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Abstract 

In this thesis the efficiency of a hybrid photovoltaic/thermal (PV/T) solar collector 

is assessed, based on results from the simultaneous production of heat and electricity, 

obtained by numerical methods and experimental tests. The structural configuration of 

the studied collector includes glass cover, sheet and tube geometry and application of the 

photovoltaic cells on the top surface of the absorber plate. 

The interest on the research on this type of collectors has been growing since the 

1990s, evolving from a starting point of thematic innovation, to the current state, where 

different configurations and heat transfer fluids have been already studied and several 

units are commercially available. The main and innovative aim of this thesis is the 

constructive optimization of the hybrid solar collector, considering two factors: 

i. the location of the photovoltaic cells, comparing their application near the 

water inlet side with the opposite side; 

ii. the ratio between the area with photovoltaic cells and the total area of the 

absorber plate, named as packing factor (Pf). 

This analysis is first approached from the perspective of the overall efficiency of 

the PV/T collector, and then by analysing the economic savings and environmental 

impact achieved when included in a domestic hot water (DHW) system. 

A small dimension prototype was built. The photovoltaic modules were applied 

over the absorber plate, especially adapted to the small dimensions of the prototype (0.5 

m width and 1 m length). The prototype was instrumented in order to measure ambient 

temperature, incident radiation, increase in water temperature, and generated electricity. 

Three different configurations of the prototype were tested: with one, two and three 

photovoltaic modules applied, corresponding to different values of the packing factor. 

A mathematical model of the PV/T collector was developed, based on the energy 

balances existing in its different components. The heat and electricity outputs can be 

obtained using the model, upon different environmental and operating conditions. The 
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existence of temperature gradients along the three dimensions led to a three-dimensional 

discretization of the domain, in the area where PV cells are applied in the absorber plate. 

The other areas only require a 2D scheme discretization. A generic equation solver 

software was used, Engineering Equation Solver (EES), for the application of the 

mathematical model. EES can numerically solve thousands of coupled non-linear 

algebraic and differential equations. A high accuracy thermodynamic and transport 

property database is provided for hundreds of substances in a manner that allows it to be 

used with the equation solving capability. It is adaptable for any parametric study, since 

it is basically a numerical tool, allowing the user to define all the constraints. The model 

was validated with the experimental results. 

A parametric study was also developed, to exhaustively and systematically 

evaluate the effect of key factors in collector efficiency: inlet water temperature, incident 

radiation and ambient temperature. The influence of the location of the PV cells and the 

packing factor, parameters especially focused in this thesis, were particularly studied. 

This parametric analysis is based on results obtained from the developed mathematical 

model, which allows versatility for considering different simulation conditions. It was 

found that collector efficiency increases with the ambient temperature and the incident 

radiation, and is hindered by increasing the water inlet temperature and the application of 

photovoltaic cells. It was concluded that the positive effect of placing the cells in the fluid 

inlet area is favoured when the ratio between the areas with and without cells is balanced, 

i.e, for a Pf of about 50%. The increase in Pf causes a reduction in overall efficiency, 

effect that is amplified by an increase in the water inlet temperature. The degree of detail 

of this study is a differentiating factor, among other works of the same nature. 

The assessment of the economic impact of PV/T configurations with different Pf 

values is accomplished, based on the results of the annual thermal and electrical energy 

converted for a typical household application. The results are obtained using a dynamic 

simulation program (TRNSYS). TRNSYS includes an extensive library of components 

and climatic data. The pre-defined components, termed “types”, follow mathematical and 

physical considerations, so that the user must adapt the input data to the specific 

formulations underlying that component. Different versions of the “type” chosen for the 

PV/T collector were needed, corresponding to different Pf values. The mathematical 

model developed in EES was used to provide the TRNSYS inputs related to collector 

performance for the different layouts. For the Portuguese temperate continental climate, 
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two different locations were considered: Porto, near the Atlantic Ocean, with a mild and dry 

summer, and Faro, near the Mediterranean, with a dry and hot summer. They belong to two 

different climatic zones, characterized as “Csb”, for Porto, and “Csa”, for Faro, according to 

the Köppen-Geiger classification (IPMA, 2015). The energy-saving values obtained are 

then converted into economic savings through the prices of natural gas and electricity. It 

was concluded that the total coverage of the absorber area with photovoltaic cells is 

advantageous. The dependence of the results from the national economic context, with 

electricity substantially more expensive than natural gas, is complemented by a similar 

analysis for a country, within the EU, where this proportion is minimal: Bulgaria. Even 

so, it was confirmed that to privilege the electrical component brings economic 

advantages. The Pf effect was also analysed from the point of view of environmental 

impacts, through the CO2 emission savings resulting from energy conversion with natural 

gas and electricity. Taking this into account, the use of cells in the entire area of the 

absorber also proved to be advantageous. These results may have a significant value for 

the industry, since they provide the ground information for the optimum design of a PV/T 

collector. They also represent support information to the collector users or certification 

entities, through the quantification of economic and environmental results.  
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Resumo 

Nesta tese é avaliada a eficiência de um coletor solar híbrido, com base em 

resultados da produção simultânea de calor e eletricidade, obtidos através de métodos 

numéricos e de ensaios experimentais. A configuração estrutural do coletor estudado 

inclui cobertura de vidro, geometria de placa e tubos, e aplicação das células fotovoltaicas 

sobre a placa absorvedora. 

O interesse da investigação neste tipo de coletores tem vindo a crescer desde a 

década de 1990, evoluindo de um ponto inicial de inovação no tema, até ao estado atual, 

em que diferentes configurações e fluidos de transferência térmica foram já estudados, e 

diversas unidades se encontram disponíveis no mercado. O objetivo principal e inovador 

desta tese é a análise e otimização construtiva do coletor solar híbrido, atendendo a dois 

fatores: 

i. a localização das células fotovoltaicas, comparando a sua aplicação junto 

da zona de entrada da água, com a zona de saída; 

ii.  a razão entre a área em que são aplicadas as células fotovoltaicas e a área 

total da placa absorvedora, designada como “fator de enchimento” (Pf). 

Este estudo assenta inicialmente na avaliação da eficiência global do coletor, e 

posteriormente na perspetiva de maximização da poupança económica e impacto 

ambiental conseguidos pela utilização de um coletor híbrido incluído num sistema 

doméstico de Águas Quentes Sanitárias. 

Um protótipo de pequenas dimensões (0,5 m de largura e 1 m de comprimento) 

foi construído. Módulos fotovoltaicos adaptados especialmente às dimensões do coletor 

foram aplicados sobre a placa absorsora. O protótipo foi instrumentado, por forma a medir 

o aumento de temperatura atingido na água, a potência elétrica gerada, temperatura 

ambiente e radiação incidente. Três configurações diferentes do protótipo foram testadas: 

com um, dois e três módulos fotovoltaicos aplicados, correspondendo a diferentes valores 

de Pf.. 
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Foi desenvolvido um modelo matemático do coletor, baseado nos balanços 

energéticos nos seus diferentes componentes. O modelo permite calcular a produção de 

calor e eletricidade, mediante diferentes condições ambientais e operacionais. A 

existência de gradientes de temperatura ao longo das três dimensões levou à discretização 

tridimensional do domínio na zona de aplicação dos módulos fotovoltaicos na placa 

absorvedora. Para a aplicação do modelo matemático foi utilizado um software genérico 

de resolução de equações, Engineering Equation Solver (EES). Este software permite 

resolver numericamente sistemas de milhares de equações algébricas não lineares e 

diferenciais. Uma base de dados de propriedades termodinâmicas e de transporte é 

fornecida para centenas de substâncias, por forma a ser usada conjuntamente com a 

resolução das equações. O seu uso é facilmente adaptável para qualquer estudo 

paramétrico, uma vez que consiste basicamente numa ferramenta numérica, permitindo 

ao utilizador definir todas as condições de utilização. O modelo foi validado 

experimentalmente. 

Neste trabalho é também desenvolvido um estudo paramétrico, para avaliar de 

forma exaustiva e sistemática o efeito de fatores chave para a eficiência do coletor: a 

temperatura de entrada da água, a radiação incidente e a temperatura ambiente. A 

influência da localização das células e do Pf, parâmetros em especial análise nesta tese, 

foi particularmente estudada. Esta análise é feita com base em resultados obtidos através 

do modelo matemático desenvolvido, que permite versatilidade para a consideração das 

diferentes condições da simulação. Verificou-se que a eficiência do coletor aumenta com 

a temperatura ambiente e a radiação incidente, e é prejudicada pelo aumento da 

temperatura de entrada da água e pela aplicação das células fotovoltaicas. Concluiu-se 

que o efeito positivo da colocação das células na zona da entrada do fluido, se bem que 

reduzido, é favorecido quando a razão entre a área com e sem células é equilibrada. O 

aumento de Pf provoca uma redução na eficiência, efeito que é amplificado por um 

aumento da temperatura de entrada da água. O grau de detalhe com que este estudo é 

desenvolvido é um fator diferenciador, quando comparado com outros já existentes. 

A avaliação do impacto económico de Pf é feita com base nos resultados da 

energia térmica e elétrica conseguidos anualmente com a utilização de um coletor híbrido, 

para uma aplicação doméstica típica. Os resultados são obtidos com recurso a um 

programa de simulação dinâmica (TRNSYS) que inclui uma extensa biblioteca de 

componentes e dados climáticos. Os componentes pré-definidos, designados “tipos”, 
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obedecem a considerações matemáticas e físicas, pelo que o utilizador é obrigado a 

adaptar as características de cada componente à formulação específica subjacente. Foi 

necessária a utilização de diferentes versões do “tipo” escolhido para o coletor PV/T, 

correspondendo a diferentes valores de Pf. O modelo matemático desenvolvido em EES 

foi usado para determinar os inputs específicos para as diferentes versões do componente 

do colector, relacionados com os parâmetros de performance. Para o clima temperado 

continental de Portugal, dois diferentes locais foram considerados: Porto, banhado pelo 

oceano atlântico, com um verão temperado e seco, e Faro, próximo do mar Mediterrâneo, 

com um verão quente e seco. Estes dois locais pertencem a duas zonas climáticas 

distintas, caracterizadas como “Csb”, para o Porto, e “Csa”, para Faro, de acordo com a 

classificação climática de Köppen-Geiger (IPMA, 2015). Os valores da poupança 

energética são convertidos em poupança económica, através da aplicação do preço do gás 

natural e da eletricidade. Foi concluído que o preenchimento completo da área da placa 

absorvedora com células fotovoltaicas é vantajoso. A dependência dos resultados do 

contexto nacional, em que a eletricidade é substancialmente mais cara do que o gás 

natural, é complementada através de uma análise semelhante realizada para um país da 

UE em que essa proporção é mínima: Bulgária. Mesmo assim, confirmou-se que 

privilegiar a componente elétrica traz vantagens económicas. O efeito de Pf foi também 

analisado sob o ponto de vista do impacto ambiental, através da conversão da poupança 

energética de gás natural e eletricidade nas respetivas emissões de CO2. Também, de 

acordo com este aspeto, a aplicação de células em toda a área da placa absorvedora se 

revelou vantajosa. Estes resultados podem ter grande interesse para a indústria, uma vez 

que fornecem informação para fundamentar o melhor layout do coletor híbrido. Além 

disso, a quantificação dos benefícios ambientais e monetários representa também 

informação relevante para os utilizadores e entidades certificadoras.   
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Chapter 1.  

 

Introduction  

This research focuses on the study of solar hybrid photovoltaic/thermal (“PV/T”) 

collectors. This designation comes from the association of the thermal and electrical outputs 

of incident solar energy, in the same equipment. In terms of construction, they consist in 

simply applying photovoltaic cells to a solar thermal collector. 

Renewable energy sources and a sustainable development have been on the 

international agenda for the last two decades. A broader application of renewable energy 

technologies brings environmental benefits, by reducing CO2 emissions and saving natural 

fossil fuel resources, such as oil, coal, and natural gas. The contribution to a stronger 

energetic independence is also a key factor to boost political measures that encourage the 

use of renewable energy sources. In this context, the Kyoto Protocol was adopted on 11 

December 1997, extending the 1992 United Nations Framework Convention on Climate 

Change. For a first commitment period, 2008-2012, the Protocol has set an average target 

of 8% reduction in CO2 emissions for the EU compared to 1990 (UN Framework 

Convention on Climate Change, 2014). Because of its less developed economy, Portugal 

was allowed to further increase their emissions by 27%. According to the latest data, the 

increase did not exceed 13.1%, excluding CO2 emissions from land-use change and forestry 

(LUCF), on a carbon equivalent basis (APA, 2014). In the current context, the European 

Union (European Comission - DG Climate Action, 2015) established average targets for a 

second commitment period, elapsing from 2013 to 2020, as: 
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- 20% reduction of greenhouse gases (GHG) emissions, relative to 1990 levels; 

- 20% share of Renewable Energy Sources (RES) in gross final consumption; 

- 20% reduction in primary energy consumption, in relation to the consumption 

projection for 2020 (made from Baseline 2007 by application of the PRIMES model 

of the European Commission). 

According to the National Renewable Energy Action Plans (NREAPs), the share of 

renewable energies in the final consumption of electricity (RES-E) and heating and cooling 

(RES-HC) should reach 34.3 % and 21.3 %, respectively, in 2020, in the EU (European 

Forum for Renewable Energy Sources, 2011). Regarding estimates of electricity 

consumptions in 2020, wind energy will represent 14.1%, hydropower 10.5%, biomass 

6.5%, photovoltaics 2.35%, concentrated solar power 0.5%, geothermal energy 0.3% and 

ocean energy 0.15%, as referenced by EREC (2011). According to the 27 NREAPs (EREC, 

2011), energy from solar thermal should account for 1.2% of the total heating and cooling 

energy demand in 2020. Austria, Germany, Cyprus, Greece and Malta represent at the 

moment the stronger solar thermal markets in Europe. The solar thermal market is expected 

to grow in countries like Sweden, Denmark, Poland, France, Italy, Spain and UK. On 

average, in Europe, solar thermal is expected to grow by 10 to 15% per annum between 

2010 and 2020.  

According to the EU Roadmap (EREC, 2011), the NREAP for Portugal has 

specified an overall target of 31% for share of energy from renewable sources in gross final 

consumption, split into 55.2% for electricity, 30.6% for heating and cooling and 10% for 

the transport sector. By 2020, Portugal intend to pass the landmark figure of 1 GWp of PV 

power installed, together with countries like Spain, Italy, France, the United Kingdom, 

Greece, the Czech Republic, Belgium, and namely Germany. It is expected that 1475 GWh 

of electricity generation comes from PV, representing 2.3% of the total electric 

consumption. Regarding heating consumption, NREAP projections for 2020 indicate 160 

ktoe from solar power source, representing 2% of total heat consumption. There is no 

specific information about energy consumption for cooling. 

The extensive application of solar energy technologies, including solar thermal and 

photovoltaics, is particularly advantageous in a country with high levels of insolation such 

as Portugal. The average number of hours of sunshine is 2200-3000 per year, in contrast to 

Germany, for instance, where it is at most 1800 h/year (Portal das Energias Renováveis, 
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2015). However, the use of this potential has only become significant in recent years, driven 

by financial incentives launched by institutional programs, like partial tax deduction on the 

acquisition cost and high feed-in tariff for electricity production. 

The production of renewable electricity and heat from PV/T collectors can 

significantly contribute to meet the EU targets, namely in Portugal. Additionally, the local 

production of thermal and electrical energy for self-consumption can represent a 

considerable saving in the energy bill for the end user, which is particularly interesting 

when the initial investment is compensated by the savings during the lifetime of the system. 

If the same equipment enables the simultaneous production of thermal and electrical 

energy, there are also benefits associated to the space required by the installation. 

1.1 The present energy context and targets 

Increasing the share of renewables in the energy consumption is an important strategy 

for achieving economic and environmental sustainability, through energy independence, 

rationalization of natural resources and reduction of greenhouse gas emissions. In this 

context, the production of heat and electricity from renewable resources is an important 

issue. The energy consumption in the world has been increasing, mainly due to the 

contribution of emerging national economies, such as Brazil, Russia, China and South-

Africa (BRIC countries), and the dynamics of CO2 emissions is in line with these trends. 

The share of renewables in primary energy consumption has been growing in the EU 

countries, from a value of about 6% in 2000, reaching 12.7% in 2013. In contrast, an 

opposite tendency is observed in China and other BRIC countries, till the beginning of this 

decade (Enerdata, 2014), as shown in Figure 1.1. Considering the evolution for EU 

countries, the goal of 20% share from RES in gross final consumption in EU can only be 

reached by 2023, considering the linear trend observed since 2005. 
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The evolution of the share of renewable energies, including big hydro, in the total 

electricity generation in Portugal is presented in Figure 1.2, between 1999 and 2014. It can 

be seen from the figure that there is a constant increase of the weight of RES-E since 2002. 

In 2014, the share of RES in electricity generation in Portugal, not including big hydro, was 

32.5%, of which 1.2% came from solar photovoltaic (APREN, 2015c). 

 

Figure 1.2 - Evolution of the share of electricity generation from renewable energies in Portugal  

between 1999 and 2014, including big hydro (with hydro correction) (APREN, 2015b) 

 

The annual growth of the installed capacity of four technologies (wind, small hydro, 

solar and biomass) is shown in Figure 1.3. It can be observed that the newly installed 

capacity from renewables had a significant increase between 2004 and 2009, mainly due to 

wind power installations. This technology represented a large share, compared to the small 

hydro, solar and biomass. This growing trend was inverted in 2009, mainly because of the 

economic crisis. The data in Figure 1.3 seems to contradict the tendency presented in Figure 

1.2. This can be explained by the reduction of the total installed capacity since 2011 in 

Portugal, presented in Figure 1.4. 

Figure 1.1 - Share of renewables in primary consumption (%), including hydro  

(data adapted from Enerdata (2014)) 
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Figure 1.4 - Evolution of installed capacity in Portugal (continental) between 1999 and 2013  

(APREN, 2015d). 

The evolution of the annual capacity from photovoltaics and the total production of 

RES-E, between 2006 and 2014, in Portugal, is presented in Table 1.1. The electricity 

production from PV increased, but it is not possible to identify a regular relative increase 

trend. The PV share on the total RES-E production only decreased in 2010 and 2013, by 

0.09% and 0.37%, respectively. Those periods corresponded to changes in the policy of 

incentives to the installation of photovoltaic equipment, with reduction of the feed-in tariffs 

for micro-generation. 

Table 1.1 – Evolution of annual production from photovoltaic and total RES-E, in Portugal, from 

2006-2014 (Direcção Geral da Energia e Geologia, 2015) 

 2006 2007 2008 2009 2010 2011 2012 2013 2014 

PV, GWh 5 24 41 160 215 282 393 479 631 

RES-E, GWh 16188 16593 15140 19016 28754 24692 20410 30610 32461 

PV share (%) 0.03% 0.14% 0.27% 0.84% 0.75% 1.14% 1.93% 1.56% 1.94% 
 

Regarding heating and cooling, renewable energy accounted for 16.5 % of the total 

energy use in 2013 in the EU-28, a significant increase from 9.9% in 2004, as stated in 

Figure 1.3 – Evolution of newly installed capacity from renewable energies,  

in Portugal (continental) between 1999 and 2013 (APREN, 2015a) 
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Eurostat (2015b). Mainly the industrial sector, services and residential use (building sector) 

contributed to this growth. Aerothermal, geothermal and hydrothermal heat energy 

captured by heat pumps are taken into account, to the extent reported by member states. 

In contrast with the electrical production from renewables (RES-E), the weight of 

clean technologies in heating and cooling in Portugal has decreased. In 2011 renewable 

technologies accounted 35% for heating and cooling, while in 2013 this was only about 

30% (Grupo About Media, 2015). Portugal was one of the 6 Member States that did not 

meet their planned 2013 renewable energy deployment level in the heating and cooling 

sector, together with Denmark, Ireland, France, the Netherlands and Slovakia (EC, 2015).  

The heat production from solar thermal source was 1.9 Mtoe in 2013 in the EU, that 

is well below the trajectory expected from NREAP´s (EC, 2015). This has to be viewed 

from the perspective of low economic growth and moribund construction market. 

According to the Renewables energy progress report (EC, 2015), the 2020 indicative targets 

for solar thermal, reflected in the NREAPs, are likely to be missed by 41.8% - 45.6%. Data 

from the European Solar Thermal Industrial Federation reveal that in 2013 (ESTIF, 2014) 

and 2014 (ESTIF, 2015) the European market maintained a contraction trend for the newly 

installed capacity, with annual decrease of 11.8% and 7.1%, respectively. This corresponds 

to an increase in the total installed capacity of 6.2% in 2013 and 5.3% in 2014. In 2014, the 

total collector area was 45.4 million m², producing 31.8 GWth energy. 

In 2013, the Portuguese solar thermal market shrank by 37%, decreasing almost to 

the same level as that of 2007 (ESTIF, 2014), as shown in Figure 1.5. This decline 

continued, and was equal to 11% in 2014 (ESTIF, 2015). The goal set by the National Plan 

for Energy Efficiency and Renewable Energy is 2.2 million m² of solar thermal systems 

installed by 2020, corresponding to an average annual growth of 11.5% between 2010 and 

2020 (ESTIF, 2015). Considering the annual installed capacity, and the present tendency 

of small increase in new construction, the market should stabilize around 55000 m2/year. 

The current trends clearly reveals an insufficient growth of the total collector area in 

Portugal. Unless the annual installations reach 150000 m2/year, the target will be down by 

50% (ESTIF, 2015). 
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Figure 1.5 – Evolution of the total and newly solar thermal capacity in Portugal since 2005 

(ESTIF, 2015) 

 

Financial support for the installation of solar thermal collectors was in place in 2009 

and 2010. However, there are currently no new specific measures foreseen to promote this 

technology, besides the ones already included in the Energy Efficiency Action Plan, and a 

revision of the building regulation code (EREC, 2011). According to this scenario, the goal 

of 30.6% share for RES-HC may not be reached. 

The installation of hybrid PV/T solar collectors fits into an urgent strategy of 

diffusion of renewable energy technologies, with decisive implications for the institutional 

goals at national, European and global level. The wider application of hybrid PV/T 

collectors can provide a solution for maintaining the current growth of the electricity sector 

from solar energy, while boosting the solar thermal market. New products are needed, 

especially to change the dynamics of the solar thermal market. The investigation carried 

out in this thesis aims to create added value for characterizing the performance of hybrid 

PV/T panels, showing the advantages of their application in energetic and economic terms. 

1.1.1  Use of solar energy in buildings 

Buildings are responsible for about one third of the total final energy consumption, and 

about 40% of primary energy consumption in most of the 29 member countries of 

International Energy Agency (IEA) (IEA, 2015). The European Commission (EC) and the 

national governments have realized that the maximum potential for energy-saving and CO2 

reduction lies by far within the building sector (Buildings Performance Institute Europe, 

2011). 
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In 2010, buildings consumed about 35% of the end-use energy, as shown in Figure 1.6. 

They are also responsible for about 36% of CO2 emissions in Europe. Residential buildings, 

the largest segment of the building stock in the EU, are responsible for the majority of the 

energy consumption. About 70% of total final energy is spent on space heating. By 2050, 

the EU aims to cut its GHG emissions by 80-95% compared to 1990 levels (European 

Comission - DG Climate Action, 2015). Because of the significant contribution of the 

building sector, this target can only be met if buildings demonstrate very low carbon 

emission levels and very low energy usage from carbon based sources. For most buildings 

in Europe, this means improving the current average energy efficiency by a factor of four 

or five and broad installation of renewable based technology (Buildings Performance 

Institute Europe, 2011). The presence of renewables in building energy consumption was 

only 30% in 2010, as also indicated in Figure 1.6. 

 

The establishment of adequate legislation framework is a key tool to assure that the 

targets are met. Through the introduction of the Energy Performance of Buildings Directive 

(Directive 2002/91/EC, EPBD), requirements for certification, inspection, training or 

renovation are now imposed in the EU Member States. The installation of solar collectors 

is a prescriptive requirement in building codes, such as in Portugal, Spain and Cyprus 

(Buildings Performance Institute Europe, 2011). The directive was modified in 2010 

(European Parliament, 2010) with more ambitious provisions, namely that all newly 

constructed buildings should be energetically nearly self-sustainable and their energy 

should come from renewable sources ‘to a very large extent’, by the end of 2020. For old 

buildings, that represent a substantial share of the stock in Europe, the major renovations 

Figure 1.6 - Final energy consumption by sector and buildings energy mix, 2010 

(IEA, 2013) 
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should always include an improvement of the energy performance (European Parliament, 

2010). 

Heating applications (space heating and domestic hot water) in residential buildings 

are of low temperature range (50-60 °C). These needs can be easily satisfied by existing 

and available technologies using renewable energy sources. Simple systems such as 

thermosiphons with flat-plate or evacuated tube collectors can be installed on terraces and 

horizontal rooftops in mild climates. Building integration of pumped systems allows heat 

storage for several days in stratified water tanks, where a back-up from another energy 

source is often installed. The most cost-effective systems cover 40% to 80% of the heating 

loads for domestic hot water (IEA, 2011). 

The European PV Industry Association (EPIA) calculates that a total ground floor 

area over 22000 km2, 40% of all building roofs and 15% of all facades are suited for PV 

applications in the EU. Building-Integrated Photovoltaic Systems (BIPV) can cover from 

15% to 58% of electricity demand (IEA, 2011). According to EPIA, a 20 m2 PV system in 

a sunny region (global irradiance at least 1200 kWh/m2/year) would produce enough 

electricity to fulfil the specific electricity need of a two to three people household on a 

yearly basis, with an excess during spring and summer, and a deficit in the winter (IEA, 

2011). An eventual surplus of electricity production can be sold to the public grid with 

economic benefits, since in most developed countries there are incentives to encourage the 

deployment of renewable energy technologies. A report by IEA (2010) forecasts that more 

than half of the global PV capacity will be installed in residential and commercial buildings 

until 2050, producing a little less than half the total PV electricity generation. 

Typical obstacles for a wider deployment of solar systems until recent years were 

the lack of evidence about their economic advantage, and their high initial price of 

acquisition and installation. The prices vary greatly according to the associated levels of 

complexity, as well as other factors such as labour. A DWH thermo-siphon system for one 

family unit consisting of a 2.4 m2 collector and 150 litre tank costs 700 € in Greece, but 

150 € in China (with no government support) (IEA, 2011). The effective cost of a system 

includes its price, but also the operation and maintenance cost and benefit of the generating 

plant over its life cycle period. Solar domestic hot water system cost in Europe ranges from 

85 €/MWh to 190€/MWh, which is competitive with retail electricity prices in some 

countries, if not yet with natural gas prices. These costs are expected to decline until 2030 

to 50€/MWh to 80 €/MWh for solar hot water systems (IEA, 2011). Cost reductions will 
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result from the use of less expensive materials, improved manufacturing processes, mass 

production and the direct integration of collectors into buildings as functional components 

and development of modular, easy-to-install systems. 

Hybrid PV/T collectors allow for the improved conversion per unit collector surface 

area, by combining thermal and electric energy production. This is an interesting option 

when the available surface area is limited, such as in densely populated regions. Another 

possible application of water PV/T modules is the cooling of buildings through radiative 

heat exchange with the sky during the night by circulation of the cold water stored through 

a concrete floor slab, during the day (Eicker and Dalibard, 2011).  

An adequate combination of solar options with other renewable technologies and 

energy-efficiency strategies into buildings are also very important. That most suitable 

scenario depends on local factors like climatic conditions, economic framework, available 

space and use of the building. In the last two decades, scientific and R&D advances have 

enabled a reduction of manufacturing costs. The market expansion led to larger scale 

production and consequently to price reductions. Nevertheless, the economic crisis felt in 

EU affected the building sector, and in turn it led to the regression of the solar thermal 

market over the last 5 years. The implementation of solar technologies through the building 

and industry sectors is mandatory (DR, 2006), in the context of the current legal measures 

towards the reduction of greenhouse gas emissions (GHG) and improvement of energy 

efficiency. Thus, institutional incentives, together with the continuity on the cooperation 

between the scientific research and the industry, are important paths for successfully 

achieving the ambitious goals of a sustainable development. 

