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Duplex and superduplex stainless steels are class of materials of a high importance for engineering purposes,
since they have good mechanical properties combination and also are very resistant to corrosion. It is known
as well that the chemical composition of such steels is very important to maintain some desired properties.
In the past years, some works have reported that γ2 precipitation improves the toughness of such steels, and
its quantification may reveals some important information about steel quality. Thus, we propose in this work
the automatic segmentation of γ2 precipitation using two pattern recognition techniques: Optimum-Path Forest
(OPF) and a Bayesian classifier. To the best of our knowledge, this if the first time that machine learning
techniques are applied into this area. The experimental results showed that both techniques achieved similar
and good recognition rates.

1 INTRODUCTION
Duplex and superduplex stainless steels are a impor-
tant class of materials for engineering, which have an
exceptional corrosion resistance and good mechani-
cal properties combination (Nilsson 1992). The suc-
cess of these alloys is associated to the microstruc-
tural balance of phases, in which ferrite and austenite
have approximately the same proportions. All these
characteristics have motivated the use of duplex and
super-duplex stainless steels in a wide variety of in-
dustrial sectors, such as chemical ones, petrochemical
and oil & gas (Tavares et al. 2010; Bastos et al. 2007).

The balance of phases is influenced by the chemi-
cal composition of the alloys, and also by the cooling
rate experimented during its production (Hemmer and
Grong 1999; Hemmer et al. 2000). However, depend-
ing on the manufacturing process, this proportion can
be changed and then the properties degraded. One of
the most important processes used in the manufactur-
ing and repairing of pipes and equipments for indus-
trial applications is the welding, in which the steel is
subjected to a high cooling rate. The high temperature
reached during the welding cycle causes the austen-
ite dissolution, and consequently one may observe an
increasing in the ferrite content, harming the tough-

ness and ductility (Kotecki and Hilkes 1994; Hertz-
man et al. 1997). In multipass welding, the reheated
zone by deposition of subsequent weld beads causes,
as main microstructural changes, the dissolution of
chromium nitrides and also the precipitation of sec-
ondary austenite (γ2) (Ramirez et al. 2004; Ramirez
et al. 2003).

Some works have reported that γ2 precipitation im-
proves the toughness of the duplex and super-duplex
stainless steels (Lippold and Al-Rumaih 1997; Lee
et al. 1999). On the other hand, the low chromium,
molybdenium and nitrogencontents of the γ2 are
harmful to corrosion resistance (Nilsson and Wilson
1993; Nilsson et al. 1995). Based on these aspects,
it is very important to quantify the amount of γ2 in
welded joints, especially in fusion zone, in order to
improve the weld quality. However, this quantification
is not straightforward, mainly because the secondary
austenite formed is more evident when the precipi-
tates are located inside the ferrite grain, with needles
shape and also with the presence of γ2 islands. Thus,
the quantification of such islands is usually carried out
by manual operations using all purpose image analy-
sis softwares, demanding a long time and user experi-
ence.
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In this paper, we propose the automatic segmenta-
tion of γ2 islands using machine learning techniques,
focusing on the Optimum-Path Forest (OPF) (Papa,
Falcão, and Suzuki 2009) and a Bayesian classi-
fier (Duda, Hart, and Stork 2000). As far as we know,
this is the first time that OPF is applied into this do-
main, as well as any other computational technique,
once that these precipitates have never been automat-
ically segmented up to date.

The remainder of the paper is organized as follows.
Section 2 revisits the classifiers, and Section 4 discuss
the experimental results. Finally, Section 5 states the
conclusions.

2 MACHINE LEARNING BACKGROUND
This section addresses a review about the pattern
recognition techniques applied.

2.1 Optimum-path Forest classifier
The OPF classifier works by modeling the problem of
pattern recognition as a graph partition in a given fea-
ture space. The nodes are represented by the feature
vectors and the edges connect all pairs of them, defin-
ing a full connectedness graph. This kind of represen-
tation is straightforward, given that the graph does not
need to be explicitly represented, allowing us to save
memory. The partition of the graph is carried out by a
competition process between some key samples (pro-
totypes), which offer optimum paths to the remaining
nodes of the graph. Each prototype sample defines its
optimum-path tree (OPT), and the collection of all
OPTs defines de optimum-path forest, which gives
the name to the classifier (Papa, Falcão, and Suzuki
2009).

The OPF can be seen as a generalization of the
well known Dijkstra’s algorithm to compute optimum
paths from a source node to the remaining ones (Dijk-
stra 1959). The main difference relies on the fact that
OPF uses a set of source nodes (prototypes) with any
path-cost function. In case of Dijkstra’s algorithm, a
function that summed the arc-weights along a path
was applied. For OPF, we used a function that gives
the maximum arc-weight along a path, as explained
before.

