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Abstract 

 

Hereditary hemochromatosis (HH) is the most common genetic iron-overload disease 

among Caucasians, classically associated with the p.C282Y mutation in the HFE gene, 

localized at the Major Histocompatibility Complex (MHC) region in chromosome 6. 

Immunological abnormalities have been consistently observed in HH patients, namely a 

phenotype of low CD8+ T-lymphocyte numbers associated with a more severe iron-overload. 

The genetic transmission of this low CD8 trait was first associated with the inheritance of 

certain HLA alleles markers and more recently, with a SNP microhaplotype named A-A-T, in 

the context of a strong linkage disequilibrium in the region between HLA and HFE. The 

physiological mechanism how CD8+ T lymphocytes can act as clinical modifiers of disease 

susceptibility in HH was still unsolved. 

The main objectives of this thesis were: i) to study the genetic contribution of the 

MHC-class I region to the setting of CD8+ T- lymphocyte numbers and ii) to perform a 

functional approach by addressing the iron handling ability of these cells and the involvement 

of other lymphocyte proteins in cellular/systemic iron homeostasis.  

We first tested the predictive value of MHC markers on CD8 and iron phenotypes with 

studies of genotype/phenotype associations in different geographically distant HH 

populations (Porto, Portugal; Alabama, USA and Nord- Trøndelag, Norway). This study 

revealed that the microhaplotype A-A-T cannot be used as a universal predictive marker 

neither for the iron phenotype nor for the low CD8 phenotype. Moreover, the most common 

HLA haplotypes A*01-B*08 or A*03-B*07 showed different conservation patterns among the 

three populations revealing different recombination histories which reflect on the different 

genotype-phenotype associations. Because HH patients from Porto displayed the strongest 

genotype association with the low CD8 trait, this population was chosen to further 

characterize the haplotype structure in HH. Results from a high density mapping covering 63 

markers along the HLA-HFE region revealed the existence of two major haplotype groups 

(AA and CG group haplotypes) with distinct conservation patterns in both HH patients and 

controls, suggesting a selective stronger recombination suppression in AA haplotype group, 

which, in the case of HH associated chromosomes, includes the classical ancestral HLA 

A*03-B*07 haplotype. The inheritance of the HH ancestral haplotype in homozygosity 

seemed to be most strongly associated with the low CD8 phenotype supporting the 

hypothesis of a still unidentified major quantitative trait locus for that particular phenotype in 

this region. 

Regarding the mechanisms how CD8+ T cells may modify systemic iron levels, we 

evaluated the in vitro response of lymphocytes to changes in ferric-citrate (as non-transferrin- 
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bound iron, NTBI) and the NTBI retention ability of peripheral blood mononuclear cells 

(PBMCs) isolated from HH patients and from normal controls. We were able to prove that 

peripheral T lymphocytes take up and retain high levels of NTBI, preferentially the Fe3Cit3 

oligomeric species. In HH patients, the retention capacity of PBMCs was significantly 

correlated with the iron re-accumulation patterns after intensive treatment. In terms of CD8+ T 

cell gene expression, results obtained in both animal and human models of HH support a 

direct effect of HFE on the transcriptional profile of CD8+ T lymphocytes. Results from the 

transcriptional profile of CD8+ T lymphocytes in HH patients suggest that the HFE defect 

affects the homeostatic equilibrium of central and effector memory cells. In the animal model, 

HFE deficiency induced the up-regulation of several genes clustered in the functional 

categories of lymphocytes activation/differentiation pathways. The most significant result was 

obtained with the higher expression of calgranulin S100a9, a result further confirmed in HH 

patients at the gene and protein levels. 

In summary, the results obtained in the context of this thesis constitute an important 

step forward in the characterization of lymphocyte abnormalities in HH. At the genomic level, 

they reveal novel aspects of haplotype conservation that may help explain differences among 

distinct populations regarding the impact on CD8 and iron phenotypes. At the functional 

level, not only they reveal novel aspects of disease heterogeneity possibly explained by 

different NTBI retention capacity of PBMCs, but also bring into light the importance of 

S100a9 as a new molecular player interacting with HFE in CD8 lymphocyte function. 
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Resumo 

A Hemocromatose Hereditária (HH) é a doença genética de sobrecarga de ferro mais 

comum na população caucasiana, classicamente associada à mutação p.C282Y no gene 

HFE, localizado no cromossoma 6 na região do Complexo Principal de Histocompatibilidade. 

Os doentes com HH apresentam frequentemente várias anomalias imunológicas, tais como 

um fenótipo de baixo número de linfócitos CD8+ T no sangue associado a uma maior 

sobrecarga sistémica de ferro. A transmissão genética deste fenótipo (baixo número de 

linfócitos CD8+ T) foi inicialmente associado à heritabilidade de certos alelos HLA e mais 

recentemente de um outro marcador genético muito conservado na região entre os genes 

HLA e HFE, composto por 3 SNP e denominado como microhaplótipo A-A-T. O mecanismo 

pelo qual os linfócitos CD8+ T actuam como modificadores clínicos de susceptibilidade à 

doença na HH ainda estava por decifrar. 

Os principais objectivos desta tese foram os seguintes: i) estudar a contribuição 

genética da região do MHC classe I para a definição do números de linfócitos CD8+ T e ii) 

realizar uma abordagem mais funcional testando a capacidade de aquisição e modulação do 

ferro pelos linfócitos CD8+T assim como a identificação de outras proteínas expressas por 

estas células envolvidas na homeostasia do ferro a nível celular e sistémico. 

No campo da genética dos linfócitos, testámos o valor preditivo dos marcadores do 

MHC associados ao número de linfócitos e à sobrecarga sistémica de ferro através de 

estudos de associação genótipo/fenótipo em diferentes populações de doentes HH 

geograficamente distantes (Porto, Portugal; Alabama, EUA e Nord-Trøndelag, Noruega). 

Este estudo revelou que o microhaplótipo A-A-T não pode ser usado como um marcador 

preditivo universal nem para o fenótipo de ferro nem para o fenótipo de número baixo de 

linfócitos CD8+ T. Observámos que os haplótipos mais frequentes HLA-A*01-B*08 ou HLA-

A*03-B*07 apresentaram diferentes padrões de conservação entre as três populações, 

revelando diferentes histórias de recombinação que se refletem em diferentes associações 

genótipo-fenótipo. A população de doentes de HH da região do Porto conserva uma maior 

associação dos marcadores genéticos ao fenótipo de números baixos de linfócitos e por 

este motivo a sua estrutura haplotípica foi caracterizada de forma mais pormenorizada. O 

mapeamento genético de 63 marcadores ao longo da região HLA-HFE revelou a existência 

de dois grandes grupos de haplótipos (definidos por AA e GC) com padrões de conservação 

diferentes, tanto nos doentes com HH como nos controlos, sugerindo uma supressão de 

recombinação selectiva mais forte no grupo AA que inclui o haplótipo clássico ancestral da 

HH, o HLA A*03-B*07. A herança do haplótipo ancestral HH em homozigotia revela uma 

forte associação com o fenótipo de baixo número de CD8+ T apoiando a hipótese de que um 

locus responsável pela transmissão quantitativa desse fenótipo se encontra nesta região. 
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Relativamente ao estudo funcional no qual se pretendeu elucidar a forma como as 

células CD8+ T podem modificar os níveis de sistémicos de ferro, foi avaliada a resposta in 

vitro destas células à incubação com citrato de ferro (como fonte de ferro não-ligado à 

transferrina- NTBI) e a capacidade de retenção desta forma de NTBI pelas células 

mononucleares de sangue periférico (PBMCs) isoladas a partir de doentes com HH e de 

controlos. Os resultados provaram que os linfócitos T periféricos são capazes de captar e 

reter elevados níveis de NTBI, e identificámos a espécie oligomérica Fe3Cit3 como a 

molécula que os linfócitos internalizam preferencialmente. Em doentes com HH, a 

capacidade de retenção dos PBMC foi significativamente correlacionada com o perfil de re-

acumulação de ferro após o tratamento intensivo. Os resultados da análise da expressão 

génica nas células CD8+ T por microarray, em modelos animais e humanos de HH, suporta 

um efeito directo do HFE sobre o perfil de transcrição dos linfócitos CD8+.T. Os resultados 

da análise da expressão génica dos linfócitos CD8+ T de doentes com HH sugerem que a 

deficiência no HFE afecta o equilíbrio homeostático das células de memória central e 

efetoras. No modelo animal, a ausência de HFE resultou numa expressão diferencial de 

vários genes funcionalmente agrupados em vias de activação/ diferenciação de linfócitos. O 

gene com maior diferença na expressão entre os animais deficientes no HFE em relação 

aos controlos foi a calgranulina S100A9, que se encontrou sobre-expressa na ausência de 

HFE, um resultado confirmado nos doentes com HH ao nível do mRNA e da proteína. 

Em resumo, os resultados obtidos no contexto desta tese fornecem informações 

relevantes na exposição das anomalias nos linfócitos em doentes com HH. No campo da 

genética, foram relevados novos aspectos relativos à conservação dos haplótipos ancestrais 

que podem ajudar a explicar as diferenças encontradas na associação ao fenótipo de 

número baixo de linfócitos CD8+ T e sobrecarga de ferro entre as diferentes populações. Os 

estudos funcionais proporcionaram avanços no conhecimento da interacção dos linfócitos 

com o NTBI, revelaram a existência de diferenças na capacidade de retenção de NTBI pelos 

PBMC dos doentes com HH que podem explicar alguma da heterogeneidade clínica, e 

encontrámos uma ligação nova entre a molécula S100A9 e o HFE com potencial interacção 

na modelação da função dos linfócitos CD8+ T. 
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Iron and the immune system: hanging hands through 
history 

 

“Neither prevailing nor emerging dogmas see the 

circulation of the blood or the metabolism of iron as a 

motivating force for the development of a complex system 

of surveillance. While searching for evidence for this view, I 

came to be interested in iron as a target of surveillance by 

the immune system” 

 

Maria de Sousa, 1989 [1]  

 

Introductory remarks on the growth of knowledge of a subject are usually good 

opportunities to trace paths and highlight hallmarks considered most important for the field 

advance in a determined perspective. The interest on the relationship between iron and the 

immune system traces back to the seventies, last century (de Sousa, 1978) [2, 3], and since 

then it evolved encompassing the growing knowledge on the cellular and molecular players 

involved in iron homeostasis, in particular in the clinical model of Hereditary 

Hemochromatosis. The strong link between iron metabolism and the immune system has 

been the subject of several reviews devoted to this topic [4-7] but it is generally forgotten in 

historical reviews within the iron biology field [8, 9]. In this context, the first chapter of this 

thesis revisits a recent review on relevant historical marks in the iron biology field [8] adding 

and highlighting the concurrent hallmarks which brought together the iron biology and the 

immunology fields. A chronologic list of the selected major historical achievements is given in 

Table 1, where hemochromatosis hallmarks are highlighted in grey, and more specific 

immune related contributions are highlighted in green. 

 

The first description of an iron related disease, although not recognised as such, was 

made by Lange in 1554, when he described a frequent disease among young woman who to 

him appeared to be “sadly pallid”. The disease phenotype was a pale appearance and a 

disturbed mental state that he believed to be caused by the “filthy blood of the menses" that 

was being absorbed and moved to the head and so the patient become foolish and delirious 

[10]. In 1615 this condition was called by Jean Varandal as “chlorosis” due to the “greenish-

yellow” colour of the skin [11] but it was only identified as an iron deficient hipochromic 

anemia in 1936 [12], a long time lapse after the first measurements of iron in the blood in 
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1713 [13], or the introduction of the first red cell count in 1852 and the first 

haemoglobinometer devise in 1876 [14]. 

The term “hemochromatosis” (“hemo” for blood, “chromate” for color and “osis” for 

disease) was first used by the German pathologist Friedrich Daniel Von Recklinghausen in a 

short report published in 1889 where he reported a case of “bronze stain” in organs such as 

liver, pancreas and skin at an autopsy [15]. This term hemochromatosis was later applied to 

all cases of iron overload associated with organ damage, and assumed to be the case of the 

disease syndrome of “bronze cirrhosis and diabetes” previously described by Trousseau 

back in 1865 [16]. In 1935, Joseph Sheldon suggested that the multi-visceral nature of the 

iron overload syndrome resulted from an inherited metabolic defect [17]. In 1950 the iron-

overload patients started to be treated through phlebotomies (bloodletting) [18]. A huge 

advance on the identification of the putative gene for Hereditary Hemochromatosis (HH) was 

achieved in 1975 when Marcel Simon linked the HH syndrome with particular HLA-A and B 

alleles, placing the major histocompatibility complex region at chromosome 6 as a hotspot to 

look for the disease causing gene [19]. This link of an iron related disease with the genetic 

region involved in the immune system regulation constituted a good argument to suspect that 

the disease could be somehow immune related. At the same time, and based on her studies 

of lymphoid cell positioning demonstrating that lymphocytes migrate to areas of iron 

accumulation [2], De Sousa advanced in 1978 the postulate that the immunological system 

should have a role in monitoring tissue iron toxicity [3]. The impact of iron on the immune 

system also started at this time to be a subject of great interest after the demonstration of the 

immuno-suppressive effect of blood transfusions [20]. Altogether, evidences for this cross-

talk between iron and the cells of the immune system and the association of HH with the 

MHC, all led to concentrate efforts on the search for immunological abnormalities in HH 

patients. The first description by Reimão et al in 1991 [21] of abnormalities in the relative 

proportions of T lymphocyte subsets in HH patients related to the severity of iron overload, 

and the following demonstration that this disproportion was specifically due to defects in the 

CD8+ T cell pool [22], constituted the starting point to approach the reverse question, i.e., to 

look for iron metabolism abnormalities in experimental models of primary T lymphocyte 

immune deficiencies. As a result, the first experimental model of hemochromatosis was 

described by De Sousa and co-workers in 1994 with the study of mice depleted of the the β2 

microglobulin gene (β2m (-/-)) which were shown to develop a severe liver iron overload 

mimicking the human HH disease [23, 24]. Because it codes for an anchor protein essential 

for MHC-Class I expression at the cell membrane, β2m ablation leads to an almost complete 

depletion of CD8+ T cells [25, 26]. As extrapolated from the human model, CD8+ depletion 

could be therefore the cause for the induced iron overload. Two years later, in 1996, Feder et 

al. cloned the HFE gene (originally designated as HLA-H) where a single mutation (p.C282Y) 
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was found in the vast majority of HH patients [27]. This finding naturally removed the impact 

of the β2m(-/-) model as a proof of concept for the involvement of CD8+ T cells as modifiers of 

iron overload, because HFE, as a non-classical MHC Class I protein, also requires the 

presence of β2m to be expressed at the cell surface. This question was clarified, however, 

when Santos et al. demonstrated that mice deficient for both β2m and Rag1 (a recombinase 

activator gene required for normal B and T development) had an even more severe 

phenotype of iron overload with heart fibrosis [28]. For the following years CD8+ T 

lymphocyte abnormalities in HH were consistently found and characterized in the peripheral 

blood [22, 29-32] and in the liver [33], where low numbers were associated with a higher 

hepatic damage [33], and novel mouse models were generated with selective immune 

deficiencies to confirm the impact of lymphocytes as modifiers of iron overload [28, 34, 35]. 

The discovery of HFE was perhaps, the single research event that most significantly 

contributed to initiate the “molecular era” of hemochromatosis. From that time on, discoveries 

of novel molecular players came to explain many other rare forms of HH providing 

substantial new knowledge on the complex regulation of systemic iron homeostasis [36]. 

These findings turned the beginning of the XXI century a very exciting time for the history of 

iron biology. In 2000 the liver-expressed antimicrobial protein called hepcidin was discovered 

[37] and it was found to be downregulated in the Hfe knockout mice (Hfe-/-) [38]. After the 

description of the ferroportin and its involvement in cellular iron export, the functional 

regulation of ferroportin expression by hepcidin was established in 2005 by Nemeth and 

Kaplan [39]. Hepcidin is now generally recognised as the master regulator of systemic iron 

levels through regulation of cellular iron export. The more recent demonstration that in vitro 

activated T cells also express hepcidin in response to the exposure to transferrin-bound and 

non-transferrin bound iron support, for the first time, a functional role for T lymphocytes in 

response to iron [40]. 

A great contribution in the immuno-genetic perspective was the demonstration, in 

studies performed in HH families, that a low CD8 phenotype is genetically transmitted in 

linkage with other MHC genes namely HLA suggesting, for the first time, the existence of a 

putative genetic trait located at the MHC region implicated in the transmission of CD8 

numbers in linkage with the p.C282Y mutation [41-44]. Moving from the genetic associations 

to the functional interactions between HFE and MHC Class I proteins, an important study 

was performed by Almeida et al in 2005 first advancing the hypothesis that the mutated HFE 

interfered with the classical MHC class I presentation route [45]. 

Although HH offers the best model to address the complex interactions between iron 

metabolism and the immune system, in many other immune related conditions iron has been 

placed at the centre namely infection [46], inflammation [47] and cancer [48]. A long way 

track is still needed, however, to fully understand all the mechanisms involved in the 
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regulation of local and systemic iron homeostasis in these conditions as well as the clinical 

implications of iron homeostasis disturbances in those disorders. Most strikingly, the putative 

role of HFE in immune related conditions beyond iron overload has been remarkably 

neglected. 

 

Table 1 Time of the most important achievements in the hemochromatosis and iron 
metabolism 

Year Discovery Researchers 

1554 First description of “chlorosis” Lange [10] 

1713 Human blood show to contain iron Lemery & Geolfroy [13] 

1865 A case of “bronze diabetes and cirrhosis” is described Trousseau [16] 

1871/1882 Hypertrophic pigmentary cirrhosis and diabetes 
Troisier-Hanot & Chauffard 
[49] 

1889 
The term “hemochromatosis” is created to describe bronze-colored 
organs and tissues at autopsy 

Von Recklinghausen [15] 

1935 
Hemochromatosis is hypothesized to be hereditary and related to iron 
metabolism 

Sheldon [17] 

1937 The first iron protein (ferritin) is identified and crystalized Laufberger [50] 

1937 First study on the role of intestinal absorption in iron metabolism Widdowson & McCance [51] 

1939 Effect of iron in inflammatory joint disease Hiyeda [47] 

1946 An iron-binding protein (transferrin) is identified in human plasma Schade & Caroline [52] 

1950 Bloodletting reported as a treatment for hemochromatosis Davis&Arrowsmith [18] 

1950 Liver biopsy reported as a tool for diagnosing hemochromatosis Davids & Laurens [53] 

1951 First report of juvenile hemochromatosis 
Plattner, Nussbaumer & 
Rywlin [54] 

1951 Radioiron studies of intestinal absorption in hemochromatosis Alper & Bothwell [55] 

1955 First comprehension review on hemochromatosis Finch & Finch [56] 

1961 
Hemochromatosis as a variant of alcoholic cirrhosis and nutritional 
siderosis 

MacDonald [57] 

1963 
Intestinal iron absorption shown to be regulated at the enterocyte/blood 
interface 

Crosby [58] 

1969 Phlebotomy reported to improve survival in hemochromatosis  Williams & Sherlock [59] 

1975 
Hemochromatosis is shown to be a hereditary autosomal recessive HLA-
linked disease 

Simon [19] 

1976 First description of the transcriptional control of ferritin Zahringer & Munro [60] 

1978 Iron binding proteins add a role in the control of lymphoid cell migration De Sousa [2] 

1978 
Postulated role for the Immunological system in the surveillance of  
tissue iron toxicity 

De Sousa [3] 

1978 Demonstration of the immuno-suppressive effect of blood transfusions  Keown & Deschamps [20] 
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1978 Iron as a determining factor for microbial cell growth Weinberg [46] 

1980 
Iron & cancer: transformed cells acquire the capacity to bind iron through 
the expression of surface transferrin receptors 

Faulk [48]  

1983 
First description and characterization of iron-mediated oxidative damage 
in hemochromatosis 

Bacon & Recknagel [61] 

1985 
Survival and causes of death reported in a large series of 
hemochromatosis patients  

Niederau & Strohmeyer [62] 

1987 “Iron responsive elements” are found in the mRNA of ferritin 
Aziz & Munro - Hentze & 
Klausner [63, 64] 

1988 
First large population screening study using blood iron measures in HLA-
linked hemochromatosis 

Edwards & Kushner [65] 

1989 
Defective iron retention by reticuloendothelial macrophages is described 
in hemochromatosis 

Fillet [66] 

1989 
Generation of the immunological deficient mice model (β2-microglobulin 
knockout) that lack peripheral CD8 T cells 

Koller and Zijlstra [25, 26] 

1991 
Increased iron absorption in hemochromatosis linked to increased 
mucosal iron transfer to the plasma 

McLaren [67] 

1991 
Immunological abnormalities in HH patients: decrease CD4/CD8 rations 
of circulating T lymphocytes 

Reimão [21] 

1994 A novel correlation between CD8
+
 lymphocytes and iron overload Porto [23] 

1994 
CD8

+
 T-cell deficient mice (β2-microglobulin knockout mice ) develop a 

severe hepatic iron overload: the first mouse model of Hereditary 
Hemochromatosis 

De Sousa & Santos [23, 24] 

1996 
Identification of the gene mutated in HLA-linked hemochromatosis : HFE 

(a non.classical MHC Class I protein) 
Feder & Wolf [27] 

1997 
Divalent metal transporter 1 (DMT1)- the first mammalian 
transmembrane iron transporter is identified 

Fleming & Andrews-Gunshin 
& Hedlger  [68, 69] 

1999 
Description of non-HFE related hemochromatosis in adults (later 
identified as ferroportin disease) 

Pietrangelo [36] 

1999 Identification of transferrin-receptor 2 (TfR2) gene Kawabata [70] 

2000 Description of TfR2-associated hemochromatosis 
Camaschella & Gasparini 
[71] 

2000 Description of liver-expressed antimicrobial protein (hepcidin) in human Krause & Adermann [37] 

2000 Description of ferroportin1 (MTP-1; IREG-1) gene 
Abboud & Hailie-Donovan & 
Zon [72-74] 

2001 Description of ferroportin-associated iron overload (“ferroportin disease”) Montosi & Pietrangelo [75] 

2001 Hepcidin expression in the liver is linked to iron Pigeon & Loreal [76] 

2002 Decreased hepcidin levels in HFE null mice Ahmad & Fleming [38] 

2000-06 Documentation of the penetrance of HFE-associated hemochromatosis 
Kushner-Beutler-Olynyk-
Powell [77-80] 

2003 Description of hepcidin-associated hemochromatosis Roetto & Camaschella [81] 

2003 
Decreased hepcidin expression documented in human HFE-related 
hemochromatosis 

Bridle & Andreson-Gehrke & 
Stremmel [82, 83] 

2004 HJV gene isolated and HJV-related hemochromatosis reported Papanikolaou [84] 

2004 
Genetic transmission of Low CD8 numbers phenotype is associated  
with HLA-HFE haplotype 

Cruz [41]  

2005 C282Y mutation of HFE influences MHC class I presentation pathway Almeida [45] 

2005 
Hepcidin is shown to cause FPN1 degradation in vitro: a model for 
regulation of iron homeostasis in vivo 

Nemeth & Kaplan [85] 
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2004-06 Low progression rate of HFE-related hemochromatosis is documented 
Olynyk-Anderson & 
Nordestgaard-Allen [86-88] 

2006 HJV/BMP signaling shown to regulate hepcidin and iron metabolism Babbit &Lin [89] 

2006 A model for iron sensing based on HFE/TfR2 is proposed Goswami & Andrews [90] 

2009 ER stress controls hepcidin expression and iron metabolism in vivo Vecchi & Pietrangelo [91] 

2009 BMP6 shown to be the key endogenous regulator of iron metabolism 
Andriopoulos, Corrandi, Xia 
& Babitt-Meynard &Roth [92, 
93] 

2009 BMP6 signalling shown to be impaired  in HFE null mice 
Corradini &Babitt-Kautz 
&Roth [94, 95] 

2010 
Activated T lymphocytes express hepcidin in response to transferrin-
bound iron and non-transferrin bound iron 

Pinto [40] 

Adapted from Pietrangelo et al 2010 [8] 
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Normal Iron Homeostasis 

A healthy adult normally keeps in his body a total of 3 to 4g of iron. Since there is no 

excretory mechanism for iron, daily losses are mostly due to sweat and epithelial 

desquamation of skin, intestine and genitourinary track. In men these iron losses are of 

approximately of 1mg, but in women, due to menstruation, pregnancy and lactation, these 

losses may reach up to 2mg a day. In order to compensate for these physiological iron 

losses, 1-2mg of iron is absorbed from a normal diet which may contain 15mg of iron [96]. 

In general, the systemic iron homeostasis in humans can be monitored by the 

transferrin saturation levels. Plasma transferrin is normally about 30% saturated with iron. A 

transferrin saturation <16% indicates iron deficiency, whereas a saturation >50% can be a 

sign of iron overload. Under constant rates of transferrin production and catabolism, the 

transferrin saturation is influenced by: i) the amount of iron absorbed from the diet, ii) the 

amount of iron utilized by the bone marrow (mostly for erythropoiesis) and other tissues, and 

iii) and the amount of iron recycled and released by splenic macrophages [97]. 

The major players and mechanisms regulating systemic iron homeostasis classically 

consider four major compartments (involving particular cell types): the uptake compartment 

(enterocytes), the functional compartment (erythroid precursors and other proliferating cell 

pools), the recycling compartment (spleen macrophages) and the storage compartment 

(hepatocytes and macrophages) (Fig.1). 

The uptake of iron from the diet is mostly performed at the brush border of duodenal 

enterocytes. There are two sources of dietary iron: heme and non-heme iron, the first being 

absorbed more efficiently. Heme iron is estimated to contribute to 10–15% of total iron intake 

in meat-eating populations but because heme iron is much more efficiently absorbed, it could 

contribute to up 40% of total absorbed iron [98, 99]. Inorganic iron is less well absorbed than 

heme iron and is affected by both body iron status and by dietary enhancers (such as 

ascorbic acid) and inhibitors (for example: phytic acid, tannic and chlorogenic acids and soy 

protein) [98, 99]. Inorganic iron, mostly Fe(III), is very insoluble so in order to move across 

the enterocyte brush border membrane through the iron transporter divalent metal-ion 

transporter 1 (DMT1) it has to be reduced to Fe(II) by the duodenal cytochrome B (Dcytb) 

reductase and possibly by others reductases. Enterocyte iron is exported to the blood via 

ferroportin 1 (FPN1), also known as solute carrier family 40 member 1 (SLC40A1) which is 

the only known iron exporter in mammals. With expression on the basolateral membrane of 

enterocyte, FPN1 acts in partnership with the ferroxidase hephaestin that oxidizes exported 

ferrous iron to Fe(III) for binding to plasma transferrin [100]. After being exported by the 

enterocytes, iron circulates in plasma bound to the glycoprotein transferrin which has two 

high-affinity binding sites for Fe(III). Transferrin-binding maintains Fe(III) in a safe soluble 
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form, and is the major source of iron to cells that express the membrane receptor (transferrin 

receptor, TfR1) whose complex is internalized by endocytosis in order to fulfil cellular iron 

needs [97]. Non-transferrin-bound iron (NTBI) species begins to be present in the circulation 

and to be accumulated in parenchymal cells leading to organ damage even before transferrin 

becomes fully saturated [101, 102]. NTBI is bonded with low molecular weight ligands such 

as ATP, AMP, citrate, phosphate, lactate, acetate, carbohydrates and amino acids as well as 

albumin [102-104]. 

The functional compartment involves mainly the erythroid precursors that use 75% of 

the systemic iron fraction to incorporate the heme group, responsible for oxygen transport. 

These cells acquire transferrin-bound iron via TfR1, but it is also proposed that these cells 

can take up ferritin that macrophages release in erythroblastic islands [105]. Iron is also an 

essential nutrient for many cellular functions such as: energy production in the mitochondria, 

DNA synthesis and the production of myoglobin in the muscles. It is also a co-factor of 

several iron-requiring metalloenzymes such as catalase, hydrogenase or aconitase [106]. 

The majority of the iron found inside the cell (95-97%) is bound to transferrin and ferritin 

[107]. However, a free labile iron pool (LIP) fraction that corresponds to 3-5% of total iron 

content can also be found inside the cells. This LIP is mostly low–molecular weight 

chelatable iron, either Fe(II) or Fe(III), associated with a variety of ligands such as: citrate, 

phosphate, carbohydrates, nucleotides and nucleosides among others. This labile iron pool 

is the major source of oxidative stress by participating in the Haber-Weis-Fenton’s reactions 

that originates free radicals that cause damage to all macromolecules (lipids, proteins and 

DNA) [108]. The amount of iron that is not used can be either stored inside ferritin, or can be 

exported by FPN1 [109]. 

The recycling compartment is composed by the reticuloendothelial system (spleen 

and liver macrophages) that recycle every day 20–25 mg of iron from the turnover of 

senescent erythrocytes. This recycled fraction of iron is the main source for functional iron 

needs. Senescent red blood cells are phagocytosed and iron is transported from the 

phagocytic vesicles to the cytosol by NRAMP1 (natural resistance-associated macrophages 

protein 1) that is a DMT1 homolog transporter [110]. Export of ferrous iron from 

macrophages occurs via FPN1 which interacts with ceruloplasmin (a multicopper oxidase) 

which oxidases Fe(II) to Fe(III) for loading onto transferrin [97]. Since the amount of plasma 

iron is just over 10% of the amount used daily, this implicates that plasma iron is turned over 

many times each day. Under normal conditions, 80%–90% of the recycled iron is reused for 

hemoglobin synthesis [111]. The remaining 10%–20% of the recycled iron is stored inside 

the macrophage as ferritin. 

Like the reticuloendothelial cells, hepatocytes are also an important site of iron 

storage in the form of ferritin. Hepatocytes are the major storage compartment for iron; they 
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become particularly important when the iron-binding capacity of plasma transferrin is 

exceeded as they can rapidly clear the NTBI species formed from circulation. The identity of 

the hepatocyte NTBI uptake system is not known, DMT1 was pointed as important NTBI 

transporter [112, 113] however, hepatocytes can accumulate iron in the absence of DMT1 

[114]. Therefore, other potential candidates include: the L-type voltage-dependent Ca2+ 

channels [115, 116], and the already identified for their ability to transport other metal ions, 

the Zip-14 [117]. Most importantly, hepatocytes play a central role in iron homeostasis as the 

site of regulated production of the hormone hepcidin. Hepcidin is the master regulator of 

systemic iron levels. It orchestrates systemic iron fluxes and controls plasma iron levels by 

binding to FPN1 on the surface of iron-releasing cells, triggering its internalization and 

degradation and therefore reducing iron transfer to transferrin [85]. Systemic hepcidin levels 

regulate the amount of iron that is exported into circulation by the enterocytes, therefore its 

expression gives feedback of systemic iron status for regulation of dietary iron absorption. 

 

 

 

In terms of cellular iron homeostasis, the uptake and storage of cellular iron is 

regulated by a post-transcriptional mechanism involving mRNA-protein interactions – the 

IRE/IRP system. Iron responsive elements (IRE) are 30 nucleotide cis-regulatory structures 

present in the 3’ or 5’ untranslated region (UTR) of mRNAs, that code for iron metabolism 

proteins. Iron regulatory proteins 1 and 2 (IRP1 and IRP2) are cytoplasmatic and belong to 

Fig. 1 Iron distribution in the adult human body and the four major compartments 
involved in the processes of iron uptake, storage, recycling and functional involved in 
iron homeostasis with the principal cellular players. 
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the protein family of Fe-S cluster isomerases. The IRE-IRP regulatory system is based in the 

ability of cytosolic IRP to affect the stability of a previously synthesized mRNA, or to alter the 

efficiency with which a given transcript is translated [118-121]. 

 

 

Fig.2 Regulation of cellular iron metabolism: the IRE/IRP system. 

 

Under iron-deficient conditions, IRP1 is free to bind to IREs. If IRP-1 binds to the 5′ 

UTRs of target mRNAs it inhibits their translation (such as ferritin and ferroportin mRNAs), 

whereas IRP interaction with multiple 3′ UTR IREs results in increased mRNA stability (such 

of the TfR1). As a consequence, TfR1-mediated iron uptake increases and the iron storage 

in ferritin and export via ferroportin decrease, thus LIP content increases in order to fulfil the 

cell iron needs [97]. Under iron-loaded conditions, IRP1 is inactivated by assembling 4Fe/S 

cluster at the IRE-binding site that confers aconitase activity to the holoprotein. IRP1 and 

IRP2 are then signalled by the FBXL5 iron-sensing F-box protein and recruits the SKP1-

CUL1 E3 ligase complex that promotes IRP ubiquitination and degradation by the 

proteasome (Fig.2). 
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Hereditary hemochromatosis: an iron-overload disorder 

Hereditary hemochromatosis (HH), classically associated with the p.C282Y mutation 

in HFE, is an autosomal recessive disease that predisposes patients to an increased 

intestinal iron absorption and iron export from macrophages, resulting in progressive tissue 

iron overload which leads to irreversible organ damage if not treated timely. The pancreas, 

skin, joints and mostly the liver are the main target sites for iron deposition which leads to 

organ failure through production of oxidant species. Early symptoms are non-specific such as 

fatigue, arthralgia, malaise, abdominal pain, etc. The principal severe clinical manifestations 

associated with iron overload are: liver cirrhosis, hepatocellular carcinoma, diabetes and 

arthritis. These consequences can be avoided if HH patients are early detected and start a 

therapeutic phlebotomy treatment. Early diagnosis, i.e., before the onset of irreversible organ 

damage, and prompt initiation of iron-depletion therapy prevents irreversible organ damage, 

and increases the survival of patients with hemochromatosis [122]. A proper follow-up of 

circulating iron parameters, such the serum ferritin levels (that reflect the iron stores) and the 

transferrin saturation (that indicates the amount of potential NTBI in circulation), aimed at 

keeping them at normal levels, offers these patients a life expectancy similar to that of a 

normal population. 

An early diagnosis of HH may be difficult if only based on its clinical context, without 

any familiar related history. To confirm an iron-overload condition, measures of some 

biochemical blood parameters are highly informative although not 100% specific. Transferrin 

saturation above 50% in females or 60% in males is abnormal and suggestive of HH, 

although other liver pathologies have to be discarded such as alcohol or viral liver disease. 

The serum ferritin concentration is usually a good marker of body iron stores although 

increased levels are also observed in inflammatory conditions and in hepatocellular necrosis. 

Once there is a strong suspicion of HH, i.e., in the presence of suggestive biochemical 

abnormalities not explained by other conditions, a genetic diagnosis should be done, based 

on the detection of the p.C282Y mutation in HFE.  

 

HFE: the gene and its mutations  

The HFE gene codes for a 343 residue type I transmembrane glycoprotein 

homologous to Class I MHC molecules (it shares 37% of sequence identity with the HLA-A2). 

HFE has three extracellular domains analogous of α1, α2 and α3 domains of a MHC-I 

immunoglobulin (Fig.3). In contrast with the classic MHC-class I molecules, the α1 and α2 

domains are not-polymorphic and too narrow to accommodate a short peptide. Given this 

structural limitation, HFE is believed not to present antigens to T-lymphocytes. As with any 
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other MHC-I classical protein, HFE folding occurs in the endoplasmatic reticulum (ER), 

where its α3 domain interacts with the Class I light chain β2-microglobulin (β2m). The 

correctly folded protein leaves the ER and is presented at the cell membrane. HFE is 

predominantly expressed at duodenum, liver, pancreas, placenta, kidney, reticulo-

macrophagic system and ovary, while in colon, leukocytes, brain and lung the expression is 

low. Two common missense mutations were originally described by Feder et al, in the HFE 

gene; the p.C282Y and the p.H63D. The p.C282Y mutation is a single-base substitution of a 

guanidine to an adenine at nucleotide 845, resulting to the substitution of a tyrosine for a 

cysteine at amino-acid 282. This mutation provokes the disruption of the α3 domain 

intrachain disulfide bond with β2m (Fig.3) and so the molecule cannot migrate to cell surface 

and stays trapped in the ER following proteasomal degradation. The p.H63D mutation is a 

substitution of a cytosine to a guanidine at nucleotide 187, resulting in a substitution of an 

aspartate for a histidine at amino-acid 63. This mutation occurs in α1 domain and does not 

affect the ER folding, migration and presentation of the protein at cell membrane although it 

can slightly change the affinity of transferrin to its receptor [27]. According to the most recent 

clinical guidelines (EASL 2010), only the p.C282Y mutation in homozygosity confirms the 

diagnosis of HFE related HH [123]. The role of p.H63D as a risk factor for iron overload is still 

debated [124, 125]. 

 

Fig. 3 HFE molecular structure (non-classical MHC Class I 

molecule) with the HH associated mutations represented in red. 

 

HFE: the molecular functions in iron homeostasis 

Hepcidin expression is normally up-regulated by dietary or parenteral iron loading 

[76], in order to systemically feedback the enterocytes to limit intestinal iron absorption. In 

HH, this mechanism fails. In some patients the hepcidin levels may be at normal levels but 

they are still inadequately low for the amount of iron load [126, 127] and they do not respond, 

with increasing hepcidin levels, after an acute oral iron challenges [126]. Because this 

expected up-regulation of hepcidin in response to iron loading is impaired in patients with 

HH, HFE is expected to be involved in the regulation of hepcidin expression. 
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HFE has been suggested be an “iron-sensor” acting by switching between two 

sensors of the Tf-Fe levels, TfR1, and TfR2, on the plasma membrane of hepatocytes [90]. 

This model is supported by the following findings: HFE binds to TfR1 competing with Tf-Fe 

for the receptor binding site. By contrast, TfR2 can bind both HFE and Tf-Fe simultaneously 

[128]. The HFE–TfR1 functional interaction gained new insight from experimental mouse 

models generated either to promote or abolish this complex. The results from mice with 

constitutive expression of HFE-TfR1 complex were very similar to the HFE-deficient mice 

who show low hepcidin production and systemic iron overload suggesting that the TfR1 

sequesters HFE to prevent its participation in hepcidin activation. Conversely, mutations that 

abolish the HFE-TfR1 interaction or mice with increased HFE levels display iron deficiency 

due elevated hepcidin expression [129]. Hepcidin activation by holotransferrin requires both 

HFE and TfR2 [130]. Altogether, the described observations support a model in which high 

concentrations of Tf-Fe2 displace HFE from TfR1 to promote its interaction with TfR2, which 

is further stabilized by increased Tf-Fe2 binding to the lower-affinity TfR2. More recently 

another partner was added to HFE-TfR2complex, the hemojuvelin (HJV). The HJV protein 

acts as a BMP (Bone morphogenic protein) co-receptor, thereby activating hepcidin 

transcription via the BMP-SMAD signaling cascade. BMP6, which is activated by increased 

iron levels, is the endogenous ligand for HJV [92, 93]. Moreover, the BMP/SMAD signaling 

pathway is impaired in HH as well as in Hfe-knockout mice, suggesting a crucial role of HFE 

in BMP/SMAD signalling [131]. 
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T-Lymphocytes Homeostasis 

The ability to maintain T cell homeostasis allowed vertebrate organisms to produce 

an effective immune response. In order to maintain that immune responsiveness, distinct 

lymphocytes populations with different immune functions must also be maintained in 

equilibrium [132]. The lymphocytes TCRαβ are originated from lymphoid progenitor cells, 

haematopoietic stem cells originating from the bone marrow that home to the thymus. In the 

thymus a complex process of maturation it will occur which involves the recognition of MHC 

Class I molecules by the T cell receptors (TCR) and the submission to positive and negative 

selection which result in the production of CD4+ or CD8+ single-positive T lymphocytes [133]. 

From the thymus, single positive T lymphocytes migrate in a naïve state to the peripheral 

organs, where they circulate between the secondary lymphoid organs and the blood [134]. 

The pool of T-cells that present in the periphery consists of naïve CD4+ and CD8+ T cells, 

central memory (CM) and effector-memory (EM) subpopulations, each occupying a specific 

homeostatic niche [135]. CD4+ Treg and TH17 CD4+ effector T cells constitute an 

independent pool of cells occupying separate homeostatic niches [136, 137]. 

The peripheral T cell population is conserved at very constant numbers. The numbers 

of naïve T cells at the periphery is dependent on the stimulation of T cells through their 

TCRs. When peripheral major histocompatibility complex (MHC) class I or class II expression 

is absent, T cells are unable to survive due the lack of TCR-mediated T cell stimulation [138]. 

Also, induction of TCR deletion results in the disappearance of peripheral T cells, showing 

that T cells need to receive signals through their TCR to support their survival in the 

periphery [136]. Naïve T lymphocytes travel to T-cell areas of secondary lymphoid organs in 

search of antigen presented by dendritic cells [139, 140]. Once activated, they start to 

proliferate and give origin to effector cells that can migrate to B-cell areas or to inflamed 

tissues [141, 142]. A fraction of primed T lymphocytes persists as circulating memory cells 

that can confer protection and give, upon secondary challenge, a qualitatively different and 

quantitatively enhanced response [143, 144]. 

