̃.

Now, if the P (J(k̃, z)) ∩ Ẽk̃ contains more then one single orbit given by J̃ , there are
k̃ ∈ L̃∗ and δ ∈ J such that δ(k̃,0) = (k̃1,0) and k̃1 ∉ J̃ k̃. This means that Ĩk̃(x) ≠ Ĩk̃1

(x),
but that I

(k̃,0)(x, y) = I(k̃1,0)(x, y). Hence, in Πy0(XΓ) it is not possible to obtain the two
functions Ĩk̃ and Ĩk̃1

(x).

4.5.2 Case 2. (0, σ) ∈ Γ and there exists (v, y0) ∈ L

As we saw in the previous cases, the equality of spaces can be obtained when the projection
of a function I(k,z) corresponds exactly with the function Ĩk. Thus, for all k̃ ∈ L̃∗, we can
chose z = 0, so that the projection of I

(k̃,z) yields a non-zero coefficient for the term Ĩk̃, but
ci = 0, for i = 1, . . . , r, as Lemma 4.25. Here we have a similar case.

Proposition 4.35. Suppose that (0, σ) ∈ Γ, L̃s is rationally compatible with L and the affine
space Ay0 intersects a point of the lattice. Then Πy0(XΓ) = XΓ̃ if and only if for each k̃ ∈ L̃∗
we have P (J(k̃, z)) ∩ Ẽk̃ = J̃ k̃.

Proof. As in Proposition 4.34, we show that Πy0(I(k̃,0)) = cĨk̃, where c is a non-zero constant,
for all k̃ ∈ L̃∗.

By Lemma 4.10 L̃∗ = P (L∗ ∩ {y = 0}).
Observe that, since σ ∈ J , for all δ ∈ J we have σδ ∈ J . Thus, if δ(k̃,0) = (k̃1, k̃2), for

k̃2 ≠ 0, then (k̃1,−k̃2) ∈ J(k̃,0).
Therefore, by Lemma (4.25),

ci =
∣ JIdn

k̃
∣

2
[∫

y0

0
wz(y)dy + ∫

y0

0
w−z(y)dy]

for all i = 1, . . . , r.
Since the affine space Ay0 intersect a point of the lattice (v, y0) and σ ∈ HL, then

(0,2y0) ∈ L. Therefore, 2y0k2 ∈ Z, for all (k̃1, k̃2) ∈ L∗. Then, for k̃2 ≠ 0, the sum

∫
y0

0
w
(k̃2)
(y)dy + ∫

y0

0
w
(−k̃2)
(y)dy = 0.

thus, ci = 0, for all i = 1, . . . , r.

4.5.3 Case 3. Either there does not exists (v, y0) ∈ L or there exists (v, y0) ∈

L, but σ ∉ J.

Let Γ be a crystallographic group with point group J , lattice L and let Γ̃ = Πy0(Γ), for some
y0 ∈ R, be its projection, with lattice L̃ and point group J̃ . In this section we deal with the
case where one of the conditions holds:

1. either there does not exists (v, y0) ∈ L;

2. there exists (v, y0) ∈ L, but σ ∉ J .
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The question is: how do we construct a correspondence between bases of Πy0(XΓ) and
XΓ̃?

As we discussed in the beginning of this section, the idea is to find φi ∈ XΓ, i ∈ N, such
that Πy0({φi}i∈N) is a Hilbert basis for XΓ̃. Using the notation already introduced, we can
rewrite the usual basis for XΓ̃ as the set of real and imaginary parts of the functions in

B̃ = ⋃
i∈N
{Ĩk̃ij ; j = 1, . . . , s} = {Ĩk̃l}l∈N.

For each k ∈ L and each a ⩾ 0 consider the set

E(a, k) = P (Jk ∩ {y = a}).

We have the following result:

Proposition 4.36. Suppose that the lattices L and L∗ are rationally compatible with L̃s and
an n-dimensional lattice in L∗ ∩ {y = 0}, respectively. Suppose also that given k̃ ∈ L̃∗ there
exists z ∈ R such that (k̃, z) ∈ L∗ and the constant c0 in the projection Πy0(I(k̃,z)) is non-zero
and for each a ⩾ 0 and k ∈ L∗ one of the following conditions holds:

a) E(a, k) is empty;

b) E(a, k) ∩ Ẽpi is a single J̃-orbit;

c) E(a, k) ∩ Ẽpi consists of exactly two J̃-orbit and that there exists β− ∈ J such that
Ĵ = J̃↑ ⊍ β−J̃↑.

