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Resumo

Nesta tese é abordado o problema de escalonamento e pré-despacho (unit commitment,

UC), que é um problema de otimização combinatória resultante do planeamento da

operação em sistemas eletroprodutores. Neste problema pretende-se definir os perı́odos

de funcionamento e paragem, num dado conjunto de unidades de geração e também

determinar o seu nı́vel de produção, a fim de satisfazer a procura de energia a um custo

mı́nimo. Além disso, a solução deve satisfazer um conjunto de restrições tecnológicas.

Geralmente formulado como um problema de programação não linear inteira mista,

tem sido abordado na literatura por uma grande variedade de métodos de otimização,

que vão desde métodos exatos (como programação dinâmica, branch-and-bound) a

heurı́sticas (algoritmos genéticos, simulated annealing, particle swarm,etc.).

O trabalho aqui apresentado desenvolveu-se em três frentes:

Na Primeira, o método “Hybrid Biased Random Key Genetic Algorithm” (HBRKGA)

é proposto para resolver o problema tradicional de escalonamento e pré-despacho. A

principal motivação para a escolha de algoritmos BRKGA foi o seu bom desempenho

reportado em problemas de otimização de natureza combinatória. Na implementação

do algoritmo HBRKGA, as soluções são codificados utilizando vetores de números

reais no intervalo [0,1]. Foram realizadas simulações em sistemas de média e grande

dimensão com até 100 unidades, envolvendo um horizonte de planeamento de 24 ho-

ras. Os resultados obtidos revelam que a metodologia proposta é eficaz e eficiente na
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abordagem deste problema. Além disso, os resultados obtidos melhoram os resultados

conhecidos até ao momento.

Na segunda, o algoritmo “Biased Random Key Genetic Algorithm” (BRKGA) foi com-

binado com o procedimento de ordenação de soluções não dominadas para encontrar

aproximações à curva de Pareto para o problema multiobjetivo. Esta implementação

assume importância devido às preocupações ambientais que estão a ter um impacto

significativo sobre o funcionamento dos sistemas eletroprodutores. A abordagem ao

problema tradicional de escalonamento e pré-despacho, em que apenas se procura

minimizar o custo total de operação é inadequada quando as emissões ambientais

também são consideradas. O procedimento de ordenação de soluções não-dominadas,

similar ao algoritmo NSGA II, é aplicado para obter um conjunto aproximado da

fronteira ou curva de Pareto. Os resultados das simulações para sistemas de 10, 20, 40,

60, 80 e 100 unidades de geração e horizonte temporal de 24 horas revelam a eficácia

do método proposto.

Na terceira e última frente, é proposta uma formulação do problema UC como um

problema de controlo ótimo inteiro misto, envolvendo variáveis de controlo binárias e

reais. Posteriormente, recorrendo a um método de transformação da variável tempo esta

formulação é convertida num modelo de controlo ótimo envolvendo apenas variáveis

de controlo reais. Por fim, procede-se à sua discretização e o problema é transcrito

como problema de programação não linear de dimensão finita, de modo a poder ser

resolvido por um optimizador não linear.
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Abstract

This thesis addresses the Unit Commitment (UC) problem, which is a well-known

combinatorial optimization problem arising in operation planning of power systems.

In the UC problem, one wishes to schedule a subset of a given set of generation units

and also to determine their production output in order to meet energy demands at

minimum cost over a given time horizon. In addition, the solution must satisfy a set

of technological and demand constraints. This problem is typically formulated as a

nonlinear mixed-integer programming problem and has been solved in the literature by

a huge variety of optimizations methods, ranging from exact methods (such as dynamic

programming, branch-and-bound) to heuristic methods (genetic algorithms, simulated

annealing, particle swarm).

The work reported here can be divided into three parts:

First, a Hybrid Biased Random Key Genetic Algorithm (HBRKGA) is proposed to

address the traditional UC problem. The main motivation for choosing a HBRKGA

is its reported good performance on many combinatorial optimization problems. In

the HBRKGA, solutions are encoded by using random keys, which are represented

as vectors of real numbers in the interval [0,1]. The algorithm proposed is a variant

of the random key genetic algorithm, since bias is introduced in the parent selection

procedure, as well as in the crossover strategy. Computational experiments were carried

out on benchmark large-scale power systems with up to 100 units for a 24−hour period.

The results obtained have shown the proposed methodology to be an effective and
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efficient tool for finding solutions to large-scale UC problems. Furthermore, from the

comparisons made it can be concluded that the results produced improve upon the

solutions obtained by reported state-of-the-art methodologies.

Second, a multi-objective version of the problem is addressed, where environmental

emissions are also considered. The environmental concerns are having a significant

impact on the operation of power systems. The traditional Unit Commitment prob-

lem, which minimizes the total production costs is inadequate when environmental

emissions are also considered in the operation of power plants. The Biased Random

Key Genetic Algorithm (BRKGA) approach is combined with a non-dominated sorting

procedure to find solutions for the multiobjective unit commitment problem. The non-

dominated sorting procedure similar to NSGA II, is employed to approximate the

set of Pareto solution through an evolutionary optimization process. Computational

experiments with the existent benchmark systems with 10 up to 100 generation units

for a 24− hour scheduling horizon have been performed. The comparison of the

obtained results with those of other UC multiobjective optimization methods reveals

the effectiveness of the proposed method.

Third and finally, the UC problem is formulated as a mixed-integer optimal control

problem, with both binary-valued control variables and real-valued control variables.

Then, through the use of a variable time transformation method it is converted into

an optimal control problem with only real-valued controls. Finally, this problem is

discretized and transcribed into a sparse finite-dimensional nonlinear programming

problem and solved using a sparse optimization solver.
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Chapter 1

Introduction

Power systems are one of the most important infrastructures in a country since the

commodity involved is essential to everyday life. Nowadays, its availability and price

are critical to many companies and business [91, 92]. In recent years, the power

generation industry has seen considerable growth. Due to the increase of economy and

productivity, the usage of electricity is rising. In the past 10 years (from 2000 to 2010),

in the Euro area, the growth has been about 13%, while in Portugal it has been about

25%, as it can be seen in Figure 1.1. With the increasing importance of the role the

power sector plays in the modern society, a lot of effort has been put into developing

a secure, reliable and economic power supply. The Unit commitment is crucial in

achieving this goal, thus the quality of its solution is of the highest importance.

The study and operation of power systems involve solving many different optimization

problems [59]. Amongst these problems, the Unit Commitment (UC) problem stands

out as it plays a key role in planning and operating power systems. The power genera-

tion industry utilizes unit commitment and economic dispatch to help make generation

scheduling decisions. An optimal scheduling of the generating units has the potential

of saving millions of euros. The objective of a UC problem is to identify a schedule

of committing units to minimize the joint cost of committing and decommitting units

1
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Figure 1.1: Net electricity generation, in thousands of GWh, in Europe for 2000-2010.

and economic dispatch. At the same time, it meets the forecasted demand and spin-

ning reserve requirements, that allow for uncertainty compensation and technological

generating unit constraints.

The UC problem is computationally challenging due to the nonlinear objective func-

tion, the mixed-integer features, and the large dimension. For this reason, obtaining an

optimal or even a good sub-optimal solution is a great challenge. Also, the UC problem

has been addressed by many researchers using a large variety of optimization methods.

Therefore, it can provide an excellent benchmark to test optimization methodologies

that are being developed.

In recent years, environmental factors have been given increasingly importance. Keep-

ing that in mind, the industry is also turning its attention to the emissions of pollutants,

many of which come from fossil fuels. This issue has been addressed by minimizing
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the pollutants emissions, in addition to the costs. The main reasons for addressing these

issues in this way, is that a trade-off between the two is of utmost importance since the

taxes associated with such emission and also with the emissions trading market has

been established, whereby companies can buy or sell emissions allowances.

The unit commitment problem is an important research challenge and a vital opti-

mization task in the daily operational planning of modern power systems due to its

combinatorial nature. In general, the UC problem may be formulated as a non-linear,

large scale, mixed-integer combinatorial optimization problem with both binary (unit

status variable) and continuous (unit output power) variables.

Since the main aim of this thesis is to develop approaches for addressing realistic sizes

unit commitment problems, heuristic methods are proposed here. This type of methods

have no guarantees of converging to an optimal solution, however, they generally

provide good solutions in a reasonable computational time.

Another major achievement of this thesis is the fact that the proposed approach is flexi-

ble and can easily be successfully adapted to unit commitment problems with different

characteristics and considering different issues. This is demonstrated by addressing the

bi-objective unit commitment problem.

Finally, the other important contribution is due to the optimal control approach to

the UC problem. This approach is of a different nature and this way it allows the

exploration of different perspectives of the problem.

1.1 Thesis Overview

This thesis is organized as follows:

Chapter 2 contains the traditional single-objective and environmental/economic Unit

Commitment problems description.
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Chapter 3 gives a mathematical formulation for the single-objective UC problem, which

is followed by a discussion on previous approaches. Then, the proposed Biased Ran-

dom Key Genetic Algorithm (BRKGA) is introduced and explained. Finally, the per-

formed computational experiments are reported and the efficiency and effectiveness of

the approach is demonstrated by using benchmark systems with up to 100 units for a

24 hour planning horizon. This chapter is an author version of the paper published

in Journal of Combinatorial Optimization entitled ”A Hybrid Biased Random Key

Genetic Algorithm Approach to the Unit Commitment Problem” [96]. A previous

version has been presented at an international conference and published in Lecture

Notes in Computer Science [95].

Chapter 4 discusses and reviews the bi-objective UC problem before providing its math-

ematical formulation. It follows the description of how the BRKGA is adapted to the

bi-objective optimization UC problem. This chapter also provides a comparative study

of the proposed BRKGA method and other multi-objective optimization techniques.

Test systems with 10 and to up 100 thermal units have been used. This chapter is

also an author version of a paper submitted to an international journal. A preliminary

version of the work in this chapter has been presented at an international conference

and published in its proceedings [97].

Chapter 5 contains the single-objective UC problem formulated as an optimal control

problem (OCP). It proposes a variable time transformation method that converts the

mixed integer OCP into an OCP with only real-valued variables and thus, it is possible

to find local solutions through NLP solvers.

This chapter is an author version of the article published as chapter 6 of the book,

Dynamics of Information Systems, Springer, due December 2014 [34]. A preliminary

version of this work has been presented at an international conference and published in

its proceedings [38].
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The final discussions and conclusions are given in Chapter 6, ending with the outline

of a future work.



6 CHAPTER 1. INTRODUCTION



Chapter 2

The Unit Commitment Problem

The electric power sector has been subject to new global challenges and evolutions

such as, the growing electricity demand, the security of supply, an environmental

sustainability and competitiveness. The liberalization of the electric power markets,

which has been happening, promotes further needs for optimization within the power

sector.

Energy investment planning, operation, pricing and management activities are per-

formed in an hierarchical and sequential procedure seeking to determine an economic,

reliable and environmentally sustainable energy supply. This complex decision-making

procedure includes the Unit Commitment which is an important problem for power

systems planning and operation in European countries and around the world. The com-

plexity of the UC problems depends on the diversity of the generating unit characteris-

tics and on the size of the energy systems under consideration. The most representative

costs are associated to thermal power generation.

The Unit Commitment (UC) problem involves determining which power generating

units should be online at each time period and how much power each of these online

units should be producing. By optimizing such decisions, power utilities can produce

7
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power at a lower cost, while satisfying demand and other operational constraints. The

former constraints are used to ensure security and reliability of supply, while the latter

are technological and reduce the freedom in the choice of starting-up and shutting-down

generating units and the range of power production values.

The Unit Commitment problem context can vary from one market structure to another.

For instance, in a regulated, vertically integrated monopoly electric power system, the

decision is made centrally by the utility. The objective is the cost minimization subject

to demand and spinning reserve satisfaction and other system operating constraints.

In a competitive environment, each generating company needs to decide which units

should be online, such that its expected profit is maximized, given the demands, costs,

and prices, as well as other system operating constraints. Each individual generating

company optimises the UC of its generation units, considering the market price.

However, ideal markets, in principle, ensure the same conditions for the scheduling of

the generating units as one would encounter in the centralized UC problem. Therefore,

the difference between scheduling the generating units in liberalized or traditional

markets is not meaningful. Thus, solutions to the UC problem based on cost of the

traditional regulated market are still relevant [13, 116].

Many different versions of the UC problem exist and have been studied in the literature.

This thesis starts by addressing the classical UC problem and then moves on to the bi-

objective UC problem.

2.1 Problem relevance

Historically, the power systems were vertically integrated. Thus, a power company

owned the generating plants, the high voltage transmission system, and the distribution

lines. Recently, the power industry was restructured and vertically integrated compa-

nies needed to separate their assets and services. Therefore, they are now divided into
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generation companies, transmission companies, and distribution companies. After the

separation, the generation companies focused their attention on how to maximize profit

and not being too concerned with whether the demand and reserve are completely met.

In a competitive market, where the customers buy from whoever provides the energy at

lower prices, reducing production costs increases the chances of competing with other

suppliers in the regional, national or international markets.

Thus in this thesis we address the deterministic unit commitment problem, where

uncertainties are coped through the imposition of spinning reserve as explained in

the next section. Two versions of the UC problem are considered. First, we study

the deterministic economic UC problem and thus we need to determine the on and

off status of the generating units, as well as the power generated by each unit over

a time horizon. The choice of such decisions is made such that the total operating

costs are minimized, while satisfying a set of system and unit constraints. After, the

environmental/economic UC problem is addressed. The environmental aspects lead us

to consider the emissions produced by power plants. Conventional electrical systems

are highly fossil fuel dependent, being the major contributors to the greenhouse gas

emissions. The conflicting objectives of the pollutant emissions and operating costs

minimization are considered simultaneously.

2.2 Problem description

As it was already said, the UC problem consists of a set of generation units for which

one needs to decide when each unit is on-line and off-line along a predefined time

horizon. In addition, for each time period and each on-line unit it is also decided how

much it should be producing. Therefore, the problem includes two types of decisions,

which are limited by two types of constraints: load constraints and technological ones.

Since in principle there are many solutions satisfying the constraints, one must define

a performance measure, which typically is the minimization of the total costs incurred
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with the operation of the generating units and the production of the required power.

The traditional unit commitment problem, the most commonly addressed version, is a

deterministic single objective optimization problem. The objective function is the min-

imization of the total operating costs over the scheduling horizon. The total operating

costs can be expressed as the sum of the fuel, shutdown and start-up costs. System un-

certainties are addressed through deterministic reserve policies, which enforce reserve

to be a certain percentage of the peak load. The stochastic natures of power systems

are therefore modeled in the optimization problems. In this thesis, the traditional UC

problem is addressed in Chapter 3.

Other UC problem variants including additional complexities, and perhaps more adapted

to current energy market conditions, have also been considered in the literature. Among

the different issues considered in the literature we chose to address the pollutant emis-

sions issue. The choice of the pollutants issue is mainly due to the fact that, in recent

years, environmental concerns have been gaining importance. Several policies regard-

ing pollution have been proposed by the policy makers. For example, taxes on pollutant

gases such as CO2 have been added, pollution allowances have been implemented, an

internal market for carbon dioxide allowances has been established by the European

Union (where companies can buy or sell pollution allowances).

Chapter 4 addresses a bi-objective UC problem, in which the pollutant emissions are

to be minimized, in addition to costs minimization. The pollutants issue has been

addressed in the literature in different ways. For example, [63] considers the emission

constrained UC problem; [66] considers the fuel constrained UC problem; [15, 118]

consider the price-based UC problem. We chose to consider the bi-objective (envi-

ronment and economic) UC problem because, although the emission of pollutants is

restricted, there is a market to buy additional permissions. Thus, with our bi-objective

optimization problem, we have the possibility to trade-off between cost and pollution,

having in this way a more flexible, and potentially better solution.
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2.2.1 Objective function: total operating cost minimization

As it is said before, in the single objective UC problem, the objective function consid-

ered is the minimization of the total costs. There are 3 types of costs: generating costs,

start-up costs and shut-down costs. These costs are incurred by each generating unit at

each time period.

The generating costs, which are mainly due to the fuel consumption, are usually mod-

eled as a quadratic function concerning to the production level (yt). An illustration of

the cost of the generation cost function is provided in Figure 2.1.
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Figure 2.1: Fuel cost function.

Start-up costs are incurred every time a generating unit is started and quite often are

considered constant. However, in the case of plants with steam turbine, the start-up

costs should not be considered constant since they depend on the time that the unit has

been down and also on the state of the boiler, i.e. hot or cold. If the boiler is kept hot

during the downtime period (banking) then the start-up costs are generally modeled as

a linear function of time,

S(t) = b0 + c1.T o f f (t), (2.1)

where T o f f (t) is the number of periods that a unit has been continuously down until

time period t, b0($) is the fixed start cost and c1($/h) is the cost coefficient associated

to fuel consumption in order to maintain the required temperature.
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However, if the boiler is left to cool-down (cooling) then the start-up costs are typically

considered as exponentially time dependent as in the following equation,

S(t) = b0 +b1.
(

1− e−T o f f (t)/α

)
, (2.2)

where b1($) is the cold start up cost and α is the cooling constant.

In the case of diesel groups, the start-up costs are much harder to model since they may

assume intermediate levels of heating and fuel exchanges. In general, simplified cost

functions are used and in the literature it is quite frequently a two-step function,

S(t) =


SH , if T o f f

min ≤ T o f f (t)≤ T o f f
min +Tc,

SC, if T o f f (t)> T o f f
min +Tc,

(2.3)

where T o f f
min is the minimum required downtime of the given unit, SH and SC are the

costs incurred for a hot and cold start-up , respectively, and Tc is a unit parameter such

that T o f f
min + Tc indicates the number of hours that the boiler needs to cool down. A

graphical representation of the start up cost function is given in Figure 2.2.
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Figure 2.2: Start up cost function in plants with steam turbines.

The shut down costs are associated to the necessary conditions to be able to provide

a hot start up (banking). Typically, shut-down costs are considered to be constant and

frequently disregarded since they can be included in the start-up costs [4].
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2.2.2 Objective function: pollutants emission minimization

In response to environmental concerns, as the global warming trend, the United Nations

Framework Convention on Climate Change (UNFCCC), initiated in 1992, and the

Kyoto protocol, which began in 1997, provide an international framework where many

countries and international organizations undertake to reduce their greenhouse gases

emissions [134]. For example, in the European Union, it was required to reduce its

greenhouse gas emissions by 8% during the period from 2008 to 2012 compared to

1990 levels [16]. It should be emphasized that power industry is one of the largest

pollutant emissions source, nearly 40% of the CO2 has being emitted by fossil fuel

combustion. For instance, in 2005 about 31% of Portuguese CO2 emissions resulted

from public electricity and heat production [33]. There is a need to develop emission

policies, technologies, and operations in power systems that help in the reduction

of total pollutant emissions [134]. However, since the demand for energy has been

growing, it is a very difficult challenge to revert this trend in a short term.

The UC problem, including simultaneous minimization of operating costs and pollutant

emissions (bi-objective function), can provide information regarding the trade-off be-

tween costs and pollutant emissions. This is very important for decision-makers, since

these two aspects are now further related due to the internal market for carbon dioxide

allowances established by the European Union (the European Union Emissions Trading

Scheme). The electric power production companies can now sell their allowances or

buy additional allowances from other companies.

The pollutant emissions are modeled by different functions depending on the generat-

ing units state (in operation and starting-up and shutting-down transition states). The

atmospheric pollution such as sulphur oxide (SOx), nitrogen oxide (NOx) and carbon

dioxide (CO2) caused by burning fossil fuel is usually modelled by a quadratic function,

E j(yt, j) = α j · (yt, j)
2 +β j · yt, j + γ j, (2.4)

where α j,β j,γ j are the emission coefficients of unit j [6, 129, 126, 136].
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The start-up emissions may depend on the number of periods that a unit has been down

or may be constant. Shutdown emissions are typically represented by a constant or

disregarded. For the sake of simplicity, let us consider constant start-up emissions and

disregard the shutdown ones. Thus, the total emission of atmospheric pollutants is

expressed as

E(y,u) =
T

∑
t=1

(
N

∑
j=1
{E j(yt, j) ·ut, j (2.5)

+Set, j · (1−ut−1, j) ·ut, j}
)
,

where Set, j is the start-up atmospheric pollutant emissions of unit j at time period t and

ut, j is the satus of unit j at time period t (1 if the unit is on; 0 otherwise).

2.2.3 Constraints

There are two types of constraints. On the one hand, the power system must satisfy

the customers and, on the other hand, the generating units are subject to working

restrictions.

System constraints

Power systems must satisfy customer demand at all times, thus the power produced

must equate demand. Furthermore, since uncertainty is not being explicitly considered,

one must ensure the ability of quickly generating additional power. Therefore, load

demand and spinning reserve constraints must be imposed on the system.

Load demand constraints: impose that the total power generated at each time period

must meet the demand.
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Spinning reserve constraints: impose that the generating units leave a certain amount

of reserve, i.e., unused production capacity, at each time period. Then, in the case of a

demand spike or equipment failure, the generators will not be completely used out and

thus will have some capacity to ramp up to produce the extra required power.

Generating unit constraints

The generating units impose some other constraints regarding their characteristics and

physical restrictions. These include unit output capacity, output variation, and mini-

mum number of time periods that the unit must be in each state (on or off).

Output range constraints: ensure that production of each generating unit is bounded

by the unit minimum and maximum production capacity. Unit limits may be due to

either economic or technical reasons.

Ramp up and ramp down constraints: ensure that production variations in consec-

utive periods are limited. Due to the thermal stress limitations and some mechanical

characteristics of the generating units, it is not possible to have fast variations on power

production. Therefore, the output generation level variation between two consecutive

periods is limited by maximum ramp-up and ramp-down rates.

Minimum uptime and downtime constraints: ensure that units remain at each state

during a specified minimum number of time periods. Due to technical reasons, when

a unit switches states, i.e., it is switched on or switched off, it must remain in the new

state at least a certain number of pre-specified time periods.
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Chapter 3

A Genetic Algorithm approach to

the Unit Commitment Problem:

Single-objective case

In this chapter, a hybrid genetic algorithm is proposed to address the Unit Commitment

(UC) problem. It should be reminded that in the UC problem, one wishes to schedule a

subset of a given group of electrical power generation units and also to determine their

production output in order to meet energy demands at minimum cost. In addition, the

solution must satisfy a set of technological and operational constraints.

The algorithm developed is an Hybrid Biased Random Key Genetic Algorithm (Hybrid

BRKGA). The biased random key technique was chosen given its reported good per-

formance on many combinatorial optimization problems. In the algorithm, solutions

are encoded using random keys, which are represented as vectors of real numbers in

the interval [0,1]. The GA proposed is a variant of the random key genetic algorithm,

since bias is introduced in the parent selection procedure as well as in the crossover

strategy. The BRKGA is hybridized with local search in order to intensify the search

17
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close to good solutions.

Tests have been performed on benchmark large-scale power systems with up to 100

units for a 24 hours period. The results obtained have shown the proposed methodology

to be an effective and efficient tool for finding solutions to large-scale UC problems.

Furthermore, from the comparisons made it can be concluded that the results produced

improve upon the solutions obtained by reported state-of-the-art methodologies.

3.1 Introduction

As it was already referred the power systems are one of the most important infras-

tructures of a country since the commodity involved is essential to everyday life, its

availability and price are critical to many companies, and it requires continuous bal-

ancing [91, 92]. The study and operation of these systems involves solving many

different optimization problems [59]. Amongst these problems, the Unit Commit-

ment (UC) problem stands out by playing a key role in planning and operating power

systems. Optimal scheduling of the generation units, not only have the potential of

saving millions of euros, but also of maintaining system reliability by keeping a proper

spinning reserve [135]. The UC problem is an optimization problem where one wishes

to determine the on/off status of the generation units at minimum operating costs. In

addition, the production of the committed units, which also has to be determined, must

be such that it satisfies demand and spinning reserve constraints. Furthermore, a large

set of technological constraints are also imposed on generation units. Due to its combi-

natorial nature, multi-period characteristics, and nonlinearities, this problem is highly

computational demanding and, thus, it is a hard optimization task to solve it for real

sized systems. The UC problem has been extensively studied in the literature. Several

methodologies, based on exact and on approximate algorithms have been reported.

Optimal solutions can only be obtained for small sized problem instances, through the

solutions of the corresponding Mixed Integer Quadratic Programming (MIQP) model.
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Other versions of the UC problem have also been studied, see e.g. [135, 123, 57, 101].

In the past, several traditional heuristic approaches have been proposed, based on exact

methods such as Dynamic Programming, Branch and Bound, Lagrangian Relaxation,

and other for Mixed-Integer Programming, see e.g. [79, 21, 53, 94, 40, 41, 85]. Most

of the recently developed methods are metaheuristics, evolutionary algorithms, and

hybrids of the them, see e.g. [133, 107, 22, 56, 64, 95, 48]. These latter types have, in

general, lead to better results than the ones obtained with the traditional heuristics.