1.2 Combined thermal and electric conversion in solar 

collectors – the hybrid photovoltaic/thermal collector  

According to Chow (2010), a common photovoltaic module converts between 4 to 

17% of the incident solar radiation into electricity, while more than 50% of it is ultimately 

transformed into heat. This may lead to operating temperatures 50°C above ambient 

temperature. The electric conversion efficiency (El) can be defined as the electric power 

output (𝐸̇) produced over the total incident radiation in the photovoltaic module. There is a 

linear reduction of the electrical conversion efficiency with cell temperature (Wysocki and 

Rappaport, 1960, Saidov, 1995), relative to its value registered for reference conditions of 
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temperature and radiation. The operation of photovoltaic modules at high temperatures can 

eventually cause undesired damage of the modules.  

The temperature dependence of the cell performance is primarily a characteristic of 

the material used. The effect of cell temperature on electrical efficiency is typically in the 

range of 0.4%/°C for monocrystalline silicon cells (c-Si) (Zondag, 2008, Chow, 2003, 

Kalogirou and Tripanagnostopoulos, 2006, Chow, 2010) and polycrystalline silicon cells 

(pc-Si) (Kalogirou and Tripanagnostopoulos, 2006). In amorphous silicon (a-Si) modules 

this reduction is more moderate, about 0.26%/°C (Chow, 2003, Yamawaki et al., 2001, 

Kalogirou and Tripanagnostopoulos, 2006). Reviews on correlations between PV module 

performance and operating temperature can be found in Skoplaki and Palyvos (2009a), 

Skoplaki and Palyvos (2009b) and Dubey et al. (2013). 

The electrical efficiency can be improved by removing the excess heat with, for 

example, a heat transfer fluid. This led to the concept of a hybrid collector. Bergene and 

Lovvik (1995) found that the electrical efficiency was in a range of 10.4% to 12.7% for 

flat-plate PV/T collectors using water. This represents a relative increase of 10-30% 

compared to the values obtained for uncooled conventional cells of the same type (9.5% to 

10.5%). A reduction of 20°C in cell operating temperatures was achieved in ventilated roof 

and wall integrated photovoltaic collectors by air circulation, resulting in improved 

electrical and thermal performance of the building (Brinkworth et al., 1997). Kalogirou 

(2001) reported that the average annual efficiency of photovoltaic power production 

increased from 2.8% to 7.7% with a hybrid system. More recently, Teo et al. (2012) found 

that electrical efficiency of a photovoltaic panel increased from 8.6% to 12.5%, when 

integrated with a solar air collector. Results from the numerical model developed by 

Siddiqui et al. (2012) showed that the performance of a PV panel with cooling varied very 

little with incident radiation (200–1000 W/m2) at a constant ambient temperature (25°C), 

and also with ambient temperature (0–50 °C), at an incident radiation of 800 W/m2. For the 

same variation in the operating conditions, the performance of the panel without cooling 

reduced significantly. It was concluded that the use of hybrid collectors is more 

advantageous in climates with high solar radiation and ambient temperature, such as in the 

Middle-East region. 

There are also benefits regarding the installation costs of hybrid collectors. Applying 

the same device for heat and electric production immediately enables savings by avoiding 

duplication of common elements such as the transparent cover and the support structure 
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(Loferski et al., 1982). Building integrated photovoltaics (BIPV), where thin films are used, 

allows for the reduction in installation costs and helps controlling the thermal loads on 

buildings (Agrawal and Tiwari, 2010). Van Helden et al. (2004) reviewed the existing 

literature and compared the performance of conventional and hybrid collectors from a 

number of aspects. Their major selected conclusions can be highlighted as follows: 

- Two adjacent collectors with areas of 1 m2 each, one thermal and another 

photovoltaic, can produce 520 kWh of useful thermal energy and 72 kWh of 

electrical energy. A hybrid collector of 2 m2 would supply 700 kWh heat and 132 

kWh electrical, respectively under the same conditions (Zondag et al., 2002), 

representing an increase of 34% in total energy output. By reducing the collector 

area while keeping the same output, the use of PV/T collectors increases the average 

yield per m2, with a corresponding decrease in manufacturing and installation costs. 

- The energy payback time for PV/T collectors was found to be considerably shorter 

than for individual systems. For example, the pay-back time reduced to 2 years from 

the original 4.3 years for solar thermal and 3.4 years for a PV system in the Italian 

climate (Frankl et al., 2000). Considering Greece, the payback time shortened to 10 

years for c-Si modules and 6 years for a-Si modules (Tselepis and 

Tripanagnostopoulos, 2002). 

Kalogirou (2001) included an economic analysis in his study based on the daily and 

monthly performance of a hybrid water PV/T system. The results indicated a reduction on 

life cycle system cost of 790 Cy£ (about 1360 €), with a payback period of 4.6 years. 

Calculations made by Energy Research Centre of the Netherlands (ECN) show that by 

using PV/T collectors instead of side-by side-systems, it is possible to reduce the collector 

area by 40% and still generate the same amount of energy (IEA, 2007). 

In order to evaluate the performance of a photovoltaic/thermal (PV/T) collector, the 

amount of electricity compared to the useful heat from the collector is an important factor. 

The performance of a PV/T collector can also be evaluated in terms of exergy efficiency. 

PV/T collectors are thermodynamically advantageous as they simultaneously generate 

high-grade (electrical) and low-grade (thermal) energy. Joshi and Tiwari (2007) concluded 

that there is an increase of about 2–3% in exergy due to thermal energy, in addition to 12% 

for the electrical exergy from a PV/T system, which leads to an overall exergetic efficiency 

of about 14–15% for a PV/T system. Sarhaddi et al. (2010) reviewed the literature for PV/T 
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exergy efficiency. It was found that the working fluid has a strong effect on the modified 

exergy efficiency, which can be increased if an incompressible fluid (water) is used in a 

PV/T collector system. 

In conclusion, the use of PV/T collectors can lead to both energetic and economic 

benefits. However, research is still needed, particularly on optimizing the PV cells layout, 

in terms of the fraction of the surface collector area covered by PV cells, and its preferable 

placement. An economic assessment of the PV/T collector performance is essential to assert 

this technological option. 

1.3 Scope of the study 

The aim of this research is to identify the optimum design of a PV/T collector for 

domestic hot water (DHW) applications, under the perspective of the fraction of the 

absorber surface area that is covered by PV cells (“packing factor”, Pf), and its location. 

This is accomplished through the experimental and numerical assessment of the thermal 

and electrical performance, for different layouts of the collector. The best option for the 

collector configuration is also addressed through the perspective of the economic and 

environmental interest of PV/T collectors, in the Portuguese context. A comprehensive 

parametric study on the dependence of efficiency on the most relevant environmental, 

operating and design parameters is implemented, and constitutes another objective of the 

thesis. 

A PV/T collector prototype was adapted for the experimental determination of the 

thermal and electrical efficiency curves. The curves are obtained for different values of Pf. 

A mathematical model was developed and applied in the parametric study. The studied 

parameters include ambient temperature (Tamb), solar irradiation (G), inlet temperature of 

the fluid (Tf,IN), packing factor (Pf) and PV cell layout on the absorber plate surface. The 

main focus is in the effect of the two latter parameters. The experimental results were used 

for validating the mathematical model. 

Based on the performance characteristics obtained through the mathematical model, 

an economic and environmental evaluation of the implementation of a PV/T system is 

developed. This approach focusses on optimizing the PV/T packing factor, using a typical 



 
Numerical and experimental study of a solar hybrid collector for combined production of electricity and heat 

14 

scenario of energy costs for domestic installations, and two different typical climates in 

Portugal. 

1.4 The structure of the thesis  

The dissertation is divided into six chapters. After the introduction (Chapter 1), 

where the energy problem and the objectives of the thesis are presented, the trajectory and 

the present state of the art of hybrid PV/T technology is discussed through chapter 2. After 

introducing the PV/T background, concerning solar thermal and photovoltaic technologies, 

the different types of hybrid solar PV/T collectors and some of their relevant performance 

aspects are reviewed. An overview of their main characteristics and evolution is made, and 

the different forms of accounting hybrid collectors performance are presented. A detailed 

description of the development of hybrid water collectors, through analytical models, 

experimental studies, and economic aspects of its application, is issued. The existing PV/T 

commercialized models are listed. 

 The experimental PV/T prototype accessed in this work is presented in Chapter 3. 

The characterization of the collector and system components is made, and the experimental 

procedure is described. The criteria for selection of the experimental results under steady 

state conditions are defined. Three sets of tests with the application of three different PV to 

total area ratios were performed. The results for thermal, electrical, and combined 

efficiency are analysed. 

 Chapter 4 deals with the development of a mathematical model for the simulation 

of the performance of a PV/T collector, depending on different environmental, operational, 

and design conditions. The model is based on the energy and mass balance equations 

applied to the different parts of the PV/T collector. The model is validated in this chapter 

using the experimental results presented in Chapter 3. A parametric analysis is then 

performed, using the mathematical model. The analysis includes evaluation of the effect of 

environmental conditions (G, Tamb) and other operating conditions, such as inlet 

temperature of the thermal fluid (Tf,IN). Different design options, focused on the packing 

factor (Pf) and cells layout, are compared in terms of system performance. 

 An economic assessment of the implementation of the studied PV/T collector in a 

residential building is presented in Chapter 5. Upon a typical economic scenario, a 

methodology to define the optimum packing factor is described. This methodology is based 
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on the collector efficiency characteristics experimentally determined in Chapter 3 and 

numerically determined in Chapter 4. Yearly performances were obtained by a dynamic 

simulation tool using local weather data of the collector installation, in this case the 

TRNSYS software. 

 The most important conclusions of the thesis are summarized in Chapter 6. Special 

attention is given to suggestions for future research in the field of the PV/T technology. 

  



 
Numerical and experimental study of a solar hybrid collector for combined production of electricity and heat 

16 

  



 
Numerical and experimental study of a solar hybrid collector for combined production of electricity and heat 

17 

 

 

 

 

Chapter 2.   

 

A state of the art of PV/T technology 

The potential of PV/T collectors is recognized since the 1970´s. There was however 

an intensification of studies over the past 20 years, in order to fully exploit their possibilities 

for contributing to the needs of heat and electricity of today´s society. 

This chapter is dedicated to the characterization of the hybrid photovoltaic/thermal 

(PV/T) solar collectors, through the evolution from their early development stage to the 

present state of the art. The fundamental characteristics of solar radiation, reason for the 

existence of solar collectors, are first presented. After a brief introduction to photovoltaic 

and thermal collectors, the different types of PV/T collectors are presented. The main 

results from relevant numerical and experimental studies are also discussed, with a special 

attention to flat-plate PV/T water collectors. Different methodologies used for the 

economic evaluation of PV/T systems are presented. The primary application of PV/T 

collectors is water and air heating, although they are also relevant, for instance, in heat 

pump systems. These and other applications of hybrid collectors are exposed. Finally, a 

survey on the existing commercial models of hybrid PV/T collectors is also carried out. 
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2.1 Topics on solar and thermal radiation 

This subsection summarises basic concepts related to solar energy and thermal 

radiation. Typical references of the literature concerning solar energy (Duffie (1991) and 

Kalogirou (2009)) provided the basis for the following topics and equations (2.1 to 2.7). 

The sun emits a total of 3.8×1020 MW of power that radiates outward in all 

directions. The earth receives a small part: 1.7×1014 kW. The energy from the sun received 

per unit time on a unit area of surface perpendicular to the direction of propagation of the 

radiation at mean earth-sun distance outside the atmosphere is called the solar constant 

(Gsc). The latest value of Gsc is 1366.1 W/m2, adopted in 2000 by the American Society for 

Testing and Materials (ASTM). The definition of this value was based on an Air Mass Zero 

reference spectrum (ASTM E-490) (NREL), developed from data collected from satellites, 

space shuttle missions, rocket soundings, ground-based solar telescopes, and modelled 

spectral irradiance. The spectral distribution of extra-terrestrial solar radiation ate the mean 

sun-earth is shown in Figure 2.1. 

 

The extra-terrestrial radiation measured on the plane normal to the radiation varies 

during the year, depending on the sun-to-earth distance. The solar heat at any point on earth 

depends on the ozone layer thickness, the distance travelled through the atmosphere to 

reach that point, the amount of haze in the air and the extent of cloud cover. Measured data 

of the solar radiation reaching earth´s surface in a certain location is usually available in 

energy rates, from a specified and calculated direction such as the ‘‘beam’’ radiation that 

comes directly from the sun, and the ‘‘diffuse’’ radiation that has been scattered in some 

generally unknown manner over all parts of the sky. A pyranometer is an instrument 

typically used to measure total hemispherical solar (beam plus diffuse) radiation. The solar, 

Figure 2.1 – Standard curve giving a solar constant of 1366.1 W/m2 and its position in the 

electromagnetic radiation spectrum (Kalogirou, 2009) 
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or short wave, radiation in the wavelength range of 0.3 to 3 m includes both beam and 

diffuse components. 

Thermal radiation is a form of energy emission and transmission that depends 

entirely on the temperature characteristics of the emissive surface. It is in fact an 

electromagnetic wave that travels at the speed of light (C). It is, thus, characterized by a 

wavelength () and a frequency (), as expressed in the following equation: 

 

Thermal radiation corresponds to the region in the electromagnetic spectrum from 

approximately 0.2 to approximately 1000 μm (see Figure 2.1). An elementary particle, with 

zero mass and zero electric charge, is called a photon. The energy contained in a photon 

(EP) of a photon is given by: 

 

where h is the Planck´s constant (=6.625×10-34 J.s). Combining eq. 2.1 and 2.2, it results in 

the definition of the energy of the photons in terms of the wavelength, as it follows: 

 

This fact is particularly significant where a minimum photon energy is needed to bring 

about a required change (e.g., the creation of a hole–electron pair in a photovoltaic device). 

 The total thermal energy that is incident on a surface can then be reflected, absorbed, 

or transmitted. Each one of those fractions corresponds, respectively, to the reflectivity (), 

absorptivity () and transmissibility (), and are related by the following expression: 

+  +  =1 (2.4) 

Each material is characterized by those radiation properties just defined, also called optical 

properties. However, they can change with the direction and wavelength of the incident 

radiation. The term generally used for radiation properties at a particular wavelength is 

“monochromatic”. A blackbody is a hypothetical idealization of a body that absorbs the 

total received radiation, and, thus, has  = 1, regardless of the spectral or directional 

characteristics of the incident radiation. A blackbody is also considered as a perfect emitter 

of radiation, although, in this case, it depends on its temperature and wavelength. The total 

emissive power results of the integration of the emitted energy for all the electromagnetic 

spectrum, and is defined by the Stefan-Boltzmann law: 

𝐶 = 𝜆𝜈 (2.1) 

 

𝐸𝑃ℎ = ℎ𝜈 (2.2) 

 

𝐸𝑃ℎ = ℎ𝐶
𝜆⁄  (2.3) 
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bb =  T4 (2.5) 

In eq. 2.5,  is the Stefan-Boltzmann constant = 5.67×10-8 W/m2 K4. The emissivity () of 

a real surface is defined by the reason of its emissive power to the one of a blackbody. The 

Kirchoffs law of radiation for the monochromatic emissivity of any surface in thermal 

equilibrium, states that: 

𝜀𝜆(𝑇) = 𝛼𝜆(𝑇) (2.6) 

 This can be generalized for the entire wavelength, as: 

𝜀(𝑇) = 𝛼(𝑇) (2.7) 

This generalization, however, is strictly valid only if the incident and emitted radiation 

have, in addition to the temperature equilibrium at the surfaces, the same spectral 

distribution. Such conditions are rarely met in real life; to simplify the analysis of radiation 

problems, however, the assumption that monochromatic properties are constant over all 

wavelengths is often made. Such a body with these characteristics is called a graybody. 

2.2 The first stage of the development of thermal collectors 

and photovoltaic panels 

In the last 60 years, technology research for the use of solar energy focussed on 

different applications, such as water heating, space heating and cooling, or electricity 

production. Among it, solar thermal collectors and photovoltaic panels are perhaps with the 

largest deployment in the market-ready energy technologies. 

The photovoltaic effect has already been known since 1839, discovered by 

Becquerel. However, the first solar cell was only manufactured by Adam and Day in 1876. 

This cell was made from selenium, and had an efficiency (El) of about 1-2%. It was the 

discovery of the production process of pure crystalline silicon by Jan Czochralski in 1916 

that led to a major advance for electronics (Kumar and Rosen, 2011a). In 1954, Daryl 

Chapin, Calvin Fuller and Gerald Pearson developed the first “high efficiency” silicon cell 

(Chapin et al., 1954), which meant 6% by that time. However, the elevated production cost 

limited its application almost only to aerospace science. It was applied to ensure the 

operation of radio stations in the space satellite Vanguard I in 1958 (Riffat and Cuce, 2011). 

Research in the 1960s resulted in the discovery of new photovoltaic materials such as 

gallium arsenide (GaAs), which could operate at higher temperatures than silicon, but it 
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was even more expensive (Kalogirou, 2009). The energy crises of 1970s spurred a new 

found of initiatives in many countries to make photovoltaic systems affordable, especially 

for off-grid applications (Kumar and Rosen, 2011a). This resulted in a broader application 

of the use of photovoltaic panels. 

PV cells, usually connected in series, are packed into modules through 

encapsulation resins, such as Ethylene-vinyl acetate (EVA), to produce a specific voltage 

and current when illuminated. PV modules can then be connected in series or in parallel in 

order to produce, respectively, larger voltages or currents. Applications powered by PV 

systems include communications (both on earth and in space), remote power, remote 

monitoring, lighting, water pumping, and battery charging. Besides those stand-alone 

applications, PV systems can also be grid connected, enabling selling the electricity, which 

can be economically interesting. 

Regarding thermal collectors, flat plate collectors (FPC) with single glass cover are 

the most common type. They are mainly used in domestic hot water (DHW) systems with 

temperatures up to 60 °C, and thus often referenced as “low temperature” applications. The 

schematic pictorial view with the main parts of a typical water flat plate collector is 

represented in Figure 2.2. The operating principle is simple and well known. The incident 

solar radiation passes through a transparent cover and hits a blackened absorber surface. A 

large portion of the radiation is absorbed by the plate and then transferred to a transport 

medium into the channels, which are in physical contact to the absorber plate, to be carried 

away for storage or use. Normally the channels are copper tubes, named “risers”, arranged 

in parallel (“harp”), and are connected at both ends by larger diameter header tubes. Such 

configuration is often referred to as “sheet and tube” type. The underside of the absorber 

plate and the side of the casing are well insulated to reduce conduction losses. The liquid 

tubes can be welded to the absorbing plate, or they can be an integral part of it. The most 

used material for the cover is low iron glass, with a high transmissibility () of the incident 

radiation (Kalogirou, 2009). 
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The performance of thermal collectors is evaluated through the thermal efficiency, 

(Th), defined as the ratio of the heat transferred to the fluid to the total incident radiation 

on the collector area (ACol) (Duffie, 1991): 

𝜂𝑇ℎ =
𝑚̇𝑐(𝑇𝑓,𝑂𝑈𝑇 − 𝑇𝑓,𝐼𝑁)

𝐴𝐶𝑜𝑙𝐺
 (2.8) 

In eq. 2.8, 𝑚̇ and c are the mass flow rate and specific heat of the working fluid, and 

Tf,IN and Tf,OUT are its temperatures at the inlet and outlet, respectively. 

The thermal efficiency (Th) decreases with the average collector temperature from 

a maximum value, called optical efficiency (o). This maximum value is verified when the 

ambient, the absorber plate, and the working fluid are in thermal equilibrium, and thus, 

losses are associated only to the optical properties of the cover and the absorber plate. Heat 

losses to the ambient through various modes of heat transfer occur in a thermal collector. 

The thermal losses result from the temperature differences that exist between the ambient, 

the cover, the absorber plate, the tubes, the insolation, and the fluid. An essential parameter 

of the collector is thus its overall heat loss factor (UL), that represents the magnitude of that 

heat loss.Th can be expressed as a function of the temperature difference between the 

absorber plate and the ambient: 

𝜂𝑇ℎ = 𝜂𝑜 − 𝑈𝐿

(𝑇𝑃 − 𝑇𝑎𝑚𝑏)

𝐺
 

(2.9) 

The performance testing procedure of solar thermal collectors is well defined in 

standards (IPQ, 2007). The tests should be carried out in order to cover different ranges for 

solar irradiance (G), ambient temperature (Tamb) and fluid inlet temperature (Tf,IN). A typical 

efficiency curve of a flat plate thermal collector working with liquid is presented in Figure 

2.3. The variable in abscissa is called the reduced temperature difference (T*), and can be 

defined as: 

 

Figure 2.2 – Pictorial view of a typical flat plate collector 

 with sheet and tube harp configuration (Kalogirou, 2004) 
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𝑇∗ =
𝑇𝑓,𝐼𝑁 − 𝑇𝑎𝑚𝑏

𝐺
 (2.10) 

T* can also be expressed according to the temperature of the plate (resulting on eq. 

2.9), the average fluid temperature (𝑇𝑓̅), or Tf,OUT. The correspondence between the different 

references for T* and Th is obtained through the use of different factors, that are defined 

according to the heat transfer processes between the different components. The collector 

overall heat loss factor can now be easily associated to the negative slope of the efficiency 

curve represented in Figure 2.3. Referring to the same figure, the thermal efficiency is there 

expressed as a linear function of T* (Duffie, 1991): 

 𝜂𝑇ℎ = 𝐹𝑅𝜂𝑜 − 𝐹𝑅𝑈𝐿𝑇
∗ (2.11) 

In eq. 2.11, FR is the modified heat removal factor, and accounts for the ratio of the 

actual useful heat transfer to the maximum possible useful heat transfer. 

 

FPC are built in a wide variety of designs and from many different materials. The 

thermal fluids can be water, water-antifreeze solutions, or air. The most common 

constructive design is the sheet and tube, with harp channel configuration, as presented in 

Figure 2.2. A serpentine design for the absorber can also be found. In this case, the total 

flow is not divided into a number of streams inside parallel riser tubes, but it flows in a 

single tube on the underside of the absorber plate, in a serpentine path. This collector does 

not present the potential problem of an uneven flow distribution in the various riser tubes 

of the header and riser design. However, as the flow rate through the tube is higher, 

serpentine collectors cannot work effectively in thermosiphon mode (natural circulation) 

and need a pump to circulate the heat transfer fluid (Kalogirou, 2009). 

𝑇𝑓,𝐼𝑁−𝑇𝑎𝑚𝑏

𝐺
, m2°C/W 

Figure 2.3 - Experimental collector efficiency data measured for a liquid flat-plate collector 

 with one glass cover and a selective absorber (Duffie, 1991) 



 
Numerical and experimental study of a solar hybrid collector for combined production of electricity and heat 

24 

Besides sheet and tube collectors, there are also concentrator type collectors, with 

different designs, but all being able to achieve higher temperatures, and thus they can be 

used in industrial applications, like, for example, for preheating water. The objective of 

concentrating the solar radiation into a smaller absorber area is to minimize convective 

losses and maximize incident radiation per unit surface area, so that higher operating 

temperatures can be obtained. Compound parabolic collectors, often referred to as "CPC", 

have a reflector surface, constituted by pairs of parabolic cavities that allow multiple 

reflection of solar beams into the absorbers. The absorbers can be either fins over the fluid 

pipe or evacuated tubes. In the first configuration, a glass cover is needed, such as in the 

case of a flat plate collector. A schematic diagram of this design is presented in Figure 2.4. 

 

Along with concentration, the vacuum technique is also used in solar collectors, in 

order to minimize convective losses, and also reach higher temperatures. Direct flow 

evacuated tube collectors (ETC) with U-type copper tubes are often used combined with 

compound parabolic concentrator reflectors. Vacuum is maintained in the space between 

two concentric glass tubes, where the outer one is transparent, in order to transmit solar 

radiation. Inside the inner glass tube, a copper tube bended in U is connected to a cold water 

distributer pipe, in the inlet side, and to a hot water collector, on the outlet side, as shown 

in Figure 2.5 a). The entering cold water flows down, gradually heats, and returns up to the 

hot water collector tube. Direct flow ETC can also be found with coaxial absorber tubes, 

as presented in Figure 2.5 b). In this case, the vacuum is created between the outer glass 

and the absorber tube, which has another concentric tube inside, creating two separated 

sections. The cold fluid enters in the inner tube, flows down while heats, and returns 

through the outer annular section. The inlet and outlet are connected also to separate annular 

zones in the same tube. This configuration has the advantage that the heat lost from the hot 

fluid is transferred to the cold flow, reducing the overall heat losses. In heat pipe ETC 

configuration, presented in Figure 2.5 c), one copper heat pipe is assembled together with 

the inner tube with a small amount of high purity water, or alcohol. When heated, it 

Figure 2.4 – Schematic diagram of a panel CPC collector with cylindrical absorbers 

(Kalogirou, 2009) 
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vaporizes, and the vapour rises along the heat pipe to a heat pipe bulb, which is in contact 

with the water collecting tube area, placed in the top of the collector. There, the heat it 

transferred to the cold water, causing the condensation of the vapour and the downward 

flow of vapour and the restoring of the system. The main advantage of heat pipe tube 

collectors is of practical order, once the absorber plate and the manifold does not require 

any process of bonding, making installation much easier than with direct flow collectors. 

Also, as the tubes are separated, any eventual damage in one tube just requires its 

substitution, without emptying or dismantling the entire system. This flexibility makes heat 

pipe ETC collectors ideal for closed loop solar designs as the modular assembly allows for 

easy installation and ability to easily expand by adding as many tubes as you want. On the 

other hand, in direct flow evacuated tube designs there isn’t a heat exchange between fluids, 

contributing to minor heat losses (Jack et al., 2011). 

 

 

The performance characteristics of some examples of the different types of solar 

thermal collectors just presented are listed in Table 2.1, according to its certification 

documents (Água Quente Solar, 2015). 

 

 

 

 

       a)               b)     c) 

Figure 2.5 – Schematics of three types of design for evacuated tube collectors: 

a) Direct flow with U-type absorber  b) Direct flow with coaxial-type absorber   c) Heat pipe  

(ArchiExpo, 2015)     (Sunda Solar, 2015)      (Kalogirou, 2009) 
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Table 2.1 – Performance characteristics for different types of  

solar thermal collectors for water heating available in the market 

 
 

The procedure most recently adopted by the certification entities accounts for the 

dependence of the heat loss coefficient (UL) on the average fluid temperature (𝑇𝑓̅), and 

ambient temperature. The parameter a2 in Table 2.1 reflect that influence. The thermal 

efficiency function can be rearranged in order to reflect that dependence, resulting on the 

following expression (IPQ, 2007): 

 

From the analysis of Table 2.1 it is possible to note that FPC and CPC collectors can 

reach higher values of 0, but the heat losses coefficient is almost halved for evacuated tube 

collectors, because of the vacuum insulation.  

The collectors mentioned before are mostly suitable for domestic and small-scale 

applications. Large installations, such as solar thermal power plants, for energy production 

at high temperatures (250-2500°C), comprise mirrored parabolic format devices, associated 

in large numbers, with concentration of energy at a point or along a line. They can be 

arranged aligned rectangular, around a solar tower, or forming a parabolic dish. For those 

applications, the systems use also tracking systems, to follow the sun beams. 

The collectors with concentration are not in the scope of this study, so, this subject 

will not be further detailed. 

2.2.1 Photovoltaic technology 

Photovoltaic cells are made of semiconductor materials. The most commonly used 

are silicon (Si) and cadmium sulphide compounds (CdS), cuprous sulphide (Cu2S), and 

gallium arsenide (GaAs). The largest part of the PV market continues to be crystalline 

Collector type Intercept 

(0) 

a1  

(W m-2 K-1) 

a2  

(W m-2 K-2) 

Ref. 

Flat plate, selective 0.757 4.0 0.015 Agua Quente Solar (2015b) 

0.744 4.162 0.014 Agua Quente Solar (2015c) 

CPC 0.727 3.948 0.022 Agua Quente Solar (2015d) 

Evacuated tubes 0.518 2.08 - Agua Quente Solar (2015a) 

Evacuated tube 

with heat pipes 

0.694 2.118 0.004 Agua Quente Solar (2015e) 

 

𝜂𝑇ℎ = 𝜂𝑜 − 𝑎1

(𝑇𝑓̅ − 𝑇𝑎𝑚𝑏)

𝐺
− 𝑎2

(𝑇𝑓̅ − 𝑇𝑎𝑚𝑏)
2

𝐺
 

(2.12) 
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silicon based, either polycrystalline (pc-Si) or monocrystalline (c-Si), with a share of about 

83.5% (Chen and Riffat, 2011). 