Then, Πy0(XΓ) = XΓ̃.

Proof. Let us construct the set {φi}i∈N to define B̃.
Consider,

Ẽp0 = J̃ k̃00 ∪ J̃ k̃01 ∪ . . . ∪ J̃ k̃0s0 .

By hypothesis, consider z0j ∈ R, for j = 0, . . . , s0, such that (k0j , z0j) ∈ L∗ and the constant
c0, in the projection Πy0(I(k0j ,z0j)) is non-zero, that is z0jy0 ∉ Z ∖ {0}. Assume also that
z0j ⩾ 0 is the minimum value for which this happens.

Thus, define
φ0j = I(k0i,z0i),

for j = 0, . . . , s0.
Next, we show that the function φ0j is well defined and φ0j ≠ φ0q, for j ≠ q and j, q ∈

{0, . . . , s0}. In fact, each function φ0j is associated with the orbit of J((k0i, z0i)).
We have,

Ẽp0 = P (Sk00(k00, z00)) ∪ P (Sk01(k01, z01)) ∪⋯ ∪ P (Sk0s0
(k0s0 , z0s0))

and ∥k0j∥ = ∥k0q∥ = p0, for j, q ∈ {0, . . . , s}. By hypothesis, one of the conditions a)-b) holds.
If a) holds, then there is nothing to do.
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Fig. 4.4 Projection of orbits given by the group J . Each orbit J(k0j , z0j) is associated to a
function I(k0j ,z0j). (a) and (f) Circle containing Ẽp0 ; (b) and (g) Circle containing Ẽp1 ; (c)
Circle containing the orbit of (k00, z00) by J ; (d) Circle containing the orbit of (k0j , z0j) by
J ; (e) The point k01 ∈ Ẽp1 ;

Suppose that b) holds, that is E(a, (k00, z00)). Thus if j ≠ q then ∥(k0j , z0j)∥ ≠ ∥(k0q, z0q)∥.
Therefore, J((k0j , z0j)) ≠ J((k0q, z0q)) and P (J(k0j , z0j)) ∩ Ẽp0 = P (Sk0j(k0j , z0j)).

Now, if condition c) holds then Ĵ = J̃↑ ⊍ β−J̃↑. Hence, the projection of I(k0i,z0i) is given
by

Πy0(I(k0i,z0i)) = aĨk0i + a′Ĩβk0i + ot

where ot means other terms which contains the function Ĩu, where ∥u∥ ≠ ∥k0i∥.
Since L∗ is rationally compatible with an n-dimensional lattice in L∗ ∩ {y = 0}, there

exists (0, q) ∈ L∗, for q ∈ R non-zero. Let m ∈ Z such that z′ = −z +mq > 0.
Now, observe that (β−)−1 = (β−1)− = β−1

−
∈ β−J̃ and β−1

−
(βk0i, z

′) = (k0i,−z′). Thus, the
projection of I(βk0i,z′) yields:

Πy0(I(βk0i,z′)) = bĨk0i + b′Ĩβk0i + ot.

Define φ′0j = b′I(k0i,z0i) − a′I(βk0i,z′). Then, Πy0(φ′0j) = cĨk0i . We need to see that the
constant c ≠ 0. In fact, by hypothesis zy0 ∉ Z∖{0}. Note that, c = 0 if and only if zy0 ∈ Z∖{0}
and z′y0 ∈ Z ∖ {0}.

Now, consider
Ẽp1 = J̃ k̃10 ∪ J̃ k̃11 ∪ . . . ∪ J̃ k̃1s1 .

Then ∥k1j∥ > ∥k̃∥, for all k̃ ∈ Ẽp0 .
Consider k̃1j ∈ Ẽp1 . We have two cases:
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(i) k̃1j ∈ P (J((k0i, z0i))), for some j ∈ {0,⋯, s0};

(ii) k̃1j ∉ P (J(k0i, z0i)), for all j ∈ {0,⋯, s0};

If (ii) holds, then define
φ1j = I(k1j ,z1j),

for j = 0, . . . , s1, as before.
Suppose that (i) holds. Consider (k0j , z0j) with maximum norm, such that k1j ∈

P (J(k0i, z0i)). Let n ∈ N, such that

∥u∥ < ∥k1j + nkn+1∥,

for all u ∈ P (J(k0i, z0i)).
Let z1j ∈ R, such that the constant c0, in the projection Πy0(I(k1j+nkn+1,z1j)), is non-zero.