 

The differentiation process of T lymphocytes 
 

When peripheral naïve T cells return to lymph nodes, they first roll on high endothelial 

venules using CD62L (L-Selectin). This allows the chemokine receptor CCR7 to engage its 

ligand SLC (secondary lymphoid-tissue chemokine), which is displayed by endothelial cells 

[145]. The CCR7–SLC interaction activates integrins that promote firm adhesion and 

transmigration of the T cells into the lymph node [146, 147]. In contrast to naïve T cells, 

memory/effector cells migrate mostly through peripheral tissues [148]. This migration allows 



General Introduction 

17 
 

a quicker response and is controlled by the expression of different sets of integrins and 

chemokine receptors [139, 149]. Some memory T cells must also reach the lymph nodes 

when they need to trigger a secondary proliferative response. The two types of memory 

response might depend on subsets of memory T cells produced with distinct homing and 

effector capacities. Because CCR7 and CD62L are essential for lymphocyte migration to 

lymph nodes [139, 150], the co-expression of these receptors helps to distinguish a 

supposed subset of memory T cells that home to lymph nodes. Human naïve and memory T 

cells can be identified by the reciprocal expression of the CD45RA or CD45R0 isoforms 

[151]. Staining of peripheral blood T cells with antibodies to CD45RA and CCR7 revealed 

three subsets of CD4+ and CD8+ cells: one naive CD45RA+CCR7+; and two memory subsets, 

CD45RA-CCR7+ and CD45RA-CCR7-. Both naïve and CCR7+ memory cells expressed high 

levels of CD62L, whereas the CCR7- memory cells expressed CD62L to a lower and variable 

extent. Within CD8+ T cells, an extra subset of CD45RA+CCR7- cells can be identified. In 

addition, the two CCR7+ subsets expressed high levels of CD62L, whereas most of the cells 

among the two CCR7- subsets lacked CD62L (Fig.4). The expression of the receptors 

responsible for lymph-node-homing on a distinct subset of memory CD4+ and CD8+ T cells 

points out different functions [135]. 

 

Fig. 4 T-Lymphocyte phenotype (Naïve, Effector, Central memory and Effector memory) 

with some cell membrane markers expressed accordingly the specific differentiation state.  

 

T cell activation and gene expression profile of activation 
 

Naïve T lymphocytes that survive to the apoptosis process become memory or 

effector T cells through a differentiation process that involves alteration in expression of 

membrane receptors and/or intracellular cytokines. After activation, the receptors that are 

expressed work as differentiation markers such cytokine receptors and growth factors, for 

example: α chain of IL-2 receptor (CD25), β chain of IL-12 receptor, the transferrin receptor 

(CD71) and the insulin receptor (CD220). Most of these receptors are involved in the cell 

cycle control and nutrient transport to fulfil the needs of the cell in its division process. While 

some of these receptors are immediately expressed after activation (for example, CD69 and 

CD25) others are expressed days after activation (for example CD71). Some other receptors 
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decrease or even abolish their expression after activation, an example of these are: CD62L 

integrin, CCR7+ receptor and the ζ TCR chain. During the activation and expansion process, 

naïve T lymphocytes stop expressing at different stages of the differentiation process the 

CD62L, CCR7 and CD28 receptors giving rise to effector or memory T cells (Figure 4) [152, 

153]. 

Another very specific and heterogeneous TCRαβ lymphocyte subset of either CD4 or 

CD8 activated cells is defined by the expression of IL-2 receptor α chain (CD25) and the 

transcription factor Foxp3 and are called as regulatory or Treg cells. The Treg lymphocytes 

are able to suppress the immunological response mediated by other T cells and can be 

divided in two major groups: the natural and the inductive or adaptive Treg. The natural Treg 

are CD4+CD25+ (characterized by protein expression of CTLA-4 and Glucocorticoid induced 

TNF receptor, GITR) and are produced in the thymus under specific signals. The adaptive 

Treg can be CD4+CD25+, CD8+CD25+ or CD8+CD28- and are produced in the thymus but 

differentiate at the periphery under certain stimulatory factors such as IL-10 and TGF-β [154]. 

 

Final remarks on the homeostatic control of CD8+ T lymphocyte 

subsets at the periphery 

 

As discussed above, multiple regulatory mechanisms operate for the maintenance of 

T cell numbers and functions under a strict homeostatic equilibrium. These mechanisms are 

known to operate in an independent manner for the different subsets of naïve or memory 

effector T lymphocytes [155]. While naïve T cells persist mainly as long-lived resting cells, 

memory cell survival depends on their constant self-renewal by triggering and cell division at 

the periphery [156]. The types of interactions implicated in these processes are naturally 

complex and differ according to the cell type. Focusing on CD8+ T lymphocytes, the cell 

population implicated in hereditary hemochromatosis [22, 29-32], it is now well described that 

they go through successive effector phases, inflammatory and cytotoxic, with potentially 

different T cell properties [157, 158]. Notably, the survival and expansion of CD8+ T memory 

cells, in contrast to naïve cells, is not restricted to TCR-MHC-peptide interactions but needs 

only a nonspecific MHC class I interaction in the absence of antigen [159, 160]. 
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Hereditary hemochromatosis: an immunological 
disorder 

HFE: linkage to other MHC-class I genes  

The major histocompatibility complex (MHC) has been studied for more than 60 

years, and its early history is well documented [161]. Serological typing revealed 

associations between the MHC and many interesting immune phenotypes long before the 

cloning of class I and class II genes and determination of the structures of their encoded 

proteins. The MHC genetic region was first suggested as a possible region to look for a 

hereditary hemochromatosis (HH) gene by Simon et al because of the high frequency of 

HLA-A3 allele found among patients [162]. The most informative data about the genetic 

transmission of the syndrome was obtained through family studies that allowed to confirm the 

autosomal recessive disease inheritance in linkage with the HLA region. The disease 

associated gene should be therefore localized in the short arm of chromosome 6. Linkage 

analyses with several markers within the MHC region, helped to define a conserved 

haplotype, the HLA-A*03-B*07, as the most commonly associated with the disease in all 

populations studied, and this was assumed, as the founder chromosome, in spite of its high 

conservation, suggesting a very recent age for the p.C282Y mutation. In 1996, Feder et al. 

sequenced by positional cloning the MHC class I- region between HLA-A and the D6S276 

gene marker and, by further linkage-disequilibrium and full haplotype analysis, identified a 

250-kilobase region located more than three megabases telomeric from the major 

histocompatibility complex on chromosome 6 that was identical by descent in 85 percent of 

HH patients. Because it was a MHC class I related gene, they first named as HLA-H. The 

name of the gene was changed because there was a different pseudogene already named 

as HLA-H and so the hemochromatosis gene was renamed by the HUGO Genome database 

Nomenclature Committee as HFE that means High Fe (iron) (Fig.5).  

 

Fig. 5 Physical map of the MHC region with the distance between the HLA-A markers and HFE gene 
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After the general and global use of the genetic tests for detection of the most common 

HFE mutations, larger genetic studies were performed and the allele frequencies data of 

distinct populations became available. It became evident that the p.C282Y mutation is highly 

common in most European descent populations but it is almost absent in non-Caucasian 

populations from Africa. Within Europe the p.C282Y allele (Adenine (A)) frequency ranges 

from 0.013 to 0.140 with a north–south gradient. The highest frequencies are observed in 

populations from Ireland, United Kingdom and Brittany, and in Scandinavian populations. 

This high incidence in the northern populations support the proposed origins for the spread of 

the hemochromatosis mutation, the first by Simon suggesting that it was a unique and recent 

event originated in a Celtic population with a subsequent spreading by population migration, 

and the later suggested by Milman where arguing that the Viking conquests and migrations 

could have played a more significant role in the spread of the mutation [163]. 

 

Table 2 Allele frequency of the nucleotide at 845 position of HFE gene (Guanine – wild-
type or Adenosine - C282Y mutation) and respective genotype in different world 
populations. Information was obtained from the 1000 Genomes project [164]  

Population Allele frequency (count) Genotype frequency (count) 

1000GENOMES: ALL 

G: 0.987 (4945) G|G: 0.976 (2443) 

A: 0.013 (63) A|A: 0.001 (2) 

 
A|G: 0.024 (59) 

1000GENOMES: AFRICAN 
G: 0.998 (1319) G|G: 0.995 (658) 

A: 0.002 (3) A|G: 0.005 (3) 

1000GENOMES: AMERICAN 

G: 0.978 (679) G|G: 0.960 (333) 

A: 0.022 (15) A|A: 0.003 (1) 

 A|G: 0.037 (13) 

1000GENOMES: EAST ASIAN G: 1.000 (1008) G|G: 1.000 (504) 

1000GENOMES: SOUTH ASIAN 
G: 0.998 (976) G|G: 0.996 (487) 

A: 0.002 (2) A|G: 0.004 (2) 

1000GENOMES: EUROPE 

G: 0.957 (963) G|G: 0.917 (461) 

A: 0.043 (43) A|A: 0.002 (1) 

 A|G: 0.082 (41) 

 

The recent age for the p.C282Y mutation is supported not only by its restricted ethnic 

distribution (only European derived populations) but also by the extreme conservation of an 

ancestral haplotype spanning 4Mb at the MHC region. Initial linkage studies, using several 

polymorphic markers, estimated that the ancestral mutation may have originated between 62 

and 69 generations ago but other estimations based on recombination rates suggested that 

mutation is older (126 to 250 generations). Such a young age for the p.C282Y mutation 

contrasts with the very high allele frequency observed among European derived populations, 
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suggesting an increase in frequency due to a positive selective pressure where the p.C282Y 

may have conferred some advantage or could have been hitchhiked associated with other 

advantageous MHC gene alleles, given the strong linkage disequilibrium found in the region 

[165]. 

Although the frequency of the p.C282Y mutation in most European derived 

populations is very high (about 5-200) the proportion of patients with a fully developed 

phenotype found in clinical practise seems to be very low. Most homozygotes for the 

p.C282Y mutation of HFE show a common biochemical phenotype characterized by high 

transferrin saturation, as shown in family studies where homozygous relatives displayed this 

iron overload phenotype, yet they were still asymptomatic. The question remains whether 

under-diagnosis of HH results from the non-specific nature of early symptoms or incomplete 

penetrance of p.C282Y mutation. Family screening has proved to be highly effective in early 

case detection and disease prevention. Large population screening programs, however, 

revealed that the clinical penetrance of HH is very low. Beutler et al reported that the disease 

penetrance should be of less than 1% [79], a screening study in an Australian population 

showed that 50% of detected homozygous had clinical features of hemochromatosis and 

25% had hepatic fibrosis or cirrhosis [166]. A population screening in Norway, revealed that 

only 10% of detected homozygous subjects displayed hepatic fibrosis or cirrhosis [167]. In a 

multiethnic screening study of Hemochromatosis and iron-overload disorder, 99771 

participants collected blood samples and tested for transferrin saturation, serum ferritin, and 

p.C282Y and p.H63D mutations of the HFE gene [168]. The results revealed different 

prevalences of p.C282Y homozygotes among different populations: non-Hispanic whites 

(0.44%), Native Americans (0.11%), Hispanics (0.027%), Africans (0.014%), Pacific 

Islanders (0.012%), or Asians (0.000039%). Among the p.C282Y homozygous participants 

(227) in whom iron overload condition had not been diagnosed, serum ferritin levels were 

greater than 300 ng/ml in 78 of 89 (87%) men and greater than 200 ng/ml in 79 of 138 (57%) 

women. Serum ferritin levels above 1000 ng/ml, which is associated with a high risk of liver 

fibrosis [169], were detected in 364 participants undiagnosed for iron overload (29 were 

p.C282Y homozygotes). Among men, p.C282Y homozygotes and compound heterozygotes 

were more likely to report a history of liver disease than were participants without HFE 

mutations. However, the question of prevalence, penetrance and natural progression of 

clinical hemochromatosis is difficult to address because of the huge clinical heterogeneity 

found among HH patients. It can vary from a simple biochemical abnormality to a severe 

iron-overload with organ damage. The reasons for that heterogeneity are not fully 

understood. The discovery of novel modifiers of the clinical expression of type I HH may give 

new insights about the systemic regulation of iron homeostasis and could also explain the 

different disease susceptibilities among different populations. Among these, immunological 
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abnormalities have been consistently observed in HH patients, which will be next described 

in more detail. 

 

Immunological abnormalities in HH  

The genetic and biologic context of the hemochromatosis gene, HFE, is the MHC 

complex which is an extended gene cluster of extreme importance by the immunological 

functions they encode. In fact, HFE was first described as an aberrant MHC Class I like 

protein, when discovered by Feder et al, in 1996 [27]. The mechanism how could this protein 

contribute to iron overload was not obvious at all. The first hypothesis advanced at the time 

was that the protein could interact indirectly through association with components of the 

immunological system, an idea supported by previous observations by Arosa et al. on the 

functional interaction between the immunological system and iron metabolism [170]. 

The postulate that the immunological system could have a role in monitoring tissue 

iron toxicity, as part of its surveillance function, was first advanced by De Sousa in 1978, 

based on her observations on lymphocyte traffic and positioning [2]. It was implicit in that 

postulate that the adaptive system and its circulating components participate in the 

recognition and binding of metals as a protective device against metal toxicity and the 

preferential use of indispensable metals such as iron or zinc by bacteria or transformed cells. 

This motivated a series of studies of lymphocytes expression and function in 

hemochromatosis patients. Both these and further studies in animal models contributed to 

support and strengthen the notion of an inextricable link between iron and the immunological 

system. 

The finding of abnormalities in the relative proportions of the two major T lymphocytes 

populations (CD4+ and CD8+ T cells) in HH patients [21], and the observation of an iron 

overload similar to HH in the β2m knockout mice lacking MHC class I and CD8 T 

lymphocytes preceded the discovery of HH gene [23]. Reimão and co-workers had shown 

that patients with high CD4/CD8 rations (>2.9) display a faster re-entry of iron into the serum 

transferrin pool after intensive phlebotomy treatment, reaching abnormal transferrin 

saturation values (>60%) more rapidly than patients with normal CD4/CD8 rations 

(approximately 1) [21]. A significantly inverse correlation was found with the numbers of 

CD8+ T cells, and not with CD4+ T cells, and the amount of iron mobilized by phlebotomy 

treatment [22, 30]. These CD4/CD8 rations and the relative or absolute numbers of CD4+ and 

CD8+ T-cell populations were not altered by the treatment [22, 32]. In 2001, those low 

numbers of peripheral CD8+ T cells were also associated with low number of those cells in 

the liver, being directly associated with the iron hepatic tissue amount [33]. Other groups 

recapitulated these findings namely the low CD8+ T cell numbers associations with certain 
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HLA haplotypes and with a more severe iron overload [171]. Functional specific 

abnormalities have been previously described in CD8+ T lymphocytes from HH patients 

namely, a defective lymphocyte-specific tyrosine kinase (p56lck) activity, decreased cytotoxic 

activity, an increased number of CD8+ T cells lacking CD28 co-stimulatory molecule and an 

high percentage of cells in an activated state (HLA-DR+) [29, 152, 170]. The reduction of 

CD8+CD28+ expressing cells in HH patients was inversely correlated with transferrin 

saturation, which does not rule out the role of circulating iron as a modulator of T cell profiling 

[172]. But the HFE itself could also influence T cell homeostasis by acting over the MHC-I 

antigen presentation pathway. In 2005, Rohrlich et al described that HFE deletion in mice is 

associated with a decreased number of T cells expressing αV6 TCRs [173]. Also, by using 

transgenic mice they observed a direct cytolytic recognition for human HFE by mouse TCR, 

which occurs independently of HFE-bound peptides. These observations are in agreement 

with the previous finding that TCR-delta knockout mice develop hepatic iron overload, 

suggesting that cellular iron status might be transmitted to lymphocytes through HFE 

engagement with TCR [174]. This p.C282Y mutation is known to prevent HFE association 

with β2m leading to the accumulation of the misfolded protein in the endothelial reticulum 

(ER) with consequent induction of an unfold protein response (UPR).This UPR activation 

results in a significant down-regulation of MHC-I cell surface expression [175]. Moreover, 

inhibition of the ER stress response in cells expressing the HFE p.C282Y mutant protein 

leads to the restoration of MHC-I levels [176]. These observations point to an effect of the 

p.C282Y mutation in the HFE gene beyond the strict iron regulation and suggest the 

importance of HFE at the interplay between the two systems of iron homeostasis and 

immune responses. 

 

Iron and lymphocytes: evidence from the immune deficient mouse 
models 
 

A good insight into the question of the impact of immune cell abnormalities on iron 

homeostasis is given by animal models. The first hereditary hemochromatosis animal model 

preceded the discovery of the HH gene. It was described by De Sousa et al. when they 

demonstrated that β2m(-/-) deficient mice, that are almost depleted in CD8+ T cells due to a 

severe decrease in the expression of MHC-Class I molecules, develop a severe hepatic iron 

overload phenotype mainly observed in liver parenchyma cells, without accumulation in 

kupffer cells [23]. Moreover, β2m(-/-) mice were not able to reduce intestinal iron absorption in 

response to an iron overload condition and displayed an abnormally high transferrin 

saturation values (>80%) recapitulating the human model of HH [24]. After the discovery of 

the non-classical MHC-class I  HFE gene, the knockout mouse was generated confirming 
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that the Hfe(-/-) mice display liver iron deposition, and increased TfSat mainly due to an 

increase in iron absorption. The knock in mice for the p.C282Y mutation were shown to 

display a less severe phenotype liver iron phenotype than the Hfe(-/-) and even less iron 

deposition when in compound heterozygosity with the p.H63D mutation [177]. Moreover, the 

Hfe(-/-) mice do not show any immunological abnormality in terms of lymphocyte numbers. In 

order to address the synergistic effect of HFE and MHC-class I dependent lymphocyte 

defects, the knockout mice for mature lymphocytes was generated by depletion of the 

recombination activating gene 1 (Rag1). Multiple combinations of gene defects provide 

evidence that, , although the absence of lymphocytes alone does not predispose to an iron 

overload phenotype [174], the lack of both Hfe and lymphocytes (Hfe(-/-)Rag(-/-) and β2m(-/-) 

Rag(-/-)), led to a more severe liver iron phenotype with the last model showing a specific 

deposition of iron in the heart and pancreas [28, 35]. These mice models constituted 

important support to strengthen earlier clinical observations in HH patients where 

lymphocytes act as modifiers of the primary iron overload condition. 
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Background 

Hereditary Hemochromatosis (HH) is the most common genetic disorder of iron 

overload [178]. Most HH patients are homozygous for the p.C282Y mutation in the HFE 

protein, encoded by HFE, a non-classical MHC-class I gene located at position 6p21.3, near 

the HLA locus [179]. The exact mechanism underlying the involvement of HFE in HH is still 

not clarified. 

 Immunological abnormalities have been consistently described in HH in association 

with the iron overload phenotype, particularly in the number of peripheral blood CD8+ T 

lymphocytes [30, 33, 180]. There is presently strong evidence that the numbers of CD8+T 

lymphocytes are genetically transmitted in association with genes at the MHC-class I region. 

[41-43, 181]. The question remains if a putative MHC-class I-linked gene involved in the 

setting of CD8+T lymphocyte numbers is an important modifier of the clinical expression in 

HH. 

The mechanism(s) underlying the participation of lymphocytes in iron homeostasis 

remain mostly unknown. A recent study using human peripheral blood lymphocytes revealed 

that these cells are able to sense elemental iron and respond by modulating the expression 

of the central effector protein in iron metabolism: hepcidin [40]. However, it is not known what 

is the modifier effect of lymphocytes in systemic iron homeostasis and whether there are 

abnormalities in lymphocyte gene expression/regulation in HH. Also, a complete lack of 

information exists on the involvement of other lymphocyte proteins in iron cellular/systemic 

homeostasis as well as on the iron handling capabilities of these cells.  

 

Aims and outline of the thesis 

The general objective of this thesis is to clarify the role of lymphocytes in iron 

homeostasis, using Hereditary Hemochromatosis (HH) as a model. With this approach it is 

expected that the work will contribute to elucidate (1) the genetic contribution of the MHC-

class I region to the setting of lymphocyte numbers and (2) the mechanisms how 

lymphocytes may act as modifiers of the clinical expression in HH. 

 

The specific objectives of the thesis are: 

1. To evaluate the predictive value of MHC markers known to be associated with CD8 

T cells numbers in Portuguese HH patients 

The inheritance of certain HLA alleles are known to be associated with the genetic 

transmission of lower numbers CD8+ T lymphocytes as also a SNP microhaplotype 
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named A-A-T, was recently found to be associated with a more severe phenotype and 

also with the “low CD8 phenotype” in HH Portuguese population [44]. We present the 

results of a genomic approach analysing the MHC genetic region and its association with 

the CD8+ T-cell phenotype in HH patients. More specifically, in Chapter 3.1 we aimed to 

test whether the predictive value of the A-A-T microhaplotype remains in other 

populations’ settings. For that purpose, we analysed HH patients from 3 geographically 

distant populations (Porto, Portugal; Alabama, USA and Nord-Trøndelag, Norway), where 

the A-A-T extended haplotypes were determined and the association with CD8+ T-

lymphocyte numbers was evaluated. 

 

2. To refine the genetic region between HFE and HLA-B in HH patients and controls 

In Chapter 3.2 we aimed to better characterize the HLA-HFE haplotype structure of the 

HH Portuguese patients by performing a high density mapping with coverage of 63 SNPs 

markers within this region. With this approach we were able to gain a better insight into 

the recombination history and founder effects of HH associated haplotypes in our 

population, as well as their association with the “low CD8 phenotype”. 

 

3. Evaluate the in vitro cellular response of lymphocytes and monocytes to changes 

in non-transferrin-bound iron (NTBI) in HH patients versus normal healthy blood 

donors. 

As one of the major cellular components of peripheral blood, T lymphocytes can be 

exposed to circulating NTBI and have been for a long time proposed to act as a first 

physiological barrier against iron-mediated toxicity in situations of systemic iron overload 

[179]. Until now little was known about the capacity of T lymphocytes to take up NTBI. In 

Chapter 3.3 we aimed to address the ability of CD8+ T lymphocytes to store iron 

acquired as NTBI. For that purpose we performed in vitro studies addressing the kinetics 

of NTBI uptake (Results 1) and export (Results 3) by human CD8+ T lymphocytes after 

exposure to iron citrate. The hypothesis that CD8+ T cells may act as NTBI “buffers” and 

modify the disease outcome was tested by comparing NTBI retention ability by CD8+ T 

cells isolated from peripheral blood of HH patients and normal subjects (blood donors) 

(Results 4). 

 

4. Characterize the response of CD8 T lymphocytes to iron overload in terms of gene 

expression, using a wide-genome Affymetrix microarray approach. 

In Chapter 3.4 we aimed to address the transcriptional profile of peripheral CD8+ T cells 

in the biological context of Hfe absence. To avoid the MHC genetic diversity found in 

patients, we first looked in the HH mouse model (Hfe-/-) which has a homogenous genetic 
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background. Using a wide-genome microarray approach, we addressed the 

transcriptional response of CD8+ T lymphocytes from the HH mouse model and the 

respective genetic background control (C57BL/6) and compared them either in iron 

normal conditions and after induce systemic iron overload by an iron-rich diet. The results 

obtained in the HH mice model, were further tested in the human disease context by 

analysing the most differently expressed genes found in the Hfe-/- context in human CD8+ 

T cells isolated from HH patients and normal subjects. 
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3.1 Effects of highly conserved major histocompatibility complex (MHC) extended 

haplotypes on iron and low CD8+ T lymphocyte phenotypes in HFE C282Y 

homozygous hemochromatosis patients from three geographically distant 

areas 

3.2 High-density mapping of the genomic region between HFE and HLA-B in 

Hereditary Hemochromatosis: is there a selective recombination suppression 

of the classical ancestral? 

3.3 In vitro response of T lymphocytes to iron and how they may act as modifiers of 

the clinical expression in HH 

3.4 Lymphocyte gene expression signatures from patients and mouse models of 

hereditary hemochromatosis reveal a function of HFE as a negative regulator of 

CD8+ T-lymphocyte activation and differentiation in vivo 

  



 

32 
 

 



 

33 
 

3.1 

Effects of highly conserved major histocompatibility complex 

(MHC) extended haplotypes on iron and low CD8+ T 

lymphocyte phenotypes in HFE C282Y homozygous 

hemochromatosis patients from three geographically distant 

areas 

 

 

This chapter is published in: 

Costa M, Cruz E, Barton JC, Thorstensen K, Morais S, et al. (2013) Effects of Highly 

Conserved Major Histocompatibility Complex (MHC) Extended Haplotypes on Iron and Low 

CD8+ T Lymphocyte Phenotypes in HFE C282Y Homozygous Hemochromatosis Patients 

from Three Geographically Distant Areas. PLoS ONE 8(11): e79990. 

doi:10.1371/journal.pone.0079990 
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Abstract 

Hereditary Hemochromatosis (HH) is a recessively inherited disorder of iron overload 

occurring commonly in subjects homozygous for the C282Y mutation in HFE gene localized 

on chromosome 6p21.3 in linkage disequilibrium with the human leukocyte antigen (HLA)-A 

locus. Although its genetic homogeneity, the phenotypic expression is variable suggesting 

the presence of modifying factors. One such genetic factor, a SNP microhaplotype named A-

A-T, was recently found to be associated with a more severe phenotype and also with low 

CD8 +T-lymphocyte numbers. The present study aimed to test whether the predictive value of 

the A-A-T microhaplotype remained in other population settings.  

In this study of 304 HH patients from 3 geographically distant populations (Porto, 

Portugal 65; Alabama, USA 57; Nord-Trøndelag, Norway 182), the extended haplotypes 

involving A-A-T were studied in 608 chromosomes and the CD8+ T-lymphocyte numbers 

were determined in all subjects. Patients from Porto had a more severe phenotype than 

those from other settings. Patients with A-A-T seemed on average to have greater iron stores 

(p=0.021), but significant differences were not confirmed in the 3 separate populations. Low 

CD8+ T-lymphocytes were associated with HLA-A*03-A-A-T in Porto and Alabama patients 

but not in the greater series from Nord-Trøndelag.  

Although A-A-T may signal a more severe iron phenotype, this study was unable to 

prove such an association in all population settings, precluding its use as a universal 

predictive marker of iron overload in HH. Interestingly, the association between A-A-T and 

CD8+ T-lymphocytes, which was confirmed in Porto and Alabama patients, was not observed 

in Nord-Trøndelag patients, showing that common HLA haplotypes like A*01-B*08 or A*03-

B*07 segregating with HFE/C282Y in the three populations may carry different messages. 

These findings further strengthen the relevance of HH as a good disease model to search for 

novel candidate loci associated with the genetic transmission of CD8+ T-lymphocyte 

numbers. 

 

Keywords: Hereditary Hemochromatosis, HFE, MHC, CD8+ T lymphocytes, Iron, C282Y 
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Introduction 

The major histocompatibility complex (MHC) region on chromosome 6p21.3 

constitutes the most dense gene region of the human genome. It has been estimated that 

40% of classical MHC genes are expressed in the immune system [182]. These genes are 

physically clustered, possibly reflecting functional relationships, and are characterized by 

high polymorphism levels and strong linkage disequilibrium. These characteristics make the 

MHC region a paradigm in many aspects of genomic research, particularly in disease 

association studies. Genetic variation in the MHC is associated with more disorders than any 

other genomic region, the majority of which are immune-related. Nevertheless, fine mapping 

of those disease associations and the identification of specific functional variants remain 

difficult. Both structural and regulatory variants are important in disease associations and 

may operate in tandem [182]. 

 A classic example of disease association with extreme linkage disequilibrium at the 

MHC region is Hereditary Hemochromatosis (HH), an autosomal recessive disorder of 

primary iron overload characteristically found in Caucasians and associated with 

homozygosity for the HFE p.Cys282Tyr mutation (C282Y) in the vast majority of cases. HFE 

encodes a non-classical MHC class-I molecule and is localized 4Mb telomeric to HLA-A [27], 

in very strong association with an ancestral haplotype carrying the human leukocyte antigen 

(HLA) antigens A*03 and B*07 [183, 184]. By applying several types of linkage-disequilibrium 

calculations to analyze the HH locus, Ajioka and co-workers found very high disequilibrium 

values over a large region from 150 kb centromeric to 5 Mb telomeric of HLA-A, partly due to 

an unusual low recombination rate of approximately 28% of the expected value [185]. In the 

same study, a haplotype phylogeny for HH chromosomes suggested that the origin of HFE 

C282Y is recent. These observations also provided a plausible explanation for previous 

difficulties in localizing the HH gene [186, 187]. 

 Despite the genetic homogeneity at HFE among HH patients, their iron phenotypes 

are highly variable. Consequently, possible environmental and genetic modifiers of iron 

phenotypes in hemochromatosis have been intensively investigated. Among others, genes 

within the MHC class I region, inherited in linkage with the ancestral C282Y-containing 

haplotype, have been implicated in the clinical heterogeneity of HFE-associated HH [188]. 

However, conflicting results obtained by different authors have still not solved this question. 

Earlier independent studies in geographically different populations have shown that the 

number of copies of the common ancestral haplotype HLA-A*03-B*07 was associated with 

the expression of iron phenotypes. Patients with two copies of the ancestral haplotype were 

shown to have more severe iron overload phenotypes than those with one or no copy of the 

ancestral haplotype in studies performed in Australia, Italy and Alabama, USA [189-192]. 
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Moreover, Pratiwi et al. showed by extended linkage disequilibrium analysis in patients from 

Australia that there are two distinct peaks of association separated by 2 Mb in the region of 

HFE, a pattern not expected for a single gene disorder [193]. This suggested that a gene 

modifying the phenotype of C282Y homozygotes could be localized around the area of 

D6S105. More recent studies did not support the previous observations [194-197]. In a 

review of the origin and spread of the hemochromatosis mutation, Distante and co-workers 

[194] reported that although associations of HLA haplotypes with the severity of iron overload 

were described, no such relationship was found in patients from the UK (R.Raha-Chowdhury, 

A. Bomford and M. Worwood, unpublished data). In another study of 8 HH families from 

Britanny, France, Sachot and co-workers analyzed C282Y homozygous relatives with no 

clinical signs of the iron overload in comparison to the respective probands who had 

abnormal iron phenotypes. They found no evidence that either HFE polymorphisms or 

variants in 10 microsatellite markers surrounding HFE could explain phenotypic variability in 

the respective kinships [195]. Barton and co-workers extended their study of 

genotype/phenotype correlations to a population of 141 C282Y homozygous probands from 

Alabama, USA, and did not reproduce the previous observations that were based on a 

relatively small number of probands [196]. Finally, in a study of HLA haplotypes of HH 

patients in a rural population from a former Norwegian province in Central Sweden, Olsson 

and co-workers could not find an association of the HLA-A*03 with the iron phenotype. 

Interestingly however, they found that males with double copies of the very common A*01-

B*08 haplotype expressed a milder phenotype, supporting again an association of iron 

overload with the MHC region, but in the setting of a different haplotype [197]. 

Altogether the above described studies demonstrate that associations between the 

HH phenotype and the classical HLA markers vary among different cohorts from 

geographically distinct populations (who naturally diverge due to genetic drift or 

recombination events) and point to the necessity to look for novel markers at the MHC region 

that may help explaining the phenotypic variability in HH patients. One such factor could be a 

new 500 kb microhaplotype localized between HFE and the HLA-A locus as described by 

Cruz and co-workers [44]. This haplotype was associated with a more severe phenotype in 

its carriers and also with low CD8+ T lymphocyte numbers, which in previous studies from 

Portugal have predicted a more severe iron overload [21, 22, 30, 32]. Low lymphocyte 

numbers were also associated with a more severe phenotype in patients from Alabama in 

particular those with HLA-A*01-B*08 [171]. However, this same haplotype reported in a 

former Norwegian province seemed to be associated with a milder phenotype [197]. 

Unfortunately, no data are available regarding CD8+ T lymphocyte numbers in this population 

from Central Sweden.  
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  In the present study we sought to test whether the predicting value of the 

microhaplotype described by Cruz et al. [44] could be reproduced in other settings, i.e., in 

different populations from geographically distant regions.  In this context, we explored the 

degree of conservation of the reported HH-associated haplotypes in relation to their effect on 

the low CD8+ T lymphocyte phenotype or the clinical expression of iron overload. Our data 

indicate that although the same haplotypes are observed in distant geographical regions, 

their relative frequencies are variable, which may explain differences in genotype/phenotype 

associations among different populations. 
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Methods 

Ethics Statement 

The study was approved by the Ethical Committees of Centro Hospitalar do Porto, 

Porto; Institutional Review Board of Brookwood Medical Center, Alabama and The Regional 

Committee for Medical and Health Research Ethics, REC Central, Trondheim. Written 

informed consent was obtained from participants according to the Helsinki declaration. 

 

Study Populations & clinical data 

Three different populations of Hereditary Hemochromatosis patients from 

geographically distant regions were included in this study. The only inclusion criteria for the 

purpose of the study were the confirmation of homozygosity for the C282Y HFE mutation and 

to be an adult, because the CD8+ T lymphocyte phenotype is stable in adults. The first group 

included 65 unselected, unrelated HH patients from the north of Portugal, mainly from the 

Porto district area, consecutively identified between 1985 and 2011 in non-screening settings 

and regularly followed up at the Hemochromatosis Outpatient Clinic of Santo António 

Hospital, Porto and Predictive and Preventive Genetic Centre, Porto. This group of patients 

is designated as Porto patients. The second group of patients included 57 unrelated HH 

patients diagnosed in non-screening settings from central Alabama, USA, diagnosed 

between 1988 and 2010 and treated at Southern Iron Disorders Center, Birmingham, 

Alabama. These probands were selected for the present study only because they presented 

for diagnosis or treatment in a consecutive mode. This group of patients is designated as 

Alabama patients. The third group of patients included 182 patients from the Nord-Trøndelag 

County, Norway, who were diagnosed with HH as part of a population screening study 

(HUNT2) between 1995 and 1997, and were followed up at St. Olav Hospital, Trondheim. 

This group of patients is designated as Nord-Trøndelag patients. Most of the clinical and 

laboratory information about all patients were already available and described elsewhere [41, 

43, 44, 188, 198-200]. Previously available information included, in all patients, the iron 

parameters at diagnosis: transferrin saturation (TfSat) and serum ferritin (SF); HFE genotype 

(all homozygous for the C282Y mutation); and HLA class I alleles (A and B) as determined 

by low-resolution DNA-based techniques (PCR/sequence-specific oligonucleotide probes, 

Dynal RELI™ SSO, Dynal Biotech Ltd, UK). Values of total body iron stores (TBIS) estimated 

by quantitative phlebotomies were available from 104 patients (34 from Porto, 32 from 

Alabama and 38 from Nord-Trøndelag). 
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Immunophenotyping 

Blood counts of T-CD8+ lymphocyte subpopulation were available for all study 

participants. T-lymphocyte subpopulations were determined by FACS analysis using anti-

CD3 and anti-CD8 monoclonal antibodies as previously described in detail [41]. We defined 

as a “low CD8 phenotype” the finding of CD8+ T lymphocyte numbers below the 25% 

percentile in controls. This value was 310x103/ml in Porto and Alabama patients and 

319x103/ml for Nord-Trøndelag patients. Mean values (± standard deviation) in controls were 

433(±168) x103/ml in Porto and Alabama and 490(±234) x103/ml in Nord-Trøndelag. 

 

Genetic markers at the MHC region 

In addition to HFE and HLA genotyping, genetic information on three single 

nucleotide polymorphisms (SNPs) localized in the region between HFE and HLA-A was 

obtained in all patients included in this study. These SNPs were localized in the genes: 

piggyBac transposable element derived 1 (PGBD1, rs1997660), zinc finger protein 193 

(ZNF193, rs7206) and zinc finger protein 165 (ZNF165, rs203878), and defined a SNP 

microhaplotype of 500 kilobases (kb). These were the SNP microhaplotypes previously 

described in Porto patients [44] and were determined “de novo” in patients from Alabama by 

gene sequencing as described in [44] and in patients from Nord-Trøndelag by hybridization 

probe melting curve analysis on the LightCycler, Roche Diagnostics. Details on primer and 

probe sequences in addition to PCR conditions for SNP analysis can be provided by request. 

 

Generation of phased chromosomes and haplotype construction 

HLA A-B haplotypes, and the SNP microhaplotypes defined by the genes PGBD1, 

ZNF193 and ZNF165, were defined in HH patients by family segregation whenever 

informative family members were available. Otherwise they were inferred by the PHASE 

program. 

 

Statistical methods 

Associations of HLA alleles and haplotypes in chromosomes carrying the C282Y 

mutation in HFE were tested by the Chi-square test by comparison of their frequencies in HH 

patients from the 3 different regions of Porto, Alabama and Nord-Trøndelag with those of the 

respective reference normal populations. For the purpose of statistical analysis, only alleles 

or haplotypes with frequencies respectively higher than 10% and 7% in any of the tested 

population were considered. Information about HLA allele and haplotype reference 

frequencies in the normal populations from Porto (north Portugal) was obtained at the 

“Allele*Frequencies in worldwide populations” database. Frequencies for the Alabama 

control population were reviewed from the data previously analyzed by Barton and co-
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workers [198]. Frequencies in the non-Sami population from Norway were obtained from the 

data described by Harbo et al. 2009 [201], also published at the “Allele*Frequencies in 

worldwide populations” database [202]. In order to eliminate the artificially lowered 

frequencies in HH chromosomes of other alleles and haplotypes that were due to the 

relatively high frequencies of alleles A*03 and B*07 and the haplotype A*03-B*07, we 

estimated (in patients and respective controls) “corrected” allele and haplotype frequencies 

by subtracting from the denominator respectively the sum of A*03 and B*07 alleles or the 

number of A*03-B*07 haplotypes. These corrected frequencies allowed a more meaningful 

comparison between frequencies in HH and control chromosomes, as originally described by 

Marcel Simon and co-workers [184]. To analyze the relative strength of HLA allele or 

haplotype associations, the etiological fraction delta () was calculated as described 

according to the formula =(FAD-FAP)/(1-FAP) where FAD is the allele frequency in HH 

chromosomes and FAP the allele frequency in control chromosomes [203-205]. In the case 

of multiple comparisons we used the Bonferroni correction to test for the significance of 

differences. 

To investigate the association of CD8+ T lymphocyte numbers with particular 

genotypes, we assigned to each chromosome the value of CD8+ T lymphocytes of the 

respective carrier. Differences in mean CD8+ T lymphocyte values among groups were 

tested by the Student’s T-test or the One-Way analysis of variance (ANOVA) as appropriate. 

In addition, patients with CD8+ T lymphocyte numbers below the 25% percentile of the 

respective controls were selected and their chromosomes assigned as “low CD8 phenotype” 

cases. Differences in the relative frequencies of “low CD8 phenotype” cases among groups 

were tested by the Chi-square test.  

Quantitative measures of iron parameters were also compared among the 3 

populations of HH patients from Porto, Alabama and Nord-Trøndelag. Because of skewness 

in the distribution of serum ferritin and total body iron stores, for statistical purposes the 

logarithmic transformation was applied to those values. For representation in table and 

figure, however, the non-transformed values were used. Differences in means among groups 

were tested by One-Way analysis of variance (ANOVA) or the Student’s T-test as 

appropriate. 

Data were analyzed by Statgraphics software (Statgraphics Graphics System, version 

7.0). Values of P <0.05 were defined as significant. 

  



Chapter 3.1  

42 
 

Results 

1 - Clinical heterogeneity among the HH populations from Porto, Alabama and Nord-

Trøndelag 

A summary of the iron-related parameters of the HH patients from Porto, Alabama 

and Nord-Trøndelag is provided in Table 1, where values are given according to gender. 

Significant differences among the 3 populations of patients were observed in males for TfSat, 

SF, and TBIS, with P values < 0.00001 in all cases. These differences were explained by a 

more severe expression in patients from Porto and a milder expression in Nord-Trøndelag 

patients. In females, SF (P<0.00001) and TBIS (P<0.04) were also significantly different 

among the 3 populations, with Porto and Nord-Trøndelag patients having respectively the 

highest and lowest values. The HH cohort from Nord-Trøndelag was the only one in which 

patients were identified in screening programs. Moreover, previous studies in the same 

population showed that, in general, Nord-Trøndelag patients have a low prevalence of 

clinical symptoms and less severe iron overload [199, 200]. 