The c-Si modules are made of cells of about 0.2-0.3 mm thickness, saw-cut from a 

single cylindrical crystal of silicon. Although their average electrical efficiency is about 10-

17%, its manufacturing process is also more expensive, resulting in a higher price for the 

modules. The pc-Si modules are made of cells cut from an ingot of melted and recrystallized 

silicon. They are cheaper to produce, but have slightly lower electrical efficiency, in the 

range of 11-15% (Chen and Riffat, 2011). 

 Instead of a crystalline structure, amorphous silicon (a-Si) modules use Si atoms 

deposited on a thin and homogeneous layer substrate with better light absorption capacity. 

Therefore, they can be manufactured with thinner thicknesses, of about 1 m. For the same 

reason, amorphous silicon cells are also known as a thin film PV technology. This feature, 

when combined with the variety of possible substrates, makes them a flexible option in 

terms of applications (for example, curved surfaces). Although their efficiency is inferior 

to crystalline silicon (in the range of 4-7%), their cost is also lower and are less sensitive to 

efficiency losses at high temperatures. This type of modules has about 5.8% of market share 

(Chen and Riffat, 2011). An important disadvantage of thin film technology is the rapid 

performance degradation with time. Therefore, further growth in the PV market is not 

expected. 

New materials are emerging for manufacture of photovoltaic modules at 

competitive costs and higher efficiency than that of the a-Si, such as cadmium telluride 

(CdTe) and the CIS cells (CuInSe2) (Kalogirou, 2009). Currently, the efficiency of 

commercial photovoltaic panels is about 15%, in average. It should be noted that laboratory 

models have achieved efficiency values superior than 40%, for multijunction (three-

junction, four-junction or more) concentrator cells (NREL, 2015a). A multijunction cell 

works with different semi-transparent layers: the top cell produces electricity from the 

higher-energy portion of the solar spectrum, and the lower-energy sunlight passes through 

to the lower cells to be converted into electricity, resulting in a highly efficient production 

of power. To make it work, the stacked cells need to absorb complementary wavelengths 

of sunlight, and those absorption wavelengths are determined by the material’s bandgaps 

(NREL, 2013). The photo-absorption layers are made from compounds of multiple 

elements, from which the most typical are InGaP, GaAs and InGaAs (Sharp, 2013). The 

recent significant reduction in the prices of photovoltaic cells has led to annual growth of 
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PV products. 2013 was a record year for PV installations with at least 38.4 GW of newly-

added capacity around the globe and 11 GW in Europe (EPIA, 2014). In 2014, system 

prices for utility-scale solar PV fell below $1.8 per watt in the USA - 59% lower than in 

2010, according to NREL and Lawrence Berkeley National Lab. Prices for distributed solar 

PV systems dropped 12-19% in the USA during 2013 (Sustainable Business.com, 2014). 

Since 2010, installed prices are down 46%, because of lower equipment costs and 

streamlined installation practices. Residential solar averaged $3.29 per watt in 2014, 

according to NREL (Sustainable Business.com, 2014). A study on the PV costs evolution 

and forecasts is made by Candelise et al. (2013). The growth in solar photovoltaic 

technologies including worldwide status, materials for solar cells, efficiency, factor 

affecting the performance of PV module, overview on cost analysis of PV and its 

environmental impact are reviewed in a study by Tyagi et al. (2013). The evolution of PV 

panel cost by material from 1995 to 2012 with prediction for price up until 2020 was 

presented, confirming that PV price dropped drastically since 1995 to 2012. The solar PV 

module production shares by technology are shown in Figure 2.6 (SolarBuzz, 2015). The 

production of pc-Si PV modules is set to dominate PV manufacturing during 2014, 

accounting for 62% of all modules produced. 

 

For a typical commercial PV panel, 13-20% of the solar radiation is converted into 

electricity (Armstrong and Hurley, 2010). The electrical efficiency of photovoltaic modules 

depends, besides the type of cells, on the intensity of radiation of the climate region where 

they are installed, the module packing factor and module temperature. The packing factor 

is the fraction of the area effectively occupied by the cells, compared to the area occupied 

by the module. 

Figure 2.6 - Solar PV module production by technology in 2014 (SolarBuzz, 2015) 
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 As previously stated on section 1.2, cell efficiency decreases with its operating 

temperature according to the following relation (Skoplaki and Palyvos, 2009a): 

𝜂𝐶𝑒𝑙𝑙 = 𝜂𝐸𝑙,𝑟𝑒𝑓[1 − 𝛽𝑟𝑒𝑓(𝑇𝐶𝑒𝑙𝑙 − 𝑇𝑟𝑒𝑓)] (2.13) 

The rate of the reduction in Cell characteristics is given by the temperature coefficient, βref. 

ηEl,ref represents the electrical efficiency under reference conditions of temperature (Tref) 

and radiation (Gref), normally corresponding to 25°C and 1000 W/m2, respectively. The 

effect of the temperature coefficient upon the efficiency of various types of silicon-based 

PV module is shown in Figure 2.7. It can be seen from the figure that the influence of the 

operating cell temperature on the electrical efficiency is especially relevant for 

monocrystalline modules, indicated by a steeper decline of the curves, compared to pc-Si 

and a-Si. Therefore, the benefits of cooling the cells in hybrid collectors is expected to be 

more pronounced for these type of modules. 

 

2.2.2 The role of selective coatings used in absorber plates 

Absorber plates are made of good thermal conductive materials, such as copper, in 

order to reduce the thermal resistance between the plate and the working fluid. An absorber 

plate should also have high absorptivity, typically achieved by a black colour surface on 

the receiver side. The thermal efficiency is further improved if the coating material is 

selective. This means that its optical properties change depending whether it receives or 

emits radiation to the environment. A good selective coating easily absorb radiation, with 

an absorptivity () higher than 95% in the visible range (400 nm   700 nm), while 

Figure 2.7 – Influence of operating temperature on the electrical efficiency for typical silicon-

based PV module types (c-Si, pc-Si and a-Si) (Skoplaki and Palyvos, 2009a) 


E

l/


E
l,

re
f 



 
Numerical and experimental study of a solar hybrid collector for combined production of electricity and heat 

30 

presents a low emissivity (), lower than 15%, in the infrared range ( ≥ 0,8 m). Selective 

absorbers often consist of a very thin black metallic oxide on a bright metal base. 

Optical properties of some important selective coatings are listed in Table 2.2. 

Black copper oxide coating on copper or aluminium is the most commonly used selective 

surface and is extensively commercialized in solar collector industries. Before application 

of the black coating, the copper sheet undergoes a deep cleaning process. It is then dipped 

for different times in the blackening bath containing sodium hydroxide (NaOH) and sodium 

chlorite (NaClO2), at a solution temperature between 140-145°C. However, the most 

successful and stable selective surfaces developed so far are made of black chrome. It is 

obtained by electroplating a layer of bright nickel on absorber plate, then electrodepositing 

an extremely thin layer of chromium oxide (black chrome) on the nickel substrate. Black 

chrome on copper shows good selectivity and resistance for humidity. Their feasibility is 

however limited because of the high cost of copper substrate (Madhukeshwara and Prakash, 

2012). Other typically used selective coatings are black nickel, applied on polished nickel, 

or galvanized iron and cobalt oxide fixed on bright nickel-plated steel substrate.  

Table 2.2 - Properties of selective coatings (Madhukeshwara and Prakash, 2012) 

 
Besides the aforementioned coatings, used mainly in mid-temperature applications, 

such as solar hot water and industrial process heat, there are also high-temperature absorber 

coatings, suitable for concentrated solar power applications. Transition metal based cermets 

have emerged as novel high temperature solar selective coatings (Selvakumar and 

Barshilia, 2012). A cermet is a composite material formed by ceramic (cer) and metallic 

(met) materials. The metal is used as a binder for an oxide, boride, or carbide. Generally, 

the metallic elements used are nickel, molybdenum, and cobalt. Those applications are not 

within the scope of this thesis. 

Selective Coatings   

Black Chrome 0.93 0.10 9.3 

Black Nickel on polished Nickel 0.92 0.11 8.4 

Black Nickel on galvanized Iron 0.89 0.12 7.4 

CuO on nickel 0.81 0.17 4.7 

Co3O4 on silver 0.90 0.27 3.3 

CuO on Aluminium 0.93 0.11 8.5 

CuO on anodized Aluminium 0.85 0.11 7.7 

Solchrome 0.96 0.12 8.0 

Black paint 0.96 0.88 1.09 
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2.3 General aspects of photovoltaic/thermal collectors 

In this section the global aspects thorough the comprehension of PV/T collectors 

operation are presented, including its performance characterization and discussion of recent 

advances within this subject. 

The thermal efficiency (𝜂𝑇ℎ) and electrical efficiency (𝜂𝐸𝑙) of a PV/T collector 

represent, respectively, the useful heat (𝑄̇) and electric power output (𝐸̇) produced over the 

total incident radiation in the absorber plate, as defined in the following expressions: 

𝜂𝑇ℎ =
𝑄̇

𝐺𝐴𝑃

 (2.14) 

𝜂𝐸𝑙 =
𝐸̇

𝐺𝐴𝑃

 (2.15) 

According to IPQ standard (IPQ, 2007), Th can also be defined with reference to 

collector aperture area, instead of the absorber area. A typical indicator of the global 

performance of a PV/T collectors is the global efficiency (𝜂𝐺), defined as the ratio of the 

sum of the useful heat and electrical power output over the total incident radiation: 

𝜂𝐺 =
𝑄̇ + 𝐸̇

𝐺𝐴𝐺𝐶

 (2.16) 

Other terms are also commonly used for the global efficiency, as “combined efficiency”, 

“overall efficiency" or “total efficiency”. 

 The simplest way to build a flat-plate PV/T absorber is to connect mechanically a 

standard PV module over the top surface of the absorber plate of a flat collector. The PV 

laminate can either be mechanically pressed (Tripanagnostopoulos et al., 2002) or glued 

using an additional adhesive layer with good thermal properties (Fraisse et al., 2007, 

Zondag et al., 2003). In this particular configuration, the thermal resistance between the 

PV cells in the module and the absorber plate was estimated to be about 0.01 (m2 K/W) by 

Van Helden et al. (2004). Subsequently, the PV/T absorber is inserted in the frame of a 

standard collector and covered by a glass cover. 

According to Chow (2010), the calculated maximum thermal efficiency of PV/T-

liquid systems ranges generally from 45% for unglazed collectors to 70% for glazed 

designs. For PV/T-air systems, the thermal efficiencies can be up to 55% for optimized 

collector design. The thermal efficiency of air type PV/T systems depends strongly on the 

air flow rate, air duct depth and collector length. For higher values of air flow rate, small 
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air duct depth and long PV/T systems, thermal efficiencies up to about 55% are predicted 

by the theoretical models (Tripanagnostopoulos et al., 2002). However, for a building 

integrated system studied by Ricaud and Roubeau (1994) higher values for efficiency 

(66%) were achieved. Through transient analysis of Prakash (1994) it was pointed out that 

an hybrid air collector (PV/T-a) design has a lower thermal efficiency than an water 

collector (PV/T-w), because of the reduction of heat transfer coefficient between the 

thermal absorber and the airflow stream. Their advantage is most relevantly due to low 

construction and operative cost, whereby they are frequently used in PV applications in 

buildings at locations with low insolation and ambient temperatures, space heating is 

necessary for almost all the year. PV cooling by air circulation in combination with space 

heating can also be more useful and cost effective compared to liquid cooled PV 

(Tripanagnostopoulos et al., 2002). 

Regarding the solar cell technology in conventional c-Si PV modules, the 

absorption coefficient is usually optimized for the wavelength range 300≤≤1100 nm for 

silicon. However, in the case of PV/T collectors, it is relevant for the thermal function to 

consider the absorption coefficient for the entire range of the solar spectrum (300≤≤2500 

nm). Because of their homogenous surface texturing, monocrystalline silicon solar cells (c-

Si) have lower reflection losses than polycrystalline silicon (pc-Si) solar cells and present 

a better absorption properties. In order to check the difference between pc-Si and c-Si, 

experimental measurements were carried out by (Dupeyrat et al., 2011b). The absorption 

coefficients for pc-Si and c-Si cells were found to be 0.85 and 0.90 respectively. The 

corresponding electrical efficiency was 0.13 and 0.15. Therefore, it may be preferable for 

both thermal and electrical perspective to use c-Si solar cells instead of pc-Si solar cells. 

This could make even obvious with a specific low-reflecting encapsulation in order to 

increase the PV/T plate absorption coefficient. 

The comparison between amorphous silicon (a-Si) cells and polycrystalline cells is 

integrated into the extensive parametrical study by Tripanagnostopoulos et al. (2002). The 

results showed that the use of pc-Si PV module can be considered more effective, taking 

into account its higher electrical efficiency and also its lower relative system cost. 

Amorphous silicon was compared to single-crystalline module types by Daghigh (2011), 

for a water-based PV/T collector in a Building Integrated Photovoltaic Thermal (BIPVT) 

system. The effect on thermal and overall efficiencies are shown in Figure 2.8. The 

behaviour of a-Si cells is better in both thermal and overall perspectives. 
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 Sandnes and Rekstad (2002) refer a loss of about 10% in the solar energy absorbed 

by pasting solar cells on the absorbing surface, due to lower optical absorption in the solar 

cells (75%), when compared to the absorber plate (90%), and due to the increased 

thermal resistance for the thermal fluid. Numerical studies to improve these characteristics 

on thin-films used in PV/T collectors were carried out by Johnston (2010), through the 

optimization of the different layers that compose solar thin film PV/T cell. 

2.3.1 Estimating hybrid collector efficiency 

The useful heat (𝑄̇) and electric power (𝐸̇) produced by a PV/T collector are 

obtained through the following equations: 

𝑄̇ = 𝑚̇𝑐(𝑇𝑓,𝑂𝑈𝑇 − 𝑇𝑓,𝐼𝑁) 
(2.17) 

𝐸̇ = 𝑉𝑀𝑃𝑃𝐼𝑀𝑃𝑃 
(2.18) 

In eq. 2.18, VMPP and IMPP are the voltage and electric current output of the PV module, 

respectively, at maximum power point (MPP) operating conditions. 

The Hottel–Whillier–Bliss model, modified by Florschuetz for hybrid collectors 

(Florschuetz, 1976), express the thermal efficiency as: 

𝜂𝑇ℎ = 𝐹𝑅 [(𝜏𝛼)𝑒(1 − 𝜂𝐸𝑙) − 𝑈𝐿 (
𝑇𝑓,𝐼𝑁 − 𝑇𝑎𝑚𝑏

𝐺
)] (2.19) 

In eq. 2.19, ()e is the effective transmittance-absorptance product () (Duffie, 1991), 

that accounts for the reduced thermal losses due to absorption of solar radiation by the glass, 

and 𝜂𝐸𝑙 is the electrical efficiency evaluated at cell operating temperature (TCell). Eq. 2.19 

can be modified in order to use the average fluid temperature in the collector (𝑇𝑓̅), defined 

as: 

Figure 2.8 – Comparison of thermal and overall efficiencies of c-Si and a-Si PV cells 

in a water BIPVT system (Daghigh, 2011) 
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𝑇𝑓̅ = 
𝑇𝑓,𝐼𝑁 + 𝑇𝑓,𝑂𝑈𝑇

2
 (2.20) 

 The definition of thermal efficiency as a function of 𝑇𝑓̅ follows the expression 

(Chow, 2010): 

𝜂𝑇ℎ =  𝐹´ [(𝜏𝛼)𝑒  (1 − 𝜂𝐸𝑙) − 𝑈𝐿 (
𝑇𝑓̅ − 𝑇𝑎𝑚𝑏

𝐺
)] (2.21) 

The factor FR in eq. 2.20 is replaced in this last definition by the collector efficiency factor 

(F´), that is the ratio of the actual useful energy gain to the useful gain that would result if 

the entire collector absorber surface was at the local fluid temperature. Firstly, a solar 

collector should absorb most of the incident irradiance, in order to achieve a high level of 

useful heat, i.e. (τα)e needs to be high. Secondly, the heat transfer from the absorber to the 

working fluid should be much higher than the heat loss to the surroundings, represented by 

the overall heat loss coefficient (UL). The collector efficiency factor describes the 

relationship between these two processes. Eisenmann et al. (2004) pointed out that the 

value of F′ strongly depends on the distance between the tubes (W) and the absorber plate 

thickness (P). 

Traditionally, the thermal efficiency of solar thermal and PV/T collectors is 

expressed as a linear function of the reduced temperature difference (T*) similarly to the 

formulation used for thermal collectors, as expressed previously in eq. 2.11. 

Precaution should be taken into considering when using this approach for the 

estimation of efficiency of hybrid collectors, since electricity and heat are not qualitatively 

equivalent (Bergene and Lovvik, 1995). Heat can only be converted into work if there is a 

temperature difference between the hot temperature source (TH), and the low temperature 

sink (TL) (Fujisawa and Tani, 1997). Through the use of an exergy analysis, it is possible 

to quantitatively access that difference, based on the same standard. One can define 

electrical (XEl) and thermal (XTh) exergy, as: 

𝑋𝐸𝑙 = 𝜂𝐸𝑙𝐼 (2.22) 

𝑋𝑇ℎ = (1 −
𝑇𝐿

𝑇𝐻

) 𝜂𝑇ℎ𝐼 (2.23) 

In the previous equations, I is the hourly irradiation. The overall exergetic efficiency (𝜂𝑋) 

of the PV/T collector will then be taken as: 

𝜂𝑋 =
𝑋𝐸𝑙 + 𝑋𝑇ℎ

𝐺
 (2.24) 
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The study of Fujisawa and Tani (1997) shows that, despite the thermal annual 

earnings are much higher than the electrical gains (548 kWh/66 kWh), the annual electric 

power exergy is about ten times higher than the thermal (66 kWh/5.6 kWh ) for a liquid 

PV/T collector with one glass cover. The output density of exergy in combined utilization 

was also determined by dividing exergy gain (thermal + electrical) by the installation area. 

With the hybrid PV/T collector, an output of 102.1 kWh/m2 was achieved in comparison 

with 65 kWh/m2 for a standalone PV module and thermal collector. However, it was found 

that a PV/T collector with no cover had a better output density of exergy than a PV/T 

collector with one cover. A similar exergetic analysis was carried out by Morita et al. 

(2000). For the same conditions of irradiance, wind and ambient temperature, the results 

for a glazed hybrid collector were slightly better than for an unglazed collector. 

Another approach is proposed by Huang et al. (2001), defining an energy-saving 

efficiency (𝜂𝑃𝐸𝑆) in terms of the primary-energy saving, as: 

𝜂𝑃𝐸𝑆 = 
𝜂𝐸𝑙

𝜂𝐸̇

+ 𝜂𝑇ℎ (2.25) 

In eq. 2.25, 𝜂𝐸̇  is the electric power generation efficiency for a conventional power plant, 

taken as 0.38. This reference value can change, depending on the method of electric energy 

generation. It was observed that the primary energy saving efficiency of water heating a 

system that integrates an unglazed PV/T collector exceeds 0.60, which is better than the 

result for a stand-alone solar hot water heater or PV system. The study of Bhattarai et al. 

(2012) presents a one-dimensional mathematical model for simulating the transient process 

of sheet and tube type PV/T system and compared it to conventional type solar collectors. 

It was found that the energy saving efficiency was 16% higher for the PV/T system. 

2.3.2 Evolution and characterization of hybrid PV/T solar collectors 

The concept of hybrid collectors was first introduced in the 1970s, as a coincidence 

with the oil crisis. The first hybrid PV/T system was integrated in 1973 by Boer and Tamm 

(2003) into a test building (Solar One House), operating with air. It was the first building 

which enabled direct conversion of sunlight into both electricity and heat for domestic use. 

The first liquid PV/T collector was investigated by Wolf (1976). The performance of a 

combined solar PV and water heating system for a single-family residence over a full year 

was analysed. The main concept was further improved by Kern Jr and Russell (1978), 

studying its application suitability in four different typical USA climates. Hendrie (1979) 
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presented a model and experimental results for the thermal and electric performance of an 

air and a liquid type of combined photovoltaic/thermal solar collector. Two separate one-

dimensional analyses were carried out by Raghuraman (1981) for the prediction of the 

thermal and electrical performance of both liquid and air flat-plate PV/T collectors. The 

analysis account for the temperature difference between the PV cells and the flat plate 

absorber. Some design recommendations were made to maximize the total energy obtained 

from the collectors, mainly focusing on the thermal component. Their suggestions can be 

summarized as follows: 

- glass cover with crisscrossing grooves reduce convective losses and the use of 

anti-reflective coatings reduce reflection losses; 

- optimal cell-to-glass-cover air-gap height for cell-to-glass temperature 

difference between 8-17°C should be higher than 5 cm; 

- use of high thermal conductivity epoxy bonds between PV cells and the thermal 

collector to ensure a low thermal resistance and electrical isolation; 

- in liquid PV/T collectors, minimize heat resistance between the plate and the 

tubes by integrating the two elements during the manufacturing process,; 

- improve the interior heat transfer coefficient by using rough tube (PV/T-w) or 

channel (PV/T-a), and also by placing fins along the flow direction; 

- use of selective black coatings of black nickel or chrome on the thermal 

collector 

 Cox and Raghuraman (1985) carried out their numerical work on the improvement 

of the absorber characteristics to enhance the performance of air flat plate collectors 

employing c-Si PV cells. It was found that, for PV cells covering more than approximately 

65% of the total collector area, a selective absorber actually reduces the thermal efficiency 

when used with a gridded-back cell. The requirements for the low emissivity coating are 

less than 0.25 and a solar transmissivity greater than 0.85 for the infrared radiation range. 

A hybrid a-Si PV/T-w solar collector was developed by Lalovic et al. (1986). The 

electric characteristics of the photovoltaic modules showed only a small increase with the 

adaptation to the hybrid configuration, but the unit performed well as a thermal solar 

collector. In addition, space saving and cost saving of the photovoltaic generator was 

obtained with the PV/T adaptation. In order to improve the thermal efficiency, a novel 
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transparent type of a-Si cell was integrated and tested in the hybrid unit. The results 

obtained showed the possibility of constructing simple and cheap hybrid systems with good 

photovoltaic and thermal efficiencies. 

 Bhargava et al. (1991) presented a study on hybrid forced air systems for optimizing 

the area of the solar cells necessary to generate electrical energy for the circulation fan, for 

different configurations of the air heater. The hybrid system was proven to be self-sufficient 

only for specific design parameters and flow rates. The study was extended by Garg et al. 

(1991), adding a plane booster reflector to a hybrid flat-plate solar air heater. Concentrating 

sunlight is a key technique in order to reduce the system cost. With this solution, the area 

required for the PV modules decreased, and therefore payback time becomes shorter. 

However, PV module temperature increases with concentration which is disadvantageous 

for the electrical efficiency (Riffat and Cuce, 2011). It was verified that the minimum 

required cell area decreases with the use of boosters, and that high cost cells could be 

replaced by low cost reflectors. The improvement on the total efficiency of applying a 

booster diffuse reflector and glazing in a water hybrid system with pc-Si cells was 

registered by Tripanagnostopoulos et al. (1996), as well as the use of the glazing. Brogren 

et al. (2000) analysed the optical efficiency of a water-cooled hybrid PV/T system with a 

low-concentrating aluminium CPC, determining a value for the optimum efficiency o= 

0.71. 

An important issue to achieve high thermal performance in a PV/T collector is to 

ensure a good thermal contact between the photovoltaic element and the absorber plate 

(Raghuraman, 1981), as previously mentioned. Usually, a layer of an adhesive with high 

conductivity is applied to bond the two parts. Zakharchenko et al. (2004) evaluated 

different materials and application methodologies to assess the thermal contact between the 

PV panel and the collector. It was concluded that commercial PV panels failed due to the 

poor thermal conductivity of the panel substrate material. Therefore, a PV prototype panel 

was constructed using metallic substrate with a thin insulating layer. It was noted that the 

power output of the PV panel increased 10% with the new design. In order to enhance the 

heat transfer between PV cells and the metal sheet, more advanced techniques can be used, 

consisting on laminating together all the components in one step: the transparent front 

glazing (not necessarily glass), the encapsulated material, the PV cells and the absorber 

(Zondag, 2008). Dupeyrat et al. (2011a) obtained better results of thermal and electrical 

performance for this type of improved laminated absorber. Numerical results obtained are 
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shown in Figure 2.9. The experimental data also indicated a significant improvement for 

both thermal and electrical performance in comparison with other PV/T concepts. Thermal 

and electrical efficiency for zero reduced temperature were 79% and 8.8%, respectively, 

using pc-Si PV cells. 

The effect of thermal contact was also studied by Siddiqui et al. (2012), through a 

range of contact resistance from 0.005-0.05 ºC m2/W. From the case of ideal contact to the 

case of maximum contact resistance considered, the PV cell temperature increased around 

18 °C. The absolute drop in efficiency was around 2% and about 19% of electrical power 

was lost due to the contact resistance. Khandelwal et al. (2007) proposed a non-contact 

Photovoltaic-Thermal collector, which consists of a PV panel separated by a conventional 

sheet and tube solar thermal collector. At high values of PV transmissivity ( > 0.75), the 

thermal efficiency of the non-contact type system exceeds that of the contact type collector 

at higher values of inlet temperatures.  

 

The application of thermal collectors, photovoltaic panels, and hybrid collectors on 

buildings, according to many sensitivities entails a negative aesthetically overload, despite 

its energetic and environmental advantages. Therefore, the potential for the PV/T collectors 

can be increased by developing aesthetically more attractive solutions, which can be 

applied into buildings, integrated on the facades and roofs. This technology is known as 

building integrated Photovoltaic/Thermal (BIPVT) systems, and have been studied by 

various authors (Clarke et al., 1996, Sandberg and Moshfegh, 1998, Posnanky et al., 1992, 

Posnanky et al., 1994, Brinkworth et al., 1997), cited in Riffat and Cuce (2011). This 

technology evolved from the building integrated photovoltaics (BIPV) technology 

Figure 2.9 - Thermal and electrical efficiency curves of a PV/T collector for two different bonding 

methods as a function of the reduced temperature. (Dupeyrat et al., 2011a) 

(𝑇𝑓̅ − 𝑇𝑎𝑚𝑏)/𝐺 (m2.K/W) 
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(Posnanky et al., 1992). Structural elements can be used also for energy management 

purposes, providing savings in material and installation costs (Anderson et al., 2009). 

Typically, air systems are used, for convenience of installation and integrated with 

ventilation units, but also water collectors can be adapted, providing hot water and space 

heating simultaneously. Tripanagnostopoulos (2007) carried out an experiment to improve 

the performance of a PV/T system at University of Patras, Greece. A dual heat extraction 

operation system was investigated, through a combination of water and air PV/T. Three 

alternative models of passing the water inside the air channel were tested. For improving 

heat extraction using air, the modifications included placing a thin corrugated metallic sheet 

into the middle of a flow channel, as well as attaching small ribs on the opposite wall of 

PV module and installation of light weight pipes along the channel. In order to enhance the 

operation on a horizontal roof, a booster diffuse reflector was also combined with the PV/T 

system. 

 Moradi et al. (2013) compiled and reviewed the major control parameters on the 

thermal/electrical performance of PV/T collectors, such as packing factor, mass flow rate, 

PV solar cell materials, heat transfer fluids and geometries. Regarding the compiled 

information on the influence of the packing factor, it was found that a comprehensive 

knowledge about the variation of packing factor and its effects with different fluids in 

different PV/T systems still does not exist. So, the study developed in this thesis contributes 

to fill in the research on this aspect, with respect to water PV/T collectors. 

2.4 Relevant characteristics of the components of PV/T flat 

plate water collectors 

Most of the hybrid flat plate water collectors are sheet and tube type, originating from 

the most widely spread technology of thermal collectors. In this section, some major issues 

concerning the different components of a PV/T collector are presented, which are correlated 

to the wide range of constructive designs of the hybrid collectors. Advantages and fragilities 

of different existing options will be addressed. 