Then, by construction, Πy0(I(k1j+nkn+1,z1j)) has a term

c0Ĩ(k1j+nkn+1)

that does not appear in the projection of the functions φ0j defined before.
Therefore, consider

φ1j = I(k1j+nkn+1,z1j).

To define φ1i, for all i ∈ {0, . . . , s1}, observe that for all k1i ∈ Ẽp1 ,

k1i + nkn+1 ∈ Ẽ∥k1j+nkn+1∥.

We can continue with this process to define φij , for all i, j ∈ N. Each φij has a term after
projection that φlj does not have, for all l < i. Moreover, φij has a term that φil does not
have for all j ≠ l, and all i ∈ N.

After we know the effect of projection on irreducible representations given by the action
of a (n + 1)-dimensional crystallographic group Γ, we look at what happens in fixed point
subspaces contained in those representations.

Given a finite dimensional Γ-invariant subspace, V , of XL, consider an isotropy subgroup
Σ of Γ. Then, after decomposing V into Γ-irreducible components, let us say V1 ⊕ . . .⊕ Vp,
we can write

FixV (Σ) = FixV1(Σ) ⊕ . . .⊕ FixVp(Σ).

Each FixVi(Σ), for i = 1, . . . , p, is generated by functions

Ik(x, y) = ∑
σ∈ΣP

ωσk(x, y)ωσk(−vσ),

where here we denote ΣP by the point group of Σ, for some k ∈ L∗.
The previous results applied for Σ, allow us to conclude that the projection Πy0(W ) of

W = FixV (Σ) corresponds to the sum of fixed point subspaces on Πy0(V ).
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Fig. 4.5 Geometrical idea to define the sequence of functions φij . (a) Circle containing Ẽp0 ;
(b)Circle containing Ẽp1 ; (c) Circle containing the orbit of (k1j + nkn+1, z1j) by J ; (d) Circle
containing the orbit of (k00, z00) by J .
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We return again to our initial problem:

"Is there a relation between the typical solutions of the n-dimensional problem
and the ones that comes from the projection of the extended one?"

Typical solutions for equivariant PDE’s can be found in irreducible representations given
by the action of a compact Lie group. In this chapter, our results show how irreducible
representations are transformed by projection.

The splitting of an irreducible representation after projection suggests that projection of
typical solutions can be transformed into mode interactions in lower dimension. We postpone
that problem to the next chapter, since it will be necessary to introduce some more tool used
in Equivariant Bifurcation Theory, that are not in the scope of the current chapter.



Chapter 5

Projection, Mode Interaction and
Forced Symmetry Breaking

After having used projection to compare (n + 1)- and n-dimensional patterns in Chapters 3
and 4, we aim at discussing the dynamics involved in the problem.

In Chapter 2, we see how to use Equivariant Bifurcation Theory to study time-independent
solutions with the variation of an external parameter in symmetric partial differential equations.
Section 2.6 gives us a method to find typical solutions for those systems, as we see in Theorem
2.16. One of the hypothesis in this theorem is that the space V = Ker(DP)(0,0) is a
Γ-irreducible subspace of XL. Typical solutions are found in 1-dimensional fixed-point
subspaces contained in V . The proof of the equality of spaces, in Chapter 4, gives us freedom
to compare those irreducible representations in different dimensions and fixed point subspaces
contained therein.

A question naturally arises: are the results in chapter 4 necessary to state that branches
of solutions in fixed point subspaces are projected into solutions of a possible bifurcation
problem in lower dimension? How does the projection of a solution change when the band
of projection varies? To answer the first question, in Section 5.1, we introduce the idea of
mode interaction. We show how the analysis of projection of irreducible representations can
contribute to this issue. In Section 5.2, we apply our results to interpret how the study of
forced symmetry breaking can explain the transition of projected patterns when the band of
projection varies.

We review some concepts and analyse their relation with our model. We systematically
compare our conclusions with experimental results related to Reaction-Diffusion systems.

5.1 Projection and Mode Interaction

The results in Chapter 4 suggest that typically projection may lead to bifurcations with
higher corank.

73
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As we see in Remark 4.5, for each k ∈ L∗, we can consider the Γ-invariant subspace
V = Vkc of XL given by:

V = ⊕
∣k∣=kc

Vk =
s

⊕
i=1
Vks .