 

Table 1 Iron parameters (at diagnosis) in HH patients from Porto, Alabama and Nord-
Trøndelag 

 
N TfSat (%) SF (ng/ml) TBIS (g) 

HH male patients from: 
    

Porto 43 90 ± 14 (63-123) 1750 ± 295 (163-7685) 7.93 ± 0.78 (2.19-17.40) 

Alabama 32 73 ± 17 (41-100) 815 ± 82 (123-2119) 3.66 ± 0.50 (0.40-10.40) 

Nord-Trøndelag 103 81 ± 9 (58-100) 541 ± 63 (27-3511) 3.23 ± 0.47 (1.12-15.32) 

P value 
 

<0.00001 <0.00001 <0.00001 

HH female patients from: 
    

Porto 22 81 ± 18 (55-111) 543 ± 286 (67-3954) 3.20 ± 1.33 (1.10-13.80) 

Alabama 25 74 ± 20 28-100) 433 ± 78 (65-1892) 1.93 ± 0.27 (0.40-5.60) 

Nord-Trøndelag 79 73 ± 12 (51-97) 172 ± 27 (16-1151) 1.65 ± 0.30 (0.89-4.32) 

P value 
 

n.s. <0.00001 0.040 

Transferrin saturation (TfSat) is presented as arithmetic mean  standard deviation; serum ferritin (SF) and total 

body iron stores (TBIS) are presented as geometric mean ± standard error. Minimum-maximum values are in 

parenthesis. TBIS was available in 34 males from Porto, 32 from Alabama and 38 from Nord-Trøndelag and in 13 

females from Porto, 23 from Alabama and 12 from Nord-Trøndelag. Statistically significant differences (P value 

indicated) were tested among groups using One-way Anova. 
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2 - Analysis of genetic markers between HFE and HLA-B in the HH populations from 

Porto, Alabama and Nord-Trøndelag  

From the study of 304 HH patients with C282Y homozygosity from three 

geographically distant regions, namely Porto, Portugal (n=65), Alabama, USA (n=57) and 

Nord-Trøndelag, Norway (n=182), we obtained respectively 130, 114 and 364 chromosomes 

carrying HFE C282Y. These were genetically characterized with 5 different markers including 

HLA-A alleles, HLA-B alleles, and SNPs in the genes PGBD1, ZNF193 and ZNF165. HLA A-

B haplotypes and SNP microhaplotypes were assigned by family segregation, or generated 

by PHASE in patients without available informative family members (see Methods). 

HLA-A and HLA-B allele frequencies were first analyzed in HH chromosomes from 

the three populations. Results are summarized in Table 2 (uncorrected data are shown in 

Table S1). As expected from all previously published studies of HLA associations in HH, the 

most common HLA-A and B alleles in chromosomes from all the three HH populations from 

Porto, Alabama and Nord-Trøndelag were A*03 (respectively 0.408, 0.474 and 0.420) and 

B*07 (respectively 0.238, 0.307 and 0.288); these frequencies were significantly different 

from those of the corresponding controls (Table 2). The strength of these significant 

associations was measured by estimating the etiological fraction delta (see Methods) being 

similar in all populations (Table 2). After correcting for the strong effect of A*03 and B*07 on 

other allele frequencies (see Methods), other significantly associated HLA alleles were found 

in the populations from Porto (A*01, B*08 and B*40) and Nord-Trøndelag (A*11, B*14 and 

B*44). In Alabama patients, the only additional HLA allele with a statistically significant 

association was B*14, suggesting that Alabama patients represent a genetically more 

conserved population. 

 The most prevalent HLA A-B haplotype in the three populations from Porto, Alabama 

and Nord-Trøndelag was A*03-B*07, the proportion of its carriers being 0.169, 0.272 and 

0.214, respectively (see also Table 2). Although these haplotype frequencies do not differ 

statistically among the different populations (shown in Supplementary Table 1), the strength 

of their associations to HH, as measured by the etiological fraction delta, is stronger in 

Alabama (=0.247) than in Nord-Trøndelag (=0.164) or Porto (=0.158), suggesting a more 

recent founder effect in Alabama HH patients. This interpretation is also consistent with our 

observation that the prevalence of HLA-A and -B alleles and haplotypes is less diverse in 

Alabama patients than in Porto or Nord-Trøndelag patients. After we corrected for the 

predominance of A*03-B*07 haplotypes on other haplotype frequencies (see Methods), the 

next most common HLA haplotype found in patients from all populations was A*01-B*08, 

although the respective frequencies of A*01-B*08 did not differ significantly from those in the 

respective control populations. The A*03-B*14 haplotype also occurred in hemochromatosis 

chromosomes from Alabama and Nord-Trøndelag patients. The significance of this 
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association could be defined only in the Alabama population due to lack of sufficient 

available information about control subjects in Porto and Nord-Trøndelag. Nevertheless, its 

significance might be supported by the very low frequencies found in controls from 

Scandinavia [206]. The haplotype A*02-B*44, a very common haplotype in normal Caucasian 

populations, was found at similar frequencies in all non-A*03-B*07-carrying chromosomes 

from the three present populations. These respective frequencies did not differ significantly 

from those in the respective control subjects. 

We next analyzed the SNP microhaplotypes defined by the SNPs in the genes 

PGBD1, ZNF193 and ZNF165 in the three populations (results shown in Table S1). Previous 

studies in HH patients had revealed that the most conserved of these SNP microhaplotypes 

was the one designated as A-A-T and that this microhaplotype is also transmitted in 

association with a more severe iron phenotype of HH [44]. This microhaplotype was the most 

prevalent in all the populations studied here but its relative frequency differed significantly 

among them (P=0.0003). Porto patients had the highest A-A-T frequency (0.908) and Nord-

Trøndelag patients the lowest (0.765). Among the non-A-A-T SNP microhaplotypes, the most 

common was G-G-G, the frequency of which also differed significantly among the three 

populations (P=0.003). G-G-G frequency was highest in Nord-Trøndelag patients (0.160) and 

lowest in Porto patients (0.062). 

In summary, the observation of differences in the relative frequencies of the 

described HLA and SNP markers among the three geographically distant populations of HH 

patients support the postulate that evolutionary histories among populations differ due to 

differences in genetic drift and recombination of the HH founder chromosomes in the 

respective geographic regions. 
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Table 2 HLA allele and haplotype associations in HFE C282Y carrying chromosomes of HH patients from three populations 

 
Porto Alabama Nord-Trøndelag 

 

HH Patients 

(n=130 
chromosomes) 

Controls* 

(n=15874 
chromosomes) 

  
 

HH Patients 

(n=114 
chromosomes) 

Controls* 

(n=830 
chromosomes) 

  

HH Patients 

(n=364 
chromosomes) 

Controls
 * 

(n=1152 
chromosomes) 

  

HLA- allele frequency P value δ allele frequency P value δ allele frequency P value δ 

A*03 0.408 0.101 0.000 0.330 0.474 0.166 0.000 0.369 0.420 0.155 0.000 0.310 

B*07 0.238 0.060 0.000 0.180 0.307 0.130 0.000 0.203 0.288 0.148 0.000 0.160 

  corrected allele frequency
**
     corrected allele frequency 

**
     corrected allele frequency 

**
     

A*01 0.208 0.124 0.026 0.096 0.283 0.214 ns 
 

0.223 0.180 ns 
 

A*02 0.299 0.295 ns 
 

0.300 0.328 ns 
 

0.360 0.406 ns 
 

A*11 0.052 0.078 ns 
 

0.067 0.068 ns 
 

0.137 0.052 0.000 0.090 

A*24 0.065 0.117 ns 
 

0.067 0.082 ns 
 

0.100 0.061 ns 
 

B*08 0.131 0.079 0.053 0.057 0.165 0.152 ns 
 

0.127 0.143 ns 
 

B*14 0.051 0.072 ns 
 

0.139 0.040 0.0001 0.103 0.100 0.032 0.000 0.071 

B*15 0.020 0.061 ns 
 

0.025 0.005 ns 
 

0.085 0.130 ns 
 

B*35 0.162 0.126 ns 
 

0.051 0.094 ns 
 

0.077 0.107 ns 
 

B*40 0.101 0.035 0.000 0.068 0.013 0.014 ns 
 

0.135 0.132 ns 
 

B*44 0.162 0.162 ns   0.203 0.163 ns   0.228 0.159 0.000 0.082 

  haplotype frequency     haplotype frequency     haplotype frequency     

A*03B*07 0.169 0.013 0.000 0.158 0.272 0.033 0.000 0.247 0.214 0.060 0.000 0.164 

  corrected haplotype frequency 
**
     corrected haplotype frequency

 **
     corrected haplotype frequency 

**
     

A*03B*14 0.019 n.a. 
  

0.096 0.009 0.000 0.089 0.077 n.a. n.a 
 

A*01B*08 0.065 0.034 ns 
 

0.108 0.069 ns 
 

0.098 0.096 ns 
 

A*02B*44 0.037 0.038 ns   0.096 0.062 ns   0.080 0.075 ns   

Comparisons between patients and controls were done using the Chi-square test (P values indicated) and the strength of the associations was estimated by the etiological 

fraction delta (δ). 

* HLA allele and haplotype frequencies in the controls populations from Porto (north Portugal) were obtained at the “Allele Frequencies in worldwide populations” database 

(Gonzalez-Galarza et al.(2011) Nucleic Acids Res 39:913-919), from Alabama were reviewed from previous data reported by Barton et al. (2002) BMC Med Genet 3:9; and 

from Norway were obtained in the study by Harbo et al. (2009) Tissue Antigens 75:207-217.  

** Corrected allele and haplotype frequencies (see Methods) were calculated by subtracting from the denominator, respectively, the sum of A*03 and B*07 alleles and the 

number of A*03B*07 haplotypes. 

n.a.=data not available; ns=not significant. 
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3 - Haplotype conservation in HH patients from Porto, Alabama and Nord-Trøndelag  

We analyzed the degree of haplotype conservation as a measure of their proximity 

from the ancestral HH founder chromosomes by selecting the HH chromosomes carrying the 

most commonly associated HLA-A alleles (A*01, A*02 and A*03) and calculating the degree 

of conservation (%) of the most common SNP microhaplotype A-A-T in those chromosomes. 

Results are shown in Table 3 and Figure 1. In general, a high degree of conservation was 

observed in cohorts from Porto, Alabama and Nord-Trøndelag for chromosomes carrying 

A*03 (respectively 94%, 98% and 97%), including the A*03-B*07-carrying chromosomes 

(respectively 91%, 100% and 99%). In contrast, significant differences occurred among the 

three populations regarding the conservation of chromosomes carrying A*01 or A*02 alleles 

(Table 3). 

 

Fig. 1 Conservation (%) of the SNP microhaplotype A-A-T according to HLA-A alleles in chromosomes 

from HH patients. A comparison of the percent haplotype conservation among the three groups of HH patients 

from Porto, Alabama and Nord-Trøndelag was done using the Chi-square test and significant results are indicated 

by a * (P<0.00001) 

 

These differences are illustrated in Figure 1, particularly visible for chromosomes 

carrying HLA-A*01. In the case of Porto patients, the SNP microhaplotype A-A-T is 

conserved in all HLA-A*01 carrying chromosomes (16/16), including all HLA-A*01-B*08 

carrying chromosomes (7/7). This was not observed in either Alabama or Nord-Trøndelag. In 

the case of Alabama patients, 53% (9/17) of HLA-A*01-carrying chromosomes (or 56%, 5/9, 

of A*01-B*08 carrying chromosomes) do not conserve the A-A-T microhaplotype. In Nord-

Trøndelag patients, 87% (41/47) of chromosomes carrying HLA-A*01 (or 86%, 25/29, of 

A*01-B*08 carrying chromosomes) do not conserve the A-A-T microhaplotype. In the Nord-

Trøndelag population the A-A-T microhaplotype was not conserved in 42% (32/76) of A*02 



Effect of MHC haplotypes on iron and CD8 phenotype in geographical distant HH populations 

47 
 

carrying chromosomes. In contrast, the percentage of conservation was 96% (22/23) and 

100% (18/18) in Porto and Alabama cohorts, respectively. 

 

Table 3 Comparison of the conservation of the SNP microhaplotype A-A-T in 
chromosomes of HH patients from Porto, Alabama and Nord-Trøndelag 

  
Percentage (n) of haplotypes 

 

Associated HLA 
alleles 

Associated SNP 
microhaplotype 

Porto Alabama 
Nord-

Trøndelag 
P 

*
 

A*01 
     

 
Conserved  A-A-T 100% (16) 47% (8) 13% (6) 2.52x10

-9
 

  Non conserved A-A-T 0 53% (9) 87% (41) 
 

A*02 
     

 
Conserved A-A-T 96% (22) 100% (18) 58% (44) 3.06x10

-5
 

  Non conserved A-A-T 4% (1) 0 42% (32) 
 

A*03 
     

 
Conserved A-A-T 94% (50) 98% (53) 97% (148) n.s. 

  Non conserved A-A-T 6% (3) 2% (1) 3% (5) 
 

Non A*01-A*02-A*03 
     

 
Conserved A-A-T 74% (28) 76% (19) 89% (78) n.s. 

  Non conserved A-A-T 26% (10) 24% (6) 11% (10) 
 

* 
Relative frequencies of conserved and non-conserved haplotypes among three populations were compared 

using the Chi-square test (P values are indicated). 

 

Taken together, the present results further suggest that the recombination histories or 

founder effects of the C282Y-carrying HH chromosomes differ in the three hemochromatosis 

populations studied. This may affect other traits encoded in the same chromosomal region, 

including determinants of CD8+ T lymphocyte numbers or other putative modifiers of iron 

overload. 

 

4 - Associations of the CD8+ T lymphocyte phenotype with MHC markers in HH 

patients 

We sought to investigate the association of CD8+ T lymphocyte numbers with 

particular MHC markers. First, we analyzed the distribution of CD8+ T lymphocyte numbers in 

the three populations of HH patients, each of whom had C282Y homozygosity. Low CD8+ T 

lymphocyte numbers were common in patients from each geographic region (Fig. 2), but the 

distribution of T lymphocyte numbers differed. Patients from Porto and Alabama had a more 

striking deviation to low numbers than patients from Nord-Trøndelag (Fig. 2). 
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We then analyzed the associations of 

the “low CD8 phenotype” with particular 

extended haplotype combinations among the 

three different populations. A “low CD8 

phenotype” was defined as CD8+ T lymphocyte 

numbers below the 25% percentile in the 

respective controls, i.e., 310x103/ml for Porto 

and Alabama, and 319x103/ml for Nord-

Trøndelag (see Methods). The extended 

haplotype combinations were chosen to reflect 

the degree of conservation relative to the most 

common ancestral haplotype, i.e., if the A-A-T 

microhaplotype was conserved or not and, 

within A-A-T conserved haplotypes, if HLA-A*03 

was conserved or not (Table 4). We estimated 

the frequencies of “low CD8 phenotype” cases 

for each haplotype combination. The results, 

illustrated in Table 4, demonstrate that there are 

differences among the three populations. The 

“low CD8 phenotype” was significantly 

associated with the most conserved haplotypes 

carrying A-A-T and the HLA-A*03 in the 

populations from Porto (P=0.045) and Alabama 

(P=0.012) but not in the population from Nord-

Trøndelag. These associations were also 

reflected on the mean CD8+ T lymphocyte 

counts. Values in Porto and Alabama patients 

were significantly lower than the expected 

values in controls (P=0.0017 and P=0.021, 

respectively). 

  

Fig. 2 Distribution of peripheral blood CD8
+
 T 

lymphocytes in HH patients from Porto, Alabama 

and Nord-Trøndelag The dash lines indicate the 

mean value observed in the respective control 

populations 
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Table 4 Correlations between haplotype conservation and the CD8+ T lymphocyte 
phenotype in chromosomes of HH patients from Porto (n=128), Alabama (n=112) and 
Nord-Trøndelag (n=362). 

 
Relative frequency of the  

“low CD8 phenotype” in HH patients 
Mean (±SD) of CD8+ T lymphocytes(x10

3
/ml) 

in HH patients 

Extended haplotype 
combinations 

Porto Alabama 
Nord-

Trøndelag 
P value Porto  Alabama  

Nord-
Trøndelag  

P value 

Conserved-A-A-T  
With HLA-A*03 

44.0%  
(22/50)* 

49.0% 
(25/51)* 

25.7% 
(38/148) 

0.0026 370 ± 179* 369 ± 233* 507 ± 251 0.0001 

Conserved-A-A-T  
Without HLA-A*03 

39.4%  
(26/66) 

31.1% 
(14/45) 

38.3% 
(49/128)** 

n.s. 393 ± 194 453 ± 263 458 ± 259 n.s. 

Non-conserved- 
A-A-T 

16.7%  
(2/12) 

43.8% 
(7/16) 

31.4% 
(27/86) 

n.s. 540 ± 207 430 ± 331 469 ± 216 n.s. 

The percentage (case/total numbers) of patients with CD8
+
 T lymphocytes below the 25% percentile (“low CD8 

phenotype”) are indicated followed by the mean (±standard deviation) of CD8
+
 T lymphocyte counts (x10

3
/ml) for 

each haplotype combination. (P) Statistical significant differences among the 3 populations of patients (using the 

Chi-square test or One-way ANOVA, as appropriate, see M&M). (*) Results significantly lower (p<0.05) than the 

respective control populations (using the Chi-square test or Student T-test, as appropriate, see M&M). (**) Result 

significantly lower than the respective control due to a small (n=5) founder group of HLA-A*01 patients. The 

statistical significance is lost if this group is excluded. 

 

Taken together, the different patterns of association of the “low CD8 phenotype” with 

particular extended haplotype combinations in the three populations of patients suggest a 

stronger founder effect in the patients from Porto and Alabama with fewer recombination 

events between a putative locus marking the “low CD8 phenotype.” In patients from Nord-

Trøndelag, genotype/phenotype associations were apparently lost. 

 

5 - Associations of the iron phenotype with MHC markers in HH patients 

In order to analyze the effect of associated SNP microhaplotypes on the clinical 

expression of iron overload, HH patients were divided in two groups, according to the 

presence, in homozygosity, of the ancestral SNP microhaplotype A-A-T. For statistical 

purposes, males and females were analyzed separately. Results are presented in Table 5 

and Figure 3. No significant differences were found in females and no significant differences 

were found for TfSat in both males and females (Fig.3). In general, the average SF and TBIS 

values in male patients were significantly higher (respectively P=0.027 and P=0.021) in those 

homozygous for the A-A-T microhaplotype than in those carrying one or more non-A-A-T 

microhaplotype. Even if the average SF and TBIS values in male patients appeared higher in 

those homozygous for the A-A-T, no significant differences were seen in the 3 separate 

populations (Table 5). 

In conclusion, these results may support a general prediction of a more severe iron 

phenotypes in patients’ populations carrying the conserved A-A-T microhaplotype in 
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homozygosity, but they also show that, for individual purposes, the microhaplotype A-A-T 

cannot be used as a universal marker of iron phenotype in HH. 

 

 

Fig. 3 Effect of the SNP microhaplotypes on the expression of iron overload. Comparisons of the iron 

parameters: transferrin saturation (TfSat), serum ferritin (SF) and total body iron stores (TBIS) between groups of 

HH patients divided according to the associated SNP microhaplotypes (A-A-T homozygous or non-A-A-T 

homozygous). Males are represented by solid circles and females represented by open circles. Significant 

differences in the mean values (by the Student´s T test) are indicated by an * (P=<0.027). 

 

Table 5 Average values of total body iron stores (TBIS) and serum ferritin (SF) of HH 

male patients according to the associated SNP microhaplotypes (A-A-T homozygous 

or non- A-A-T homozygous) 

  All HH patients HH patients from 

  
 

Porto Alabama Nord-Trøndelag 

Average of TBIS (g) in:  
    

A-A-T homozygous  
male patients   

4.98 [4.24-5.85] 
(n=77) 

8.08 [6.42-10.11] 
(n=29) 

3.83 [3.01-4.88] 
(n=24) 

3.62 [2.75-4.76] 
(n=24) 

Non-A-A-T homozygous 
male patients 

3.37 [2.43-4.69] 
(n=27) 

7.11 [3.07-16.48] 
(n=5) 

3.23 [1.34-7.75] 
(n=8) 

2.65[1.87-3.77] 
(n=14) 

P* 0.021 n.s. n.s. n.s. 

Average of SF (ng/ml) in:  
    

A-A-T homozygous  
male patients   

849 [718-1004] 
(n=124) 

1764 [1296-2400] 
(n=36) 

818 [670-999] 
(n=24) 

571 [461-707] 
(n=64) 

Non-A-A-T homozygous  
male patients 

602 [470-771] 
(n=51) 

1652 [576-4737] 
(n=5) 

806 [402-1616] 
(n=8) 

496 [381-646] 
(n=38) 

P* 0.027 n.s. n.s. n.s. 

TBIS and SF are presented as geometric mean and 95% Confidence Interval for Mean [Lower Bound - Upper 

Bound]; the numbers of patients in each group (n) are indicated in each case. *(P) Statistical significant 

differences using the Student´s T- test (with log transformed values, see methods) 
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Discussion 

The question of HLA haplotype conservation in HH has been a focus of scientific 

interest for a long time, and several interpretations about its role in the recent evolutionary 

history of chromosomes carrying the C282Y mutation have been largely discussed [183-187, 

194, 197, 207, 208]. Besides the well described A*03-B*07 ancestral haplotype [183-187], 

also the A*01-B*08 haplotype is very long and resistant against recombination, and appears 

to be derived from a single ancestor [194, 197]. The present study explored the implications 

of haplotype conservation on HH patient’s phenotypes. While not confirming the value of the 

A-A-T microhaplotype as a universal predictive marker of iron overload in HH, the study 

revealed important differences in both the genetic composition and the genotype/phenotype 

correlations among the geographically distant populations which may help explaining 

differences in phenotype and local penetrance of the disease. The most relevant questions 

raised by these results were: Why do all A*01-B*08 haplotypes from Porto patients carry the 

conserved A-A-T microhaplotype, but only 47% in Alabama and 13% in Nord-Trøndelag? 

Why don’t we see an association of the A-A-T microhaplotype with low CD8+ T lymphocytes 

in the Nord-Trøndelag population, as we observe in Porto and Alabama? Could the selection 

of “non-conserved” chromosomes in HFE C282Y homozygotes may help us in future to 

identify the individual loci contributing to the “low CD8 phenotype” and/or other novel 

associated modifiers of iron overload? Could the loss of A-A-T microhaplotype provide the 

explanation for the mild phenotype of A*01-B*08 carriers in particular populations, such as 

the one described in a former Norwegian province in Sweden [197]? 

In a recent study, Baschal and co-workers analyzed HLA data and genotypes for 

thousands of SNPs across the MHC complex in a large number of families, demonstrating 

the occurrence of multiple common “completely” conserved complex SNP haplotypes in the 

MHC region, several of them influencing disease susceptibility [209]. They suggested that 

such conservation could also occur in other genomic areas and proposed that this type of 

analysis of conservation versus sub-conservation of extended haplotypes may be an 

important tool for further positioning of disease-associated loci. In the present study, we took 

advantage of the known occurrence of highly conserved MHC-linked haplotypes in patients 

with HH and its known association with a phenotype of low CD8+ T lymphocyte numbers to 

study the distribution and composition of the HH-associated chromosomes and explain 

differences found in genotype/phenotype correlations among three geographically distant 

populations. Although high frequencies of the low CD8+ T lymphocyte phenotype were found 

in all HH populations, the pattern of association of this phenotype with particular haplotypes 

differed among patients from the three geographic regions, possibly reflecting diverse 

haplotype structures due to different recombination histories or founder effects. 
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Haplotype heterogeneity among populations 

The simple analysis of the distribution of HLA associated haplotypes (Table 2), in 

addition to the degree of conservation of the associated A-A-T SNP microhaplotype (Table 3, 

Fig. 1) in the three cohorts of patients from Porto, Alabama and Nord-Trøndelag, shows that 

the strong association of HH with the HLA-A*03-B*07 haplotype is the most consistent 

observation in all populations studied, confirming the existence of a common ancestral 

haplotype subsequently modified by recombination and geographical scattering due to 

migrations [184]. The diversity of associations with other haplotypes reveals differences 

among populations which agree with the expected differences in the history of their HH-

carrying chromosomes, taking into consideration particular founder effects or the time for 

recombination events. The most stricking differences are observed in chromosomes carrying 

HLA-A*01 (which include the ancestral HLA-A*01-B*08), in which the SNP microhaplotype A-

A-T was conserved in 100% chromosomes of Porto patients, while it was less conserved in 

patients from Alabama (47%) and much less conserved in or Nord-Trøndelag patients (13%) 

(see Fig.1), supporting the different founder effects or distinct recombination histories in the 

respective populations. The highest haplotype diversity observed in the Nord-Trøndelag 

population is also consistent with the high frequency of HFE C282Y in Norwegians [199, 200, 

210], possibly related with characteristics of rapid population growth that has occurred in 

northwestern Europe since the Celtic period [194]. On the contrary, patients from Alabama 

showed the lowest haplotype diversity, reflecting a more recent founder effect. A previous 

study showed that aggregate "British Isles" or Scotland indices of ancestry were significantly 

greater and the proportion of non-British Isles, non-Native American ancestry was 

significantly lower in Alabama hemochromatosis probands with HFE C282Y homozygosity 

than in population control subjects [211, 212]. These observations suggest that British Isles 

ancestry likely accounts for the relatively high C282Y allele frequency and association of 

HLA-A*03-B*07 and HFE C282Y in central Alabama whites. Therefore, the evidence of a 

recent founder effect in Alabama HH patients suggested by the present results agrees with 

the previous ancestry studies and with the predominance of English people among whites 

who migrated to and settled the geographic area of the present State of Alabama in the late 

18th and early 19th centuries [213, 214]. HLA-A*03-B*14 also occurred in hemochromatosis 

chromosomes from Alabama and Nord-Trøndelag patients. Although this haplotype is also 

described as a common HH ancestral haplotype in hemochromatosis populations in many 

northwestern European countries, particularly in Scandinavia [208], its appearance in 

Alabama HH patients is unlikely to be attributed predominantly to Norwegian or other 

Scandinavian founders because ancestry reports from these geographic areas of Europe are 

rare in Alabama hemochromatosis probands and population control subjects [211]. 

Nevertheless this haplotype could have a common ancestral Irish origin and be spread in 



Effect of MHC haplotypes on iron and CD8 phenotype in geographical distant HH populations 

53 
 

Norway by the close contacts between Ireland and Scandinavia through the Vickings’ 

movements [207, 208]. In the case of Porto patients, the relative low diversity of HH 

haplotypes could be attributed to the particular demographic characteristics of the 

Portuguese population in the north region namely the unipolar mode of migration and the low 

rate of mobility from other regions [215]. Significant regional differences were previously 

found in the distribution of the C282Y mutation in Portugal with the highest frequencies found 

in the north of the country [216]. In terms of historical population settlements, it is well 

recognized that there is a geographical and cultural boundary between the north and the 

south of Portugal documented by archeological, ethnographic and linguistic records [215], all 

favoring the notion that a stronger Celtic influence in the north could map the founder HH 

chromosomes in this region by the 6th century BC. The hypothesis that the later 

Nordic/Suevian occupation and settlement, which also occurred only in the north of the 

present country, could also contribute to the increased frequency of the mutation cannot be 

excluded. The present results of divergent patterns of haplotype conservation and 

genotype/phenotype associations in patients from Porto and Nord-Trøndelag do not favor a 

strong Scandinavian HH founder effect in north Portugal. 

 

Effect of haplotype conservation on the CD8+ T lymphocyte phenotype 

It is well known that the existence of different founder effects and different 

recombination histories at the MHC region affect the transmission of other genetic traits 

encoded in the same chromosomal region [182].The previously demonstration that CD8+ T 

lymphocyte numbers are transmitted in association with particular HLA haplotypes in 

Portuguese HH patients [41, 43] prompt us to analyze if the same association was also 

observed in the other HH populations. We confirmed that the phenotype of low CD8+ T 

lymphocytes was commonly observed in each of the three populations, but their respective 

distributions (Fig. 2) and their genotype/phenotype correlations (Table 4) varied. The “low 

CD8 phenotype” was significantly associated with the most conserved ancestral haplotype 

carrying A*03-A-A-T in the cohorts from Porto (n=50) and Alabama (n=51) but it was not 

associated in a much greater series from Nord-Trøndelag (n=148). This lack of association of 

the common ancestral haplotype with the “low CD8 phenotype” in Nord-Trøndelag patients is 

intriguing. One should stress however, that discrepancies in expected genotype/phenotype 

correlations can also be highly informative regarding the localization of genetic traits. That 

individual chromosomes with the same alleles (A*03, A-A-T) may or may not be associated 

with the “low CD8 phenotype” indicates that these alleles are not, by themselves, 

determinants of the trait, further supporting the hypothesis of another independent, still 

unidentified, genetic marker in the region. The time and place, during the evolutionary history 

of the HH chromosomes, when the association occurred remains unknown. Further studies 
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of genotype/phenotype correlations in other populations with different founder effects could 

clarify this question. As suggested by Olsson and co-workers [207], it would be of great 

interest to explore further the HLA haplotype/phenotype correlations in an extended 

population of patients from the Trøndelag region, because of its long historic close contacts 

with the British islands, the supposed origin of founders of the “Celtic” haplotypes in 

Scandinavia [207]. On the other hand, results from Porto and Alabama support the postulate 

that a major genetic determinant of CD8+ T-lymphocyte numbers is transmitted in linkage 

disequilibrium with HFE in this ancestral haplotype and suggest these populations as good 

targets to further position a candidate locus associated with the transmission of low CD8+ T 

lymphocyte phenotypes. The evidence that the association is lost not only in chromosomes 

without the A-A-T SNP microhaplotype but also, within the A-A-T conserved haplotypes, in 

chromosomes without the ancestral A*03 allele (Table 4), favors the localization of such a 

putative trait between HLA-A and PGBD1. Future studies in these populations should 

consider selecting “non-conserved” chromosomes, i.e., those with discontinuous regions of 

conservation to the consensus haplotypes, to facilitate the search for individual loci 

contributing to the trait. 

 

Effect of the SNP microhaplotypes on the iron overload phenotype 

In addition to its association with a ”low CD8 phenotype”, the conservation of the 

ancestral A-A-T microhaplotype had been previously shown to be associated with a more 

severe iron overload phenotype [44]. In the present study we showed that, although in 

general, the presence in homozygosity of the A-A-T microhaplotype was associated to higher 

values of serum ferritin and total body iron stores in male patients, this association was not 

significantly sustained at the individual populations’ level and therefore cannot be used as a 

reliable universal marker of the phenotypic expression in HH (Table 5). The lack of statistical 

power in individual populations could be explained by the low numbers of non-A-A-T 

homozygous patients found in each region together with a high phenotypic diversity in these 

patients (reflected in the high range of values shown in Table 5), but it could also be 

influenced by genetic differences among populations, namely the loss of association of the 

A-A-T microhaplotype with the putative ”low CD8 phenotype” marker in the Nord-Trøndelag 

patients. One should also note that these patients were mainly identified by screening of 

asymptomatic subjects, therefore unselected for clinical severity. On the contrary, Porto and 

Alabama, patients were mainly diagnosed on a clinical setting. Nevertheless, even using the 

same selection criteria, there are also great differences in iron loading between Porto and 

Alabama patients that could be related with different environmental factors or local life-style 

habits, including regular alcohol consumption. Therefore, further studies are still needed in 



Effect of MHC haplotypes on iron and CD8 phenotype in geographical distant HH populations 

55 
 

larger populations and with a higher density mapping of the region, in order to find a more 

specific and universal surrogate marker of iron overload severity in HH. 

 

Concluding remarks 

We conclude that the evolutionary history of long extended haplotypes on 

chromosome 6p21.3 could account for heterogeneity within the haplotypes and consequent 

differences in the phenotypic expression of persons with HFE C282Y related HH. These 

observations have important implications for the interpretation of genotype/phenotype 

association studies in HH such as in the case of MHC loci associated with the transmission 

of the phenotype of low CD8+ T lymphocyte numbers where differences occur among HH 

populations from geographically distant regions (namely in north Portugal, Norway and 

Alabama, USA) or the association of MHC markers with iron overload. The effect of 

haplotype conservation may also have implications for understanding differences in disease 

penetrance or the consequences of patients’ sampling according to different detection 

methods. Although no consistent evidence is given about the predictive value of the A-A-T 

microhaplotype for individual purposes, one may predict that, in general, any cohort of 

severe or symptomatic HH patients may contain a high frequency of this conserved ancestral 

haplotype associated with a “low CD8 phenotype”, such as we have consistently found in 

Portuguese patients. On the contrary, in populations where programs for screening of 

asymptomatic cases are implemented, such as in Norway, it will be more probable to find HH 

patients with non-conserved haplotypes that are not associated with low CD8+ T 

lymphocytes. It remains unknown whether the severity of iron overload depends directly on 

the “low CD8 phenotype” or whether another independent modifier of the iron phenotype is 

inherited in linkage disequilibrium. Naturally, future positional cloning of a long-sought major 

genetic trait in MHC associated with the transmission of CD8+ T lymphocyte numbers [181] 

should provide answers to this question. 
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Supplementary Data 

 
Table S1 - Comparison of the most common HLA allele, HLA A-B haplotype 

(uncorrected data) and SNP microhaplotype frequencies among three different 

populations of HH patients. 

 
 

Porto 
(n=130) 

Alabama 
(n=114) 

Nord-Trøndelag 
(n=364) 

P* 
 

HH chromosomes of 
patients from: 

 

HLA- A alleles [%(n)] [%(n)] [%(n)]  

     

HLA-A*01 12.3 (16) 14.9 (17) 12.9 (47) n.s. 

HLA-A*02 17.7 (23) 15.8 (18) 20.9 (76) n.s. 

HLA-A*03 40.8 (53) 47.4 (54) 42.0 (153) n.s. 

HLA-A*11 3.1 (4) 3.5 (4) 8.0 (29) n.s. 

HLA-A*24 3.8 (5) 3.5 (4) 5.8 (21) n.s. 

HLA-B alleles 
 

[%(n)] 
 

[%(n)] 
 

[%(n)] 
 

 

HLA-B*07 23.8 (31) 30.7 (35) 28.8 (105) n.s. 

HLA-B*08 10.0 (13) 11.4 (13) 9.1 (33) n.s. 

HLA-B*14 3.8 (5) 9.6 (11) 7.1 (26) n.s. 

HLA-B*15 1.5 (2) 1.8 (2) 6.0 (22) n.s. 

HLA-B*35 12.3 (16) 3.5 (4) 5.5 (20) .009** 

HLA-B*40 7.7 (10) 0.9 (1) 9.6 (35) .008** 

HLA-B*44 12.3 (16) 14.0 (16) 16.2 (59) n.s. 

HLA Haplotypes 
 

[%(n)] 
 

[%(n)] 
 

[%(n)] 
 

 

A1-B8 5.4 (7) 7.9 (9) 7.7 (28) n.s. 

A2-B44 3.1 (4) 7.0 (8) 6.3 (23) n.s. 

A3-B7 16.9 (22) 27.2 (31) 21.4 (78) n.s. 

A3-B14 1.5 (2) 7.0 (8) 6.0 (22) n.s. 

SNP microhaplotypes 
 

[%(n)] 
 

[%(n)] 
 

[%(n)] 
 

 

A-A-T 90.8 (118) 86.0 (98) 76.5 (276) 0.0003 

G-G-G 6.2 (8) 9.6 (11) 16.0 (59) 0.003 

Non A-A-T nor G-G-G 3.1 (4) 4.4 (5) 7.5 (27) n.s. 

*Comparisons among populations were done using the Chi-square test (P values indicated)
 

** not statistically significant after Bonferroni correction 
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Abstract 

Background: Genetic analyses in patients with Hereditary Hemochromatosis (HH) have 

shown that the relative frequencies of the most common MHC haplotypes and their 

associations with a phenotype of low CD8+ T lymphocyte numbers vary amongst distinct 

populations, reflecting different recombination histories or founder effects. 

Aims & Methods: To refine the region of interest to search for quantitative trait loci (QTL) for 

the inheritance of low CD8+ T lymphocyte numbers in HH, we performed a high-density SNP 

mapping of the 4 Mb genomic region between HFE and HLA-B in a cohort of 43 HH patients 

and in 105 control subjects from the same area in north Portugal. Haplotype genealogies 

were inferred by phylogenetic analyses and the distribution of CD8+ T lymphocyte numbers in 

HH patients was analyzed in relation to the inheritance of conserved or recombinant 

haplotypes. 

Results: Two major haplotype groups, defined by a block of 4 SNP markers, were identified 

in patients and controls. They were designated, according to the two flanking alleles, as the 

AA and CG haplotype groups. A remarkably higher genetic homogeneity is observed in 

haplotypes from the AA relative to the CG group, both in HH patients and controls, 

suggesting that recombination suppression is somehow favored in chromosomes carrying 

this particular combination of alleles. Accordingly, in HH the most common and conserved 

HLA-A*03-B*07 associated ancestral haplotype is included in the AA group, while the less 

common HLA-A*01-B*08 associated ancestral haplotype is included in the CG group. 

Haplotype genealogies confirmed the distribution of HH chromosomes in two opposite 

phylogenetic branches and genotype/phenotype distributions support the co-inheritance of a 

low CD8 phenotype with the more conserved haplotypes of the AA group.  

Conclusions: A high-density map of the HFE-HLA region in chromosomes from Portuguese 

HH patients highlights the remarkable conservation of ancestral haplotypes associated with a 

major QTL determining CD8+ T lymphocyte numbers, and provides evidence to support a 

selective suppression of recombination in the context of particular haplotypes in this region.  

 

Keywords: Hereditary Hemochromatosis, HFE, HLA haplotypes, CD8+ T lymphocytes 
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Introduction 

The Hereditary Hemochromatosis (HH) associated gene was first localized in 1976 

based on its strong association with HLA [162]. This was the first step towards the later 

positional cloning of the HFE gene in 1996 [27]. The 20 years’ delay in the discovery of the 

HFE gene is easily understood taking into consideration the extreme linkage disequilibrium 

known to occur in the 4 Mb region between HFE and HLA [207, 217-219]. The finding that 

one single HFE mutation (p.C282Y) in homozygosity explains the vast majority of HH cases 

[27] naturally concentrated all the attention on the HFE molecular defect as the single 

pathogenic player in HH, generally neglecting the possibility that other MHC linked players 

could be involved in the disease process. Nevertheless, this chromosomal region is 

extremely rich in other immune related genes transmitted in linkage disequilibrium with HFE 

which could concur for the disease expression. It is known that HH is clinically highly 

heterogeneous and this phenotypic variation was shown to be associated with the HLA 

haplotypes, independently of the HFE mutation [43, 190, 192]. Relevant to this concept is not 

only the demonstration of an iron overload phenotype in various MHC deficient animal 

models [23, 24, 28, 35] but also the consistent finding of abnormalities of CD8+ T lymphocyte 

numbers in HH patients, a phenotypic trait that what demonstrated to be inherited in 

association with the HLA markers [30, 41]. A recent genome wide association study in 

normal subjects provided more evidence to support the existence of a major quantitative trait 

loci (QTL) involved in the genetic control of CD8+ T lymphocyte numbers located in the class 

I cluster of the MHC region [181], thus reinforcing our interest to look for such QTL in HH. 

In 2008 Cruz et al. described a new 500kb haplotype (A-A-T) localized between HLA 

and HFE which was associated with the transmission of a low CD8 phenotype and a more 

severe expression of iron overload in Portuguese HH patients [44]. More recently we tested 

the predictive value of this microhaplotype as a putative useful marker in other 

geographically different populations by comparing the genotype-phenotype associations in 

HH patients from Porto, Portugal, Alabama USA and Nord-Trøndelag, Norway. The results 

(described in detail in chapter 3.1) showed that the A-A-T microhaplotype alone cannot be 

used as a universal marker of the CD8 phenotype since the genotype-phenotype 

associations varied significantly among the different HH populations, probably due to 

different recombination histories or founder effects[220]. 

In the present study we refined the mapping of the region between HFE and HLA with 

a total of 63 genetic markers analyzed in 43 HH patients and 105 normal controls from the 

same geographical region in north Portugal. Our choice to focus on Portuguese HH patients 

in this study was justified by the previously demonstrated stronger genotype/phenotype 

correlations in this population [220]. The results obtained allowed us to characterize the 
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structure and history of the two major conserved extended haplotypes associated with HH in 

this population, and better explore their associations with the transmission of a low CD8 

phenotype. 
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Material & Methods 

Study Populations  

HH Patients 

A group of 47 Portuguese HH patients (41 probands and 6 affected relatives) from 

north Portugal, mainly from the Porto district area, were included in this study. They had 

been diagnosed between 1985 and 2011 at the Hemochromatosis Outpatient Clinic of CHP-

Santo António Hospital, Porto. Most of the patients’ clinical information, including available 

genetic information, has been already described elsewhere [41, 43, 44, 188, 198-200]. The 

previously available genetic information included, in all cases, HFE genotype (all patients are 

homozygous for the p.C282Y mutation), HLA class I alleles (A, B and C) determined by low-

resolution DNA-based techniques (PCR/sequence-specific oligonucleotide probes, Dynal 

RELI™ SSO) and typing for the microsatellites D6S265, D6S2222, D6S105 and D6S2239. 

Information on the CD8+ T lymphocyte numbers was available from their medical records. 