2.4.1 Use of transparent covers 

The option for the number of transparent covers used in the sheet and tube 

configuration (none, one and two) has been extensively studied (Fujisawa and Tani (1997), 
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Morita et al. (2000), Zondag et al. (2003), Tripanagnostopoulos (2010)). Single glazed 

PV/T collector presents higher thermal output than an unglazed one. Nevertheless, its 

electrical output is reduced, due to additional optical losses (Fraisse et al., 2007). An exergy 

analysis was presented by Morita et al. (2000). It was found that the exergetic efficiency 

increases with the flow temperature up to a maximum value of about 13.36% for glazed 

and 11.92% for unglazed PV/T collectors, and the optimum flow temperature is, 

respectively, 83.6ºC and 38.8ºC. Chow et al. (2009) carried out outdoor measurements on 

two similar sheet-and-tube thermosiphon PV/T water collector systems in Hong Kong, in 

one glazed and another unglazed. The influence of six selected operating parameters was 

evaluated. The first law analysis indicated that the glazed design is always more suitable if 

either the thermal or the overall energy output is to be maximized. However, from the 

exergy analysis it was found that an unglazed system is more advantageous for high values 

of PV cell efficiency, packing factor, water mass to collector area ratio, and wind velocity, 

whereas the increase of solar radiation and ambient temperature are favourable for a glazed 

system. The use of more covers create additional losses by reflection. Instead of glass, other 

lighter, cheaper and stronger materials, such as polycarbonate, polymethylmethacrylate, 

polyvinyl fluoride, can be adopted for the cover. However, the use of glass is the best 

option, because of its good optical properties, resistance to UV and high temperatures 

(Zondag et al., 2003). The air gap between the PV laminate and the cover material must be 

thin enough to benefit from the insulating properties of air, and preventing at the same time 

convective flows and micro turbulence. Generally the gap with should be between 15 and 

40 mm. ((Gordon, 2001), cited by Aste et al. (2014)). 

2.4.2 PV modules 

The photovoltaic modules applied to an absorber typically use EVA for the 

encapsulation of the cells. However, there are some technical difficulties related to standard 

EVA lamination of PV modules. It can decompose in the presence of acetic acid 

(delamination, coloration, degradation of PV cells by acid) at temperatures above 80°C. 

Thus, conventional PV laminates cannot withstand stagnation temperatures in glazed 

collectors usually operating between 120 and 180 °C. A novel glazed PV/T collector 

concept based on PV laminate with siloxane gel is now under development at the Czech 

Technical University in Prague. Application of siloxane gel instead of EVA lamination 

compound offers several important advantages, such as high temperature resistance, high 
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transparency, compensation of thermal dilatation stresses and favourable heat transfer from 

PV to heat exchanger in PV/T collector ((Matuska, 2014), (Poulek et al., 2012)). 

2.4.3 Absorber plate structures 

In a PV/T solar collector, the absorber plate is an important functional element, since 

it transfers the solar energy, that was not converted to power by the photovoltaic element, 

to the fluid. Its desirable properties are high thermal conductivity and low specific heat 

capacity. For these reasons, absorber plates for water PV/T are generally metallic, such as 

copper, aluminium or more rarely steel. The upper side of the plate should allow the perfect 

adhesion of the cells or the PV laminate, thus enhancing the heat removal from the 

photovoltaic component. Besides the most usual sheet and tube arrangement, other 

structures can be found for absorbers in water hybrid FPC, as shown in Figure 2.10. 

 

The designation of “roll bond” comes from its production process. In this 

manufacturing technique, a sandwich of two aluminium sheets is formed by means of a 

special hot or cold rolling process. Before pressing together the aluminium sheets, the 

desired pattern of channels is printed with a serigraphic process on the inner surface of one 

sheet. A special ink is applied to prevent subsequent welding of the surfaces along the 

pattern. This allows flexibility to configure the desired channels profile, according to 

various configurations, while maintaining a low production costs (Aste et al., 2014). 

The “box channel” structure is formed by parallel ducts with a rectangular cross 

section. It can be made from an extruded or pultruded profile, that is generally aluminium, 

or, occasionally, using polymeric materials, such as rubber or fiberglass (Cristofari et al., 

2002, Cristofari, 2012). However, the relatively large coefficient of thermal expansion of 

plastics hinders the binding with the PV laminate (Van Helden et al., 2004), and their low 

thermal conductivity and temperatures resistance makes their limited to this application. 

Special components are required to connect the inlet and the outlet manifolds to the 

rectangular channel, which greatly increases the costs and the technical issues. The 

a)        b)            c) 

Figure 2.10 - Thermal absorber structures: sheet and tube, roll bond and box channel  

(Aste et al., 2014) 
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manufacturing process of the box channel configuration is relatively expensive (Aste et al., 

2014). 

A strategy to strengthen the deployment of hybrid collectors is by reducing its 

production cost, without prejudice of the performance. With a numerical model developed 

and validated, Charalambous et al. (2011) optimized the absorber plate configuration, by 

reducing the size of the tubes and the amount of metal worn in the flat panel construction, 

for both harp and serpentine configuration. Based on their results, the cost on expensive 

raw materials such as copper can be reduced. 

2.4.4 Configurations of the collector structure  

Beyond the traditional "sheet and tube" type of water hybrid collectors, some other 

designs have been evaluated by Zondag et al. (2003). The performance was studied by 

varying the layout of the different parts (PV module, absorber, fluid flow). Four main types 

of PV/T were identified according to the water flow pattern and the heat exchange method, 

as shown in Figure 2.11: sheet and tube, channel, free flow and double absorption. 

It is clear that a more efficient heat transfer is obtained when the mean distance 

between heat generation and heat collection is minimal. This is the case when the liquid 

flows directly over, or below, the PV cells, in the channel concept. Figure 2.11 b) shows 

channel flow over the PV cells. In channel PV/T collectors the absorption spectrum of the 

fluid should be sufficiently different from the absorption spectrum of the PV. The existence 

of an additional glass cover turns the assembly heavy, and fragile. 
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The concept of drawing heat beneath the PV cells is depicted in Figure 2.12. Here, the PV 

module can be opaque, or transparent with a separate black thermal absorber underneath 

the channel. This geometry is better suited to withstand water pressures in the channels than 

in the case of a broad channel. The absorber “box channel” structure is applied in this 

configuration. Sandnes and Rekstad (2002) have used this type of design, filing the square-

shape box-type absorber channels with ceramic granulates, in order to improve the heat 

transfer to flowing water. The results for applications to low-temperature water-heating 

systems were promising. 

 
The channel design with liquid flow under the PV cells has been used in the BIPV/T 

technology, for facades (Ji, 2006). With the use of wall-mounted water-type PV/T 

collectors, the system not only generates electricity and hot water simultaneously, but also 

improves the thermal insulation of the building envelope. The simulation results indicated 

that there is an optimum water mass flow rate for the desired energy performance. A 

dynamic simulation model of a building-integrated photovoltaic and water heating system, 

was developed by Chow et al. (2008), using the same absorber design. Their study was 

further developed by Chow (2009), analysing the annual energy performance of a BIPV/T 

water system, in both natural and forced circulation modes. Compared to a normal building 

 a)         b) 

c)         d) 

Figure 2.11 – Different configurations for flat plate water hybrid collectors 

a) sheet and tube; b) Channel; c) Free flow; d) Double absorption (Charalambous et al., 2007) 

Figure 2.12 - Channel PV/T with liquid flow beneath the PV cells (Van Helden et al., 2004) 
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facade, both modes of operation were able to reduce the thermal transmission through the 

PV/T water wall by about 72% and 71%, respectively. An economical evaluation was also 

performed by determining the payback period, and the economic advantage of the BIPV/T 

water system was proved to be much better than a simple BIPV. Cristofari et al. (2009) also 

developed a simulation model for a channelled type water PV/T collector manufactured in 

a copolymer material. The system was suitable for wall integrated water heating. 

Recently, the use of flat-box absorber design on PV/T systems has become more 

frequent ((Chow et al., 2006), (He et al., 2006)). A model for flat-box aluminium-alloy 

photovoltaic and water-heating system designed for natural circulation was developed by 

Ji et al. (2007). The simulated results indicated that the higher the packing factor and the 

glazing transmissivity, the better the overall system performance. 

In a free flow design (see Figure 2.11c)), the cooling effect of the thermal fluid 

moves towards the front surface of the PV panel. One glass layer is eliminated, compared 

to the top channel flow design, whereby reflection losses and material costs are reduced, as 

well as the mechanical problem of breaking the glass cover is avoided. A disadvantage of 

this design is the increased heat loss due to evaporation. As in the case of the channel flow 

type, the fluid flowing over the PV panel has to be transparent for the solar spectrum 

(Zondag et al., 2003). Until today, this configuration had only been studied on a theoretical 

basis. 

The two-absorber panel in Figure 2.11d) combines, to a certain extent, the channel 

and the free flow solutions. A transparent PV laminate is used as a primary absorber below 

the primary water channel. A black metal plate is installed as a secondary absorber, 

separating air from the secondary water channel. The water passing through the upper 

channel is returned through the lower channel. Hendrie (1982) examined this design, and 

reported a high thermal efficiency (Zondag et al., 2003). A main advantage of this concept 

is that a lower mean PV cell temperature is maintained, compared with geometries with 

heat and electricity generation in one plane (Figure 2.11 a) to c)). A disadvantage, however, 

is the complexity of the geometry, that makes the module difficult to manufacture. 

 Zondag et al. (2003) evaluated nine design concepts of hybrid water collectors, 

based on the four types showed on Figure 2.11. The numerical results revealed better 

thermal efficiency for the two absorber design (Figure 2.11 d)). Regarding the total annual 

yield for a domestic hot water system, the best option was the channel-below-transparent-
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PV design. The one-cover sheet-and-tube design was also proved to be a good alternative, 

since its efficiency was only 2% inferior. As this latter design is by far the simplest to 

manufacture, the single cover sheet-and-tube design seems the most promising of the 

examined concepts for domestic hot water production. 

Seven configurations of serpentine collectors with single glazing were designed, 

investigated and compared through simulation methods by Ibrahim et al. (2008). Different 

type of paths for the flow were considered: direct, oscillatory, serpentine, web flow, spiral, 

parallel-serpentine, and modified serpentine-parallel. The best results for the efficiency 

were observed for the spiral flow design shown in Figure 2.13. 

 

The pressure drop across the flow is also an important factor, because of mechanical 

and thermal aspects. A larger pressure drop requires higher energy demand on the 

circulation pump. If the PV/T collector uses natural circulation a higher pressure drop lows 

the flow rate, and thus the heat transfer. Experimental results carried out by Pieper and 

Klein (2011) and Hermann (2011) with a configuration called “bionical”, were compared 

to the harp and serpentine configurations. The plate used in the “bionical” configuration 

replicates the structure and morphology of the blood vessels: small size parallels channels 

connected together in pairs into a bigger channel and then they are all collected in the 

manifold, as shown in Figure 2.14. The results showed that the harp configuration gives a 

better response than the serpentine arrangement, and slightly worse than the bionical, for 

high flow rate. 

 

Figure 2.13 - Spiral flow configuration (Ibrahim et al., 2008) 

Figure 2.14 - First generation BIONICOL prototype collector (© Fraunhofer ISE) (ISE, 2015) 
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2.5 Parameters affecting the performance of PV/T flat plate 

water collectors 

The development of theoretical and empirical models is an essential tool in 

engineering to predict the performance, such as from solar PV/T collectors, over a wide 

range of operating conditions. After validation, these models can be used, e.g. for design 

purposes. Analytical models of PV/T collectors are developed based on energy balance 

equations, considering the relevant heat transfer modes and adequate boundary conditions. 

Several software tools are available for solving the governing equations, such as EES (F-

Chart software, 1975), or ANSYS Fluent (ANSYS). EES is a general equation-solving 

program that simultaneously solves a set of non-linear algebraic equations. ANSYS Fluent 

software uses finite volume method discretization of a set of differential equations to m, 

typically describing fluid flow and heat transfer problems. TRNSYS (Transient System 

Simulation Tool) (TRNSYS) is used for unsteady analysis, simulating the performance of 

a modelled system over a period of time. It integrates information of the variation of several 

environmental conditions, such as radiation, wind and ambient temperature, for a certain 

geographic location. 

It is important, within the context of this thesis, to identify the most important 

parameters that affect the performance of hybrid PV/T water collectors. In this section, 

some conclusions from the baseline investigations previously published in the field of 

hybrid photovoltaic/thermal water systems will be following discussed. Although 

efficiencies depend on several parameters, a summary of published values of electrical and 

thermal efficiencies of water PV/T collectors is listed on Table 2.4, according to studies 

selected by Aste et al. (2014). Table 2.4 was outlined evidencing the influence of the flow 

rate by surface area of the absorber, absorber plate configurations and existence of cover. 

The reported efficiency values correspond to zero reduced temperature, except when 

otherwise indicated. 
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In this subsection, relevant conclusions of numerical and experimental studies on 

the influence of the most important parameters affecting the performance of hybrid flat 

plate water collectors are presented. Studies dedicated to the impact of the packing factor 

and the PV cells layout are emphasized. 

2.5.1 Packing factor (Pf) and PV cells layout 

The application of PV cells over an absorber plate obstructs the incident radiation, 

causing a reduction on the energy conversion to useful heat, as confirmed in several studies. 

Figure 2.15 shows the electrical and the thermal efficiency of a PV/T collector obtained 

through a numerical model by Dupeyrat et al. (2011a) for an absorber plate covered by pc-

Si solar cells for packing factors of 65%, 80% and 100%. The results confirm that a higher 

packing factor has a positive impact on the PV efficiency, with an increase of about 3.5%, 

but impairs the thermal efficiency. Wu et al. (2011) developed a model to study the 

performance of a heat pipe PV/T system, and used it for carry out a parametric investigation 

on several parameters, including Pf. It was found that the solar cell temperature decreased, 

by increasing Pf from 0.7 to 0.9. 

Table 2.3 – Thermal and electrical efficiencies from selected works on water PV/T collectors  

(adapted from Aste et al. (2014)) 

Plate 

type 
PV/T Type 

Flow rate 

(kg/s m2) 

Thermal 

efficiency 

Electrical 

efficiency 

Analysis 

type 
Refs 

Sheet 

and 

tube 

Uncovered 0.02 66% 14% Experimental Kim (2012) 

Covered 0.02 58% 8.90% Numerical 
Zondag et al. 

(2003) 

Uncovered 0.02 52% 9.70% Numerical  

Box 

channel 

Uncovered 0.02 70% 15% Experimental  

Covered 0.02 57% 12% Numerical 
Chow et al. 

(2006) 

Covered n/a 45% daily 10.15% daily Experimental Ji et al. (2007) 

Covered 0.02 60% 9% Numerical  

Covered n/a 71% n/a Experimental 

Sandnes and 

Rekstad 

(2002) 

Uncovered n/a 76% n/a Experimental  

Roll 

bond 

Covered 0.01 
49.3% 

yearly 
10.3% yearly Numerical 

Bai et al. 

(2012) 

Covered 0.02 79% 8.70% Experimental 
Dupeyrat et al. 

(2011b) 
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Garg and Agarwal (1995) analysed the performance of a direct forced flow hybrid 

system for domestic hot water production, using a simulation model. The total thermal 

energy was extracted from the useful heat stored in a tank. They concluded that increasing 

the packing factor from 50% to 100%, the total daily efficiency increased. The efficiency 

was defined as the ratio between the total thermal plus electrical energy over the total solar 

insolation. Dubey and Tiwari (2008) developed a thermal model of a PV/T solar water 

heating system and applied it for different values of Pf: 30.56%, 50% and 100%. The PV 

modules were applied at the water inlet side of the collector, where they substituted the 

glass cover, since the PV cells were encapsulated in glass. A decrease in thermal efficiency 

was observed with the increase of the area covered by PV cells. This study was later 

complemented by testing a similar collector covered with PV cells on the water outlet side 

of the absorber (Dubey and Tiwari, 2009). The results were integrated and compared by 

Tiwari et al. (2011) through analysis of the hourly variation of the cell temperature and 

solar cell efficiency during one day. The application of the PV cells in the lower part was 

shown to be more advantageous. The investigation by Dubey and Tiwari (2009) included 

a detailed analysis of energy, exergy and electrical energy yield by varying the number of 

collectors connected in series. It was concluded that partially covered collectors are 

beneficial in terms of annualized uniform cost, if the primary requirement of the user is the 

thermal energy yield. Fully covered collectors are however beneficial when the primary 

requirement is electrical energy yield. Chow et al. (2006) used an experimentally validated 

numerical model to compare thermal and electrical efficiencies of a photovoltaic-

thermosiphon collector system, for different packing factors of 0, 50% and 100%. A box 

Figure 2.15 - Thermal and electrical efficiency curves of a typical PV–T collector for different 

PV packing factors (Dupeyrat et al., 2011a) 
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channel structure was built from a multiple of extruded aluminium alloy modules for the 

absorber. The solar cells were encapsulated between 2 layers of EVA and tedlar-polyester-

tedlar. The position of the PV module was also evaluated. The results for thermal and 

electrical efficiencies were better with the application of the PV module in the lower part 

of the collector than in the superior one. 

The results of Herrando et al. (2014) with low solar irradiance and low ambient 

temperatures in the UK show that a complete coverage of the solar collector with PV, and 

a lower collector flow-rate, benefit both heat and electrical conversion achieved with the 

PV/T collector, while maximising the CO2 emissions savings. It was found that with a fully 

covered collector and a flow-rate of 20 l/h, 51% of the total electricity demand and 36% of 

the total hot water demand over a year can be supplied by a hybrid PV/T system. The 

electricity demand coverage value was only slightly higher than an equivalent PV-only 

system (49%). 

Despite studies on the influence of the packing factor in the thermal and electrical 

already exist, references on the effect on the overall efficiency are scarce (Chow et al., 

2006), and more particularly the specific influence on the loss coefficient of hybrid 

collectors. 

2.5.2 Geometric characteristics, environmental and operating conditions 

Bergene and Lovvik (1995) defined a physical model for a hybrid flat plate collector 

with finned water channel. A parametric study was performed to study the influence of 

factors such as fin width to tube diameter ratio, inlet temperature and mass flow rate, on 

the thermal and electrical efficiency. They verified that the thermal efficiency is 

approximately halved when the fin width to tube diameter ratio is increased from 1 to 10. 

The flow rate and the inlet fluid temperature were identified as the most important 

parameters affecting electrical efficiency, while the total efficiency was strongly dependent 

on the fin size. 

The existence of an optimal mass flow rate for maximum thermal, electrical and 

total efficiency was identified in the already referred study by Garg and Agarwal (1995). 

The effect of the capacity of a water storage tank was also studied. It was concluded that a 

smaller volume improved the thermal efficiency only, but the electrical and total daily 

efficiency decreased. Other authors also reported the existence of an optimum flow rate 
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(Garg and Adhikari, 1997, Garg and Agarwal, 1995, Kalogirou, 2001, Morita et al., 2000). 

Daghigh et al. (2011) studied solar PV/T modules integrated into the building structure 

(BIPV/T). The effect of mass flow rate on the system efficiencies was evaluated, for 

different types of cells. Although an optimum value was not verified, it was found that 

efficiencies increased up to a given value of flow rate, and then stabilized. The effect of the 

collector flow rate on the performance of PV/T systems was also studied by Herrando et 

al. (2014). It was observed that the electrical performance did not change notably (<5% 

variation) with the collector flow-rate, whereas the hot water production was significantly 

affected. It decreased by about 35% as volumetric flow rate increased from 20 l/h to 200 

l/h. Aste et al. (2014) reviewed published optimum flow rate values reported in the 

literature, for different absorber plate structures and PV/T types, as showed in Table 2.4. 

Table 2.4 - Suggested optimum flow rates by selected authors (Aste et al., 2014) 

 

 Morita et al. (2000) developed an analytical model in order to investigate the design 

parameters for optimizing PV/T hybrid collector energy performance using a second law 

approach. Besides the presence of the cover glass, the mass flow rate was identified as a 

key parameter affecting the exergy efficiency. Respecting thermal and global exergetic 

efficiencies, there is a relatively low value of the optimum flow rate of 2.3 g/(s m2) for 

glazed PV/T collectors. The photovoltaic conversion efficiency under a wide range of 

environmental conditions decreased with the solar radiation intensity (3.6%/kWm-2 at Ta = 

20 °C); however, it was observed that the exergy efficiency of PV/T-l increased 3.6%/ 

kWm-2 (at Ta = 20°C). Therefore, the advantage of PV/T will be more remarkable with the 

solar radiation. 

As solar energy is intermittent, many algorithms and electronics were developed to 

identify the maximum power generation from PV/T collectors. Nevertheless, no control 

systems have been developed in order to track maximum power generation from PV/T 

system. A study by Ammar et al. (2013) suggests a PV/T control algorithm based on 

Artificial Neural Network (ANN) to adjust the Maximum Power Operating Point (MPP) 

Channel type PV/T type Flow rate (kg/sm²) Refs. 

Parallel channel Glazed 0.0027 (Nualboonrueng et al., 2013) 

Parallel channel Glazed 0.0014 (Kalogirou, 2001) 

Roll Bond Glazed 0.0014-0.0049 (Morita et al., 2000) 

Parallel channel Glazed 0.005 (Chow, 2003) 

Parallel channel (square) - 0.0054-0.0064 (Gao, 2010) 

Parallel channel Glazed 0.015 (Garg and Agarwal, 1995) 

Box channel Glazed BiPVT 0.025-0.04 (Ji, 2006) 
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by considering PV/T model behaviour. An optimum mass flow rate is computed for a 

considered irradiation and ambient temperature. Simulation results demonstrate great 

concordance with ANN outputs. 

Another parameter that affects thermal and electrical performance of hybrid 

collectors is the operating water temperature. The electricity production from PV cells is 

favoured by low temperatures, whereas the value of the thermal energy is higher at higher 

temperatures. Evola and Marletta (2014) demonstrated that, for any operating condition of 

solar irradiance and flow rate, it is possible to calculate an optimum water inlet temperature 

that maximizes the total exergy generated by the system. The optimum temperature falls 

within the range commonly occurring in solar thermal systems, and can be achieved in 

practice through a simple feedback control system. 

 The effect of water inlet velocity and inlet temperature on the performance of a 

PV/T collector were analysed by Siddiqui et al. (2012). Figure 2.16 shows the results of 

thermal and electrical performance for the variation of the inlet velocity in a range from 

0.01 m/s to 0.1 m/s. For this range, the average PV cell temperature decreased from 41.1 

°C to 30.6 °C and the water outlet temperature dropped from 30.7 °C to 25.7 °C (Figure 

2.16 a)). The increase in electrical efficiency for this range was of about 1.2%, with a 

minimum value of 9.4%. The results for the influence of inlet temperature of the fluid, 

ranging from 4-45ºC, are shown in Figure 2.17. Average PV cell temperatures increased 

from 14.5°C to 50.1°C (Figure 2.17 a)) and the electrical efficiency dropped from 12.28% 

to 8.4% (Figure 2.17 b)). It would be interesting to complete this study with results for the 

global efficiency, to understand the relative weight of each parameter. 

 

a)      b) 

Figure 2.16 - PV/T collector performance variation with heat exchanger inlet velocity 

(Siddiqui et al., 2012) 
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2.5.3 Methods to optimize PV/T performance 

The problem of optimizing design parameters that affect the performance of PV/T 

collectors frequently leads to conflicting solutions to fit a given application. The results of 

the studies that follow this approach are not the aim of this subsection, but the presentation 

of the methods itself. 

A genetic algorithm has been used by Sobhnamayan et al. (2014) to optimize the 

exergy efficiency of PV/T water collector, for a selected group of environmental and design 

conditions. Effects of water inlet velocity at the, pipe diameter, solar radiation intensity and 

wind velocity were studied. The exergy efficiency has extremum points and showed points 

of global maximum, for a pre-selected range of operational and design conditions. The 

optimum conditions were identified by the maximum values of exergetic efficiency for 

each parameter, with values for inlet water velocity and pipe diameter of 0.09 m/s and 4.8 

mm, respectively. Maximum exergy efficiency was found to be 11.36%. 

Recently, mathematical techniques were integrated into algorithms for Multi-

Objective Optimization (MOO), in order to overcome the generic problem of global 

optimization. Vera et al. (2014) studied simultaneously the design and performance of 

water cooled PV/T systems, using an elitist multi-objective evolutionary algorithm non-

dominated sorting genetic algorithm-II (NSGA-II). NSGA-II derives a Pareto optimal set, 

which illustrates the trade-off between solutions. The study focused in the following 

selected parameters: water mass flow rate, length of the collector, packing factor and air 

gap thickness. PV/T glazed and unglazed configurations were modelled. Electrical and 

thermal efficiencies are the two objectives functions to be maximized. The mathematical 

a)      b) 

Figure 2.17 - PV/T collector performance variation with heat exchanger fluid inlet temperature  

(Siddiqui et al., 2012) 
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analysis was performed based on results for a 24 h simulation obtained using a dynamic 

simulation tool, TRNSYS. The dynamics of the results is complex, but proves that this 

approach can provide a good tool to understand the relative weight of each parameter in 

optimizing a scenario. 

2.6 Hybrid air collectors 

PV/T modules working with air are used when there is a demand on hot air for 

applications like drying and preservation of agricultural crops, dehydration of industrial 

products and space heating, increased ventilation, as well as electricity generation. Some 

advantages over water collectors are the reduced corrosion and leakage, no freezing, no 

need for high pressure protection, lighter weight and easiness of installation (Kumar and 

Rosen, 2011a). However, the thermal output is inferior to the water collectors because of 

poor heat transfer between the absorber plate and the flowing air (Prakash, 1994) and lower 

density per unit mass. Flat plate air collectors exist in different designs, which of the most 

common models are shown in Figure 2.18. They basically differ in terms of the position of 

the cells relative to the air channel and the number of streams. The photovoltaic cells are 

placed over the black absorber plate, that should not be selective (Hegazy, 2000). 

 Bhargava et al. (1991) proposed a single-pass PV/T air heater, with air flux under 

the absorber, similar to the represented in Figure 2.18 b). Sopian et al. (1996) compared its 

performance to a new collector, using steady-state models with a double passage design, as 

shown in Figure 2.18 d). Performance analysis showed that the double-pass photovoltaic 

thermal solar collector produced better performance over the single-passage design within 

normal collector mass flow rate range 100-300 kg/h. However, the increased in energy 

demand for circulating the air through double-pass model was not considered. In a later 

work by Sopian et al. (2000) a mathematical model for the evaluation of the performance 

of the double collector p was developed and experimentally validated. 
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Hegazy (1999) defined a simple criterion for maximizing the useful heat based on 

the channel geometry, for thermal collectors with single pass configuration, with flow 

under the absorber. An optimal value for channel depth-to-length ratio of 0.025 was 

determined. An extended investigation was carried out by Hegazy (2000), comparing the 

thermal, electrical, hydraulic and overall performances of the designs presented in Figure 

2.18. The effects of air flow rate per collector surface unit area and selectivity of the 

absorber plate and PV cells on the performances were analysed, based on the developed 

models. The main conclusions were: 

- for a particular design, the thermal efficiency is enhanced with the increase of 

the air specific mass flow rate. The available net electrical energy, resultant from 

the deduction of the power needed for circulating the air, from which , available 

net electrical energy, significantly decreases with air specific flow rate; 

- design corresponding to Figure 2.18 a) present the lowest overall performance, 

while the other configurations exhibit comparable performance up to a specific 

mass rate of 0.02 kg/(s m2). For higher values of 𝑚/𝐴̇ , design c) has the highest 

overall performance, followed by the layout d). For each design, there is an  

 a)         b) 

 c)        d) 

Figure 2.18 – Schematics of the various PV/T models (adapted from (Hegazy, 2000)):  

a) Single pass, air flow over absorber; b) Single pass, air flow under absorber;  

c) Single pass, both sides of absorber; d) double pass 
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optimal mass flow rate beyond which overall performance of the collector 

decreases; 

- performance comparisons indicate that the design c) is the most suitable for 

converting solar energy into low grade heat and high quality electrical energy, 

while also it is of simple construction. 

Tonui and Tripanagnostopoulos (Tonui and Tripanagnostopoulos, 2007a, b, 2008) 

worked on the improvement of the heat transfer rates for air hybrid collectors by the 

enhancement of the air channel layout (see Figure 2.19). In Figure 2.19 a), a thin flat metal 

sheet is suspended in the middle of the air channel. Within Figure 2.19 b), fins with 

rectangular profiles are attached to the back wall of the air duct parallel to the flow 

direction. Glazed and unglazed versions were analysed. Both experimental and theoretical 

results showed that the suggested modifications improve the performance of the PV/T air 

system. Parametric studies were conducted (Tonui and Tripanagnostopoulos, 2008) to 

analyse the influence of channel depth, channel length, air flow rate and temperature, 

incident radiation, collector tilt angle and exit vent on the thermal and electrical 

performance of the hybrid collector. The parametric analysis showed that the induced mass 

flow rate and hence thermal efficiency decreases with increasing inlet temperature and 

increases with tilt angle for a given insolation level. The results also showed that there is 

an optimum channel depth for which the mass flow rat and the thermal efficiency are 

maximum. For the studied systems, the optimum channel depth occurred between 0.05 and 

0.1 m, with both modified systems showing slightly higher optimum depth. The thermal 

performance also increased with exit area of the channel, which should not be restricted 

and made as large as possible, or equal to the duct cross-sectional area. 