Without loss of generality, suppose that {±k1, . . . ,±ks} ∈ L∗ is a single J-orbit. Then, we can
decompose

V = ⟨Re(Ik(x, y))⟩ ⊕ ⟨Im(Ik(x, y))⟩⊕W, (5.1)

where W ∩ XΓ = {0}.
The spaces V1 = ⟨Re(Ik(x, y))⟩ and V2 = ⟨Im(Ik(x, y))⟩ are 1-dimensional irreducible

subspaces of XL. Moreover, each element of Vi is fixed by the action of Γ.
Now, consider a Γ =HL+̇Tn+1-equivariant system described by

dz

dt
= g(z, λ), g ∶ V ×RÐ→ V. (5.2)

Here g(0, 0) = 0, the Jacobian matrix at the bifurcation point (dg)0,0 is the zero matrix, and
we assume that any bifurcation occurs at the origin, for λ = 0, as in Chapter 2.

By Theorem 2.16, generically, there exists a unique branch of solutions on Vi, i = 1,2,
with symmetry Γ, to the equation g(z, λ) = 0.

The projection of such branches of solutions is associated to the projection of the functions
Ik. In Lemma 4.32, we see that for a dense set of points y0 ∈ R, the projection of irreducible
representation, given by the subspaces Vi, yields at least a corank two bifurcation. This means
that, after projection, solutions corresponding to wavenumbers ∥k̃∥ and ∥ui∥, for i = 1, . . . , r,
interact and bifurcate simultaneously.

5.1.1 Mode Interaction

We review here the concept of mode interaction. For what follows we refer to Castro [6–8]
and Golubitsky et al. [21], chapter XIX and XX. At the end of this section we provide a new
description of the black-eye pattern.

Definition 5.1. ([21], Chapter XIX, section 0 and Chapter XX, section 0.) We have a mode
when the kernel of (dg)0,0 is Γ-irreducible.

We say that the eigenvector of the linearised equation ż = (dg)0,0z is a steady-state mode
if it has a simple zero eigenvalue.

We say that the eigenvector of the linearised equation ż = (dg)0,0z is a critical mode if it
has an eigenvalue that lies on the imaginary axis.

Observe that a steady-state mode is a critical mode. This happens when the associated
eigenvalue is zero.

The idea of interaction, of two or more modes, corresponds to the decomposition of the
kernel of (dg)0,0 into two or more Γ-irreducible components, respectively.
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As in [6], Chapter 2, let us consider the system of equations

dzi
dt
= gi(z1, . . . , zi, . . . , zr+1, λ) (5.3)

for i = 1, . . . , r + 1 and some integer r ⩽ n, where zi is in an si-dimensional subspace Vi in Cn.

Definition 5.2. We say that the bifurcation defined by g is a (r + 1)-mode interaction if the
kernel of (dg)0,0 decomposes as the direct sum of (r + 1) Γ-irreducible components.

We assume that the (r + 1) Γ-irreducible components are the Vi’s. The mode interaction
can be of steady-state/steady-state (or simply steady-state), Hopf/steady-state, Hopf/Hopf
type, depending on the criticality of the modes.

Once we establish the context where we want to see the interactions, we become concerned
with the genericity of those interactions. Consequently, it is necessary to perturb the system
in order to see which features persist.

Perturbations in bifurcations cause interesting changes on the interaction of the modes.
After a small perturbation, modes that were bifurcating together may split or bifurcate one
from the other generating a secondary mode.

Perturbation will lead to multi-parameter systems. We call non-linear interactions, the
interactions that we observe in this perturbed system. We can define mode interaction
as before, where λ ∈ Rm. Typically, these non-linear interactions are types of secondary
bifurcations for parameter values at which there are multiple critical modes, see [21], page
413.

In the present work, we pay attention to linear and non-linear steady-state mode interac-
tions.

5.1.2 Projection of Steady-State Linear Mode Interactions

Let Γ = HL+̇Tn+1 acting on the space of periodic functions, XL. Consider a steady-state
brunch arising in a 1-dimensional fixed point subspace, contained in the invariant subspace
V given in (5.1). Consider also the projection of V . We show that the projection of the
steady-state mode is a steady-state mode interaction in the projected space. The proof relies
on results of Chapter 4.

Proposition 5.3. Let Γ = HL+̇Tn+1 be a compact Lie group group acting on V . As-
sume that V is a Γ-irreducible representation and Σ ⊂ Γ is an isotropy subgroup satisfy-
ing dim(FixV (Σ)) = 1. Then, generically, projection of a steady-state mode in FixV (Σ)
corresponds to a steady-state mode interaction on Πy0(V ).