In this chapter, a Hybrid Biased Random Key Genetic Algorithm (HBRKGA) is pro-

posed to address the UC problem. The HBRKGA proposed here is based on the

framework provided by [47], which has been used in other important applications

in an effective and efficient way [36, 45, 106, 46, 37, 62]. BRKGAs are a variation

of the random key genetic algorithms, first introduced by [9]. A Biased Random

Key GA differs from a random key GA in the way parents are selected for mating

and also on the probability of inheriting chromosomes from the best parent. In our

HBRKGA, we also include repair mechanisms and thus, all the individuals considered

for evaluation are feasible. The HBRKGA is capable of finding better solutions than the

best currently known ones for most of the benchmark problems solved. Furthermore,

the computational time requirements are modest and similar to those of other recent

approaches.

The remaining of this chapter is organized as follows. In subsection 3.2, the UC

problem mathematical formulation is given. In subsection 3.3, a description of pre-

vious methodologies addressing the UC problem is carried out. The solution approach

proposed to address the UC problem is explained in subsection 3.5. Due to recent

advances in MIQP commercial solvers, such as CPLEX, it is possible to solve UC

problems optimally, at least of smaller sizes. Therefore, in subsection 3.6 the UC

problem is reformulated as a mixed integer quadratic model. Then, in subsection 3.7

the effectiveness and efficiency of our approach is tested on benchmark systems with
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up to 100 units for a 24-hour period. In addition, the results obtained are compared

to those of the current state of the art approaches reported in the literature and, for

small size instances, with the ones obtained by a commercial solver. Finally, some

conclusions are drawn in subsection 3.8.

3.2 Unit Commitment Single Objective Problem Formula-

tion

In the Unit Commitment problem the optimal turn-on and turn-off schedules need to

be determined over a given time horizon for a group of power generation units under

some operational constraints. In addition, the output levels must be decided for each

on-line unit at each time period. The model has two types of decision variables. Binary

decision variables ut, j, which are either set to 1, meaning that unit j is committed at

time period t; or otherwise are set to zero. Real valued variables yt, j, which indicate

the amount of energy produced by unit j at time period t. Such decisions are limited by

two types of constraints: load constraints, consisting of demand and spinning reserve

constraints; and technological constraints. The objective of the UC problem is the

minimization of the total operating costs over the scheduling horizon.

3.2.1 Objective Function

The objective function has three cost components: generation costs, start-up costs, and

shut-down costs. The generation costs, also known as the fuel costs, are conventionally

given by the following quadratic cost function.

Fj(yt, j) = a j · (yt, j)
2 +b j · yt, j + c j, (3.1)

where a j,b j,c j are the cost coefficients of unit j.
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The start-up costs, that depend on the number of time periods during which the unit has

been off, are given by

St, j =


SH, j, if T o f f

min, j ≤ T o f f
j (t)≤ T o f f

min, j +Tc, j,

SC, j, if T o f f
j (t)> T o f f

min, j +Tc, j,

(3.2)

where SH, j and SC, j are the hot and cold start-up costs of unit j, respectively. The

shut-down costs for each unit Sd j, whenever considered in the literature, are not time

dependent.

Therefore, the cost incurred with an optimal scheduling is given by the minimization

of the total costs for the whole planning period,

Minimize
T

∑
t=1

N

∑
j=1

(Fj(yt, j) ·ut, j +St, j · (1−ut−1, j) ·ut, j +Sd j · (1−ut, j) ·ut−1, j) .

(3.3)

3.2.2 Constraints

The constraints are divided into two sets: the demand constraints and the technical

constraints. The first set of constraints can be further divided into load requirements

and spinning reserve requirements.

1) Load Requirement Constraints: The total power generated must meet the load

demand, for each time period.

N

∑
j=1

yt, j ·ut, j ≥ Dt , t ∈ {1, ...,T} . (3.4)

2) Spinning Reserve Constraints: The spinning reserve is the total amount of real

power generation available from on-line units net of their current production level.

N

∑
j=1

Y max j ·ut, j ≥ Rt +Dt , t ∈ {1, ...,T} . (3.5)
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The second set of constrains includes limits on the unit output range, on the maximum

output variation allowed for each unit (ramp rate constraints), and on the minimum

number of time periods that the unit must be continuously in each status (on-line or

off-line).

3) Unit Output Range Constraints: Each unit has a maximum and minimum produc-

tion capacity.

Y min j ·ut, j ≤ yt, j ≤ Y max j ·ut, j, for t ∈ {1, ...,T} and j ∈ {1, ...,N} . (3.6)

4) Ramp rate Constraints: Due to the thermal stress limitations and mechanical

characteristics the output variation levels of each on-line unit for consecutive periods

are restricted by ramp rate limits.

−∆
dn
j ≤ yt, j− yt−1, j ≤ ∆

up
j , for t ∈ {1, ...,T} and j ∈ {1, ...,N} . (3.7)

5) Minimum Uptime/Downtime Constraints: The unit cannot be turned on or turned

off instantaneously once it is committed or decommitted. The minimum uptime/downtime

constraints impose a minimum number of time periods that must elapse before the unit

can change its status.

T on
j (t)≥ T on

min, j and T o f f
j (t)≥ T o f f

min, j, for t ∈ {1, ...,T} and j ∈ {1, ...,N} . (3.8)

3.3 Previous methodologies addressing the UC problem

In this subsection, we start by describing several traditional heuristic approaches based

on exact methods that, in the past, have been reported in the literature. Then, we

describe methods based on metaheuristics, mainly evolutionary algorithms, and hybrids

of the them, which more recently have been reported in the literature.

Dynamic Programming (DP) was the earliest optimization-based method to be applied

to the UC problem. The advantage of DP is its ability to maintain solution feasibility.
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The disadvantage is the curse of dimensionality, which may result in unacceptable com-

putational time and memory requirements. Due to the enumerative nature of the dy-

namic programming, it suffers from a long processing time that expands exponentially

with the size of the problem. Thus, only small sized problems can be solved. Therefore,

in practice many heuristic strategies have been introduced to limit the dynamic search

for a large system. The most widely used method to reduce the dimension is based on

a priority list. The list is typically formed by ranking the units based on their marginal

power production cost or average full load cost index [102]. More recently, other

approximate methods based on DP have been proposed for the UC problem and its

variants. For instance, the authors in [94] have proposed a DP algorithm based on linear

relaxation of the on/off status of the units and on sequential commitment of units one by

one for the UC in multi-period combined heat and power production planning under the

deregulated power market. In [85] a DP technique with a fuzzy and simulated annealing

based unit selection procedure has been proposed. The computational requirements are

reduced by minimizing the number of prospective solution paths to be stored at each

stage of the search procedure through the use of heuristics, such as priority ordering

of the units, unit grouping, fast economic dispatch based on priority ordering, and

avoidance of repeated economic dispatch. Not many works on the UC problem make

used of Branch-and-Bound (BB). In the earlier ones [65, 21], the authors address the

UC problem with time-dependent start-up costs, demand and reserve constraints and

minimum up and down time constraints. However the authors do not incorporate ramp

rate constraints. Furthermore, [21] consider that the fuel consumption is given by a

linear cost function, which constitutes another major drawback. In [53] a two-phase

procedure is proposed. In the first phase, through the constraint satisfaction techniques,

the constraints are propagated as much as possible to reduce the search domain. The

second phase fulfills the economic dispatch function on the committed units, obtaining

an upper bound. Lagrangian Relaxation (LR) is capable of solving large scale UC

problems in a fast manner, however the solutions obtained are, usually, suboptimal.

Based on the LR approach, the UC problem can be written in terms of 1) a cost function
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that is the sum of terms each involving a single unit, 2) a set of constraints involving a

single unit, and 3) a set of coupling constraints involving all of the units (the generation

and reserve constraints), one for each hour in the study period. An approximate solution

to this problem can be obtained by adjoining the coupling constraints onto the cost

function by using Lagrange multipliers. The resulting relaxed problem is to minimize

the so-called Lagrangian subject to the unit constraints. LR was first applied to solve

the UC problem without considering ramp constraints [79]. [8] uses LR to disaggregate

the model into separate subproblems, one for each unit. The author tests the method on

a 10-units system with exponential start-up costs, see case study 5. Recently, in [40]

an effective Lagrangian relaxation approach for the UC problem has been proposed.

This approach relies on an exact algorithm for solving the single-unit commitment

problem proposed in [39]. More recently, in [32] two Lagrangian relaxation methods

are proposed: one based on subgradient optimization and the other based on cutting

planes. They were tested on several problem instances generated by the authors with

a simpler and linear cost function, but not on the usual benchmark ones. Therefore,

no comparisons with alternative methods were possible. From the tests performed, it

was concluded that the subgradient method yields better results. By solving the MIQP

model, optimal solutions can be found, but the computational time requirements are

enormous and, usually, increase exponentially with the problem size, even with the

availability of efficient software packages (such as CPLEX and LINDO), as will be

seen in the results section. Some authors have tried to improve the performance of

the MIQP by reformulating the UC problem as a mixed integer linear programming

problem by means of piece-wise linear approximations of the cost function, see e.g.,

[40, 41, 120].

Regarding methods based on metaheuristics, there is recent literature reporting re-

sults on evolutionary programming [58], particle swarm optimization [133], quantum

evolutionary algorithms [56, 64], memetic algorithms [117], and genetic algorithms

[60, 5, 107, 22, 95]. [58] employs evolutionary programming in which populations of
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individuals are evolved through random changes, competition, and selection. The UC

schedule is coded as a string of symbols and viewed as a candidate for reproduction.

Initial populations of such candidates are randomly produced to form the basis of sub-

sequent generations. [133] introduce an improved particle swarm optimization (IPSO)

with adoption of the orthogonal design for generating the initial population scattered

uniformly over a feasible solution space. This method has been tested on the problems

of case study 1 with good results, recently outperformed by [56, 64]. In these works,

Quantum-inspired Evolutionary Algorithms (QEAs) are proposed. The QEA is based

on the concept and principles of quantum computing, such as quantum bits, quantum

gates and superposition of states. QEA employs quantum bit representation, which

has better population diversity compared to other representations used in evolutionary

algorithms, and uses quantum gates to drive the population towards the best solution.

The mechanism of QEA can inherently treat the balance between exploration and

exploitation, thus incorporating a sort of local search. [56, 64] divide the UC problem

into two subproblems: 1) schedule the on/off status of the units and 2) determine the

power output of the committed units. In both works, repair mechanisms are used to

accelerate the solution quality and to ensure that unit schedules generated by QEA

are feasible. [56] improve the conventional QEA by introducing a simplified rotation

gate for updating Q-bits and a decreasing rotation angle approach for determining the

magnitude of the rotation angle. The current best known results for problems in case

study 1 have been reported in these works, which we are able to improve.

A Memetic Algorithm (MA) and a Genetic Algorithm (GA) using local search com-

bined with Lagrangian relaxation are introduced in [117]. In these algorithms, a local

search is integrated as part of the reproductive mechanism. Results show that this

approach can yield reasonable schedules at satisfactory computational times. Although

it was used to solve problems in case studies 1 and 5, only for the latter it is competitive.

GA solutions to the UC problem have been given in [60] with the addition of the

problem specific operators. Problem specific operators are defined within windows,
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thus acting on building blocks rather than bits. Therefore, once a good building block

is found it is preserved through the evolution process. [5] propose a GA using a repair

mechanism, which was implemented in parallel. Ramp rate limits are always enforced

while constructing the solutions, and therefore never violated. However, heuristics

are used to enforce load feasibility (enough power is committed) and time feasibility

(minimum up/down time). The proposed algorithm has been successfully applied to

a real problem with 45 units, see case study 4. [22] also decompose the UC problem

into the scheduling and dispatching problems. The former is solved by a GA using a

floating-point chromosome representation. Since the encoding and decoding schemes

are specific to and based on the load profile type, different problems require different

such schemes. The production of each on-line unit is determined by LR. In [107] a real

coded GA is proposed. A solution is represented by a real number matrix, representing

the generation schedule for each unit at each time period. A repair mechanism is used

to guarantee that the generation schedule satisfies system and unit constraints. The

method was tested by using the most common benchmark problems (case study 1) and a

38-units problem (case study 2), being only competitive for the latter one. A very recent

type of evolutionary algorithm, the Imperialist Competition Algorithm (ICA), has been

applied to the UC problem in [48]. In it a population consists of a set of countries, all

divided between imperialist countries and colonies, based on the imperialists power,

which is inversely proportional to its cost function for a minimization problem. Then

the colonies move toward their relevant imperialist and the position of the imperialists

is updated if necessary. In the next stage, the imperialistic competition among the

empires begins, and through this competition, the weak empires are eliminated. The

imperialistic competition will gradually lead to an increase in the power of powerful

empires and a decrease in the power of weaker ones, until just one empire remains. The

authors tested their methodology on the most commonly used benchmark problems,

see case study 1. However, as it can be seen in the results section they only improve

upon literature results for the problem instance with 10 units. More details on these

methods and other developed applications for the UC problem can be found in the
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extensive and comprehensive bibliographic surveys published over the years, see e.g.

[102, 81, 82, 98].

3.4 Genetic Algorithms

Genetic algorithms is a global search heuristic, which generates solutions to opti-

mization problems using techniques inspired by natural evolution, such as mutation,

selection, and crossover [78, 50]. The GA’s may be included in a broader class of

the evolutionary algorithms (EA). In general, a population of the chromosomes (also

called individuals or phenotypes) is taken and must evolve to include the best solutions.

During the evolutionary process, each individual can be subject to selection, muta-

tion and crossover genetic operators. Typically, solutions are represented in binary

as strings of 0 and 1 values or using floating point representation, or even, as string

of real-values [125]. In general, the initial population is randomly generated. In

each generation, the fitness of every individual in the population is evaluated. Next,

a proportion of the individuals in the current population with better fitness can be

copied to the new population, another proportion are stochastically selected from the

current population, and each individual genome is recombined and randomly mutated

to form a new population. Furthermore, in some instances, it may occur premature

convergence. The migration can be used to maintain the diversity of the solutions in the

population and, this way, improve the performance of the genetic algorithm [3]. The

migration consists of obtaining a specified proportion of the individuals for the new

population, through randomly generation, as was the case for the initial population.

The new population is then used in the next generation of the algorithm. The most

commonly used genetic operators are the selection, mutation and crossover. The

crossover allows to combine the parents alleles forming a new chromosome string that

inherits characteristics from both parents [60]. The mutation is used to maintain genetic

diversity from one generation of a population of individuals to the next.
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At each generation: a given proportion of individuals in the current population is

selected to reproduce the individuals of the next population, yielding a pool of the

individuals. The selection of the individuals may be performed by random sampling or

based on their fitness value where the best solutions are typically selected. Next, a pair

of the parents are chosen from the pool previously selected obtaining a new individual

(child) by crossover and mutation. This procedure is repeated until a proportion of the

new child individuals is obtained. The crossover is a procedure from which more than

one parent solutions reproduces a child solution. There are different crossover modal-

ities, such as, the one-point crossover, two-point crossover and uniform crossover. In

the single crossover point, the child is obtained in the following way: all allele values

from beginning of chromosome to the crossover point are copied from one parent, the

remains alleles values are copied from the second parent.

Parent1 + Parent 2 = Offspring

Figure 3.1: Single point crossover.

In the two-point crossover, the allele values from beginning of chromosome to the

first crossover point are copied from one parent, the part from the first to the second

crossover point is copied from the second parent and the remains alleles values are

copied from the first parent.

Parent1 + Parent 2 = Offspring

Figure 3.2: Two-point crossover.
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In addition, it can be considered the uniform crossover where the child allele values

in the string are randomly copied from the first or from the second parent with a fixed

probability, typically 0.5.

Parent1 + Parent 2 = Offspring

Figure 3.3: Uniform crossover.

In the Mutation, the chromosome is modified in one or more alleles values compar-

atively to its initial configuration. The correspondent problem solution may change

abruptly from the previous solution. The mutation is repeatedly performed during

evolution taking into consideration a specified mutation probability, which typically

should be set low.

Example:

1 0 0 1 0 1 0 0

1 0 1 1 0 1 0 0
↓

Figure 3.4: Bit string mutation example.

The stopping criterium of the GA’s is usually the maximum number of generations to

be reached and previously specified.

In summary, the genetic algorithm comprises a genetic representation of the solution

and their a fitness function, which allows to evaluate the solution. After to define

genetic representation and the fitness function, it can be performed the initialization of

the GA where the individuals are randomly generated to construct an initial popula-
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tion. Repetitively, in each generation, it is performed the application of the selection,

mutation and crossover (genetic operators), improving the solutions in the population.

3.5 The proposed methodology

In recent years many heuristic optimization approaches have been developed, one of

the most popular being GAs. Typically, GAs evolve a population of solutions as the

result of selection, competition, and recombination. Crossover and mutation are used

to maintain a diversity of the evolving population and thus, escape from local optima.

Several GAs have been proposed for the UC problem, see e.g. [60, 5, 107, 22, 2].

As already said, GAs are a powerful stochastic global search technique as the search

is performed by exploiting information sampled from different regions of the solution

space [93]. Nevertheless, GAs usually do not perform well in fine-tuning near local

optimal solutions because they use minimum a priori knowledge and fail to exploit

local information. Local Search algorithms start with an initial solution and try to

reach an optimal solution by means of small perturbations to the current solution, that

is, the search is done within a pre-specified neighborhood. The inclusion of a Local

Search procedure into a GA often leads to substantial improvement since the “local”

improvement capabilities of the former are being combined with the “global” nature

of the GA. GAs with random keys were first introduced by [9], for solving sequencing

problems. In biased random key GAs, the bias is introduced at two different stages.

On the one hand, when parents are selected, good solutions have a higher chance of

being chosen, since one of the parents is always taken from a subset including the best

solutions. On the other hand, the crossover strategy is more likely to choose alleles

from the best parent to be inherited by offspring.

In this chapter, we propose a Hybrid Random Key Genetic Algorithm (HBRKGA),

which is an improvement of the work in [95], based on the framework proposed by

[47]. In here, we use improved decoding and repair mechanisms. The main reasons for
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using repair mechanisms are 1) to work on bounded search spaces (consisting of only

feasible solutions) and 2) to avoid the problem of choosing penalties of different nature

for each of the violated constraints [77]. In addition, and to intensify the search around

good solutions, we have incorporated a local search procedure that, as it can be seen

in the results section, has lead to better solutions. Chromosomes are represented as

vectors of randomly generated real numbers in the interval [0,1]. The vector size N is

given by the number of generating units. Each component of the vector corresponds to

a priority that is to be assigned to each generation unit. The initial population consists

of p vectors of N random keys, which are used by the decoder to generate feasible

solutions, details are provided in subsection 3.5.1. Then, each solution is evaluated

according to its corresponding total cost. Based on this cost, the population is divided

into two subsets: the elite set, consisting of the best solutions, and the non-elite set,

consisting of the remaining solutions. Solutions in the elite set are copied onto the next

generation, which also consists of two other groups of solutions: solutions generated

by crossover and new randomly generated solutions. Regarding the former they are

obtained by reproduction between a parent taken from the elite solution set and a parent

taken from the remaining solutions. Furthermore, the probability of inheriting alleles

from the elite parent is higher than that of the other parent. The HBRKGA framework

is illustrated in Figure 3.5, an adaptation from [47].

Specific to our problem are the decoding procedure, as well as the feasibility handling

procedures. The decoding procedure, that is how solutions are constructed once a

population of chromosomes is given, is performed in two main steps, as it can be seen

in Figure 3.6. Firstly, a solution satisfying unit output range and ramp rate limits for

each period is obtained. In this solution, the units are turned on-line according to

their priority, which is given by the associated random key value. Furthermore, unit

production is also set by random key value. The production values are chosen such

that the ramp rate constraints and the output range constraints are satisfied. Then, these

solutions are checked for the remaining constraints and repaired whenever necessary.
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Figure 3.5: The HBRKGA adapted framework..

3.5.1 Decoding Procedure

The decoding procedure proposed here is based on that of [95]. The output generation

levels are obtained based on the vector of random keys. Their values are computed such

that the capacity limits and ramp rate limits are ensured during the decoding phase.

Given a vector of numbers in the interval [0,1] , say RK = (r1,r2, ...,rN) , a rank vector

O= (O1,O2, ...,ON) is computed. Each ith component Oi is defined taking into account

the descending order of the RK value, i.e., Oi = ∑
N
j=1 δ(r j− ri), with

δ(x) =


1 if x≥ 0,

0 if x < 0.

Then an output generation matrix Y is obtained, where each element yt, j gives the

production level of unit j such that O j = i, i = 1, ...,N at time period t = 1, ...,T . This

amount, which is proportional to the random key value, is guaranteed to be in the

range defined by minimum and maximum allowed output limits and ramp rate limits,

as follows:

yt, j = Y min
t, j + r j.

(
Y max

t, j −Y min
t, j
)
, (3.9)
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Figure 3.6: Decoder flow chart.

where Y max
1, j = Y max j, Y min

1, j = Y min j. These limits are defined considering the unit

output generation level limits and the ramp rate limits. The procedure is given in

Algorithm 1.

At the same time that the ramp rate constraints are ensured for a specific time period

t, new output limits (Y max
t, j and Y min

t, j upper and lower limits, respectively) must be

imposed, for the following period t +1, since their value depends not only on the unit

output limits but also on the output level of the current period t. Equation (3.10) show
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Algorithm 1 Initial matrix generation output

i = 1

d = Dt +Rt

while i≤ N and d > 0 do

Find j such that O j = i

yt, j = Y min
t, j + r j.

(
Y max

t, j −Y min
t, j

)
d = d−Y max

t, j

Next i

end while

how these values are obtained.

Y max
t, j = min

{
Y max j,yt−1, j +∆

up
j

}
,

Y min
t, j = max

{
Y min j,yt−1, j−∆dn

j

}
.

(3.10)

After computing the output generation matrix Y , with the production level of each unit j

for each time period t, the generation schedule may not be admissible and therefore, the

solution obtained may be infeasible. Hence, the decoding procedure also incorporates

a repair mechanism. These repair mechanisms are described in the next section.

3.5.2 Handling infeasibilities

Since BRKGA is a generic search method, in the application of this GA to the con-

strained UC optimization problem we also include a mechanism to repair UC solutions.

The repairing procedure transforms what would be an infeasible solution into a feasible

solution. The main reason for using a repair technique in Genetic Algorithms is the

reduction of the search space to feasible solutions. Although penalty functions are the

simplest and most commonly used methods for handling constraints in Evolutionary

Algorithms (EAs), they have some limitations. The main drawback is that penalty
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factors which determine the severity of the penalization, must be set by the user and

their values are problem dependent [77]. Extensive experimentation is needed to define

appropriate parameters [76]. So, in the implementation of the BRKGA algorithm we

use an efficient solution repair technique. However, in subsection 3.7.2 we study the

effect of using penalty functions in the BRKGA implementation for the UC problem

solution. The fitness function used in BRKGA with penalty factors has two terms, the

spinning reserve and minimum up/down time constraint violation penalties. The first

term is computed from the objective function normalized, which in turn is composed

by the total production costs

f (x) =
T

∑
t=1

N

∑
j=1

(Fj(yt, j) ·ut, j +St, j · (1−ut−1, j) ·ut, j +Sd j · (1−ut, j) ·ut−1, j) ,

(see equation 3.3), while the constraint violations are penalized by second term. The

main steps in calculation the fitness measures beginning with the maximum and min-

imum values of the objective function in the population, fmax = maxx f (x), fmin =

minx f (x), from which, are obtained the normalized objective function for each indi-

vidual (random key),

f̃ (x) =
f (x)− fmin

fmax− fmin
.

The constraint violations g̃1(x) and g̃2(x) of individual x are calculated as the sum-

mation of the normalized violations of spinning reserve and minimum up/down time

constraints, respectively:

g̃i(x) =
ci(x)− ci

min

ci
max− ci

min

where ci
min = maxxci(x) and ci

max = minxci(x) represents the maximum and minimum

values of each constraint violation in the population, respectively. Here, the spinning

reserve constraint violation is given by: c1(x) = ∑
T
t=1 c1,t(x) with

c1,t(x) = max

{
0,Dt +Rt −

N

∑
j=1

yt, j ·ut, j

}
,

while the minimum up/down time constraint is obtained as follows: c2(x)=∑
N
j=1 c2, j(x)

where
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c2, j(x) =
T

∑
t=1

max
{

0,−
(
T on

j (t−1)−T on
min, j

)
· (ut−1, j−ut, j)

}
+

T

∑
t=1

max
{

0,−
(

T o f f
j (t−1)−T o f f

min, j

)
· (ut, j−ut−1, j)

}
,

is the amount of the minimum up/down time constraint violations of the jth unit.