 
The effect of the fins, depth of the ducts, flow rate, inlet temperature and packing 

factor in thermal and electrical efficiencies was also evaluated by Kumar and Rosen 

(2011b) for a double pass configuration, but with the fins arranged perpendicular to the 

direction of air flow to enhance the heat transfer rate and efficiency. The extended fin area 

Figure 2.19 – Configuration improvements to single pass inferior flux air PVT collectors 

 (Kumar and Rosen, 2011a, Skoplaki and Palyvos, 2009a) 
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reduced the cell temperature from 82°C to 66°C. The advantage of a high packing factor 

was also proved, as it led to a better electrical output per unit collector area, and better 

control of the cell temperature, despite marginally reducing thermal output. 

 Tiwari and Sodha (2007) studied different layouts for the single pass configuration 

with air flow under the absorber. Single glazing, and the use of tedlar on the back of the 

solar cells was also considered. It was observed that a glazed hybrid PV/T without tedlar 

gave the best performance. Dubey et al. (2009a) and Dubey et al. (2009b) developed in 

their works analytical models to evaluate electrical efficiency of air PV/T collectors, as a 

function of climatic and design parameters. They compared the difference in the behaviour 

of glass to glass modules with glass to tedlar modules with no glazing. They also studied 

the effect of an inferior air flow and found that the best electrical efficiency was achieved 

with glass-to glass modules with channels. 

 A theoretical analysis has been presented by Garg and Adhikari (1999) for acessing 

thermal and electrical processes of a hybrid PV/T air heating collector coupled with a 

compound parabolic concentrator (CPC) with a layout presented in Figure 2.20. A 

parametric analysis on the thermal and electrical performances of the system showed that 

the thermal and electric output increased with the collector length, air mass flow rate and 

packing fraction, and decreased with the channel depth. It was It was also observed that the 

system coupled with CPC always performs better in terms of both the thermal and electric 

output. 

 

The combination of alternative techniques that enhance system performance is a 

good strategy to find improved solutions. Othman et al. (2005) studied the inclusion of 

CPC throughs and fins in a double pass configuration of a PV/T-air collector with a layout 

presented in Figure 2.21 a). The fins are attached to the back side of the absorber plate. It 

was observed that the electrical performance was significantly influenced by the air flow 

Figure 2.20 - Air hybrid collector with CPC´s application (Garg and Adhikari, 1999) 
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rate and temperature. The work was extended to a similar configuration, without the CPC 

throughs (Othman et al., 2007), as shown in Figure 2.21 b). The height of the upper channel 

was fixed, but the height of the channel below the absorber plate could be adjusted to 

observe its effect on the system performance. The experiments indicated that using fins as 

the integral part of the PV module increased the overall efficiency. 

 

An unglazed, single pass configuration with air flow under the absorber was also 

tested by Othman et al. (2009). This unit had an aluminium ∇-grooved absorber plate in the 

air channel, as depicted in Figure 2.22. Results from the experiment showed that, although 

the electrical efficiency had been only improved by 1%, the thermal efficiency 

enhancement was high, by 30%. The use of a porous media was applied by Sopian et al. 

(2009) to a double pass prototype at the lower channel. Experimental data proved that this 

technique led to the increase of the thermal efficiency of the system as high as 60% to 70%. 

Such design was concluded to be suitable for drying applications. 

 

Figure 2.22 - PV/T system with aluminium ∇-grooved absorber plate (Hussain, 2013) 

 

 Exergy analysis of a solar hybrid collector for air heating was conducted by 

Sarhaddi et al. (2010). The thermal, electrical and overall energy efficiency were found to 

be about 17.18%, 10.01%, 45%, respectively. The exergy efficiency was 45% under a 

sample climatic, operating and design parameters. Optimized values of the air inlet velocity 

and irradiance was identified. It was observed that the modified exergy efficiency depended 

Figure 2.21 - Double pass PV/T air heater improved configurations:  

a) with CPC and fins (Othman et al., 2005); b) with fins (Othman et al., 2007) 

a)     b) 
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slightly on air inlet temperature or duct length, while increasing wind speed led to an 

increase in the exergy efficiency. 

The use of air for building integrated hybrid collectors (BIPV/T) is more usual than 

water. Sandberg and Moshfegh (2002) studied characteristics of the air gaps behind solar 

cells located on vertical facades. Mass flow rate, velocity, temperature rise and location of 

the air gap were the parameters being verified and measured. Muresan et al. (2006) also 

developed detailed models for describing the heat transfer modes in the air channel of PV 

module integrated in facades. A parametric study was performed for a case of a vertical 

channel heated at one side, as a function of the channel width, wall heat flux, and 

dimensionless turbulent intensity. PV/T hybrid exterior clapboard-shaped wallboards have 

been tested experimentally by Nagano et al. (2003), permitting modular assembly, which 

simplifies the installation. A scheme of the system is shown in Figure 2.23.The air gap 

created between the hybrid wallboard and the thermal insulation of the exterior wall can be 

utilized for solar heating the ventilation air as well as the tap water feed of a hot water 

system. The study presented an analytical and experimental evaluation of both the electrical 

power generating ability and the solar heat collection capacity of six variations of the 

experimental PV/T hybrid wallboard during winter. In addition, exergy analysys were 

conducted.  

 

 Recent R&D in PV technology developed transparent PV cells. The use of this type 

of cells is particular interesting in BIPV/T applications. Research study carried out by 

Guiavarch and Peuportier (2006) pointed out that, by using semi-transparent pc-PV 

modules as a cover for an air collector, the ventilation air can be pre-heated and the global 

efficiency can reach 20%, 6% higher than the reference case. Vats et al. (2012) studied the 

Figure 2.23 - System concept of hybrid wallboard with air (Nagano et al., 2003) 
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effect of packing factor of semi-transparent PV modules integrated to the roof of a building. 

Different PV technologies for the PV module were analysed, in energetic and exergetic 

basys: mono-crystalline silicon (c-Si), poly crystalline silicon (pc-Si), amorphous silicon 

(a-Si), cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and a 

heterojunction with thin layer (HIT). Maximum annual electrical and thermal energy 

conversion was measured for a-Si PV module with packing factor of 0.62. It was observed 

that a decrease in packing factor from 0.83 to 0.42 led to a decrease of the module 

temperature by 10.0°C and increase of its efficiency by 0.2–0.6%. A PV module with 0.62 

packing factor was found to perform better than the one with 0.83 packing factor, for both 

electrical and thermal conversion. 

Currently, there are commercially available unglazed air types of PV/T collectors. 

However, the application of air heating in the residential market is limited. A market study 

was carried out by Hussain (2013) and showed that the air collectors have a market share 

of less than 1% of the worldwide solar collector market. Even though PV/T collectors are 

able to produce more energy compared to stand alone system, the market share for such 

system is still negligible due to lack of proper public awareness. However, this situation 

should change since several institutes and manufacturers are making an effort to promote 

these systems.  

In reviewing by Hussain (2013) the perspective for future development of a PV/T 

collector and BIPV/T system are discussed. It clearly shows that, by appropriate 

architectural design and configuration, the future of a PV/T collector can be encouraging 

as an alternative application in the residential, industrial and commercial buildings. 

2.7 Approaches and metrics for the economical assessment 

of PV/T collectors 

The analysis presented until now concerned with characterization of the performance 

of hybrid systems in terms of energy and exergy efficiencies. Conclusions on the economic 

advantages of using hybrid collectors have not yet been particularly addressed. An 

economic assessment is conditioned by the application context: the local weather 

conditions and the demands on heat to electric power ratio by the PV/T system; local 

economic development and policy matters. Nevertheless, an economic approach must 

always be preceded by an energy analysis of the system. Moreover, as the results that are 
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involved in this analysis do not refer to instantaneous or steady state conditions, in order to 

achieve a comprehensive analysis it should be based a long term assessment. Thus, 

simulation tools that include detailed local climate data and provide dynamic response of 

the model are necessary to carry out this type of analysis.  

The approach to this issue arises with the first studies on hybrid collectors. Kern Jr 

and Russell (1978) were one of the firsts to perform an economic analysis of PV/T systems. 

After an evaluation of the useful energy and backup energy needs, it was concluded that 

hybrid systems were more attractive in situations of large heating needs, while for more 

temperate climates or with cooling needs the PV systems were the most appropriate. Ricaud 

and Roubeau (1994) developed an economic study of the combined generation of solar 

electricity and hot air in a residential and a commercial building. It was found that the use 

of the considered hybrid system for the domestic application is in the limit of being 

competitive. 

Different metrics can be used to the economic evaluation of the application of hybrid 

PV/T collectors. One of the most common is the payback time (PBT) of the system that can 

be determined by considering installation and operating costs, energy prices and 

economical figures, such as financial costs of loans, or inflation rate. The energy payback 

time (EPBT) is the total time period required to recover the total energy spent to prepare 

the materials (embodied energy) used for fabrication of the systems. A life cycle analysis 

can also be performed in order to obtain the total cost (or life cycle cost) and the life cycle 

savings (LCS) of the systems. This approach is followed in several studies (Kalogirou and 

Papamarcou (2000), Brogren and Karlsson (2001), (Kalogirou, 2001), (Chow et al., 2007), 

(Erdil et al., 2008), (Chow, 2009)). With the Lyfe Cycle Savings (LCS) method all costs 

and benefits are accounted for as their present values. General conclusions are not 

necessarily relevant, since are limited to a certain geographic application. However, some 

methodologies can be highlighted. 

Kalogirou and Tripanagnostopoulos (2006) studied PV/T domestic hot water solar 

systems using a-Si and pc-Si modules in three locations at different latitudes (Nicosia (35 

degrees), Athens (38 degrees) and Madison (43 degrees)). The economic analysis indicated 

better results of LCS for lower latitudes and a-Si modules. A similar study was extended to 

industrial applications by Kalogirou and Tripanagnostopoulos (2007). Aste et al. (2012) 

calculated the optimal value of solar fraction (fS) for hybrid PV/T-water systems, from 

energetic end economic point of views. Applying an economic scenario, the PBT was 
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determined as a function of. Mishra and Tiwari (2013) evaluated and compared the energy 

matrices of a hybrid PV/T water collector applied in New Delhi under constant collection 

temperature mode with five different types of PV modules: c-Si, p-Si, a-Si (thin film), CdTe 

and CIGS. The highest annual overall thermal energy and exergy was obtained with the use 

of c-Si PV module. The maximum and minimum EPBT of 1.01 and 0.66 years was obtained 

for c-Si and CIGS respectively, whereas on exergy basis maximum EPBT of 5.72 years 

was obtained for a-Si and minimum of 3.44 for CIGS PV module. 

The concept of payback time was applied in an environmental perspective by 

Tripanagnostopoulos et al. (2005), in a study on the annual performance of water cooled 

PV/T solar systems, combining different configurations (glazed/unglazed, horizontal/tilted, 

different operating temperatures). The study included the estimation of costs and payback 

time, and determined the energy payback time (EPBT) and CO2 payback time. 

When performing an economic assessment of hybrid systems, thermal and electrical 

outputs are accounted for separately, since they have different costs and energy savings. 

An approach focusing on methods to develop a ratio between electrical and thermal output 

from a domestic PV/T system was carried out  by Coventry and Lovegrove (2003). Methods 

discussed included thermodynamic analysis using exergy, market analysis for both an open 

market and a renewable energy market, and environmental analysis using savings in 

greenhouse gas emissions. A discounted cash flow method was used to determine levelized 

energy costs from both electrical and thermal renewable energy sources, giving a ratio 

between electrical to thermal value of 4.24. Levelized energy cost was plotted against the 

energy value ratio to compare different options, like using a-si or c-Si cells, or identifying 

critical points. System performance was simulated using TRNSYS, and the calculations 

were carried out using US financial data. 

In order to assess the economic viability of water heating PV/T systems installed in 

three cities of different longitudes and climatic conditions (Athens, Munich and Dundee), 

Axaopoulos and Fylladitakis (2013) performed a simple economic analysis based on the 

LCS method. Since most of the economic parameters change in relation to time and 

geographic area, it is difficult to make reliable predictions about future trends on the value 

of money. Therefore, a sensitivity analysis, based on the Net Present Value (NPV) method 

was performed to evaluate the economics of energy produced under various investment 

costs, feed-in tariff prices and energy price fluctuations. In all three areas and with the 

energy prices of that period, the installation of a PV/T system appears to be a more 
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advantageous investment when the auxiliary water heating energy source comes from 

electricity, followed by heating oil and then natural gas. 

The price of the thermal energy delivered by a water PV/T collector was calculated 

by Evola and Marletta (2014) to be ranging from 1 to 10 c€/kWh, for an assumed price of 

the electricity ranging from 0.18 to 0.24 €/kWh. 

In conclusion, there are different approaches for the analysis of economic 

performance of hybrid systems. Economical techniques are just one tool that can be used 

to identify situations for an advantageous application of PV/T systems. 

2.8 Space heating and cooling applications of PV/T 

collectors 

The most typical applications of hybrid collectors, a water heating and BIPVT 

systems combined with production of electricity. However, PV/T technology presents good 

potential for other important applications. Its use can be particular successful for reducing 

the operation cost of space heating and cooling units, through solar heat pumps integrated 

with air/conditioning. PV/T concepts can also be used in solar green-houses and solar stills. 

Sometimes the innovation may not mean innovative or cutting-edge expensive 

technologies, but taking advantage of the right combination of the strengths of each one for 

some particular purpose. Van Helden et al. (2004) highlighted some possible examples. 

The available roof area, the demands of electricity and heat, and the temperature levels 

determine the PV/T system set-up that is most suited for a given house or building. For 

instance, an array of PV/T collectors can be connected to an earth-coupled heat exchanger, 

so that the low-temperature heat gained in the summer is stored in the ground and used in 

the winter. The PV modules can provide the electricity to the heat pump that transfers 

energy from a low-temperature heat source to higher temperatures sink for either room 

heating or for DHW. This strategy can highly improve the solar fraction and over all 

efficiency of solar systems. 

In this section the characterization of the state of the art for hybrid collectors is 

conducted with a presentation of its application for space heating and cooling, and other 

novel perspectives, such as tri and poligeneration. 
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2.8.1 Heat pump systems 

A heat pump is used to take energy from low temperature source and promote this 

energy to a suitable temperature range for different applications. The coefficient of 

performance (COP) is used to measure the heat pump efficiency, defined as the ratio of the 

amount of energy provided by the heat pump (Q) to electrical energy consumed. The COP 

of a heat pump becomes better with increasing evaporating temperature (for fixed 

condensing temperature) (Kamel et al., 2015). The integration of a PV/T system with a heat 

pump provides both thermal energy and electrical power to run the cycle, e.g., for space 

heating. The common potential advantage to the solar collector and the heat pump 

performance is to depress the collector temperature and boost the heat pump evaporator 

temperature, enhancing the performance of both systems, and thus improving the heat 

pump COP. The integrated system is called Solar Assisted Heat Pump (SAHP). If properly 

incorporated, SAHP systems can cover the heating load in cold climates. A solar system 

could deliver a relatively high-temperature source for a heat pump compared to a traditional 

heat pump using outdoor air and ground source heat exchanger. (Kamel et al., 2015).  

Solar assisted heat pumps are categorized, based on the integration scheme between 

the solar system and the heat pump, into Direct Expansion Solar Assisted Heat Pump (DX-

SAHP) and Indirect Expansion Solar Assisted Heat Pump (IDX-SAHP) (Kamel et al., 

2015). Most research and development of solar assisted heat pump systems consist of a 

solar thermal collector, which produce only thermal energy, linked with the evaporator of 

a heat pump, i.e., thermal energy is extracted from the solar thermal system for heating 

purposes only. The only integrated PV/T system with a heat pump, which provides both 

thermal energy and electrical power, is the PV-evaporator type. (Kamel et al., 2015) 

In DX-SAHP, the heat pump and the solar system work together as one combined 

system. The PV/T collector in the DX-SAHP system works as the evaporator low 

temperature heat source of the heat pump. A schematic diagram of the working principle 

of a direct expansion system is depicted in Figure 2.24. In this arrangement, liquid 

refrigerant vaporizes at the tubing underneath the flat-plate collector. Solar energy is 

absorbed at the PV/T evaporator that operates at a lower temperature than the ambient 

environment, and released later at the water-cooled condenser at a higher temperature. Cell 

efficiency is then higher than the standard operating efficiency. Based on this working 

principle, a PV/T–SAHP system with pc-Si aluminium roll-bond panels was constructed 
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and studied (Ito et al., 1997, Ito et al., 1999). The experimental results indicated that the 

COP of the heat pump is able to reach 6.0, and with hot water supplying to the condenser 

at 40 °C. A DX-SAHP system was also proposed by Chow et al. (2010). Numerical analysis 

was carried out making use of a dynamic simulation model developed for the Hong Kong 

climate. It was found that the proposed system, working with R-134a, is able to achieve a 

yearly-average COP of 5.93 and PV output efficiency of 12.1%, thus with an energy output 

considerably higher than the conventional heat pump plus PV “side-by-side” system. The 

results for the monthly average COP for DX-SAHP using solar thermal collector and a PV-

SAHP system, using a PV/T collector, are shown in Figure 2.25. COPpt definition 

referenced in the figure corresponds to: 

 

where Q is the heat transferred in the condenser (see Figure 2.24), E is the output power of 

the solar cells per unit area, and P is the average electricity generation efficiency of the 

power plant as a conversion factor (= 0.38). 

 

 

During the day, there is a possibility of liquid refrigerant remaining at the outlet of 

the PV-evaporator because solar radiation changes; consequently, the system works 

𝐶𝑂𝑃𝑝𝑡 =
𝑄 + 𝐸

𝜂𝑃
⁄

𝑊
 

(2.26) 

 

 

Figure 2.24 - Schematic diagram of the DX-SAHP system (Chow et al., 2010) 

Figure 2.25 - Comparison of monthly average COP between traditional  

DX-SAHP and PV/T SAHP (Chow et al., 2010) 

PV-SAHP – Solar Assisted 

Heat Pump with PV/T 

collector 

 

DX-SAHP - Solar Assisted 

Heat Pump with solar 

collector 
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inefficiently and will require control of the mass flow rate of the refrigerant. In addition, 

the system works only when evaporator temperature is above a certain value. It may be 

beneficial to overcome this issue by separating the PV/T unit from the heat pump 

evaporator. (Kamel et al., 2015). 

In indirect expansion heat pumps, the heat pump and the solar collector are 

combined together, but work as two individual systems, that can be arranged in parallel, in 

series, or dually. Air and water PV/T collectors can be used in SAHP systems. Kamel et al. 

(2015) presents a review on the application of hybrid PV/T to heat pumps systems. A 

summary of studies referring to IDX-SAHP systems and the specific application of SAHP 

for cold climates is pointed out. 

2.8.2 Solar Cooling with PV/T technology 

In climates with high insolation and high outdoor temperatures, there is a need to 

lower the indoor temperature considerably in order to provide thermal comfort. Solar 

cooling of buildings is one of the most attractive solutions. This is an application in which 

the demand for cooling energy closely matches the availability of solar energy, both in the 

seasonal and the daily variations. One of the technologies of solar cooling is based on 

absorption cycle, depicted in Figure 2.26. Absorption is the process of attracting and 

holding moisture by substances called desiccants. Absorption systems are similar to 

vapour-compression air conditioning systems but differ in the pressurisation stages. In 

general an absorbent on the low-pressure side absorbs an evaporating refrigerant. The most 

usual combinations of fluids include lithium bromide–water (LiBr–H2O), where water 

vapour is the refrigerant, and ammonia–water (NH3–H2O) systems where ammonia is the 

refrigerant. The pressurisation is achieved by dissolving the refrigerant in the absorbent in 

a absorber section. Subsequently, the solution is pumped to a high pressure with an ordinary 

liquid pump. The addition of heat in the generator is used to separate the low-boiling 

refrigerant from the solution. In this way the refrigerant vapour is compressed without the 

need of large amounts of mechanical energy that a vapour-compression air conditioning 

system demands (Florides et al., 2002). Therefore, the absorption chillers can be powered 

by solar collectors. The COP for conventional absorption cycles is about 0.6-0.7 for NH3–

H2O systems (Florides et al., 2002) and between 0.6 and 0.8 for LiBr–H2O systems (Duffie, 

1991). This solution, however, needs electricity to drive the pump, despite the power is 

very small. 
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Simultaneous production of electrical and high grade thermal energy is proposed 

with a concentrating photovoltaic/thermal (CPVT) system operating at elevated 

temperature by Mittelman et al. (2007). CPVT collectors may operate at temperatures 

above 100 °C, and the thermal energy can drive processes such as refrigeration, desalination 

and steam production. The performance and cost of a CPVT system with single effect 

absorption cooling was investigated in detail. An example of a thermal application that can 

be coupled to the CPVT collectors, a single effect absorption chiller, was analyzed under 

different scenarios. The results show that under a reasonably wide range of conditions, the 

CPVT cooling system can be comparable in costs to a conventional alternative. Under some 

conditions, the solar cooling is even significantly less expensive than conventional cooling. 

This is in contrast with solar cooling based on thermal collectors, which is usually found to 

be significantly more expensive than conventional cooling. The range of conditions where 

CPVT cooling is competitive depends on the prevailing local costs of conventional energy. 

2.8.3 Tri-generation and polygeneration 

As new applications for hybrid collectors are studied, new possibilities for the 

integration of different technologies arise. A further possible use of both medium-

temperature and high-temperature PV/T collectors is the integration with solar heating and 

cooling (SHC) technology. SHC systems can use solar radiation to provide space heating 

during the winter and space cooling in the summer, by using a heat-driven chiller, which 

can either work by absorption or adsorption process (Calise et al., 2012). The heat needed 

for that process is provided by a solar collector field. The use of PV/T collectors, instead 

of solar thermal ones, can provide electricity additionally. An energy supply system which 

delivers simultaneously more than one form of energy to the final user is the basis of the 

Figure 2.26 - Basic principle of the absorption air conditioning system (Florides et al., 2002) 
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polygeneration concept. The association of cooling, heating and power in one system is 

also known as Combined Cooling, Heat and Power (CCHP), or trigeneration.  

A SHC system with photovoltaic/thermal collectors was studied by Calise et al. 

(2012), applied to a university building located in Naples. The system integrated PV/T 

collectors, a single-stage LiBr–H2O absorption chiller, storage tanks and auxiliary heaters. 

The electricity generated through PV/T collectors was partially consumed in the building, 

by electric appliances, lighting and system parasitic loads. The surplus was sold to the grid. 

Simultaneously, the PV/T system provides the heat required to drive the absorption chiller. 

The system performance was analysed from both energetic and economic perspectives, 

using a transient simulation model developed in TRNSYS. The economic results showed 

that the system under investigation could be profitable, provided that an appropriate 

funding policy is available. In addition, the overall energetic and economic results are 

comparable to those reported in literature for similar systems. 

A coupled system is proposed by Mittelman et al. (2009), comprised of a 

concentrating PV/T collector field and a multi-effect evaporation desalination plant. A 

desalination process using solar energy is a logical combination, since regions with 

abundant solar radiation are often also short in potable water supply. Three processes are 

commercially available for large-scale desalination plants: Reverse Osmosis (RO), Multi-

Stage Flash distillation (MSF), and Multiple Effect Evaporation (MEE). RO requires 

electricity, a high-grade form of energy; however, MEE and MSF consume thermal energy, 

and can readily operate with alternative low-grade heat sources such as solar energy. PV/T 

collectors can thus be used also for this application, with such a great importance for 

sustainability. However, large scale of desalination plants use high inlet temperatures are 

required, in order to provide reasonable performance and reasonable heat exchanger sizes. 

These higher temperatures can be achieved with a concentrating collector field. The 

combined system studied by Mittelman et al. (2009) produces solar electricity and 

simultaneously exploits the waste heat of the photovoltaic cells to desalinate water. A 

detailed simulation was performed to compute the annual production of electricity and 

water. The cost of desalinated water was estimated and compared to that of alternative 

conventional and solar desalination plants, under several economic scenarios. The cost was 

found to range from 0 to 4 $/m3, for 4 scenarios considering minimum and maximum 

electricity and natural gas prices, and installation cost of the system. The results indicate 

that the proposed coupled plant can have a significant advantage relative to other solar 
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desalination approaches. For a scenario with higher electricity prices, considered of 

¢15/kWh, CPVT desalination is even more cost-effective than conventional desalination. 

with results of zero or even negative cost of the desalinated water. 

 Calise et al. (2014) investigated the integration of renewable energy sources and 

water systems, presenting a novel solar PV/T system producing simultaneously electrical 

energy, thermal energy, cooling energy and desalinized water. The system is designed for 

small communities in European Mediterranean countries, rich in renewable sources and 

poor in fossil fuels and water resources. It includes PV/T collectors, a MED system for 

seawater desalination, a single-stage LiBr–H2O absorption chiller and additional 

components, such as storage tanks, auxiliary biomass-fired heaters and devices for the 

balance of plant. Since absorption chillers and MED process requires for high temperature 

water, it is needed the use of concentrating PV/T collectors. The system is dynamically 

simulated by means of a zero-dimensional transient simulation model. A thermo-economic 

analysis is also presented, aiming at determining the optimal values of the most important 

design variables, making use of TRNSYS. A numerical case study was developed and 

widely discussed, putting in evidence the significant potential of energy savings achievable 

by such system, also due to the opportunity of maximizing the utilization factor of the 

thermal energy produced by the CPVT, especially during the summer. On the other hand, 

the winter performance was by far less satisfactory, since CPVT thermal and electrical 

productions dramatically decrease; as a consequence, in such periods a large amount of 

heat must be produced by an auxiliary heater to drive the MED. 

2.8.4 Solar stills and solar greenhouses 

The solar stills are small-scale, decentralized, environmental friendly solution for 

getting pure water through desalination. However, conventional single basin passive solar 

stills are not widely used because of their low yield (approximately 2–3 l/m2 day), low 

thermal efficiency (max. around 30%) dependent on solar intensity which varies with 

location. A hybrid (PV/T) active solar still is a combination of solar still and flat plate 

collector integrated with glass–glass photovoltaic module. A PV/T solar still was proposed 

by Kumar and Tiwari (2009). An analysis of the annual performance and cost of distilled 

water produced was carried out and compared with passive solar stills for the climate of 

India. The comparative cost of distilled water produced from passive solar still was found 

to be less than hybrid (PV/T) active solar still for 30 years life time of the systems. The 
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payback periods of the passive and PV/T active solar still are estimated to be in the range 

of 1.1–6.2 years and 3.3–23.9 years, respectively. Despite the higher price, the use of PV/T 

solar still can be advantageous when electricity is unavailable. The main objective of the 

work of Singh (2011) was enhancing the productivity of a double slope solar still to provide 

distilled water for isolated communities, facing electricity problems and good quality of 

water for commercial use. To increase the temperature of feed water in the solar still, a 

double slope solar still was connected to two flat plate collectors with one of them 

photovoltaic (PV) integrated. It was found that energy payback time is significantly reduced 

by almost 30% in present design with less capital investment. 

An energy and exergy analysis for the prediction of performance of a 

photovoltaic/thermal (PV/T) collector integrated with a greenhouse at I.I.T, Delhi, India 

was performed by Nayak and Tiwari (2008). The analysis is based on quasi-steady state 

conditions. Experiments for the annual performance and numerical computation were 

carried out for a typical day only for validation. Exergy analysis calculations of the PV/T 

integrated greenhouse system showed an exergy efficiency level of approximately 4%. 

Sonneveld et al. (2009) presented a greenhouse with a spectral selective coating on the 

covering. This coating reflects the near infrared radiation (NIR), containing about 50% of 

the solar heat load which is not required for crop production, and transmits the PAR. 

Because the NIR reflection is performed with a bent surface, the whole covering worked 

as a solar concentrator PV module located in the focal line. This concentrator technology 

reduces the surface area required by the expensive PV cells, so only a small PV area is 

needed. The module is cooled with water so the system delivers both electrical and thermal 

energy. Further performance results on this type of systems were presented by Sonneveld 

et al. (2010). After the description of the construction of this greenhouse, the peak power 

for Dutch climate circumstances is determined based on the amount of electrical and 

thermal energy (hot water) produced. The typical yearly yield of this greenhouse system is 

determined as total electrical energy of 20 kW h/m2 and a thermal energy of 160 kWh/m2. 