Proof. Let Σ be an isotropy subgroup such that dim(FixV (Σ)) = 1. Then, FixV (Σ) is
generated by the combination of real and imaginary part of

Ik(x, y) = ∑
σ∈ΣP

ωσk(x, y)ωσk(−vσ),

as in Section 4.5.
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By results of Section 4.6, the projection of FixV (Σ) is either a fixed point subspace
generated by Πy0(Ik) or it is the sum of fixed point subspaces generated by the components
resulting of the projection of Ik.

Suppose the set P (Jk) is contained in a single J̃-orbit, hence there is no mode interaction.
For the latter to occur, that is, to have mode interaction, we want to be in the conditions of
Section 4.6.3 and show that either (v, y0) ∉ L or that there exists (v, y0) ∈ L but σ ∉ J .

To achieve this, we are going to consider perturbations of the axis of projection (or
equivalently perturbations of the position of the (n+1)-dimensional lattice) and show that,
with respect to these the conditions of Propositions 4.34 and 4.35 fail.

Perturbation of an(n+1)-dimensional lattice is made by considering only changes of
coordinates γ ∈ SO(n + 1). Consider a (n + 1)-dimensional crystallographic group Γ with
lattice L generated by

l1, . . . , ln+1

with holohedry HL. Let P = {m1l1 + . . . +mn+1ln+1; mi ∈ {−1,0,1}} be the primitive cell of
L and Q = {m1l1 + . . . +mn+1ln+1; mi ∈ [−1,1]} the hyper-rectangle defined by P .

Let y0 ∈ R,be the value which defines the band of projection. Then there is l ∈ L such
that the cell Pl = l + P contains (0, y0).

Choose (v, y∗) ∈ Pl such that the lengths ∥v∥ and ∥(v, y∗) − (0, y0)∥ are minimal.
Define

Dv((0, y∗)) = {(u, y∗) ∈ Rn+1; ∥u∥ < 1
q
∥v∥}

where q ∈ R. Note that Dv((0, y∗)) is the open disc of radius r = ∥v∥q > 0 centred at (0, y∗) in
Rn+1.

For each point (u, y∗) ∈ Dv((0, y∗)) define the angles θ = ∠((0, y∗), (u, y∗)), ψ = 90○ −
∠((0, . . . ,0,1,0), (u, y∗)). Consider the rotation ρ in SO(n + 1) given by:

ρ(θ,ψ) =

⎛
⎜⎜⎜⎜⎜
⎝

1
⋱

1
RθRφ

⎞
⎟⎟⎟⎟⎟
⎠

where

Rθ =
⎛
⎜⎜
⎝

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

⎞
⎟⎟
⎠
, Rψ =

⎛
⎜⎜
⎝

cosψ sinψ 0
− sinψ cosψ 0

0 0 1

⎞
⎟⎟
⎠
.

It is easy to see that the set of all such rotations D = {ρ(θ,ψ)}, defines an open set in
SO(n + 1) containing the identity.

Consider a perturbation of the projection height y0 of amplitude 2δ, δ ∈ R. Let y′ be a
point in the band (y0 − δ, y0 + δ). We show that for any projection defined by y′ either there
is no (v, y0) ∈ ρ(θ,ψ)L or there exists (v, y0) ∈ ρ(θ,ψ)L but σ ∉ ρ(θ,ψ)J , for all ρ(θ,ψ) ∈D.

In fact, there is no point (0, y′) ∈ ρ(θ,ψ)L ∩ ⟨(0, . . . ,0,1)⟩, because:
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• either (0, y0) ∈ L and thus ρ(θ,ψ)(0, y0) ∈ ⟨(u, y∗)⟩, implying that ρ(θ,ψ)(0, y0) ∉ ρθL ∩
⟨(0, . . . ,0,1)⟩;

• or (0, y0) ∉ L, and then we use Pl ∩ ρ(θ,ψ)L = ∅. Thus the axis generated by (0, . . . , 0, 1)
does not contain a point (0, y′).

Now, let Hρ(θ,ψ) be the holohedry of the perturbed lattice. We show that σ ∉Hρ(θ,ψ) , for
all ρ(θ,ψ) ∈ S, where

σ =
⎛
⎝
In 0
0 −1

⎞
⎠
.

We have two cases:
Case 1: σ ∈HL
In this case σ ∉Hρ(θ,ψ) if and only if ρ(θ,ψ) ∈HL. In fact,

σ ∉Hρ(θ,ψ) ⇔ σ = ρ(θ,ψ)γ, γ ∈HL
⇔ ρ(θ,ψ) = σγ−1 ∈HL.