Analyses of novel genetic markers were performed in stored DNA samples previously 

obtained with proper informed consent in the context of other studies (Cruz 2008, Costa et al 

2014) with the approval of the CHP- Santo António Hospital Ethical Committee. 

 

Controls 

For the purpose of comparative analyses, the same SNP markers were analyzed in a 

control population of 105 unrelated Portuguese healthy blood donors from whom we had 

available stored DNA collected with proper informed consent in the context of another 

genetic study [42]. Previous genotypic and phenotypic information of these controls included 

HFE, HLA A, B and C, ZNF305, PGBD1, ZNF193, ZNF165 genotypes as well as CD8+ T 

lymphocyte phenotypes.  

 

High-density mapping of the region between HFE and HLA-B 

A high density mapping of the region between HFE and HLA-B was performed 

including, besides the previously available information on HFE, ZNF305, PGBD1, ZNF193, 

ZNF165 and the microsatellites D6S265, D6S2222, D6S105 and D6S2239 (published in 

[44]), additional information on the following 46 selected SNP markers: rs10447393, 

rs10807035, rs10946940, rs12174753, rs12180820, rs12197514, rs13195291, rs13197633, 

rs13200462, rs13201308, rs13201411, rs13204012, rs13205211, rs13205911, rs13208096, 

rs13211507, rs13215560, rs13217162, rs13218430, rs16893666, rs16893741, rs16893817, 

rs16893827, rs16893889, rs16893892, rs16893917, rs16901846, rs17711344, rs17711801, 

rs17720293, rs17720687, rs17774663, rs4713207, rs4713211, rs6902687, rs6912843, 
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rs724078, rs7381993, rs7382112, rs7382146, rs7383248, rs9257425, rs9257816, 

rs9393920, rs9468217, rs9468344. 

The chromosomal physical localization of the analyzed markers region is shown in 

Figure 1. 

 

Fig. 1 Distribution of the 63 SNP markers in chromosome 6 along the region from HLA-B to the HFE gene. 

 

SNPs were typed using the iPLEX™ Gold technology (Sequenom MassARRAY) in 

the USC node of the Spanish National Genotyping Center (CEGEN). Genotyping call rates 

were 99% for all individuals included in the analyses. Additional quality control measures 

included SNP missingness >10% and the use of positive and negative controls. None of the 

SNPs failed the missingness threshold. More details for SNP analysis can be provided by 

request. 

 

Generation of phased chromosomes and haplotype construction 

HLA A-B haplotypes, as well as the microhaplotypes defined by the genes PGBD1, 

ZNF193 and ZNF165 were defined in HH patients by family segregation whenever there 

were available informative family members. Otherwise they were inferred by the PHASE 

program. For the generation of high-density SNP extended haplotypes, we used the PHASE 

program to infer haplotypes. In the case of HH chromosomes, whenever the phase 

assignment was known (this happened for the markers: HLA A, B and C, ZNF305, PGBD1, 

ZNF193, ZNF165 and for microsatellites D6S265, D6S2222, D6S105 and D6S2239), this 

information was incorporated in the program. In total, high-density extended haplotypes were 

defined in 86 HH founder chromosomes (these are the two chromosomes from each 

unrelated proband and the unshared chromosomes in first degree relatives) and in 210 

control chromosomes. 
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Definition of haplotype groups and haplotype conservation 

An initial search for groups of conserved haplotypes within HH founder chromosomes 

identified two groups of chromosomes with a specific consensus sequence defined by 4 

SNPs between rs7382112 and rs7383248, termed “haplotype group.” The same haplotype 

groups were also found in control chromosomes. Chromosomes within each group were then 

compared to the respective consensus sequences that were defined as the most common 

sequence with complete SNP identity between HFE and HLA-B (respectively in HH patients 

and controls). We defined “loss of conservation” when one or more SNPs did not match the 

consensus sequence. Chromosomes were aligned and compared at 5 consecutive blocks 

from HFE to HLA-B and the conservation pattern (conserved vs non-conserved) was defined 

for each block. 

 

Statistical methods  

SNP data from all chromosomes was analyzed with MEGA4 to create a neighbor 

joining tree. Input data consisted in 302 chromosomes (210 from controls and 86 from HH 

patients), 53 SNPs per chromosome and ID numbers encoding HLA data (neither HLA nor 

microsatellite data were used to create the tree). To create the tree we used a pair wise 

comparison option with pairwise deletion and the neighbor-joining method (a distance based 

method) implemented in MEGA4. 

To analyze the impact of haplotype conservation on the CD8+ T lymphocyte numbers, 

patients were classified in three classes according to the inheritance of conserved or non-

conserved haplotypes: class 1 patients were the homozygous for the ancestral haplotype of 

the AA group, class 2 and 3 patients were the compound heterozygous for the ancestral AA 

group haplotype with a non-conserved haplotype of the AA or the CG groups respectively. 

Distributions of CD8+ T lymphocyte numbers were fitted to a normal curve in each class. 

Values above 1,5 SD of the mean value in the whole group of patients were assigned as 

“CD8 expansions”. Because of sample size limitations in multiple comparisons, statistical 

inferences were not applied. Data were analysed by SPSS software for statistical Analysis 

(SPSS Statistics for Windows, Version 17.0. Chicago: SPSS Inc.). 
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Results 

1 -Two haplotype groups characterize the MHC region between HFE and HLA 

We generated extended haplotypes with genetic information of 63 markers in 

the region from HFE to HLA-B in 86 HH founder chromosomes (see Methods). These 

are illustrated in Figure 2 (left panel), where the extended haplotypes are aligned by 

allele similarity. A detailed observation of the region between HFE and HLA-A reveals 

that this region is composed of several spread blocks of complete allele identity 

(highlighted in Figure 2 by dark yellow boxes) alternated with other blocks of some 

variability. In one block, defined by 4 SNP markers from rs7382112 to rs7383248, 

there is a clear segregation of all (except one) HH chromosomes into two major 

groups, each maintaining its identity defined by the four selected markers (highlighted 

in Figure 2 by framed boxes, bold lettering and different colours). The two groups 

were designated, according to the two flanking alleles, as the AA and GC haplotype 

groups, respectively. Of the two haplotype groups, AA was the most common (66/86) 

and the CG group the less common (19/86). All chromosomes carrying the previously 

described classical HH ancestral HLA haplotype A*03-B*07 were contained in the AA 

group, whereas all chromosomes carrying the HLA haplotype A*01-B*08 were 

contained in the CG group. Analysis of the same SNP markers in a sample of 210 

control chromosomes derived from 105 normal subjects from the corresponding 

geographical regions as the HH patients showed that the same haplotype groups are 

also found in normal chromosomes. Results are illustrated in Figure 2 (right panel) 

where, for the purpose of comparisons with HH derived haplotypes, the same color 

coding was used. Such as in HH patients, the AA haplotype group was the most 

common (113/210) and the CG group the less common (91/210). A small proportion 

of chromosomes (6/210) could not be included in either of the two defined haplotype 

groups. Since these haplotypes were inferred using PHASE (see methods) we admit 

that wrong inferences could account for these few apparent exceptions. 

 



 

68 
 

H
L

A
-B

H
L

A
-C

D
6

S
2

6
5

H
L

A
-A

rs
7

2
4

0
7

8

rs
9

2
5

7
8

1
6

rs
4

7
1

3
2

1
1

rs
1

0
4

4
7

3
9
3

rs
4

7
1

3
2

0
7

rs
9

2
5

7
4

2
5

rs
6

9
1

2
8

4
3

rs
7

3
8

3
2

4
8

rs
7

3
8

1
9

9
3

rs
7

3
8

2
1

4
6

rs
7

3
8

2
1

1
2

rs
1

0
8

0
7

0
3
5

rs
9

3
9

3
9

2
0

rs
6

9
0

2
6

8
7

rs
2

8
5

9
3

4
8

rs
1

2
1

8
0

8
2
0

rs
9

4
6

8
3

4
4

P
G

B
D

1

rs
1

6
8

9
3

9
1
7

rs
1

3
2

1
1

5
0
7

rs
1

6
9

0
1

8
4
6

rs
1

6
8

9
3

8
9
2

rs
1

6
8

9
3

8
8
9

rs
1

7
7

2
0

6
8
7

rs
1

3
2

0
8

0
9
6

rs
1

3
2

0
0

4
6
2

rs
1

7
7

2
0

2
9
3

rs
1

3
2

0
5

2
1
1

rs
1

3
2

0
4

0
1
2

Z
N

F
 1

9
3

rs
1

6
8

9
3

8
2
7

rs
1

6
8

9
3

8
1
7

rs
1

3
1

9
7

6
3
3

rs
1

3
1

9
5

2
9
1

rs
1

6
8

9
3

7
4
1

rs
1

3
2

0
1

3
0
8

rs
1

3
2

0
5

9
1
1

rs
1

7
7

7
4

6
6
3

rs
1

7
7

1
1

8
0
1

rs
1

7
7

1
1

3
4
4

rs
1

6
8

9
3

6
6
6

rs
2

0
3

8
7

8

rs
1

2
1

7
4

7
5
3

rs
1

3
2

1
8

4
3
0

D
6

S
2

2
2

2

D
6

S
1

0
5

rs
9

4
6

8
2

1
7

rs
1

0
9

4
6

9
4
0

rs
1

2
1

9
7

5
1
4

rs
1

3
2

0
1

4
1
1

rs
1

3
2

1
5

5
6
0

rs
1

3
2

1
7

1
6
2

rs
1

3
2

1
7

2
4
8

rs
1

0
9

4
6

9
3
3

rs
1

3
2

2
0

1
5
5

rs
1

3
2

0
1

4
4
3

rs
7

5
0

9

H
F

E

D
6

S
2

2
3

9

51 7 132 1 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

51 7 132 1 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

51 7 132 1 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

51 7 134 1 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

7 7 132 1 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

37 6 132 1 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

51 7 138 2 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

14 8 138 2 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

35 4 136 2 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

40 15 136 2 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

15 3 136 2 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

44 7 140 2 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

7 2 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

7 7 128 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 158 G G C C G T C T C T G C282Y 114

7 7 128 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 114

7 7 128 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

7 7 128 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

7 7 128 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

7 7 128 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

7 7 128 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

7 7 128 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

7 7 128 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

7 7 128 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

7 7 128 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

7 7 128 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

7 7 128 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

7 7 128 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

7 7 128 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

7 7 130 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 249 150 G G C C G T C T C T G C282Y 114

7 7 136 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 148 G G C C G T C T C T G C282Y 116

8 7 128 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

35 4 128 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

35 4 128 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 249 150 G G C C G T C T C T G C282Y 112

35 4 128 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 245 150 G G C C G T C T C T G C282Y 112

35 4 128 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

35 4 128 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

35 4 128 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 152 G G C C G T C T C T G C282Y 112

40 2 128 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

40 2 128 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

51 7 128 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 249 150 G G C C G T C T C T G C282Y 114

7 16 128 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

7 15 128 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

8 7 128 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

41 17 138 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

40 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

27 3 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

38 12 128 68 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

35 4 138 31 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

35 4 138 31 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

21 2 132 23 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 249 150 G G C C G T C T C T G C282Y 116

44 2 132 23 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 249 150 G G C C G T C T C T G C282Y 116

60 7 134 11 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

40 32 G A A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

51 7 138 2 G A A C G A T A T C A A G T A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

18 2 138 2 A A A C G A T A T C A A G T A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

44 7 136 2 G A A C G A T A T C A A G T A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 249 150 A G C C G T C T C T G C282Y 112

44 5 134 26 A C A T G A T A T C A A G T A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

40 2 136 32 A C A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

40 2 132 24 A C A C G A T A T C A A G C A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

44 5 138 1 G C G T A A T A T C A A G T A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 249 150 G G C C G T C T C T G C282Y 112

18 5 132 24 A C A C G A T A T C A A G T G C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G T C A C G G T C T C282Y 114

27 24 A C A C G A T A T C A A G T G C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G T C A C G G T C T C282Y 112

8 7 138 2 G A A C G A T A T C A A G T A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 249 150 G G C C A C G G T C T C282Y 112

G A A C G A T A T C A A G T A C T A G T T A G A C A C T G A T A G G T C C G C G T T C T 245 150 G A T G A C G G T C T C282Y 112

G A A C G A T A T C A A G T A C T A G T T A G A C A C T G A T A G G T C C G C G T T C T 247 150 G A T G A C G G T C T C282Y 112

35 4 134 2 A A G T A A T A T C A A G T G C T G G T T A A A C C T T G G T A G G T C C A G A C G G C 249 150 A A T G A C G G T C T C282Y 116

14 8 128 33 G A G T A G C A C T A G A C G T G G G T T A G A C A C T G G T G G G T C C G C G T G C C 247 150 G A T G G T C T C T G C282Y 112

8 7 132 1 G A A T G G C C C T G G A T G C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

8 1 G A A T G G C C C T G G A T G C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

8 7 132 1 G A A T G G C C C T G G A T G C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

8 7 132 1 G A A T G G C C C T G G A T G C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 148 G G C C G T C T C T G C282Y 112

8 7 132 1 G A A T G G C C C T G G A T G C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

44 4 132 1 G A A T G G C C C T G G A T G C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

15 3 136 2 G A A C G G C C C T G G G T G C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

15 2 A C A T G G C C C T G G A T G C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

27 1 136 2 G A A T A A T C C T G A A T G C T A G T T A A A C A C T G G T A G G T C C A G A C G G C 249 150 A A T G A T C T C T T C282Y 112

44 11 G A G T A G C C C T G A A C G T G G G T C A G A C C C T G G T G G G T C C A G A C G G C 247 150 G G T C G T C T C T G C282Y 112

8 7 132 24 G C G C G A T C C T G G A T G C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

18 12 134 25 G C G C A G C C C T G G A T A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G T C G T C T C T G C282Y 112

18 2 136 32 G A A T A A T C C T G A G T A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

18 136 32 G A A T A A T C C T G A G T A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

35 4 136 32 G A A T A A T C C T G A G T A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

60 7 136 32 G A A T A A T C C T G A G T A C T A G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112

44 4 128 23 G C G T A G C C C T G G A C G T G G G T C A G A C A C T G G T G G G T C C G C G T G C T 249 150 G G T C G T C T C T G C282Y 112

37 6 138 29 G C G T A G C C C T G G A C G T G G G T C A G A C A C T G G T G G G T C C G C G T G C T 249 150 G G T C G T C T C T G C282Y 112

44 29 G C G T A G C C C T G G A C G C T G G T T A A A C A C T G A T A G G T C C G C G T T C T 247 150 G G C C G T C T C T G C282Y 112
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57 7 132 1 G A A C G A T A T C A A G T C T A G T T A A A C A C T G A T A G G  T C C G C G T C T 247 150 G G C C G T C T C T

7 5 132 1 G A A C G A T A T C A A G  T C T  A G T T A A A C A C T G  A T A G G T C C G C G T C T 247 150 G G T C G T C T C T

14 132 1 G A G C G A T A T C A A G T C T A G T T A A A C A C T G   A  T A G G T C C G C G T C T 253 150 G G T C G T C T C T

132 1 G A G C A G C A T C A A G T C T  A G T T A A A C A C T G  A T A G G T C C G C G T C T 247 154 G A T G G T C T C T

8 132 1   A    C  G C A G C A T C A A G T C T  A G T T A A A C A C T G  A T A G G T C C G C G T C T 245 150 G G T C A C G G T C

8 7 132 1   A    C  G   C  A G C A T C A A G T C T  A G T T A A A C A C T G  A T A G G T C C G C G T C T 245 150 G G T C A C G G T C

44 5 134 2 G   A    A    C  A A T A T C A A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 148 G   A  T   G  A C G G T C

44 7 138 2 G   A    A    C  A A T A T C A A G T C G A G T T A G A C A C T G A T A G G T C C G C G T C T 247 148 G A T G A C G G T C

44 5 134 2 G   A    A  C G A T A T C A A G T   T    G    G  G T T A   G  A C A C T G   G  T   G  G G  T C C G C G T C T 252 148 G A T G A C G G T C

8 7 132 2 G   A  A C G A T A T C A A G T C T A G T T A A A C A C T G A T   A  G G  T C C G C G T C T 247 150 G G C C G T C T C T

49 7 134 2 G   A  A C G A T A T C A A G T C T  A G T T A G A C A C T G  A T A G G T C C G C G T C T 247 150 G G T C G T C T C T

57 6 134 2 G   A  A C G A T A T C A A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 251 160 A A T G A C G G T C

15 7 136 2 G A A   C  G A T A T C A A G T C T A G T T A A A C A C T G   A  T A G G T C C G C G T C T 247 150 G G C C G T C T C T

51 14 136 2 G A A C G A T A T C A A G T C T A G T T A A A C A C T G A T A G G  T C C G C G T C T 247 150 G G C C G T C T C T

44 134 2 G A A C G A T A T C A A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 150 G G C C G T C T C T

56 2 136 2 G A A C G A T A T C A A   G    C  C T A G T T A A A C C T T G G T A G G  T C C A G A C G C 251 150 G G C C G T C T C T

44 4 136 2 G A A C G A T A T C A A G T C T A G T T A A A C C T T G G T A G G  T C C A G A C G C 251 150 G G C C G T C T C T

35 4 134 2 G A A C G A T A T C A A G T C T A G T T A A A C A C T G   A  T A G G T C C G C G T C T 253 150 G G T C G T C T C T

50 6 134 2 G A A   C  G A T A T C A A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 249 150   G    G  T   C  G T C T C T

44 5 2 G A A C G A T A T C A A G T C T A G T T A A A C A C T G A T A G G  T C C G C G T C T 247 150 G G T C A T C T C T

44 5 136 2 G A A C G A T A T C A A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 150 G G T C A C G G T C

4 2 G A A C G A T A T C A A G T C T A G T T A A A C A C T G  A T A G G  T C C G C G T C T 247 150 G G T C A C G G T C

51 14 136 2   G    A  A C G A T   A    T    C    A  A   G  C C T   A  G T T A A A C   A  C T G   A  T A G G  T C C   G    C    G    T    C    T  247 150 G G C C G T C T C T

44 5 2   G    A  A C G A T A T C A A G   T  C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 150 G G C C G T C T C T

44 5 134 2   G    A  A C G A T A T C A A G T C T  A G T T A A A C A C T G  A T A G G T C C G C G T C T 247 148 G G C C G T C T C T

35 4 134 2   G    A  A C G A T A T C A A G T C T  A G T T A A A C A C T G  A T A G G  T C C G C G T C T 247 150 G G T C G T C T C T

44 136 2   G    A  A C G A T A T C A A G T C T A G T T A A A C A C T G  A T A G G T C C G C G T C T 247 156   A  A T G A   C    G    G    T    C  

44 7 138 2 G   A    A    T  G A T A T C A A G T C T A G T T A A A C A C T G A T A G G  T C C G C G T C T 249 150 G G T C G T C T C T

51 2 138 2 G A A   T    A  A T   A    T    C    A  A G T C T A G T T A A A C A C T G  A T A G G T C C G C G T C T 248 152 G G C C G T C T C T

27 2 134 2 G A A   T    A  A T A T C A A G   C  C T  A G T T A A A C A C T G  A T A G G T C C G C G T C T 247 160 G A T G A C G G T C

35 134 2   G  A A   T    A  A T A T C A A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 148 G A T G A C G G T C

44 134 2 G   A  A T   G  G C A T C A G A T T G G G T T A A A C C C T G G  T A G G T C C A G A C G C 249 160 A A T G A C G T T C

44 4 134 2 G   A  G T A G C A T C A   A  G T C T  A G T T A A A C A C T G  A T A G G T C C G C G T C T 247 148 G A T G A C G G T C

2 G C A C G A T A T C A A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 150 G G C C A C G G T C

35 4 134 2   G    C  A C G A T A T C A A G T C T A G T T A A A C A C T G A T A G G  T C C G C G T C T 249 150 G G C C G T C T C T

44 134 2 G C   A   C   G  G T A T C A A G T C T A G T C A A A C A C T G  A T A G G T C C G C G T C T 249 150 G G   T  C G T C T C T

35 4 132 2 G   C  A T A G C A T C A G A T T G G G T T A A A C A C T G G T   G  G G  T C C G C G T C T 249 160 A A T G G T C T C T

50 6 132 2 A   A  A   C    G  A T A T C A A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 148 G G C C G T C T C T

44 5 136 2   A    A  A C G A T   A    T    C    A  A   G  T C T A G T T A A A C A C T G  A T A G G T C C G C G T C T 247 148 G G C C G T C T C T

50 6 134 2   A  A G T A   A    T  A T C A A G T C T  G G T T A A A C C T T G  G T A G G T C C A G A  C G C 251 150 G G C C G T C T C T

50 134 2   A  A G T A A T A T C A A G T C T G G T T A A A C C T T G G T A G G  T C C A G A C G C 251 158 A A T G A C G G T C

44 5 136 2 A C   A  C G A T A T C A A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 249 150 G G C C G T C T C T

7 7 132 2 A C A C G A T A T C A A G T C T A G T T A A A C A C T G  A T A G G  T C C G C G T C T 247 150 G G C C G T C T C T

51 14 136 2 A C A C G A T A T C A A G T C T  A G T T A A A C A C T G A T A G G T C C G C G T C T 247 150 G G C C G T C T C T

44 2 A C A C G A T A T C A A G T C T A G T T A A A C A C T G A T A G G  T C C G C G T C T 247 150 G G T C G T C T C T

51 14 136 2 A C A C G A T A T C A A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 249 150 A A T G A T C T C T

15 136 2 A C A C G A T A T C A A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 150 G G T C A C G G T C

14 134 2   A    C    A  C G A T A T C A A G T C T A G T T A A A C A C T G A T A G G  T C C G C G T  C T 247 148 G A T G A C G G T C

49 7 136 2   A    C  A C G A T A T C A A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 249 150 G G   C  C G T C T C T

51 14 136 2   A    C  A C G A T A T C A A G T C T A G T T A A A C A C T G   A  T A G G T C C G C G T C T 249 150 G G   C  C G T C T C T

35 4 134 2   A    C  A C G A T A T C A A G C C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 150 G G C C G T C T C T

53 4 136 2   A    C  A C G A T A T C A A G T C T A G T T A A A C A C T G A T A G G  T C C G C G T C T 249 150 G G C C A C G G T C

38 12 134 2 A C   G   C   A  G T A T C A A G T C T A G T C A A A C A C T G A T A G G T C C G C G T C T 249 150 G G   C  C G T C T C T

35 4 134 2   A  C G C   A  G C A T C A A G T C T  A G T T A A A C A C T G A T A G G T C C G C G T C T 247 150 G G T C A C G G T C

7 7 128 3 G   A  A C G A T A T C A A G C C T G G T T A A A C A C T G G T A G G T C C G C G T C T 247 150 G G C C G T C T C T

7 7 128 3 G A A   C    G  A T A T C A A G   T  C T A G T T A A A C A C T G  A T A G G T C C G C G T C T 247 150 G G C C G T C T C T

7 7 128 3 G A A C G A T A T C A A G T C T A G T T A A A C A C T G A T A G G  T C C G C G T C C 249 166 A A T G A T C T C T

18 2 3 G A G T G A T A T C A A G C C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 150 G G C C G T C T C T

50 6 130 3   G    A  G T A G C A T C A G A C C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 150 G G C C G T C T C T

14 16 128 3   A  A A C G A T A T C A A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 249 160 A A T G A C G G T C

40 2 128 3 A A A C A A T A T C A A G T C T G G T T A A A C C T T G G T A G G  T C C A G A C G C 251 158 A A T G A C G G T C

14 8 128 3   A    C  A C G A T A T C A A G   C  C T  A G T T A A A C A C T G  A T A G G T C C G C G T C T 247 150 G G C C G T C T C T

7 3 A C A C G A T A T C A A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 150 G G C C G T C T C T

14 128 3 A C A C G A T A T C A G A C C T G G T T A G A C A C T G G T G G G T C C G C G T C T 245 152 G G   T  C G T C T C T

7 3 A C A C A G C A T C A A G T C T  A G T T A A A C A C T G A T A G G T C C G C G T C T 247 150 G G C C G T C T C T

51 7 3 A C A T G A T A T C A A A T T T G G T T A A A C A C T G A C A G G T C C A G A C G C 249 150 G G T C G T C T C T

18 12 3 A C   G   C A G C A T C A A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 150 G G T C A C G G T C

51 16 132 11 G   A  G   C  G A T A T C A A G T C T  G G T T A A A C C T T G  G T A G G T C C A G A C G C 251 160 A A T G A C G G T C

53 3 132 11 G   C    G  C G A T A T C A A G T   C    T    A  G T T A   A  A C A C T G   A  T   A  G G  T C C G C G T C T 248 148 G G C C G T C T C T

53 3 132 11 G C G C   G  A T A T C A A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 150 G G C C G T C T C T

4 11 G C G C A G C A T C A A G T C T  A G T T A A A C A C T G  A T A G G T C C G C G T C T 247 160 A A T G G T C T C T

5 128 11   A    A    A    T  A A T A T C A A G T C T A G T T A A A C A C T G A T A G G  T C C G C G T C T 247 148 G G C C G T C T C T

49 7 11 A A A T A G C A T C A G A T T T A A T T G G A C A C T G G T G G G T C C G C G T C T 247 148 G A T G A C G G T C

44 4 132 23   A  C   A    C    A  G C A T C A A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 249 160   A   A   T    G  G T C T C T

44 7 23 A C A   C  A A T A T C A A G T C T A G T T A A A C A C T G A T A G G  T C C G C G T C T 247 148 G A T G A C G G T C

51 5 23   G  C G T A G C A T C A G A T T G G G T T A A A C A C T G G T A G G T C C G C G T C T 249 160 A A T G G T C T T C

44 4 132 23   G  C G C   G  A T A T C A A G T C T  A G T T A A A C A C T G  A T A G G  T C C G C G T C T 247 150 G G C C G T C T C T

7 7 132 24 G   C  A C G A T A T C A A G T C T A G T T A A A C A C T G  A T A G G T C C G C G T C T 249 150 G G C C G T C T C T

7 134 24 G A A C G A T A T C A A G T C T  A G T T A A A C A C T G  A T A G G T C C G C G T C T 247 148 G G C C G T C T C T

7 134 24 G A A C G A T A T C A A G T C T  A G T T A A A C A C T G  A T A G G T C C G C G T C T 247 148 G G C C G T C T C T

18 7 132 24 G A A C G A T A T C A A G T C T A G T T A A A C A C T G  A T A G G T C C G C G T C T 249 150 G   A    C    G  G T C T C T

51 5 132 24   G  A A C G A T A T C A A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 249 162 A A T G G T C T C T

53 4 132 24 G A A C G A T A T C A A   A    T  C T A G T T A A A C A C T G A T A G G  T C C G C G T C T 249 150 G G T C G T C T C T

14 132 24 G A G T A G C A T C A G A C C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 148 G G C C G T C T C T

49 6 132 24   A    C  A C G A T A T C A A G T C T A G T T A A A C A C T G  A T A G G  T C C G C G T C T 247 150 G G T C A C G G T C

50 6 132 24   A    C  A C G A T A T C A A G T C T   G  G T T A A A C C T T G   G  T A G G T C C A G A C G C 251 160 A A T G A C G G T C

37 6 136 24 A C A C A A T  A T C A A G T  C T A G T T A A A C A C T G G T A G G  T C C G C G T C T 246 152 G G T C G T C T  C T

37 6 132 24   A    C  G C A G C A T C A A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 150 G G T C A C G G T C

51 5 132 24 A C G T G G C  A T C A A G T C T A G T T A A A C A C T G G T A G G  T C C G C G T C C 246 150 G G T C A C G G T C

15 3 134 25 G   A  A C G A T A T C A A G T C T A G T T A A A C A C T G A T A G G  T C C G C G T C T 247 150 G G C C G T C T C T

44 15 134 25 A C A C A A T A T C A G  A T T G G G T T A G A C C C T G G T A G G T C C A G A C G C 249 160 G A T G A C G G T C

40 2 134 26 G   A  A C G A T A T C A A G T C T A G T T A A A C A C T G  A T A G G T C C G C G T C T 247 152 G G C C G T C T C T

35 136 26 G A A C   A  A T A T C A A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 150 G G C C G T C T C T

14 8 130 26   A    C  A T A A T A T C A A G T C T  A G T T A A A C A C T G  A T A G G  T C C   G  C G T C T 247 170 A A T G A T C T C T

15 26 A C A T A A T A T C A A G T C T  A G T T A A A C A C T G A T A G G T C C G C G T C T 247 148 G A T G A C G G T C

35 136 26 A C G C A G C A T C A A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 150 G G T C A C G G T C

35 138 29 G   C    A  C G A T A T C A A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 150 G G C C G T C T C T

38 16 138 29 A C A  C G A T A T C A G A C C T G G T T A G A C A C T G G T G G G T C C G C G T C T 249 150 G G T C G T C T C T

52 12 138 31   A    C  A C G A T A T C A A G T C T  A G T T A A A C A C T G A T A G G T C C G C G T C T 247 148 G G C C G T C T C T

40 3 138 31 A C A   C  G A T A T C A A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 150 G G C C G T C T C T

136 32 A C A C G A T A T C A A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 150 G G C C G T C T C T

53 4 136 32 A C A   C  G A T A T C A A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 150 G G C C G T C T C T

44 136 32   A  A A   C    G  A T A T C A A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 152 G G T C G T C T C T

44 136 32 G A A C G A T A T C A A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 249 150 G G T C G T C T C T

51 136 32 G A A C G A T A T C A A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 249 160 A A T G G T C T C T

27 2 136 32 G   A    G  T A G C A T C A A G T C T  A G T T A A A C A C T G A T A G G T C C G C G T C T 247 150 G G T C G T C T C T

44 136 32   G    A  A C G A T A T C A A G T C T  A G T T A A A C A C T G  A T A G G T C C G C G T C T 245 150 G G T C A C G G T C

41 2 148 33 G A A C G A T A T C A A G T C T A G T T A A A C A C T G A T A G G  T C C G C G T C T 247 150 G G C C G T C T C T

14 8 148 33   G  A G T A   G    C  A T C A A G T C T  A G T T A A A C A C T G  A T A G G T C C G C G  T C T 247 156 A A T G A C G G T C

47 66 G A G T G A T A T C A A G T C T A G T T A A A C A C T G A T A G G  T C C G C G T C T 247 150 G G C C G T C T C T

18 12 138 68   G    A  A C G A T A T C A A G T C T   A  G T T A A A C A C T G   A  T A G G T C C G C G T C C 245 160 A A T G G T C T C T

18 12 138 A A A C G A T A T C A A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 150 G G C C G T C T C T

14 8 G A A T G A T A T C A A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 150 G G C C G T C T C T

8 7 132 1 G   C    G    C  A A T C C T G A A C T G G G C T A A A  G C T G A G T A A A  T T T A G A C G C 249 160 A A T G G T C T C T

8 7 132 1 G   C  G T A A T C C T G A A C T G G G C T A A A  C C T G A G T A A A T T T A G A C G C 249 160 A A T G G T C T C T

8 7 132 1 G C G T A A T C C T G A A C T G  G G C T A A A G C T G A  G T A A A T T T A G A C G C 249 160 A A T   G  G T C T C T

8 7 132 1 G C G T A A T C C T G A A C T G G G C T A A A  G C T G A G T A A A T T T A G A C G C 249 160 A A T G G T C T C T

8 7 132 1 G C G T A A T C C T G A A C T G G G C T A A A  G C T G A  G T A A A  T T T A G A C G C 249 160 A A T G G T C T C T

44 15 132 1 G   C  G T A A T C C T G A A C T G G G C T A A A  G C T G A G T A A A  T T T A G A C G C 249 160 A A T G G T C T C T

44 15 132 1 G   C  G T A A T C C T G A A C T G G G C T A A A  G C T G A G T A A A T T T A G A C G C 249 160 A A T G G T C T C T

7 7 132 1 G C G T A A T C C T G A A C T G G G C T A A A   G  C T G A G T A A A T T T A G A C G C 247 160 A A T G G T C T C T

51 5 132 1 G   A    G  T   A  G C C C T G A A C T G G G T C A G A C A C T G G T G G G T C C G C G T C T 249 150 G G T C G T C T C T

7 15 132 1 G A G T A G C C C T G A A C T G G G T C A G A C A C T G G T G G G T C C G C G T C T 249 150 G G T C G T C T C T

51 132 1   G  A G T A G C C C T G A A C T G G G T C A G A C A C T G G T G G G T C C G C G T C T 249 150 G G T C G T C T C T

51 5 132 1   G    A  G T A G C C C T G A A C T G G G T C A G A C A C T G G T G G G T C C G C G T C T 249 150 G G T C G T C T C T

51 12 132 1   G    A  G T A G C C C T G A A C T G G G T C A G A C A C T G G T G G G T C C G C G T C T 249 150 G G T C G T C T C T

35 4 132 1 G A G T A G C C C T G A   A  C T G  G G T C A G A C A C T G  G T G G G T C C G C G T C T 249 150 G G T C G T C T C T

7 6 132 1 G A G T A G C C C T G A A C C T A G T T A A A C A C T G  A T A G G T C C G C G T C T 249 146 G   G    T    C  G T C T C T

35 14 132 1   G    A  G T A G C C C T G A A C T G G G T C A G A C A C T G G T G G G T C C G C G T C T 249 148 G G   T  C G T C T C T

44 132 1 G A G T A G C C C T G A A C T G G G T C A G A C A C T G   G  T G G G T C C G C G T C T 249 150 G G T C G T C T C T

7 132 1 G   A    G  C A G C C C T G G A T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 150 G G C C G T C T C T

40 136 1 A C A C G A T C C T G G A T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 150 G G   C  C G T C T C T

35 4 136 2 G A A   C    G  A T   C    C    T    G  A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 251 150 G G T C A C G G T C

136 2 G A A T G G C C C T G A A C T G  G G T C A G A C A C T G  G T G G G T C C G C G T C T 249 150 G G T C G T C T C T

51 7 134 2 G A A   T  A A T C C T G A A T C T A G T T A A A C A C T G   G  T A G G T C C A G A C G C 249 150 A A T G A T C T C T

12 140 2 G A A T A A T C C T G A A T C T  A G T T A A A C A C T G  G T A G G T C C A G A C G C 251 170 A A T   C  A T C T C T

57 6 136 2 G A A T A A T C C T G A   G  T C T A G T T A A A C A C T G  A T A G G T C C G C G T C T 249 150 G G T C G T C T C T

58 7 134 2 G A A T A A T C C T G A A T C T  A G T T A A A C A C T G  A T A G G T C C G C G T C C 249 162 A A T G G T C T C T

51 7 134 2   G    A  A T A A T C C T G A A T C T A G T T A A A C A C T G  G T A G G T C C A G A C G C 249 150 A A T G A T C T C T

18 7 138 2 G A G T A G C C C T G A A  C T G  G G T C A G A C A C T G  G T G G G T C C G C G T C T 247 150 G G T C G T C T C T

14 5 136 2   G    C  A C G A T   C    C    T    G  A   A  T C T A G T T A A A C A C T G  A T A G G T C C G C G T C T 247 160 A A T G A C G G T C

18 2 136 2 G C   A  C G   G    C  C C T G   G  A T T G G A T T A G G C A C T G G C A G G T C C A G A C G C 249 162 A A T G G T C T C T

38 134 2 G   C  A T   A  G C C C T G G A T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 150 G G C C G T C T C T

27 1 138 2 G C G T A A T C C T G A A C T G G G C T A A A   C  C T G A G T A A A T T T A G A C G C 247 160 A A T G G T C T C T

15 16 136 2 G C G T A A C C C T G  A A C T G G G T C A G A C A C T G  G T G G G T C C G C G T C T 249 150 G G T C G T C T C T

8 7 132 2 G   C  G   T  A G C C C T G G A C T G G G T C A G A C A C T G G T G G G T C C G C G T C T 249 152 G G T C G T C T C T

16 136 2 G C G T A G C C C T G G A C T G G G T C A G A C A C T G G T G G G T C C G C G T C T 249 150 G G T C A C G G T C

44 2 A C A   C  G A T C C T G A A T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 150 G G C C G T C T C T

35 4 132 2 A C A C G A C C C T G A A C T G  G G T C A G A C A C T G  G T G G G T C C G C G T C T 249 150 G G T C G T C T C T

49 7 132 2 A C A C G A C C C T G A A C C T  G G T T A A A C C C T G  A T A G G T C C A G A C G C 253 150 G G C C A T C T C T

49 7 130 2 A  C A C G A C C C T G A A C C T  A G T T A A A C C C T G  A T A G G T C C A G A C G C 253 150 G G C C G T C T C T

45 2 A C A   T  G A T C C T G A A T T G G A T T G G A C A C T G G T A G G C C C G C G T C T 251 156 G A T G A C G T T C

58 134 2   A    C  A T A A T C C T G A A T C T  A G T T A A A C A C T G  G T A G G T C C A G A C G C 249 156   G  A T G A   T    C    T    C    T  

48 8 136 2   A    C  A T A A T C C T G A G T C T  A G T T A A A C A C T G  A T A G G  T C C G C G T C C 249 166 A A T G A T C T C T

51 16 2 A C   A   T A G C C C T G G A C T G G G T C A G A C A C T G G T G G G T C C G C G T C T 249 150 G G T C G T C T C T

7 7 2   A  C G T A G C C C T G G A C T G  G G T C A G A C A C T G G T G G G T C C G C G T C T 249 150 G G T C G T C T C T

51 2 128 3 G   A  A T A A T C C T G A A T C T A G T T A A A C A C T G  A T A G G T C C G C G T C T 249 150 G G C C G T C T C T

18 12 128 3   G    A  G   T  A G C C C T G A A C T G  G G T C A G A C A C T G  G T G G G T C C G C G T C T 249 152 G G T C G T C T C T

8 128 3   G    A    G  T A A T C C T G A A T C T G G T T A A A C A C T G G T A G G T C C G G A C G C 249 150 G G T C G T C T C T

15 2 134 3 G   C  A C G A T C C T G G A T C T  G A T T A G G C A C T G G C A G G T C C A G A C G T 251 160 A A T G A C G G T C

14 8 128 3 G C G  C A G C C C T G G A C T G G G T C A G A C A C T G G T G G G T C C G C G T C T 249 152 G G T C G T C T C T

15 3 128 3 G   C  G C A G C C C T G G A C T G G G T C A G A C A C T G G T G G G T C C G C G T C T 249 152 G G T C G T C T C T

50 6 3 A C A C A G C C C T G G A T T G G A T T A G G C A C T G G C A G G T C C A G A C G C 249 162 A A T G G T C T C T

14 15 128 3 A C A C A A T C C T G  A  A T T G G G T C A G A C A C T G G T G G G T C C G C G T C T 249 150 G A T G G T C T C T

44 4 128 3   A    C  A C G A T   C    C    T    G  A   A  C C T   G  G T T A A A C   C  C T G   G  T A G G  T C C   A    G    A    C    G    C  251 150 G G C G A C G G T C

51 14 136 5 G A A T A A T C C T G A A T C T A G T T A A A C A C T G   G  T A G G T C C G C G T C T 249 150 G G T C G T C T C T

51 16 132 11 G A A   T  G G C C C T G G A T T G A A T T A G G C A C T G G C A G G T C C A G A C G C 249 160   A    A  T   G  G T C T C T

35 4 136 11   A    A  A T A A T C C T G A A T C T A G T T A A A C A C T G G T A G G  T C C A G A C G C 249 166 A A T G A T C T C T

3 138 11 A C   G  C   G  G C C C T G G A C T G  G G T C A G A C A C T G  G T G G G T C C G C G T C T 249 150 G G T C G T C T C T

18 2 132 11 G   C    G    T  A G C C C T G G A T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 249 156 G   G  T   C  A C G G T C

14 8 130 23 G  A G T A G C C C T G G A C T G  G G T C A G A C A C T G  G T G G G T C C G C G T C T 249 150 G G T C G T C T C T

51 2 130 23 G   C  G T A G C C C T G   G  A C T G  G G T C A G A C A C T G  G T G G G T C C G C G T C T 249 150 G G T C G T C T C T

44 4 132 23 G C   G  C G   A    T  C C T G   A  A C T G G G T C A G A C A C T G G T G G G T C C G C G T C T 249 150 G G T C G T C T C T

50 4 132 23 A C G T A G C C C T G G A C T G  G G T C A G A C A C T G  G T G G G  T C C G C G T C T 251 130 G G T C G T C T C T

45 6 24 G A A T A A T C C T G A A T C T A G T T A A A C A C T G G T A G G  T C C A G A  C G C 249 160 A A T G G T C T C T

38 12 132 24   G    A  A T A A T C C T G A A T C T  A G T T A A A C A C T G  G T A G G  T C C A G A C G C 247 150 A A T G A T C T C T

37 6 132 24   G    A  A T A A T C C T G A A T C T A G T T A A A C A C T G   G  T A G G T C C G C G T C T 249 150 G G   T  C G T C T C T

55 3 132 24   G    A  A T A A T C C T G A A T C T  A G T T A A A C A C T G  G T A G G T C C   A  G A C G C 249 158 G A T G A C G G T C

35 4 132 24   G  C   G    T    G  G C C C T G G A C T G G G T C A G A C A C T G  G T G G G T C C G C G T C T 249 150   G   G   C    C  G T C T C T

27 134 24 A C A T   G  A T C C T G A A T   T    G    G    A  T T A   G  A C A C T G G T   A  G G T C C A G A C G C 249 162 A A T G G T C T C T

39 7 132 24 A C A   T  G A T C C T G A A T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 249 150 G G C C G T C T C T

39 7 132 24   A    C  A T G A T C C T G A A T C T A G T T A A A C A C T G G T G G G T C C G C G T C T 247 148 G G   C  C G T C T C T

18 7 132 24 A C A   T  G A T C C T G A A T T G G A T T G G A C A C T G G T A G G C C C G C G T C T 251 156 G A T G A C G T T C

57 6 132 24 A C   G  C A G C C C T G G A T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 150 G G C C G T C T C T

38 12 26 A C G C A G C C C T G G A T T G  G G T T A G A C A C T G  G T A G G T C C G C G T C T 249 150 G G T G G T C T C T

44 4 138 29 G A A T A G T C C T G A A T C T A G T T A A A C A C T G  G T A G G T C C A G A C G C 249 150 A A T G A T C T C T

44 16 136 29   G    A  G T A G C C C T G A A T C T G G T T A A A C A C T G G T A G G T C C G G A C G C 249 158 G A   T  G A C G G T C

51 15 138 29 G   C    A  T A G C C C T G G A C T G  G G T C A G A C A C T G  G T G G G T C C G C G T C T 249 150 G G T C G T C T C T

51 15 138 29 G C   A  T   A  G C C C T G G A C T G  G G T C A G A C A C T G  G T G G G T C C G C G T C T 249 150 G G T C G T C T C T

15 128 29   G    C    G    C  A G C C C T G G A T C T A G T T A A A C A C T G A T A G G  T C C G C G T C T 247 150 G G C C G T C T C T

44 16 138 29 G   C    G    T  A  G T C C T G G A C T G  G G T C A G A C A C T G  G T G G G T C C G C G T C T 249 150 G G T C G T C T C T

7 15 152 29 A   C  A   T    A  A C C C T G A A C T G G G T C A G A C A C T G G T G G G T C C G C G T C T 249 146 G G T C G T C T C T

44 138 30 G A G T A G C C C T G G A C T G  G A T C A G G C A C T G  G C G G G T C C G C G T C T 249 150 G A T C G T C T C T

40 138 30 A C A T   A  A T C C T G A A T   C    T    A    G  T T A   A  A C A C T G G T   G  G G T C C G C G T C T 249 150 G G C C G T C T C T

18 7 132 30 G   C    A  C   G  G C C C T G G A T T G G A T T A G G C A C T G G C A G G T C C A G A C G C 249 162 A A T G G T C T C T

14 8 136 31   A    C  A T A A T C C T G A A T C T A G T T A A A C A C T G  G T A G G T C C A G A C G C 249 150 A A T G A T C T C T

14 8 148 33 G A G C G A T C C T G G G T C G A A T T A G G C A C T G G T A G G T C C G C G T C T 249 150 G G T C G T C T C T

4 148 33 G A G T G A T C C T G A G C C T  A G T T A A A C A C T G A T A G G T C C G C G T C T 247 148 G A T G A C G G T C

51 15 66 G C A C G G C C C T G A G C C G G G T T A A A C A C T G A T A G G T C C G C G T C T 249 160 A A T G G T C T C T

53 4 142 66 A C G T A G C C C T G G A C T G  G G T T A G A C A C T G  G T A G G T C C A G A C G C 249 148 A A T G A C G G T C

51 2 68 A C G C G A T C C T G A  A T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 150 G G C C G T C T C T

51 15 68 A C G   T  A G C C C T G A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C T 247 150 G G T C A C G G T C

51 15 68 A C G C G A C C C T G  A  A T T G G G T T A G A C A C T G G T G G G  T C C G C G T C T 252 148 G A T G A C G G T  C 

15 3 G A A C A A T C C T G A G T C T A G T T A A A C A C T G A T A G G T C C G C G T C C 249 160 A A T G A C G G T C

15 7 148 33 A A G T A A C C T C G G A C T G  G G C T A G A C C C T G  G T A G G T C C A G A C G C 249 160 A A T G A C G G T C

44 16 138 29 G A G T A   G    C  A   C    C  A   G    A    C  C T A G T T A A A C A C T G A T A G G  T C C G C G T C T 247 152 G G C C G T C T C T

37 6 138 30 G A G T A   A    T  A   T    T  A   A    G    T  C T G G T T A A A C C T T G A T A G G  T C C A G A C G C 249 158 A A T G G T C T C T

14 8 148 33 G A G T A  G C A C T G G A C T G  G G T T A G A C A C T G  G T G G G T C C A G A C G C 249 162 G A T G G T C T C T

14 8 148 33 A C A C G A C C C T A A A C T G  G G T T A A A C A C T G  G T A G G T C C A G A C G C 249 160 A A T G G T C T C T

8 25 A C G T A G C C T C A G A C T G  G G C T A A A C C C T G  G T A G G T C C A G A C G C 249 160 A A T G G T C T C T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Left panel: Consensus sequences of 86 extended haplotypes from HH founder 

chromosomes organized by haplotype group. Each raw represents the sequence from one HH 

founder chromosome (arbitrarily ordered by overall homology) and each column one genetic 

marker, ordered by relative physical position. Yellow boxes show that the allele matches the most 

common consensus sequence, whereas blue boxes represent the opposite (or alternative) alleles. 