2.9 PV/T models available on the market 

Despite the general acceptance of the PV/T technology in the scientific community, 

its deployment on the market is still reduced. The position of PV/T Systems was analysed 

from the market point of view by 2004 in the PVT Roadmap (Affolter et al., 2006). For all 
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of the principal types of PVT systems, commercial and near-commercial products were 

presented, although they were recent and in a small number. In its review study, Zondag 

(2008) published the timeline of hybrid collectors, from the research background to the 

position in the market. It was showed that the only product with a market share was air type 

collectors for autonomous applications, even if modest. Ventilated PV systems existed 

almost only as specific solutions for individual projects, while PV/T concentrators as well 

as glazed and unglazed PV/T-liquid collectors commercially available were still not 

produced in significant quantities. 

A comprehensive overview on commercially available PV/T products with technical 

and economic information for building projects is made by Treberspurg and Djalili (2011). 

The report includes PV/T-air collectors, PV/T-Liquid collectors and concentrator type. The 

referred manufacturers and types are listed in Table 2.5, as well as its continuity at the 

present. 

Table 2.5 - Existing commercialized PV/T collectors in 2011 (Treberspurg and Djalili, 2011) 

Manufacturer Type of collector PV/T product still on market? 

SolarVenti Air/ BIPVT facades No 

Grammer Solar Air/ BIPVT roofs Yes 

Solarwall Air/ BIPVT roofs Yes 

PVTWins Liquid No 

Millenium Electric Liquid No 

RES Energy kombimodul Liquid No 

Arontis solar solutions Concentrator No 

Menova Engineering Inc  No No 

 

The performance of a variety of commercially available systems, in terms of the 

ratio of thermal over electrical outputs per surface area is shown in Figure 2.27. It can be 

observed that just one air PV/T collector is included, and the most are water PV/T 

equipment. The ratio of thermal to electrical output for water collectors range from about 

2, for the Millenium Electric model, to 4.8, for PVTWins model. At the moment, PVTWins 

manufacturer no longer exists, and Energy-Sol just commercializes solar thermal 

collectors. 
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 An economic analysis was developed by Matuska (2014), based on the performance 

results for domestic hot water application in an apartment block in Wurzburg, energy prices 

and conventional PV and thermal collector prices. The market price of solar PV/T liquid 

collectors achieved extremely high level (450 to 950 €/m2) in comparison with standard 

glazed solar thermal collectors and PV modules. The prices for the most typical types were 

350 €/m2 and 120 €/m2, respectively. Competitive price of unglazed PVT collector is 

negative in most of variants. The competitive specific price for the marketed hybrid 

collectors, range from 200-250 €/m2. If the market price of novel spectrally selective glazed 

PV/T collectors would be maintained under 420 €/m2, a large potential would open for 

substitution of standard solar thermal applications in buildings for domestic hot water and 

space heating systems. 

 From a research in the worldwide web, some FPC PV/T models were found, and 

are listed in Table 2.6. Only few collectors are commercialized, but more models are 

available, suggesting that PV/T technology is gaining some market. Once again, more 

models working with liquid are commercialized. Just one of the flat plate models have a 

glass cover, since the glass layers where PV cells are encapsulated work as cover. The 

different models of RenOn P2300 series (RenOn Energie, 2014) result from different 

packing factors. This way, the manufacturer can offer a product adapted to different 

balances of thermal vs electrical needs. 

 

 

 

 

Figure 2.27 - Summary of commercially available hybrid PVT systems, in terms of their ratio 

of thermal over electrical output per surface area (Herrando et al., 2014) 
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Table 2.6 - PV/T marketed models at the present 

Company Product 

reference 

Fluid/ 

Design 

Country PelMax 

(W) 

0 

(%) 

A 

(m2) 

DualSun DualSun Glicol+Water,  

no glass cover 

France 250 55 1.66 

Grammer 

Solar 

Hybrid air 

collector 

BIPV/T, 

no glass cover 

Switzerland 230 40 1.732 

Meyer Burger FS Hybrid Water, 

no glass cover 

Switzerland 285, 275 60 1.641 

Millenium 

Electrics 

MSS-MIL PVT No-glass cover Israel 190  1.277 

NES SUNSYSTEM 

PVT 240 

Propylene 

glycol 

Bulgaria 240 0.9 1.62 

RenOn RenOn P2300 

series 

Water,  

no glass cover 

Germany 140, 180, 

240 

76.7, 

77.7, 85.0 

2.253 

SolarWall SolarWall PV/T  

SolarDuct PV/T 

Air 

Air/BIPVT 

Canada/USA

/France 

- - - 

SOLIMPEKS Volther series Water, 

with/without 

glass cover 

Turkey 180, 200 69.0, 62.9 1.427, 

1.37 

TES Group TESZEUS PV-T 

series 

Water, 

no glass cover 

Greece 240, 250, 

280, 300 

65.1 1.637, 

1.949 

 

Although PV/T market has been developing in a monotonous rate, stronger efforts 

are still needed to get the reliable data to the solar equipment manufacturers. In particular, 

there are no Portuguese manufacturers/models. Pragmatic studies on economic evaluation 

of the installation of hybrid collectors are important to a growth in the market. This thesis 

fits into that perspective, by the optimization of the PV/T cells layout, in energetic and 

economic perspectives. 

As in the case of other expensive technologies, strategical measures from the 

governments to support the development in research and the application of PV/T systems 

by consumers are also an important way to go. Strategic incentives and policies can 

contribute to a wider deployment of the technology and consequent reduction of production 

costs. 

2.10 Gaps in literature on PV/T-w collectors 

A wide range of knowledge on PV/T solar collectors have been brought to light in 

the last 20 years, as presented in the former sections. However, there still exist some gaps 

of information that worth to be deepen. This thesis focusses on some of that gaps, 

concerning water PV/T collectors at low temperatures. 
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It already are known studies on the global influence of control parameters like the 

PV cells positioning, packing factor, ambient temperature, fluid inlet temperature, absorber 

plate length or solar irradiation on the thermal and electrical efficiencies of a PV/T 

collector. The results for the combined efficiency are scarcer. The work developed in this 

thesis characterizes quantitatively those effects, for a wide range of operating conditions, 

according to results from experimental tests and a numerical model. The influence of the 

packing factor is particularly developed, in order to define its effect on the thermal and 

combined efficiency curve parameters: zero reduced temperature efficiency and loss 

overall factor. The numerical model was used to develop an extensive and exhaustive 

parametric study, aiming a comprehensive characterization of the simple and combined 

effects of the parameters afore mentioned, assuming a degree of detail still not present in 

the literature. For example, results of G were obtained as a function of the Pf, for the 

different positioning of the PV cells at the inlet side and outlet side of the collector. A 

similar comprehensive parametric study, based on the exergetic analysis of PV/T collectors, 

could be of great interest to complete the studies conducted in this thesis, contributing to a 

wider optimization perspective of PV/T collectors. The impact of the flow rate should also 

be included in future studies. 
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Chapter 3.  

 

Experimental determination of the hybrid 

PV/T collector prototype performance 

Within this chapter the experimental results of a PV/T collector prototype are presented. 

Thermal, electrical and combined efficiencies were obtained for different conditions of 

inlet fluid temperature (Tf,IN), under climatic conditions that were registered. The efficiency 

curves were determined for different PV to thermal area ratios of the collector. The tests 

were performed based on indications defined by NP EN 12975-2 standard (IPQ, 2007). The 

standard specifies criteria for the installation and position of the collector, measuring 

equipment, testing set up and procedure. Summarily, at least four test points should be 

obtained for each of four water temperatures in the operating range. During the tests, the 

total solar radiation on the collector plane should be higher than 700 W/m2. An 

experimental setup was assembled on the rooftop of Building L at FEUP. Environmental 

variables, including ambient temperature (Tamb) and solar irradiance (G), were monitored 

through a data acquisition system. The collector prototype was instrumented so that 

efficiency curves could be determined, according to the readings of fluid temperature at the 

inlet (Tf,IN) and outlet (Tf,OUT). In the following sections, the collector, photovoltaic modules, 

and equipment used for the work will be characterized. The experimental procedure will be 

described, detailing how the parameters for the calculation of thermal and electrical gains 

were obtained. Only test values which respected stationary conditions were used, and the 
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criteria followed are defined. The operation of a solar collector can be assumed as steady 

state, since, during the period of the day when there is water circulation, the effects of 

intermittence of sunshine, ambient temperature and wind speed are negligible (Duffie, 

1991). The results for thermal, electrical, and combined efficiencies are presented and 

discussed, and the associated uncertainty is evaluated. 

3.1 Experimental setup 

The collector and the feed water circuit from the supply point on the roof mainly 

compose the experimental setup. Since the required water flow rate is low, of about 0.01 

kg/s, an open circuit was used to simplify installation and operation. The data acquisition 

system was designed in order to measure environmental variables, including solar 

irradiance (G) and ambient temperature (Tamb), and operational temperatures (water 

temperatures at the inlet (Tf,IN) and outlet (Tf,OUT)). 

3.1.1 Layout of the solar thermal collector 

The tested collector prototype was adapted from a solar thermal commercial 

collector, in order to simplify installation and handling. This original collector was supplied 

by the thermal technology division of BOSCH group in Portugal. The collector was 

unglazed, with a selective absorber plate composed of 9 equal size segmented fins of 124 

mm width each and 1912 mm length. The prototype was built with only four absorber fins, 

of reduced length 1 m, as shown in Figure 3.1. The fins slightly overlap on the edges. 

 
Figure 3.1 - View of the collector prototype (without instrumentation) 

Collector tube 

Frame 

Water tube 

Absorber fin 
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The individual copper tubes have an external diameter of 6 mm, while the collector 

pipes have 22 mm. The original PVC frame was replaced by an aluminum profile. A low-

iron tempered glass cover was added to the aluminium frame, and sealed. Handles were 

also added, so that the glass cover could be easily removed when necessary. The collector 

was insulated on the bottom pane to avoid undesired thermal losses, with 50 mm thick 

rockwoool, resulting on a global heat loss coefficient of about 0.6 W/(m2K). Typical values 

of the back surface heat loss coefficient are 0.3–0.6 W/(m2K) (Kalogirou, 2009). Rockwool 

is an efficient insulating material, since the influence on the heat loss coefficient is less 

dependent of the thickness used (Ferdous, 2012). The detailed collector geometry is 

presented in Figure 3.2. 

 

3.1.2 Position of the collector 

The collector is mounted on a structure, oriented southwards. At the location no 

shadow was projected on the collector surface during testing, nor collector horizon was 

obstructed. The surrounding buildings were sufficiently far, so that the measured incident 

solar radiation conditions imposed by the standard regarding the vicinity of other buildings 

were fulfilled. 

The support structure allowed adjustment of collector tilt angle (), within the limits 

imposed by its dimensions (30º-45º). The tests were conducted between July and 

Figure 3.2 - Collector geometry (dimensions in cm) 
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September, for which the ideal tilt would be of 26° for the latitude of Porto ( = 41.178°), 

respecting the indication by Água Quente Solar (2004): 

 (3.1) 

As it was not possible, by the geometric limitations, to use that slope, it was fixed 

at the minimum possible, 30º. 

3.1.3 Water circuit 

The necessity of testing different inlet temperatures in the collector required the 

existence of equipment to heat the supply water. In this case, an electrical water heater was 

used, with 2000 W heating power and 80 l capacity. The circuit was adapted from an 

existing network in the rooftop, only adding the heating element, designated as (H) in 

Figure 3.3. The tubes are multilayer, with a diameter of 16 mm on segment AB and 14 mm 

from B to the water outlet. 

 

 Originally, the temperature at the inlet of the collector was controlled by the 

thermostat of the electric heater. However, preliminary tests indicated that the thermostat 

was not able to provide a stable water temperature during the experiments, registering 

variations of about 15C, for a set point temperature of 50ºC. It was therefore necessary to 

include a PID power controller (Shinko Brand, Model ACS-13A), equipped with a T 

thermocouple probe, installed before valve V4. 

There are several references on how to select the flow rate of the heat transfer fluid 

for the performance tests. The standard IPQ (2007) recommends a flow rate according to: 

𝑚̇ =  0.02 𝐴𝐶𝑜𝑙 (3.2) 

Figure 3.3 - Collector feed water circuit  

A 

B 
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In eq. 3.2 the flow rate 𝑚̇ is expressed in kg/s. Another relation is indicated by Água Quente 

Solar (2004) for selective collectors, for a flow rate expressed in kg/h: 

𝑚̇ =  46 𝐴𝐶𝑜𝑙 (3.3) 

The mass flow rate corresponding to eq. 3.3 is 0.013 kg/s. In practice, flow rate values lie 

in the range of 15 to 20 g/s/m2, which will be considered in this work. Thus, for an aperture 

area of 1.127x0.55 (m2), the mass flow rate can vary between 0.0093 kg/s and 0.0124 kg/s. 

For the tests a flow rate of about 0.01 kg/s was used. 

The water flow rate was controlled by adjusting different valves of the circuit (V1, 

V4 and V5 in Figure 3.3). The mass flow rate was determined according to the equation: 

𝑚̇  = 𝑉̇ 𝜌(𝑇) (3.4) 

In eq. 3.4, the volumetric flow rate (𝑉̇) was obtained by measuring the time that was 

required to fill up a 1000 ml beaker. The collecting point was after valve V5. The 

measurements were made before each experiment start, and along each test, to verify the 

flow rate stability. The density of the water was obtained as a function of the outlet 

temperature Tf,OUT according to the following equation (IPQ, 2007): 

𝜌(𝑇) =  999.85 + 6.187 × 10−2𝑇 − 7.654 × 10−3𝑇2 + 3.974 × 10−5𝑇3 − 1.110

× 10−7𝑇4 

(3.5) 

 In eq. 3.5 T is expressed in C, and corresponds to the outlet water temperature. A 

continuous  

3.1.4 Instrumentation of the experimental setup 

The measurements of solar irradiance and ambient temperature were carried out 

with a pyranometer (CM6B, Kipp & Zonen), and a temperature (and humidity) sensor with 

radiation shield (SKH 2013, Skye), as shown in Figure 3.4. They were located in the rooftop 

of the building, and the pyranometer was directed to the south, with the same slope as the 

collector, 30º. The output from both devices is in voltage, measured in the data acquisition 

board 34901A (section 3.1.6). The signal was then converted to solar radiation and 

temperature through a software developed in LabView 2011. 
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 The water temperatures at the inlet and outlet of the collector were measured with 

type t thermocouples. Before installation, all the thermocouples were calibrated using a 

thermal bath (JULABO EH5, class III according to DIN 12876) with a PT100 reference 

probe. A range of setpoint temperatures has been selected, according to the operational 

conditions: 20°C, 30°C, 40°C, 50°C, 60°C, 70°C. For each one, after stabilizing bath 

temperature, the data for the calibration procedure were recorded at intervals of 3 seconds, 

over 6 minutes. The calibration lines for the thermocouples installed at the collector inlet 

(Tf,IN) and outlet (Tf,OUT) are presented in Figure 3.5.  

 

Table 3.1 presents the regression lines, the standard error and determination 

coefficient that characterize the approximation to the temperatures read by the 

thermocouples, based on the least squares method. The linear regression function was later 

used to correct the water temperature values read through the data acquisition system. 

Table 3.1 - Thermocouple characterization 

Thermocouple Linear regression Standard error R2 

Tf,IN Tf,IN = 0.9859 Tref – 1.1490 0.04557 0.99999 

Tf,OUT Tf,OUT = 0.9877 Tref – 1.0314 0.05669 0.99999 

a)      b) 

Figure 3.4 - Sensors used in the measurements  

   a) Pyranometer   b) Temperature and humidity sensor 

Figure 3.5 - Thermocouple calibration curves  

a) Tf,IN      b) Tf,OUT 
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3.1.5 Photovoltaic component: characterization of cells and measurement 

procedure 

The selection of photovoltaic cells has been limited by the size of the fins, thereby 

opting for 5” cells (c-Si), associated in 4x2 series arrangements to enable module 

manufacture, resulting in the geometry shown in Figure 3.6. It was, thus, a custom made 

solution, supplied by Onyx Solar (2015). Cells are encapsulated into EVA layers, with a 

total 0.5 mm thickness, and laminated between two layers of 4 mm thick glass. Because of 

the dimensions of the modules, the experiments were carried out applying up to three 

modules to the collector prototype. 

 
The reference characteristics of the cells, provided by the manufacturer, are summarized in 

Table 3.2, for a radiation level of 1000 W/m2. 

Table 3.2 - Reference electrical characteristics of the PV cells 

Dimension/ 

type 

Efficiency  

(%) 

Power  

(W) 

VOC  

(V) 

ISC  

(A) 

VMPP  

(V) 

IMPP  

(A) 

RS 

(cm2) 

RSH 

(cm2) 

5”/c-Si 17.75-18.00 2.6 0.631 5.59

1 

0.52

7 

5.24

5 

0.9 120 

 

In Table 3.2, ISC refers to the shortcut-circuit current, that is the maximum current 

(IEl) generated by the cells when the voltage (V) is 0, and VOC represents the open-circuit 

voltage. The manufacturer also refers that the final module efficiency is about 10% lower 

than for separated cells, because of the glass encapsulation and resistance from cell 

interconnections. The generated voltage values does not vary significantly with irradiance 

(G) above 100 W/m2, which does not happen with the current, that is very sensitive to G. 

Another characteristic of the cells is their parasitic resistance, resulting from two 

different components: the series resistance RS, and the shunt resistance RSH (on Table 3.2). 

The series resistance of a cell arises from different phenomena: the movement of the current 

through the emitter and the base of the cell, the resistance between the metal contacts and 

Figure 3.6 - Layout of photovoltaic modules (dimensions in cm) 
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the silicon and by the resistance of the top and rear metal contacts (Honsberg and Bowden). 

The shunt (parallel) resistance is associated with the leakage current across the junctions, 

especially on the top of the cell area, through resistive surface conduction pathways, or due 

to micro short-circuits (Ferreira, 1999). 

For this study, it is need to know the power produced by the PV modules for each 

set of test conditions. In order to correctly measure it, it is important to ensure that the 

module is operating at maximum power. The typical I-V curve of solar cell is represented 

in Figure 3.7, along with the power (𝐸̇) curve, where the maximum is easily identified 

(𝐸̇𝑚𝑎𝑥), corresponding to the conditions IMPP and VMPP. 

 

In the common utilization of photovoltaic systems, an equipment called Maximum 

Power Point Tracker (MPPT) is needed to ensure the operation under maximum power 

conditions. MPPT checks the output of PV module, compares it to battery voltage, and then 

fixes the best power that the PV module can produce to charge the battery and converts it 

to the best voltage to get maximum current into battery. In this experimental case, it was 

not possible to operate this way, because there was not any commercial model operating 

for this range of low voltage values. Another way of determining 𝐸̇𝑀𝑃𝑃 as a function of 

operation conditions is through the characteristics VOC and ISC (Table 3.2) as: 

𝐸̇𝑀𝑃𝑃 = 𝐼𝑀𝑃𝑃 × 𝑉𝑀𝑃𝑃 = 𝐼𝑆𝐶 × 𝑉𝑂𝐶 × 𝐹𝐹 (3.6) 

 In eq. 3.6, FF represents the cells Fill Factor. It is an indicator of the "quality" of 

the cells, since it is the ratio between the maximum power (𝐸̇𝑀𝑃𝑃) and the maximum 

theoretical power (𝐸̇𝑚𝑎𝑥,𝑇ℎ), expressed in the following equation: 

 

𝐸̇ = IV 

 

Voltage (V) 

C
u
rr

en
t 

(I
E

l)
 

Figure 3.7 - Typical I-V and power curves of PV cells (adapted from Honsberg and Bowden ) 

IMPP 

VMPP 

𝐸̇MPP 
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𝐸̇𝑚𝑎𝑥,𝑇ℎ = 𝐼𝑆𝐶 × 𝑉𝑂𝐶 (3.7) 

It can be more easily understood graphically as the ratio between the rectangular areas of 

the point of maximum power and maximum area of the graph, as shown in Figure 3.8. 

 

The previously referred parasitic resistances, RS and RSH, induces a reduction of the 

fill factor. The value of the fill factor is characteristic of the cells, as well as the series 

resistance RS, and the shunt resistance RSH. 

Irradiance is a key parameter for photovoltaics, affecting characteristics of the PV 

cells like ISC, VOC, RS, RSH and FF. Figure 3.9 shows the influence of irradiance on I, V and 

FF for the range of radiation 700 W/m2 (0.7 sun) - 1000 W/m2 (1 sun), for the characteristic 

cell values of RS and RSH. 

 

Figure 3.8 – Graphical interpretation of the Fill Factor of solar cells  

based on I-V and 𝐸𝐸𝑙
̇  curves (Honsberg and Bowden) 

Figure 3.9 - Influence of irradiance on cell characteristics (I, V, FF) (Honsberg and Bowden) 

  a) G = 700 W/m2    b) G = 1000 W/m2 

a)            b) 
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The FF values used in this study (eq. 3.6) were estimated through the interactive 

graphics represented in Figure 3.9, for the measured values of G. 

Running the experiments, electric power in eq. 3.6 was determined by the 

continuous measurement of 𝑉𝑂𝐶, registered by the acquisition system, and the indirect 

measurement of ISC. The short circuit current (ISC), that varies with irradiance, was estimated 

indirectly through a process of approximation by linear regression. The regression lines 

were obtained previously to the tests, for each one of the tested serial module association 

(one, two and three PV modules), and are presented in Figure 3.10. The results of ISC were 

obtained with a multimeter Agilent U1252A, connected in series to the circuit. The linear 

functions of ISC with G were applied for the test values of G to determine ISC. 

 

3.1.6 Data acquisition 

In order to monitor the system performance, a number of instruments were installed. 

Values of solar irradiance, ambient temperature, inlet and outlet fluid temperature have 

been acquired during each test. The sensitivity of the specified sensors of radiation and 

ambient temperature had to be considered, and is listed in Table 3.3. 

Table 3.3 - Sensors sensitivity 

Quantity Sensivity 

Solar radiation 13.2 V/(W/m2) 

Ambient temperature 10 mV/°C 

Isc1Mod = 0.0054G - 0.186

R² = 0.99508
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Figure 3.10 –ISC = f(G), for different number of PV modules connected in series 
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The data acquisition system integrated a data logger module (HP Agilent 34970A, 

USA) with a board 34901A connected to a personal computer. A monitoring program was 

developed in LabView 2011 (National Instruments, USA). That data were sampled every 

30 seconds and saved for subsequent analysis, which was carried out using MS EXCEL. 

The presentation and discussion of the experimental results is made in section 3.3. 

3.2 Experimental procedure 

Summarizing, three sets of experiments have been performed, respectively with one, 

two and three applied PV modules, connected in series. For each set, tests were conducted 

for different setups of inlet temperature (Tf,IN), ranging from 25C to 65C (25C, 35C, 

45C, 55C and 60C). The tests were carried out during periods when the sun incidence 

angle was adequate (respecting the testing standard). The tests were conducted based on 

information set forth in the standard NP EN 12975-2, for testing the thermal performance 

of collectors with one cover under stationary conditions, as further specified in the 

following points. Since the purpose of the tests was not collector certification, certain 

restrictions have been alleviated, as will be also referred in due time. 

3.2.1 Angle of incidence of direct solar radiation 

The angle of incidence of direct solar radiation on the collector aperture should be 

such that the incidence angle modifier for the collector does not vary more than ± 2% of its 

value at normal incidence, which, for flat plate collectors with single cover, will usually be 

satisfied if the angle of incidence (of direct solar radiation on the collector aperture is 

less than 20° (IPQ, 2007). This rule was updated in this version of the standard, but had 

been considered as 30° in previous versions. Thus, for this study, all periods with incidence 

angles of direct solar radiation on the collector aperture lower than 30° were considered. 

In order to determine the period of each day of tests with adequate angle of 

incidence (), it was necessary to know the variation of the sun position along the day. It 

can be determined according to a local coordinate system, defined by solar azimuth (azS) 

and sun height (S). The collector position is defined, according to the same system, by the 

azimuth (azC) and the tilt angle (C). The solar geometry parameters involved are 
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represented in Figure 3.11. In the same figure, azimuth angles are referenced to the North. 

Some authors, like Duffie (1991), consider the azimuth angles referenced to South. 

 

The solar geometry angles are calculated for each day of tests, according to a 

generally accepted formulation (Duffie, 1991). The angle of incidence can then be 

obtained applying a set of useful geometrical relations, resulting on eq. 3.8, using azimuths 

referenced to the South: 

 

Throughout the day, for a location with latitude  it is possible to determine solar 

azimuth azS and solar height S, by relating local coordinate system with the spherical 

coordinates (, H) through equations 3.9 and 3.10. For a given day of the year (n), the 

declination angle of the earth ( represents the angular position of the sun at the solar noon, 

with respect to the plane of equator, and is given by eq. 3.11. H, the hour angle, represents 

the angular displacement of the sun, east or west of the local meridian, due to the rotation 

of the earth on its axis at 15º per hour, as expressed in eq. 3.12. True solar time (TST) is the 

time based on the apparent angular motion of the sun across the sky, with solar noon at the 

time the sun crosses the observer´s meridian, corresponding to H =0. 

 

In order to determine the time of day respecting the correct angle of incidence ( < 

30°), it is necessary to make the correspondence between TST and the Legal time (LT). 

Figure 3.11 – Solar geometry coordinates, in relation with the solar collector position 

(adapted from Quaschning (2003)) 

𝑐𝑜𝑠(𝜃) = 𝑠𝑖𝑛(𝛾𝑆)𝑐𝑜𝑠(𝛽𝐶) + 𝑐𝑜𝑠(𝛾𝑆) 𝑠𝑖𝑛(𝛽𝐶) 𝑐𝑜𝑠(𝑎𝑧𝑆 − 𝑎𝑧𝐶) (3.8) 

 

𝑠𝑖𝑛(𝛾𝑆) = 𝑠𝑖𝑛(𝛿) 𝑠𝑖𝑛(𝜙) + 𝑐𝑜𝑠(𝛿) 𝑐𝑜𝑠(𝜙) 𝑐𝑜𝑠(𝐻) (3.9) 

𝑠𝑖𝑛(𝑎𝑧𝑆) =
−𝑐𝑜𝑠(𝛿) 𝑠𝑖𝑛(𝐻)

𝑐𝑜𝑠(𝛾𝑆)
 

(3.10) 

𝛿 = 23.45 𝑠𝑖𝑛 (360
(284 + 𝑛)

365
) 

(3.11) 

𝐻 = 15 (𝑇𝑆𝑇 − 12) (3.12) 
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That correspondence depends on the local longitude, , and varies daily according with one 

adjustment, named equation of time (ET). The formulation is expressed in the equations 

3.13 and 3.14: 

 

Thus, for each day of tests, the time of day respecting an angle of incidence < 30° was 

previously calculated, through equations 3.8 to 3.14. The tests were performed during the 

periods determined. 

3.2.2 Application of photovoltaic modules 

The process of application of photovoltaic modules over the absorber plate was 

carried out with attention to a good thermal contact between both elements. In order to 

correct small irregularities of the absorber surface, a sufficiently thick layer of thermal mass 

was applied on the fins before applying the PV modules. The thermal mass used has, 

according to the supplier’s information (Fixapart, 2015), a thermal conductivity of about 

3.2 W/mK and a thermal impedance less than 0.06°C/W, for a working temperature range 

of -50°C to 180°C. 

Another practical issue came across, since the absorber fins presented some warpage, 

which compromised thermal contact with the photovoltaic modules. A wood plate has been 

applied under the absorber fins, with rips to house the individual water tubes. The plate 

forced the fins up against the PV modules, by placing wooden blocks under it. On the 

opposite side wooden guides were also added on the border of the frame to press the PV 

modules downwards against the fins. 

{
𝑂𝑐𝑡𝑜𝑏𝑒𝑟 − 𝑀𝑎𝑟𝑐ℎ: 𝑇𝑆𝑇 = 𝐿𝑇 + 𝐸𝑇 +

𝜆

15

𝐴𝑝𝑟𝑖𝑙 − 𝑆𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟: 𝑇𝑆𝑇 = 𝐿𝑇 + 𝐸𝑇 +
𝜆

15
− 1

 

(3.13) 

𝐸𝑇 = 9.87 𝑠𝑖𝑛 (2
360(𝑛 − 81)

364
) − 7.53 𝑐𝑜𝑠 (

360(𝑛 − 81)

364
)

− 1.5 𝑠𝑖𝑛 (
360(𝑛 − 81)

364
) 

(3.14) 
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3.3 Results and discussion of experimental tests 

 As mentioned before, the tests were performed for three arrangements: with one, 

two and three photovoltaic modules applied to the absorber plate, corresponding to packing 

factors 0.24, 0.49 and 0.73, respectively. Photographs of the configurations are presented 

in Figure 3.12. 