Although the constraints are expressed in different units, the normalization prevents any

sort of bias toward of the constraints violation. Thus, no penalty factors are required.

Using the approach proposed by [23], each individual is evaluated as in equation 3.11,

Fitness(x) =


f̃ (x) if feasible

f̃worst + g̃1(x)+ g̃2(x) otherwise

, (3.11)

where f̃worst is the objective function value of the worst feasible solution in the pop-

ulation. If all solutions are infeasible in the population, then f̃worst is set to 1 as in

[86].

The repair mechanism starts by ensuring that minimum up/down time constraints are

satisfied. The adjustment of the unit status is obtained using the repair mechanism

illustrated in Figure 3.7. As it can be seen, for two consecutive periods the unit status

can only be changed if the T on/o f f
min is already satisfied, for a previously turned on or

turned off unit, respectively.

For each period, it may happen that the spinning reserve requirements are not satisfied.

If the number of on-line units is not enough, some off-line units are turned on, one

at the time, until the cumulative capacity matches or is larger than Dt +Rt , as shown

in Figure 3.8. In doing so, units are considered in descending order of priority, i.e.,

random key value. After ensuring the spinning reserve satisfaction, it may happen

that we end up with excessive spinning reserve. Since this is not desirable due to the
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1

Figure 3.7: Flowchart of Minimum up down time repair algorithm.

additional operational costs involved, we look for units that can be decommited. Units

are considered for turning off-line in ascending order of priority. At the end of this

procedure we have found the U matrix, specifying which units are being operated at

each time period, and the Y matrix, which indicates how much each on-line unit is

producing. All constraints are satisfied except, may be, the load demand. Nevertheless,

the maximum and minimum allowed production limits can be directly inferred from

matrix Y . Therefore, we must adjust the total production to satisfy load demand for

each time period. Firstly, for all on-line units the production is set to its minimum



38 CHAPTER 3. HBRKGA

   Entry Sort the units in descending
order of the random key value

n

k=k+1

k>t
y

y

n

 Exitnyn

y

Turn off unit j  
at time t  

Turn on unit j at time t

Turn on unit k at time t

j = 1

-N
i=1Ymaxiut,i

ut, j = 0

ut, j = 1

To f fj (t) > To f fmin, j
T onj (t) = Tonj (t−1)+1

To f fj (t) = 0

k = t−To f fj (t)+1

uk, j = 1

Tonj (k) = Tonj (k−1)+1
To f fj (k) = 0

j = j+1

< Dt +Rt
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allowed value. Next, for each time period, each unit is set to its maximum allowed

production, one at the time, until the production reaches the load demand value. In

doing so, units are considered in descending order of priority. This is repeated no more

than N times. It should be noticed that by changing production at time period t the

production limits at time period t + 1 change, and hence these new values, which are

obtained as in equation (3.10), must be satisfied. Once these repairing procedures have

been performed, the feasible solution obtained is evaluated through its respective total

cost.



3.5. THE PROPOSED METHODOLOGY 39

3.5.3 GA Configuration

To obtain a new population of solutions, we join 3 subsets of solutions obtained as

follows:

• Copied Solutions: 20% of the best solutions of the population of the current

generation (elite set) are copied onto the next generation;

• Mutants: 20% of the solutions of the population of the next generation are ob-

tained by randomly generating new solutions.

• Offspring Solutions: 60% of the solutions of the population of the next generation

are obtained by biased reproduction, which is achieved by using both a biased

parent selection and a biased crossover probability.

As said before, the biased reproduction is accomplished by using both a biased parent

selection and a biased crossover. Biased parent selection is performed by randomly

choosing one of the parents from the elite set and the other parent from the remaining

solutions. This way, elite solutions are given a higher chance of mating, and therefore of

passing on their characteristics to future populations. Regarding the biased crossover,

we consider a biased coin which is tossed to decide on which parent to take the gene

from. Since the coin is biased, the offspring inherits the genes from the elite parent

with higher probability (0.7 in our case).

3.5.4 Local Search

Another improvement to our previous work [95] is the inclusion of a local search

procedure. At the end of HBRKGA we use a local search procedure to try to improve

the solutions in the final elite set. This mechanism, which is illustrated in Figure 3.9,

is a 2-swap procedure, where an on-line generation unit is replaced by an off-line

generation unit, if the swap is feasible and leads to a lower cost. Given a solution
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(in the elite set) we build two sets of generation units. On the one hand, we build a set

Son containing the on-line generation units that can be turned off; on the other hand, we

build a set So f f containing the off-line units that can be turned on.

For each time period, we pick-up a pair of units, one from each of the sets built, and

analyze the feasibility of the swap. If the swap is feasible, we compare the total cost of

the new solution with that of the current solution. If an improvement can be achieved,

the swap is performed resulting in a better solution; otherwise the swap is discarded.

In both cases, we move on and try the next swap using the previously built sets, i.e.

no update to the sets Son and So f f is performed. The 2-swap strategy is repeatedly

performed until all swaps have been tried. The procedure is applied to all solutions in

the elite set. The contribution of the local search to the global solution quality can be

seen in the results provided Section 3.7.

3.6 Mixed integer quadratic programming

The UC problem can be casted as a mixed-integer nonlinear program (MINLP). Despite

the ever-increasing availability of cheap computing power and the advances in off-the-

shelf software for MINLP, solving (UC) by general-purpose software, even using the

most advanced approaches available, is not feasible when the number of units and/or

the length of the time horizon becomes large, [40].

Here and for comparison purposes we formulate the UC problem as a Mixed Integer

Quadratic Programming (MIQP) problem and solve it using the commercial software

CPLEX. To do so, we simply pass the MIQP formulation given below to CPLEX.

In order to formulate the UC problem as a MIQP model we need to introduce the

following auxiliary binary variables:

lt, j: indicates whether unit j has been started-up or not at time period t (1 if it has been

started-up; 0 otherwise);
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Figure 1: Flow chart of local search.

1

Figure 3.9: Flow chart of local search.

ht, j: indicates the cold status of the off-line unit j at time t (1 if the unit is cold; 0

otherwise);

vt, j: indicates wether unit j has had a cold start-up or not at time period t (1 if it had; 0

otherwise).

The objective function is now rewritten as

Minimize
T

∑
t=1

(
N

∑
j=1

{
a j · (yt, j)

2 +b j · yt, j + c j ·ut, j +SH, j · lt, j +(SC, j−SH, j) · vt, j
})

.

As before several constraints must be satisfied. The power balance, the spinning re-
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serve, the minimum and maximum production capacity and the ramp rate constraints

are express as before, see equations (3.4) to (3.7) in Subsection 3.2.

The minimum up time constraints are nonlinear and thus are reformulated as given in

equation (3.12).

tmax, j

∑
k=t

uk, j ≥ (ut, j−ut−1, j) · ts, j, for t ∈ {1, ...,T} and j ∈ {1,2, ...,N} . (3.12)

where

ts, j =


min

{
T on

min, j,T − t +1
}
, if t > 1 or (t = 1 and I0( j)< 0),

max
{

0,T on
min, j− I0( j)

}
, if t = 1 and I0( j)> 0,

tmax, j =


min

{
t + ts, j−1,T

}
, if ts, j > 0,

T, otherwise.

and I0( j) is the initial status of the unit j. The minimum down time constraints are also

nonlinear and thus are reformulated as given in equation (3.13).

tmax, j

∑
k=t

(
1−uk, j

)
≥ (ut−1, j−ut, j) · ts, j, for t ∈ {1, ...,T} and j ∈ {1,2, ...,N} . (3.13)

where

ts, j =


min

{
T o f f

min, j,T − t +1
}
, if t > 1 or (t = 1 and I0( j)> 0),

max
{

0,T o f f
min, j + I0( j)

}
, if t = 1 and I0( j)< 0,

tmax, j =


min

{
t + ts, j−1,T

}
, if ts, j > 0,

T, otherwise.

Given the newly defined variables, we need to define the following new constrains:

lt, j ≥ ut, j−ut−1, j, for t ∈ {1,2, ...,T} and j ∈ {1,2, ...,N} . (3.14)
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vt, j ≥ lt, j +ht−1, j−1, for t ∈ {1,2, ...,T} and j ∈ {1,2, ...,N} . (3.15)

with

h0, j =


1, if I0( j)< 0 and T o f f

min, j +Tc, j <−I0( j),

0, if I0( j)> 0 or T o f f
min, j +Tc, j ≥−I0( j)

ht, j≥ 1−
t

∑
k=tmin, j

uk, j−δ(ta j−t).δ(ta j+I0( j)−t), for t ∈{1,2, ...,T} and j∈{1,2, ...,N} .

(3.16)

where

δ(x) =


1, if x > 0

0, if x≤ 0,

and

tmin, j =


t− ta j, if t > ta j

1, otherwise ,

with ta j = T o f f
min, j +Tc, j +1.

Constraints (3.14) guarantee that unit j has been started at time t only if it is on at time

t and has been off at time t−1. In equation (3.15) it is assured that the cold start costs

are only paid if unit j is cold and has been just started. Finally, constraints (3.16) state

that unit j is cold at time t if and only if it has not been started for at least T o f f
min, j time

periods.

CPLEX can be attractive in many situations since in addition to its robustness, it also

allows for the incorporation of other constraints [40]. However, since for solving

problems with integer variables CPLEX uses a Branch-and-Cut algorithm, it ends up

solving a series of continuous subproblems. To these subproblems cuts must be added,

on fractional-valued variables in the solution to the subproblems, in order to generate
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new subproblems with more restrictive bounds on the branching variables. Thus, a

single mixed integer problem is decomposed into many subproblems. Therefore, even

small sized problems require significant amounts of time and physical memory to be

solved. Furthermore, CPLEX cannot cope with more general cost functions, such as,

for example, exponential start-up costs, as is the case of the problems in case study 5,

first proposed by [115] and [8].

3.7 Numerical Results

In this subsection, we report on the results obtained with the proposed HBRKGA. In

addition, we also report on the results obtained without using the local search, here

referred to as BRKGA. It should be noticed that the parameters are the same for both

algorithms. Due to the stochastic nature of the methods proposed each problem was

solved 20 times. Both GAs were implemented in Matlab. The proposed approaches

have been tested on 5 different benchmark UC case studies. Some of the case studies

include several problem instances, while others include only one. Amongst the case

studies considered, we single out case study 1, since the problems in it are the ones that

have been consistently considered in the literature and thus solved by many different

methods and authors.

3.7.1 GA parameters setting

The present state-of-the-art theory on GAs does not provide information on how to

configure the parameters involved in the algorithm. Therefore, the values used in our

computational experiments have been taken from the guidelines provided in [30, 47],

as well as, from past experience [95].

Computational experiments with different values for the crossover probability, the num-

ber of generations, and the population size were conducted on the problem with 40
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Table 3.1: Average cost for the 40-unit system (case study 1) for different crossover

probability values.

Pc Best Average Worst Average−Best
Best % Worst−Best

Best %

0.5 2244466 2245409 2246047 0.04 0.07

0.6 2244312 2245388 2247529 0.05 0.14

0.7 2244345 2245350 2245775 0.04 0.06

0.8 2244347 2245432 2246957 0.05 0.12

0.9 2244354 2245476 2246566 0.05 0.10

generations units given in case study 1.

The biased crossover probability was tested on the range 0.5≤ Pc ≤ 0.9 with a step size

of 0.1, as suggested in previous work [95]. These 5 values were tried for 5 different

populations sizes (Np = N, 2N, 3N, 4N, and 5N).

Regarding the number of generations, it was set, for test purposes, to a sufficiently large

number (NGers = 20N), which soon became apparent to be too large, and thus reduced

to 10N, see Figure 3.12. From these combinations we realized that a good compromise

would be achieved for a Pc = 0.7 and Np = 2N, as it can be seen in figures 3.10 and

3.11.

To illustrate the algorithm behavior in Table 3.1 we give the results obtained for varying

Pc values with Np = 2N and NGers = 10N. We chose the value 0.7 since to this value

corresponds the best performances with lower variability. (Note that a better best

solution was found using 0.6.)

Regarding the population size Np, as it can be seen from Figure 3.13, the solution

quality is continuously and marginally improved with the population size while the
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Figure 3.10: Best cost for the 40-unit system (case study 1) by crossover probability

and population size.

computational time increase is almost linear. A trade-off analysis between the solution

quality and the computation time lead us to set Np = 2N.

In summary, we have set the number of generations to 10N, the crossover probability

to 0.7, and the population size to 2N.

In the subsections 3.7.3 to 3.7.7 we compare the results obtained by BRKGA and

HBRKGA with the best results reported in the literature. Furthermore, we have used

CPLEX (version 12.1) to obtain an optimal solution and thus find out how close our

results are to the optimum. Nevertheless, such comparisons are only possible for
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Figure 3.11: Average cost for the 40-unit system (case study 1) by crossover probability

and population size.

small sized problems, since CPLEX is unable to solve larger problems due to the huge

memory requirements. In addition, CPLEX cannot handle problems in case study 5,

since the start-up costs are an exponential function of the number of hours that unit has

been down.

3.7.2 Comparison of BRKGA with and without penalty function

As already said, the BRKGA algorithm incorporates a repair procedure to ensure that

the population consists feasible solutions only. However, as discussed in Section 3.5.2,



48 CHAPTER 3. HBRKGA

 2.24e+006

 2.26e+006

 2.28e+006

 2.3e+006

 2.32e+006

 2.34e+006

 2.36e+006

 2.38e+006

 0  100  200  300  400  500  600  700  800

C
o
s
t
 
(
$
)

Generations

Figure 3.12: Average cost for the 40-unit system (case study 1) by generation.

many authors incorporate penalties into the fitness function to lead the search away

from infeasible solutions; see [76, 107]. Thus, in this section we provide computational

evidence regarding the better performance achieved by using the aforementioned repair

mechanism.

Let us consider five variations of the GA proposed in this chapter, all considering

penalty functions to address some of the possible violations. (See Section 3.5.2 for

details on how to incorporate the penalty terms into the objective function.) In the

first version BRKGAP1 penalty functions are associated used both with the spinning

reserve and minimum up/down time constraint violations, while the load constraints are

ensured. Two other versions have been tested, BRKGAP2 and BRKGAP3 considering a

penalty function regarding either the minimum up/down time or the spinning reserve

violations, respectively. The remaining constraints are ensured by the corresponding

repair mechanisms. For these 3 versions, the penalty strategy has been used for all

generations. Finally, the other 2 versions, BRKGAP4 and BRKGAP5 are defined in the

same manner as BRKGAP2 and BRKGAP3. The only difference being that for the later



3.7. NUMERICAL RESULTS 49

 2.2451e+006

 2.2452e+006

 2.2453e+006

 2.2454e+006

 2.2455e+006

 2.2456e+006

 2.2457e+006

 2.2458e+006

 50  100  150  200  250  300  350

A
v
e
r
a
g
e
 
c
o
s
t
 
(
$
)

Average time (s)

5N

4N

3N

2N

N

Figure 3.13: Average cost and computational time for the 40-unit system (case study

1) for different population sizes.

the penalty strategy is only applied in the first NGers
2 generations. For the remaining

iterations, feasibility is enforced by applying the full repair procedure.

The simulation given in Appendix A. In Table 3.2 the best cost (if there are feasible

solutions) or minimum number of violated constraints (if all solutions are unfeasible)

and the execution time of the different BRKGA versions are reported. The results show

that in all cases the BRKGA with repair procedure and without penalties in fitness

function produces feasible solutions and better results for operating costs. This shows

the BRKGA method superiority over the other possible versions using penalty function

approach.

3.7.3 Case study 1

The HBRKGA and BRKGA have been tested on a set of often used benchmark prob-

lems, involving systems with 10 up to 100 generation units and considering, in each
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Table 3.2: BRKGA performance using penalty functions.

BRKGAP1 BRKGAP2 BRKGAP3

Operation Minimum number of Execution Operation Minimum number of Execution Operation Minimum number of Execution

cost($) violated constraints time (sec) cost($) violated constraints time (sec) cost($) violated constraints time (sec)

10 – 2 2.0 – 2 2.0 564248 0 2.1

20 – 4 9.5 – 4 9.5 1124664 0 17.8

40 – 9 79.1 – 9 83.4 2261312 0 90

60 – 8 153.9 – 8 184.7 3379080 0 188.9

80 – 14 259.8 – 14 301.1 4526756 0 321.5

100 – 15 929.9 – 15 1023.4 5662325 0 1050.3

BRKGAP4 BRKGAP5 BRKGA

Operation Minimum number of Execution Operation Minimum number of Execution Operation Minimum number of Execution

cost($) violated constraints time (sec) cost($) violated constraints time (sec) cost($) violated constraints time (sec)

10 564248 0 2.2 564248 0 2.2 564248 0 2.2

20 1169174 0 9.5 1169174 0 9.5 1124664 0 12.8

40 2245894 0 97.8 2261356 0 91.4 2244492 0 86.8

60 3365632 0 199.8 3379196 0 193.6 3365026 0 276.4

80 4487183 0 341.4 4522936 0 324.5 4486833 0 630.8

100 5607858 0 1094.8 5658642 0 1088.2 5607288 0 1258.7

case, a scheduling horizon of 24 hours. The 10 generation unit system, the base case,

was originally proposed by [60].

Problem instances involving 20, 40, 60, 80 and 100 units are obtained by replicating

the base case system and the load demands are adjusted in proportion to the system

size. In all cases the spinning reserve is kept at 10% of the hourly demand. The start up

costs have one of two possible values depending on the number of time periods the unit

has been off, as given in equation (3.2). These values are different for each generation

unit. The shut down costs are disregarded. Details of how these benchmark problems

were constructed and on the system and demand data can be found in [60].

For the problems in this case study, CPLEX was able to find an optimal solution to
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Table 3.3: Comparison of the best results obtained by the BRKGA and the HBRKGA

with the best ones reported in literature, for problems of case study 1.

CPLEX HBRKGA

Size IPSO IQEA QEA ICA BRKGA HBRKGA MIQP Rank Gap(opt) Gap(best)

10 563954 563977 563938 563938 564248 563938 563938 1st 0 0

20 1125279 1123890 1123607 1124274 1124664 1123955 1123297 3rd 0.06 0.03

40 2248163 2245151 2245557 2247078 2244492 2244345* 2242634 1st 0.08 -0.04

60 3370979 3365003 3366676 3371722 3365026 3363804 – 1st – -0.04

80 4495032 4486963 4488470 4497919 4486833 4485197 – 1st – -0.04

100 5619284 5606022 5609550 5617913 5607288 5605933 – 1st – -0.002

* Recall that this is the best known solution, although it may not be an optimal solution.

systems involving 10 and 20 units. For problems with 40 units, we report on the best

solution found by CPLEX before it crashed due to the excessive memory requirements.

However, although the solution is not optimal, it is the best solution found so far. In

tables 3.3 to 3.5 we compare the results obtained (best, average, and worst) with the best

former results (in italic) obtained amongst the many publish methods. The best current

solution, excluding the CPLEX one, is given in bold, for each of the problems. In the

last column, we report on the gap between the HBRKGA solution and the previously

best known solution. It should be noticed that whenever the HBRKGA produces a

solution which is better than the best currently known solution the gap is negative. In

Table 3.3 we also report on the optimality gap for the smaller problem instances, since

for these we have the optimal solution value (provided by CPLEX). The results used

for comparison purposes have been reported in: IPSO - [133]; IQEA - [56]; QEA -

[64]; ICA - [48].

As it can be seen in Table 3.3, for all problem instances, except one, our best results im-

prove upon the best previously known results. Moreover, for the problem instances for

which an optimal solution has been found by CPLEX it can be seen that the HBRKGA

has been able to find an optimal solution in one case, while in the other case the solution

found is within 0.06% of optimality. By comparing the HBRKGA with the BRKGA,
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Table 3.4: Comparison of the average results obtained by the BRKGA and the

HBRKGA with the best average ones reported in literature, for problems in case study

1.

HBRKGA

Size IQEA QEA BRKGA HBRKGA Rank Gap(%)

10 563977 563969 564445 564062 2nd 0.02

20 1124320 1124689 1124846 1124213 1st -0.01

40 2246026 2246728 2245820 2245350 1st -0.03

60 3365667 3368220 3366053 3365201 1st -0.02

80 4487985 4490128 4488303 4487620 1st -0.01

100 5607561 5611797 5607902 5607024 1st -0.01

Table 3.5: Comparison of the worst results obtained by the BRKGA and the HBRKGA

with the best worst ones reported in literature, for problems in case study 1.

HBRKGA

Size IPSO IQEA QEA BRKGA HBRKGA Rank Gap(%)

10 564579 563977 564672 565689 564737 4th 0.135

20 1127643 1124504 1125715 1126273 1125048 2nd 0.048

40 2252117 2246701 2248296 2246797 2245775 1st -0.04

60 3379125 3366223 3372007 3367777 3366773 2nd 0.016

80 4508943 4489286 4492839 4489663 4488962 1st -0.01

100 5633021 5608525 5613220 5609537 5608559 2nd 0.001

which already improves upon some of the previously known best solutions, we can see

that the local search is always effective since the HBRKGA is always better than the

BRKGA. And the improvement ranges from 0.007% to 0.063%. Although these values

are small their impact may be very relevant given that they refer to a multi-million dollar

industry.

Regarding the average results we have also improved on all but one of the problem
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Table 3.6: Analysis of the variability of the solution quality for problems in case study

1.

Size Average−Best
Best % Worst−Best

Best % St. deviation(%)

HBRKGA IQEA QEA HBRKGA IPSO IQEA QEA HBRKGA IQEA QEA

10 0.02 0.0 0.005 0.14 0.11 0.0 0.13 0.03 0.0 0.02

20 0.02 0.04 0.09 0.1 0.21 0.05 0.19 0.03 0.01 0.06

40 0.04 0.04 0.05 0.06 0.18 0.07 0.12 0.02 0.02 0.02

60 0.04 0.02 0.05 0.09 0.24 0.04 0.16 0.02 0.01 0.03

80 0.05 0.02 0.04 0.08 0.31 0.05 0.1 0.02 0.01 0.02

100 0.02 0.03 0.04 0.05 0.24 0.04 0.07 0.01 0.01 0.02

instances solved, when compared with the best previously known results, see Table 3.4.

In Table 3.5 similar results are reported for the worst solutions. Again, we improved

upon the best previous results. The results reported in these tables also show that the

local search incorporation is effective, since the HBRKGA improves upon the BRKGA.

Another important feature of the proposed algorithm is that, as it can be seen in Table

3.6, the variability of the results is quite small. The difference between the worst and

best solutions found for each problem is always below 0.14%, while if the best and the

average solutions are compared this difference is never larger than 0.05%. This allows

for inferring the robustness of the approach, which is very important since the industry

is reluctant to use methods with high variability as this may lead to poor solutions being

used. When compared to the robustness of the alternative methods, it can be seen that

it is better than that of the IPSO and QEA and almost the same as that of the IQEA.

Regarding the computational time, no exact comparisons may be done since, on the one

hand, the values are obtained on different hardware; on the other hand, the HBRKGA

reported time is real time and not CPU time and thus it is not directly comparable with

others reported in the literature. Our computational experiments were performed on
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Table 3.7: Analysis of the execution time, for problems in case study 1.

Size IPSO IQEA QEA ICA BRKGA HBRKGA CPLEX

10 142 15 19 48 2 2 45

20 357 42 28 63 13 14 401

40 1100 132 43 151 87 90 1489

60 2020 273 54 366 276 301 –

80 3600 453 66 994 631 712 –

100 5800 710 80 1376 1259 1503 –

a Xeon X5450, 3.0 GHz and 4.0 GB RAM. This is a shared machine and therefore

several jobs are usually running in parallel. Nevertheless, in Table 3.7 we report

on our computational time requirements as well as on the ones of the works used

for comparison purposes. It should be noticed that the results reported for the IPSO

may not be accurate, since the authors only provide them in a graphical form. These

results are also provided graphically in Figure 3.14. As it can be seen, the IPSO has

computational time requirements much larger than the other methods. On the contrary,

the QEA is the fastest method. The other three methods have a similar behavior in what

concerns computational requirements. Therefore, the HBRKGA has an intermediate

performance, regarding computational time, which does not seem to be a big price to

pay for the increased solution quality. Recall that, as seen in Table 3.3, the HBRKGA

provides the best solution for all but one of the problems analyzed in this case study.

When we analyze the computational time in a logarithmic scale, see the graph in Figure

3.15, a favorable conclusion regarding our algorithms can be drawn. The growth of all

the other algorithms is closer to a line in the log scale, meaning that the time increase

with problem size is closer to an exponential growth. In contrast, our algorithms have

concave growth, in the log scale, meaning that the time increase is subexponential.
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Figure 3.14: Computational time requirements for the methods being compared, for

problems in case study 1.