Blocks of complete allele identity are highlighted by dark yellow boxes. A block defined by the 4 

SNP markers from rs7382112 to rs7383248, segregates all (except one) chromosomes in the two 

haplotype groups, assigned according to their flanking alleles as AA or CG. These two haplotype 

groups are highlighted by framed boxes, bold lettering and different coloring (dark yellow vs green). 

Right panel: Consensus sequences of 210 extended haplotypes from normal chromosomes 

organized by haplotype group. For comparisons with HH chromosomes, the same color coding 

was used. 
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2 - Two ancestral extended haplotypes predominate in HH chromosomes 

An identical SNP consensus sequence was observed between HFE and HLA-A in 

80% of the HH chromosomes of the AA haplotype group (53/66). This conservation extended 

in a centromeric direction to HLA-A (62% of these carrying the A*03 allele) and to HLA-B 

(52% of these carrying also the B*07 allele). For further analyses, this consensus sequence 

was defined as the “ancestral extended haplotype of the AA group”. An identical SNP 

consensus sequence was also observed between HFE and HLA-A in 32% of the HH 

chromosomes of the CG haplotype group (6/19). Each of these conserved extended 

haplotypes contained the HLA-A*01 allele and all but one carried HLA-B*08. For the purpose 

of further analyses, this consensus sequence was designated as the “ancestral extended 

haplotype of the CG group”. 

 

3 - Conservation patterns of AA or CG group haplotypes in HH patients and controls  

All chromosomes within each group were compared looking for their patterns of 

conservation or non-conservation, relative to the respective ancestral sequence, in five sub-

regions: from HFE to ZNF193; from ZNF193 to PGBD1; from PGBD1 to rs7382112; from 

rs7383248 to HLA-A; and from HLA-A to HLA-B. We defined, for each region, loss of 

conservation if one or more SNPs differed from the respective consensus ancestral 

sequence in HH patients (Figure 3 left panel) or in controls (Figure 3 right panel). In the case 

of controls we defined as the ancestral sequence the most common consensus sequence 

found among 210 control chromosomes. In general, haplotype conservation was much 

higher in HH than in normal chromosomes, as expected by their assumed recent common 

ancestry. Control chromosomes belonging to the AA haplotype group (but not to the CG 

group) also show a strong degree of conservation, but this is restricted to the region between 

ZNF193 and the SNP marker rs7383248, while in HH chromosomes it extends to the entire 

region between HFE and HLA. In spite of their presumed common ancestry, HH 

chromosomes display different patterns of conservation according to the different haplotype 

groups, suggesting that they had different recombination histories. While a progressive loss 

of conservation is observed from HFE to HLA in chromosomes from the CG group (probably 

reflecting historical recombination events), chromosomes from the AA group, in contrast, 

maintain a high degree of conservation at the entire region between HFE and HLA, diversity 

becoming apparent only centromeric to HLA-A. Considering the recent origin of the HH 

chromosomes, this result could suggest a more recent origin (founder effect) of the AA group 

chromosomes than of the CG group. Alternatively, considering that the stronger conservation 

of AA group haplotypes is also observed in normal chromosomes, the results may also 

suggest the existence of a selective stronger recombination suppression in this region for the 

particular haplotypic combination of alleles in the AA than for the CG haplotype group.  
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Fig. 3 Percent conservation of HH patients (left graph) and controls (right graph) chromosomes in 5 

consecutive regions from HFE to HLA-B. The percentages of conserved chromosomes from the AA haplotype 

group are represented in blue bars and the percentage of conserved chromosomes from the CG haplotype group 

are represented in red bars. 

 

4 - Haplotype associations with the low CD8 phenotype 

The distribution of CD8+ T lymphocyte numbers was analyzed and compared among 

groups of HH patients classified according to the inheritance of the most common ancestral 

or the non-conserved haplotypes as described in Methods. Results are illustrated in Figure 4 

where fitting curves are displayed without (dashed red line) or with (continuous black line) 

exclusion of CD8 expansions (see Methods). By simple inspection of the curves it is evident 

that HH patients carrying non-conserved CG group haplotypes do not display the 

characteristic left deviation of values (relative to the normal median) as seen in patients 

homozygous for the most ancestral AA haplotype and, to a lesser extent, in compound 

heterozygous for the ancestral with a recombinant haplotype of the AA group. Notably, CD8 

expansions were more common in the group of homozygous patients who carry a low CD8 

phenotype relative to the other groups. An interpretation of this finding is provided in the 

discussion below. 
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Fig. 4: Distribution of CD8+ T lymphocytes in HH patients according to the 

inheritance of two ancestral haplotypes (upper graph), one ancestral and 

one recombinant of the AA group haplotype (middle graph) or one ancestral 

and one recombinant of the CG group haplotype (lower graph). Dashed red 

lines represent the distribution fitting to normal with uncensored data. Continuous 

black lines represent the distribution fitting to normal excluding CD8 expansions. 

The vertical blue dashed line indicates the median value in the control population. 
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5 - Insight into the evolutionary history of HH carrying haplotypes  

Insight into the evolutionary history of a gene region can be gained by inferring 

haplotype genealogies. To address the hypothesis of different recombination histories in HH 

chromosomes belonging to the two distinct haplotype groups, we used the genetic 

information obtained to construct HH haplotype genealogies using the neighbor-joining 

method implemented in MEGA. In this method we did not use HLA allele information; this 

was only encoded in ID numbers and used for the tree illustration in Figure 4. In general, 

chromosomes from the two haplotype groups are distributed in opposite clusters in the tree 

(CG haplotypes on the left, AA haplotypes on the right). In the particular case of HH 

chromosomes, these are mainly clustered in two different branches: one integrating the AA 

haplotype group (including all the HLA-A*03-B*07 carrying chromosomes, highlighted in red) 

and another one integrating the CG haplotype group (including all the HLA-A*01-B*08 

carrying chromosomes, highlighted in green). Other HH-linked haplotypes localized in distant 

and spread branches of the tree could correspond to the result of more recent re-

combinational events or the result of wrong haplotype inferences by PHASE. Distances are 

shorter (and more distant from the tree origin) among the AA haplotypes carrying the HLA-

A*03-B*07 than in the CG haplotypes carrying the HLA-A*01-B*08. This result may support 

the hypotheses that the origin of the AA group chromosomes, including the ancestral HLA-

A*03-B*07, is either more recent or subject to a stronger selective advantage by selective 

recombination suppression. 
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Fig. 5. HFE-HLA neighbor joining tree. SNP data for 86 HH founder chromosomes and 210 control 

chromosomes was analyzed with MEGA4 and a neighbor joining tree using pairwise comparisons (see 

Methods). HLA data was not used to create the tree but it is encoded within the ID characters associated with 

each chromosome [analytic ID (case=HH, control=C)_HLA-A_HLA-B_haplotype group (AA in red or CG in  

green)]. For a better visualization, chromosomes from the two major haplotype groups (AA or CG) are marked 

with an additional mark (respectively ▒ or ▒). 
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Discussion 

Factors controlling the frequency and location of recombination events on human 

chromosomes are still not well understood. In this respect, studies of the MHC-class I are of 

particular interest. The more-localized variation in this region, including “hot” and “cold” spots 

[221] suggest the existence of localized structures or functional elements that affect 

crossover occurrence or product viability by means similar to those demonstrated in lower 

eukaryotes (reviewed by Lichten and Goldman [222]). In a study of the 6-Mb region between 

D6S265 (70 kb centromeric of HLA-A) and D6S276, Malfroy and co-workers demonstrated 

the existence of a nonrandom pattern of recombination throughout this region with a 

recombination rate of 0.19% within the 4-Mb interval centromeric to HFE , contrasting with 

the approximate 1% rate observed within the most telomeric two megabases [221]. In the 

present study we explored the haplotype structure and recombination history of the HFE 

p.C282Y carrying chromosomes, including their association with a quantitative trait for CD8+ 

T lymphocyte numbers, through a high-density SNP mapping of the 4 Mb region between 

HLA-A and HFE in 86 founder chromosomes from Portuguese HH patients and 210 

chromosomes from normal individuals from the same region. 

The overall haplotype analysis showed that most HH chromosomes in the 

Portuguese HH population seem to derive from two major ancestral haplotypes, one (more 

common) containing HLA-A*03B*07 and the other (more rare) containing HLA-A*01B*08. 

The pattern of haplotype conservation, however, was significantly different in the two cases. 

While haplotypes derived from the ancestral HLA-A*03B*07 branch were, in general, highly 

conserved in the whole region between HFE and HLA-A, the same was not observed in 

haplotypes derived from the ancestral HLA-A*01B*08 branch. These results showing a 

differential conservation of SNP markers in the two major ancestral haplotypes are in 

accordance with results of microsatellite markers in other populations, namely in the Swedish 

population, where the general conservation of A*03 carrying chromosomes was shown to be 

stronger than that observed in A*01 carrying chromosomes [207]. 

Although the two described ancestral haplotypes in Portuguese HH patients can be 

distinguished by a set of highly conserved unique SNP sequences (belonging respectively to 

the AA and CG haplotype groups), they also share a long and highly conserved region from 

HFE to the SNP marker rs7382112 (Fig. 2), suggesting a common ancestry. However, the 

observation that the two haplotypes cluster in two separate branches of a phylogenetic tree 

(see Fig. 5) seem to indicate that independent founder effects occurred at different times in 

the Portuguese HH population and that, apparently, the HLA-A*01B*08 carrying CG 

haplotypes have a more ancient origin (with higher diversity) than the HLA-A*03B*07 

carrying AA group haplotypes. This interpretation, however, does not fit with the current view 
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on the origin and spread of the HH-associated mutation (reviewed in Distante et al [194]), 

favoring the hypothesis that the most ancient HH founder chromosome should be the one 

carrying the HLA-A*03-B*07 from which all other haplotypes derive. This assumption is 

generally based on the high frequency and linkage disequilibrium of this haplotype in all 

populations studied throughout the world. Nevertheless, the fact that HLA-A*03B*07 carrying 

chromosomes, besides having the highest frequency in all worldwide spread populations, is 

also much more conserved than the HLA-A*01B*08 carrying chromosomes, favor an 

alternative hypothesis that the HLA-A*03B*07 could be maintained at a higher frequency due 

to a stronger selective pressure, as elegantly shown by Toomajian and co-workers [165]. In 

this context, it is worth mentioning that another HH-associated classical ancestral HLA 

haplotype, A*03B*14, described as having the strongest linkage disequilibrium in 

Scandinavian populations [207] does not occur in general at high frequencies among other 

HH populations. This suggests that either A*03B*14 results from more recent recombination 

events in some particular populations and/or that, in contrast to A*03B*07 carrying 

chromosomes, it was not favored by a putative selective pressure [184]. 

The observation of a reduced rate of recombination at the MHC region in a particular 

haplotype group not only in HH chromosomes but also apparent in normal chromosomes 

(illustrated in Figure 2) brings some new light to the question of the recombination 

suppression in this region. A selective suppression of recombination may be due to structural 

variations hampering proper meiotic pairing of homologous sequences and/or due to 

selective constraints depending on environmental factors. In this case, it could be related to 

immunity and iron status. The consistent observation that HLA haplotypes influence not only 

the inheritance of CD8+ T lymphocyte numbers in HH patients but also the severity of iron 

overload [43] together with the present demonstration that the inheritance of the most 

conserved ancestral haplotype impacts on the distribution of CD8+ T lymphocyte numbers, all 

point either to the existence of important selective forces acting upon immune responses or 

simply a bystander effect on the genetic transmission of a major QTL for CD8 numbers in 

this highly conserved chromosomal region. This hypothesis is favored by the previous finding 

that HH patients from Nord-Trøndelag, in Norway, do not display the same 

genotype/phenotype correlation. Further studies with complete covering of this genetic region 

with the use of High-throughput sequencing are still necessary to clarify this point, taking into 

account that recombination takes place more frequently in regions flanking conserved blocks 

than within them. 

A final comment should be given relative to the surprising observation that HH 

patients homozygous for the ancestral conserved haplotype, strongly associated with a low 

CD8 phenotype, were also the ones with a higher frequency of CD8 expansions (Fig. 4). A 

possible explanation for this finding derives from very recent evidence that CD8+ T 



Chapter 3.2 

76 
 

lymphocytes from Hfe deficient mice display an expression profile compatible with more 

activated cells in the peripheral blood [223], and that HFE acts “in vitro” as a suppressor of 

CD8+ T lymphocyte activation [224]. It is plausible to assume that, the same effect on T cell 

activation which may lead to the shifting and eventual exhaustion of the more mature effector 

memory cells in the periphery, could also, in particular conditions and in the context of 

particular antigen epitopes, lead to expansions of the CD8+ T lymphocyte pool. Whether 

these expansions are maintained throughout life or are eventually exhausted, this can only 

be clarified with appropriate long follow-up longitudinal studies in those patients.  

 

Conclusion 

In conclusion, this study of extended haplotypes in Portuguese HH patients reveals 

novel aspects of the haplotype nature and recombination history of HFE p.C282Y carrying 

chromosomes, and provides one more step towards the possibility of localizing a major 

quantitative trait for the setting of CD8+ T lymphocyte numbers in humans. 
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3.3  

In vitro response of T lymphocytes to iron and how they may act as 

modifiers of the clinical expression in HH 
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(NTBI) uptake by T lymphocytes: evidence for the selective acquisition of oligomeric 

ferric citrate species. PLoS One 8: e79870. 

 

b) Pinto JP, Arezes J, Dias V, Oliveira S, Vieira I, Costa M et al. (2014) Physiological 

implications of NTBI uptake by T lymphocytes. Front Pharmacol 5: 24. 
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Introduction 

Iron is an essential nutrient in several biological processes such as oxygen transport, 

DNA replication and erythropoiesis. After intestinal absorption iron circulates in plasma 

bound to the plasma protein called transferrin. Circulating iron which is not bound to 

transferrin, heme or ferritin (here designated as non-transferrin-bound iron - NTBI) becomes 

important in iron overload disorders, in which plasma iron is present in excess of transferrin-

binding capacity [101, 102]. NTBI is responsible for the toxicity associated with iron-overload 

pathologies leading not only to formation of free oxygen radicals but also causing organ 

failure through cell death. NTBI is avidly taken up by the liver but this clearance mechanism 

has a threshold beyond which iron accumulation inside hepatocytes becomes toxic, leading 

to the development of liver pathologies such as fibrosis, cirrhosis and hepatocarcinoma. The 

chemical nature of NTBI is very diverse, the most common form is iron-citrate but the 

mechanisms by which the cells take up NTBI are not fully understood. Besides hepatocytes, 

a variety of other cell types have also been shown to take up NTBI [225]. The specific iron 

uptake kinetics displayed by distinct cell types [112, 226, 227], together with the observation 

of distinct patterns of affected organs in different iron overload diseases [228], all suggest 

that either the different cell types may differ in the expression of the same NTBI-carrier 

molecule(s) or that they possess different uptake systems capable of discriminating between 

the various circulating NTBI species. Until now little was known about the capacity of T 

lymphocytes to take up NTBI. Here we show for the first time that T lymphocytes are able to 

take up and accumulate NTBI. Moreover, we found that the iron-citrate specie preferentially 

taken up by T lymphocytes is the oligomeric Fe3Cit3 form, suggesting the existence of a still 

elusive selective NTBI carrier. Furthermore, we tested the hypothesis if there were 

differences in the NTBI retention capacity of the circulating immune cells between HH 

patients and if that could contribute to the heterogeneity of iron load in HH patients. Total 

NTBI retention showed a significantly different distribution between HH patients and controls, 

with a high proportion of HH patients showing values below the lower limit found in controls. 

NTBI retention was strongly negatively correlated with the TfSat of HH patients at the time of 

the experiment. Differences in plasma iron re-accumulation were also observed in patients 

when divided according to NTBI retention: patients with lower NTBI retention capacity had a 

faster and higher re-accumulation pattern (stabilizing TfSat values at an average of 70,6%) 

than patients with higher NTBI retention capacity, who had a slower and lower re-

accumulation pattern (stabilizing TfSat at values <50%). These preliminary results in vitro 

point out for biological differences between CD8+ T cells from HH patients and normal 

controls which are of great interest to be further addressed. 
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Methods 

Ethics Statement 

Peripheral blood samples were obtained from healthy blood donors and HH patients 

at Santo António General Hospital (Porto, Portugal), who gave their written informed consent 

to participate in this study, which was approved by the Santo António Hospital Ethical 

Committee. 

 

Isolation of human peripheral blood cells 

Peripheral Blood Mononuclear Cells (PBMCs) were obtained from buffy coat product 

processed at Santo António General Hospital. Cells were isolated by gradient centrifugation 

over Lymphoprep (Nycomed). After lysis of erythrocytes, cells were resuspended in RPMI 

(GibcoBRL) supplemented with 10% fetal calf serum (FCS; GibcoBRL) and plated. CD3+, 

CD4+ and CD8+ cells were purified from PBMCs using magnetic-activated cell sorting 

(MACS), after incubation with anti-CD4, -CD8 or -CD14 Microbeads (Miltenyi Biotec, 

Bergisch Gladbach, Germany), following the manufacturer’s instructions. The purity of each 

cell population in the suspension was randomly assessed by flow cytometry and was always 

> 95%. 

 

Statistical analysis 

The results are expressed as mean values +/−1 standard deviation (SD). The 

existence of correlations between iron uptake and concentration of Fe-citrate species was 

assessed by simple regression analysis, performed with STATGRAPHICS Centurion XV 

(Statpoint Technologies). Statistical significance was set using Chi-square test for group 

comparisons between controls and HH patients. 

 

NTBI uptake by T lymphocytes 

Uptake of non-transferrin-bound iron (NTBI) was assessed using 55Fe- citrate [229]. 

55Fe- citrate stock solutions were prepared by mixing 55FeCl3 (PerkinElmer, Inc, USA) with 

unlabelled trisodium citrate, at different Fe:citrate molar ratios. The pH was maintained at 7.4 

and solutions were allowed to rest for 20 minutes before being diluted 33-fold in uptake 

medium and added to cells. Specific activity in the uptake medium was approximately 30 

counts.min−1.pmol−1 Fe. All Fe:citrate solutions were prepared immediately before use and 

discarded after each experiment. Unless otherwise indicated, cells were depleted of 

intracellular transferrin by incubation for 1 hour in serum-free/iron-free RPMI, washed and 

incubated with RPMI+20% HH plasma+5 µM 55Fe-citrate (as 5 µM 55FeCl3+100 µM citric 

acid), at 37°C. 5 µM is the typical NTBI concentration reported in sera from thalassemia 
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major patients [230] and 100 µM citric acid corresponds to the levels normally present in 

human blood plasma [229]. The pH of the uptake medium was maintained at 7.4. After 

incubation, cells were washed 3× with ice-cold buffer [20 µM desferrioxamine (DFO) in PBS, 

pH 7.4], lysed with 0.1% NaOH, 0.1% Triton X-100 and intracellular Fe was measured in a 

MicroBeta Trilux β-counter (Perkin Elmer), for 1 minute. No significant changes in cell 

viability with iron treatments was observed, using trypan blue exclusion and maintenance of 

proliferative potential following activation with anti-human anti-CD3 and anti-human anti-

CD28 for CD3+, CD4+ and CD8+T lymphocytes (Arezes et al. 2013).To distinguish between 

intracellular and membrane-bound Fe and citrate, cells incubated for 30 minutes with varied 

Fe:citrate ratios were washed four times with PBS, pH 7.4, at 4°C, and were then incubated 

with 1 mg/ml of the proteolytic cocktail Pronase (Sigma) for 30 min, at 4°C. The cell 

suspension was centrifuged at 12,000 g for 30 s, and the supernatant (containing 

membrane-bound radioactivity) transferred to new tubes. Cell pellets containing 55Fe 

radioactivity were solubilized as described above. 

 

Speciation plots for ferric citrate species 

Speciation plots were developed for Fe-citrate complexes formed under different 

ferric ion and citrate concentrations, using the Hyperquad simulation and speciation (HySS) 

program [231] and iron affinity constants previously described [232, 233]. The plots report the 

species present at equilibrium. 

 

NTBI export by T lymphocytes 

T lymphocytes were depleted of transferrin, as described above, and incubated, 

unless otherwise stated, in RPMI + 5μM Fe-citrate (or 5μM 55Fe-citrate) + 20% FCS for 2h. 

Cells were washed 2× with washing buffer and incubated for different time-periods in RPMI + 

20% FCS + 5μM DFO (for short-term experiments),to prevent re-uptake of exported iron, or 

in RPMI+ 20% FCS (for long-term experiments). At each time-point, the supernatants were 

collected and Fe was quantified as described in NTBI uptake. 

 

NTBI retention experiment in HH patients 

NTBI retention experiment was assessed in CD4+ and CD8+ T cells and CD14+ 

monocytes isolated from peripheral blood from normal healthy blood donors and HH patients 

(C282Y homozygous) regularly followed at the Santo António Hospital (CHP-HSA; Porto, 

Portugal) Hemochromatosis Clinic. HH patients were consecutively recruited into the study at 

the time of their visit for maintenance therapeutic phlebotomy. Transferrin saturation and 

haematological parameters were available for all individuals at the time of the experiment. 

Retrospective biochemical data were reviewed from clinical files by the clinician in charge. 
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55Fe- citrate stock solutions were prepared by mixing 55FeCl3 with unlabelled trisodium 

citrate, at Fe:citrate molar ratio (1:20) as previously described. Cells were depleted of 

intracellular transferrin by incubation for 1 hour in serum-free/iron-free RPMI, washed and 

incubated with RPMI +5 µM 55Fe-citrate (as 5 µM 55FeCl3+100 µM citric acid), at 37°C. The 

pH of the uptake medium was maintained at 7.4. Each experiment of NTBI uptake was 

performed in a normalized number of cells (1x105 cells). Cells were incubated in vitro with 

55Fe- citrate (5µM) for 3 hours. After incubation, cells were washed 3× with ice-cold buffer [5 

µM desferrioxamine (DFO) in PBS, pH 7.4], lysed with 0.1% NaOH, 0.1% Triton X-100 and 

intracellular Fe was measured in a MicroBeta Trilux β-counter (Perkin Elmer), for 1 minute. 

No significant changes in cell viability, using trypan blue, were observed with the iron 

treatments. Systemic NTBI retention capacity by PBMCs was calculated by the sum of NTBI 

retention (at 3 hours) of the CD8+, CD4+ T-lymphocytes and CD14+ monocytes multiplied by 

the respective cell numbers in each individual. 
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Results 

1 - Quantification and pattern of NTBI uptake by T lymphocytes 

Both CD4+ and CD8+ human T lymphocytes accumulate approximately 250 pmol of 

Fe/106 cells in vitro, when incubated with 5 µM of 55Fe-citrate (5:100) at 37°C (Fig. 1A). The 

rate of NTBI uptake is higher during the first 30 minutes of incubation (6.4 and 7.1 

pmol/min./106cells, respectively for CD4+- and CD8+-lymphocytes), followed by a second 

component in which uptake is maintained at a significantly lower rate (4×10−4 and 7×10−2 

pmol/min./106 cells, respectively for CD4+- and CD8+- lymphocytes) until the last time point 

analyzed (3 hours). A plateau in intracellular iron levels is reached after approximately 60 

minutes. The rate of uptake at 37°C during the initial 30 minutes was significantly higher than 

at 4°C (0.02 pmol/min./106cells). Treatment with pronase and trypsin following incubation 

with Fe-citrate did not significantly change cell-associated radioactivity in CD3+ T 

lymphocytes (representing total T lymphocytes), suggesting that the measured Fe is mostly 

intracellular (Fig. 1B). In contrast, at 4°C most of the NTBI is associated with the plasma 

membrane since cell-associated radioactivity was markedly decreased upon treatment with 

pronase (Fig. 1C). 

Fig. 1 NTBI uptake by T lymphocytes (A) NTBI uptake by human T-lymphocytes. CD4
+
 and CD8

+ 
human T-

lymphocytes were incubated with 5 µM of 
55

Fe-citrate (5:100) at 37°C and 4°C and intracellular iron quantified at 

each time-point. Each point = average (n≥3) ±1SD. (B–C) Specificity of NTBI uptake. CD3
+
 cells were incubated 

with 5 µM of 
55

Fe-citrate (5:100) for up to 90 min, at 37°C (B) or 4°C (C), and at each time point washed either 

with PBS (with or without pronase) or incubated for 15 min with serum-free RPMI with trypsin. Cell-associated 

55
Fe levels at each time point were measured. Each point is a mean value (n = 3) ± SD. The similar results 

obtained at 37°C together with the differences at 4°C suggest that most of the measured iron is intracellular. 

A B 

C 
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Statistical significance between samples at 37°C and controls at 4°C is indicated by * symbols (*p<0.01) (Arezes 

et al.2013) 

 

In addition to the previous time-dependent experiment a dose dependent experiment 

was performed by incubating CD3+ T lymphocytes with various concentrations of Fe-Citrate 

(ranging from 1 µM to 500 µM). We observed that Fe-citrate uptake in T lymphocytes 

reaches saturation at 200 µM, with a Michaelis constant (KM) of 92.6 nmol and maximum 

velocity (Vmax) of 0.4 nmol/min./106cells (Fig. 2). 

Fig. 2 Kinetics of NTBI uptake in T lymphocytes. Cells were incubated with different concentrations of 
55

Fe-

citrate (1 µM, 5 µM, 10 µM, 100 µM, 200 µM and 500 µM) at 37°C and intracellular iron quantified at various time 

points (0, 15, 30, 60 and 120 min) (n = 3). The values obtained during the first 30 min of incubation, when the 

transport system is not saturated, were used to calculate the rate of uptake for each concentration. CD3
+ 

cells 

reach saturation at 200 µM of Fe-citrate and present a maximum rate of 0.4 nmol/min/10
6 

cells (Arezes et al. 

2013). 

 

2 - Characterization of the ferric citrate species taken up by T lymphocytes 

Although it is commonly accepted that Fe-citrate is one of the most relevant NTBI 

forms in iron overload disorders, nothing is known regarding the selectivity for particular Fe-

citrate species by cells. Taking advantage of the recent development of a speciation model 

for Fe-citrate [232], we investigated iron uptake by T lymphocytes in the presence of various 

Fe:citrate ratios, for which the model predicts the formation of distinct Fe-citrate species. In 

the presence of 100 µM citrate, increase of Fe concentration from 0.1 to 100 µM is predicted 

to induce a shift from the FeCit2 species to the oligomeric Fe3Cit3, this latter species being 

essentially the only one present for iron concentrations equal or above 100 µM (Fig. 3A and 

Table 1). CD3+ lymphocytes were incubated with an equal volume of each of these Fe-citrate 

solutions, a dose-dependent increase in Fe uptake was observed up to 100 µM Fe (Fig. 3B), 

with a strong positive correlation observed between NTBI uptake and the presence of 

[Fe3Cit3] in the solution (Fig. 3C).  

In contrast, when CD3+ lymphocytes were exposed to media predicted to contain 

increasing concentrations of Fe3Cit3 and FeCit2 (Fig. 4A and Table 2), Fe uptake by T cells 

increased only while [Fe3Cit3] was increasing and stabilized or was inhibited when [Fe3Cit3] 
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remained stable (Fig. 4 A and B). Finally, a predicted 10-fold increase in [FeCit2] (with 

constant [Fe3Cit3]; Table 2) significantly inhibited Fe uptake by the lymphocytes, with no 

correlation found between [FeCit2] and NTBI uptake by these cells (P=0.15) (Figure 4C). No 

association was found between the concentration of any other Fe-citrate species predicted to 

be present and Fe uptake (data not shown). 

 

 

 

 

B C 

Fig. 3 Fe uptake by T lymphocytes correlates with [Fe3Cit3].(A) Speciation plots for Fe-citrate species were 

calculated for Fe:citrate ratios from 1:100–200:100 using the Hyperquad simulation and speciation (HySS) 

program. Predicted relative abundance (%) of the two most common Fe-citrate species, at pH 7.4, is marked by a 

blue vertical line and a red (Fe3Cit3) or blue (FeCit2) dot. (B) Fe uptake by T lymphocytes incubated with different 

iron:citrate ratios increases with the relative abundance of Fe3Cit3. Experiments were performed at least three 

times with three replicates per experiment. Each point represents the mean (n = 3) ±1SD. (C) Regression analysis 

showing a significant correlation between Fe uptake by CD3+ cells with predicted [Fe3Cit3] concentration at pH 

7.4 (Adapted from Arezes et al.2013). 
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Table 1 Calculated concentrations of Fe-Citrate (FeCit) species for increasing doses of 

Fe and 100uM Citrate. 

 

 

 

 

  

 
0.1µM Fe: 
100µM Cit 

1µM Fe: 
100µM Cit 

5µM Fe: 
100µM Cit 

10µM Fe: 
100µM Cit 

40µM Fe: 
100µM Cit 

100µM Fe: 
100µM Cit 

200µM Fe: 
100µM Cit 

Fe3Cit3 (µM) 2.37x10
-6

 2.44x10
-3

 2.40x10
-1

 1.12 10 29.6 33 

FeCit2 (µM) 9.3x10
-2

 9.22x10
-1

 3.95 6.09 8 1.65 0 

FeCit2H (µM) 3.92x10
-3

 3.89x10
-2

 1.67x10
-1

 2.57x10
-1

 NA 6.97x10
-2

 NA 

FeCitH (µM) 9.22x10
-6

 9.31x10
-5

 4.30x10
-4

 7.19x10
-4

 NA 2.14x10
-3

 NA 

FeCit2H2 (µM) 1.22x10
-5

 1.21x10
-4

 5.19x10
-4

 7.99x10
-4

 NA 2.17x10
-4

 NA 

Fe free (µM) 6.74x10
-12

 6.92x10
-11

 3.44x10
-10

 6.24x10
-10

 NA 2.04x10
-8

 NA 

Cit free (µM) 4.97x10
-6

 4.88x10
-6

 4.53x10
-6

 4.18x10
-6

 NA 3.81x10
-7

 NA 

H free (µM) 3.98x10
-2

 3.98x10
-2

 3.98x10
-2

 3.98x10
-2

 NA 3.98x10
-2

 NA 

Fig. 4 Fe uptake by T lymphocytes and hepatocytes does not correlate with [FeCit2]. (A) Speciation plots for 

Fe-citrate species, calculated for increasing Fe-citrate concentrations maintaining a constant Fe:citrate ratio of 

1:20 using the Hyperquad simulation and speciation (HySS) program. Predicted relative abundance (%) of the 

two most common Fe-Cit species at pH 7.4 is marked by a blue vertical line and a red (Fe3Cit3) or blue (FeCit2) 

dot. (B) Fe uptake by CD3
+ 

lymphocytes in the presence of increasing Fe-citrate concentrations, maintaining a 

constant Fe:citrate ratio of 1:20 (same conditions as in panel A). Experiments were performed at least three times 

with three replicates per experiment. Each point represents the mean (n = 3) ±1SD. (C) Regression analysis 

showing no significant correlation between Fe uptake by CD3
+ 

cells with predicted [FeCit2] concentration at pH 7.4 

(Adapted from Arezes et al.2013). 
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Table 2 Calculated concentrations of Fe-citrate (FeCit) species for increasing doses of 

Fe and a constant Fe:Citrate ratio of 1:20. 

 
0.1µM Fe:   
2µM Cit 

1µM Fe:    
20µM Cit 

5µM Fe: 
100µM Cit 

10µM Fe: 
200µM Cit 

100µM Fe: 
 2000µM Cit 

Fe3Cit3 (µM) 6.21x10
-7

 3.91x10
-2

 2.40x10
-1

 3.15x10
-1

 4.26x10
-1

 

FeCit2 (µM) 1.19x10
-3

 4.49x10
-1

 3.95 8.61 94.7 

FeCit2H (µM) 5.02x10
-5

 1.90x10
-2

 1.67x10
-1

 3.63x10
-1

 3.99 

FeCitH (µM) 5.90x10
-6

 2.35x10
-4

 4.30x10
-4

 4.71x10
-4

 5.21x10
-4

 

FeCit2H2 (µM) 1.56x10
-7

 5.90x10
-5

 5.19x10
-4

 1.13x10
-3

 1.24x10
-2

 

Fe free (µM) 2.16x10
-10

 9.04x10
-10

 3.44x10
-10

 1.89x10
-10

 2.11x10
-11

 

Cit free (µM) 9.95x10
-8

 9.44x10
-7

 4.53x10
-6

 9.02x10
-6

 8.97x10
-5

 

H free (µM) 3.98x10
-2

 3.98x10
-2

 3.98x10
-2

 3.98x10
-2

 3.98x10
-2

 

 

 

3 - Quantification and pattern of NTBI export by T lymphocytes 

In order to have a relevant role as a component of the iron storage compartment, T 

lymphocytes would need to selectively retain or, alternatively, export intracellular iron 

acquired as NTBI according to systemic signals. To test this hypothesis we analyzed the 

export of iron acquired as Fe-citrate by T lymphocytes. CD4+ and CD8+ T cells were exposed 

to 5μM Fe-citrate for 2h, a time point at which cells have reached the maximum iron content 

(Fig. 1A), and allowed to export iron into an iron-free medium for up to 6h. We observed that 

iron export by T lymphocytes follows a linear pattern, CD8+ cells export a little slower 

matching the CD4+ lymphocyte’s export rate after 60min of export (Fig. 5A). After 60min in an 

iron-free medium, iron export by T lymphocytes corresponds to approximately 3% of 

intracellular levels, demonstrating as low release of iron acquired as NTBI by these cells. 

This is confirmed by the quantification of intracellular 55Fe remaining in both T lymphocyte 

populations throughout time, which further shows that, after 72h of export, T lymphocytes 

maintain approximately 20% of the initial iron load acquired as NTBI (Fig. 5B). 

To test whether iron export by T lymphocytes is dependent on the extracellular NTBI 

concentration, cells were incubated with increasing ratio of Fe (5, 20, 40 and 100 µM) to 100 

µM citrate for 2 hours and allowed to export iron into an iron–free medium. We observed a 

dose-dependent increase in iron export with increasing NTBI concentrations (Fig. 5C).



Chapter 3.3 

88 
 

 

 

 

4 - NTBI retention capacity by CD4+ and CD8+ T lymphocytes and CD14+ monocytes 

from healthy controls and HH patients (Unpublished results) 

The potential of NTBI sequestration by PBMCs as a modifier of human systemic iron 

overload was then tested by the quantification of the ex vivo uptake of NTBI by T 

lymphocytes and monocytes obtained from Hereditary Hemochromatosis (HH) patients and 

from healthy blood donors. CD4+, CD8+ T-lymphocytes and CD14+ monocytes were isolated 

from peripheral blood and were incubated for three hours with 5 µM of Fe-citrate. The NTBI 

retention capacity was measured in a normalized number of cells (1x105) of each sub-

population. Results are presented in Figure 6 with transformed values of Log CPM. The 

average of NTBI uptake by CD4+ T cells was 3.83±0.12 in controls and 3.77±0.40 in HH 

patients, by CD8+ T cells was 3.70±0.11 in controls and 3.70±0.39 in HH patients and by the 

monocytes was 3.57±0.17 in controls and 3.65±0.37 in HH patients. Although the averages 

were very similar between patients and controls, the standard deviation denotes the 

existence of a remarkable higher variability in HH patients.  

All HH patients were in maintenance treatment and patient’s systemic iron status, as 

measured by the percentage of plasma transferrin saturation (TfSat) at the time of 

experiment, varied from 40 to 85%. These TfSat values were significantly correlated with the 

average TfSat levels measured serially during the previous 12 months (r=0.97; R2=57%; 

P=0.0299), reflecting the existence of highly stable individual profiles. 