 
The three different arrangements will be furthered referenced as “PV/T1”, “PV/T2” 

and “PV/T3”, with the index indicating the number of PV modules applied. For each case, 

experiments were performed with five set up collector inlet temperatures. The data have 

been registered during the day, always with sun incidence angles up to 30°, after a 

stabilization period for the flow rate and the set up temperature. 

The data analyses were carried out on the results that fulfilled steady conditions 

imposed by the IPQ (2007) standard for G and Tamb, based on the average values registered 

over a 10 minute period, respectively 𝐺̅ and 𝑇𝑎𝑚𝑏
̅̅ ̅̅ ̅̅  . The criteria applied to Tf,IN was adapted. 

The attended criteria are expressed as follows: 

 

a) b) c) 

Figure 3.12 - Views of the three tested arrangements: 

a) with one PV module  b) with two PV modules  c) with three PV modules 

|𝐺 − 𝐺̅| ≤ 50 𝑊/𝑚2 (3.15) 

|𝑇𝑎𝑚𝑏 − 𝑇𝑎𝑚𝑏
̅̅ ̅̅ ̅̅ ̅| ≤ 1.5 𝐾 (3.16) 

|𝑇𝑓,𝐼𝑁 − 𝑇𝑓,𝐼𝑁
̅̅ ̅̅ ̅̅ |

𝑇𝑓,𝐼𝑁
̅̅ ̅̅ ̅̅

≤ 0.5% 
(3.17) 
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The fluid inlet temperature stability was the most critical condition to obtain a valid 

test. As the temperature in the water heater was controlled by a PID controller, the variation 

of Tf,IN during a test was due to the change in the mass flow rate. Therefore, the test points 

selected for the analysis under the steady state Tf,IN condition also respected the steady state 

condition for the mass flow rate, according to |𝑚̇ − 𝑚̅̇| ≤ 1%. The continuous measurement 

of the flow rate would assure directly this steady state criteria. 

3.3.1 Thermal efficiency 

The thermal efficiency (Th) was calculated for the set of experimental results that 

verified the stability conditions, according to the formerly presented eq 2.8. The mass flow 

rate was obtained from the average of the volumetric flow rate (eq. 3.4) for each test, 

determined experimentally as explained in subsection 3.1.3. A continuous measurement of 

𝑚̇ would allow the determination of the thermal efficiency exclusively from direct 

measured values of the variables in equation 2.8, for each test point. The data from the 

selected tests have been then considered for a regression analysis, applied to the estimated 

thermal efficiency values for each arrangement (PV/T1, PV/T2 and PV/T3), obtaining a 

typical linear equation, in the form: 

 

According to the procedure indicated in IPQ (2007), T* is here defined as a function of the 

average fluid temperature (𝑇𝑓̅), expressed in eq. 2.20, as: 

 

On a first approach, some test results have been discarded, based on the application 

of the criterion of Chauvenet (Young, 1996). This criterion states that all data points that 

fall within a band around the mean that corresponds to a probability of 1-1/(2N) should be 

retained, where N is the total number of tests. That probability can be related to a maximum 

deviation away from the mean by using the Gaussian probabilities, and a no dimensional 

maximum deviation max can be determined. The values of max are related with the size of 

the sample, and are normally listed in tables. A corresponding critical value of thermal 

efficiency, Th,max can thus be determined, by applying the usual relation for a normal 

distribution: 

𝜂𝑇ℎ̂ = 𝐹´𝜂𝑜 − 𝐹´𝑈𝐿𝑇
∗ (3.18) 

 

𝑇∗ =
𝑇𝑓̅ − 𝑇𝑎𝑚𝑏

𝐺
 

(3.19) 

 



 
Numerical and experimental study of a solar hybrid collector for combined production of electricity and heat 

90 

 

 In eq. 3.21 𝜎𝜂𝑇ℎ is the standard deviation estimate for Th, defined as: 

 

This selection of eligible results for final analysis was performed on the basis of thermal 

efficiency values, since it is the predominant factor in the overall efficiency of the collector. 

In order to characterize the reliability of the results, confidence intervals were 

determined for the remaining sample, with a 95% confidence level, defined as (Guimarães): 

 

where 𝑡𝑁−2
2.5% is the critical value for the student-t distribution with N-2 degrees of freedom, 

and significance level of 5%. 

The results for thermal efficiency curve and confidence interval with 95% 

probability are presented for the three arrangements in Figure 3.13, Figure 3.14 and Figure 

3.15. In the graphics, Y- and Y+ represent the limits of the confidence interval defined by 

eq. 3.22. 

 

𝜏𝑚𝑎𝑥 =
|𝜂𝑇ℎ,𝑚𝑎𝑥 − 𝜂𝑇ℎ̅̅ ̅̅ ̅|

𝑚𝑎𝑥

𝜎𝜂𝑇ℎ
 

(3.20) 

 

𝜎𝜂𝑇ℎ = √∑ (𝜂𝑇ℎ,𝑖 − 𝜂𝑇ℎ,𝑖̂)
2𝑁

𝑖=1

𝑁 − 2
 

(3.21) 

 

𝜂𝑇ℎ̂ ± 𝑡𝑁−2
2.5%𝜎𝜂𝑇ℎ√1 +

1

𝑁
+

(𝑇∗ − 𝑇∗̅̅ ̅)2

∑(𝑇∗ − 𝑇∗̅̅ ̅)2
 

(3.22) 

 

Figure 3.13 - Thermal efficiency curve (Th = f (T*)) and 95% confidence interval 

 for PV/T1 arrangement 
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It is expected that the optical efficiency, F´0, is reduced with the obstruction of the 

incident radiation, caused by application of the PV modules over the absorber plate. It is 

confirmed by the experimental results. The results are presented for the three cases in 

Figure 3.16, to ease comparison. The regression analysis coefficients obtained for the three 

cases are presented in Table 3.4. 

Table 3.4 - Regression analysis coefficients and standard error for Th  

obtained with one, two and three PV modules applied 

 

Figure 3.14 - Thermal efficiency curve (Th = f (T*)) and 95% confidence interval 

 for “PV/T2” arrangement 

 

Figure 3.15 - Thermal efficiency curve (Th = f (T*)) and 95% confidence interval  

for “PV/T3” arrangement 

 Pf Intercept (F´Th,0) Slope (F´UL) Standard Error () 

PV/T1 24% 0.69 -5.30 0.013 

PV/T2 49% 0.67 -6.26 0.010 

PV/T3 73% 0.64 -6.40 0.013 
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The reduction of thermal efficiency with the number of photovoltaic modules 

applied is clear from Figure 3.16, but a conclusion regarding the effect on loss overall factor 

F´UL is not as straightforward. It is therefore necessary to resort to a complementary 

approach, as statistical techniques, in order to grant an objective analysis. 

Regression coefficients (intercept and slope) from Table 3.4 were compared for the 

three configurations using statistical approaches. T-tests for the mean values of the 

intercepts and slopes were performed, assuming equal variances, with a significance level 

of 5%, to verify if the coefficients could be assumed significantly different for the three 

cases, or not (Guimarães, 2009). It was proved that the intercept values were significantly 

different for the three cases. Regarding the slope values, it was verified that the slope for 

two and three modules were not significantly different, but, the results of the test were 

inconclusive, when comparing the slope for one and two applied modules. 

It is a fact that, with the application of PV modules, the temperature of the absorber 

is not so high, and so, the heat loss factor, F´UL, representing the losses due to the 

temperature difference between the plate and the ambient, would decrease. However, the 

glass of the PV modules has a higher emissivity than that of the selective absorber surface 

(0.8 for the glass compared to 0.2 for the selective absorber), leading to higher radiation 

losses. Studies on the influence of the Pf in the overall heat loss coefficient still do not exist. 

Reporting to the performance characteristics of selective FPC listed in Table 2.1, it can be 

noticed a decrease in the optical efficiency from traditional values over 0.74 to 0.69 for 

PV/T1 arrangement. The heat losses, reflected mainly in parameter a1 in the same table, are 

in the order of 4 W m-2 K-1 in solar thermal collectors, and increase to 5.3 with one PV/T 

module applied. 

Figure 3.16 - Thermal efficiency curves (Th = f(T*)) for 1, 2 and 3 modules applied 
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3.3.2 Determination of the combined collector efficiency 

The analysis presented in the previous section only concerns the thermal efficiency 

of the collector. It is necessary to analyse the electrical component and the resulting 

combined efficiency. The selected set of test results previously presented will now be 

studied, in terms of those contributions. 

Electrical efficiency is calculated for each test following eq. 2.15. The results are 

presented, for the three situations, in Figure 3.17. 

 

 It can be seen in Figure 3.17 that the electrical gain increases roughly in proportion 

to the number of modules applied, of about 2% per 25% of Pf increase. The increase in the 

reduced temperature difference, T*, is associated to an expected decrease in the electrical 

efficiency. 

The global effect of Pf on Th and El follows the expected tendency reported in 

literature, in references such as Dupeyrat et al. (2011a). Thermal and electrical efficiencies 

determined by Zondag et al. (2003) at zero reduced temperature for single covered PV/T-

w collectors are 58% and 8.9%, as listed in Table 3.5. Given that those results correspond 

to a complete coverage of the collector with PV modules, the values obtained in this work 

for Pf = 73%, Th,o = 64% and El,o = 8%, are in line with them. The results obtained by 

Chow et al. (2006) are also summarized in Table 3.5, for Pf = 50% and Pf = 100%. 

Regarding thermal efficiency, and reporting to Table 3.4, the zero reduced efficiency values 

also in agreement with the tendency in the reference, but the variation with Pf is lower. The 

values found by Chow et al. (2006) regarding the electrical efficiency are higher than the 

El,PVT1 = -0.0518T* + 0.0259

R² = 0.91

El,PVT2 = -0.1556 T* + 0.0538

R² = 0.96

El,PVT3 = -0.1468T* + 0.0756

R² = 0.86
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Figure 3.17 - Electrical efficiency (El = f(T*)) for configurations PVT1, PVT2 and PVT3 
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ones obtained with the experiments, and in less agreement than the ones by Zondag et al. 

(2003), but reveal a similar tendency for the effect of Pf. 

Table 3.5 – Characteristic values for Th and El referenced in literature, for PV/T-w collectors 

 
 

 Another approach was applied to the electrical component analysis, using the 

concept of electrical efficiency for PV cells, calculated based on the area with cells (APV): 

 

The results are presented in Figure 3.18 for the three configurations. It shows that the 

increase of Pf has a global reducing effect on El*, despite generating an increase in 

electrical output in absolute terms. There is a gain when increasing from one to two PV 

modules, for low values of T*. The PV cells efficiency is, reporting to Table 3.2, around 

18%, which is higher than the values obtained experimentally. The method used for 

estimating the values of the electrical output may introduce some error in the experimental 

results. 

 

 The combined efficiency definition used in this work was previously presented in 

eq. 2.16. The results obtained for the experimental tests are shown in Figure 3.19, and it 

can be observed that the electrical gain does not compensate the loss in thermal gain caused 

by the application of PV modules, and thus G reduces with Pf. 

Reference Pf Th,o El,o 

Zondag et al. (2003) 100% 58% 8.9% 

Chow et al. (2006) 50% 66.8% 12.1% 

Chow et al. (2006) 100% 57.4% 12.3% 

 

𝜂𝐸𝑙
∗ =

𝐸̇𝑀𝑃𝑃

𝐴𝑃𝑉𝐺
 

(3.23) 

 

Figure 3.18 - Electrical efficiency* (El*= f(T*)) for PVT1, PVT2 and PVT3 configurations  

El,PVT1= -0.2681T*+ 0.134
R² = 0.91

El,PVT2 = -0.4028T*+ 0.1392
R² = 0.94

El,PVT3 = -0.2534T*+ 0.1305
R² = 0.86
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Analysing the regression parameters for the efficiency curves in Figure 3.19, it can 

be also verified that the decrease of the combined efficiency with the packing factor is 

mainly due to the increase in the loss overall factor, represented by the slope parameter. 

Despite some references can be found regarding the effect of Pf in Th and El, the 

information on the effect in G is scarcer. The influence of the packing factor, fluid inlet 

temperature and solar radiation on thermal, electrical, and overall efficiencies of PV/T 

collectors is reviewed by Moradi et al. (2013). The global impact of Pf summarized 

confirms the tendencies already identified for Th and El, but the results regarding G are 

opposite. This last conclusion is based on some studies such as Garg and Agarwal (1995) 

and Wu et al. (2011). The numerical model developed by Garg and Agarwal (1995) for a 

system with a PV/T-w collector accounted for thermal and electrical outputs differently 

than the formulation used in this work. The results found by Wu et al. (2011), mentioned 

by Moradi et al. (2013), refer to exergy efficiency, which is not also the standard for the 

analysis carried out in this work. However, the results obtained by Sopian et al. (1996) with 

a numerical model for PV/T-a collectors showed also a decreasing effect of Pf in G.  

3.3.3 Uncertainty analysis 

It is necessary to estimate the uncertainty associated to the efficiency calculations,G, 

Th and El. This uncertainty is originated from different sources: 

i. The output quantities, Th, El, or G, are not directly measured quantities, but are 

instead obtained from others, directly measured or also calculated. This corresponds 

G,PVT1 = -5.352T*+ 0.712

R² = 0.98

G,PVT2 = -6.411T *+0.725

R² = 0.99
G,PVT3= -6.546T*+ 0.714

R² = 0.98
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Figure 3.19 - Combined efficiency (G= fT*)) for PVT1, PVT2 and PVT3 configurations 
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to the “combined standard uncertainty” (uC). Each individual uncertainty will 

contribute to the uncertainty of the output depending on their relative weight.  

ii. The experimental data points obtained form a sample, with a dispersion that can be 

determined applying statistical tools. This is often referred to as “type A standard 

uncertainty” (ucA), which is associated to a random component of the error in the 

measurements. 

iii. For an estimate of an input quantity that has not been obtained from repeated 

observations, the standard uncertainty is evaluated by scientific judgement based 

on all of the available information on the possible variability of that quantity. This 

corresponds to “type B standard uncertainty” (ucB), and is obtained from an 

assumed probability density function based on the degree of belief that an event will 

occur (JCGM, 2008). 

The formulation used in this subsection follows the rules established by JCGM (2008). 

The combined efficiency (G), as shown in equation 2.16, can be rewritten as follows: 

𝜂𝐺 = 𝜂𝑇ℎ + 𝜂𝐸𝑙 (3.24) 

The uncertainty of combined efficiency (UG) can be estimated from the results uncertainty, 

depending on the uncertainty of thermal efficiency (UTh) and electrical efficiency (UEl), , 

according to the following expression: 

𝑢𝑐(𝜂𝐺) =  √𝑢𝑐
2(𝜂𝑇ℎ) + 𝑢𝑐

2(𝜂𝐸𝑙) (3.25) 

Since Th is a calculated quantity, type A and type B combined uncertainties, uCA(Th) and 

ucB(Th) should be considered in the determination of the uncertainty uc(Th), resulting on 

the following similar expression: 

𝑢𝑐(𝜂𝑇ℎ) =  √𝑢𝑐𝐴
2 (𝜂𝑇ℎ) + 𝑢𝑐𝐵

2 (𝜂𝑇ℎ) 
(3.26) 

The type A combined uncertainty of Th (uCA(Th)) will be given by: 

𝑢𝑐𝐴(𝜂𝑇ℎ) = 𝑡𝑁−1,2.5%𝑢(𝜂𝑇ℎ̅̅ ̅̅ ̅) (3.27) 

where 𝑡𝑁−1,2.5% is the corresponding value of the student's t-distribution point for 95% 

confidence level, with N-1 degrees of freedom. 

The standard deviation of the sample average (u(𝜂𝑇ℎ̅̅ ̅̅ ̅)) can be estimated from: 
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𝑢(𝜂𝑇ℎ̅̅ ̅̅ ̅) = √
𝑠2(𝜂𝑇ℎ)

𝑁
 

(3.28) 

The estimated variance, s2, characterizing type A uncertainty, is calculated from a 

sample of N observations of a random variable. Applying to Th we can obtain: 

𝑠2(𝜂𝑇ℎ) =
1

𝑁 − 1
∑(𝜂𝑇ℎ,𝑗 − 𝜂𝑇ℎ̅̅ ̅̅ ̅)

2
𝑁

𝑗=1

 
(3.29) 

The referred statistical properties, expressed in equations 3.27, 3.28 and 3.29 for the three 

PV/T configurations are summarized in Table 3.6, including the estimated standard 

deviation, 𝑢(𝜂𝑇ℎ). 

Table 3.6 - Statistical characteristics of Th, for PV/T1, PV/T2 and PV/T3 configurations 

 

 

 

The combined standard uncertainty (uc(Th)) is an estimated standard deviation and 

characterizes the dispersion of the values that could reasonably be attributed to the 

measurand (JCGM, 2008). The type B uncertainty for thermal efficiency, (ucB(Th)), which 

is a combined uncertainty, depends on the individual uncertainties of each variable Xi 

intervening in the calculation of thermal efficiency. Assuming that the variables Xi are not 

correlated, 𝑈𝐵,𝜂𝑇ℎ can be obtained as: 

𝑢𝑐𝐵
2 (𝜂𝑇ℎ) =  ∑(

𝜕𝜂𝑇ℎ

𝜕𝑋𝑖

)
2

𝑢2

𝑀

𝑖

(𝑋𝑖) 
(3.30) 

 where u(Xi) is a standard uncertainty of type A or type B for the variable Xi. 

The thermal efficiency is calculated by formerly presented eq. 2.8. Applying eq. 3.30, 

results in: 

𝑢𝑐𝐵
2 (𝜂𝑇ℎ) =  (

𝜕𝜂
𝑇ℎ

𝜕𝑚̇
)
2

𝑢2(𝑚̇) + (
𝜕𝜂

𝑇ℎ

𝜕𝑐𝑃
)
2

𝑢2(𝑐𝑃) + (
𝜕𝜂

𝑇ℎ

𝜕𝑇𝑓,𝑂𝑈𝑇

)

2

𝑢2(𝑇𝑓,𝑂𝑈𝑇)

+ (
𝜕𝜂

𝑇ℎ

𝜕𝑇𝑓,𝐼𝑁

)

2

𝑢2(𝑇𝑓,𝐼𝑁) + (
𝜕𝜂

𝑇ℎ

𝜕𝐺
)
2

𝑢2(𝐺) + (
𝜕𝜂

𝑇ℎ

𝜕𝐴
)
2

𝑢2(𝐴) 

(3.31) 

Developing eq. 3.31, each uncertainty is obtained according to the appropriate 

considerations, weather Xi is a measured or derived variable. The definition of each parcel, 

corresponding to the uncertainty of each variable, is presented next. 

 PVT1 PVT2 PVT3 

𝒖(𝜼𝑻𝒉) 9.39% 8.59% 9.485% 

𝒖(𝜼𝑻𝒉̅̅ ̅̅ ̅) 1.27% 1.39% 1.235% 

uCA(Th) 2.54% 2.82% 2.47% 
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Irradiation (G) is directly measured, therefore its uncertainty (u(G)), in equation 

3.31, results only from the uncertainty of the equipment. The most relevant specification is 

the error associated to the non-stability correction per year, with a value of 0.5 to 1%, 

according to the manufacturer. So, uc(G) will be of 11%. The usual value for this type of 

pyranometer would be of 4.7%, according to the manufacturer. 

The temperatures Tf,IN and Tf,OUT are measured by thermocouples, for which the 

standard errors s were calculated during the calibration process (Table 3.1). This type A 

uncertainty was estimated with 95% confidence level, for N readings: 

𝑢𝑐𝐴(𝑇) = 𝑡𝑁−2,2.5% 𝑠(𝑇) (3.32) 

It is also necessary to consider the uncertainty of the thermal bath temperature used 

for the thermocouple calibration, with an error (u) of ±0.03 °C (information on the technical 

data of the equipment). A uniform probability distribution was assumed for the thermal 

bath error, which can be written in a general form: 

𝑢𝑐𝐵,𝑢𝑛𝑖𝑓𝑜𝑟𝑚 = 
𝑢

√3
 

(3.33) 

Thus, based on the calculated type A and type B uncertainties, it is possible to obtain the 

temperatures uncertainty, to include in eq. 3.31, by applying the traditional Root Sum 

Square methodology, resulting on the combined uncertainty for T: 

𝑢𝑐(𝑇) = √(𝑡𝑁−2,95%𝑠𝑇)
2
+ (

𝑢𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑏𝑎𝑡ℎ

√3
)
2

 

(3.34) 

The definition of the area of the glass cover (AGC) and specific heat (c) result are derived 

quantities determined as: 

𝐴𝐺𝐶  =  𝐿𝐺𝐶𝐻𝐺𝐶 (3.35) 

𝑐 = 𝑎0 + 𝑎1𝑇̅ + 𝑎2𝑇̅
2 + 𝑎3𝑇̅

3 + 𝑎4𝑇̅
4 + 𝑎5𝑇̅

5   (IPQ, 2007) (3.36) 

where 𝑇̅ is average fluid temperature, calculated according to eq. 2.20. LGC and HGC are the 

length and height of the glass cover. So, a similar method to the one described for Th (eq. 

3.30) has to be applied. For the area (AGC), it results in: 

𝑢𝑐𝐵
2 (𝐴𝐺𝐶) = (

𝜕𝐴𝐺𝐶

𝜕𝐿𝐺𝐶

)
2

𝑢2(𝐿𝐺𝐶) + (
𝜕𝐴𝐺𝐶

𝜕𝐻𝐺𝐶

)
2

𝑢2(𝐻𝐺𝐶) 
(3.37) 
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The uncertainties u(LGC) and u(HGC) are related to the resolution of the measuring 

equipment used, that is 0.5 mm. It is, then, a symmetric, uniform probability distribution, 

and so, they are determined by:  

𝑢𝑐𝐵(𝐿𝐺𝐶) = 𝑢𝑐𝐵(𝐻𝐺𝐶) =
0.0005

√3
 

(3.38) 

Regarding for the estimation of u(c), the standard IPQ (2007) identifies the largest 

deviation of the polynomial as 0.02%, and so, as a uniform probability distribution, the 

uncertainty can be obtained as: 

𝑢𝑐𝐵(𝑐) =
0.02𝑐

100√3
 

(3.39) 

The uncertainty of the mass flow rate (uc(𝑚̇)) has a statistical component and a type 

B component, according to the equation: 

𝑢𝑐(𝑚̇) =  √𝑢𝑐𝐴
2 (𝑚̇) + 𝑢𝑐𝐵

2 (𝑚̇) 
(3.40) 

The instantaneous variability of 𝑚̇ during a testing day (type A uncertainty, uCA(𝑚̇)) in eq. 

3.40 is determined by the equation: 

𝑢𝑐𝐴(𝑚̇) = 𝑡𝑁−1,2.5%𝑢(𝑚̅̇) (3.41) 

The mass flow rate (𝑚̇) is obtained for each test point by the following equation: 

𝑚̇ =
𝑉𝑜𝑙

𝑡
𝜌(𝑇𝑓,𝑂𝑈𝑇) 

(3.42) 

where Vol is the volume discharged during approximately one minute (t), which was 

measured several times during each test with a graduated beaker. Therefore, the type B 

combined uncertainty can be then obtained as: 

𝑢𝑐𝐵
2  (𝑚̇) = (

𝜕𝑚̇

𝜕𝑉𝑜𝑙
)
2

𝑢2(𝑉𝑜𝑙) + (
𝜕𝑚̇

𝜕𝑡
)
2

𝑢2(𝑡) + (
𝜕𝑚̇

𝜕𝜌
)
2

𝑢2(𝜌) 
(3.43) 

The standard deviation for the volume was considered to be half the beaker 

resolution, 𝑢(𝑉𝑜𝑙) = ±5 × 10−6 𝑚3. As it is in this case a uniform probability distribution, the 

standard uncertainty will be calculated as: 

𝑢𝑐𝐵(𝑉𝑜𝑙) =
𝑢

√3
 (3.44) 
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The uncertainty for the time results on the experimental standard deviation of the 

average for an experience of 10 timings, considering the time lag after stopping the 

chronometer, calculated as: 

𝑢𝑐𝐴(𝑡) = 𝑡𝑁−1,2.5%𝑠(𝑡̅) (3.45) 

The density 𝜌(𝑇𝑂𝑢𝑡) was determined using a polynomial function of temperature 

Tf,OUT (eq. 3.4). A maximum deviation of the polynomial of 0.02% was indicated for a 

rectangular probability distribution. Thus, a standard uncertainty will be obtained similarly 

to eq. 3.41: 

𝑢𝑐𝐵(𝜌) =
0.02𝜌

100√3
  

(3.46) 

The different isolated uncertainties contributing to combined standard uncertainty 

of thermal efficiency (uc(Th)), in equation 3.31, and mass flow rate (uc(𝑚̇)), in equation 

3.43, were presented through equations 3.34, 3.37, 3.39, 3.44, 3.45 and 3.46, and are 

summarized in Table 3.7. 

Table 3.7 - Estimated uncertainties of the variables affecting  

determination of thermal efficiency 

 

 

 

 

 

 

 

The type B uncertainty of 𝑚̇ (uCB(𝑚̇)) was determined through equation 3.43, using the 

results of the isolated uncertainties defined in equations 3.44 to 3.46. 

After developing each term in eq. 3.31 and eq. 3.40, the maximum combined 

standard uncertainty, uc(Th) was estimated for each case. The results are presented in 

Table 3.8. A continuous measurement of 𝑚̇ would have contribute to a smaller error 

associated to the type A uncertainty of 𝑚̇. 

Table 3.8 - Contribution of the uncertainty determined for each variable  

to the thermal efficiency of the collector 

 
(
𝝏𝜼𝑻𝒉

𝝏𝒎̇
)𝒖(𝒎̇) (

𝝏𝜼𝑻𝒉

𝝏𝒄
)𝒖(𝒄) (

𝝏𝜼𝑻𝒉

𝝏𝑻𝒇𝑶𝒖𝒕

)𝒖(𝑻𝒇𝑶𝒖𝒕) (
𝝏𝜼𝑻𝒉

𝝏𝑻𝒇𝑰𝒏

)𝒖(𝑻𝒇𝑰𝒏) 

PVT1 1.16% 0.01% 1.05% 0.85% 

PVT2 0.32% 0.01% 1.05% 0.85% 

PVT3 0.28% 0.01% 1.00% 0.81% 

 

 

Xi u(Xi) Xi u(Xi) 

G 11% c 0.012% (eq. 3.39) 

Tf,IN 0.09 (eq. 3.34) Vol 2.89×10-6 (eq. 3.44) 

Tf,OUT 0.11 (eq. 3.34) t 0.0475 (eq. 3.45) 

AGC 0.0004 (eq. 3.37)  0.012% (eq. 3.46) 
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(
𝝏𝜼𝑻𝒉

𝝏𝑮
)𝒖(𝑮) (

𝝏𝜼𝑻𝒉

𝝏𝑨
)𝒖(𝑨) 

𝒖𝑪𝑩(𝜼𝑻𝒉) 

PVT1 7.14% 0.04% 7.36% 

PVT2 6.97% 0.04% 7.11% 

PVT3 6.74% 0.04% 6.86% 

 

It is clear that the radiation uncertainty parcel represents the main source of 

uncertainty. That high value is due mainly from the non-stability uncertainty, arising for 

the used pyranometer has not been recalibrated for a long period. If a recently calibrated 

pyranometer CM6B had been used, we would be talking of a typical uncertainty of 5% 

(information from the supplier). The final value for thermal efficiency uncertainty can be 

obtained, applying eq. 3.28. Table 3.9 presents the final results for uc(Th), using the typical 

value for pyranometer uncertainty: 

Table 3.9 - Thermal efficiency uncertainty 

 

 

 

 

 

 

 

A similar procedure for the calculation of the uncertainty of electrical efficiency, 

uc(El), can be applied, addressing to eq. 2.15. It is necessary to calculate the type A and B 

components, 𝑢𝑐𝐴(𝜂𝐸𝑙) and 𝑢𝑐𝐵(𝜂𝐸𝑙), according to following equations: 

𝑢𝑐(𝜂𝐸𝑙) = √𝑢𝑐𝐴(𝜂𝐸𝑙)
2 + 𝑢𝑐𝐵(𝜂𝐸𝑙)

2 (3.47) 

𝑢𝑐𝐴(𝜂𝐸𝑙) = 𝑡𝑁−1,95%𝑢(𝜂𝐸𝑙̅̅ ̅̅ ) (3.48) 

𝑢𝑐𝐵(𝜂𝐸𝑙)
2 = (

𝜕𝜂𝐸𝑙

𝜕𝐼𝑆𝐶
)
2

𝑢2(𝐼𝑆𝐶) + (
𝜕𝜂𝐸𝑙

𝜕𝑉𝑂𝐶
)
2

𝑢2(𝑉𝑂𝐶) + (
𝜕𝜂𝐸𝑙

𝜕𝐹𝐹
)
2

𝑢2(𝐹𝐹)

+ (
𝜕𝜂𝐸𝑙

𝜕𝐺
)
2

𝑢2(𝐺) + (
𝜕𝜂𝐸𝑙

𝜕𝐴
)
2

𝑢2(𝐴) 

(3.49) 

However, comparing the relative importance of both components (thermal and electrical) 

on the global efficiency, the value obtained through this exhaustive process would result in 

a residual value, compared to the one concerning the thermal component. Just for a matter 

of checking, the example for 3 modules will be presented, which is the one with a bigger 

impact on El, corresponding to the most probable significant independent variable, G in 

Table 3.10. 