3.7.4 Case study 2

Case study 2 consists of a single real problem instance, the Taipower system, which

comprises the scheduling of 38 units for a time horizon of 24 hours. This problem

was first proposed by [53]. The start up costs are constant, not necessarily different

for all units, while the shut down costs are disregarded. The spinning reserve is set

to 11% of hourly load and ramp rate constraints are also taken into consideration.

The characteristics of the thermal units, the load demand, and the specific conditions

of the problem are given in [53]. This specific problem has not been considered by

many authors doing research of the UC problem. Thus, our approach is compared

with the four approaches proposed in [53] which are based on dynamic programming

(DP), Lagrangian Relaxation (LR), Simulated Annealing (SA), and Constraint Logic

Programming (CLP) and also with a GA (MRCGA) recently proposed by [107]. In

addition, we also compare our solutions to the solution obtained by CPLEX. This
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Figure 3.15: Computational time requirements for the methods being compared, for

problems in case study 1.

solution may not be optimal since CPLEX has not ran to the end due to the excessive

memory requirement. However, we report on the best solution found, before it crashed,

and on the time it took to find such a solution for the first time.

Both the BRKGA ad the HBRKGA improve upon the best known solutions, for all

cases (best, average, and worst). Again the local search has proved to be effective since

in all cases the HBRKGA obtains better solutions than the BRKGA. The computational

times are not a concern since the method that takes longer (the DP by [53]) takes just

over 3 minutes.

3.7.5 Case study 3

Case study 3 also consists of a single real problem. This problem is a 26-generator

system which has to be scheduled for a 24-hour period. Only start-up costs are consid-

ered and they are constant, not necessarily the same for all units. The spinning reserve
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Table 3.8: Comparison of the results obtained by the BRKGA and the HBRKGA with

the best ones reported in literature, for problems in case study 2.

Size DP LR CLP MRCGA BRKGA HBRKGA CPLEX

Best 215.2 214.5 213.8 206.7 206.0 205.3 203.6

Average – – – 207.4 206.5 206.1 –

Worst – – – 208.0 207.1 206.7 –

Gap(%) 5.7 5.4 5.0 1.5 1.2 0.83 –

St.deviation(%) – – – – 0.19 0.22 –

Av.Time(s) 199 29 17 45.6 84.7 102.6 1963.9

requirement is set at 400MW for each time period. The system and demand data can be

found in [119], as well as, the conditions used in the computational experiments. We

compare the solution quality obtained by the BRKGA and by the HBRKGA with that a

fuzzy mixed integer Linear Programming proposed in [119]. For this problem, we were

able to find an optimal solution by using CPLEX. As it can be seen in Table 3.9, both

the BRKGA and the HBRKGA improve on the previously best known results. Again

the use of the local search allowed for obtaining an improved solution. Furthermore,

the best solution obtained by the HBRKGA is very close to an optimal solution. Thus,

CPLEX cannot be considered a better alternative when compared with the HBRKGA

since, the latter obtains a solution within 0.26% of optimality, being about 21 times

faster.

3.7.6 Case study 4

The problem addressed in this case study comprises 45 units over a planning horizon

of 24 hours. The system data and the load demand can be found in [5]. The spinning

reserve is set to 10% of the load demand at every hour. Both the start-up and the

shut-down costs are constant, not necessarily the same for all units. Table 3.10 shows

the best solutions know so far, obtained in [5] from three versions of a GA: global
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Table 3.9: Comparison of the results obtained by the BRKGA and the HBRKGA with

the best ones reported in literature, for problems in case study 3.

Size FMILP BRKGA HBRKGA CPLEX

Best 722388 722260 721197 719314

Average – 722283 721202 –

Worst – 722410 721212 –

Gap (%) 0.43 0.41 0.26 –

St.deviation(%) – 0.01 0.01 –

Av.Time(s) 25.5 24.3 29.6 642

parallelization (GP), which uses a parallel implementation of the repair algorithm,

coarse-grained parallel genetic algorithm (CGPGA), which evolves several populations

independently, one on each processor, and hybrid parallel genetic algorithm (HPGA),

which combines both previously parallelizations. In addition, our best, average and

worst solutions, for both the BRKGA and the HBRKGA, are reported. The methods

here proposed improve on the best known solution by 0.22%. For this problem the local

search was not effective, since the cost of the best, average, and worst solutions are the

same for HBRKGA and the BRKGA. It should be notice that CPLEX was unable to

provide any solution for this problem due to its size.

Table 3.10: Comparison of the results obtained by the BRKGA and the HBRKGA with

the best ones reported in literature, for problems in case study 4.

Size GP CGPGA HPGA BRKGA HBRKGA

Best 1034472374 1032472928 1032415327 1030145017 1030145017

Average – – – 1030722315 1030722315

Worst – – – 1034934856 1034934856

Gap (%) 0.42 0.23 0.22 0 –

St.deviation(%) – 0.14 0.14

Av.Time(s) 80.6 847.1 658.4 115.6 147.3
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Regarding the computational time, although our approaches have not been implemented

in parallel, they are faster than the approach producing the best former results.

3.7.7 Case study 5

Case study 5 consists of two different problems both considering exponential start-up

costs. This type of cost are more realistic and although several authors mention this

fact, most end up using constant cost or otherwise approximating them by a piecewise

linear function.

Both problems in this case study involve the scheduling of 10 units over a 24-hour time

horizon. In both cases the shut-down costs are disregarded.

In the first problem, the spinning reserve is set to 10% of the hourly load demand. All

problem data in given in [115], where it has been first proposed. The start-up costs are

computed as:

St, j = b0.
(

1−b1.e−b2t
)
. (3.17)

This problem has been addressed in [117], where an optimal solution has been found

by using dynamic programming. The authors also propose approximate methods to

address this problem: a Lagrangian Relaxation (LR), a genetic algorithm (GA), a

memetic algorithm (MA), and a method combining both the LR and MA (LRMA).

In Table 3.11, we report the results published in [117], as well as, the results obtained

by our approaches. As it can be seen, we are able to obtain a good solution (with a

0.51% optimality gap), which is better than that of the GA, the MA, and the LRMA

proposed in [117]. However, the LR was able to find a better solution. Regarding

computational time, our methodologies are much better, being up to 53 times faster.

For this problem, it happens again that the local search does not help in finding a better

solution.
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Table 3.11: Comparison of the results obtained by the BRKGA and the HBRKGA with

the best ones reported in literature, for the first problem of case study 5 problem 1.

Size DP[117] LR [117] GA [117] MA[117] LRMA [117] BRKGA IBRKGA

Best 59478 59485 59882 59788 59892 59779 59779

Average – 59486 60364 60271 59936 59836 59834

Worst – 59491 60977 60838 60100 60102 60091

Gap (%) – 0.01 0.68 0.52 0.7 0.51 0.51

St.deviation(%) – 0.004 0.74 0.65 0.123 0.11 0.11

Av.Time(s) 207 55 209 161 128 3.9 4.7

The second problem in this case study has been proposed in [8], where the problem data

can be found. The spinning reserve requirements are specified for each time period and

vary between 6.47% and 11.35%. Regarding the start-up costs, they are exponentially

dependent on the number of time periods during which the unit has been off. The data

is given in tables A.19 and A.20 in subsection A.5.2.

The start-up costs are given as follows:

St, j = b0.

(
1− e−

max(0,−T o f f
j (t))

b2

)
+b1. (3.18)

More recently, other authors have addressed this problem. In Table 3.12, we compare

our results with the ones obtained by the LR due to [8], and the recently proposed

heuristics: DP - [117]; MA - [117]; FPGA - [22].

As it can be seen, neither the more recently proposed heuristics nor our algorithms

were able to improve on the best known results, found by the LR due to [8]. Regarding

the quality of the average and of the worst solutions, the HBRKGA is the method

that provides the best results. It should be noticed that the BRKGA also presents

better average and worst results than the other heuristics. Therefore, the BRKGA and

the HBRKGA methods present solutions with the lowest variability. Moreover, the

BRKGA and HBRKGA average execution times are much shorter than those of the
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Table 3.12: Comparison of the results obtained by the BRKGA and the HBRKGA with

the best ones reported in literature, for the second problem in case study 5.

Size DP LR MA FPGA BRKGA HBRKGA

Best 540904 540895 541108 541182 542068 541918

Average – – 545591 542911 542508 542372

Worst – – 549290 545572 543377 543301

Gap (%) 0.002 – 0.04 0.05 0.21 0.19

St.deviation(%) – – 0.61 0.27 0.1 0.11

Av.Time(s) 255 59 101 – 5.9 7.3

other methods, the HBRKGA being up to 43 times faster than the DP heuristic. For

this problem the local search is effective, since the HBRKGA solution quality is better

for all solution types.

3.8 Conclusions

Biased Random Key GAs have been developed for and applied to several combinatorial

optimization problems with interesting results. Given this empirical evidence, see [47],

we previously proposed such an algorithm for the unit commitment problem [95].

The results obtained suggested that such an approach would worth while of further

investigation. Therefore, in this chapter, we propose a Biased Random Key Genetic

Algorithm with Local Search to address the unit commitment problem. In addition, we

have improved the decoding and repair procedures used within the GA.

The new algorithm has been tested on a set of UC benchmark problems commonly

used and other UC problems found in the literature. The results reported here, show

that the proposed method outperforms the current state-of-the-art methods available.

For all problem instances, but two, we have been able to find better results then the

best results found so far. In addition, these better solutions have been found with
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computational time requirements, typically, smaller or of the same magnitude than that

alternative methods. Furthermore, the results show a further very important feature,

lower variability. It should be noticed that the difference between the best and the

worst solutions is always below 0.14%, while the difference between the best and the

average solutions is always below 0.05%, for the most commonly used problems (case

study 1). This is very important since the methods to be used in industrial applications

are required to be robust, since otherwise they may lead to poor solutions being used.



Chapter 4

A Genetic Algorithm approach to

the Unit Commitment Problem:

the multi-objective case

Given the increasing public awareness of environmental impacts, governments have

made regulation on pollutants more stringent. Since fossil-fuelled power plants are

one of the main contributors to the emission of greenhouse gases to the atmosphere,

such concerns are having a significant impact on the operation of power systems.

Therefore, the Unit Commitment Problem (UCP), which traditionally minimizes the

total production costs, needs to consider the pollutants emissions as another objective

in order to address this concern. This way, the UCP becomes a multiobjective prob-

lem with two competing objectives. The approach proposed to address this problem

combines a Biased Random Key Genetic Algorithm (BRKGA) with a non-dominated

sorting procedure. The BRKGA encodes solutions by using random keys, which are

represented as vectors of real numbers in the interval [0,1]. The non-dominated sorting

procedure is then employed to approximate the set of Pareto solutions through an

evolutionary optimization process. Computational experiments have been carried out

63
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on benchmark systems with 10 up to 100 generation units for a 24 hours scheduling

horizon. The results obtained show the effectiveness and efficiency of the proposed

BRKGA to find good solutions to the multiobjective UCP. The diversity and well-

distribution characteristics of the non-dominated solutions obtained are demonstrated.

Furthermore, from the comparison with alternative multiobjective methods it is shown

that the method proposed obtains better results in most cases.

4.1 Introduction

During the last few decades the rapid growth in the use of fossil fuels has led to the

emission of a large amount of atmospheric pollutants, that are continuously released

into the environment. The increased public awareness regarding the harmful effects of

atmospheric pollutants on the environment, as well as the tightening of environmental

regulations have forced power utilities to search for different operational strategies.

These new strategies must lead to a reduction in pollution and environmental emissions.

Thus, power utilities look for solutions that in addition to be cost effective must also

be pollution concerned. The power system generation scheduling is composed of two

tasks [111, 117]: On the one hand, one must determine the scheduling of the turn-

on and turn-off of the thermal generating units; on the other hand, one must also

determine the amount of power that should be produced by each on-line unit (the

latter is also known as economic dispatch) for a specific time horizon. In the Unit

Commitment Problem (UCP), such decisions are made simultaneously and in order

to minimize the total operating costs. Here, however, and due to the aforementioned

environmental concerns, one also wants to minimize the pollutant emissions originated

by such production. The Combined economic-environmental UCP, addressed here,

considers both optimization problems simultaneously, and optimizes both the cost and

the pollutant emissions, resulting in what is known as a multiobjective optimization

problem.
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Several methods have been reported in the literature over the years to address Envi-

ronmental/Economic Dispatch (EDD) problem, but not so much to the environmen-

tal/economic unit commitment (EEUC) problem. For the latter problem, very few

multiobjective approaches, not converting the problem into a single objective one, have

been reported. The majority of the studies concerning emission constraints are on

the economic dispatch problem, deciding only the power contribution of each thermal

unit, but not deciding on which units should be committed for generation at each hour.

This problem has been addressed for many years, one of the first papers being that

of [42]. For the sake of completion, here are provided several of the most recently

proposed heuristics (for the EED), see e.g., [28, 131] for genetic algorithms, [72, 80]

for Harmony Search Algorithms, [80, 55] for Differential Evolution Algorithms, [103]

for Gravitational search Algorithms, [20, 132, 49] for particle swarm optimization

Algorithms, and [84, 83] for bacterial foraging Algorithms.

However, to obtain an optimal solution, it is important to consider not only the output

generation level of each generating unit but also and simultaneously the turn on/off

schedule, due to start-up costs/emissions that have significant influence in the problem

solution. The account of environmental factors in the unit commitment problem did not

receive as much attention as in the economic dispatch problem. However, the recent

advent of carbon dioxide trading in the European Union has renewed interest in the

environmentally constrained unit commitment problem. The environmental concerns

have been incorporated into the unit commitment problem in two ways, namely: as a

constraint and as an objective. In the latter case, some authors still treat the problem

as a single objective problem by combining the two objectives into one, while others

address it as a bi-objective problem and thus look for non-dominated solutions.

In some studies, see e.g., [124, 130], the UCP is addressed considering emission con-

straints. In the aforementioned works, Lagrangian relaxation based algorithms have

been proposed. The authors in [124] propose a augmented Lagrangian relaxation,

where the system constraints, e.g., load demand, spinning reserve, transmission ca-
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pacity and environmental constraints, are relaxed by using Lagrangian multipliers, and

quadratic penalty terms associated with system load demand balance are added to the

Lagrangian objective function. At each iteration, the quadratic penalty terms are lin-

earized, around the solution obtained at the previous iteration, and the resulting problem

is decomposed into N subproblems. The corresponding unit scheduling subproblems

are solved by dynamic programming, and the economic dispatch is solved by a network

flow algorithm.

The authors in [128] provide a series of mixed-integer programming models for the

EEUC problem. The models incorporate the costs and emissions in different ways:

minimize emissions only, minimize emissions subject to cost limit constraints, min-

imize costs subject to emission constraints, minimize costs including emissions al-

lowance value with and without emission limits. These models are then linearized

by resorting to piecewise linear functions the use of binary variables. The resulting

models are solved by using a branch-and-bound MILP solver developed by Zhejiang

University. In this type of methods, one objective is optimized, while the remaining

objectives are constrained to some limit. One advantage of this type of methods is

that it is possible to achieve efficient solutions in a non-convex Pareto-front by varying

the limits imposed; this is also a drawback since it involves the choice of appropriate

bounds for the constraints. The computational time requirements tend to be too large

since many runs must be performed and in addition, the UCP is a NP-hard problem.

The UCP considering emissions as a second objective function but combined with the

main objective function (operating costs) has been addressed by several authors and

approaches. In [63] the authors combine the objectives functions using a weighting

factor and use a Lagrangian-relaxation-based algorithm. The authors in [87] use a

price penalty factor, defined as the ratio between maximum fuel cost and maximum

emission of corresponding generator, to blend the emission with fuel costs. Since the

solution procedure proposed relies on an exhaustive enumeration (generates all possible

possible combinations of the generator units status), it guarantees the optimality of the
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solution. However, it is only feasible for small sized problem instances (it has been

tested on a 5 units system). This problem is also addressed in [88], where the authors

propose several techniques, namely: genetic algorithms, evolutionary programming,

particle swarm optimization, and differential evolution. Although the authors compare

the results obtained with the four techniques, it was not possible to draw any strong

conclusions about regarding the techniques efficiency and effectiveness since only two

problem instances have been solved. In [18] the UCP with three conflicting functions

such as fuel cost, emission and reliability level of the system is considered. These

functions are formulated as a single objective function using the fuzzy set theory. A

binary real coded steps Artificial Bee Colony algorithm is proposed, where the binary

coded ABC is used to determine the generation units status and the real coded ABC

is used to determine the production of the on-line units. The disadvantage of such

approaches is that they do not allow for obtaining a set of solutions with a tradeoff

between costs and emissions, since an apriori compromise is defined. In the [129], an

approach based on the convex combination of the objective functions, the weighting

factor are then varied between 0 and 1. The problem version address only considers

constraints on load, spinning reserve, and output limits. The solution procedure is based

on the decommitment approach, i.e., it starts by that all units are turned on and then

it decommits units one at the time, based on cost savings and on emissions reduction.

A single problem instance with 10-units has been solved. This type of approaches has

several disadvantages: a uniform spread of weight parameters, in general, does not

produce a uniform spread of points on the Pareto-front; Non-convex parts of the Pareto

set cannot be reached by minimizing convex combinations of the objective functions;

Implies a considerable computational burden since several runs are needed, as many

times as the number of desired optimal solutions. Other authors have combined the

last two strategies, i.e. combining the two objective functions and imposing con-

straints on the achievable values for one or both objectives, in order to try to overcome

their drawbacks. Catalão et al. [16, 17] address the multi-objective unit commitment

problem considering cost and emission objective functions. The authors propose an
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approach based on Lagrangean relaxation, which combines the weighted sum method,

using a convex combination of the objective functions, with the ε-constraining method,

constraining the objectives to be within pre-specified threshold levels. The approach

was tested on a case study with 11 thermal units and a scheduling time horizon of 168

hours and the results reported demonstrated it to be fast and efficient. This approach has

then extended , in [15] to the profit-based unit commitment problem also considering

environmental concerns. The main difference between these two problems is that in

the former rather than minimizing costs one is interested in minimizing the difference

between the costs and the profit. A ratio of change parameter, previously introduced in

[14], is computed in order to find the best compromise solution amongst the Pareto-

optimal set. This ratio allows infer on relation between the percentage amount of

decrease in profit and the corresponding percentage amount of decrease in total emis-

sion. The corresponding gradient angle, which is also computed, indicates wether the

percentage decrease in the total emissions is small for a significant percentage decrease

in total profit (small gradient values) or vice versa.

Current research is directed to handle both objectives simultaneously as competing

objectives rather than somehow convert the multiobjective problem into a single ob-

jective problem. Despite that multi-objective evolutionary algorithms (MOEAs) can

be efficiently used to eliminate most of the difficulties of classical methods, as far

as the authors are aware of, only three such methods have been applied to the envi-

ronmental/economic unit commitment (EEUC) problem. The author in [113] propose

a method combining Non-dominated Sorting Genetic Algorithm-II (NSGA-II) with

problem specific crossover and mutation operators. The initial population is obtained

by randomly generating the units status (binary matrices) except for one solutions that

is obtained through a Priority list. The power dispatch is obtained by using the lambda-

iteration method. Parents are randomly chosen from a pool, formed using binary

tournament, and the offspring is obtained by applying window crossover. Mutation

is applied using swap window and window operators. Then the NSGA-II principle
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is used to form the next generator. The authors have one problem instance with 60

generating units. This work has then been improved in [112], since problem specific

binary genetic operators are used for the unit status matrix (commitment matrix) and

real genetic operators are used for the power matrix thus exploring the binary and

real spaces separately. The authors also use two different crossover procedures, one

to evolve the commitment matrix and another to evolve the power matrix. The way

feasibility is handled is also different. Solution feasibility is regarding power demand

is ensured through a repair mechanism. The violation of other constraints results in

a violation penalty, that if below a certain threshold is ignored. The same problem

was solved and in the latter work the Pareto-front obtained has many more solutions.

In [71] a memetic evolutionary algorithm is proposed. This algorithm is an extension

of the well know NSGA-II: non-dominated sorting genetic algorithm-II [27], since it

incorporates a local search procedure. The algorithm comprises a two-stages: a multi-

objective EA (MOEA) for the generation scheduling problem and the weighted-sum

lambda-iteration algorithm proposed in [127] for the power dispatch. The local search

operator is applied, at the last iteration, to shut down or turn on some of the units

located at the boundaries of the schedules, i.e. when units change status. Computational

experiments have been run on systems composed of 10 and 100 generation units for a

24-hour demand horizon. The auhors concluded that the local search procedure is

effective since they were able to find some solutions with better trade off, with respect to

cost and emission, than those found the pure NSGA-II. However, in none of this works

the quality and diversity of the non-dominated solutions found have been measured and

assessed quantitatively.

In this chaper, the BRKGA algorithm is combined with a nondominated sorted pro-

cedure. The BRKGA approach includes a ranking selection method to evaluate the

population and divide it into different Pareto fronts by assigning to each solution a

rank equal to its non-domination level (in rank 1 are the non-dominated solutions, in

rank 2 are the solutions only dominated by rank 1 solutions, and so on). A crowd-
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comparison procedure is used to maintain population diversity. The BRKGA developed

is based on the framework proposed in [46] and on a previous version developed for the

single objective UC problem [95]. Our algorithm is tested on two standard 24-hour test

systems, introduced in [126] and [100], each considering several cases involving from

10 up to 100 generating units. Following on the idea presented in [1], we develop

a comparative study of our method and other MOEA methods to demonstrate the

efficiency and effectiveness of our approach.

4.2 Unit Commitment multi-objective Problem Formulation

In the multiobjective UC problem one needs to determine an optimal schedule and

power production, which involves determining the turn-on and turn-off schedule of

power units, represented by binary variables u, as well as determining the amount of

power produced by each unit, represented by continuous variables y.

The objectives are to minimize the production cost F(y,u) and emission of atmospheric

pollutants E(y,u) over the scheduled time horizon subject to system and operational

constraints.

Minimize [F(y,u),E(y,u)] (4.1)

4.2.1 Objective Functions

As already said, in the multi-objective problem formulation, two important objectives

in electrical thermal power systems are considered.

On the one hand, the first objective is to minimize the system operational costs com-

posed of generation and start-up costs. The generation costs, i.e. the fuel costs, are

conventionally given by a quadratic cost function as in equation (4.2),
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Fj(yt, j) = a j · (yt, j)
2 +b j · yt, j + c j, (4.2)

where a j,b j,c j are the cost coefficients of unit j, and yt, j is the amount of power to be

produced by unit j at time period t.

Therefore, the total operational costs for the whole planning period are given by

F(y,u) =
T

∑
t=1

N

∑
j=1

(Fj(yt, j) ·ut, j +St, j · (1−ut−1, j) ·ut, j +Sd j · (1−ut, j) ·ut−1, j) , (4.3)

where St, j and Sd j are the start-up and shut-down costs of unit j at time period t,

respectively. The binary variable ut, j is the status of unit j at time period t.

On the other hand, the second objective is to minimize the total quantity of atmospheric

pollutant emissions such as NOx and CO2. The emissions are generally expressed as a

quadratic function:

E j(yt, j) = α j · (yt, j)
2 +β j · yt, j + γ j, (4.4)

where α j,β j,γ j are the emission coefficients of unit j.

So, the total emission of atmospheric pollutants is expressed as follows:

E(y,u) =
T

∑
t=1

(
N

∑
j=1
{E j(yt, j) ·ut, j (4.5)

+Set, j · (1−ut−1, j) ·ut, j}
)
,

where Set, j is the start-up atmospheric pollutant emissions of unit j at time period t. In

the literature Set, j = Se j is generally considered constant.
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4.2.2 Constraints

The constraints considered are the same as the ones in the single objective, i.e. equa-

tions 3.4 to 3.8 in Section 3.2.

4.3 Multiobjective UC optimization

4.3.1 Decoding procedure

The decoding procedure used in all four multiobjective optimization algorithms is

the one described in the previous chapter. For each chromosome, the corresponding

solution is performed in two main stages. Firstly, the output generation level matrix

for each unit and period is computed using the random key values. In this solution,

the units production is proportional to their priority, which is given by the random

key value. By doing so, each element of the output generation matrix, yt, j is given as

the product of the percentage vectors by the periods demand Dt , i.e., yt, j = Dt
RK j

∑
N
i=1 RKi

.

Here each component of the percentage vectors are given by corresponding random key

entry divided by the sum of the all random key values as illustrated in algorithm 1 in

the previous chapter. Then, these solutions are checked for constraints satisfaction and

whenever a constraint is not satisfied the solution is modified by the repair algorithm.