 A 

Fig. 5 Iron export by T lymphocytes. A) Time-dependent iron export by T lymphocytes. Each point is a mean 

value (n=3) ± 1SD. B) Impact of iron export in intracellular Fe levels. Each point is a mean value ± 1SD of two 

experiments each with three replicates. C) Dose-dependent iron export by T lymphocytes. Each point is the mean 

of two experiments with two replicates each (Pinto et al.2014). 

B 

C 
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5 - Systemic NTBI retention capacity by total PBMCs distinguish two groups of HH 

patients with different re-accumulation pattern (Unpublished results) 

The systemic NTBI retention capacity by the PBMCs, estimated as the sum of NTBI 

accumulated by T lymphocytes and monocytes multiplied by total numbers of these cells in 

each individual, showed a significantly different distribution between HH patients and controls 

(Fig. 7A). In HH patients two groups could be identified, respectively with normal (in the 

same range of controls) and defective NTBI retention (Chi-square test 2=4.952; P=0.026; 

Table 3), with values correlating inversely with the TfSat levels at the time of each 

experiment (r=-0.76; R2=58%; P=0.017; Fig. 7B). This finding prompted us to analyze 

retrospectively if there were differences between the two groups of HH patients in the pattern 

of iron re-accumulation into the plasma transferrin pool following the completion of the iron 

depletion treatment (at this point all patients displayed similar TfSat values). The results 

clearly showed that patients with a lower NTBI retention capacity by PBMCs had a faster and 

higher re-accumulation pattern in comparison with patients with a normal NTBI retention 

profile (Fig. 7C). This set of results demonstrates in vivo the relevance of circulating immune 

system cells in the protection from systemic iron load. 

 

Table 3 Contingency table displaying the association between individual status (HH 

patient or control) and NTBI retention by PBMCs  

NTBI retention (Log CPM) Controls HH patients Statistics 

> 9.5 4 3 
2
=4.952 

P=0.026 < 9.5 0 6 

 

CD4+
 

CD8+ CD14+ 

Fig. 6 NTBI retention capacity by CD4+, CD8+ T lymphocytes and CD14+ monocytes isolated from 

healthy blood donors as controls (n=4)  and HH patients (n=9). Box-whiskers graph with minimum and 

maximum values represented. 
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Fig. 7 Impact of NTBI retention by PBMCs in iron parameters of HH patients 

(A) NTBI accumulation (Log CPM) by PBMCs (T lymphocytes + monocytes) of HH patients (n=9) and blood donor 

controls (n=4). Horizontal line signals the cutoff value (9.5) used for division of HH patients in high and low NTBI 

retainers. (B) Linear regression analysis (r=-0.76; R
2
=58%; P=0.017) of the correlation between TF saturation at 

the time of analysis and NTBI retention by PBMCs. Each dot represents one HH patient. (C) Profiles of iron re-

accumulation into the plasma TF pool for 24 months after completion of intensive treatment in the two groups of 

HH patients, divided as normal or low NTBI retainers (Log NTBI retention > 9.5 and < 9.5, respectively). Average 

of TfSat values for each time point ± maximum and minimum values are represented.  

 

Considering the average total numbers of T lymphocytes and monocytes in a healthy 

individual, those values correspond to a maximum NTBI retention potential ranging from 

45.1-149.9 µmol (for CD4+ cells), 22.5-82.5 (for CD8+) (Table 4), which is well above the 

physiological systemic NTBI levels commonly present in iron overload conditions. 

 

Table 4 Estimated maximum NTBI retention potential of human CD4+, CD8+ and CD14+ 
PBMCs. 

 CD4
+
 CD8

+
 CD14

+
 

Human Total cell number [min-max] [2.65 – 8.8 x10
9
] [1.5 – 5.15 x 10

9
] [1.05 – 4.60 x 10

9
] 

Maximum NTBI retention potential (µmol) [min-max] [45.1 – 149.9] [22.5 – 82.5] [18.9 – 82.8] 
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Discussion 

In this chapter, we address the reciprocal interactions between NTBI and 

lymphocytes which are among the first cell types from the circulating immune system to get 

in contact with this (and other) iron species, following its entrance into the blood circulation. 

The in vitro studies here performed aimed to address the kinetics of the interaction 

between NTBI specie, in the form of iron-citrate, and T lymphocytes. Fe-citrate uptake by 

CD4+ and CD8+ T cells show that both human T lymphocytes accumulate a maximum of 

approximately 250 pmol of Fe/106cells in vitro, when incubated with 5µM of 55Fe-citrate 

(5:100) at 37°C. A plateau in intracellular iron levels is achieved after approximately 60 

minutes. The maximum rate of 55Fe uptake by T cells is comparable to the described uptake 

rate of the hepatoma cell line HepG2 [234] and to what is described for primary hepatocytes 

[112] although T lymphocytes shown to be incapable to sustain this elevated rate of intake 

for more than 30 minutes. This difference leads to a lower capacity of each lymphocyte to 

accumulate NTBI when compared with hepatocytes which are able to increase intracellular 

NTBI accumulation in vitro for at least one week [235]. 

Several potential iron-binding ligands are present in plasma, including citrate, acetate 

and albumin. Albumin, the most abundant blood plasma protein [236], has been shown to 

bind iron both in the presence of citrate, as a ternary complex, or in its absence [237]. 

Nevertheless, May et al. [238], based on the relative concentrations of potential ligands, 

predicted that the dominant iron species present in plasma is ferric-citrate, the NTBI form 

used in the present study. Under the experimental condition of 5µM Fe:100µM Citrate at pH 

7.4, we observed a strong and exclusive association between Fe uptake and the predicted 

presence of the Fe3Cit3 oligomer in solution, in contrast with the lack of association with 

FeCit2 or with any other ferric-citrate species. We recognize that there are differences in the 

media composition used for the development of the speciation models (salt-buffered 

aqueous solution) and for the Fe uptake assays (RPMI medium). The simple aqueous 

solution used for model predictions may not hold several iron binding molecules that RPMI 

medium possess. However, significant changes in the predicted speciation between the 

aqueous solution and the uptake medium would only be expected if there is competition for 

Fe by those ligands. Under our conditions transferrin will not significantly compete with 

citrate, since it is 85% saturated (20% HH human plasma supplemented). Similarly, acetates, 

pyruvates and phosphates will not compete with citrate for Fe when the citrate concentration 

is ≥100 µM [238], as it is the case in our experimental conditions as well as in human 

plasma. Finally, albumin has been described to efficiently bind iron [237] but its ability to 

significantly modify citrate-bound iron is dependent on its glycation and oxidation [239]. 

Healthy individuals have approximately only 1% of their serum albumin glycated, and this 
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value increases up to 10% in diabetic patients [236]. Iron-overloaded individuals do not 

display higher levels than the healthy 1% baseline condition, suggesting that, at least on the 

absence of increased glucose levels, glycated albumin will not significantly compete for iron 

with citrate. Albumin oxidation, on the other hand, could have a relevant effect, in face of the 

pro-oxidant conditions expected to be induced by the iron overload. Previous studies have 

shown that fully oxidized albumin does not show increased iron binding capacities up to 5 µM 

of iron, but a 2.6- fold increase was observed for 10 µM of Fe [239]. Thus, in pro-oxidant 

conditions albumin may show an increased capacity to modify citrate-bound concentrations, 

although we predict that this will only be significant for very high NTBI concentrations and 

extensive albumin oxidation. 

The results here presented also show that the differences in Fe uptake in each 

experimental condition and the high correlation between Fe3Cit3 and Fe uptake are not due 

to a preferential uptake of membrane-bound Fe in particular conditions but instead may 

reflect a high specificity of a still unidentified putative receptor for the oligomeric Fe-citrate 

species. We anticipate that this finding may be instrumental in the search for the elusive Fe-

citrate transporter since it represents the identification of the ligand to which the transporter 

may respond, either at the level of transcription, translation or other form of modification. The 

high correlation between the presence of the oligomer Fe3Cit3 and Fe uptake may be 

surprising, as donation of Fe by smaller sized mononuclear Fe-citrate species might be 

expected to be easier, particularly if the uptake involves a channel transporter. However, 

predictions from models and from kinetics of NTBI chelation by DFO and deferiprone 

suggested that the dominant species under relevant concentrations of citrate are likely to be 

oligomeric forms, with a molecular mass around 3.5 kDa [232][240]. It seems thus 

reasonable to expect that, throughout evolution, cells have specialized in sensing and 

internalizing this particular species. Nevertheless, it is conceivable that particular tissues and 

cell types may be equipped with different cellular NTBI uptake systems, which would enable 

the discrimination between distinct NTBI species and could explain the different patterns of 

organ iron-loading observed in the various iron overload syndromes [9]. Particularly 

interesting would be to extend the present analysis to cardiomyocytes, a cell type in which 

NTBI accumulation has a particularly adverse effect [241, 242] and for which the involvement 

of specific NTBI transporters have been suggested [116]. Finally, the demonstration that 

Fe3Cit3 represents an important component of the NTBI taken up by hepatocytes and T 

lymphocytes could be used as a tool for optimization of chelator properties and of chelation 

regimens presently in use. 

Regarding CD4+ and CD8+ T lymphocytes ability to export/retain NTBI, the results 

show that these two cell types do not differ significantly in the export/retention of iron-citrate, 

which is in agreement with our findings of similar NTBI uptake by the two cell types. This may 
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indicated that both cell types are equally equipped to mobilize iron-citrate. These results are 

supported by previous observations in β2m
(-/-)Rag1(-/-) mice—deficient in CD4+ and CD8+ T 

lymphocytes and B lymphocytes that displayed higher severity in terms of iron overload than 

the β2m
(-/-) animals—deficient in CD8+ T lymphocytes alone [28]. 

From the observations in mice deficient in CD8+ T lymphocytes [23, 24, 34] and also 

from the recurrently inverse correlation only observed with CD8+ T lymphocyte numbers and 

the severity of iron overload in HFE-HH human patients [30, 32, 171] one may expect that 

CD8+ T cells, although not being the only cell type with NTBI retention ability, may have an 

important role in systemic iron homeostasis and the lack or a reduced number of these cells 

may affect the fine-tuning of iron homeostasis, namely NTBI distribution. 

After the demonstration of H-ferritin synthesis by human T and not B lymphocytes 

[243], the present demonstration of the T lymphocytes ability to take up and retain NTBI, is 

perhaps the strongest piece of evidence supporting the postulate put forward by de Sousa 

and co-workers that these cells could act as buffers to protect other tissues from iron-

mediated toxicity [3]. Our in vitro results estimate an elevated potential for the circulating 

populations of monocytes and T lymphocytes to influence the concentration of circulating 

NTBI. To address if PBMCs from HH patients had different NTBI retention capacity than cells 

isolated from healthy blood donors, we performed a NTBI retention assay with ex-vivo CD4+ 

and CD8+ T lymphocytes and monocytes isolated from peripheral blood from both groups. 

Despite the small sample size of the healthy control group, it should be noticed that 

each experiment was performed with cells isolated from randomly recruited blood donors and 

from these independent experiments we observed a very small variation as reflected in a low 

standard deviation. In contrast, HH patients show a high heterogeneity in the NTBI retention 

ability by T lymphocytes and monocytes. These results are extended by the observation that 

the individual profiles of iron re-uptake by HH patients, following the end of intensive 

treatments, strongly correlate with the NTBI retention potential of each individual’s cell types. 

Although in these patients, as in blood donor controls, the systemic levels of NTBI should be 

low, we interpret that circulating PBMCs, by sequestering a fraction of the newly exported 

iron, may modify transferrin saturation, in direct proportion to the retention potential of each 

individual. These results provide an explanation for the previous observation of spontaneous 

iron overload in CD8+- and total T lymphocyte-depleted animals [24, 28, 34, 35], as well as 

for the inverse correlation observed between CD8+ T lymphocyte numbers and the severity of 

iron overload in HH patients [30, 32, 171]. 

On a broader scope, our results provide a mechanistic support for the possibility of 

circulating T lymphocytes and monocytes acting in vivo as key partners in systemic iron 

homeostasis. However, a number of questions remain unanswered. Why only CD8+ 

lymphocyte numbers and not CD14+ or CD4+, have been associated with iron overload in 



Chapter 3.3 

94 
 

human HH patients? What is the fate, in the long term, of the NTBI sequestered by 

monocytes and T lymphocytes? What is the impact of the intracellular NTBI on the 

phenotype of each cell population (survival, activation potential, migration, etc.)? These 

questions prompted us for the following research objective where the CD8+ T cells phenotype 

and gene expression profile was addressed in the context of Hfe ablation. 
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3.4  

Lymphocyte gene expression signatures from patients and mouse 

models of hereditary hemochromatosis reveal a function of HFE as 

a negative regulator of CD8+ T-lymphocyte activation and 

differentiation in vivo 

This chapter is published in: 

Costa M, Cruz E, Oliveira S, Benes V, Ivacevic T, et al. (2015) Lymphocyte gene expression 

signatures from patients and mouse models of hereditary hemochromatosis reveal a function 

of HFE as a negative regulator of CD8+ T-lymphocyte activation and differentiation in vivo. 

PLoS One 10: e0124246. 
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Abstract 

Abnormally low CD8+ T-lymphocyte numbers is characteristic of some patients with 

hereditary hemochromatosis (HH), a MHC-linked disorder of iron overload. Both 

environmental and genetic components are known to influence CD8+ T-lymphocyte 

homeostasis but the role of the HH associated protein HFE is still insufficiently understood. 

Genome-wide expression profiling was performed in peripheral blood CD8+ T lymphocytes 

from HH patients selected according to CD8+ T-lymphocyte numbers and from Hfe-/- mice 

maintained either under normal or high iron diet conditions. In addition, T-lymphocyte 

apoptosis and cell cycle progression were analyzed by flow cytometry in HH patients. HH 

patients with low CD8+ T-lymphocyte numbers show a differential expression of genes 

related to lymphocyte differentiation and maturation namely CCR7, LEF1, ACTN1, NAA50, 

P2RY8 and FOSL2, whose expression correlates with the relative proportions of naïve, 

central and effector memory subsets. In addition, expression levels of LEF1 and P2RY8 in 

memory cells as well as the proportions of CD8+ T cells in G2/M cell cycle phase are 

significantly different in HH patients compared to controls. Hfe-/- mice do not show alterations 

in CD8+ T-lymphocyte numbers but differential gene response patterns. We found an 

increased expression of S100a8 and S100a9 that is most pronounced in high iron diet 

conditions. Similarly, CD8+ T lymphocytes from HH patients display higher S100a9 

expression both at the mRNA and protein level. Altogether, our results support a role for HFE 

as a negative regulator of CD8+ T-lymphocyte activation. While the activation markers 

S100a8 and S100a9 are strongly increased in CD8+ T cells from both, Hfe-/- mice and HH 

patients, a differential profile of genes related to differentiation/maturation of CD8+ T memory 

cells is evident in HH patients only. This supports the notion that HFE contributes, at least in 

part, to the generation of low peripheral blood CD8+ T lymphocytes in HH. 

 

 

Keywords: Hemochromatosis, HFE, iron, CD8+ T lymphocytes, S100a9, lymphocyte 

homeostasis 
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Introduction 

Hereditary hemochromatosis is a common genetic disorder of iron overload where the 

vast majority of patients are homozygous for the C282Y mutation in HFE, a non-classical 

MHC-class I gene localized on chromosome 6 in strong linkage disequilibrium with the HLA-

A locus [184, 244]. The conformational change introduced by the C282Y mutation impairs 

the association of HFE with β(2)-microglobulin and consequently its expression at the cell 

surface [27]. As an integral part of a membrane-associated protein complex in hepatocytes, 

HFE is involved in the regulation of hepcidin, a hormone that controls systemic iron levels 

[245]. Whether HFE is also involved in T-lymphocyte signaling, is still unresolved. 

Abnormalities in the pool of CD8+, but not CD4+, T lymphocytes have been 

consistently reported in HH patients [179]. Low numbers of CD8+ T lymphocytes in the 

peripheral blood [21, 22, 30] as well as in the liver [33] are associated with severe expression 

of iron overload. The low numbers of CD8+ T lymphocytes are mostly due to defects in the 

subpopulation of the effector memory T cells [31]. So far, functional studies have not been 

conclusive in terms of elucidating the nature of the CD8 defects in HH. Although decreased 

CD8-associated p56lck activity [170] and diminished cytotoxic activity [29] have been 

reported, other studies suggested a more activated profile of these cells namely a relative 

expansion of CD8+CD28- T-cell populations, a high percentage of CD8+HLA-DR+ cells and 

an increased production of IL-4 and IL-10 [29, 172]. A possible explanation for the activation 

profile of CD8+ T cells in HH may be found in a recent work where Reuben and co-workers 

propose that HFE has a role in antigen processing and presentation leading to an inhibition 

of CD8+ T-lymphocyte activation [224]. Their studies were based on several T-lymphocyte 

activation read-outs in cells transfected with wild type and mutated HFE molecules, but no 

evidence has been provided of an effect on antigen processing and presentation functions in 

vivo. 

The anomalies of CD8+ T-lymphocyte numbers in HH could be a consequence of iron 

overload or a direct effect of HFE on the homeostatic regulation of this cell population. The 

finding that young, early diagnosed asymptomatic HH subjects already display a low CD8+ 

phenotype similar to their clinically affected family members, favors the idea of a 

predominantly primary genetic effect linked to the HFE mutation [22]. On the other hand, the 

fact that some HH patients despite the same HFE defect do not display the low CD8+ 

phenotype indicates that environmental and/or genetic factors must compensate for the 

anomalies in the CD8+ T-cell pool independently of HFE. It is known that modifications in 

gene expression concur to define the different properties of CD8+ T cells at different 

differentiation stages and therefore their homeostatic equilibrium [157]. We have shown that 

particular HLA-A alleles and haplotypes are significantly associated with CD8+ T-cell 
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numbers in HH patients carrying the same HFE mutation [43, 44] but they do not constitute a 

universal marker in all patients analyzed [220]. Studies are still pending trying to localize 

other relevant markers in the same chromosomal region. Genomic based studies, however, 

are not sufficient to distinguish the functional effect of HFE from that of other MHC-class I 

genes in strong linkage disequilibrium in the same chromosomal region. 

In the present study we addressed the question whether HFE shapes the peripheral 

pools of CD8+ T lymphocytes. We applied two independent RNA-based genome wide 

approaches in isolated CD8+ T cells from HH patients homozygous for the C282Y HFE 

mutation and disease mouse models lacking the HFE gene (Hfe-/-). While studies in HH 

patients revealed the impact of HFE on the expression of genes associated with the 

differentiation and maturation of peripheral CD8+ T-lymphocyte subsets, the transcriptional 

profile of isolated CD8+ T lymphocytes from Hfe-/- mice revealed alterations in CD8+ T-cell 

activation-related genes, a result also confirmed in peripheral blood lymphocytes from HH 

patients. Altogether, our results support a mechanistic role for HFE as a negative regulator of 

CD8+ T-lymphocyte activation in vivo and provide formal evidence, at least in part, to explain 

the characteristic low CD8 phenotype of HH patients. 
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Results 

1- A genome-wide transcriptional profile of CD8+ T lymphocytes from HH 

patients is indicative of the subpopulations’ differentiation/maturation states  

A transcriptional gene profiling study of sorted CD8+ T lymphocytes from HH patients 

was performed to identify gene response patterns that may explain lower peripheral blood 

CD8+ T-lymphocyte numbers in patients with HH and severe iron overload. We took 

advantage of the known clinical and immune phenotypical variability in HH and selected 10 

patients stratified in two distinct groups: group 1 (n=6) shows a typical low CD8 phenotype 

(<300x103/ml) (see Methods) hallmarked by a severe clinical expression of iron overload; 

group 2 (n=4) shows normal/high CD8 phenotype (≥400x103/ml) (see Methods) and very mild 

clinical expression of HH. Gene expression analysis identified a signature of 16 genes (7 up-

regulated and 9 down-regulated) potentially associated with the CD8+ T-cell phenotype 

(Table 1). The magnitude of gene expression changes was small, generally less than 2-fold. 

Multiple variable correlation analysis among the 16 gene candidates identified two 

independent clusters of genes, which are functionally interlinked. One cluster contained the 

genes: chemokine C-C motif receptor 7 (CCR7), lymphoid enhancer-binding factor 1 (LEF1) 

and actinin alpha 1 (ACTN1), which are all down regulated in the group of patients with the 

low CD8 phenotype and are markers of CD8+ T-cell differentiation and/or maturation. The 

chemokine receptor CCR7 is a differentiation/maturation marker present in naïve (TN) and 

central memory (TCM) cells but absent in the effector memory (TEM) pool [246, 247]. LEF1 has 

been described as being down-regulated in naïve CD8+ T cells after antigen encounter and 

differentiation in vivo [248]. Of the three genes in this cluster, only ACTN1 (HS1) was not 

previously described as a differentiation/maturation marker, but it is known to be involved in 

cytoskeletal remodeling and calcium mobilization, a fundamental process for T-cell activation 

[249]. A very distinct picture was observed for the second cluster of functionally related 

genes which included: N(alpha)-acetyltransferase 50 (NAA50), purinergic receptor P2Y (G-

protein coupled, 8) (P2RY8) and FOS-like antigen 2, (FOSL2) that are all up-regulated in the 

group of patients with a low CD8 phenotype. This group of genes is involved in lymphocyte 

activation and expansion. Both P2RY8 and FOSL2 have been implicated as regulators of cell 

proliferation, differentiation, and malignant transformation [250, 251] and NAA50 is described 

as an anti-apoptotic molecule [252]. 
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Table 1 Summary of differentially expressed genes in total CD8 T-lymphocytes in HH 

patients with a low CD8 phenotype (n=6) relative to HH patients with a normal/ high 

CD8 phenotype (n=4). 

GeneBank 
accession # 

Gene Symbol Gene Description 
Fold Change 
(Profile A vs 
Profile B) 

NM_002123.3 HLA-DQB1 Major histocompatibility complex, class II, DQ beta1  Up 1.82 

NM_002124.2 HLA-DRB1 Major histocompatibility complex, class II, DR beta1  Up 1.82 

NM_005253 FOSL2
a)

 FOS-like antigen 2 Up 1.59 

BC096168 HIST1H1E Histone cluster 1, H1e Up 1.57 

NM_178129 P2RY8
a)

 Purinergic receptor P2Y, G-protein coupled, 8 Up 1.57 

BC009288 NR4A2
a)

 Nuclear receptor subfamily 4, group A, member 2 Up 1.52 

BC012731 NAA50
a)

 N(alpha)-acetyltransferase 50, NatE catalytic subunit Up 1.51 

NR_003330 SNORD116-15 Small nucleolar RNA, C/D box 116-15 Down 1.90 

BC038982 IGJ 
Immunoglobulin J polypeptide, linker protein for 
immunoglobulin alpha and mu polypeptides 

Down 1.81 

NR_002907 SNORA73A Small nucleolar RNA, H/ACA box 73A Down 1.74 

BC035343 CCR7
a)

 Chemokine (C-C motif) receptor 7 Down 1.68 

DQ496098 ACTN1
a)

 Actinin, alpha 1 Down 1.65 

NR_003332 SNORD116-17 Small nucleolar RNA, C/D box 116-17 Down 1.57 

NR_001290 SNORD116-19 Small nucleolar RNA, C/D box 116-19 Down 1.57 

AF288571 LEF1
a)

 Lymphoid enhancer-binding factor 1 Down 1.56 

NM_019111.4 HLA-DRA Major histocompatibility complex, class II, DR alpha Down 1.52 

For definition of low CD8 phenotype and normal/high CD8 phenotype see Methods. 

a) Confirmed by custom designed real-time PCR primers 

 

Besides the above described genes, a significant up regulation of the MHC class II 

genes HLA-DQB1 and HLA-DRB1, as well as the histone cluster 1 gene HIST1H1e, was 

also observed in patients with a low CD8 phenotype, supporting the notion of an activation 

and cell cycle progression pattern of these cells [253]. 

In order to explore the significance of the results obtained in this screen, we analyzed 

the correlations of the expression levels of each gene with the clinical and immune 

phenotypic variables. These included the number of peripheral blood CD8+ T lymphocytes, 

including the differential pattern of CD8 TN, TCM and TEM cells as well as the iron overload 

profile, measured by the estimated total body iron stores (TBIS). The results are given in 

supplementary S1 Table. They strongly suggest that the differences observed in the gene 

expression of CD8+ T cells between the two HH groups reflect not only upon differences in 

the relative proportions of their CD8+ T-cell subsets but also upon differences in the 

activation profile of the cells. More specifically, the differentiation markers CCR7, LEF1 and 

ACTN1 correlated positively with the number of CD8+ TN and TCM cells in each patient, 



Chapter 3.4 

102 
 

reflecting a direct impact of the relative proportion of these subpopulations in the total CD8+ 

pool expression pattern. In contrast, the activation markers NAA50, P2RY8 and FOSL2 were 

negatively correlated with the total number of CD8+ TEM cells in each patient, indicating that 

subjects with a low CD8 phenotype show more activated effector memory cells. Curiously, 

variations in the mRNA expression levels of these activation genes had more impact on the 

total number of CD8+ T lymphocytes than the expression of the differentiation markers 

CCR7, LEF1 and ACTN1 (see data on S1 Table).  

In general, the TBIS was most significantly correlated with the differentiation markers 

CCR7, LEF1 and ACTN1 (see also data on S1 Table) therefore not excluding an effect of 

iron overload on the most immature CD8+ T lymphocytes or vice-versa. It should be noted, 

however, that due to the strict selection criteria applied in this screen, it was not possible to 

discriminate the confounding effects of the CD8+ T-cell numbers and of the iron overload 

phenotypes, because the two variables are highly correlated (R2=57%; r=-0.75, p=0.0187). 

In order to rule out the hypothesis of a bystander effect of systemic inflammation on 

the patients’ individual immunophenotypes, we retrieved historical measures of their C-

reactive protein (CRP) serum levels and compared them with the CD8+ T-lymphocyte counts 

determined on the same day. No significant correlation was found between the two 

parameters (R-squared adjusted for d.f.= -1.19185 percent; p=0.379), thus excluding any 

relevant effect of systemic inflammation on the patients’ immunophenotype. 

 

2 - Analysis of CD8+ T-lymphocyte subsets reveals the impact of HFE on the 

expression profile of central memory and effector memory cells  

As shown above, the transcriptional profiles of HH patients with low or normal/high 

CD8+ T-cell numbers not only highlight the differences in the relative proportions of their 

subsets but also reflect differences in the activation state of the cells. To understand if the 

gene expression profiles are informative beyond reflecting upon T-cell numbers, we next 

focused on the analysis of 6 genes (CCR7, LEF1, ACTN1, FOSL2, P2RY8 and NAA50) in 

the different CD8+ TN, TCM and TEM compartments. Cells were sorted according to the gating 

strategy illustrated in Fig. 1A, in blood samples from a group of 10 additional and unselected 

HH patients and 8 healthy control individuals. With this approach we aimed: i) to validate the 

results of the genome wide screen with independent HH samples ii) to test the impact of HFE 

on gene expression by comparing HH patients with normal healthy subjects and iii) to 

address if there was any additional impact of serum iron levels on the expression profiles in 

individual T-cell populations of HH patients, taking advantage of the fact that patients were at 

different stages of treatment and therefore showing a wide range of transferrin saturation 

values. 

 



CD8 gene expression analysis from HH patients and Hfe
(-/-)

 mice 

103 
 

 

 

As illustrated in Fig. 1B, the mRNA expression levels of CCR7, LEF1 and ACTN1 

decreased from CD8+ TN to TEM cells, with the lowest values consistently observed in the TEM 

subset. Once CCR7 is a well-known maturation marker of T lymphocytes [246] it served as a 

non-anticipated positive control in our experiment. An opposite pattern was detected for 

FOSL2, which was up-regulated in the most differentiated lymphocyte subpopulation 

scrutinized, i.e. in TEM. P2RY8, in turn, showed the highest expression levels in TCM cells, 

while NAA50 was uniformly expressed in all CD8+ T-cell subsets. Of note, significant 

differences were observed in the profile of TCM cells between HH patients and controls, LEF1 

being significantly decreased (p=0.002) and P2RY8 significantly increased (p=0.019) in HH 

patients. In addition, LEF1 in HH patients was also significantly decreased in TEM (p=0.008). 

These differences between HH patients and controls in the gene transcription of central and 

effector memory cells, suggest that the HFE defect may affect the homeostatic equilibrium of 

Fig. 1 Gene expression analysis in CD8
+
 T-cell subpopulations 

A) Gating strategy used to discriminate the CD8
+
 T subpopulations of naïve, central memory and effector 

memory cells. B) Relative mRNA expression levels of CCR7, LEF1, ACTN1, FOSL2, P2RY8 and NAA50 in 

isolated CD8
+
 T subpopulations. Statistical significant differences were calculated by T-test between HH 

patients and controls in each subpopulation. 
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these particular populations without affecting the naïve T cells. Importantly, no significant 

correlations were found between the expression of any of the analyzed genes and the levels 

of circulating iron as measured by the transferrin saturation (data not shown) further 

supporting a primary effect of HFE on CD8+ T-lymphocyte signaling independently from 

circulating iron levels. 

 

3 - Apoptosis and cell cycle studies in CD4+ and CD8+ T lymphocytes from HH 

patients and controls 

The fact that the genes found up regulated in patients with the lowest CD8+ counts 

were genes involved in activation and proliferation suggests that, in spite of constituting a 

small pool, these cells must be constantly activated to proliferate. The next question to 

address was therefore to investigate whether an altered apoptosis/proliferation balance of 

peripheral blood CD8+ T lymphocytes in HH patients can account for these observations. 

Since this is the first study analysing apoptosis and cell cycle profiles in T lymphocytes from 

HH patients, the study was extended to both CD4+ and CD8+ subpopulations of T 

lymphocytes. 

 

3.1 Apoptosis in CD8+ T lymphocytes correlates with systemic iron levels 

In general, a highly significant difference was found between the CD4+ and CD8+ T-

lymphocyte subpopulations in terms of the percentages of apoptotic cells (T Test p=9.4x10-8, 

KS-Test p=0.000002), with the average apoptosis percentage being 21.8% ±9.9% in CD4+ T 

cells, and 47.3% ±21.8% in CD8+ T cells. Apoptosis in CD4+ and CD8+ T cells was not 

influenced by gender but it was influenced by age in CD8+ T cells only (R2=13.5%, r=0.37, 

p=0.0380). In general, apoptosis in each of these subsets (CD4+ or CD8+ T cells) was not 

statistically different between controls and HH patients and, in this later group, it was not 

influenced by the treatment status i.e. (intensive vs. maintenance treatment) (data not 

shown). In terms of association with total numbers, no significant correlations were found 

between apoptosis and either CD4+ or CD8+ T-cell total counts (cells/mm3) in both HH 

patients and controls, indicating that defective numbers in HH are not explained by increased 

apoptosis (data not shown). Nevertheless, the percentage of apoptosis in both CD8+ and 

CD4+ T cells in HH patients was significantly correlated with the systemic iron load 

parameters namely serum iron (respectively R2=34.6%, p=0.008 and R2=20.5%, p=0.046) 

and transferrin saturation (respectively R2=32.9%, p=0.006, and R2=20.4%, p=0.045). 
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3.2 Peripheral blood CD8+ T lymphocytes from HH patients show an increased 

proportion of cells in the G2/M phase  

Marked differences were observed between the populations of CD4+ and CD8+ T cells 

regarding the proportion of cells along the three phases of cell cycle, particularly in G2M and 

S (Table 2). Regarding the differences between HH patients and controls, some significant 

differences could be observed independently of iron status (Table 2). In general, there were 

more lymphocyte in S and G2/M and less in G0/G1 phase in HH patients than in controls, 

both in CD4+ and CD8+. These differences reached statistical significance in G2/M with 

values in patients being 2.5 and 11 times higher respectively in CD8+ and CD4+ cells, and in 

G0/G1 for CD4+ T cells only, although this difference is less than 0.2% of their absolutes 

levels, probably reflecting the space occupied by the increased numbers of cells in G2/M. No 

significant correlation was found between the percentages of cells in each cell cycle phase 

and the percentage of cells in apoptosis, showing that the increase of cells in G2/M observed 

in patients is not a direct consequence of apoptosis but rather an independent step, possibly 

related with increased cell activation. 

 

Table 2 Comparisons of CD4+ and CD8+ T-lymphocyte percentages in different cell 

cycle phases between HH patients and controls. 

Cell Cycle Phase Cell population % in Controls % in HH Patients KS test
1
 

G0G1 CD4
+
 T cells 99.65 ± 0.16 99.41 ± 0.33 P=0.0256 

 CD8
+
 T cells 98.86 ± 1.25 98.13 ± 1.69 n.s 

 KS test
2
 0.0337 0.0047  

S CD4
+
 T cells 0.34 ± 0.16 0.49 ± 0.23 n.s 

 CD8
+
 T cells 0.94 ± 1.00 1.39 ±1.09 n.s 

 KS test
2
 0.0337 0.0015  

G2M CD4
+
 T cells 0.01 ± 0.03 0.11 ± 0.14 P=0.0217 

 CD8
+
 T cells 0.20 ± 0.36 0.49 ± 0.74 P=0.0025 

 KS test
2
 <0.0001 0.0135  

1
 Kolmogorov-Smirnov Test comparing HH patients and controls 

2 
Kolmogorov-Smirnov Test comparing CD4

+
 T cells and CD8

+
 T cells 

 

In summary, results of cell cycle positioning of total peripheral blood CD8+ T 

lymphocytes from HH patients support the notion that those cells constitute a highly dynamic 

population in homeostatic equilibrium, compatible with the activation profile revealed before 

with the gene expression data. 
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4 - mRNA expression analysis in Hfe-/- and wild type mice supports the impact 

of HFE on the CD8+ T-lymphocyte activation profile 

All previous results in HH patients suggesting an impact of HFE on the expression 

profile of CD8+ T cells were still confounded not only by the known phenotypic heterogeneity 

among patients, possibly influenced by other MHC linked genetic determinants [44, 220] but 

also by the strong correlation between the CD8 phenotypes and the severity of iron overload 

[43]. In order to address the relative impact of HFE and iron overload on the CD8+ T-

lymphocyte gene expression profile in the absence of such confounding variables, we used 

the HFE deficient mouse model (Hfe-/-). We performed a differential genome-wide expression 

analysis comparing Hfe-/- and wild-type (wt) mice, in conditions of either normal or iron rich 

diet. Results showed that few genes were differently expressed in the CD8+ T cells of Hfe-/- 

mice, 66 in total: 37 up-regulated and 29 down-regulated under the standard normal iron 

condition. A few more genes were differently expressed under high iron diet, 78 in total: 67 

up-regulated and 11 down-regulated. Lists of the transcripts differentially regulated in Hfe-/- in 

comparison with wild type C57BL/6 mice are provided in S2 and S3 Tables. Functional 

clustering analysis was performed to define categories among the differentially regulated 

genes. The results are presented as supplementary material in S4 Table. 

From all differentially expressed genes, only thirteen were found in common in both 

normal and high iron diet conditions (Fig. 2a), suggesting an impact of HFE on the CD8 

expression of these genes regardless of iron levels. Nevertheless, an additional effect of iron 

cannot be excluded. 

 

Fig. 2 Genome-wide expression analysis of CD8
+
 T lymphocytes from Hfe

-/-
 and wild type mice A) Venn 

diagram with comparative analysis between the selected genes found to be differently regulated by the two 

genotypes under the same iron diet condition. B) Differential gene expression of Hfe
-/- 

mice with normal and high 

iron diet relatively to C57BL/6 mice under the same iron diet conditions. Fold Change of the genes found to be 

differently expressed (T-test, p<0.05) and with fold change >1.8 are represented. 
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As illustrated in Fig. 2b, the most striking differences were found for S100a8 and 

S100a9, two calcium-binding proteins (calgranulins) involved in the regulation of several 

cellular processes such as cell cycle progression and differentiation [254, 255]. These genes 

were increased in Hfe-/- mice under normal iron diet (fold-changes of 16.52 for S100a8 and 

12.96 for S100a9) but notably, the fold-change differences were even higher under high iron 

diet conditions (fold-changes of 34.58 for S100a8 and 29.21 for S100a9). 

 

4.1 Correlational analysis of the differential expressed genes between Hfe-/- 

and wild type mice 

In order to understand the putative interaction of the calgranulins S100a8 and S100a9 

with the other differentially expressed genes, we further analyzed expression data from all 

individual mice maintained in high iron diet conditions (the condition where differential gene 

expression was more marked) and performed multi-variable correlation analysis to identify 

the most significantly co-expressed genes. The results are given as supplementary material 

illustrated in S1 Fig. In general, correlations with S100a9 were stronger than those observed 

with S100a8. The gene whose expression was most significantly correlated with S100a9 was 

Tyrobp (r=0.9931; p=0.0001) which codes for the tyrosine kinase binding protein DAP12 

(DNAX activation protein 12). Interestingly, DAP12 has been shown by others to be a marker 

of self-reactive, non-MHC restricted activated memory-phenotype CD8+ T cells, in contrast to 

the conventional CD8+ T cells [160]. Two other genes, Retn1g and Fcer1g were found 

strongly correlated with DAP12 expression (r=0.9756; p=0.0009 and r=0.9701; p=0.0013, 

respectively) and, accordingly, they were the next most significantly correlated with S100a9 

expression (r=0.9693; p=0.0014 and r=0.9558; p=0.0029, respectively). Retn1g codes for a 

novel resistin-like molecule expressed in hematopoietic tissues and expected to have a 

cytokine-like role [256] and Fcer1g codes for the gama Fc membrane receptor (FcR) which, 

like DAP12, is a tyrosine kinase binding protein with a fundamental role in immune effector 

functions [257]. Two genes, Cd69 and Clec2d, were the only inversely correlated with 

S100a9 (r=-0.9764; p<0.0001 and r=-0.9421; p=0.0005, respectively). These are respectively 

the members C and D of the C-type lectin domain family 2, a family of co-stimulatory 

molecules recently recognized as markers of very early T-cell activation [258]. In particular 

Cd69 has been described as a marker of non-circulating resident (resting) memory CD8+ T 

cells, and characteristically absent in the recirculating central and effector memory CD8+ T-

cell populations [259]. The only gene from the initial list of 13 that was not significantly 

correlated with S100a9 at the individual level was CD79a. In summary, results of a 

significantly increased expression of S100a9 in CD8+ T lymphocytes from Hfe-/- mice 

positively correlated with DAP12 and negatively correlated with Cd69 suggests that the effect 
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of HFE on CD8 activation may target preferentially the central/effector memory cells, which 

are also the cells predominantly decreased in HH patients [31]. 

None of the genes found altered in HH patients with a low CD8 phenotype (LEF1 and 

P2RY8) were significantly associated with the up regulation of calgranulins S100a8 and 

S100a9, showing that the two models of differential gene expression are not equivalent. 

Hence the putative mechanisms involving HFE as a player in CD8+ T-cell activation in mice 

or those involving HFE as a player in the homeostatic equilibrium of CD8+ T-cell subsets in 

HH patients may be substantially different. 

 

4.2 Genes encoding proteins of iron metabolism are not altered in CD8 + T cells 

from Hfe-/- mice 

To assess whether iron impacts on the differential gene expression of Hfe-/- mice we 

analyzed the expression of genes related with iron metabolism in normal iron diet conditions, 

where the differences between the two mouse models in terms of iron loading were more 

marked (Fig. 3). The expression of most iron related genes was, in general, very low in CD8+ 

T lymphocytes and not significantly different between the two genotypes except for lipocalin 

2 (Lcn2) that was significantly up-regulated in Hfe-/- in comparison with wild-type (p=0.0016). 

Lcn2 is an antimicrobial protein that acts by capturing and depleting bacterial siderophores 

and is known to have chemoattractant properties [260]. These results are shown as 

supplementary material in S5 Table. No significant correlations were found between the 

expression of any of the 13 genes differentially expressed in Hfe-/- mice and the expression of 

the iron related genes (data not shown). 

 

Fig. 3 Hepatic iron concentration of Hfe
-/-

 and C57BL/6 mice under a normal or a high-iron diet. Values are 

expressed as mean ± standard deviation. Statistical significant differences were calculated between mice 

genotype groups under the same diet condition (T-test * P<0.05 and ***P<0.001). 
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5.  S100a9 mRNA and protein expression are increased in human peripheral 

blood CD8+ T lymphocytes from HH patients  

The previous findings that calgranulins are over-expressed in CD8+ T lymphocytes of 

Hfe-/- mice, prompted us to investigate these proteins in human patients with HH in 

comparison to normal controls. This was done first by accessing S100a8 and S100a9 

expression at mRNA levels with qRT-PCR without any previously activation step. As shown 

in Fig. 4A, S100a8 and S100a9 mRNA expression in isolated CD8+ T lymphocytes were 

significantly higher in HH patients than in controls with fold change of 2.4 for S100a8 and 3.4 

for S100a9 (Wilcoxon paired test, p=0.016 and p=0.027 respectively). Although in the Hfe-/- 

mouse model these two proteins were similarly expressed, in humans S100a9 gene 

expression was found to be 4.5x higher than S100a8. Due to this high expression, we next 

analyzed S100a9 protein level by flow cytometry. 