Let Z = Z1 ∪ Z2 be a dataset labeled with a func-
tion λ, in which Z1 and Z2 are, respectively, a training
and test sets such thatZ1 is used to train a given classi-
fier and Z2 is used to assess its accuracy. Let S ⊆ Z1 a
set of prototype samples. Essentially, the OPF classi-
fier creates a discrete optimal partition of the feature
space such that any sample s ∈ Z2 can be classified
according to this partition. This partition is an opti-
mum path forest (OPF) computed in ℜn by the image
foresting transform (IFT) algorithm (Falcão, Stolfi,
and Lotufo 2004).

The OPF algorithm may be used with any smooth

path-cost function which can group samples with sim-
ilar properties (Falcão, Stolfi, and Lotufo 2004). Par-
ticularly, we used the path-cost function fmax, which
is computed as follows:

fmax(⟨s⟩) =

{
0 if s ∈ S,
+∞ otherwise

fmax(π · ⟨s, t⟩) = max{fmax(π), d(s, t)}, (1)

in which d(s, t) means the distance between samples
s and t, and a path π is defined as a sequence of ad-
jacent samples. As such, we have that fmax(π) com-
putes the maximum distance between adjacent sam-
ples in π, when π is not a trivial path.

The OPF algorithm assigns one optimum path
P ∗(s) from S to every sample s ∈ Z1, forming an
optimum path forest P (a function with no cycles
which assigns to each s ∈ Z1\S its predecessor P (s)
in P ∗(s) or a marker nil when s ∈ S. Let R(s) ∈ S
be the root of P ∗(s) which can be reached from P (s).
The OPF algorithm computes for each s∈Z1, the cost
C(s) of P ∗(s), the label L(s) = λ(R(s)), and the pre-
decessor P (s).

The OPF classifier is composed of two distinct
phases: (i) training and (ii) classification. The former
step consists, essentially, into finding the prototypes
and computing the optimum-path forest, which is the
union of all OPTs rooted at each prototype. After that,
we pick a sample from the test sample, connect it to all
samples of the optimum-path forest generated in the
training phase and we evaluate which node offered the
optimum path to it. Notice that this test sample is not
permanently added to the training set, i.e., it is used
only once. The next sections describe in more detail
this procedure.

2.1.1 Training

We say that S∗ is an optimum set of prototypes when
OPF algorithm minimizes the classification errors for
every s ∈ Z1. S∗ can be found by exploiting the
theoretical relation between minimum-spanning tree
(MST) and optimum-path tree for fmax (Allène, Au-
dibert, Couprie, Cousty, and Keriven 2007). The train-
ing essentially consists in finding S∗ and an OPF clas-
sifier rooted at S∗.

By computing an MST in the complete graph
(Z1,A), we obtain a connected acyclic graph whose
nodes are all samples of Z1 and the arcs are undi-
rected and weighted by the distances d between ad-
jacent samples. The spanning tree is optimum in the
sense that the sum of its arc weights is minimum
as compared to any other spanning tree in the com-
plete graph. In the MST, every pair of samples is con-
nected by a single path which is optimum according
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to fmax. That is, the minimum-spanning tree contains
one optimum-path tree for any selected root node.

The optimum prototypes are the closest elements of
the MST with different labels in Z1 (i.e., elements that
fall in the frontier of the classes). By removing the
arcs between different classes, their adjacent samples
become prototypes in S∗ and OPF can compute an
optimum-path forest with minimum classification er-
rors in Z1. Note that, a given class may be represented
by multiple prototypes (i.e., optimum-path trees) and
there must exist at least one prototype per class.

2.1.2 Classification

For any sample t ∈ Z2, we consider all arcs connect-
ing twith samples s ∈ Z1, as though twere part of the
training graph. Considering all possible paths from S∗

to t, we find the optimum path P ∗(t) from S∗ and la-
bel t with the class λ(R(t)) of its most strongly con-
nected prototype R(t) ∈ S∗. This path can be iden-
tified incrementally by evaluating the optimum cost
C(t) as:

C(t) = min{max{C(s), d(s, t)}}, ∀s ∈ Z1. (2)

Let the node s∗ ∈ Z1 be the one that satisfies Equa-
tion 2 (i.e., the predecessor P (t) in the optimum path
P ∗(t)). Given that L(s∗) = λ(R(t)), the classification
simply assigns L(s∗) as the class of t. An error occurs
when L(s∗) ̸= λ(t).