But if ρ(θ,ψ) ∈HL then ρ(θ,ψ)P = P , which contradicts our construction.
Case 2: σ ∉HL
Suppose that σ ∈Hρ(θ,ψ)L, then there is a minimal y ∈ R such that (0, y) ∈ ρ(θ,ψ)L. Let

l′ = ρ−1
(θ,ψ)(0, y) = (l1, l2) (5.4)

Now, observe that ρθP is a primitive cell for ρ(θ,ψ)L. From (2.2), we have (v, y∗) = v′ + l,
for v′ ∈ P . Take (a, b) = ρθv′ ∈ ρ(θ,ψ)P , then (a, b) − (0, y) ∈ ρ(θ,ψ)P , by minimality. Thus

∥(a, b) − (0, y) + ρ(θ,ψ)l∥ = ∥ρ(θ,ψ)v′ − ρ(θ,ψ)l′ + ρ(θ,ψ)l∥
= ∥v′ + l − l′∥ ≤ ∥(v, y∗)∥

where in the last equality we are using the fact that v′ + l − l′ ∈ Pl and (2.2). Again, by (2.2),
we must have l′ = (0, y′′), implying that θ = 0, which is a contradiction, from (5.4).

Therefore, σ ∉Hρ(θ,ψ)L. Concluding the proof.

5.1.3 Black-eye Patterns

In the light of our results, we are ready to give an interpretation of the black-eye pattern
observed in experiments performed in a two-fed-open spatial reactor.

In Gunaratne et al. [24], Section VI, the authors describe properly black-eye patterns as:

"a resonant interaction between the basic modes of the hexagonal array. These
patterns consist of two hexagonal lattices: one of white spots and the other of
black spots at the center of each white spot and at the center of the dark region in
each equilateral triangle with three neighbouring white spots at its vertices. The
hexagonal lattice of white spots has a wavelength of 0.15 mm while the lattice of
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black dots has a wavelength of 0.086 mm. The ration of the two wavelength is
√

3,
suggesting that the lattice of black spots is a harmonic structure of white spots."

As we see in Gomes [22], the same pattern can be obtained as a projection of a body centred
cubic structure.

The first main issue is: are they the same? An approach to answer this question can
be found in Zhou et al. [46]. In this work, experiments are performed in order to clarify
whether a black-eye pattern is a quasi-two-dimensional structure or a slice of a bcc planform
as described by [22]. They suggested that the projection method can be excluded.

What defines a quasi-two-dimensional pattern?
When experiments are performed there are transitions of: 2-, quasi-two-, and 3-dimensional

patterns. In Dulos et al. [17], experiments are performed to explain this transition. In
particular, transition from quasi-two- to 3-dimensional Turing patterns can be considered as
projection of the patterns happening in different layers, see [17], Section 4.

In [46], quasi-two-dimensional patterns are considered as patterns that appear at the
onset of Turing instabilities. In [24], those patterns at the onset are described as non-linear
interactions.

How are these interactions explained in theory?
In [24] the authors study the Swift-Hohenberg equation in order to show the generation

of secondary modes as a result of interaction of hexagonal patterns. Despite this analysis,
structures such as the black-eye are neglected in their work, as we see in Section VI.

Equivariant Bifurcation theory gives a formalism of how to study mode interaction. The
results of Subsection 5.1.2 show how to relate mode interaction and projection. Generically,
projection of steady-state modes correspond to a steady-state mode interaction.

Therefore we can conclude that both the experimental results obtained by [24] and the
theoretical results in [22], regarding black-eye patterns, are the same.

We believe that studying 3-dimensional structures and interpreting the results as projection
is still the best way of describing the transition of quasi-two- to 3-dimensional patterns.

However, there are still many issues regarding the theory of projection. As mentioned in
Chapter 1, in reaction diffusion experiments, the reactants are fed through either one or two
reservoirs, producing a chemical gradient in the z direction, see [22]. Thus, variation of the
chemical gradient corresponds to variation in the band of projection.

We know that changes in the band of projection induces symmetry breaking. For instance,
the projections corresponding to the band of black-eye pattern, break the symmetry from the
group Γ = L+̇HL to the subgroup L+̇D3. How can that symmetry be transformed so that this
chemical gradient can be observed in the z direction? The answer for this question is nothing
more than a change of coordinates so that the plane {z = 0} inherits the underlying symmetry.
This is exactly the conclusion found in Parker [34]. Therefore, the chemical gradient can be
studied via the techniques used to study forced symmetry breaking.