4.3.2 Repair algorithm

The idea of this technique is to convert any infeasible individuals to a feasible solution

by repairing the sequential possible violations constraints in the UC problem. The

repair algorithm is composed by several steps. Firstly, the output levels are adjusted

in order to satisfy the output range constraints. Next, we have the adjustment of

output levels to satisfy ramp rate limits. It follows the repairing of the minimum

uptime/downtime constraints violation. Afterwards, the output levels are adjusted in
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order to satisfy spinning reserve requirements. Finally, the output levels are adjusted

for demand requirements satisfaction at each time period. Further details of the repair

procedure are described in the previous chapter.

4.3.3 Pareto Dominance

The concept of domination is used in the most multi-objective optimization algorithm.

The solutions with multiple objectives are compared on the basis of whether one dom-

inates the other solution or not [25]. Let us consider the following multi-objective

optimization problem: minimize (maximize) the M components fm,m = 1, ...,M, of a

vector f (x) simultaneously, where x is the decision variable in the search space Ω and

f (x) = ( f1(x), ..., fM(x)) .

Since objectives can be conflicting, instead of searching for a single best solution, the

optimization task focuses on finding a set of good compromise solutions [35]. The

MOEA techniques used in this chapter are based on concept of Pareto dominance.

Assuming a minimization problem, dominance is defined as follows:

Pareto Dominance:

Given the vector of objective functions f = ( f1, . . . , fM) is said that candidate x1 domi-

nates x2 (for minimizing), written as x1 � x2, if

fm(x1)≤ fm(x2), ∀m ∈ {1, . . . ,M} and

∃m ∈ {1, . . . ,M} : fm(x1)< fm(x2).

(4.6)

Pareto Optimality:

For a Multi-objective Optimization Problem (MOP), a given solution x∗ is Pareto opti-
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mal if and only if there is no vector x ∈Ω, so that

fm(x)≤ fm(x∗), ∀m ∈ {1, . . . ,M} and

fm(x)< fm(x∗) for at least one objective function.

(4.7)

Pareto Optimal Set:

For a MOP, the Pareto Optimal Set (P ∗) is defined as

P ∗ := {x ∈Ω|¬∃x′ ∈Ω, f (x′)� f (x)}. (4.8)

Pareto Front:

For a MOP and Pareto Optimal Set (P ∗), the Pareto Front (P F ∗) is defined as

P F ∗ := { f (x) = ( f1(x), f2(x), · · · , fM(x))|x ∈ P ∗}. (4.9)

In extending the ideas of single-objective EAs to multi-objective cases, three major

problems must be addressed:

1. How to accomplish fitness assignment and selection in order to guide the search

towards the Pareto optimal set;

2. How to maintain a diverse population in order to prevent premature convergence

and achieve a well distributed, wide spread trade-off front;

3. How to prevent, during the successive generations, that some good solutions are

lost.

In general, it is not possible to compute the true Pareto set owing to the complexity of

the search space. Therefore, the approaches aim to obtain approximations of the Pareto

front and also the correspondent Pareto set.
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4.3.4 NSGA II

NSGA II is a fast and elitist non-dominated sorted genetic algorithm [27], which allows

to approximate the set of Pareto solution. In this approach, the ranking selection

method is used to focus on nondominated solutions while the crowding distance is

computed to ensure diversity along the nondominated front. The population of size Np

is used for selection, crossover, and mutation to create a new offspring population of

equal size. The rank procedure is employed by different levels of domination until all

individuals in the intermediate combined population, of size 2Np, are ranked. Firstly,

the nondominated solutions are assigned with same rank value and thereafter the crowd-

ing distance is computed. The nondominated solutions must be emphasized more than

any other solution. In order to find individuals of the next front, the solutions of the first

front are temporarily ignored, and the above procedure is repeated to find subsequent

fronts. The individuals of the new population are selected from the intermediate pop-

ulation using subsequent nondominated fronts in the order of their ranking. To choose

exactly the population members, the solutions of the last front are sorted considering

the crowding distance by descending order. The NSGA-II approach proposed by [27]

was implemented as follows:

• Generate random initial population of size Np, decoding the individuals and eval-

uate the solutions;

• Sort the initial population using non-domination-sort. For each individual assign

rank and crowding distance;

• For each generation the following steps are performed: Select the parents, which

are fit for reproduction by using the binary tournament selection based on the rank

and crowding distance; the genetic operators intermediate crossover and Gaussian

mutation are applied under selected parents to create the offspring population

of size Np ; the offspring population is combined with parent population (the

size of intermediate population is the double); after non-dominated sorting of
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the combined population, only the best Np individuals are selected based on its

rank and crowding distance; a new generation is then obtained maintaining the

population size fixed; the stop criterium is a maximum number of generations

previously established.

4.3.5 NPGA

A Niched Pareto genetic algorithm was presented in [51]. This technique involves

the addition of two specialized genetic operators: Pareto domination tournaments and

fitness sharing. These operators allow for selection based on partial ordering of the

population, as well as, to preserve diversity in the population.

Tournament selection is used to adjust selection pressure by changing the tournament

size. Two candidates are chosen at random from the current population. A comparison

set of Nc individuals is also chosen randomly. The sample size Nc gives us control

over domination pressure. Each of the candidates are compared to each individual in

the comparison set. If a candidate is dominated by the comparison set, and other is

not, the former loses the competition. If there are tournament ties, i.e. neither or both

candidates are dominated by the comparison set, the selection is based on the fitness

sharing of individuals, using niche counts as computed for the objective space in [51];

see equation 4.10. Each candidate niche count is computed in the objective space,

using its evaluated objective values. The candidate with lowest niche count wins the

tournament. Tournaments are held until the next generation is filled. The niche count

for candidate i is given by:

mi = ∑
j∈Pop

Sh(di, j) , (4.10)

where di, j is the Euclidean distance between competitor i and other individual j and Sh

is the fitness sharing function expressed as follows:

Sh(d) =


1− d

σshare
if d < σshare

0 if d >= σshare

. (4.11)
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Here σshare is the niche radius, i.e. the specified distance. The winner of the tied

tournament is the competitor with the lowest niche count. As in [51], the fitness

sharing is updated continuously, once the niche counts are calculated using individuals

in the partially filled population of the next generation, rather than that of the current

generation. Then crossover and mutation operators are applied to the new population.

NPGA approach was implemented following the steps:

• Step 1. Randomly generate an initial population

• Step 2. For each generation, decode the individuals in the population; evaluate the

solutions and create the empty offspring population;

• Step 3. Randomly choose two individuals from of population; perform the tour-

nament selection and fitness sharing procedures and find the winner;

• Step 4. Repeat step 3 obtaining another winner (parent);

• Step 5. Perform the crossover and mutation operators with the winner individuals

of the step 3 and 4 obtaining the offspring individual and update the offspring

population Q;

• Step 6. If |Q|< Np go to step 3; otherwise, increment the generation counter and

if the number of generations is less or equal to Gmax repeat from Step 2. The

algorithm stops when the number of generations is higher than Gmax.

4.3.6 SPEA 2

The Strength Pareto Evolutionary Algorithm (SPEA) was introduced in [139] and an

improved version, known as SPEA2 is given in [138]. In this algorithm, nondominated

solutions are stored in an external set. The individuals are assigned according to the

Pareto dominance concept. When the nondominated solutions exceed a previously

fixed size for the external set, the number of individuals in the external set is reduced by
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means of a truncation technique, as in [138]. If the number of nondominated individuals

is less than the predefined external set size, the external set is filled up by dominated

individuals. The fitness assignment occurs in two different stages. The individuals are

assigned by the strengths of its dominators in both the external set and the population.

Strength represents the number of individuals in the population and in the external set

covered by the individual considered. The fitness of each individual is given by the

sum of the strengths of its dominators in the external set and in the population. If more

than one individual have the same fitness value, the density estimation technique is

used as given in SPEA2 [138]. This technique results from an adaptation of the k− th

nearest neighbor method. The basic idea of the truncation procedure is to remove the

individual which has the minimum distance to another individual. If there are several

individuals with minimum distance, the individuals with second smallest distances to

another individual are removed and so on. The SPEA-II approach proposed by [138]

implements the following steps:

• Step 1. Generate the initial population decoding the individuals and evaluate the

solutions and create the empty external Pareto-optimal;

• Step 2. Compute fitness values of individuals in the population and in the external

set;

• Step 3. Copy nondominated individuals of the population to the external set;

• Step 4. Update the external set keeping only the nondominated solutions. When

the number of nondominated solutions is higher than the specified size for the

external set, it is reduced by applying the truncation technique. If the number of

nondominated individuals is less than the external set size, the external set is filled

up with dominated individuals;

• Step 5. The algorithm stops when the maximum number of generations is reached;
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• Step 6. The mating pool is filled using the binary tournament selection with

replacement on the updated external set;

• Step 7. After the recombination of the mating pool, the genetic operators simu-

lated binary crossover and polinomial mutation are applied and a new population

is created. Increment the generation counter and repeat from Step 2.

4.4 BRKGA adapted to multiobjective UC optimization

We also use the ranking selection method for ordering the nondominated solutions

according to the Pareto domination concept, while the crowding distance is used to

break the ties by choosing the best individuals to be included in new population. The

BRKGA has already been described in the previous chapter. The initial population,

with size Np, is created by generating the random keys. Given a population of chromo-

somes (random keys) the decoding procedure is applied such that to each chromosome

corresponds a feasible UC solution. A feasible solution consists of a generation level

matrix and the corresponding unit status matrix, both satisfying the UC constraints.

The fitness function used to evaluate the solutions includes both the total operational

costs and CO2 or NOx pollutant emissions. We have adopted a fitness procedure

similar to that of NSGA-II, given in [27]. Therefore, the population is sorted based

on the nondomination concept. Each solution is assigned a fitness (rank) equal to

its nondomination level. The biased selection and biased crossover operators and the

introduction of mutants are used to create an offspring population, also of size Np.

On the one hand, the biased selection ensures that one of the parents used for mating

comes from a subset containing the best solutions of the current population. On the

other hand, the biased crossover chooses with higher probability an allele from the

best parent. Mutants are generated in the same way as the initially population and are

introduced directly on the next generation.
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We start by combining the current population with the newly obtained one. The com-

bined population size is the double (2Np) of the current population and it is sorted by

the nondomination criterium (Fast Nondominated Sorting Approach).

The nondomination criterium leads to several levels of nondominated fronts. The first

level includes all nondominated individuals of the combined population. Second level,

corresponds to a front containing individuals only dominated by the individuals of

the first level front. All other levels are defined in a similar way, that is, in each

level a front containing individuals dominated by all previous nondominated fronts

is obtained. In order to obtain the new population we go through the generated fronts,

in ascending order of level, and include all its individuals until we reach Np. At the

last nondominated front level to be included if only some of the individuals are to be

chosen, the descending order of crowding distance is used as a selection criterium.

The multiobjective BRKGA flowchart is illustrated in Figure 4.1.

4.4.1 Genetic operators in BRKGA

Biased Selection: a pair of parents are selected from the current population. This

population is divided into two sets: The elite set, comprising the best individuals, and

the non-elite set, comprising the remaining individuals. One parent is selected from the

elite set, while the other parent is chosen from the remaining, non-elite, individuals.

Biased Crossover: Given two parents and a specified probability of crossover, the

crossover interchanges the genes or alleles to produce a new individual. As already

mentioned, genes are chosen by using a biased uniform crossover, that is, for each gene

a biased coin is tossed to decide on which parent the gene is taken from. This way,

the offspring inherits the genes from the elite parent with higher probability (0.7 in our

case).

Mutants: To ensure diversity and to avoid premature convergence, we introduce a
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Figure 4.1: Flowchart of BRKGA multiobjective algorithm.

percentage of new individuals, called mutants, in the population. These individuals

are randomly generated, as was the case for the initial population.

4.4.2 Performance metrics

In this chapter four different performance measures are used considering the distinct

goals of convergence to the Pareto optimal front and the uniformity of distribution

in terms of dispersion and extension. We compare the convergence performance of

different MOEA using the set coverage metric measure, the contribution measure, the
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extent indicator measure and the spacing measure. The set coverage measure [140]

take under consideration a pair of nondominated sets comparing the fraction of each

set that is covered by the other set. This metric is defined as

Cov(PF1,PF2) =
|{b ∈ PF2;∃a ∈ PF1 : a cover b}|

|PF2|
, (4.12)

where |.| represents the size (cardinality) of a set. When Cov(PF1,PF2) = 0 means that

none of the points in PF2 are covered by the set PF1. If Cov(PF1,PF2) = 1 means that

all points in PF2 are dominated by or equal to points in PF1. It should be noticed that

Cov(PF1,PF2) is not necessarily equal to 1−Cov(PF2,PF1).

The contribution measure [75] Con(PF1,PF2) of an approximation Pareto front PF1 rel-

atively to another approximation Pareto front PF2 gives the percentage of the solutions

of the nondominated set of PF1∪PF2. Thus, this metric value has to be greater than 0.5

to indicate that PF1 is better than PF2 in terms of convergence of the Pareto front. Let

PF be the set of solutions in PF1∩PF2, PF∗ the set of Pareto solutions of PF1∪PF2. Let

D1 (D2) be the set of solutions in PF1 (PF2) that dominate some solutions of PF2 (PF1)

and let also N1 (N2) be the noncomparable solutions of PF1 (PF2). So, the contribution

measure is given by:

Con(PF1,PF2) =
|PF |

2 + |D1|+ |N1|
|PF∗| , (4.13)

where |PF∗|= |PF |+|D1|+|N1|+|D2|+|N2| . It should be noticed that Con(PF2,PF1)=

1−Con(PF1,PF2).

The extent indicator measure is computed as given in [137]

E(PF1) =

√
n

∑
i=1

max{‖ai−bi‖ ;a,b ∈ PF1}, (4.14)

where ‖.‖ is the Euclidean norm. The function E use the maximum extent in each

dimension to determine the range to which the front spreads out. In the case of two

objectives, this corresponds to distance of the two outer solutions, i.e. gives the distance

between the best cost solution and the best emission solution.
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Other diversity performance metric is the spacing measure [24]. This measure gives

the standard deviation of different distance of solution values in the solution space and

is defined as:

S =

√
1

n−1
.

n

∑
i=1

(
di− d̄

)2
, (4.15)

where di = min j d(i, j), d̄ is the mean distance and d(i, j) is the Euclidean distance

between the individual i and j. S = 0 means that all members in nondominated set are

equidistantly spaced. Moreover, if the nondominated solutions tends to be uniformly

distributed the distance will be small. So, smaller spacing measure value means better

dispersion of the nondominated solutions.

4.5 Computational Experiments and Results

4.5.1 BRKGA parameters

The BRKGA final parameter values were decided upon after some empirical experi-

ments have been performed. The experimented values were chosen using the guidelines

provided by [27, 47], as well as, the computational experiments in the previous chapter.

The current population of solutions is evolved by the GA operators onto a new pop-

ulation as follows: the elite set is formed by 20% of best solutions; 40% of the new

population is obtained by introducing mutants; and finally, the remaining 60% of the

population is obtained by biased reproduction, which is accomplished by having both a

biased selection and a biased crossover. We set the number of generations to 10N and

the population size to 2N. Tables 4.1 and 4.2 report the average coverage measure (in

percentage) obtained over 10 optimization runs for both instance problems of the 60

units concerning the case studies addressed in subsections 4.5.3 and 4.5.4. Initially the

maximum number of generations was considered sufficiently large, Gmax = 20.N. The

crossover probability was tried for values selected between pc = 0.6 and pc = 0.9, in

steps of 0.1 and the population size range between N and 5N, in steps of N. In general,
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the best coverage performance was obtained for 0.7, as it can be seen in tables 4.1 and

4.2. In addition it should be mentioned that no major differences in terms of the extent

and dispersion were found for BRKGA with different crossover probability values.

Table 4.1: Percentage of Nondominated Solutions of set B covered by those in set A,

for case study 1.

Np = N

set A / set B BRKGApc=0.6 BRKGApc=0.7 BRKGApc=0.8 BRKGApc=0.9

BRKGApc=0.6 27.6 56.6 75.2

BRKGApc=0.7 57.8 66.2 79.7

BRKGApc=0.8 31.8 20.3 62.9

BRKGApc=0.9 17.3 15.4 30.8

Np = 2N

BRKGApc=0.6 26.2 34.3 40.7

BRKGApc=0.7 43.7 49.3 62.9

BRKGApc=0.8 41.6 25.8 51.3

BRKGApc=0.9 36.7 16.3 32.8

Np = 3N

BRKGApc=0.6 23.0 44.6 43.2

BRKGApc=0.7 37.4 74.3 51.2

BRKGApc=0.8 18.9 11.4 39.4

BRKGApc=0.9 24.1 29.0 38.5

Np = 4N

BRKGApc=0.6 30.9 39.8 56.4

BRKGApc=0.7 52.4 59.1 80.8

BRKGApc=0.8 30.0 20.5 55.3

BRKGApc=0.9 24.8 9.5 22.5

Np = 5N

BRKGApc=0.6 16.5 46.9 54.7

BRKGApc=0.7 71.4 77.2 88.5

BRKGApc=0.8 24.3 8.2 54.9

BRKGApc=0.9 27.9 5.2 25.4

The crossover probability was set to pc = 0.7. Regarding the population size Np,

its choice must take into account both the coverage performance (in percentage) and
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Table 4.2: Percentage of Nondominated Solutions of set B covered by those in set A

for case study 2.

Np = N

set A / set B BRKGApc=0.6 BRKGApc=0.7 BRKGApc=0.8 BRKGApc=0.9

BRKGApc=0.6 3.1 25.0 4.6

BRKGApc=0.7 91.4 59.6 56.7

BRKGApc=0.8 73.6 32.2 36.5

BRKGApc=0.9 96.9 34.2 60.3

Np = 2N

BRKGApc=0.6 24.2 35.5 52.2

BRKGApc=0.7 75.1 70.8 93.5

BRKGApc=0.8 56.1 26.4 76.0

BRKGApc=0.9 38.7 0.7 22.4

Np = 3N

BRKGApc=0.6 48.4 48.9 48.2

BRKGApc=0.7 44.1 51.6 38.6

BRKGApc=0.8 56.5 47.5 53.9

BRKGApc=0.9 50.6 50.4 40.1

Np = 4N

BRKGApc=0.6 4.9 41.1 20.0

BRKGApc=0.7 89.1 85.8 83.2

BRKGApc=0.8 44.6 17.6 18.3

BRKGApc=0.9 56.4 10.2 71.2

Np = 5N

BRKGApc=0.6 30.9 59.6 51.9

BRKGApc=0.7 43.8 65.4 54.8

BRKGApc=0.8 26.7 29.8 22.5

BRKGApc=0.9 37.1 37.6 50.9

the execution time. Obviously, the coverage performance improves with population

size. However, larger population size may render BRKGA impracticable for large

thermal system instances. Tables 4.3 and 4.4 show that the BRKGA implemented with

population size Np = 2N and pc = 0.7 allows to obtain a reasonable execution time.

Ten trials were performed considering different number of generations: 5N, 10N, 15N
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Table 4.3: Percentage of Nondominated Solutions of set B covered by those in set A

for case study 1 with pc = 0.7.

60 units

set A / set B BRKGANp=N BRKGANp=2N BRKGANp=3N BRKGANp=4N BRKGANp=5N

BRKGANp=N 20.1 19.8 8.3 2.1

BRKGANp=2N 32.4 21.4 18.1 15.2

BRKGANp=3N 37.8 23.5 21.1 17.4

BRKGANp=4N 41.3 34.2 31.0 19.9

BRKGANp=5N 45.5 38.2 35.1 31.7

Execution time (s) 288.2 664.5 1143.3 1588.4 2140.6

Table 4.4: Percentage of Nondominated Solutions of set B covered by those in set A

for case study 1 with pc = 0.7.

60 units

set A / set B BRKGANp=N BRKGANp=2N BRKGANp=3N BRKGANp=4N BRKGANp=5N

BRKGANp=N 25.9 23.8 5.6 4.3

BRKGANp=2N 44.6 35.9 25.0 21.9

BRKGANp=3N 56.3 37.4 26.1 23.7

BRKGANp=4N 65 40.2 36.5 28.8

BRKGANp=5N 71.5 44.5 38.8 34.9

Execution time (s) 254.2 576.7 935.9 1430.8 1942.1

and 20N. For each number of generations considered, the population size and crossover

probability were fixed to be 2.N and 0.7, respectively. Again, a balance between

solution quality and computational time must be achieved. A good compromise is

obtained with the number of generations being set to Gmax = 10N, as shown in tables

4.5 and 4.6.

Table 4.5: Percentage of Nondominated Solutions of set B covered by those in set A

for case study 1 with pc = 0.7 and Np = 2N.

60 units

set A / set B BRKGAGmax=5N BRKGAGmax=10N BRKGAGmax=15N BRKGAGmax=20N

BRKGAGmax=5N 18.2 16.0 13.1

BRKGAGmax=10N 51.7 41.2 37.6

BRKGAGmax=15N 53.4 42.4 38.7

BRKGAGmax=20N 54.0 42.1 40.8

Execution time (s) 166.8 334.7 477.9 663.8
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Table 4.6: Percentage of Nondominated Solutions of set B covered by those in set A

for case study 1 with pc = 0.7 and Np = 2N.

60 units

set A / set B BRKGAGmax=5N BRKGAGmax=10N BRKGAGmax=15N BRKGAGmax=20N

BRKGAGmax=5N 23.9 19.7 16.5

BRKGAGmax=10N 45.7 22.9 18.5

BRKGAGmax=15N 46.0 25.5 19.9

BRKGAGmax=20N 50.1 31.6 24.6

Execution time (s) 139.1 290.3 421.8 556.1

4.5.2 SPEA, NSGA, and NPGA Configurations

The algorithms have been implemented according to their description in the literature.

The other operators (recombination, mutation, sampling) remain identical. To ensure

the same conditions of application of the BRKGA identical population size, 2N, and

number of generations, 10N, are used for each algorithm.

The NPGA, NSGA II, and SPEA2 parameters values are chosen using the guidelines

proposed in [27]. Some complementary computational experiments are performed,

where other appropriate values of the GA parameters are arrived at based on the sat-

isfactory performance of trials conducted for this application with different range of

values. For NPGA, the niche radius is σshare =
1
N as chosen in [51]. Several computa-

tional experiments were made in order to choose the size of the comparison set Nc. In

the tests this value varied in the interval [5%,30%] with a 5% step. The results obtained

have shown a favorable value of Nc to be 10%.

For NPGA and NSGA II real coding an intermediate crossover similar to Matlab crossover

operator has been employed. The children are obtained as

Child1 = Parent1 + rand.ratio.(Parent2−Parent1)

and

Child2 = Parent2− rand.ratio.(Parent2−Parent1),
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where rand is a random number in the interval [0,1], the ratio crossover was set 1.2 and

the crossover probability to 0.8. The Gaussian mutation is used as in Matlab Toolbox

Optimization with scale = 0.1, shrink = 0.5. The mutation rates, has been set to 0.2.

For SPEA2, we use a population of size 2.N and an external population of size 2.N, so

that overall population size becomes 4N. The uniform crossover and simulated binary

crossover operators are applied with probability 0.7 and 0.9, respectively. For real-

coded crossover, the probability distribution used in the simulated binary crossover

operator has been set up distribution index ηc of 5 as in [24]. Like in [26], we use

the polynomial mutation described as follows: if xi is the decision variable selected for

mutation with a probability pm, the result of the mutation is the new value x
′
i obtained

by a polynomial probability distribution P(δ) = 1
2 .(ηm +1)(1−|δ|). xL

i and xU
i are the

lower and upper bound of xi, respectively, and ri is a random number in the interval

[0,1]. Hence, we have

x
′
i = xi +

(
xU

i − xL
i
)
.δi,

with

δi =


(2ri)

1
ηm+1 −1 if ri < 0.5,

1−|2(1− ri)|
1

ηm+1 if ri >= 0.5.
(4.16)

The distribution index ηm was set to 15 and the mutation probability to 0.1 as rec-

ommended by [24]. Table 4.7 has the population size, the crossover and mutation

probabilities, and the number of generations used in each approach.

Table 4.7: GA Parameters.

BRKGA NSGAII NPGA SPEA2

Population size 2N 2N 2N 2N

Crossover probability 0.7 0.8 0.8 0.9

Mutation probability 0.2 0.2 0.1

N. Generations 10N 10N 10N 10N
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4.5.3 Case 1 results

The BRKGA and other three multiobjective optimization techniques were tested on a

set of benchmark problems, involving system with 10 up to 100 generation units and

considering, in each case, a horizon of 24 hours. The 10 generation unit system prob-

lem, the base case, was originally proposed by [6, 129] and the system data is provided

in Appendix A. Details are given in tables B.2, B.4, B.3 and B.1. Subsequentially, the

20, 40, 60, 80 and 100 generators systems are obtained by duplicating the base case

system (i.e. the 10 generators system) and the load demands are adjusted in proportion

to the system size. In all cases the spinning reserve is kept at 10% of the hourly demand.