2.2 Bayesian Classifier
Let p(ωi|x) be the probability of a given pattern x ∈
ℜn to belong to class ωi, i = 1,2, . . . , c, which can be
defined by the Bayes Theorem (Jaynes 2003):

p(ωi|x) =
p(x|ωi)P (ωi)

p(x)
, (3)

where p(x|ωi) is the probability density function of
the patterns that compose the class ωi, and P (ωi) cor-
responds to the probability of class the ωi itself.

A Bayesian classifier decides whether a pattern x
belongs to the class ωi when:

p(ωi|x) > p(ωj|x), i, j = 1,2, . . . , c, i ̸= j, (4)

which can be rewriten as follows by using Equation 3:

p(x|ωi)P (ωi)> p(x|ωj)P (ωj), i, j = 1,2, . . . , x, i ̸= j
(5)

As one can see, the Bayes classifier’s decision func-
tion di(x) = p(x|ωi)P (ωj) of a given class ωi strongly
depends on the previous knowledge of p(x|ωi) and
P (ωi), ∀i = 1,2, . . . , c. The probability values of

P (ωi) are straightforward and can be obtained by cal-
culating the histogram of the classes, for instance.

However, the main problem is to find the probabil-
ity density function p(x|ωi), given that the only in-
formation we have is a set of patterns and its corre-
sponding labels. A common practice is to assume that
the probability density functions are Gaussian ones,
and thus one can estimate their parameters using the
dataset samples (Duda, Hart, and Stork 2000). In the
n-dimensional case, a Gaussian density of the patterns
from class ωj can be calculated by:

p(x|ωi) = γexp

[
−1

2
(x− µj)

TC−1
i (x− µj)

]
, (6)

in which

γ =
1

(2π)n/2 | Ci |1/2
, (7)

and µi and Ci stand for, respectively, to the mean and
the covariance matrix of class ωi. These parameters
can be obtained by considering each pattern x that be-
longs to class ωi using:

µi =
1

Ni

∑
x∈ωi

x (8)

and
Ci =

1

Ni

∑
x∈ωi

(xxT − µiµ
T
i ), (9)

in which Ni means the number of samples from class
ωi.

3 MATERIALS AND METHODS
In order to evaluate the performance of the ma-
chine learning algorithms for automatic identifica-
tion of the secondary austenite islands in microstruc-
ture of superduplex stainless steels, multipass welds
were performed using gas metal arc welding process
(GMAW). A testing bench with an industrial robot
and an electronic welding power supply was used to
produce the sample. The alloy used was the UNS
S32750 (SAF 2507) superduplex stainless steel pipes
with 19 mm thickness as base metal and as filler metal
was AWS ER 2594.

Samples for metallographic evaluation were ex-
tracted from welded joints and conventionally pre-
pared through mechanical grinding and polishing us-
ing silicon carbide sandpaper and diamond past, re-
spectively. An electrochemical etching to reveal the
microstructure was carried out using an aqueous solu-
tion with 40% vol. of nitric acid (HNO3) and applying
a potential of 2.0 V during 40 seconds.

We used optical microscopy images with 200× and
1000× of magnifications. These images were previ-
ously labeled by a technician into positive (γ2 islands)
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and negative (background) samples. Figure 1 displays
these images.

(a) (b)

(c) (d)
Figure 1: Microscopic images used in the experi-
ments: original images with magnifications of (a)
200× and (c) 1000×, and the respectively manual
segmentations in (b) and (d).

Now, imagine an interactive classification tool in
which the user can select same positive and nega-
tive samples in order to classify the remaining image.
After that, the use may want to refine the classifica-
tion process by marking another set of samples, and
then to execute the process again. In most applica-
tions, one know that the effectiveness of classification
is strongly related with the training set size, since we
have more information to train the classifier. In this
work, we would like to simulate this user behavior
by randomly selecting some samples for training, and
then to classify the remaining image. The percentages
used for training were: 30% and 50%.

In this work, each pixel to be classified was de-
scribed by a texture kernel around its neighborhood
and also by its gray value. In order to extract texture
information, we applied the Gabor filter (Feichtinger
and Strohmer 1997), which can be mathematically
formulated as follows:

G(x, y, θ, γ, σ,λ,ψ) = e
x′2+y′2σ2

2σ2 cos

(
2π
x′

λ
+ ψ

)
,

(10)
where x′ = x cos(θ) + y sin(θ) and y′ = x sin(θ) +
y cos(θ). In the above equation, λ means the sinu-
soidal factor, θ represents the orientation angle, ψ is
the phase offset, σ is the Gaussian standard deviation
and γ is the aspect spatial ratio.