5.2 Future Work

To finish this chapter, we give suggestions for future work.
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5.2.1 Projection and Forced Symmetry Breaking

It is well known that physical systems are subjected to perturbations. Any mathematical
tool that attempts to study these systems must be sensitive to such disturbances.

A first approach for a physical system is by a mathematical model subject to reasonable
hypotheses. These hypotheses lead to a model with more symmetry and that is easier to
deal with. For instance, we consider the black-eye pattern obtained as projection in [22] as a
first approximation for the black-eye pattern observed in experiments. Results found in [22]
illustrate the black-eye pattern in an ideal circumstance, since the author does not report
the effect of perturbations in the system. It is naive to perform experiments and compare
the results with an illustration of a method that was not formalised to interpret a complex
system.

In order to capture additional information of the experimental system, we slightly perturb
a symmetric model to a less symmetric one. This gives an idea of a second order approximation
given by forced symmetry breaking, see Parker [34], Parker et al. [35, 36].

As highlighted in [34], Chapter 2, there are many ways in which we can break the symmetry
of a model in order to give approximate results to a real physical system. In this section
we discuss the projection model in the light of forced symmetry breaking. In particular, we
discuss the ideas given by Parker [34] and address future work.

Here, we look at the study of forced symmetry breaking found in [34]. A broad idea of the
problem is as follows: consider the Γ-equivariant system described by (5.2) and a steady-state
solution x ∈ V , with orbit X = Γx.

The challenge in [34] is to answer to following question:

"What happens to the orbit X when the vector field g is perturbed to the new
system

G(z, λ, ϵ) = g(z, λ) + ϵh(z) (5.5)

where ϵ is real and small and h is equivariant with respect to a subgroup isomorphic
to a subgroup of the holohedry of the underlying lattice?"

The new system given by G represents a forced system to break the symmetries of g. In
[34], the author formalises and proves conditions of existence and persistence of equilibrium
solutions for the new system. This problem is transformed to the study of the action of the
symmetry group of the map G on the group orbit X. In particular, a partial classification for
the behaviour of the group orbits is also obtained.

We can visualise symmetry breaking through projection when the band y0 is varied.
Depending on how the band of projection intersects the underlying lattice of the problem, we
see a transition of more symmetric to less symmetric patterns after projection. How can we
study this breaking of symmetry?

The relation of the work in [34] and projection can be found in the examples given in
chapter 7, 8 and 9 of [34]. The author studies forced symmetry breaking in dimension 3.

In [34], projection of 3-dimensional patterns, under different direction of projection,
are compared. Specifically, the author considers a planform, f , for (5.2) with symmetry
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Σ ⊆ Γ. After breaking the symmetry of g, as in (5.5), by adding a term h with symmetry
∆, the examples in [34] illustrate how the structure of the planform f is altered after the
forced symmetry breaking. Since ∆ is subgroup isomorphic to a subgroup of the holohedry,
perturbation of the system corresponds to perturbations of the lattice.

To describe planforms in dimension 3 as projection, Parker [34] considers the density
plots of the planforms, the original one f and its correspondent perturbed pattern obtained
from the system (5.5), in a cross section of the lattice. The planforms are compared after a
projection in a fixed band. In [34], Example 9.2.8, Chapter 9, the visualization of planforms
for the cubic lattices are made in a hexagonal cross section, in particular the black-eye pattern
is compared with its corresponding perturbed pattern. A more detailed analysis of black-eye
patterns is then made in [34], Section 10.2.

The difference between our result and the one presented in [34], is that projections of
those steady-state, through different bands, can be directly compared with patterns obtained
in the 2-dimensional problem, after performing a forced symmetry breaking.

Now, it is still early to tell more about the stability of the projected solutions. The
model of projection should be compared with the bifurcation diagrams associated with the
perturbed problem. The results proposed in this thesis should also be closely compared with
experiments on the CIMA reaction.
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Appendix A

Matlab Programs to Plot
Projections of Planforms

In this appendix we present the Matlab file used to plot 3-dimensional planforms as slices of
the cube lattice.

Let L be a three-dimensional lattice and L∗ its dual. Suppose that the y0-projection of L
in the plane P is a hexagonal plane lattice.

Consider u ∶ R3 → R in V = ⊕
m∈L∗,
∣m∣=mc

Vm =
n

⊕
i=1
Vmi , where Vmi = {Re(zwm(X)); z ∈ C}.