In Figure 4.2 we have plotted the nondominated solutions, i.e. the Pareto front obtained

with the four methods. As it can be seen, the BRKGA has the most widely spread front.

Therefore, it seems that BRKGA preserves the diversity of the nondominated solutions

and have better diversity characteristics and well-distributed over the Pareto-optimal

front than other three algorithms.

The average values, over 10 optimization runs of each algorithm, of the four measures is

given in tables 4.8 to 4.11. Since the set coverage measure indicates the fraction of each

nondominated set that is covered by the other nondominated set, it can be concluded

that the nondominated solutions of our method covers relatively higher percentages of

the other solutions.

For instance, in the problem with 10 units, on the one hand, as can be seen in Table

4.8, on average the nondominated set achieved by BRKGA dominates about 66.5 %

of the nondominated solutions found by NSGA II. However, the front obtained by

NSGA II only dominates in less than 11.4 % of the nondominated solutions produced

by BRKGA. On the other hand, with regard to NPGA, a BRKGA front dominates on

average 91.5% of the corresponding NPGA front, while the nondominated set produced

by NPGA only dominates 1.3% the front obtained by BRKGA. Finally, the nondom-

inated set achieved by BRKGA dominates about 55% of the nondominated solutions
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Figure 4.2: Pareto-optimal fronts obtained from different algorithms in a single run for

10 units.

found by SPEA2 while the front obtained by SPEA2 dominates only in less than 26%.

Even if we look at the most relative performance of the BRKGA, which occurs for the

problem with 80 generation units, it can be seen that the BRKGA dominates in about

59%, 34.6% and 21.1% of the nondominated solutions found by NSGA II, NPGA and

SPEA2, respectively. However, the front obtained by BRKGA is dominated only about

1.1%, 0.6% and 16.1% of the NSGA II, NPGA and SPEA2 nondominated solutions,

respectively.

Regarding the contribution measure, as said before, it indicates the percentage of the

solutions of the nondominated set of PF1 ∪PF2 that are provided by PF1. As already

said, if Con(PF1,PF2)> 0.5 means that PF1 is better than PF2 in terms of convergence

of the Pareto front. Thus, the values reported in Table 4.11 allow in the conclusion that

the BRKGA outperforms the other three techniques in terms of convergence.

The spacing measure, which is reported in Table 4.9, reflects how uniformly spread the

solutions obtained are. As it can be seen the BRKGA has larger values. Therefore, the

nondominated solutions found by it are not as uniformly spread as the ones produced
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Table 4.8: Percentage of Nondominated Solutions of set B covered by those in set A.

10 units

set A / set B BRKGA NSGA II NPGA SPEA2

BRKGA 66.5 91.5 55

NSGA II 11.4 32 4

NPGA 1.3 18 0.5

SPEA2 26 61.3 91.5

20 units

BRKGA 70.3 97.3 69

NSGA II 13.9 44.8 1.8

NPGA 0.9 16.3 0.5

SPEA2 17.8 75.5 91.8

40 units

BRKGA 72.1 86.1 43.4

NSGA II 4.7 52.8 0

NPGA 2.4 19.9 0

SPEA2 26.8 90 94.6

60 units

BRKGA 68.3 66 60.9

NSGA II 3.4 66 0

NPGA 2.5 21.3 0

SPEA2 10.5 98.8 99.3

80 units

BRKGA 59 34.6 21.1

NSGA II 1.1 58.4 0

NPGA 0.6 20.8 0

SPEA2 16.1 97.5 88.9

100 units

BRKGA 82.4 55.9 36.7

NSGA II 0.4 46.5 0

NPGA 0.04 37.2 0

SPEA2 13.9 98.2 99.8

by other methods. Nevertheless, this doesn’t seem to be a drawback since the BRKGA

is the method that provides the larger extent of nondominated solutions, see Figure

4.2. Finally, the average of extent measure of the nondominated solutions, over 10
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Table 4.9: Spacing average measures over 10 optimization runs.

10 20 40 60 80 100

BRKGA 7279.4 8781.2 11822 12729 12218 12773

NSGA II 6793 7796.1 9414.7 9155.4 10262 8335.7

NPGA 5350.5 5489.9 6790.7 10194 13144 10201

SPEA2 4938.7 7194.7 6151.1 9817.8 7608.2 7282.4

Table 4.10: Extent average measures over 10 optimization runs.

10 20 40 60 80 100

BRKGA 1140.8 1620 2273.9 2779.1 3202.8 3581.9

NSGA II 1127.1 1586.2 2234.7 2732.3 3143.5 3526.7

NPGA 1103.5 1560.7 2224.2 2672.6 3140.3 3511.9

SPEA2 1124.4 1585.5 2229.5 2731.1 3142.4 3514.2

optimization runs, is given in Table 4.10. When looking at the results for the extent

measure, we can infer the distance between the outer nondominated solutions of each

technique. It can be seen that the nondominated solutions obtained by the proposed

BRKGA span over the entire Pareto-optimal front. Thus, given that the BRKGA has

larger values, it can be concluded that it outperforms the other three approaches.

4.5.4 Case 2 results

The second set of benchmark problems also incorporate a system with 10 up to 100

generation units for time horizon of 24 hours. The base case of the 10 generation unit

system problem was originally proposed by [126] and the system data is provided in

Appendix B. For problem details see tables B.5 to B.7 in Appendix B and the reference

therein. Using a similar procedure to the case study 1 systems with 20, 40, 60, 80

and 100 generators are obtained. Here, in all cases the spinning reserve is also kept at

10% of the hourly demand. In Figure 4.3, we have plotted the nondominated solutions

for all four methods. As it can be seen, the NPGA is clearly dominated by the other

three methods. Regarding the remaining methods, from Figure 4.3 it can be seen that
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Table 4.11: Contribution measure percentages.

10 units

cont( A,B) BRKGA NSGA II NPGA SPEA2

BRKGA 87.1 98.5 76

NSGA II 12.9 78.8 22

NPGA 1.5 21.2 4.5

SPEA2 24 78 95.5

20 units

BRKGA 81.1 99 82.9

NSGA II 18.9 81.9 20.1

NPGA 1 18.1 3.2

SPEA2 17.1 79.9 96.8

40 units

BRKGA 87 95.3 66.5

NSGA II 3 88.9 8.6

NPGA 4.7 11.1 2.1

SPEA2 33.5 91.4 97.9

60 units

BRKGA 84.1 92.5 76.7

NSGA II 15.9 97.4 1.2

NPGA 7.5 2.6 0.3

SPEA2 23.3 98.8 99.7

80 units

BRKGA 79.3 88.1 58.7

NSGA II 20.7 99.1 2.3

NPGA 11.9 0.9 0.5

SPEA2 41.3 97.7 99.5

100 units

BRKGA 91.1 94.4 63.3

NSGA II 8.9 91.2 1.7

NPGA 5.6 8.8 0.1

SPEA2 36.7 98.3 99.9

the nondominated solutions of the NSGA are almost always dominated by the ones

obtained by the BRKGA and SPEA2.

In fact these two latter methods are the ones of interest, see tables 4.12 to 4.15. From
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Figure 4.3: Pareto-optimal fronts obtained from different algorithms in a single run for

10 units.

looking these into the results reported for the four measures considered it can be con-

cluded that the nondominated solutions of SPEA2 covers relatively higher percentages

of the other solutions. In addition, BRKGA is the second best algorithm in terms of cov-

erage performance. Although the BRKGA front often dominates higher percentages of

the corresponding NPGA and NSGA-II fronts, BRKGA nondominated solutions rarely

covers SPEA2 solutions. Nevertheless, this is not always the case since, for example,

considering the problem with 100 thermal units, we can observe in Table 4.12 that, on

average, BRKGA front dominates on average 35.5 % of the corresponding SPEA2 front

while the nondominated set produced by SPEA2 dominates 16.3% of the nondominated

BRKGA solutions. Moreover, the nondominated set achieved by BRKGA dominates

82.6% of the nondominated solutions found by NSGA II, while the front obtained

by NSGA II dominates less than 0.4 % of the nondominated solutions produced by

BRKGA. Finally, the BRKGA front dominates on average 57.9% of the corresponding

NPGA front while the nondominated set produced by NPGA do not cover any solutions

produced by BRKGA.
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Table 4.12: Percentage of Nondominated Solutions coverages of set B covered by those

in set A.

10 units

set A / set B BRKGA NSGA II NPGA SPEA2

BRKGA 75.5 69.5 31.5

NSGA II 12.7 44.5 0

NPGA 23.8 38.5 2

SPEA2 54.4 97 90

20 units

BRKGA 46.3 50.5 46.5

NSGA II 34.6 56.8 53.5

NPGA 28.6 33.3 35.5

SPEA2 48.1 29.5 42.3

40 units

BRKGA 75.8 62.5 64.8

NSGA II 3.9 38.1 16.3

NPGA 4.8 56.1 27.4

SPEA2 13.6 76.6 56.1

60 units

BRKGA 75.2 55.6 24.3

NSGA II 0.6 54.6 0

NPGA 0.15 37.8 5.7

SPEA2 35.7 100 92.6

80 units

BRKGA 80.3 77 0

NSGA II 0 64.6 0

NPGA 0 28.1 0

SPEA2 99.4 100 100

100 units

BRKGA 82.6 57.9 35.5

NSGA II 0.4 50.2 0

NPGA 0 36.8 0

SPEA2 16.3 98.2 99.7
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Table 4.13: Spacing average measures over 10 optimization runs.

10 20 40 60 80 100

BRKGA 25748 24719 24289 33963 28341 13350

NSGA II 31245 22638 32695 31628 32111 8329.6

NPGA 14780 29055 35476 43853 42637 9987.9

SPEA2 34167 25959 42436 25413 41035 7282.4

Table 4.14: Extent average measures over 10 optimization runs.

10 20 40 60 80 100

BRKGA 710.2 1124.3 1659.7 2063.8 2417.7 3580.6

NSGA II 692.9 1061.1 1536.9 1927.6 2232.7 3525.8

NPGA 683.3 1050.3 1505.2 1910.2 2231.8 3512.6

SPEA2 658.9 1089.6 1512.9 1928.7 2261.1 3514.2

The convergence performances of different algorithms are also emphasized in Table

4.15 where we can see that the most of the nondominated solutions obtained by SPEA2

are closer to the true Pareto-optimal solutions since their contribution relatively to

another approximation approach is, in general, greater than 50%. This also the case for

the BRKGA, except when compared with the SPEA2. However, BRKGA outperforms

the other three techniques in terms of the diversity and extent indicators. As it can be

seen in Table 4.13, in general, the average spacing measure values, over 10 optimization

runs, are smaller than NSGA-II, NPGA and SPEA2 spacing measure values, which

means that the BRKGA nondominated solutions are more uniformly distributed than

other nondominated solutions obtained by NSGA-II, NPGA and SPEA2. Moreover,

Table 4.14 shows that BRKGA has largest extent in all cases. It should be referred that

all GAs were implemented on Matlab and executed on a 2 processors Xeon X5450, 3.0

GHz and 4.0 GB RAM. This is a server machine and therefore several jobs are usually

running in parallel.
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Table 4.15: Contribution measure percentages .

10 units

cont( A,B) BRKGA NSGA II NPGA SPEA2

BRKGA 83.2 95.4 38.9

NSGA II 16.8 58.7 2.7

NPGA 4.6 41.3 3.8

SPEA2 61.1 97.3 96.2

20 units

BRKGA 49.4 68.2 43.3

NSGA II 50.6 79.1 75.2

NPGA 31.8 20.9 36.9

SPEA2 56.7 24.8 63.1

40 units

BRKGA 78.3 79.8 60.6

NSGA II 21.7 59.1 24.6

NPGA 20.2 40.9 18.9

SPEA2 39.4 75.4 81.1

60 units

BRKGA 69.3 83.1 26.5

NSGA II 30.7 80.8 0

NPGA 16.9 19.2 2.8

SPEA2 73.5 100 97.2

80 units

BRKGA 71.4 75.4 0.3

NSGA II 28.6 71.2 0

NPGA 24.6 28.8 0

SPEA2 99.7 100 100

100 units

BRKGA 91.2 95.4 62.7

NSGA II 8.8 92.6 1.7

NPGA 4.6 7.4 0.1

SPEA2 37.3 98.3 99.9

4.6 Conclusions

This chapter proposes a new approach to find Pareto sets for the multiobjective unit

commitment problem. The proposed algorithm combines the biased selection and
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biased crossover of the BRKGA approach with nondominated sorting procedure and

crowded comparison operator used in NSGA II technique.

The algorithm maintains a finite-sized archive of nondominated solutions which gets

iteratively updated in the presence of new solutions based on the concept of Pareto

dominance.

The proposed approach has been assessed through a comparative study, for two case

study problems, with the other state of the art multiobjective optimization techniques.

The convergence and diversity performances are evaluated. The best results are ob-

tained for BRKGA and SPEA2 approaches with respect to most of multiobjective

performance metrics. Comparatively to the SPEA2, the BRKGA algorithm has best

coverage performance but worst diversity performance in first case study, while it has

worst performance coverage but best diversity performance in second case study. The

results shows that BRKGA can be an effective method for producing tradeoff curves.

Tradeoff curves such as those presented here may give decision makers the capability

of making better decisions. Moreover, the best diversity performance of the BRKGA

in second case study allows the decision maker to have more choices in the selection of

solution. Given that the approaches have similar decode procedures, the improvement

in performance is most likely due to elitism. Elitism also guarantees that no good

solutions are lost.



Chapter 5

Optimal Control Formulations for

the Unit Commitment Problem

5.1 Introduction

In this chapter, we address the Unit Commitment (UC) problem using optimal control

methodologies. Despite being a highly researched problem with dynamical and multi-

period characteristics, it appears that it has not been addressed by optimal control

methods before, except in [38] and [34].

A problem that must be solved frequently by a power utility is to economically deter-

mine a schedule of which units are to be used and how much each unit should produce

in order to meet the forecasted demand while satisfying operational and technological

constraints, over a short time horizon [91, 92]. As it was already said good solutions

are of most importance since they not only may provide substantial savings (tens to

hundreds of millions of euros) in operational and fuel costs but also maintain system

reliability by keeping a proper spinning reserve[135]. Due to its combinatorial nature,

multi-period characteristics, and nonlinearities, this problem is highly computationally

99
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demanding and, thus, solving the UC problem for real-sized systems is a hard opti-

mization task: it is an NP-hard problem [114]. The UC problem has been extensively

studied in the literature. Several numerical optimization techniques, based both on

exact and on approximate algorithms, have been reported.

Several approaches based on exact methods have been used, such as dynamic program-

ming, mixed-integer programming, benders decomposition, Lagrangian relaxation, and

branch-and-bound methods; see, e.g., [67, 21, 109, 7]. The main drawbacks of these

traditional techniques are the large computational time and memory requirements for

large complexity and dimensionality problems. Dynamic programming [67, 81] is a

powerful and flexible methodology; however it suffers from the dimensionality prob-

lem, not only in computational time but also in storage requirements. Recently a

stochastic dynamic programming approach to schedule power plants was proposed

[90]. In [7], a solution using Lagrangian relaxation is proposed. However, the problem

becomes too complex as the number of units increases and there are some difficulties

in obtaining feasible solutions. Takriti [109] addresses the unit commitment problem

by using mixed-integer programming which is a very hard task when the number of

units increases since it requires large memory and leads to large computational time re-

quirements. Other authors have proposed the use of mixed-integer linear programming

to solve the linearized versions of the problem; see, e.g., [41, 120]. The branch-and-

bound method proposed in [21] uses a linear function to represent the fuel consumption

and a time-dependent start-up cost, but has an exponential growth in the computational

time with problem dimension.

More recently, several metaheuristic methods such as evolutionary algorithms and their

hybrids have been proposed; see, e.g., [117, 29, 105, 19, 2]. These approaches have, in

general, better performances than the traditional heuristics. The most commonly used

metaheuristic methods are simulated annealing [74, 105], evolutionary programming

[58, 89], memetic algorithms [117], particle swarm optimization [133], tabu search [73,

121], and genetic algorithms [60, 108, 22, 95]. For further discussion and comparison
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of these methodologies, with special focus on metaheuristic methods, and other issues

related to the unit commitment problem, see the very recent review by Saravanan et al

[99].

Although the UC problem is a highly researched problem with dynamical and multi-

period characteristics, it appears that it has not been addressed before by optimal control

methods, except in [38] and [34] as mentioned previously. In [38], the authors have

formulated the UC problem as a discrete mixed-integer optimal control problem, which

has then been converted into one with only real-valued controls. Here, we discuss

formulations of the UC problem as an Optimal Control (OC) model and propose a new

optimal control modeling approach. The model derived is a continuous one and only

involves real-valued decision variables (controls).

The main contributions of the proposed modeling approach are twofold. Firstly, since

it allows decisions to be taken at any time moment, and not only at specific points

in time (usually, hourly), it may render better solutions. It should be noticed that the

proposed approach allows for decisions about unit commitment/decommitment and

about power production variation at any moment in time. Secondly, it no longer forces

utilities to treat demand variations as instantaneous, i.e., time steps. In addition, if one

chooses to use the approximated hourly data, as usual in the literature, the solution

strategies (both regarding unit commitment/decommitment and power production) of

the proposed model will approximate the discrete-time solutions since actions are only

required to be taken hourly.

The remaining of this chapter is organized as follows. In Section 5.2, the UC problem

is described and its mathematical programming formulation is given. The mixed-

integer optimal control formulation and the variable time transformation that allows

for rewriting it with only real-valued controls are given in Section 5.3. Section 5.4

provides a detailed description of the continuous-time optimal control model including

only real-valued controls, which is proposed here for the first time. Finally, Section 5.5
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draws some conclusions and discusses future work.

5.2 The Unit Commitment Problem

The unit commitment problem involves both the scheduling of power units (i.e., the

decision when each unit is turned on or turned off along a predefined time horizon) and

the economic dispatch problem (the problem of deciding how much each unit that is on

should produce). The scheduling of the units is an integer programming problem and

the economic dispatch problem is a nonlinear (real-valued) programming problem. The

UC problem is then a nonlinear, nonconvex, and mixed-integer optimization problem

[22]. The objective of the UC problem is the minimization of the total operating costs

over the scheduling horizon while satisfying the system demand, the spinning reserve

requirements, and other generation constraints such as capacity limits, ramp rate limits,

and minimum uptime/downtimes.

The objective function is expressed as the sum of the fuel, start-up, and shutdown costs.

5.2.1 Mixed-Integer Mathematical Programming Model

The model has two types of decision variables: the binary decision variables u j(t),

which are either set to 1, meaning that unit j is committed at time t, or otherwise

are set to zero; the real-valued variables y j(t), which indicate the amount of power

produced by unit j at time t. For the sake of simplicity, we also define the auxiliary

variables T on/o f f
j (t), which represent the number of time periods for which unit j has

been continuously online/off-line until time t.

Objective Function:

For benefict of the reading we remind that the objective function has three cost com-
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ponents: generation costs, start-up costs, and shutdown costs. The generation costs,

also known as the fuel costs, are conventionally given by the following quadratic cost

function:

Fj(y j(t)) = a j · (y j(t))2 +b j · y j(t)+ c j, (5.1)

where a j,b j,c j are the cost coefficients of unit j.

The start-up costs, that depend on the number of time periods during which the unit has

been off, are given by

S j(t) =


SH, j, if T o f f

min, j ≤ T o f f
j (t)≤ T o f f

min, j +Tc, j,

SC, j, if T o f f
j (t)> T o f f

min, j +Tc, j,

(5.2)

where SH, j and SC, j are, respectively, the hot and cold start-up costs of unit j and

T on/o f f
min, j is the minimum uptime/downtime of unit j. The shutdown costs Sd j for each

unit, whenever considered in the literature, are constant.

Therefore, the cost incurred with an optimal scheduling is given by the minimization

of the total costs for the whole planning period.

Minimize

T

∑
t=1

N

∑
j=1

(Fj(y j(t)) ·u j(t)+S j(t) · (1−u j(t−1)) ·u j(t)+Sd j · (1−u j(t)) ·u j(t−1)) .

(5.3)

Constraints:

As said before, there are two types of constraints: the operational constraints and the

demand constraints. The first set of constraints can be further divided into unit output

range limit (equation (5.4)), maximum output variation, i.e., ramp rate constraints

(equation (5.5)), and minimum number of time periods that a unit must be continuous

in each status (online or off-line) (equations (5.6) and (5.7)), while the second set of

constraints can be divided into load requirements (equation (5.8)) and spinning reserve

requirements (equation (5.9)).
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Y min j ·u j(t)≤ y j(t)≤ Y max j ·u j(t), for t ∈ {1, ...,T} and j ∈ {1, ...,N} . (5.4)

−∆
dn
j ≤ y j(t)− y j(t−1)≤ ∆

up
j , for t ∈ {1, ...,T} and j ∈ {1, ...,N} . (5.5)

T on
j (t)≥ T on

min, j, for each time t in which unit j is turned off and j ∈ {1, ...,N} . (5.6)

T o f f
j (t)≥ T o f f

min, j, for each time t in which unit j is turned on and j ∈ {1, ...,N} . (5.7)

N

∑
j=1

y j(t) ·u j(t)≥ D(t), t ∈ {1, ...,T} . (5.8)

N

∑
j=1

Y max j ·u j(t)≥ R(t)+D(t), t ∈ {1, ...,T} . (5.9)

The parameters used in the above equations are defined as follows:

T: Number of time periods (hours) of the scheduling time horizon

N: Number of generation units

R(t): System spinning reserve requirements at time t, in [MW ]

D(t): Load demand at time t, in [MW ]

Yminj: Minimum generation limit of unit j, in [MW ]

Ymaxj: Maximum generation limit of unit j, in [MW ]

Tc,j: Cold start time of unit j, in [hours]

Ton/off
min,j : Minimum uptime/downtime of unit j, in [hours]

Ton
0,j: Initial state of unit j at time 0, time since the last status switch off/on, in [hours]
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Toff
0,j : Initial state of unit j at time 0, time since the last status switch on/off, in [hours]

∆
dn/up
j : Maximum allowed output level decrease/increase in consecutive periods for

unit j, in [MW ]

5.3 Discrete-Time Optimal Control Approach

This section describes the work in [34], where a mixed-integer optimal control model

(OCM) is proposed to the UC problem. Although it is possible to address optimal

control problems (OCPs) with discrete control sets (see, e.g., [61, 43]), it is computa-

tionally demanding. Thus, it was proposed to convert this model into another OCM

with only real-valued controls. The conversion process requires the use of a novel

variable time transformation that is able to address adequately several discrete-valued

control variables arising in the original problem formulation. Finally, the transformed

real OCM was transcribed into a nonlinear programming problem to be solved by a

nonlinear optimization solver.

5.3.1 Discrete-Time Mixed-Integer Optimal Control Model

The mixed-integer optimal control model has two types of decision/control variables:

on the one hand, binary control variables u j(t), which are either set to 1, meaning

that unit j is committed at time t, or otherwise set to zero and on the other hand, real-

valued variables ∆ j(t), which enable to control, by increasing or decreasing, the power

produced by unit j at time t. We consider two types of state variables: variables y j(t),

which represent the power generated by unit j at time t and variables T on/o f f
j (t), which

represent the number of time periods for which unit j has been continuously online/off-

line until time t. For convenience, let us also define the index sets: T := {1, . . . ,T} and

J := {1,2, . . . ,N}. The parameters related to the problem data are as defined in the

previous section. The UC problem can now be formulated as a mixed-integer optimal
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control model.

Objective Function:

Minimize

T

∑
t=1

N

∑
j=1

(Fj(y j(t))u j(t)+S j(t)(1−u j(t−1))u j(t)+Sd j · (1−u j(t)) ·u j(t−1))

(5.10)

where the costs are as before.

The state dynamics:

The state dynamics in this model are as follows:

The production of each unit, at time t, depends on the amount produced in the previous

time period and is limited by the maximum allowed decrease and increase of the output

that can occur during one time period:

y j(t) = [y j(t−1)+∆ j(t)] .u j(t), for t ∈ T and j ∈ J . (5.11)

The number of time periods for which unit j has been continuously online until time t

is given by

T on
j (t) =

[
T on

j (t−1)+1
]
.u j(t), for t ∈ T and j ∈ J . (5.12)

The number of time periods for which unit j has been continuously off-line until time

t is given by

T o f f
j (t) =

[
T o f f

j (t−1)+1
]
.(1−u j(t)) , for t ∈ T and j ∈ J . (5.13)

Pathwise Constraints:

The constraints are as before, except for the ramp rate constraints, and thus they are
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given by equation (5.4) and equations (5.6) to (5.9). The ramp rate constraints, which

were given by equation (5.5), are now handled by the control constraints:

∆ j(t) ∈
[
−∆

dn
j ,∆up

j

]
, for t ∈ T and j ∈ J . (5.14)

5.3.2 The Variable Time Transformation Method

The idea here is to develop a variable time transformation in order to convert the mixed-

integer OCM into an OCM with only real-valued controls. The transformation of a

mixed-integer optimal control problem into a problem with only real-valued controls

is not new nor is the general idea of a variable time transformation method. See the

classical reference [54] and also [110, 69, 70, 104, 68]. See also the recent work [44]

for a discussion on several variable time transformation methods.