The main idea of Gabor filter is to perform a con-
volution between the original image I and Gθ,γ,σ,λ,ψ

in order to obtain a Gabor-filtered representation as:

Îθ,γ,σ,λ,ψ = I ∗Gθ,γ,σ,λ,ψ, (11)

in which Îθ,γ,σ,λ,ψ denotes the filtered image. Thus,
one can obtain a filter bank of Gabor filtered images
by varying its parameters. We used a convolution filter
of size 3× 3 with the following Gabor parameters that
were empirically chosen and based on our previous
experience:

• 6 different orientations: θ = 0◦, 45◦, 90◦, 135◦,
225◦ and 315◦;

• 3 spatial resolutions: λ = 2.5, 3 and 3.5. Notice
that, for each one of λ values, we applied dif-
ferent values for σ, say that σ = 1.96, 1.40 and
1.68;

• ψ = 0 and

• γ = 1.

Once we get the Gabor-filtered images (one can see
that we have 6× 3 = 18 images), we then compute
the texture features at pixel p as the set of correspond-
ing gray values among these images. Thus, each pixel
is described by 19 features, being 18 of them related
with texture and the remaining one is the original gray
value. After classification process, we applied a 3× 3
mode filter in order to post-processing the image.

In regard to the pattern recognition techniques, for
OPF we used the LibOPF (Papa, Suzuki, and Falcão
2009), which is a free tool to the design of classifiers
based on of optimum-path forest. For Bayesian clas-
sifier (BC) we used our own implementation.

4 EXPERIMENTAL RESULTS
We describe in this section the results obtained. Fig-
ures 2 and 3 display, respectively, the images classi-
fied with BC and OPF.

In order to emphasize the importance of mode filter,
Figure 4 displays the image of Figure 1a classified
by BC with and without mode filter. Notice that the
image in Figure 4b is equal to the image of Figure 2a.

One can see that the results obtained using 30% of
the whole image for training are better when we used
the BC classifier in case of Figure 1a. Using 50% the
results appear to be similar. In regard to Figure 1c,
both classifiers achieved close results using 30% and
50% for training. It is important to shed light over
that, for both techniques, the mode filter played an
important role to filter the images after classification.
Table 1 displays the recognition rates for Figures1a.

One can see that BC outperformed OPF using 30%
of the whole image for training, while OPF outper-
formed BC the second case, i.e., using 50% of the
samples to train the classifiers. Table 2 displays the
recognition rates for Figure1c.
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(a) (b)

(c) (d)
Figure 2: Classified images with BC using: (a) 30%
and (b) 50% for training and (c) 30% and (d) 50% for
training. The images (a)-(b) and (c)-(d) refer, respec-
tively, to the original images in Figure 1a and Fig-
ure 1c.

(a) (b)

(c) (d)
Figure 3: Classified images with OPF using: (a) 30%
and (b) 50% for training and (c) 30% and (d) 50% for
training. The images (a)-(b) and (c)-(d) refer, respec-
tively, to the original images in Figure 1a and Fig-
ure 1c.

Classifier Training % Accuracy
OPF 30 68.51%
BC 30 69.14%

OPF 50 77.31%
BC 50 75.96%

Table 1: Recognition rates for the image in Figure 1a.
The most accurate classifiers are bolded.

The OPF classifier achieved better results than BC

(a) (b)
Figure 4: Figure 1a classified: (a) without and (b) with
the mode filter.

Classifier Training % Accuracy
OPF 30 70.62%
BC 30 69.85%
OPF 50 79.13%
BC 50 82.41%

Table 2: Recognition rates for the image in Figure 1c.
The most accurate classifiers are bolded.

using 30% for training, while the latter outperformed
in case of 50%. However, one can see that the results
are very similar for both classifiers using 30% and
50% for training in the employed images.

5 CONCLUSIONS
This paper was concerned on the problem of γ2 island
segmentation, which can provide important informa-
tion about steel’s quality and mechanical properties.
In order to do that, we applied two supervised pattern
recognition techniques, Optimum-Path Forest (OPF)
and a Bayesian classifier (BC), on two labeled images
with 200× and 1000× of magnifications, respectively.

Aiming to simulate an user behavior to select posi-
tive and negative samples, we conducted experiments
with 30% and 50% of the whole images for train-
ing, to further classify the remaining pixels. The train-
ing samples were randomly chosen, and described by
their gray values and texture features. In regard to
recognition rates, both classifiers achieved similar re-
sults. A mode filter was applied to enhance the quality
of images after classification.

Thus, we may conclude that the results were very
promising, since this was the first work that addressed
the problem of automatic segmentation of γ2 islands
in secondary austenite-phase precipitates.
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