 

Fig. 4 S100a8 and S100a9 expression in CD8+ T cells from HH patients and controls A) S100a8 and 

S100a9 mRNA expression in isolated CD8+ T lymphocytes from HH patients and normal controls. Statistical 

significance was obtained with paired analysis of patient-control of the day using the non-parametric Wilcoxon 

test, *p<0.05. B) Median fluorescence intensity of S100a9 expression in CD8+ T cells from peripheral blood from 

HH patients and normal controls. Statistical significance was obtained with paired analysis of patient versus 

control of the day using the parametric T-test, *p<0.0001. 

 

The expression of S100a9 protein was evaluated by MFI (median fluorescence 

intensity) in total lymphocytes, CD8+ and CD4+ T subpopulations. In addition, the expression 

of S100a9 was also evaluated in neutrophils and monocytes that are known to express this 

protein and were used as positive controls (see Material and Methods). Paired T-Test 

comparisons of S100a9 MFI values in the several populations were performed between HH 

patients (n=30) and controls (n=13) tested in the same day under the same conditions. 

Neutrophils and monocytes had significantly (p=0.013 and p=0.005 respectively) higher 

S100a9 MFI values in HH patients (mean±SEM: 13090±1039 and 2947±181 respectively) in 

comparison with controls (mean±SEM: 10291±293 and 2435±80 respectively). The 
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expression of S100a9 in total lymphocytes was also consistently higher in HH patients than 

in controls (mean±SEM: 481±15 in HH and 418±10 in controls, p<0.0001), although at a 

much lower level. Regarding the T-lymphocyte subsets, the expression of S100a9 in CD8+ T 

lymphocytes was significantly higher in HH patients in comparison to controls (mean±SEM: 

481±17 in HH and 421±11 in controls, p<0.0001) (Fig. 4B). The same result was obtained for 

CD4+ T cells (mean±SEM: 469±17 in HH and 388±9 in controls, p<0.0001). S100a9 

expression in each cell type was not significantly correlated with the total numbers of the 

respective cells. 

Altogether, results in both animal and human models of HH support a direct effect of 

HFE on the transcriptional profile of CD8+ T lymphocytes, HFE deficiency inducing the up 

regulation of the calgranulin S100a9. As an HFE-dependent effect, it is not surprising that 

calgranulins have not been found differentially expressed in the first genome-wide screen in 

patients, where all subjects carry the same HFE mutation. Hence, results of calgranulin 

expression do not constitute an explanation for the heterogeneity found in HH patients 

regarding the numbers and subsets of CD8+ T lymphocytes. These were better explained by 

changes in the signaling pathways described above with the results of the differential 

expression profiles in CD8 subsets. 
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Discussion 

In this paper we questioned whether or not HFE, a non-classical MHC-class I 

molecule, affects the triggering/signaling pathways of CD8+ T lymphocytes and if it 

contributes to the self-renewal and homeostasis of the three main CD8+ subpopulations of 

naïve, central memory and effector memory cells at the periphery. To do that, we used 

human and mouse models of HH, both lacking the cell surface expression of HFE. In a first 

step we analyzed the transcriptional profile of selected CD8+ T lymphocytes from HH patients 

homozygous for the C282Y HFE mutation. Because these patients share a common HFE 

defect but differ in the numbers of CD8+ T lymphocytes and subpopulations, this approach 

was expected to identify novel candidates associated with the CD8 phenotype independently 

of HFE. The signaling molecules CCR7 and LEF1, which are normally down regulated in 

naïve cells after activation [248], as well as ACTN1, a calcium dependent remodeling 

molecule, were significantly decreased in patients with a low CD8 phenotype. Conversely, 

the expression of FOSL2, P2RY8 and NAA50 molecules known to be involved in processes 

of activation/expansions of lymphocytes, were significantly increased in patients with low 

CD8 phenotype. By mRNA analysis in sorted populations we confirmed the expression 

patterns of these genes in naïve, central memory and effector memory cells. While CCR7 

and LEF1 were, as expected, mostly expressed in naïve cells we describe for the first time 

that and ACTN1 is also mostly expressed in naïve cells, that P2RY8 expression is 

preferentially observed in central memory and that FOSL2 is preferentially expressed in 

effector memory cells. This general pattern of subset specific gene expression was found 

both in HH patients and controls (see Fig. 1).Nevertheless, the expression of LEF1 and 

P2RY8 in central and effector memory CD8 subpopulations of HH patients differed 

significantly from controls, independently of their total cell numbers or serum iron levels. We 

interpret these results as evidence of an impact of HFE on the differentiation /maturation of 

CD8+ T lymphocytes, possibly in the conversion step of central memory into effector memory 

T cells described by Peixoto and co-workers with in vitro experiments [157]. The question 

remains, however, if a similar expression profile would be also observed in normal subjects 

displaying a low CD8 phenotype, in spite of a normal HFE. Amongst the healthy controls 

studied here (n=8), only one subject displayed a low CD8 phenotype (total CD8+ T 

lymphocytes=197x103/ml; total TEM T lymphocytes=0.058 x103/ml). But in contrast to HH 

patients, he had no evidence of a decreased LEF1 or increased P2RY8 expression in TCM or 

TEM subpopulations as compared to the other controls (data not shown), therefore not 

supporting a defect similar to that observed in HH. A formal proof to this concept, however, 

would imply an extended analysis of a large normal population, which was out of the scope 

of the present paper. 
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The observation that HH patients show an increased proportion of cells in G2/M 

phase in the periphery is compatible with the hypothesis of an increased activation state. In 

addition, the present study of apoptosis and cell cycle in human peripheral blood 

lymphocytes also brought into light a new aspect of lymphocyte biology which is the clear 

demonstration of marked differences in apoptosis and cell cycle progression between the 

subpopulations of CD4+ and CD8+ T lymphocytes. Although a higher percentage of apoptotic 

cells among the CD8+ relative to CD4+ T lymphocytes had been already observed in previous 

studies in the context of sepsis and pulmonary disease, its significance in normal 

physiological conditions had never been discussed [261, 262]. This is a relevant finding 

deserving fully consideration in future studies of lymphocyte activation and proliferation in the 

clinical setting. 

One pending question that could not be answered by the simple analysis of CD8 

expression data in HH patients was the clarification of the complex interaction between HFE, 

CD8+ T-lymphocyte numbers and the severity of iron overload. As mentioned in the results 

section, a limitation of the genome-wide screen experiment in HH patients was the fact that, 

due to the strict selection criteria used, i.e., patients grouped according to exclusive patterns 

of CD8 phenotypes (low or normal/high) which are significantly associated with the iron 

overload profiles, it was not possible to distinguish the relative interactions of iron overload or 

CD8 numbers with the expression profiles. Nevertheless, for the subsequent analysis of 

expression of the different genes in sorted CD8+ T-cell subsets we used a non-selected 

group of patients who were at different stages of treatment showing a wide range of 

transferrin saturation values not related to the CD8 phenotype. Although there was, in 

general, a higher variation in the gene expression of the different CD8+ T-cell subsets in HH 

patients than in controls (see Fig. 1B), we found no correlation with either transferrin 

saturation or total CD8 numbers, supporting the notion of a primary effect of HFE on CD8+ T-

cell signaling, independent of actual circulating iron levels. 

The above described impact of HFE on the CD8+ lymphocyte profile independently of 

iron levels does not exclude the hypothesis that CD8+ T lymphocytes may be equipped with 

some “sensing” system for iron. In this regard, it was interesting to observe a relationship 

between higher transferrin saturation and increased CD8+ T-cell apoptosis. Iron induced 

apoptosis had been already reported in human hepatocytes and rat neurons but it had never 

been described in human lymphocytes [263, 264]. It could be speculated that in this way iron 

overload could contribute to the decreased numbers of CD8+ T cells in HH. However, a direct 

relationship between apoptosis and cell numbers was not found. The most plausible 

explanation is a compensatory increased activation of CD8+ T cells contributing to a “more 

dynamic” pool of lymphocytes in HH as shown by an increase in the number of cells in G2/M. 

We should bear in mind, however, that an increased number of cells in G2/M is not 
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exclusively due to an increased number of mitotic cells but may also reflect an increased 

number of cells arrested in G2 for DNA repair, eventually in response to iron-induced 

oxidative injury. Of note, in a previous study we have shown that HH patients´ lymphocytes 

had lower DEB-induced chromosome instability possibly due to an adaptive response of the 

HH lymphocytes with increased DNA repair [265]. 

Once the question of the relationship of iron overload and the expression profile of 

CD8+ T lymphocytes could not be clarified in the human model of HH, we decided to address 

this question in animal models where genetic and environmental variables are controlled. For 

that purpose, we analyzed the transcriptional profile of CD8+ T lymphocytes from mice Hfe-/- 

in comparison to normal mice of the same genetic background, experiments performed in 

either normal or high iron diet conditions. Because all mice share the same MHC 

background, any putative modifier effect of other MHC related molecules could not be a 

variable here. The results revealed a set of differentially expressed genes between the two 

strains and three features deserve to be mentioned. First, the differentially expressed genes 

identified were mostly clustered in functional types related to lymphocyte signaling and 

activation, supporting the suggested inhibitory effect of wild-type HFE on CD8 activation 

[224]. Secondly, most of these differentially expressed genes differed in conditions of normal 

or high iron diet. Nevertheless, the observed impact of a high iron diet is only a partial effect 

because Hfe-/- mice are already constitutively iron overloaded. Finally the genes previously 

found altered in HH patients with a low CD8 phenotype were not altered in the Hfe-/- mouse 

model indicating that the mouse model does not completely recapitulate the phenotype of HH 

in humans, which is not surprising taking into consideration the fact that abnormalities in 

CD8+ T-cell numbers have never been described in these mice. 

The most striking differences in Hfe-/- mice were observed for the expression S100a8 

and S100a9, belonging to the S100 family of proteins containing two canonical EF-hand 

calcium-binding motifs involved in the calcium dependent control of cell differentiation, cell 

cycle progression and growth [254, 255]. The fold-change values of differential expression of 

these calgranulins between Hfe-/- and wild type mice was superior in mice fed in a high iron 

diet than for mice under a normal diet. Interestingly, a previously published genome wide 

mRNA expression study aimed to assess the effect of iron loading in muscle cells from mice 

also revealed that, among others, S100a8 and S100a9 were over expressed in iron overload 

conditions [266]. Further studies are needed to clarify the putative modulatory role of 

systemic iron on CD8+ T-cell activation. 

Results of calgranulins expression in mice was next translated to the human clinical 

model of HH where patients with a non-functional HFE showed an increased expression in 

both the mRNA expression and intracytoplasmatic protein expression of S100a9 in CD8+ T 

lymphocytes. It should be reminded however that an HFE-dependent altered gene 
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expression in CD8+ T lymphocytes does not necessarily mean that HFE is exerting its effect 

on the surface of these cells. On the contrary, it is more plausible to assume that an HFE-

dependent alteration in antigen-presenting cells may indirectly affect the CD8+ T-cell 

signaling. In this context, it was interesting to observe that, at the protein level, an increased 

expression of S100a9 was also observed in other blood cell types which are known to 

express this protein in higher amounts, namely neutrophils and monocytes. The additional 

finding of a strong correlation between the expression of S100a9 and the adaptor protein 

DAP12 is also of particular interest and may open new avenues to better explore the 

pathways involved in the effect of HFE on CD8+ T-cell activation. 

The putative role of iron on CD8+ T-lymphocyte activation and differentiation deserves 

some additional considerations. For many years we have reported results of a negative 

correlation between the numbers of CD8+ T lymphocytes and the severity of iron overload in 

HH [21, 30, 32], supporting the postulate that they may act as systemic “buffers” to protect 

against systemic iron toxicity [2, 23, 34, 267, 268]. Following that hypothesis, we have 

recently demonstrated the capacity of peripheral blood lymphocytes to uptake and process 

NTBI [234] and in that way to protect against tissue iron accumulation [269]. The 

mechanisms involved in NTBI transport and signaling in lymphocytes are still elusive. It is 

well known that non-classical MHC I molecules display different features from the classical 

ones, namely in their capacity to bind non peptide ligands [270]. In the recent paper by 

Reuben and co-workers on the inhibitory effect of HFE on CD8+ T-lymphocyte activation they 

excluded the interaction with TfR1 as a necessary step for HFE-mediated inhibition of MHC I 

presentation. It would be interesting to explore if HFE could affect NTBI uptake and in that 

way somehow influence lymphocyte activation. 

The assumption of a mechanistic model of interactions between HFE, lymphocyte 

activation and S100a9 expression may have important implications for a better 

understanding of HH and its clinical consequences. We propose that the “low CD8 

phenotype” in HH is the result of a homeostatic equilibrium of cells constantly triggered to 

activate and differentiate into more mature effector cells. This hypothesis is compatible with 

the concept first advanced by Reuben and co-workers that HFE is a negative regulator of 

CD8+ T-lymphocyte activation and that the lack of HFE may render CD8+T lymphocytes less 

tolerant to constant stimuli and more susceptible to autoimmune phenomena [224]. Notably, 

calgranulins have been described as damage-associated molecular pattern molecules 

(DAMPs) highly up regulated in various autoimmune disorders [255]. Recently Loser and 

colleagues provided clear evidence, in both animal and human autoimmune disorder models 

that local calgranulin production is essential for the induction of autoreactive CD8+ T cells 

and the development of systemic autoimmunity, an effect mediated via Toll-like receptor 4 

(TLR4) signaling [255]. The idea that a normal surface HFE expression may help preventing 
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the development of autoimmunity in homeostatic conditions [224] would imply that HH 

patients should be also more susceptible to autoimmune disorders. Although these are not 

commonly described in HH, one may recall here the fact that one of the most perturbing 

clinical features of HH is a severe arthropathy of still unknown pathogenesis that is not 

prevented by iron depletion, suggesting that other HFE-related mechanisms should be 

involved. Considering the recently described effect of S100a9 as an inflammation 

orchestrator in rheumatoid arthritis [255] and lupus erythematosus [271], it is tempting to 

speculate that an increased expression of S100a9 could also contribute to the arthropathy 

process in HH. More studies are certainly needed to address this question and to understand 

if there is any impact of activated CD8+ T lymphocytes on the pathogenesis of HH 

arthropathy, what is the role of calgranulins in that process and if they could constitute a 

promising novel therapeutic target. 
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Methods 

Ethics statement 

Animal care and procedures were in accordance with institutional guidelines. 

Conducted experiments in mice were approved by the IBMC.INEB Animal Ethics Committee, 

in accordance with the Portuguese Veterinary Director General guidelines. Regarding human 

studies, they were approved by the Institutional Ethical Committee of Santo António Hospital 

– Centro Hospitalar do Porto and written informed consent was obtained from all participants 

in accordance with the Declaration of Helsinki. 

 

Mice 

Mice models used in this study were C57BL/6 supplied by Charles River and mice 

homozygous for the disruption of the Hfe gene (Hfe-/-) generated under the same genetic 

background as described elsewhere [272]. They were females maintained at the IBMC’s 

Animal Care Facility fed ad libitum with the standard local rodent diet (Teklan 2014 Harlan 

with 175ppm of iron) until 14-15 weeks of age. After this, four C57BL/6 wild-type and four 

Hfe-/- mice were fed with the same diet until they were 16-17 weeks old consisting in the 

“normal iron diet” group. Other four C57BL/6 wild type and four Hfe-/- mice were fed, during 

one week, with a mix of 50% Harlan 2014 and 50% Harlan Iron Rich (supplemented with 

2.5% carbonyl iron corresponding to 25000 ppm of iron) (TD.06700) following 100% Harlan 

Iron Rich one more week until they were 16 -17 weeks old, consisting in the “high-iron diet” 

group. To confirm the validity of the different diet conditions, non-heme iron concentration 

was determined in the liver of each mouse (n=16). As expected, significantly higher iron 

content was observed in the Hfe-/- mice in comparison with C57BL/6 under the same diet 

(Fig. 3). 

 

Human subjects 

 All patients included in this study were diagnosed and are regularly followed-up at the 

Hemochromatosis Outpatient Clinic of Santo Antonio Hospital (Porto, Portugal) by the same 

dedicated clinician. Patients are all unrelated, and genetically characterized as homozygous 

for the C282Y mutation of the HFE gene. They were recruited to participate in the study in a 

consecutive mode at the time of their regular consultations. Retrospective clinical and 

laboratory data from patients were obtained from the clinical files under the responsibility of 

the clinician in charge. These included a) the individual iron overload profile at diagnosis 

estimated by the total body iron stores measured by quantitative phlebotomies [273], b) the 

actual iron parameters at the time of experiment measured by serum iron and transferrin 

saturation; c) the individual immune-phenotype with determinations of total CD8+ T-
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lymphocyte numbers as well as measures of the CD8+ T subsets of naïve, central memory 

and effector memory cells, and d) measures of CRP as a marker of systemic inflammation. 

For the purpose of phenotypic grouping, HH patients were classified into one of these two 

types: “the low CD8 phenotype” defined as patients with absolute CD8+ T-lymphocyte 

numbers consistently lower than 300x103/ml in at least 5 serial determinations, and the 

“normal/high CD8 phenotype” defined as patients with CD8+ T-lymphocyte numbers 

consistently higher or equal than 400x103/ml. These limits were defined based on the normal 

distribution of values described in the Portuguese control population considering the limit for 

the low CD8 phenotype as the 25% lower percentile and the limit for a normal/high CD8 

phenotype the average value in controls [43, 220]. Clinical and laboratory data from the 

patients have been published previously [30-32, 34, 244]. 

 Healthy controls for the study were consecutively recruited amongst volunteer blood 

donors at the Blood Bank of Santo Antonio Hospital during their regular visits for blood 

donation. 

 

Experimental procedures  

a) Genome-wide expression analysis of CD8+ T lymphocytes from HH patients  

 Twenty-four HH patients were selected for the present experiment which comprised 

two parts: a genome-wide gene expression screening, followed by a gene profiling of 

selected CD8+ T-cell subpopulations. In the first part (genome-wide gene expression 

screening) 10 patients were selected and stratified into the two subgroups of “low” (n=6) or 

“normal/high” (n=4) as defined above. As expected from previously described data [30-32, 

34, 244] , patients in the low group had characteristically a severe iron overload while in the 

other group subjects were asymptomatic. In the second part, 14 previously unselected 

patients were consecutively enrolled for gene expression profiling of sorted CD8+ T-cell 

subpopulations, independently of their CD8 phenotype or iron status. They were at different 

stages of treatment which allowed us to obtain a sample with a wide range of transferrin 

saturation values. A group of 8 healthy blood donors were used as controls. 

 For the purpose of genome-wide screening, CD8+ T lymphocytes from HH patients 

were positively selected from peripheral blood mononuclear cells (PBMCs) that were isolated 

from whole blood or buffy coat samples by density separation over Lymphoprep 1.077g/ml 

density gradient (Axis-Shield). CD8+ T-lymphocytes were positively selected from PBMCs 

(3x107 cells) by Magnetic-Activated Cell Sorting (MACS; Miltenyi Biotec), following the 

manufacturer’s instructions. Total RNA of MACS-purified CD8+ T cells was extracted using 

Mini RNeasy Plus Kit Mini (Qiagen, Valencia, CA) as recommended by the manufacturer. 

RNA concentration and purity were determined using optical density (OD) measurements at 

260 and 280 nm. All the samples had an OD260/OD280 ratio of 1.95 or higher. In each 
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experiment time total RNA concentration was normalized between patients and controls and 

converted into cDNA with NZY First-Strand cDNA Synthesis kit (Nzytech) as recommended 

by the manufacturer. Transcriptional profile of CD8+ T lymphocytes was assessed using the 

GeneChip Human Gene 1.0 ST array (Affymetrix). The RNA processing and hybridization 

steps, carried out at the Genomics Core facility of the European Molecular Biology 

Laboratory (EMBL, Heidelberg), were performed as recommended by the manufacturer. 

Upon filtering and normalization of the raw data, samples were grouped according to the 

CD8 low or normal/high profiles and subjected to a between-group analysis using the 

GeneSpring GX software (Agilent). Genes which exhibited at least a 1.5-fold change in 

expression were considered as up- or down-regulated. Quantitate real-time PCR was used to 

confirm differential expression. 

 For the purpose of gene profiling experiments in separated CD8+ T-cell 

subpopulations, unprocessed peripheral blood samples were stained with the following 

fluorochrome-conjugated mouse anti-human monoclonal antibodies: anti-CD8a APC-eFluor 

780 (eBioscience), anti-CD45RA APC (eBioscience) and anti-CCR7 FITC (R&D System). 

After red blood cell lysis, the subpopulations of CD8+ T-lymphocytes were flow sorted in a 

FACS Aria (BD) instrument according to the gating strategy previously described [31] as: 

naïve (TN, CD8+CCR7+CD45RA+), central memory (TCM, CD8+CCR7+CD45RA-) and effector 

memory (TEM, CD8+CCR7-CD45RA+/-). Samples were sorted until 3000 cells from each gated 

subpopulation were collected. Cells were sorted according to the gating strategy illustrated in 

Fig. 1A. In order to avoid the risk of low representativity after cell sorting, we did not further 

discriminate effector memory cells according to CD45RA expression as previously described 

[31]. This decision was supported by our previous observation that the cell subpopulation 

that mostly contributes to the variation in the total number of peripheral CD8+ T cells, both in 

HH patients and normal controls, is the entire effector memory population [31]. Total RNA 

was isolated from sorted cells using the RNeasy Plus Micro Kit (QIAGEN), according to the 

manufacturer’s guidelines. Gene expression in sorted CD8+ T-cell subpopulations: was 

assessed for a group of specific candidate genes: LEF1, ACTN1, CCR7; NAA50; P2RY8 and 

FOSL2. cDNAs resulting from the reverse transcription reaction with SuperScript First-Strand 

Synthesis System (Invitrogen) were subjected to a first round of PCR amplification with 

specific primers (S6 Table). To quantify the expression levels of all genes of interest in each 

CD8+ T-lymphocyte subpopulation, a second seminested real-time PCR was performed in an 

iCycler iQ5 (Bio-Rad) using iQ SYBR Green Supermix (Bio-Rad) [274]. At the end of the 

PCR cycling, melting curves were generated to ascertain the amplification of a single product 

and the absence of primer dimers. Results were normalized to GAPDH as endogenous 

control. 
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b) Apoptosis and cell cycle studies in HH patients 

Twenty HH patients and 12 controls were used for apoptosis and cell cycle studies. 

These included 10 patients classified with the low CD8 phenotype and 10 patients classified 

as normal/high CD8 phenotype, as described above. During the study period, patients were 

evaluated at different stages of their treatment course. Four patients were under intensive 

phlebotomy treatment and the remaining 16 were receiving maintenance therapy. The 

inclusion of patients at different stages of iron load was also important in order to allow an 

analysis of cell cycle parameters in relation to a wide range of transferrin saturation values. 

For detection of apoptotic T cells, blood samples were collected into tubes containing 

sodium heparin and PBMCs were separated by centrifugation on the Lymphoprep 1.077g/ml 

density gradient (Axis-Shield) after 12 hour resting at 4ºC. Apoptotic T cells from HH patients 

were assessed through flow cytometry, using the Annexin V-FITC/7-AAD Kit (Beckman 

Coulter, BC), containing FITC conjugated Annexin V, 7-AAD staining solution and Annexin V 

binding buffer, following the manufactures’ instructions. Samples were acquired in a flow 

cytometer EPICS-XL-MCL (BC) using the System II software (BC). Data were analyzed 

using the System II software (BC). The percentage of viable (Annexin V negative/7-AAD 

negative), early apoptotic (Annexin V positive/7-AAD negative) and late apoptotic or already 

dead (Annexin V positive/7-AAD positive) CD8+ and CD4+ T cells was calculated. 

In order to analyze the distribution of CD8+ and CD4+ T cells throughout the cell cycle 

phases: blood sample was submitted to cell surface immunophenotyping with FITC-

conjugated mouse anti-human CD4 or anti-human CD8 IgG mAb followed by staining with 

FITC conjugated rabbit anti-mouse IgG polyclonal Ab and cellular DNA measurement using 

the DNA PREP Reagents Kit (BC) according to a protocol that was described in detail 

elsewhere [275]. After staining, samples were acquired in an EPICS-XL-MCL flow cytometer 

(BC) using the System II software (BC). Data were analyzed using specific software for DNA 

analysis Multicyle for Windows (Phoenix Flow System, PFS). The percentages of CD8+ and 

CD4+ T cells in each cell cycle phase (G0/G1, S and G2/M) were calculated. 

 

c) Genome-wide expression analysis of CD8+ T lymphocytes from Hfe -/- and 

wild type mice 

 Peripheral blood from each mice (n=16) was collected by heart puncture 

(approximately 500µl) and CD8+ T-lymphocyte population was isolated by FACS-ARIA I cell 

sorting using anti-CD8 APC antibody (BD Bioscience). The purities of isolated CD8+ T cells 

were measured by flow-cytometric analysis of cell markers (CD8) and in all samples >95% of 

purity was obtained. The maximum number of CD8+ T cells was sorted by each mouse blood 

sample. Total RNA was extracted with RNeasy Plus Micro kit (QIAGEN) according to the 

manufacture`s guidelines. Total RNA integrity was evaluated by Agilent 2010 Bioanalyzer 
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protocol. To overcome the low RNA concentration, we performed the Ovation Pico WTA 

system protocol by NuGEN to amplify the RNA samples followed by cDNA synthesis using 

the WT Ovation Exon module. 

Transcriptional profile of CD8+ T lymphocytes from mice was assessed using the 

GeneChip Mouse Gene ST 1.0 array (Affymetrix, Santa Clara, CA, USA). The RNA 

processing and hybridization steps, carried out at the Genomics Core facility of the European 

Molecular Biology Laboratory (EMBL, Heidelberg), were performed as recommended by the 

manufacturer. Data from the GeneChip were imported into GeneSpring GX 11.5 software 

(Agilent) and the expression value for each gene was normalized by using the Robust 

Multichip Average (RMA) 16 algorithm. Results were grouped according to mice genotype 

and iron diet conditions, i.e. wild type mice with normal or high-iron diet, and Hfe-/- with 

normal or high iron diet. Genes which exhibited at least a 1.8-fold change in expression were 

considered as up- or down-regulated. 

 

d) Human translational study of the candidate genes found differently 

expressed in Hfe-/- mice 

Subsequent studies were done for the most significantly different expressed genes 

found in mice study, calgranulin genes S100a8 and S100a9, consisting in mRNA and protein 

expression in HH patients and controls. 

Gene expression of S100a8 and S100a9 was assessed in sorted CD8+ T cells from 

HH patients and controls. For this, PBMCs were isolated from whole blood or buffy coat 

samples by density separation over Lymphoprep and CD8+ T-lymphocytes were selected 

MACS, as described above. Total RNA, of MACS-purified CD8+ T cells, was extracted as 

described above. In each experiment time total RNA concentration was normalized between 

patients and controls and converted into cDNA with NZY First-Strand cDNA Synthesis kit 

(Nzytech) as recommended by the manufacturer. Quantitative real-time PCR was performed 

in an iCycler iQ5 (Bio-Rad) using iQ SYBR Green Supermix (Bio-Rad) using specific primers 

for each gene (S7 Table). At the end of the PCR cycling, melting curves were generated to 

ascertain the amplification of a single product and the absence of primer dimers. Results 

were normalized to 18S gene as endogenous control. In order to access the reproducibility of 

the technique, biological replicates were performed consisting in the analysis of different 

samples of the same patient in different days. This was always done against a different 

control for the experiment of the day (n=12). Since reproducibility of the replicates was 

achieved, all samples were included for analysis (n=12). Paired analysis of patient-control of 

the day was performed. 

Intracellular protein expression of S100a9 was accessed by flow cytometry in total 

peripheral blood samples from 30 HH patients and 13 controls. For this, peripheral blood was 
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collected into K3-ethylene-diamine-tetracetic acid (EDTA-K3)-containing tubes. The blood 

samples were stained with the following fluorochrome-conjugated mouse anti-human 

monoclonal antibodies: anti-human CD3 FITC (eBioscience) and anti-human CD8 PerCP 

(eBioscience). Leukocyte fixation and subsequent permeabilization of the cells was then 

performed using the Fix & Perm Cell Permeabilization Kit (Invitrogen). Anti-human IgG1 

S100a9 PE (sc-53187, Santa Cruz, CA) or the PE-conjugated isotype control was used for 

intracellular staining. Samples were acquired in FACS Canto v.2 flow cytometer (BD) under 

the same conditions, using the FACSDiva software (BD). In each experiment day at least a 

control sample was tested in parallel with patient’s samples. Data were analyzed in the 

Infinicyt software (Cytognos SL, Salamanca, Spain) and the median fluorescence intensity 

(MFI) of the S100a9 expression was determined in neutrophils, monocytes and lymphocytes 

defined according to SSC and FSC characteristics, in CD8+ lymphocytes defined by the 

CD3+CD8+ population after lymphocyte gating and in CD4+ lymphocytes defined as 

CD3+CD8- population after lymphocyte gating. Results were analyzed as a ratio of 

patient/control of the day. 

 

Statistical analysis  

Correlations among variables were analyzed by multiple-variable correlation analysis 

with calculation of various statistics, including covariances and partial correlations. 

Differences in group means or sample distributions were tested respectively by the Student’s 

t-test and the Kolmogorov-Smirnov (KS) two sample test as appropriate. For analysis of 

Affymetrix expression data we used the normalized values. For analysis of individual 

expression values in sorted CD8+ T-cell subsets, a systematic outliers’ exclusion was 

performed in HH patients´ data in order to permit comparisons with controls’ group means 

assuming equal variances. The non-parametric Wilcoxon test for paired samples was used to 

compare mRNA expression levels of S100a8 and S100a9 between patients and controls 

analyzed on the same day. The parametric paired T-test was used to compare protein 

expression of S100a9 by FACS (MFI) between patients and controls analyzed in the same 

day.  

Analysis of differentially expressed genes, resulting from genome-wide studies in 

mice, was clustered into biologically relevant categories using the bioinformatics resources: 

Database for Annotation, Visualization and Integrated Discovery (DAVID, 

http://david.abcc.ncifcrf.gov/) and Web-based Gene SeT AnaLysis Toolkit (WebGestalt, 

http://bioinfo.vanderbilt.edu/wg2/). For Gene Ontology (GO) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathways enrichment analysis, the minimum of two genes 

were required for identification of relevant biological pathway, with statistically significance. 

The p value of 0.05 was taken as the level of statistical significance. Affymetrix data were 
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analyzed in GeneSpring GX software (Agilent) and all other statistical analysis were 

performed with StatGraphics software (Statgraphics Statistical Graphics System, version 

16.0). 
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Supplementary Material 

Fig.1 Positive (A) and negative (B) correlations of S100a8 and S100a9 with the other 

differentially expressed genes. Results were obtained by multi-variable correlation analysis of 

the normalized gene expression values in individual mice on high iron diet conditions. The 

partial correlation coefficients and significance levels (P value in brackets) for the different 

gene combinations are shown. The relative strength of the correlations is highlighted by 

colour grading of blue (for positive correlations) or yellow (for negative correlation). Genes 

are ordered by the strength of their associations with S100a9. 
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Total CD8 T lymphocytes 

(0,09-0,73x106/ml)

naive + central memory 

(0,044-0,459x106/ml)

effector memory                

(0,060-0,403x106/ml) TBIS (1,5-17,4g)

CCR7 n.s. r=+0,95 R 2 =91% (p=0,0032) n.s. r=-0,78 R 2 =61% (p=0,0129)

LEF1 n.s. r=+0,79 R 2 =63% (p=0,0601) n.s. r=-0,70 R 2 =48% (p=0,0379)

ACTN1 n.s. r=+0,87 R 2 =75% (p=0,0249) n.s. r=-0,79 R 2 =62% (p=0,0115)

NAT13 r=-0,79 R 2 =62% (p=0,0070) n.s. r=-0,91 R 2 =84% (p=0,0108) n.s.

P2YR8 r=-0,86 R 2 =74% (p=0,0015) n.s. r=-0,88 R 2 =78% (p=0,0191) n.s.

FOSL2 r=-0,70 R 2 =49% (p=0,0243) n.s. r=-0,81 R 2 =65% (p=0,0525) n.s.

n.s.=not statistically significant
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CD8 T cell subsets

S1 Table: Clinical correlations of the genes identified in the genome-wide differential 

screen. Indicated are the correlation coefficient (r) R squared (R2) and significance level (p) 

values obtained by simple regression analyses between the mRNA expression levels for 

each indicated gene and the clinical variables reflecting the immune-phenotype (CD8 T 

lymphocyte and subset counts) and the iron overload profile defined by estimated total body 

iron stores (TBIS). For each clinical variable are indicated the ranges of values in the total 

HH patient population analysed. 
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S2 Table Genes up and down regulated in Hfe knockout CD8+ T lymphocytes in 

comparison with C57BL/6 mice under normal diet condition 

Transcripts 
ID 

Gene 
abbreviation 

Gene name 
Fold 
Change 

p-
value 

Gene ID 

10493831 S100a8 S100 calcium binding protein A8 (calgranulin A) 16,53 0,00 20201 

10499861 S100a9 S100 calcium binding protein A9 (calgranulin B) 12,96 0,00 20202 

10362674 Rnu3a U3A small nuclear RNA 5,31 0,00 19850 

10436100 Retnlg resistin like gamma 4,67 0,00 245195 

10456005 Cd74 
CD74 antigen (invariant polypeptide of major 
histocompatibility complex, class II antigen-
associated) 

4,62 0,01 16149 

10372648 Lyz2 lysozyme 2 4,33 0,01 17105 

10444291 H2-Ab1 histocompatibility 2, class II antigen A, beta 1 3,75 0,01 14961 

10493812 S100a4 S100 calcium binding protein A4 3,44 0,00 20198 

10450154 H2-Aa histocompatibility 2, class II antigen A, alpha 3,35 0,01 14960 

10570434 Ifitm1 interferon induced transmembrane protein 1 3,12 0,00 68713 

10551025 Cd79a CD79A antigen (immunoglobulin-associated alpha) 2,97 0,00 12518 

10468517 Mxi1 Max interacting protein 1 2,90 0,03 17859 

10512487 Rmrp RNA component of mitochondrial RNAase P 2,81 0,02 19782 

10444236 H2-DMb1/DMb2 histocompatibility 2, class II, locus Mb1 and Mb2   2,76 0,00 
15000 | 
14999 

10508465 Marcksl1 MARCKS-like 1 2,68 0,00 17357 

10551883 Tyrobp TYRO protein tyrosine kinase binding protein 2,63 0,02 22177 

10508721 Snora44 small nucleolar RNA, H/ACA box 44 2,59 0,03 100217418 

10550509 Pglyrp1 peptidoglycan recognition protein 1 2,50 0,00 21946 

10360070 Fcer1g Fc receptor, IgE, high affinity I, gamma polypeptide 2,49 0,04 14127 

10467979 Scd1 stearoyl-Coenzyme A desaturase 1 2,47 0,03 20249 

10429520 Ly6d lymphocyte antigen 6 complex, locus D 2,40 0,03 17068 

10538871 Gm4964 predicted gene 4964 2,37 0,04 243420 

10440576 Rnf160 ring finger protein 160 2,36 0,00 78913 

10392142 Cd79b CD79B antigen 2,20 0,01 15985 

10558769 Ifitm1 interferon induced transmembrane protein 1 2,19 0,01 68713 

10379727 Gm11428 predicted gene 11428 2,10 0,03 100034251 

10414262 Ear2 
eosinophil-associated, ribonuclease A family, 
member 2 

2,08 0,03 13587 

10349593 Faim3 Fas apoptotic inhibitory molecule 3 2,06 0,00 69169 

10548817 Plbd1 phospholipase B domain containing 1 2,04 0,05 66857 

10466172 Ms4a1 
membrane-spanning 4-domains, subfamily A, 
member 1 

1,99 0,05 12482 

10548535 Klra3 killer cell lectin-like receptor, subfamily A, member 3 1,97 0,03 16634 

10430818 Tnfrsf13c 
tumor necrosis factor receptor superfamily, member 
13c 

1,97 0,01 72049 

10556113 Rbm3 RNA binding motif protein 3 1,95 0,00 19652 

10481627 Lcn2 lipocalin 2 1,91 0,00 16819 

10535458 Zdhhc4 zinc finger, DHHC domain containing 4 1,89 0,03 72881 

10563338 Ppp1r15a 
protein phosphatase 1, regulatory (inhibitor) subunit 
15A 

1,87 0,03 17872 

10422227 Spry2 sprouty homolog 2 (Drosophila) 1,86 0,04 24064 

10398286 Mir342 microRNA 342 -4,69 0,01 723909 

10515694 Szt2 seizure threshold 2 -3,04 0,02 230676 

10503198 Chd7 chromodomain helicase DNA binding protein 7 -3,02 0,01 320790 

10405779 Mir23b microRNA 23b -2,78 0,03 387217 



Chapter 3.4 

126 
 

S2 Table Genes up and down regulated in Hfe knockout CD8+ T lymphocytes in 

comparison with C57BL/6 mice under normal diet condition (cont.) 

  

  

Transcripts 
ID 

Gene 
abbreviation 

Gene name 
Fold 
Change 

p-
value 

Gene ID 

10456490 Cep192 centrosomal protein 192 -2,66 0,02 70799 

10512827 Gm568 predicted gene 568 -2,50 0,03 230143 

10351043 Snord47 small nucleolar RNA, C/D box 47 -2,50 0,02 100217446 

10410311 Zfp456 zinc finger protein 456 -2,43 0,02 408065 

10447036 n-R5s65 nuclear encoded rRNA 5S 65 -2,39 0,04  

10523134 Pf4 platelet factor 4 -2,35 0,04 56744 

10503218 Chd7 chromodomain helicase DNA binding protein 7 -2,34 0,05 320790 

10434396 Abcf3 
ATP-binding cassette, sub-family F (GCN20), 
member 3 

-2,29 0,00 27406 

10412900 Nkiras1 NFKB inhibitor interacting Ras-like protein 1 -2,21 0,00 69721 

10502934 Rabggtb RAB geranylgeranyl transferase, b subunit -2,21 0,00 19352 

10531776 Fam175a family with sequence similarity 175, member A -2,10 0,00 70681 

10548333 Cd69 CD69 antigen -2,08 0,00 12515 

10457838 Zfp397os zinc finger protein 397 opposite strand -2,04 0,00 328918 

10586250 Dennd4a DENN/MADD domain containing 4A -2,03 0,02 102442 

10546706 Rybp RING1 and YY1 binding protein -2,01 0,02 56353 

10574141 Nlrc5 NLR family, CARD domain containing 5 -1,99 0,04 434341 

10442032 BC002059 
cDNA sequence BC002059, mRNA (cDNA clone 
MGC:6110 ) 

-1,90 0,01 213811 

10410530 Slc6a19 
solute carrier family 6 (neurotransmitter transporter), 
member 19 

-1,90 0,04 74338 

10542156 Clec2d C-type lectin domain family 2, member d -1,89 0,00 93694 

10525487 4932422M17Rik RIKEN cDNA 4932422M17 gene -1,89 0,03 74366 

10522009 Pgm1 phosphoglucomutase 1 -1,87 0,02 66681 

10515363 Mmachc 
methylmalonic aciduria cblC type, with 
homocystinuria 

-1,87 0,05 67096 

10443459 Sfrs3 splicing factor, arginine/serine-rich 3 (SRp20) -1,85 0,00 20383 

10492582 Mir15b microRNA 15b -1,85 0,05 387175 

10501048 Dennd2d DENN/MADD domain containing 2D -1,84 0,02 72121 
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S3 Table: Genes up and down regulated in Hfe knockout CD8+ T lymphocytes in 

comparison with C57BL/6 mice under high iron diet condition 

Transcripts 
ID 

Gene 
abbreviation 

Gene name  
Fold  
Change 

p-
value 

Gene ID 

10493831 S100a8 S100 calcium binding protein A8 (calgranulin A) 34,58 0,00 20201 

10499861 S100a9 S100 calcium binding protein A9 (calgranulin B) 29,21 0,00 20202 

10362674 Rnu3a U3A small nuclear RNA 9,10 0,00 19850 

10435497 Stfa2l1 stefin A2 like 1 6,49 0,05 268885 

10436100 Retnlg resistin like gamma 6,36 0,00 245195 

10456005 Cd74 
CD74 antigen (invariant polypeptide of major 
histocompatibility complex, class II antigen-
associated) 

3,71 0,05 16149 

10551883 Tyrobp TYRO protein tyrosine kinase binding protein 3,48 0,00 22177 

10399428 Snord118 small nucleolar RNA, C/D box 118 3,25 0,00 100216530 

10377429 Snord118 small nucleolar RNA, C/D box 118 3,25 0,00 100216530 

10383756 Ifitm2 interferon induced transmembrane protein 2 3,18 0,01 80876 

10569017 Ifitm3 interferon induced transmembrane protein 3 3,18 0,03 66141 

10379727 Gm11428 predicted gene 11428 2,89 0,02 100034251 

10444291 H2-Ab1 histocompatibility 2, class II antigen A, beta 1 2,77 0,03 14961 

10551025 Cd79a CD79A antigen (immunoglobulin-associated alpha) 2,74 0,04 12518 

10550509 Pglyrp1 peptidoglycan recognition protein 1 2,65 0,01 21946 

10539577 Spr sepiapterin reductase 2,60 0,04 20751 

10583286 Gpr83 G protein-coupled receptor 83 2,58 0,04 14608 

10545014 Vopp1 
vesicular, overexpressed in cancer, prosurvival 
protein 1 

2,51 0,03 232023 

10360070 Fcer1g Fc receptor, IgE, high affinity I, gamma polypeptide 2,46 0,00 14127 

10427908 Gm9948 predicted gene 9948 2,45 0,02 791293 

10553299 Ifitm2 interferon induced transmembrane protein 2 2,42 0,02 80876 

10344799 Cspp1 centrosome and spindle pole associated protein 1 2,42 0,02 211660 

10527638 Alox5ap arachidonate 5-lipoxygenase activating protein 2,40 0,01 11690 

10368508 2610036L11Rik RIKEN cDNA 2610036L11 gene 2,38 0,02 66311 

10397536 Gm4005 predicted gene 4005 2,37 0,02 100042747 

10588223 Anapc13 anaphase promoting complex subunit 13 2,36 0,01 69010 

10493820 S100a6 S100 calcium binding protein A6 (calcyclin) 2,36 0,00 20200 

10364293 Ube2g2 ubiquitin-conjugating enzyme E2G 2 2,28 0,04 22213 

10473250 Mrpl18 mitochondrial ribosomal protein L18 2,21 0,02 67681 

10569014 Ifitm2 interferon induced transmembrane protein 2 2,21 0,01 80876 

10437963 Fam128b family with sequence similarity 128, member B 2,19 0,00 72083 

10590298 Eif1b eukaryotic translation initiation factor 1B 2,18 0,01 68969 

10452110 2410015M20Rik RIKEN cDNA 2410015M20 gene 2,16 0,01 224904 

10603833 Usmg5 upregulated during skeletal muscle growth 5 2,14 0,02 66477 

10542156 Clec2d C-type lectin domain family 2, member d 2,14 0,01 93694 

10392142 Cd79b CD79B antigen 2,12 0,01 15985 

10412211 Gzma granzyme A 2,11 0,00 14938 

10514466 Jun jun proto-onogene 2,11 0,01 16476 

10575961 Usp10 ubiquitin specific peptidase 10 2,10 0,01 22224 

10356999 Prdx2 peroxiredoxin 2 2,09 0,04 21672 

10517336 Clic4 chloride intracellular channel 4 (mitochondrial) 2,08 0,02 29876 

10440918 Tmem50b transmembrane protein 50B 2,07 0,04 77975 
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S3 Table: Genes up and down regulated in Hfe knockout CD8+ T lymphocytes in 

comparison with C57BL/6 mice under high iron diet condition (cont.) 