Consider, for each unit j, a non-decreasing real-valued function t 7→ τ j(t). Consider

also a set of values τ̄1, τ̄2, . . . such that when τ j(t) = τ̄k for odd k we have a transition

from off to on for unit j and when τ j(t) = τ̄k for even k we have a transition from on to

off. So, we consider that unit j is

• on if τ j(t) ∈ [τ̄1, τ̄2)∪ [τ̄3, τ̄4)∪ . . .∪ [τ̄2k−1, τ̄2k)∪ . . .

• off if τ j(t) ∈ [0, τ̄1)∪ [τ̄2, τ̄3)∪ . . .∪ [τ̄2k, τ̄2k+1)∪ . . .

It might help to interpret τ j to be a transformed time scale and the values of τ̄1, τ̄2, . . .

as switching “times” in the transformed time scale. It can be considered, without loss

of generality, that the values τ̄k are equidistant. Nevertheless, in real time t, the distance

between the two events τ̄k and τ̄k+1 can be stretched or shrunk to any nonnegative value,

including zero, depending on the shape of the function t 7→ τ j(t).

To simplify the exposition, and without loss of generality, let us consider that τ̄k− τ̄k−1

is constant and equal to 1, for all k = 1,2, . . .. In such case, unit j is
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• on if τ j(t) ∈ [1,2)∪ [3,4)∪ . . .∪ [2k−1,2k)∪ . . .

• off if τ j(t) ∈ [0,1)∪ [2,3)∪ . . .∪ [2k,2k+1)∪ . . .

Now, consider the controls

w(t) ∈ [0,1], t = 0,1, . . . ,T −1,

that represent the increment from τ(t) to τ(t +1) such that

τ(t) = τ0 +
t−1

∑
k=0

w(k)

or

w(t) = τ(t +1)− τ(t), with τ(0) = τ0.

5.3.3 The Optimal Control Model with real-valued controls

Recall the index set J and redefine T to be more consistent with usual discrete-time

control formulations.

T := {0, . . . ,T −1} and J := {1,2, . . . ,N}.

In the same spirit, we redefine the control ∆ j(t) for t ∈ {0, . . . ,T −1} to be the amount

of power generation incremented or decremented for the next time period (rather than

comparatively to the previous period).

Note that the controls are all real-valued and comprise

∆ j(t) ∈
[
−∆dn

j ,∆up
j

]
,

w j(t) ∈ [0,1] .
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Define the sets of time periods:

Ion
j := {t ∈ T : τ j(t) ∈ [2k−1,2k),k ≥ 1},

Io f f
j := T \ Ion

j ,

Io f f>on
j := {t ∈ T : τ j(t)≥ 2k+1,τ j(t−1)< 2k+1,k ≥ 0},

Ion>o f f
j := {t ∈ T : τ j(t)≥ 2k,τ j(t−1)< 2k,k ≥ 1}}.

Finally, the unit commitment problem can be formulated as an optimal control model,

as follows:

Minimize

N

∑
j=1

∑
t∈Ion

j

Fj(y j(t))+ ∑
t∈Io f f>on

j

S j(t)+ ∑
t∈Ion>o f f

j

Sd j

 , (5.15)

subject to the dynamic constraints

τ j(t +1) = τ j(t)+w j(t) j ∈ J , t ∈ T , (5.16)

T on
j (t +1) =

 T on
j (t)+1 j ∈ J , t ∈ Ion

j ,

0 j ∈ J , t ∈ Io f f
j ,

(5.17)

T o f f
j (t +1) =

 T o f f
j (t)+1 j ∈ J , t ∈ Io f f

j ,

0 j ∈ J , t ∈ Ion
j ,

(5.18)

y j(t +1) =

 y j(t)+∆ j(t) j ∈ J , t ∈ Ion
j ,

0 j ∈ J , t ∈ Io f f
j ,

(5.19)
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the initial state constraints

T on
j (0) = T on

0, j (given), (5.20)

T o f f
j (0) = T o f f

0, j (given), (5.21)

τ j(0) =

 0 if T on
0, j = 0

1 if T on
0, j > 0,

(5.22)

y j(0) =

 0 if T on
0, j = 0

y0, j ∈ [Y min j,Y max j] if T on
0, j > 0,

(5.23)

the control constraints

∆ j(t) ∈
[
−∆

dn
j ,∆up

j

]
, (5.24)

w j(t) ∈ [0,1], (5.25)

and the pathwise state constraints

y j(t) ∈ [Y min j,Y max j] j ∈ J , t ∈ Ion
j , (5.26)

∑
j∈J

y j(t)≥ Dt t = 1,2, . . . ,T, (5.27)

∑
j∈J

Y max j(t)≥ Rt +Dt t = 1,2, . . . ,T, (5.28)

where Y max j(t) = Y max j if t ∈ Ion
j ,Y max j(t) = 0 otherwise

y j(t) ∈ [Ymin j ,max{Ymin j ,∆
up
j }] j ∈ J , t ∈ Io f f>on

j , (5.29)

T on
j (t−1)≥ T on

min, j j ∈ J , t ∈ Ion>o f f
j , (5.30)

T o f f
j (t−1)≥ T o f f

min, j j ∈ J , t ∈ Io f f>on
j . (5.31)

5.3.4 Conversion into a Nonlinear Programming Problem

To construct the nonlinear programming problem (NLP), let us start by defining the

optimization variable x containing both the control and state variables. That is

x = [∆,w,τ,T on,T o f f ,y]
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with dimension (6T +1)×N).

(We could have considered just the controls ∆,w together with the free initial state

y(0). An option which, despite having the advantage of a lower dimensional decision

variable, is known to frequently have robustness problems, specially in optimal control

problems with pathwise state constraints such as ours. For further discussion, see, e.g.,

Betts [10].)

The objective function should be rewritten in terms of x: Minimize J(x) over x.

To facilitate the optimization algorithm, we separate the constraints that are simple

variable bounds, linear equalities, linear inequalities, and the remaining:

• upper/lower bounds: equations (5.24)-(5.26);

• linear equalities: equation (5.16);

• linear inequalities: equation (5.27);

• nonlinear equalities: equations (5.17)-(5.19); and

• nonlinear inequalities: equations (5.28)-(5.31).

Note that equations (5.20)-(5.23) are not implemented as constraints since the initial

values of these state variables are considered as parameters and not variables.
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With these considerations the problem is formulated as the following NLP:

Minimizex∈R(6T+1)×N J(x)

subject to

LB≤ x≤UB

Aeqx = beq

Aineqx≤ bineq

g(x) = 0

h(x)≤ 0.

More specifically

Minimize over x

J(x) =
N

∑
j=1

∑
t∈Ion

j

Fj(y j(t))+ ∑
t∈Io f f>on

j

S j(t)+ ∑
t∈Ion>o f f

j

Sd j(t)

 ,

Subject to

• lower bounds:

∆ j(t)≥−∆dn
j , for t ∈ T and j ∈ J ,

w j(t)≥ 0, j ∈ J , t ∈ T ;

τ j(t)≥ 0, j ∈ J , t ∈ T ,

T on
j (t)≥ 0, j ∈ J , t ∈ T ,

T o f f
j (t)≥ 0, j ∈ J , t ∈ T ,

y j(t)≥ 0, j ∈ J , t ∈ T ;

• upper bounds:

∆ j(t)≤ ∆
up
j , j ∈ J , t ∈ T ,

w j(t)≤ 1, j ∈ J , t ∈ T ;
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τ j(t)≤ T, j ∈ J , t ∈ T ,

T on
j (t)≤ 2T, j ∈ J , t ∈ T ,

T o f f
j (t)≤ 2T, j ∈ J , t ∈ T ,

y j(t)≤ Y max j, j ∈ J , t ∈ T ;

• linear equalities:

τ j(t +1)− τ j(t)−w j(t) = 0 j ∈ J , t ∈ T ;

• linear inequalities:

∑ j∈J y j(t)−D(t)≥ 0 t ∈ T ;

• nonlinear equalities:

T on
j (t +1) =


T on

j (t)+1 if j ∈ J , t ∈ Ion
j ,

0 if j ∈ J , t ∈ Io f f
j ,

T o f f
j (t +1) =


T o f f

j (t)+1 if j ∈ J , t ∈ Io f f
j ,

0 if j ∈ J , t ∈ Ion
j ,

y j(t +1) =


y j(t)+∆ j(t) if j ∈ J , t ∈ Ion

j ,

0 if j ∈ J , t ∈ Io f f
j ,

and

• nonlinear inequalities:

y j(t)≥ Y min j j ∈ J , t ∈ Ion
j ,

∑ j∈J Y max j(t)−R(t)−D(t)≥ 0 t ∈ T ,

y j(t)−Ymin j ≥ 0 j ∈ J , t ∈ Io f f>on
j ,

y j(t)−max{Ymin j ,∆
up
j } ≤ 0 j ∈ J , t ∈ Io f f>on

j ,

T on
j (t−1)−T on

min, j ≥ 0 j ∈ J , t ∈ Ion>o f f
j ,
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T o f f
j (t−1)−T o f f

min, j ≥ 0 j ∈ J , t ∈ Io f f>on
j .

Of course, since this (real-valued) NLP is a problem that originally was a MI-NLP, it is

still a very hard problem. Namely, it is a nonconvex problem and standard NLP solvers

will find just a local, not necessarily global, optimum. Nevertheless, this is very useful

since it can be embedded, as a local search optimizer, into a global search heuristic

method.

5.4 Continuous-Time Optimal Control Approach

This section presents a continuous-time optimal control formulation for the unit com-

mitment problem that uses only real-valued decision variables.

To introduce the ideas and concepts used in this formulation let us start by analyzing a

specific and simple situation.

Consider a generation unit for which the minimum time it must be consecutively on

is 2 hours (T on
min = 2) and the minimum time it must be consecutively off is 3 hours

(T o f f
min = 3). Furthermore, consider also the unit to be initially off-line. Let the unit be

turned off and turned on as soon as the elapsed time reaches T on
min and T o f f

min , respectively.

Such a strategy corresponds to the unit having the maximum number of status switches.

Thus, for a 24h period, the profile given in Fig. 5.1 would be obtained.

For the example just described, the times at which status switching occurs are given by

ti+1 =

 ti +T on
min, j, if i is odd,

ti +T o f f
min, j, if i is even.

All other feasible status switching strategies can be obtained from the one just described

by stretching any number of time intervals [ti, ti+1) with i = 1, . . . ,S, where S the
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0 3 5 8 10 1513 18 20

24

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9
23

on

off

Figure 5.1: Unit status, when the status switching strategy is as often as possible.

maximum number of status switches that can occur within the 24-hours scheduling

period is given by

S = 1+2∗
(

24 DIV (T on
min, j +T o f f

min, j)
)
,

where DIV denotes integer division.

The stretching magnitude αi in the time interval [ti, ti+1) is bounded from below by 1,

since the interval is initially defined as small as possible, and from above by [1,(24−
ti)/Tmin], where Tmin is set to T on

min, j or T o f f
min, j depending on whether i is odd or even,

respectively, which allows for reaching the end of the scheduling period. It should be

noticed that all switches occur at times ti ≤ 24−Tmin with Tmin as defined.

Using a convenient selection of the αi’s any admissible switching profile can be gener-

ated. For example, choosing α = [α0,α1, . . . ,α9] = [1,2,1,2,1,2,1,1,1,1] leads to the

profile given in Fig. 5.2.

on

off
0 7 10 14 21

24

3
t0 t1 t2 t3

17
t6t5t4

Figure 5.2: Status of unit obtained with α = [α0,α1, . . . ,α9] = [1,2,1,2,1,2,1,1,1,1].
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Therefore, in any situation, the computation of the switching times is given by

ti+1 =

 ti +αiT on
min, j if i is odd,

ti +αiT
o f f

min, j if i is even.

5.4.1 Formulation

Let us define some parameters before introducing the formulation. When considering

several units, the maximum number of switches is not the same for all units since they

may have different limits on the number of periods that must elapse before a switch is

possible. The same is true for the maximum magnitude of the stretch. Therefore and in

order to have one single value for these parameters, we compute upper bounds rather

than their true value. By defining

T on+o f f
min = min

j
{T on

min, j +T o f f
min, j},

we obtain a limit for the maximum number of switches as

S = 1+2∗24 DIV
(

T on+o f f
min

)
and the maximum magnitude of the stretch of an interval as

smax = 24/min
j
{T on

min, j,T
o f f

min, j}.

For convenience, let us also define the index sets:

I := {0,1, . . . ,S} switching times indexes,

J := {1,2, . . . ,N} generation unit indexes,

and the time horizon

T := [0,24] time horizon interval.
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Decision/Control Variables:

The model has two types of control variables, since two types of decisions are taken.

On the one hand, one has to decide for how much time each unit is in each status, that

is the magnitude of stretch applied to each time interval for each unit, αi, j. On the other

hand, one also must decide on the amount of power production for each unit at each

time instant. In our case, this is done by deciding on the variation of the production at

each time instant δ j(t).

αi, j : Stretch magnitude applied to the time interval [ti, ti+1) for unit j. These are real-

valued variables in the range [1,smax].

δ j(t) : Rate of change (increase or decrease) for the production of unit j at instant t.

These variables are also real-valued and must be within [−∆dn
j ,∆up

j ].

State Variables:

The state variables characterize the system and are as follows:

ti, j : i-th switching time of unit j;

ui, j : Status of unit j in the interval [ti, ti+1), (1 if the unit is on; 0 otherwise);

u j(t) : Status of unit j at instant t, (1 if the unit is on; 0 otherwise);

y j(t) : Power generation of unit j at instant t, in [MW ].

Objective Function:

The objective of the UC problem is the minimization of the total costs for the whole

planning period, in which the total costs are expressed as the sum of fuel costs and

start-up and shutdown costs of the generating units. Therefore, the objective function
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is as follows:

Minimize

∑
j∈J

∫ T

0
(Fj (y j(t))u j(t)+S j(t)(1−u j(t−1))u j(t)+Sd j · (1−u j(t)) ·u j(t−1))dt.

Dynamic Constraints:

We must define the unit status during each time interval. Unit j must have its status

switched at the beginning of each interval [ti, ti+1). Thus if in the interval [ti, ti+1) the

unit is 1 (on), then in the interval [ti+1, ti+2) it becomes 0 (off) and vice versa.

ui+1, j = |ui, j−1|, j ∈ J , i ∈ I .

The ending time instant of a time interval, which is the beginning of the next one, is

obtained by adding up the starting time instant with the length of the interval.

ti+1, j = ti, j +αi, j[T on
min, jui, j +T o f f

min, j(1−ui, j)], j ∈ J , i ∈ I .

In addition, the power production and, for convenience, the unit status must also be

defined for each time instant.

u j(t) = ui, j, j ∈ J , i ∈ I , t ∈ [ti, ti+1),

y j(t) =

 0 if u j(t) = 0,

y j(ti)+
∫ t

ti δ j(s)ds,with i = max{i : ti ≤ t}, if u j(t) = 1,
t ∈ T , j ∈ J .

Control Constraints:

Due to the mechanical characteristics and thermal stress limitations, the instantaneous
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output variation level of each online unit is restricted by ramp rate constraints, both up

and down.

δ j(t) ∈ [−∆dn
j ,∆up

j ], j ∈ J , t ∈ T .

The magnitude of the stretch is limited both from below and from above, since one

must assure that the T on/o f f
min, j are satisfied and that the scheduling does not go beyond

the scheduling horizon.

αi, j ∈ [1,Ai, j], for i ∈ I , j ∈ J ,

with Ai, j =


24−ti

T on
min, jui, j+T o f f

min, j(1−ui, j)
if ti ≤ 24− (T on

min, jui, j +T o f f
min, j(1−ui, j)),

1 otherwise.

Pathwise State Constraints:

Each unit has maximum and minimum output capacity limits.

y j(t) ∈ [Y min j.u j(t),Y max j.u j(t)] j ∈ J , t ∈ T .

The power generated at each time instant must meet the respective load demand.

∑ j∈J y j(t)≥ D(t) t ∈ T .

where D(t) is the load demand at time instant t, in [MW ].

The spinning reserve is the amount of real power available from online units net of their

current production level and it must satisfy a pre-specified value, at each time instant.

∑ j∈J Y max j.u j(t)≥ R(t)+D(t) t ∈ T .
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where R(t) is the pre-specified value of spinning reserve at time instant t, in [MW ].

Initial State Constraints:

The initial status of each unit is given.

u0, j =


1, if T on

0, j > 0,

0, if T on
0, j = 0.

Also

u j(0) = u0, j, j ∈ J .

The first switching interval starts at the beginning of the scheduling horizon and thus

t0, j = 0, j ∈ J .

Finally, the power production of each online unit has to be within its capacity limits.

y j(0) ∈ [Y min j.u0, j,Y max j.u0, j], j ∈ J .

The numerical solution of continuous-time optimal control problems has been a well-

studied subject for many decades [12] and also has been having recent developments

and available solvers such as ICLOCS [31], BOCOP [11], and ACADO [52]. The use

of one of these solvers involves always to discretize the problem, transcribe it into a

nonlinear programming problem, and use an NLP solver.

The use of a continuous-time formulation for the UC problem has some advantages:

(i) the possibility of accommodating any changes in the data or parameters that occur

not on an hourly basis, but at any time in between; (ii) in particular, the formulation

proposed can deal with continuous-time varying demand (which is more realistic),

resulting in an output strategy that responds with continuous-time variations; (iii) how-



5.5. CONCLUSIONS 121

ever, in the case that the demand and all remaining data vary only on an hourly basis,

the resulting output strategy will follow very closely to the one obtained with a discrete-

time model; (iv) the complexity of the optimization problem obtained is not increased,

possibly being easier to find an optimal solution, since the decision variables involved

are all real-valued. It is well known that real-valued nonlinear programming problems

are, in general, less difficult to solve than mixed-integer nonlinear programming prob-

lems.

5.5 Conclusions

We have addressed the UC problem, a well-researched problem in the literature, which

is usually formulated using a mixed-integer nonlinear programming model. Here, we

have explored the formulation of this problem using optimal control models. Previous

works on an optimal control approach to the UC problem, as far as we are aware of, are

limited to the works in [38] and [34] that use a discrete-time optimal control model.

We have proposed here a formulation of the UC problem using a continuous-time

optimal control model. An interesting feature of the continuous-time formulation is the

fact that, contrary to the usual mixed-integer programming models in the literature, all

decision variables are real-valued, which enables the use of more efficient optimization

methods for its solution.

Additional advantages of the continuous-time optimal control formulation are the pos-

sibility of dealing more accurately with data that is provided with irregular or fast-

sampled time intervals, or even continuous-time varying. In particular, this formulation

can deal appropriately with continuous-time varying demand data.

In this chapter we discuss how the UC problem can be formulated with an optimal

control model, describe previous discrete-time optimal control models, and propose a

continuous-time optimal control model.
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Chapter 6

Conclusions and future work

6.1 Summary

This thesis addresses the traditional and the environmental/economic unit commitment

problems. These problems play a key role in planning and operating of modern electric

power systems. In the liberalized markets, an efficient operation, focused on operating

cost reduction, is essential. Also with the increased environmental awareness, utilities

are forced to change their operational strategies to reduce air pollution and atmospheric

emissions.

For these UC problems we proposed two Biased Random Key GAs approaches: the

hybrid BRKGA and BRKGA adapted to multi-objective UC problem. Biased Random

Key GAs have been developed for and applied to several combinatorial optimization

problems with interesting results. The results proved the effectiveness of the BRKGA

algorithms for traditional and environmental/economic UC problems under reasonable

execution times.

123
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6.2 Single objective UC problem

At the first stage of this work, we address the Unit Commitment problem with a

single objective function, namely, the minimization of total operating costs. We pro-

pose a Hybrid Random Key Genetic Algorithm with Local Search to address the unit

commitment problem. A specific decoding that includes repair procedures within the

BRKGA general framework was developed [95]. This way, schedules are constructed

using a decode procedure that guarantees the UC solutions feasibility. The algorithm

has been tested on a set of UC benchmark problems commonly used and other UC

problems found in the literature. For all problem instances, simulation results reveal a

satisfactory performance of the HBRKGA, regarding both the quality of solutions and

the computational requirements, which are typically smaller or of the same magnitude

of alternative methods. Furthermore, the results show a further very important feature,

a lower variability. This is very important since the methods to be used in industrial

applications are required to be robust, otherwise they may lead to poor solutions being

used.

6.3 Multi-objective UC problem

Another important focus of this thesis was the application of the BRKGA to find Pareto

sets for the multiobjective environmental/economic unit commitment problem.

This problem involves more information and conflicting objective functions. The si-

multaneous minimization of operating fuel costs and CO2, SOx and NOx emissions

are the objectives. The proposed algorithm combines the biased selection and biased

crossover of the BRKGA approach with nondominated sorting procedure and crowded

comparison operator used in the NSGA II technique. The algorithm maintains a finite-

sized archive of nondominated solutions which gets iteratively updated in the presence

of new solutions based on the concept of Pareto dominance.
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The proposed approach has been assessed through a comparative study, for two case

study problems, with the other state of the art multiobjective optimization techniques.

The best results are obtained for BRKGA and SPEA2 approaches regarding most

of multiobjective performance metrics. Comparatively to the SPEA2, the BRKGA

algorithm has best coverage performance but worst diversity performance in the first

case study, while it has worst performance coverage but best diversity performance in

the second case study. The results show that BRKGA can be an effective method

for producing tradeoff curves. Tradeoff curves such as those presented here may

give decision makers the capability of making better decisions. Moreover, the best

diversity performance of the BRKGA in second case study allows the decision maker

to have more choices in the selection of a solution. Given that the approaches have

similar decode procedures, the improvement in performance is most likely due to

elitism. Elitism also guarantees that no good solutions are lost. Therefore, the proposed

technique can help to reduce the fuel costs and the pollutant emissions simultaneously

on daily operation in electric power systems. This issue can lead to less dependence of

the fossil fuels and, in consequence, the pollutant emissions reduction, which have a

positive impact in environmental issues and the global warming effect.

6.4 Unit Commitment as an optimal control problem

As already referred, the UC problem is a dynamical decision problem. Therefore, it

can be formulated as an OCP (with some discrete decision variables). Since the mixed-

integer optimization problem thus obtained is very hard to solve, we propose a variable

time transformation method that converts the Mixed Integer-OCP into a real-valued

OCP (with significant lower dimension than using a ”general” transformation method).

The obtained real-valued Non Linear Problem is a reformulation of the original MI-

NLP, so it is still a hard problem. It is nonconvex and standard NLP solvers will just

find a local, not necessarily global, optimum. However, the OCP approach can be
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useful as a local search optimizer to be applied after a global heuristic method. In

addition, the proposed continuous-time optimal control formulation has the advantage

of involving only real-valued decision variables (controls) and enables extra degrees of

freedom as well as more accuracy, since it allows to consider sets of demand data that

are not sampled hourly.

6.5 Main Contributions

The main contributions of this thesis are the following:

• The decoding procedure of the HBRKGA approach adapted to address the single

and multi-objective UC problem.

• The specific repairing mechanisms to find only feasible UC solutions.

• The HBRKGA approach that combines the concept of repairing procedure and

elitist strategy has been applied to the UC problem and obtained good results

comparatively to other meta-heuristics.

• The BRKGA method adapted to the multi-objective UC problem. This method

approach is combined with non-dominated sorted procedure including a ranking

selection method and a crowded comparison procedure. The BRKGA itself would

be very useful for power planning and/or operating to treat jointly the cost and

environmental objective of power system.

• The simultaneous address of the UC and Economic Emission Dispatch (EED)

problems. In the past and in recent papers, the economic emission dispatch prob-

lem has been addressed. However, the EED does not include the start-up and shut

down costs, and it is assumed that all generators are on-line, which is a much

simpler problem.
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• The effectiveness of the proposed approach is shown through a comparative study,

for two test systems with 10-100 generating units, with the other multi-objective

optimization techniques, where the performances as well as its variability are

evaluated.

• The proposed BRKGA provides many Pareto-optimal solutions in a single run,

which gives to decision makers multiples choices.