Thus, we can write:

u(x, y, z) = ∑
∣m∣=mc

exp(2πim ⋅ (x, y, z))

= ∑
∣m∣=mc

(cos 2πm ⋅ (x, y, z) + sin 2πm ⋅ (x, y, z))

=
n

∑
i=1

2 cos 2πmi ⋅ (x, y, z)

To make our calculations easier, we can rotate the lattice in such a way that the plane P
will be parallel to the plane {(x, y, z) ∈ R3; z = 0}. Therefore, in the new coordinates,

u(x, y, z) = ∑
∣k∣=kc

exp(2πik ⋅ (x, y, z))

=
k3

∑
k=k1

2 cos 2πk ⋅ (x, y, z)

where, A is the rotation matrix and ki = A ⋅mi = (ki1, ki2, ki3)
The projection Π(u)(x, y) ∶ R2 → R of u is given by:

Π(u)(x, y) = ∫
z1

z0
u(x, y, z)dz
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86 Matlab Programs to Plot Projections of Planforms

= ∫
z1

z0
2

3
∑
i=1

cos 2π(ki1x + ki2y + ki3z)

Now observe that, if ki3 = 0 for same i ∈ {1,2,3} then:

∫
z1

z0
cos 2πk ⋅ (x, y, z)dz = (z1 − z2) cos 2πk ⋅ (x, y, z)

otherwise

∫
z1

z0
cos 2πk ⋅ (x, y, z)dz = 1

2πki3
sin 2πk ⋅ (x, y, z) ∣z1

z0

We used Matlab program to plot the contour of the projection Π(u), for some u.
Next we write the program used to plot patterns in the simple cubic lattice, where V is a

6-dimensional subspace of XL.

function[]= plancubo6()

%Representation of dimension 6

%Setting the domain of x and y
d1 = input(’periodicity in the x direction ’);
d2 = input(’periodicity in the y direction’);
%Integration limit
z0 = input(’write z0’);
z1 = input(’write z1’);

[X,Y] = meshgrid(-d1:0.01:d1,-d2:0.01:d2);

l = size(X);

M = [sqrt(2) 0 0;0 sqrt(2) 0;0 0 sqrt(2)]; % matrix formed by the vectors m_{j}

A = [1/sqrt(2) 1/sqrt(2) 0;1/sqrt(6) -1/sqrt(6) 2/sqrt(6);
1/sqrt(3) -1/sqrt(3) -1/sqrt(3)]; % rotation matrix

K1 = (A*M(1,:)’)’;

i_K1 = (2*pi)*(K1(1,1)*X + K1(1,2)*Y + (K1(1,3)*z1)*ones(l));

s_K1 = (2*pi)*(K1(1,1)*X + K1(1,2)*Y + (K1(1,3)*z0)*ones(l));

if K1(1,3) == 0
p_K1 = 2*(z1 - z0)*cos(2*pi*(K1(1,1)*X + K1(1,2)*Y));

else
p_K1 = (1/(pi*K1(1,3)))*(sin(i_K1) - sin(s_K1));
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end

K2 = (A*M(2,:)’)’;

i_K2 = (2*pi)*(K2(1,1)*X + K2(1,2)*Y + (K2(1,3)*z1)*ones(l));

s_K2 = (2*pi)*(K2(1,1)*X + K2(1,2)*Y + (K2(1,3)*z0)*ones(l));

if K2(1,3) == 0
p_K2 = 2*(z1 - z0)*cos(2*pi*(K2(1,1)*X + K2(1,2)*Y));

else
p_K2 = (1/(pi*K2(1,3)))*(sin(i_K2) - sin(s_K2));

end

K3 = (A*M(3,:)’)’;

i_K3 = (2*pi)*(K3(1,1)*X + K3(1,2)*Y + (K3(1,3)*z1)*ones(l));

s_K3 = (2*pi)*(K3(1,1)*X + K3(1,2)*Y + (K3(1,3)*z0)*ones(l));

if K3(1,3) == 0
p_K3 = 2*(z1 - z0)*cos(2*pi*(K3(1,1)*X + K3(1,2)*Y));

else
p_K3 = (1/(pi*K3(1,3)))*(sin(i_K3) - sin(s_K3));

end

Z = p_K1 + p_K2 + p_K3;

figure
colormap(flipud(gray))
contour(X,Y,Z,20)
contour3(X,Y,Z,20)
pcolor(X,Y,Z)

shading interp
axis equal
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