 

 
 
  

Transcripts 
ID 

Gene 
abbreviation 

Gene name  
Fold  
Change 

p-
value 

Gene ID 

10362896 Cd24a CD24a antigen 2,05 0,01 12484 

10565081 Timm17a translocase of inner mitochondrial membrane 17a 2,03 0,00 21854 

10576391 Rab4a RAB4A, member RAS oncogene family 1,99 0,03 19341 

10416950 Mir18 microRNA 18 1,98 0,03 387135 

10605943 Pdzd11|Kif4 PDZ domain containing 11 | kinesin family member 4 1,97 0,01 
72621 | 
16571 

10604019 1810037I17Rik RIKEN cDNA 1810037I17 gene 1,97 0,05 67704 

10574151 Nlrc5 NLR family, CARD domain containing 5 1,96 0,02 434341 

10396862 Actn1|Strm actinin, alpha 1 | striamin 1,93 0,01 109711 

10468287 Usmg5 upregulated during skeletal muscle growth 5 1,92 0,03 66477 

10414958 Tcra-V8 T-cell receptor alpha, variable 8 1,92 0,04 100043322 

10450814 Ppp1r11 
protein phosphatase 1, regulatory (inhibitor) subunit 
11 

1,91 0,05 76497 

10487476 1500011K16Rik RIKEN cDNA 1500011K16 gene 1,91 0,01 67885 

10490221 Atp5e 
ATP synthase, H+ transporting, mitochondrial F1 
complex, epsilon subunit 

1,91 0,02 67126 

10371002 Lsm7 
LSM7 homolog, U6 small nuclear RNA associated 
(S. cerevisiae) 

1,90 0,05 66094 

10430778 Phf5a PHD finger protein 5A 1,90 0,03 68479 

10345183 Cdk10 cyclin-dependent kinase 10 1,89 0,01 234854 

10349648 Ctse cathepsin E 1,88 0,04 13034 

10603837 Ndufb11 
NADH dehydrogenase (ubiquinone) 1 beta 
subcomplex, 11 

1,87 0,02 104130 

10492757 Plrg1 pleiotropic regulator 1, PRL1 homolog (Arabidopsis) 1,87 0,02 53317 

10416199 Entpd4 ectonucleoside triphosphate diphosphohydrolase 4 1,86 0,04 67464 

10512901 Mrpl50 mitochondrial ribosomal protein L50 1,85 0,00 28028 

10450640 Mrps18b mitochondrial ribosomal protein S18B 1,85 0,00 66973 

10449356 AI413582 expressed sequence AI413582 1,83 0,03 106672 

10373577 Ormdl2|Dnajc14 
ORM1-like 2 (S. cerevisiae) | DnaJ (Hsp40) 
homolog, subfamily C, member 14 

1,83 0,02 
66844 | 
74330 

10366043 Dusp6 dual specificity phosphatase 6 1,81 0,04 67603 

10548333 Cd69 CD69 antigen -2,49 0,00 12515 

10396862 Actn1|Strm actinin, alpha 1 | striamin -1,93 0,01 
109711 | 
20904 

10542156 Clec2d C-type lectin domain family 2, member d -2,14 0,01 93694 

10345183 Cdk10 cyclin-dependent kinase 10 -1,89 0,01 234854 

10575961 Usp10 ubiquitin specific peptidase 10 -2,10 0,01 22224 

10574151 Nlrc5 NLR family, CARD domain containing 5 -1,96 0,02 434341 

10344799 Cspp1 centrosome and spindle pole associated protein 1 -2,42 0,02 211660 

10397536 Gm4005 predicted gene 4005 -2,37 0,02 100042747 

10583286 Gpr83 G protein-coupled receptor 83 -2,58 0,04 14608 

10416950 Mir18 microRNA 18 -1,98 0,03 387135 

10416199 Entpd4 ectonucleoside triphosphate diphosphohydrolase 4 -1,86 0,04 67464 
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S4 Table: Functional categories of the significantly different expressed genes between 

Hfe knockout and wild type  

Category Term Count P value Genes 

CLUSTER 1     

SP_PIR_KEYWORDS Immune response 8 3.41E-07 
Cd79a, Cd74, H2-Ab1, H2-Aa, Pglyrp1, Tnfrsf13c, 
Cd79b, Faim3 

GOTERM_BP_FAT 
Antigen processing and 
presentation of exogenous 
peptide antigen 

5 9.42E-07 Cd74, H2-DMb1, Fcer1g, H2-Ab1, H2-Aa 

GOTERM_BP_FAT 
Positive regulation of 
leukocyte activation 

4 1.95E-03 Cd74, Fcer1g, H2-Aa, Tnfrsf13c 

CLUSTER 2 
    

GOTERM_CC_FAT Late endosome 4 2.18E-04 Cd79a, Cd74, H2-DMb1, H2-Ab1 

KEGG_PATHWAY 
Intestinal immune network 
for iga production 

4 4.92E-04 H2-DMb1, H2-Ab1, H2-Aa, Tnfrsf13c 

KEGG_PATHWAY Graft-versus-host disease 4 5.85E-04 Klra3, H2-DMb1, H2-Ab1, H2-Aa 

CLUSTER 3 
    

GOTERM_BP_FAT 
Positive regulation of 
response to stimulus 

6 1.02E-04 Cd79a, Fam175a, Fcer1g, H2-Aa, Tnfrsf13c, Cd79b 

INTERPRO 
Phosphorylated 
immunoreceptor signaling 
itam 

3 1.31E-04 Cd79a, Fcer1g, Cd79b 

GOTERM_BP_FAT 
Immune response-activating 
signal transduction 

3 6.86E-03 Cd79a, Fcer1g, Cd79b 

GOTERM_BP_FAT 
Immune response-regulating 
signal transduction 

3 8.04E-03 Cd79a, Fcer1g, Cd79b 

CLUSTER 4 
    

GOTERM_BP_FAT Immune response 11 1.83E-07 
Pf4, Cd79a, Cd74, H2-DMb1, Fcer1g, H2-Ab1, H2-Aa, 
Pglyrp1, Tnfrsf13c, Cd79b, Faim3 

SP_PIR_KEYWORDS Disulfide bond 17 1.50E-04 
Lcn2, Pf4, Klra3, Tyrobp, Cd79a, Lyz2, H2-Ab1, H2-
Aa, Pglyrp1, Tnfrsf13c, Cd79b, Faim3, Cd74, Fcer1g, 
Ly6d, Clec2d, Cd69 

SP_PIR_KEYWORDS Signal 16 3.59E-03 
Lcn2, Pf4, Tyrobp, Cd79a, H2-DMb1, Lyz2, H2-Ab1, 
H2-Aa, Pglyrp1, Cd79b, Faim3, Retnlg, Gm11428, 
Fcer1g, Ly6d, Plbd1 

INTERPRO 
Ipr007110:immunoglobulin-
like 

5 3.44E-02 Cd79a, H2-DMb1, H2-Ab1, H2-Aa, Cd79b 

CLUSTER 5 
    

GOTERM_BP_FAT 
Positive regulation of 
immune system process 

6 1.67E-04 Cd79a, Cd74, Fcer1g, H2-Aa, Tnfrsf13c, Cd79b 

GOTERM_BP_FAT Go:0001775~cell activation 5 3.60E-03 Ms4a1, Pf4, Cd79a, Cd74, Fcer1g 

GOTERM_BP_FAT 
Go:0045321~leukocyte 
activation 

4 1.86E-02 Ms4a1, Cd79a, Cd74, Fcer1g 

CLUSTER 6 
    

UP_SEQ_FEATURE 
Calcium-binding region:2; 
high affinity 

3 4.23E-04 S100a8, S100a4, S100a9 

UP_SEQ_FEATURE 
Calcium-binding region:1; 
low affinity 

3 4.23E-04 S100a8, S100a4, S100a9 

PIR_SUPERFAMILY Pirsf002353:s-100 protein 3 4.73E-04 S100a8, S100a4, S100a9 

INTERPRO 
Ipr001751:s100/cabp-9K-
type, calcium binding 

3 1.54E-03 S100a8, S100a4, S100a9 

SP_PIR_KEYWORDS Ef hand 3 2.22E-03 S100a8, S100a4, S100a9 

SP_PIR_KEYWORDS Calcium binding 3 6.17E-03 S100a8, S100a4, S100a9 

CLUSTER 7 
    

GOTERM_BP_FAT Leukocyte chemotaxis 3 2.30E-03 Pf4, Fcer1g, S100a9 

GOTERM_BP_FAT Cell chemotaxis 3 2.30E-03 Pf4, Fcer1g, S100a9 

GOTERM_BP_FAT Chemotaxis 4 2.8E-03 Pf4, S100a8, Fcer1g, S100a9 

GOTERM_BP_FAT Locomotory behavior 5 3.09E-03 Pf4, S100a8, Chd7, Fcer1g, S100a9 

CLUSTER 8 
    

GOTERM_BP_FAT Defense response 6 5.11E-03 Cd74, Fcer1g, Lyz2, H2-Aa, Pglyrp1, Clec2d 

GOTERM_BP_FAT 
Defense response to 
bacterium 

3 3.04E-02 Fcer1g, Lyz2, Pglyrp1 
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S4 Table: Functional categories of the significantly different expressed genes between 

Hfe knockout and wild type (cont.)  

Category columm shows the original database/resource from which terms originate. The Term columm indicates 

the enriched terms associated with the gene list. The Count columm indicates the number of genes involved in 

the term. The P value was obtained with the modified Fisher exact test. BP, biological processes; GO, Gene 

Ontology Term; KEGG, Kyoto Encyclopedia of Genes and Genomes; MF, molecular functions; PIR, Protein 

Information Resource; UDP, Uridine 5'-diphospho 

  

Category Term Count P value Genes 

CLUSTER 9 
    

GOTERM_MF_FAT Carbohydrate binding 5 7.02E-03 Pf4, Klra3, Pglyrp1, Clec2d, Cd69 

SP_PIR_KEYWORDS Signal-anchor 5 1.81E-02 Klra3, Cd74, Tnfrsf13c, Clec2d, Cd69 

UP_SEQ_FEATURE Domain:c-type lectin 3 2.21E-02 Klra3, Clec2d, Cd69 

INTERPRO 
Ipr018378:c-type lectin, 
conserved site 

3 2.82E-02 Klra3, Clec2d, Cd69 

INTERPRO Ipr001304:c-type lectin 3 3.50E-02 Klra3, Clec2d, Cd69 

INTERPRO Ipr016186:c-type lectin-like 3 4.01E-02 Klra3, Clec2d, Cd69 

SMART Sm00034:clect 3 4.16E-02 Klra3, Clec2d, Cd69 
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S5 Table: Expression levels of iron related genes in CD8+ T lymphocytes from Hfe 

knockout and wild type C57BL/6 mice. The relative levels of expression are highlighted by 

colour grading according to normalized expression values. The significance of the differential 

expression values is indicated by the p value of T-test. 

 

    Normal Iron Diet  

 Gene Protein Hfe
 -/-

 C57BL/6 p value 

Iron storage      

Ftl1 Ferritin L Chain   ns 

FtH Ferritin Heavy chain   ns 

Hmox1 Heme oxigenase   ns 

Iron transport      

Slc25a37 Mitoferrin   ns 

Slc11a2 Dimetal transporter1   ns 

Lcn2 Lipocalin2   0.0016 

Sfxn2 Sideroflexin2   ns 

Slc40a1 Ferroportin   ns 

Abcg2 Bcrp   ns 

Receptors      

Tfrc Transferrin receptor   ns 

Lrp1 LRP/CD91   ns 

Regulators      

Smad4 Smad4   ns 

Smad7 Smad7   ns 

Usf2 Usf2   ns 

Hamp2 Hepcidin 2   ns 

Fxn Frataxin   ns 

Ireb2 IRP2   ns 

BMP6 BMP6   ns 

BMP9 BMP9   ns 

Hamp1 Hepcidin 1   ns 

Hfe2 HJV   ns 

Hfe HFE   ns 

Oxidoreductases      

Cybrd1 Dcytb   ns 

 

      No expression (< 5normalized gene expression value) 

      low expression ([5 a 7[normalized gene expression value) 

      medium expression( [7 a 9[normalized gene expression value) 

      high expression( >9 normalized gene expression value) 
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S6 Table: Sequences of the oligonucleotide primers used for the first and second PCR 

experiments in CD8 T lymphocytes from HH patients. Primers on the top: forward 

primers; Primers on the bottom: reverse primers 

Gene 
Accession 
number 

1
st 

PCR primers 2
nd

 PCR primers 

LEF1 AF288571 
   5’-ATCCCGAAGAGGAAGGCGATT-3’ 
   5’-GCACCACGGGCACTTTATTTG-3’ 

   5’-CCGATGACGGAAAGCATCCAG-3’ 
   5’-GCACCACGGGCACTTTATTTG-3’ 

ACTN1 DQ496098 
   5’-TGAAGATGACCCTGGGCATGA-3’ 
   5’-CAACGATGTCTTCGGCATCCA-3’ 

   5’-GGAAGGATGGCCTCGGCTT-3’ 
   5’-CAACGATGTCTTCGGCATCCA-3’ 

CCR7 BC035343  
   5’-ACTTCCTCCCCAGACAGGGGT-3’ 
   5’-GCCCACGAAACAAATGATGGA-3’ 

   5’-TGGTGGTGGCTCTCCTTGTCA-3’  
   5’-GCCCACGAAACAAATGATGGA-3’ 

NR4A2 BC009288 
   5’-CCCGGTGAGTCTGATCAGTGC-3’ 
   5’-CAATCCATTCCCCAAAGCCAC-3’ 

   5’-GAGAAGATCCCTGGCTTCGCA-3’ 
   5’-CAATCCATTCCCCAAAGCCAC-3’ 

NAA50 BC012731 
   5’-AGCTGGGAGATGTGACACCACA-3’ 
   5’-GCCGACTCATTGCTGATCTGG-3’ 

   5’-GGCACCTTACCGAAGGCTAGGA-3’ 
   5’-GCCGACTCATTGCTGATCTGG-3’ 

P2RY8 NM_178129 
   5’-CCTTTGCAAGGTTGCTGGACA-3’ 
   5’-AGAGAAGAGGTTGCCCGGGAT-3’ 

   5’-TTCTGCCGCTGCTTCTGCA-3’ 
   5’-AGAGAAGAGGTTGCCCGGGAT-3’ 

FOSL2 NM_005253 
   5’-GCTCAGGCAGTGCATTCATCC-3’ 
   5’-TGCAGCCAGCTTGTTCCTCTC-3’ 

   5’-GCGTGATCAAGACCATTGGCA-3’ 
   5’-TGCAGCCAGCTTGTTCCTCTC-3’ 

GAPDH M33197 
   5’-GGTCGGAGTCAACGGATTTGG-3’ 
   5’-ATGGTGGTGAAGACGCCAGTG-3’ 

   5’-CAAATTCCATGGCACCGTCAA-3’ 
   5’-ATGGTGGTGAAGACGCCAGTG-3’ 

 

S7 Table: Sequences of the oligonucleotide primers used for S100a8 and S100a9 

expression studies in sorted CD8 from HH patients and controls 

Gene Primer forward  Primer reverse  

18S rRNA human 5`-CGCCGCTAGAGGTGAAATTC-3` 5`-TTGGCAAATGCTTTCGCTC-3` 

S100a8 human 5`-GTCTCTTGTCAGCTGTCTTTCA-3` 5`-CCTGTAGACGGCATGGAAAT-3` 

S100a9 human 5`-GGAATTCAAAGAGCTGGTGC-3` 5`-TCAGCATGATGAACTCCTCG-3` 
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General discussion 

The general objective of this thesis was to clarify the role of lymphocytes in iron 

homeostasis, using the clinical model of Hereditary Hemochromatosis (HH). Due to some of 

its genetic characteristics, HH offers an excellent biological context to study the interactions 

between the immune system and iron. First, the gene implicated in this iron-overload 

disorder, HFE, is a non-classical MHC-class I gene, localized in the MHC genetic region, a 

cluster of highly related genes involved in immune responses [27]. HH patients are 

homozygous for the p.C282Y mutation in the HFE gene which is found in strong linkage 

disequilibrium with particular HLA-A alleles. Moreover, the inheritance of some specific HLA 

haplotypes predisposes HH patients to display a phenotype of low numbers of peripheral 

CD8+ T lymphocytes strongly associated with their clinical severity in terms of iron overload. 

These special features led to the definition of two specific goals in this thesis: i) to clarify the 

genetic contribution of the MHC-class I region to the setting of CD8+ T lymphocyte numbers, 

and ii) to elucidate the mechanisms through which lymphocytes may act as modifiers of the 

clinical expression in HH. 

 

HH and its MHC heritage 

The MHC genetic region is one of the most gene-dense and polymorphic regions of 

the human genome. It is also the genomic region most strongly associated with disease 

susceptibility, especially with autoimmune and infectious diseases [276]. This is a fact largely 

attributed to the high density of genes related with immune functions found in this region, in 

particular the human leukocyte antigen (HLA) class I and class II genes. In this context, it is 

interesting to note that HH provides one of the most remarkable examples of HLA-disease 

association. The finding of a very high frequency of the HLA-A*03 allele associated with 

hemochromatosis [19] constituted the first step leading to the later positional cloning of the 

HFE gene 4Mb distant from the HLA-A cluster. The finding that the vast majority of HH 

patients are homozygous for a single mutation (p.C282Y) that abrogates HFE function [27], 

and the evidence of iron overload in mouse models lacking Hfe, all constitute strong 

evidence to support a causal effect for this genetic alteration. Nevertheless, considering this 

strong association to the disease in the context of the MHC high gene density, the strong 

linkage disequilibrium and the extreme polymorphism and clustering of genes with related 

functions in so many diverse immune cell functions, it turns highly complex to determine the 

true causative effect of the disease-associated HFE allelic product. Relevant to this concept 

was the finding that a highly conserved microhaplotype (A-A-T) localized in the region 

between HFE and HLA was associated with both a phenotype of low CD8+ T lymphocyte 
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numbers and a more severe iron overload in Portuguese patients [44], suggesting that other 

genes in this region could also be involved in the disease process. 

One of the specific objectives of this thesis was to test if the previously found 

association of the A-A-T microhaplotype as a predictive phenotype marker in Portuguese 

patients was also observed in other geographically distant populations. The results, 

described in detail in chapter 3.1, clearly show that the predictive value of this haplotype 

cannot be generalized worldwide. We found that the low CD8 phenotype was associated with 

the most conserved haplotypes carrying A-A-T and the HLA-A*03 allele in the populations 

from Porto (Portugal) and Alabama (USA) but not in the population from Nord-Trøndelag 

(Norway). Because the low CD8 phenotype is generally associated with a more severe iron 

overload phenotype, we speculate that these genotype/phenotype differences could explain 

the presence of clinical symptomatology in Alabama and Porto patients while Nord-

Trøndelag patients are mostly asymptomatic [171, 197]. Assuming the existence of a major 

genetic determinant of CD8+ T-lymphocyte numbers that is transmitted in linkage 

disequilibrium with HFE in its ancestral haplotype, we considered that the population from 

Porto, by keeping the strongest genotype-phenotype association, would be the ideal 

population to allow further narrowing of the region of interest to look for a candidate locus 

associated with the transmission of the trait. With that purpose, 43 HH patients and 105 

normal individuals from north Portugal were genotyped for 63 markers in the chromosomal 

region between HFE and HLA-B. The results, described in detail in chapter 3.2, were 

somehow surprising in the sense that the inclusion of additional markers did not narrow the 

region previously defined by the A-A-T microhaplotype. Instead, a higher homology was 

found among patients with different phenotypes suggesting that either the putative major 

quantitative trait locus (QTL) is localized beyond the defined limits, or the coverage of the 

region was still insufficient to find better markers. One additional possibility is that the low 

CD8 trait may be defined by the combination of multiples genes in a more extended region. 

Although this study did not provide, as originally expected, a great advance in the positional 

cloning of a major QTL for CD8+ T lymphocyte numbers, it revealed, however, a novel 

important aspect of MHC genetics. This was the evidence that the long recognized 

recombination suppression found in this chromosomal region depends on the haplotype 

structure and allele combination in highly conserved haplotypes, observed in both HH and 

normal chromosomes. This finding not only helps explaining the evolutionary history of HH 

carrying haplotypes and its strong association with a low CD8 phenotype (in particular in 

HLA-A*03B*07 carrying haplotypes), but also suggests, for the first time, that the process of 

recombination suppression involves the combination of particular gene alleles in a restricted 

region close to HLA [277, 278]. 
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While providing new insights on the commonly reported phenotype of low CD8+ T 

lymphocytes in HH patients, the study described above followed a purely genomic approach 

and could thus not provide any indication of how lymphocytes may influence iron overload. In 

order to approach this question, a series of functional studies were performed, both in vitro 

and in vivo, which are referred to in the next paragraphs. 

The Lymphocyte pool: a new circulating iron storage compartment 

Iron homeostasis classically involves four major compartments: the uptake 

compartment (enterocytes), the functional compartment (erythroid precursors or other 

proliferating cells), the recycling compartment (spleen macrophages), and the storage 

compartment (hepatocytes and macrophages). Work performed in the context of this thesis 

placed, for the first time, the lymphocyte pool as a new “circulating storage compartment”. 

This was mostly based on the demonstration that circulating T lymphocytes are able to take 

up and retain iron acquired in the form of NTBI. Moreover, we identified Fe3Cit3 as the 

predominant oligomeric iron-citrate species in iron-overload physiological conditions, and the 

one that is preferentially taken up by T cells and hepatocytes (published in Arezes et 

al.2013)[234]. Whilst we argue that T lymphocytes are important players in systemic iron 

homeostasis, we appreciate that the remaining blood cell types, may also contribute to the 

fine-tuning of iron homeostasis. As previously described, the ability to take up NTBI was also 

observed in other circulating blood cells such as reticulocytes and erythrocytes [279, 280], 

monocytes, eosinophils, basophils, neutrophils and platelets [281]. The ability of these cell 

types to buffer the NTBI and keeping it away from target organs may depend on their 

retention capability and selectivity for the NTBI species that is present in circulation. 

The observation that T lymphocytes are able to take up and retain NTBI raised the 

following questions: what is the fate of the NTBI taken up by lymphocytes? What is the 

physiological implication of these findings in vivo? 

The fate of intracellular NTBI taken up by T lymphocytes was addressed in the paper 

published by Pinto et al in 2014 where we describe an increase in the labile iron pool (LIP) 

content in response to incubation with 5µM Fe-citrate. Besides using intracellular iron to 

proliferate, T cells also increase their iron-storage capacity in response to NTBI uptake by 

up-regulating ferritin levels [269]. Previous studies addressing the response of ferritin to NTBI 

in lymphocytes showed contrasting results [282-285] and this could be explained by the use 

of distinct iron donors and of non-physiological NTBI concentrations. We argue that the use 

of ferric citrate as iron donor, the maintenance of citrate concentrations between the 

physiological interval of 60–140 μM [286] and the use of iron concentrations within the range 

that is commonly found in iron overload situations [230] are the correct experimental 
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conditions and should become the standard procedure for future studies involving biological 

systems and NTBI. 

 

Fig.1 Proposed model of NTBI storage and further utilization for cell growth. NTBI is rapidly cleared from 

circulation by hepatocytes. Circulating T lymphocytes are the first cells in contact with the NTBI. NTBI in the blood 

stream is taken up by T lymphocytes, where it integrates the intracellular labile iron pool (LIP) and the ferritin 

stores (*). These cells, and possibly others, constitute the “circulating” iron storage compartment. When the 

circulating and liver NTBI clearance capacities are exceeded, other cell types, such as pancreatic beta cells or 

cardiomyocytes, also take up NTBI, with iron accumulation in the respective organs (pancreas, heart). Besides 

constituting a first line “safe” deposit of iron, T lymphocytes (and possibly other circulating cells) could also 

contribute to iron distribution and delivery to other cells and tissues, either in normal physiological (homeostatic 

erythroid/lymphoid proliferation) or pathological conditions (stress erythropoiesis, inflammation, tumor growth). T 

lymphocyte-derived iron uptake by target cells could occur as transferrin-bound iron (Tf-Fe) or as NTBI, which 

could be exported directly via ferroportin or, eventually, by ferritin secretion, as proposed earlier (Dörner et al., 

1980[287]). (Adapted from Pinto et al 2014) 

 

The physiological implications of the capacity of T lymphocytes to store NTBI was 

addressed in vivo, firstly in a mouse model deficient in T lymphocytes, the Foxn1null mouse, 

fed with an iron-sufficient or iron-rich diet (Pinto et al. 2014)[269]. Foxn1null mice fed with iron-

sufficient diet did not increase the liver iron stores, confirming that the deficiency of T 

lymphocytes alone is not the cause of iron overload. Under an iron-rich diet, however, 

Foxn1null mice displayed higher stores than the normal T cell phenotype (Foxn1+/-) under the 

same diet condition. To trace the NTBI, we have injected Foxn1null fed iron-rich diet with 

radiolabeled 55Fe -citrate and 55Fe was measured in the liver. By transferring T lymphocytes 

from Foxn1+/- into Foxn1null mice, we showed that the reposition of circulating T lymphocytes 

lowers the liver iron stores. This decrease in the liver iron content was directly proportional to 

the number of transferred CD8 T cells and this effect was not due to alterations in intestinal 

iron absorption since no changes in liver hepcidin mRNA levels were observed in response 

to T lymphocyte transfer. As a whole, these results support our hypothesis that T 

lymphocytes take up circulating NTBI preventing its accumulation within parenchymal cells, 

therefore protecting the liver, as well as other target organs, from tissue damage. 
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One important point addressed in this thesis was the extension of the above 

mentioned question to the human model. Taking the results obtained with the mouse model 

into consideration, we would expect patients with low numbers of CD8+ T lymphocytes to be 

more prone to develop a more severe iron accumulation, due to a lower remodelling 

potential. In fact, results of the in vitro human CD8+ T cells experiment (described in detail in 

chapter 3.3) corroborated the “remodelling hypothesis” observed in the Foxn1null iron-

overloaded mice. After assessing the NTBI retention capacity of HH CD8+ T cells, their 

systemic storage potential was estimated and shown to correlate strongly with the transferrin 

saturation at the time of the experiment. Moreover, the NTBI retention profile of each patient 

reflected the pattern of iron re-accumulation after depletion of the iron stores. 

It remains elusive whether the patients’ low retention capacity by T cells is under a 

systemic regulation by hepcidin or is only due to a hepcidin-independent higher iron export. 

The fact that, in spite of a deregulated hepcidin expression, the absolute levels of serum 

hepcidin in HH patients may be within the normal range supports the idea that an additional 

mechanism may be directly regulating the iron export by targeting ferroportin independently 

of hepcidin. A response to this question was, however, out of the scope of this thesis. 

 

HFE and CD8+ T lymphocytes: beyond the iron field 

Previous studies in HFE-HH patients consistently reported the existence of specific 

abnormalities in CD8+ T lymphocyte functions including defective lymphocyte-specific protein 

tyrosine kinase (p56lck) activity, decreased cytotoxic activity, decreased number of CD8+ T 

cells expressing the co-stimulatory molecule CD28, a higher number of CD8+ T cells lacking 

CD28, and an abnormally high percentage of HLA-DR-positive activated T cells [29, 152, 

170]. Based on this knowledge, one of the main objectives of this thesis (described in detail 

in Chapter 3.3) was to question if there was any direct impact of HFE on the differentiation 

and activation profile of CD8+ T lymphocytes. For that purpose, two gene expression 

microarray approaches were used. Firstly, we compared the transcriptional profiles of CD8+ T 

cells of HH patients with high or low numbers of these cells at the periphery. We observed 

that the fold-changes of the differently expressed genes between the two groups were lower 

than 2, suggesting that there were no major functional differences in CD8+ T cells from these 

two groups of patients. Nevertheless, we found a set of differentially expressed genes, which 

were significantly associated to the relative representation of specific CD8+ T subpopulations 

of naïve, central and effector memory cells. Genes derived from this screening were further 

validated in a larger number of HH patients and their expression compared between patients 

and normal controls. The most differentially expressed genes between these two groups 

were P2Ry8, which was increased in CD8 central memory cells (CD8CM), and LEF1, which 

was down regulated in CD8 effector memory cells (CD8EM) of HH patients in comparison to 
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controls. These results pointed to HFE as a potential player in the differentiation step of 

central-memory to effector memory which is in agreement with the previous observation of 

lower numbers of CD8EM reported in HH patients [31]. Interestingly, in this same study 

Macedo et al reported that the lower numbers of CD8EM cells in patients carrying the A-A-T 

haplotype in homozygosity when comparing with patients carrying the G-G-G haplotype is 

mainly due to reduced numbers of CD8EM CD27-CD28- [31]. An effect of other MHC-linked 

genes on the differentiation process and setting of CD8+ T cells can thus not be discarded. 

In order to study the expression profile of CD8+ T cells without the confounding effect 

of MHC variability, which is seen in human patients, we further addressed the impact of HFE 

on the transcriptional profile of CD8+ T lymphocytes in the murine disease model of Hfe 

deficiency. One should bear in mind, however, that the Hfe-/- mouse model does not fully 

recapitulate the complete phenotype of HH patients, namely the defects in CD8+ T cell 

numbers. One of the characteristics of the Hfe-/- animal model is that all mice share a 

common MHC background, which may justify the homogeneity in CD8+ lymphocyte 

phenotypes. Our genome-wide expression profiling results in the Hfe-/- and wild-type mice 

revealed that the most enriched functional categories of differentially expressed genes in Hfe-

/- mice when comparing with wild-type mice were related with the signaling and activation of 

CD8+ T cells. Moreover, we identified calgranulins as the most differentially up-regulated 

genes in Hfe-/-, a result further confirmed in CD8+ T cells from human HH patients, which 

raises the possibility that these mediators may be players on a common pathway with HFE. 

The above mentioned results suggesting an activation state of CD8+ T cells in Hfe 

deficiency in vivo are supported by a recent in vitro study by Reuben et al, who describe that 

the co-transfection of APC cells with the full length gp100 melanoma antigen in combination 

with HFE WT inhibits the activation state of CD8+ T lymphocytes [224]. In contrast to the co-

transfection with p.H63D mutated HFE, p.C282Y mutated HFE or control HLA-A1 constructs 

were not able to reproduce the WT inhibitory effect and could not downregulate to the same 

extent the secretion of several soluble factors such as IL-13, MIP-1β, INF-Ƴ and sTNFR, 

leaving CD8 T cells in a more activated state. Moreover, Reuben et al identified the α1-2 

domains as the participants on the inhibitory effect of CD8+ T-lymphocyte activation. These 

domains are known to share specific chaperone binding sites with MHC Class I molecules. 

Considering the dual role of HFE as a monitor of circulating iron levels and 

simultaneously a controller of signalling and T cell activation discussed above, one has to 

consider its implications in two conditions where cells compete for iron in the context of an 

immune response: one is infection and another is cancer. Infection has been claimed as a 

potential driving selective force for the observed high frequency of the p.C282Y mutation in 

normal populations. In the context of epidemics, it is important to consider the putative 

impact of MHC related selection. It is plausible to accept that during the plague period 
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caused by Yersinia pestis, those individuals with the p.C282Y mutation would be better 

equipped to resist the infection since their macrophages, kuppfer cells and enterocytes 

display an iron depleted phenotype that may offer an additional protection against the growth 

of intracellular pathogens. Considering the possibility of a more activated immune system 

with increased recognition of MHC-I antigens by CD8+ T cells lacking surface HFE, this could 

be an additional advantage for pathogen clearance. 

In terms of the impact of HFE in cancer biology, it was recently shown that tumor cells 

increase HFE expression at cell membrane [288]. The same study also reported a reciprocal 

regulation where activated CD3 T cells were able to inhibit the HFE expression in tumor cells 

lines [288]. Down-regulation of HFE in tumor cells lines was shown to be mediated by CD4+ 

and CD8+ T lymphocytes through secretion of IFN-Ƴ and TNF [288]. The increased HFE 

expression is intriguing in the perspective of tumor growth and any interpretation is, so far, 

merely speculative. One possible reason why tumour cells increase HFE expression would 

be to down-regulate the MHC-I antigen processing and presentation, thus escaping immune 

surveillance. 

 

S100a9 a new mediator in the HFE-CD8 crosstalk 

From the clinical point of view, the finding that the S100a8 and S100a9 calgranulins 

were the most differentially regulated genes in CD8+ cells of Hfe-/- is of great relevance, 

especially since we confirmed that the expression of these calgranulins is also increased in 

peripheral blood cells from HH patients. This was the first description of up-regulated 

expression of these proteins in the context of HH, an iron overload disorder strongly 

associated with alterations in the immune system, particularly of CD8+ T lymphocytes. 

Previous studies in a mouse model of autoimmune disease suggested that S100a8 and 

S100a9 proteins function as TLR4 ligands on CD8+ T cells, which in turn upregulate IL-17 

expression and induce autoimmunity in mice and humans [255]. The same TLR4 and TLR3 

signaling pathways were shown to be able to down-regulate HFE protein and ferroportin 

expression in the spleen after activation with LPS and polyinosinic:polycytidylic acid, 

poly(I:C) treatments [289]. Although these studies did not address the eventual autocrine 

performance of calprotectins, they suggest, however, that the TLR4 signaling pathway may 

be a common target for both iron regulation and immune activation, and that S100a8 and 

S100a9 may somehow have an important role in the process. Although these two proteins 

are known to function as an S100a8/S100a9 heterodimer called calprotectin, they may also 

act independently. We reported a high expression of S100a9 in CD8+ T cells from HH 

patients, in contrast with a low expression of S100a8. Other authors have also stressed an 

independent role for S100a9. For example, local production of S100A9 has been described 

to induce monocyte production of pro-inflammatory cytokines like TNFα, IL-1β and IL-6, and 
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of chemokines like MIP-1α and MCP-1, which in turn could modulate the whole immune 

response [271]. Moreover, S100a9 autocrine activation stimulates the production of IL-6 and 

TNF-α production by T lymphocytes. Considering that, as previously referred, TNF-α 

production by T lymphocytes is able to down-regulate HFE expression in tumor cell lines 

[288], and the recent finding that S100a9 local production in breast tumor is associated with 

a reduced metastatic rate, and therefore a better prognostic [290], we may speculate that 

S100a9 and HFE could synergistically modulate the immune responses mediated by either 

iron or inflammation. 
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Conclusions and future perspectives 

Altogether, the data presented in the different chapters of this thesis highlight and 

strengthen our view of lymphocytes as important players in iron homeostasis, and increase 

our knowledge of the interaction between CD8+ T lymphocyte anomalies in Hereditary 

Hemochromatosis (HH) and of its genetic background in the context of the MHC cluster 

genes. 

The extensive linkage disequilibrium at the entire 4Mb region between HFE and HLA, 

within the MHC class I cluster, naturally favoured the detection of several genotype-

phenotype associations in HH, starting from the historical HLA-disease association to the 

discovery of the HFE p.C282Y causing mutation, and to the most recently described 

association with a genetic trait involved in the transmission of CD8+ T lymphocyte numbers. 

Because, in general, recombination is assumed to be lower in the MHC than in other regions 

of the genome, this fact alone could justify the remarkable genotype/phenotype associations 

found in HH. The results we describe here, however, suggest for the first time that 

recombination suppression may be selectively favoured in the context of particular haplotype 

combinations in the region between HFE and HLA, and this interpretation offers a good 

explanation for the differences in genotype-phenotype associations found among 

geographical distant HH populations, who probably had different recombination histories or 

founder effects.  

Work presented in this thesis also brought into light some mechanisms that may 

explain how CD8+ T lymphocytes act as modifiers of iron overload. We demonstrated that 

CD8+ T cells are able to take up and retain NTBI and identified the specific oligomeric 

species Fe3Cit3, as the most physiological NTBI form that is preferentially internalized by 

these cells. Based on these findings, we hypothesized that the NTBI clearance from 

circulation by these cells avoids the accumulation within hepatocytes or other tissues where 

it may be toxic. Evidence is missing, however, on the mechanisms involved in NTBI uptake, 

transport and signaling by lymphocytes. From the transcriptional study of the CD8+ T cells in 

the context of Hfe deficiency (Hfe-/- mice) we concluded that Hfe impacts on their function by 

up-regulating several genes involved in T cell activation, signaling and differentiation. The 

observation that the most striking difference in the Hfe-/- mice was the higher expression of 

S100a9, and that its expression is also increased in CD8+ T lymphocytes from HH patients 

points for the first time to the importance of this calgranulin in the disease process.  

In terms of future perspectives, continuing work in this field may prove to be important 

to clarify some aspects of disease expression in HH that remain elusive. We plan to further 

characterize the S100a9 protein expression in CD8+ subpopulations and to measure the 

protein concentration in the serum of HH patients as a new marker to address the clinical 
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heterogeneity among patients. Based on the previously described role of S100a9 as a major 

player in autoimmune diseases such as rheumatoid arthritis, and its association with a CD8 

autoreactive phenotype, we will be particularly interested on its involvement in HH-related 

arthropathy. Another implication of our work in terms of future directions is the possibility of 

better approaching the positioning of a putative major genetic trait involved in the 

transmission of CD8+ T lymphocyte numbers. We are presently conducting a deep 

sequencing analysis covering the entire exonic region between HLA-DRB1 and HFE in 

samples from Portuguese HH patients. Sample selection for this study took into account the 

information obtained in our high-density mapping. In particular, we have chosen patients with 

a conserved haplotype structure despite divergent CD8 phenotypes, as well as patients with 

the highest haplotype heterogeneity despite a common low CD8 phenotype. With this 

strategy, we hope to effectively narrow the region of interest to look for major quantitative 

trait loci marking the CD8 phenotype in HH patients. 
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