• The formulation of the UC problem as an optimal control problem.

• The conversion of the single objective UC problem into an Optimal Control ap-

proach with only real valued controls.

• The proposed Optimal Control approach allows decisions to be taken at any time

moment, and not only at specific points in time (usually, hourly) and it may

provide better solutions. In addition, it no longer forces utilities to treat demand

variations as instantaneous, i.e., time steps.

6.6 Future work

This thesis has discussed contributions to the UC problem at several levels. Of course,

several new research directions are raised. We restrict ourselves to present some point-

ers:

• In terms of practical implementations, the UC problem including the valve point

effect could not be easily addressed from any optimization algorithms. The HBRKGA

approach, unlike some other algorithms used in standard UC problem solution, can

be applied to the case where the cost function is non-convex, such as it happens

when UC problem takes the valve point effect into consideration.

• The development of other local search heuristics to improve the performance in

regions near local optima would be an important open task.
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• The UC problem is nonconvex and standard NLP solvers will just find a local,

not necessarily global, optimum. Thus, the Optimal Control approach could be

useful as a local search optimizer to be applied after a global heuristic method (e.g.

HBRKGA). However, the combined implementation of the hybridized approach is

still unfinished and is expected to bring better results in some cases and, of course,

would be an important advantage.

• Another research direction of some importance would be to extend the daily UC

problem to more complex planning and operating tasks, such as weekly UC prob-

lem and including more input dimensions like, for instance, the number of gener-

ation units.



Appendix A

Data for the case studies: single

objective optimization

A.1 Data for case study 1

Table A.1: Problem data for the 10-unit base UC problem.

Unit1 Unit2 Unit3 Unit4 Unit5 Unit6 Unit7 Unit8 Unit9 Unit10

Ymax (MW) 455 455 130 130 162 80 85 55 55 55

Ymin (MW) 150 150 20 20 25 20 25 10 10 10

c ($/h) 1000 970 700 680 450 370 480 660 665 670

b ($/MWh) 16.19 17.26 16.60 16.50 19.70 22.26 27.74 25.92 27.27 27.79

a($/MW 2−h) 0.00048 0.00031 0.002 0.00211 0.00398 0.00712 0.00079 0.00413 0.00222 0.00173

T on
min, j(h) 8 8 5 5 6 3 3 1 1 1

T o f f
min, j(h) 8 8 5 5 6 3 3 1 1 1

hot start cost ($) 4500 5000 550 560 900 170 260 30 30 30

cold start cost ($) 9000 10000 1100 1120 1800 340 520 60 60 60

cold start hrs(h) 5 5 4 4 4 2 2 0 0 0

initial status (h) 8 8 -5 -5 -6 -3 -3 -1 -1 -1

129
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Table A.2: Load Demand

hour 1 2 3 4 5 6 7 8 9 10 11 12

Demand (MW) 700 750 850 950 1000 1100 1150 1200 1300 1400 1450 1500

hour 13 14 15 16 17 18 19 20 21 22 23 24

Demand (MW) 1400 1300 1200 1050 1000 1100 1200 1400 1300 1100 900 800

A.2 Data for case study 2
Details can be found in [53].

Table A.3: Load Demand

hour 1 2 3 4 5 6 7 8 9 10 11 12

Demand (MW) 5700 5400 5150 4850 4950 4800 4850 5400 6700 7850 8000 8100

hour 13 14 15 16 17 18 19 20 21 22 23 24

Demand (MW) 6900 8150 8250 8000 7800 7100 6800 7300 7100 6800 6550 6450

Table A.4: 38-generator system data I.

Unit Ymax Ymin RU RD T on
i T o f f

i

1 220 550 92 138 18 8

2 220 550 92 138 18 8

3 200 500 84 120 18 8

4 200 500 84 120 18 8

5 200 500 84 120 18 8

6 200 500 84 120 18 8

7 200 500 84 120 18 8

8 200 500 84 120 18 8

9 200 500 84 120 7 7

10 114 500 128 256 7 7

11 114 500 128 256 7 7

12 114 500 128 256 7 7

13 110 500 110 170 9 8

14 90 365 92 125 12 8

15 82 365 92 125 12 8
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Table A.5: 38-generator system data I.

Unit Ymax Ymin RU RD T on
i T o f f

i

16 120 325 82 125 10 8

17 65 315 320 70 1 1

18 65 315 320 70 1 1

19 65 315 320 70 1 1

20 120 272 55 91 9 8

21 120 272 55 91 9 8

22 110 260 53 132 11 8

23 80 190 48 98 14 7

24 10 150 460 20 1 1

25 60 125 42 60 8 8

26 55 110 28 56 14 7

27 35 75 20 38 14 14

28 20 70 70 30 1 1

29 20 70 70 30 1 1

30 20 70 70 30 1 1

31 20 70 75 30 1 1

32 20 60 70 30 1 1

33 25 60 70 30 1 1

34 18 60 70 20 1 1

35 8 60 70 20 1 1

36 25 60 75 30 1 1

37 20 38 10 20 11 8

38 20 38 10 20 11 8
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Table A.6: 38-generator system data I.

Unit Ai Bi Ci HSUi

1 64782 796.9 0.3133 805000

2 64782 796.9 0.3133 805000

3 64670 795.5 0.3127 805000

4 64670 795.5 0.3127 805000

5 64670 795.5 0.3127 805000

6 64670 795.5 0.3127 805000

7 64670 795.5 0.3127 805000

8 64670 795.5 0.3127 805000

9 172832 915.7 0.7075 402500

10 172832 915.7 0.7075 402500

11 176003 884.2 0.7515 402500

12 173028 884.2 0.7083 402500

13 91340 1250.1 0.4211 575000

14 63440 1298.6 0.5145 575000

15 65486 1298.6 0.5691 575000

16 72282 1290.8 0.5691 575000

17 190928 238.1 2.5881 23000

18 285372 1149.5 3.8734 23000

19 271376 1269.1 3.6842 23000

20 39197 696.1 0.4921 575000

21 45576 690.2 0.5728 575000

22 28770 803.2 0.3572 460000

23 36902 818.2 0.9415 92000

24 105510 33.5 52.123 23000

25 22233 805.4 1.1421 115000

26 30953 707.1 2.0275 287500

27 17044 833.6 3.0744 253000

28 81079 2188.7 16.765 5750

29 124767 1024.4 26.355 5750
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Table A.7: 38-generator system data I.

Unit Ai Bi Ci HSUi

30 121915 837.1 30.575 5750

31 120780 1305.2 25.098 5750

32 104441 716.6 33.722 7670

33 83224 1633.9 23.915 7670

34 111281 969.5 32.562 7670

35 64142 2625.8 18.362 7670

36 103519 1633.9 23.915 7670

37 13547 694.7 8.482 69000

38 13518 655.9 9.693 69000

A.3 Data for case study 3

26 generating units from [119] with the cost coefficients of generators given in [122].

Table A.8: Load Demand

hour 1 2 3 4 5 6 7 8 9 10 11 12

Demand (MW) 1700 1730 1690 1700 1750 1850 2000 2430 2540 2600 2670 2590

Spn.res. (MW) 400 400 400 400 400 400 400 400 400 400 400 400

hour 13 14 15 16 17 18 19 20 21 22 23 24

Demand (MW) 2590 2550 2620 2650 2550 2530 2500 2550 2600 2480 2200 1840

Spn.res. (MW) 400 400 400 400 400 400 400 400 400 400 400 400
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Table A.9: 26-generator system (generator data).

Unit Initial.con. Start-up cost ($) Min.up time(h) Min.down time (h) Ramp rate (MW/10−min)

1-5 -1 0.01 1 0 900

6-9 -1 20 2 0 900

10-13 3 50 3 2 900

14-16 -3 70 4 2 900

17-20 5 150 5 3 900

21-23 -4 200 5 4 900

24 10 300 8 5 900

25 10 500 8 5 900

26 10 500 8 5 900

Table A.10: 26-generator system (generator data).

Unit. Ymin(MW) Ymax(MW) A,$ B,$/MW C,$/MW 2

1 2.4 12.0 0.02533 25.5472 24.3891

2 2.4 12.0 0.02649 25.6753 24.4110

3 2.4 12.0 0.02801 25.8027 24.6382

4 2.4 12.0 0.02842 25.9318 24.7605

5 2.4 12.0 0.02855 26.0611 24.8882

6 4.0 20.0 0.01199 37.5510 117.7551

7 4.0 20.0 0.01261 37.6637 118.1083

8 4.0 20.0 0.01359 37.7770 118.4576

9 4.0 20.0 0.01433 37.8896 118.8206

10 15.2 76.0 0.00876 13.3272 81.1364

11 15.2 76.0 0.00895 13.3538 81.2980

12 15.2 76.0 0.00910 13.3805 81.4641

13 15.2 76.0 0.00932 13.4073 81.6259

14 25.0 100.0 0.00623 18.0000 217.8952

15 25.0 100.0 0.00612 18.1000 218.3350
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Table A.11: 26-generator system (generator data).

Unit. Ymin(MW) Ymax(MW) A,$ B,$/MW C,$/MW 2

16 25.0 100.0 0.00598 18.2000 218.7752

17 54.25 155.0 0.00463 10.6940 142.7348

18 54.25 155.0 0.00473 10.7154 143.0288

19 54.25 155.0 0.00481 10.7367 143.3179

20 54.25 155.0 0.00487 10.7583 143.5972

21 68.95 197.0 0.00259 23.0000 259.1310

22 68.95 197.0 0.00260 23.1000 259.6490

23 68.95 197.0 0.00263 23.2000 260.1760

24 140.0 350.0 0.00153 10.8616 177.0575

25 100.0 400.0 0.00194 7.4921 310.0021

26 100.0 400.0 0.00195 7.5031 311.9102

A.4 Data for case study 4

Details can be found in [5].

Table A.12: Load Demand

hour 1 2 3 4 5 6 7 8 9 10 11 12

Demand (MW) 14000 13500 13400 13500 13700 14000 14400 14500 14700 15000 14700 14500

hour 13 14 15 16 17 18 19 20 21 22 23 24

Demand (MW) 14300 14000 13800 13700 13700 14000 14300 14300 14700 15000 14500 14000
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Table A.13: 45-generator system data I.

Unit Ymin Ymax RU RD SU Sd UT DT In.Status Y (0)

1 888.7 887.2 120 120 888.7 888.7 45 2 1 888.7

2 888.7 887.2 120 120 888.7 888.7 45 2 1 888.7

3 895.0 895.0 120 120 895.0 895.0 45 2 1 895.0

4 895.0 895.0 120 120 895.0 895.0 45 2 1 895.0

5 958.0 958.0 120 120 958.0 958.0 45 2 1 958.0

6 152.0 152.0 40 40 152.0 152.0 45 2 1 152.0

7 989.0 989.0 120 120 989.0 989.0 45 2 1 989.0

8 933.0 933.0 120 120 933.0 933.0 45 2 1 933.0

9 330.0 160.0 165 165 330.0 330.0 45 2 1 300.0

10 138.0 70.0 74 74 138.0 138.0 45 2 1 138.0

11 496.6 76.4 235 235 496.6 496.6 45 2 1 300.0

12 496.6 76.4 300 300 496.6 496.6 45 2 1 300.0

13 139.0 88.0 74 74 139.0 139.0 45 2 1 139.0

14 326.0 163.0 191 191 326.0 326.0 45 2 1 326.0

15 140.0 70.0 60 60 140.0 140.0 45 2 1 100.0

16 331.0 170.0 161 161 331.0 331.0 45 2 1 331.0

17 506.0 230.0 276 276 506.0 506.0 45 2 1 276.0

18 141.0 61.0 64 64 141.0 141.0 45 2 1 100.0

19 326.0 172.0 121 121 326.0 326.0 45 2 1 205.0

20 325.0 214.0 111 111 325.0 325.0 45 2 1 325.0

21 325.0 214.0 111 111 325.0 325.0 45 2 1 325.0

22 325.0 214.0 111 111 325.0 325.0 45 2 1 325.0

23 325.0 214.0 111 111 325.0 325.0 45 2 1 325.0
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Table A.14: 45-generator system data I.

Unit Ymin Ymax RU RD SU Sd UT DT In.Status Y (0)

24 205.0 74.0 131 131 205.0 205.0 45 2 1 205.0

25 291.0 158.0 150 150 291.0 291.0 45 2 1 291.0

26 252.0 112.0 60 60 252.0 252.0 45 2 1 192.0

27 326.0 172.0 121 121 326.0 326.0 45 2 1 250.0

28 358.4 133.0 222 222 358.4 358.4 45 2 1 200.0

29 517.2 133.7 300 300 517.3 517.3 45 2 1 250.0

30 147.0 72.0 75 75 147.0 147.0 45 2 1 147.0

31 219.0 150.0 69 69 219.0 219.0 45 2 1 219.0

32 330.0 165.0 165 165 330.0 330.0 45 2 1 330.0

33 330.0 170.0 132 132 330.0 330.0 45 2 1 200.0

34 330.0 170.0 132 132 330.0 330.0 45 2 1 200.0

35 330.0 170.0 132 132 330.0 330.0 45 2 1 200.0

36 525.0 169.0 356 356 525.0 525.0 3 2 3 525.0

37 133.0 37.0 96 96 133.0 133.0 2 2 -9 0.0

38 272.0 94.0 178 178 272.0 272.0 2 2 -2 0.0

39 534.0 175.0 276 276 534.0 534.0 4 2 1 450.0

40 57.0 33.0 24 24 57.0 57.0 4 2 1 57.0

41 206.0 101.0 105 105 206.0 206.0 4 2 1 206.0

42 332.5 87.4 235 235 332.5 332.5 2 2 -4 0.0

43 60.0 45.0 15 15 60.0 60.0 4 2 1 60.0

44 329.0 94.0 235 235 329.0 329.0 2 2 -4 0.0

45 329.0 94.0 80 80 329.0 329.0 2 2 -4 0.0
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Table A.15: 45-generator system data II.

Unit A1 A2 A3 CF CC α C H

1 0.00 1000 0.000 0 0 2 0 1.00

2 0.00 1000 0.000 0 0 2 0 1.00

3 0.00 1000 0.000 0 0 2 0 1.00

4 0.00 1000 0.000 0 0 2 0 1.00

5 0.00 1000 0.000 0 0 2 0 1.00

6 0.00 1000 0.000 0 0 2 0 1.00

7 0.00 1000 0.000 0 0 2 0 1.00

8 0.00 1000 0.000 0 0 2 0 1.00

9 1.69 1332 164.434 1151000 0 2 20 2.16

10 2.65 1942 68.064 476445 0 2 20 2.18

11 0.51 1872 103.819 726700 0 2 20 5.34

12 0.45 2006 93.919 657400 0 2 20 4.30

13 0.69 2520 22.714 158995 0 2 20 2.12

14 0.96 1858 88.924 622450 0 2 20 2.12

15 8.15 528 135.203 9496400 0 2 20 2.05

16 1.65 1476 179.304 1255100 0 2 20 2.05

17 1.30 1709 301.548 2110800 0 2 20 1.95

18 13.50 -663 178.234 1247600 0 2 20 2.13

19 1.18 1710 115.704 809900 0 2 20 2.13

20 3.09 1405 213.279 1492950 0 2 20 1.38

21 3.09 1405 213.279 1492950 0 2 20 1.38

22 3.09 1405 213.279 1492950 0 2 20 1.38

23 3.09 1405 213.279 1492950 0 2 20 1.38



A.4. DATA FOR CASE STUDY 4 139

Table A.16: 45-generator system data II.

Unit A1 A2 A3 CF CC α C H

24 2.37 1511 121.064 847400 0 2 20 2.37

25 0.40 2224 47.797 334575 0 2 20 2.27

26 1.89 1536 101.589 711100 0 2 20 2.17

27 1.84 1403 166.427 1164950 0 2 20 2.03

28 0.24 1989 109.896 769250 0 2 20 4.89

29 0.18 2124 99.450 696150 0 2 20 4.89

30 5.08 1118 96.248 673700 0 2 20 2.37

31 0.00 2425 14.807 45969 0 2 20 2.26

32 1.40 1409 136.476 955300 0 2 20 2.26

33 1.98 1553 135.658 949600 0 2 20 1.98

34 1.98 1553 135.658 949600 0 2 20 1.98

35 1.98 1553 135.658 949600 0 2 20 1.98

36 0.10 2029 115.837 81085 0 2 20 3.10

37 0.00 2380 30.000 479960 0 2 20 5.26

38 0.64 2019 69.474 479960 0 2 20 5.32

39 0.48 1864 100.532 703700 0 2 20 3.52

40 -9.58 2401 27.629 57330 0 2 20 2.13

41 1.99 1875 56.816 411710 0 2 20 3.37

42 1.47 1618 120.095 840650 0 2 20 5.36

43 16.33 1374 47.399 331790 0 2 20 2.26

44 0.55 2094 73.451 514150 0 2 20 5.34

45 0.50 2204 61.565 430955 0 2 20 4.30
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A.5 Data for case study 5

A.5.1 The First problem data set

Details can be found in [115].

Table A.17: The first problem data of case study 5.

Unit1 Unit2 Unit3 Unit4 Unit5 Unit6 Unit7 Unit8 Unit9 Unit10

Ymax (MW) 520 320 280 200 150 150 120 100 80 60

Ymin (MW) 250 120 75 75 50 50 25 30 20 15

c ($/h) 105 49 72 82 100 29 32 40 25 15

b ($/MWh) 1.3954 1.2643 1.35 1.2136 1.3285 1.54 1.4 1.35 1.5 1.4

a($/MW 2−h) 0.00127 0.00289 0.00261 0.00148 0.00135 0.00212 0.00382 0.00393 0.00396 0.0051

T on
min, j(h) 5 5 5 5 5 5 5 5 5 5

T o f f
min, j(h) 2 2 2 2 2 2 2 2 2 2

b0 267 187 176 227 282 113 94 114 101 85

b1 0.749 0.617 0.568 0.641 0.749 0.639 0.65 0.57 0.594 0.588

b2 0.09 0.130 0.15 0.11 0.09 0.18 0.18 0.2 0.2 0.2

initial status (h) 6 6 6 6 6 6 6 6 6 6

Table A.18: Load Demand and spinning reserve for first problem of case study 5

hour 1 2 3 4 5 6 7 8 9 10 11 12

Demand (MWH) 1459 1372 1299 1285 1271 1314 1372 1314 1271 1242 1197 1182

Reserve (MWH) 146 137 130 129 127 131 137 131 127 124 120 118

hour 13 14 15 16 17 18 19 20 21 22 23 24

Demand (MWH) 1154 1138 1124 1095 1066 1037 993 978 963 1022 1081 1459

Reserve (MWH) 115 114 112 110 107 104 99 98 96 102 108 146
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A.5.2 The second problem data set

Details can be found in [8].

Table A.19: The second problem data of case study 5.

Unit1 Unit2 Unit3 Unit4 Unit5 Unit6 Unit7 Unit8 Unit9 Unit10

Ymax (MW) 1000 850 750 700 600 420 400 375 250 200

Ymin (MW) 300 275 250 225 165 130 130 110 75 50

c ($/h) 820 725 600 540 600 420 400 400 200 175

b ($/MWh) 9.023 8.162 9.121 9.223 8.752 8.431 7.654 7.762 8.149 7.054

a($/MW 2−h) 0.00113 0.00128 0.00131 0.00234 0.00147 0.00150 0.00160 0.00171 0.00452 0.00515

T on
min, j(h) 5 4 3 4 2 1 3 1 2 2

T o f f
min, j(h) 4 3 4 5 4 3 2 3 1 2

b0 2050 2200 2300 2100 2100 1480 1460 1370 1180 1360

b1 825 950 950 900 950 650 650 550 625 750

b2 4 4 4 3 4 4 3 3 2 2

initial status (h) -4 2 6 -8 1 -2 5 -1 -7 -1

Table A.20: Load Demand and spinning reserve for second problem of case study 5

hour 1 2 3 4 5 6 7 8 9 10 11 12

Demand (MWH) 1025 1000 900 850 1025 1400 1970 2400 2850 3150 3300 3400

Reserve (MWH) 85 85 65 55 85 110 165 190 210 230 250 275

hour 13 14 15 16 17 18 19 20 21 22 23 24

Demand (MWH) 3275 2950 2700 2550 2725 3200 3300 2900 2125 1650 1300 1150

Reserve (MWH) 240 210 200 195 200 220 250 210 170 130 100 90
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Data for the case studies:

multiobjective optimization

B.1 Data for case study 1

For more details see [6, 129].

Table B.1: Load demand (MW) in case study 1.

Hour 1 2 3 4 5 6 7 8 9 10 11 12

Load demand (MW) 700 750 850 950 1000 1100 1372 1314 1271 1400 1450 1500

Hour 13 14 15 16 17 18 19 20 21 22 23 24

Load demand (MW) 1400 1300 1200 1050 1000 1100 1200 1400 1300 1100 900 800

Table B.2: Generation constraints in case study 1.

Unit Y max j(MW ) Y min j(MW ) Ton
min,j(h) Toff

min,j(h) Ramp rate (MW/h)
1 455 150 8 8 250
2 455 150 8 8 250
3 130 20 5 5 80
4 130 20 5 5 80
5 162 25 6 6 100
6 80 20 3 3 80
7 85 25 3 3 85
8 55 10 1 1 55
9 55 10 1 1 55
10 55 10 1 1 55

143
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Table B.3: Data fuel costs evaluation in case study 1.

Unit a j b j c j startupCO2

(t−CO2/MW 2h) (t−CO2//MWh) (t−CO2/h) (t−CO2)
1 2.240E-05 0.7557 46.677 210.0
2 1.446E-05 0.8056 45.276 233.3
3 9.335E-05 0.7748 32.674 25.67
4 9.848E-05 0.7701 31.740 26.13
5 3.197E-05 0.1582 3.6157 7.231
6 5.720E-05 0.1788 2.9729 1.365
7 7.282E-05 0.2557 4.4248 2.396
8 3.807E-05 0.2389 6.0841 0.2765
9 2.046E-05 0.2513 6.1302 0.2765
10 1.594E-05 0.2561 6.1763 0.2765

Table B.4: Data fuel costs evaluation in case study 1.

Unit A j($/MW 2h) B j($/MWh) C j($/h) startup cost ($)
1 0.000528 17.809 1100 4950
2 0.000341 18.986 1067 5500
3 0.0022 18.26 770 605
4 0.002321 18.15 748 616
5 0.004378 21.67 495 990
6 0.007832 24.486 407 187
7 0.000869 30.514 528 286
8 0.004543 28.512 726 33
9 0.002442 29.997 731.5 33
10 0.001903 30.569 737 33

B.2 Data for case study 2

For more details see [126, 136].
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Table B.5: Data fuel costs evaluation in case study 2.

Unit Y max j Ton
min,j Toff

min,j Is A j B j C j

(MW ) (h) (h) (h) (m.u./MW 2) (m.u./MW ) (m.u.)

1 520 8 4 -5 0.0085 19.566 4437.2
2 320 5 2 -6 0.0050 20.927 1044.20
3 280 5 2 3 0.0253 18.995 1236.9
4 200 5 2 -3 0.0091 23.107 416.58
5 150 5 3 -7 0.0106 20.765 485.69
6 150 4 2 3 0.0116 22.251 300.86
7 120 4 2 5 0.0212 15.031 315.44
8 100 4 2 1 0.0254 15.031 262.87
9 80 3 1 -1 0.0356 10.375 222.16

10 60 3 1 -1 0.0454 9.9214 159.33

Table B.6: Start-up costs, shut down costs and NOx emissions coefficients in case study

2.

Unit a j b j c j Sdj D j E j Fj

(m.u.) (m.u.) (m.u.) (m.u.)

1 267 34.75 0.09 75 -0.245 154.16 -1154.6
2 187 38.62 0.13 70 -0.002 16.414 -691.1
3 176 27.57 0.15 42 -0.069 36.931 -1626
4 227 26.64 0.11 62 0.1313 -20.77 1885.6
5 113 18.64 0.18 29 -0.005 16.287 -321.4
6 282 45.48 0.09 49 0.1686 -20.0 1361.8
7 94 10.65 0.18 32 0.016 1.7774 276.59
8 114 22.57 0.20 40 0.0193 1.7774 230.49
9 101 20.59 0.20 25 -1.793 246.71 -2636

10 85 20.59 0.20 15 -2.286 235.92 -1890

Table B.7: Load demand (MW) in case study 2.

Hour 1 2 3 4 5 6 7 8 9 10 11 12

Load demand (MW) 1459 1372 1299 1280 1271 1314 1372 1314 1271 1242 1197 1182

Hour 13 14 15 16 17 18 19 20 21 22 23 24

Load demand (MW) 1154 1138 1124 1095 1066 1037 993 978 963 1022 1081 1459
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