 𝒖𝒄𝑨(𝜼𝑻𝒉) (
𝝏𝜼𝑻𝒉

𝝏𝑮
)𝒖(𝑮) 

𝒖𝒄𝑩(𝜼𝑻𝒉) 𝒖𝒄(𝜼𝑻𝒉) 

PVT1 2.54% 3.24% 3.77% 4.57% 

PVT2 2.86% 3.17% 3.46% 4.47% 

PVT3 2.47% 3.06% 3.33% 4.14% 
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Table 3.10 - Illustrative example for electrical efficiency uncertainty 

 

 

 

 

 

According to this negligible contribution of the electrical component to the global 

efficiency uncertainty, just the uncertainty associated to the thermal efficiency will be 

considered, listed in Table 3.8. 

3.4 Relevant aspects and findings of the experimental work 

The experimental work exposed throughout this chapter is the end product of a 

process that has progressed, between successively surpassed downtimes and setbacks. A 

procedure of uncertainty analysis was applied to the experimental results, and it was 

determined that the most important contributor to the uncertainty of thermal efficiency was 

irradiance (G), as a result of the period since the last calibration of the pyranometer. The 

results of thermal efficiency are, thus, affected with an uncertainty of about 7% (see Table 

3.8). The uncertainty associated to electrical efficiency values was of about 0.39% (see 

Table 3.10). 

The tests were carried out for fluid inlet temperatures in the operational range from 

25ºC – 60ºC. The environmental conditions corresponded to the registered values for Tamb 

and G for summer conditions, ranging globally from 19ºC-30ºC and 727 W/m2 – 873 W/m2, 

respectively. Those conditions resulted in a reduced temperature difference (T*) ranging 

globally from 0.0036 Km2/W – 0.0506 Km2/W. The results of thermal, electrical, and 

combined efficiency were analysed, for 1, 2, and 3 PV modules applied over the absorber 

plate, corresponding to Pf of 0.24, 0.49 and 0.73, respectively. 

It was verified that the addition of the PV modules caused a reduction in Th, and 

some details can be highlighted regarding the thermal component: 

 the optical efficiency (F´0) decreases from typical values for flat plate selective 

solar collectors of 75% to 69% with Pf = 24%; 

 the impact of Pf in F´0 is almost linear, and corresponds to a reduction of about 

2% per 24% of Pf increase. This represents, on average, about 3% of the thermal 

efficiency. 

 𝒖𝒄𝑨(𝜼𝑬𝒍) 
(
𝝏𝜼𝑬𝒍

𝝏𝑮
)𝒖(𝑮) 

𝒖𝒄(𝜼𝑬𝒍) 

PVT3 0.07% 0.38% 0.39% 
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 The thermal losses characterized by F´UL increase from typical values for flat 

plate selective solar collectors of 4 W/(m2K) to 5.3 W/(m2K) with Pf = 24% and 

6.26 W/(m2K) for Pf = 49%. This can be explained by the increased emissivity 

of PV cells, of 0.837, compared with the one of the absorber plate, of 0.2. It was 

not registered a significantly further increase for Pf = 73%. The effect of Pf in 

F´UL has still not been identified in existing experimental works, and constitutes 

a new finding for the PV/T characterization. 

Regarding electrical efficiency of the tested PV/T prototype, it increased almost 

linearly with Pf, of about 2.5% per 24% of Pf increase, reaching maximum values of about 

7.5% for Pf = 74% (see Figure 3.17). However, if electrical efficiency is calculated with 

respect to the real area of PV cells (El*), it is verified a slight decrease of about 0.35% in 

El* between PVT1 and PVT3 arrangements. This finding is of practical interest, when 

accessing the cost to benefit ratio of considering arrangements with different Pf. Further 

analysis will be addressed over this matter in chapter 5. Considering El* concept of 

efficiency, values of about 13.5% are reached for PVT2 arrangement. Nevertheless, the 

results obtained for El* (see Figure 3.18) are lower than the reference ones of the PV 

modules, of 17.75% (Table 3.2). This can result from the followed procedure used for the 

estimation of 𝐸̇, instead of using a MPPT to measure it directly, as discussed in subsection 

3.1.5. 

 The results of combined efficiency (G) range approximately from 35% to 70% (see 

Figure 3.19). It was verified that the loss overall factor, represented by the slopes obtained 

through linear regression curves, increased with Pf, from 5.352 W/(m2K) to 6.546 W/(m2K) 

with Pf increase from 24% to 73%. So, globally, it was found that G decreases with Pf, 

mainly due to the losses increase. The benefit of PV/T lies, between other possible analyses, 

in the quality improve of the total output, resulting for better exergy efficiency of the 

electric power obtained. 
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Chapter 4.  

 

Numerical model for the simulation of a 

hybrid solar collector 

In this chapter, the mathematical model used for simulating the performance of a 

hybrid collector (thermal, electrical and combined) is presented. The model is a useful tool 

to the determination of the PV/T collector efficiency, under different operational 

conditions, and will be applied in the parametrical study that is carried out afterwards. The 

model takes into account the existing heat transfer mechanisms between the components of 

the collector model and the environment. Input variables are the solar radiation (G), 

external air temperature (Tamb) and fluid inlet temperature (Tf,IN). Steady-state, an even 

distribution in the water riser tubes and negligible dust effect were assumed. 

First, the developed mathematical model is presented in detail. The heat transfer 

modes are adapted to the particular geometry of the experimentally tested collector, 

considering the specific construction of the photovoltaic modules. The resulting equations 

constitute a set of non-linear algebraic equations that were solved using iterative methods, 

using EES software (F-Chart software, 1975). This software, by being generic, allows 

flexibility of application, leaving to the user all the options for the construction of the 

model. The integration of energy fluxes analyses into the numerical model and the resulting 

system of equations allow the determination of the temperature distribution (in the collector 
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plate, in the PV cells, and in the fluid). Additionally, useful heat and power outputs are also 

calculated, in order to obtain the efficiency parameters of the hybrid collector. 

The mathematical model is then validated, by quantifying the level of agreement 

with the experimental results obtained. 

A parametric and systematic study on the performance of a generic 

photovoltaic/thermal collector is then carried out. The study focus on separated and 

combined effects of environmental and operational variables, with a special relevance for 

the ratio of area covered with PV cells and its preferred location. This analysis uses a 

simplified version of the previously developed mathematical model. 

4.1 Mathematical model 

The mathematical model was based on the specific geometry of the experimentally 

tested hybrid collector, presented in Figure 3.12. Details of a local cross-section of the 

assembly are represented in Figure 4.1. The model takes into account the existence of two 

layers of glass, between which the cells are encapsulated. This way, the energy fluxes that 

reach the cell will be affected by the optical properties of the glass, leading to higher energy 

losses, and a relatively complex model. The cell/EVA layer thickness is of 0.5 mm. 

 
The thermal and optical characteristics used for modelling followed the data from 

the supplier, as listed in Table 4.1. The copper alloy used for the solar tubes and the absorber 

plate was C12200, containing a minimum of 99.9% copper, and so the values used for 

thermal conductivity kT and kP correspond to pure copper at 20 °C. The emissivity of the 

selective coating of the absorber was measured in the laboratory of Associação Rede 

Competência em Polímeros (Parque de Ciência e Tecnologia da Universidade do Porto, 

2015), a company integrated in UPTEC. 

Figure 4.1 - Local cross-section of the PV/T collector modeled in EES 

Glass cover 

Cell/EVA layer 
Glass layers of  

the PV module 
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Table 4.1 - Values of physical and optical properties for the collector prototype components  

used in the numerical model 

 

In order to favour the model explanation, first the heat transfer mechanisms 

regarding a thermal-only collector will be presented. This corresponds to the area of the 

hybrid collector with no cells applied. 

4.1.1 Heat transfer mechanisms in a typical solar thermal collector 

The development of such a mathematical model is always based on the 

identification of the heat transfer processes affecting a thermal system. The scheme 

presented in Figure 4.2 illustrates the existing heat transfer mechanisms between the 

various parts along the cross-section of a solar thermal collector. 

 

Element Material Property 

Glass Cover Tempered glass Absorptivity GC = 0.07 

(Planilux 

4mm, 

 Emissivity GC = 0.89 

Saint Gobain)  TransmissivityGC = 0.9 

Absorber Copper covered  Absorptivity P = 0.93 

plate with selective Emissivity P = 0.2 (tested) 

 coating Thermal conductivity kP = 387.6 W/mK 

Tubes Copper Thermal conductivity kT = 387.6 W/mK 

Photovoltaic Glass AbsorptivityMG = 0.07 

module  Transmissivity MG = 0.839 

  Thermal conductivity kMG = 1 W/mK 

(ONIX) Cells Absorptivity  C = 0.9 

  Thermal conductivity kC = 0.5737 W/mK 

  EmissivityM = 0.837 

 Characteristic values 

at Tref = 25 C: 
Elref = 0.18,ref = 0.0045 K-1 

Figure 4.2 - Heat fluxes in a solar collector cross-section  

(half distance between tubes) 

Glass cover 

Tube 

Solar irradiation (G) 

qconv 
qrad 

qconv 
qrad 

qcond,x 
qB 

Absorber plate/ 

Absorber plate + photovoltaic module 

y 

x 



 
Numerical and experimental study of a solar hybrid collector for combined production of electricity and heat 

108 

The detailed description of the each heat flux within the module will be presented 

later on sections 4.1.3 to 4.1.6. In Figure 4.2 the heat fluxes presented are: 

G –  solar irradiance incident on the collector; 

qconv –  heat loss by convection; 

qrad –  heat loss by radiation; 

qcond,x – heat transferred by conduction along the cross-section of the plate,  

  from the midplane to the tubes; 

qB –  heat loss from the plate to the bottom side of the collector. 

The water enters the solar collector through the tubes at a lower temperature (Tf,IN) 

than the absorber plate (TP). The existence of the convective flow in the thermal fluid, at a 

lower temperature than the absorber plate, arouses a convergence of conductive thermal 

fluxes in the plate, along the two surface directions: 

- qcondx, conductive heat fluxes in cross-sectional direction, x, from the midplane 

between two tubes towards the tubes (Figure 4.3 a) and b); 

- qcondz, conductive heat fluxes along the direction of the flow, z, (Figure 4.3 b.). 

 
In order to consider the temperature variation on the plate along both the transversal 

and longitudinal directions, it is necessary to create a two-dimensional model. For such, in 

the mathematical model, the plate (plate/module) is divided into a number of elements, as 

shown in Figure 4.4: Nx elements along x and Nz elements along z. This discretization 

scheme does not apply to the glass cover, which is simply treated as one element. Note that 

the temperature variation along the plate thickness (y axis) will be disregarded, since the 

plate is very thin. 

a)                 b) 
A 

qcond,x qcond,x 

qcond,z 

qcond,x 

z 

x 

Figure 4.3 - Conductive heat fluxes in the absorber plate 

a) Along transversal direction (x) b) along transversal (x) and longitudinal direction (z) 



 
Numerical and experimental study of a solar hybrid collector for combined production of electricity and heat 

109 

The following assumptions were made for the development of the mathematical 

model:  

- all the surfaces, except the absorber plate, are treated as grey (optical properties 

are independent of the wavelength) and diffuse; 

- the incident radiation on the surfaces is uniform (isotropic). 

 

4.1.2 Model simplifications: characteristic geometry 

The symmetrical conductive heat fluxes through the x direction cause a maximum 

temperature location along the cross-section in the mid-distance between two tubes (plane 

A in Figure 4.3 a.) and a minimum temperature over the tubes, and so the modelled 

geometry consists only in half the cross-section between two consecutive tubes, as 

represented in Figure 4.2. 

Conductive heat fluxes along the y axis for the glass cover, absorber plate and tube 

are neglected, since their thicknesses are small (4 mm, 0.8 and 0.15 mm, respectively) and 

their thermal conductivity is relatively high. The work by Smith (1986), cited by Zondag 

et al. (2002), confirms that modelling the temperature variation through the glass cover had 

no significant impact on the calculation of the thermal efficiency. It was found that the 

temperature difference between the fluid and the tube wall was the determinant factor. 

Thus, in the present model a constant temperature through the thickness of the glass, plate 

and tube is considered. 

Figure 4.4 - Outline of conductive heat fluxes on the plate/photovoltaic module 

i = 1 

i = 2 

i = 3 

i = 4 

i = … Nz 

j= 1 

j= 2 
j= 3 

j= 4 

j= 5 
j= 6 

j= 7 
j=8 

j= … 
j= Nx 

qcond,x 

qcond,x 

z 

x 
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4.1.3 Thermal balance over the glass cover 

The different types of heat transfer on the glass cover are presented in Figure 4.5. 

The glass cover receives heat from the exterior, through solar radiation (G), and from the 

module and plate, through convection (qconv(P+M)/GC). It also releases heat to the 

environment by radiation (qrad-amb) and convection (qconv-amb). The radiative fluxe to the 

glass cover was treated differently whether it was coming from the absorber plate (qrad-P/GC) 

or the PV module (qrad-M/GC), since the optical properties and temperatures are different. 

 

The heat balance equation for the glass cover can be written as: 

𝑞𝑟𝑎𝑑−𝑎𝑏𝑠 +𝑞𝑟𝑎𝑑𝑃/𝐺𝐶 + 𝑞𝑟𝑎𝑑𝑀𝑇𝐺/𝐺𝐶+𝑞𝑐𝑜𝑛𝑣(𝑃+𝑀)/𝐺𝐶 = 𝑞𝑐𝑜𝑛𝑣−𝑎𝑚𝑏+𝑞𝑟𝑎𝑑−𝑎𝑚𝑏 (4.1) 

For the development of the balance equation (eq. 4.1) it was considered that the glass cover, 

module top glass and absorber plate have uniform temperatures, TGC, TMTG and TP, 

respectively, taken as their average temperatures. Each term in equation 4.1 is defined next, 

through equations 4.3 to 4.13. 

i. Absorbed heat through radiation, qrad-abs 

The total solar radiation G, results from the direct, or beam (Gb), and diffuse (Gd) 

radiation as: 

G = Gb + Gd (4.2) 

From the incident solar radiation on the glass cover, one fraction is absorbed (GC), another 

is reflected (GC) and the rest is transmitted (GC). The heat gain of the glass in eq. 4.1 is 

defined as: 

𝑞𝑟𝑎𝑑−𝑎𝑏𝑠 = 𝛼𝐺𝐶𝐺 (4.3) 

 

 

Glass cover 

Photovoltaic module Absorber plate 

Tube 

Solar irradiance G  qconv-amb qrad-amb 

qconv (P+M)/GC qrad P/GC 
qrad MTG/GC 

Figure 4.5 - Glass cover heat fluxes 

Flow direction 
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ii. Heat loss to the ambient by convection, qconv-amb 

The convective heat transferred between the glass surface and the ambient air 

(𝑞𝑐𝑜𝑛𝑣−𝑎𝑚𝑏 in eq. 4.1) represents a portion of the thermal losses to the environment. It is 

characterized by the heat transfer coefficient (hW), as: 

𝑞𝑐𝑜𝑛𝑣−𝑎𝑚𝑏 = ℎ𝑊(𝑇𝐺𝐶 − 𝑇𝑎𝑚𝑏) (4.4) 

There are many correlations for the estimation of hW (Duffie, 1991), depending on 

the specific application. Watmuff et al. (1977) cited by Duffie (1991), reported a correlation 

that is most suitable for this case, directly dependent on the wind speed, V, as: 

ℎ𝑊 = 2.8 + 3.0 𝑉 (4.5) 

This equation was developed for a flat plate with characteristic length (L) of 0.5 m, 

according to: 

𝐿 =
4𝐴𝐺𝐶

𝑃𝐺𝐶


(4.6) 

In Eq.4.6 AGC is the glass cover surface area and PGC is its perimeter. 

iii. Radiation heat flux from the glass cover to the environment, qrad-amb  

The glass cover emits radiation to the environment, corresponding to the parcel 

𝑞𝑟𝑎𝑑−𝑎𝑚𝑏 in eq. 4.1, according to the following equation: 

𝑞𝑟𝑎𝑑−𝑎𝑚𝑏 = 𝜎𝜀𝐺𝐶(𝑇𝐺𝐶
4 − 𝑇𝑎𝑚𝑏

4) (4.7) 

This equation takes into account the approximation of the sky temperature to ambient 

temperature, Tamb, since sky temperature does not have great influence on the top heat loss 

(Duffie, 1991). 

iv. Radiation between glass cover and absorber plate (qrad P/GC)/PV module top glass 

(qradMTG/GC) 

 These radiation heat fluxes, in equation 4.1, can be obtained from the radiation 

equation between two infinite parallel plates (Holman, 1989), resulting in: 

𝑞𝑟𝑎𝑑 𝑃/𝐺𝐶 = 
𝜎(𝑇𝑃

̅̅ ̅4 − 𝑇𝐺𝐶
4)

1
𝜀𝐺𝐶

+
1
𝜀𝑃

− 1
 

(4.8) 

𝑞𝑟𝑎𝑑 𝑀𝑇𝐺/𝐺𝐶 = 
𝜎(𝑇𝑀𝑇𝐺

̅̅ ̅̅ ̅̅ ̅4 − 𝑇𝐺𝐶
4)

1
𝜀𝐺𝐶

+
1

𝜀𝑀𝐺
− 1

 
(4.9) 
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In Eq. 4.8 and 4.9, temperatures, 𝑇𝑃
̅̅ ̅, and 𝑇𝑀𝑇𝐺

̅̅ ̅̅ ̅̅ , were taken as averages of the “local” 

temperatures TP(i,j) and TMTG(i,j) determined for each element (i,j) as: 

𝑇𝑃
̅̅ ̅ =  

∑ ∑ 𝐴𝑖,𝑗
𝑁𝑥
𝑗=1

𝑁𝑧,𝑃
𝑖=1 𝑇𝑃𝑖,𝑗

𝐴𝑃
 

(4.10) 

𝑇𝑀𝑇𝐺
̅̅ ̅̅ ̅̅ ̅ =  

∑ ∑ 𝐴𝑖,𝑗
𝑁𝑥
𝑗=1

𝑁𝑧,𝑀
𝑖=1 𝑇𝑀𝑇𝐺𝑖,𝑗

𝐴𝑀
 

(4.11) 

AM and AP in eq. 4.11 are the areas of the module and the plate with no module applied, 

respectively. 

v. Convection between glass cover and plate/PV module, qconv-(P+M)/GC 

The temperature difference between the set “absorber plate/PV module” and the glass 

cover results in a natural convection heat transfer, considered in eq. 4.1, which can be 

estimated by: 

𝑞𝑐𝑜𝑛𝑣(𝑃+𝑀)/𝐺𝐶 = ℎ(𝑃+𝑀)/𝐺𝐶(𝑇(𝑃+𝑀𝑇𝐺)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑇𝐺𝐶) (4.12) 

In Eq.4.12 it is assumed that the temperature on the absorber surface and the PV module 

top glass are represented by an average value, given by: 

𝑇(𝑃+𝑀𝑇𝐺)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =  

𝑇𝑀𝑇𝐺
̅̅ ̅̅ ̅̅ ̅ 𝐴𝑀  + 𝑇𝑃

̅̅ ̅ 𝐴𝑃 

𝐴𝑀 + 𝐴𝑃
 

(4.13) 

The heat transfer coefficient (ℎ(𝑃+𝑀)/𝐺𝐶) can be obtained, through the determination 

of the Nu number in eq. 4.14, from empirical correlations for natural convection in confined 

spaces, composed of two infinite parallel plates at a distance  heated from below. It was 

used for the model a pre-defined function available on EES. This function is based on the 

calculation of the Nu number as a fraction of Ra number and the tilt angle of the surface 

(), as Duffie (1991), for tilt angles between 0º and 75º, expressed in eq. 4.15. The Ra 

number is defined in eq. 4.16. 

𝑁𝑢 =
ℎ(𝑃+𝑀𝑇𝐺)/𝐺𝐶𝛿

𝑘𝑓
 

(4.14) 

𝑁𝑢 = 1 + 1,44 [1 −
1708(𝑠𝑖𝑛1,8𝛽)1,6

𝑅𝑎 𝑐𝑜𝑠𝛽
] [1 −

1708

𝑅𝑎 𝑐𝑜𝑠𝛽
]
+

+ [(
𝑅𝑎 𝑐𝑜𝑠𝛽

5830
)

1
3⁄

− 1]

+

 

(4.15) 

𝑅𝑎 =
𝑔𝛽´(𝑇(𝑃+𝑀𝑇𝐺)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑇𝐺𝐶)𝛿
3

𝜈𝛼
 

(4.16) 

In eq. 4.16, ´is the coefficient of volumetric expansion and is the thermal diffusivity of 

the fluid, defined as follows: 
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𝛽´ =
1

(𝑇(𝑃+𝑀𝑇𝐺)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑇𝐺𝐶)

2

 
(4.17) 

𝛼 =
𝑘𝑓

𝜌𝑓𝑐𝑓
 

(4.18) 

Beyond a critical value of the temperature difference between the two surfaces, 

corresponding to a Rayleigh number Ra = 1708, bi-dimensional circulation eddies begin to 

form. These eddies become three dimensional with the increase in Ra, ending, at some 

point, in the transition to turbulent flow regime. It should be noted that the formulation 

exposed above represent, however, an approximation, since it is not dealing with infinite 

plates. Nevertheless, it is an acceptable assumption since /L = 0.04. 

4.1.4 Heat balance equations on the photovoltaic module 

In order to develop a mathematical model for the heat fluxes within the PV module, 

it is necessary to consider the following components: (1) top glass, (2) PV cell encapsulated 

with EVA and (3) bottom glass. 

The conductive fluxes along x and z that were mentioned for a simple thermal 

collector also have to be considered when the PV module is added. Thus, the discretization 

scheme represented for the absorber plate of a thermal collector in Figure 4.4 is also valid 

for each component of the PV module. Thus, the temperature of each component is indexed 

to the specific “location” (i,j). The main heat fluxes existing in the PV module are 

represented in Figure 4.6. No discretization was applied along the y direction, within each 

component. However, there is a gradient of temperature between the cell and the surfaces 

of the top and bottom glass, resulting on conductive fluxes from the cell, upward and 

downward, along the y direction (qcond Cell/MTG and qcond Cell/MBG in Figure 4.6). 

In this subsection the balance equations for each component of the PV module will be 

detailed, leading then to the determination of the temperature distributions for all the 

discretized elements TMTG (i,j), TCell (i,j) and TMBG (i,j). However, it is necessary to apply 

proper boundary conditions to solve the system of equations. The boundary conditions are: 

 Symmetry at the mid plane: 
𝑑𝑇

𝑑𝑥
 |x = Lfin/2 =0; 

 Zero conductive heat flux along x for x=0: 𝑞𝑐𝑜𝑛𝑑,𝑥 = 0; 

 Zero conductive heat flux along z for z=0 and z=L: 𝑞𝑐𝑜𝑛𝑑,𝑧 = 0; 
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 Temperature of the tube is the same as the plate (where no PV module is applied): 

TT|x=0= TP; 

 Temperature of the tube is the same as the bottom module glass (where PV module 

is applied): TTx=0= TMBG. 

 

In the boundary conditions just presented Lfin is the distance between two tubes and 

TT is the temperature of the tube. 

The thermal balance equations applied to each element of the PV module will then be 

presented. 

i. Module top glass 

As already accounted before, the photovoltaic module transfers heat to the glass cover 

by convection and radiation (see Figure 4.5 and eq. 4.12) through its top glass (see Figure 

4.6), The general balance equation can be written as: 

𝑞𝑟𝑎𝑑−𝑎𝑏𝑠,𝑀𝑇𝐺 + 𝑞𝑐𝑜𝑛𝑑𝐶𝑒𝑙𝑙/𝑀𝑇𝐺  (+𝑞𝑐𝑜𝑛𝑑𝑥𝑀𝑇𝐺 + 𝑞𝑐𝑜𝑛𝑑𝑧𝑀𝑇𝐺)

= 𝑞𝑐𝑜𝑛𝑣𝑀𝑇𝐺/𝐺𝐶 + 𝑞𝑟𝑎𝑑𝑀𝑇𝐺/𝐺𝐶  (+𝑞𝑐𝑜𝑛𝑑𝑥𝑀𝑇𝐺 + 𝑞𝑐𝑜𝑛𝑑𝑧𝑀𝑇𝐺) 

(4.19) 

This equation was applied for each element (i,j), after discretization of the complete 

domain. For the elements on the boundaries (x=0, x=Lfin/2, z=0, z=L) some of the terms 

corresponding to conductive fluxes are null, according to the boundary conditions. Those 

fluxes, when present, are calculated by the following equations: 

𝑞𝑐𝑜𝑛𝑑𝑥,𝑀𝑇𝐺 =
𝑘𝑀𝐺

𝐿𝑥
(𝑇𝑀𝑇𝐺 𝑖,𝑗 − 𝑇𝑀𝑇𝐺𝑖,𝑗−1) (4.20) 

𝑞𝑐𝑜𝑛𝑑𝑧,𝑀𝑇𝐺 =
𝑘𝑀𝐺

𝐿𝑧,𝑀
(𝑇𝑀𝑇𝐺 𝑖,𝑗 − 𝑇𝑀𝑇𝐺𝑖+1,𝑗) (4.21) 

Lx and Lz,M in eqs 4.20 and 4.21 represent the dimensions of each discretized element (i,j) 

of the PV module along x and z, respectively. 

Figure 4.6 - Main heat fluxes in the photovoltaic module (except transversal qcondx and axial 

qcondz conductive fluxes) 

Transmitted radiation from glass cover 

qrad TMG/GC qconv MTG/GC 
𝑦  

𝑥  

Module top glass 

Cell+EVA 

Module bottom glass 
Absorber plate 

qcond Cell/MTG 

qcond Cell/MBG  
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The convective and radiative fluxes to the glass cover, respectively qconvMTG/GC and 

qradMTG/GC in Figure 4.6, are equivalent to those stated in equations 4.8 and 4.9, but are now 

applied for each element (i,j), with temperature TMTG i,j: 

𝑞𝑐𝑜𝑛𝑣 𝑀𝑇𝐺/𝐺𝐶 = ℎ(𝑃+𝑀)/𝐺𝐶(𝑇𝑀𝑇𝐺 𝑖,𝑗 − 𝑇𝐺𝐶) (4.22) 

𝑞𝑟𝑎𝑑 𝑀𝑇𝐺/𝐺𝐶 = 
𝜎(𝑇𝑀𝑇𝐺 𝑖,𝑗

4 − 𝑇𝐺𝐶
4)

1
𝜀𝐺𝐶

+
1

𝜀𝑀𝐺
− 1

 (4.23) 

From the total incident solar radiation, the top module glass absorbs the fraction 

determined by the transmissivity of glass cover and its absorption coefficient (GC MTG). 

The successive reflections and absorptions existing between the glass cover and a surface 

bellow, results in the following approximation for most practical solar collectors (Duffie, 

1991): 

(𝜏𝛼) ≡ 1.01 𝜏𝐺𝐶𝛼𝑀𝑇𝐺 (4.24) 

The diffuse component of the solar radiation incident on the top glass of the module 

must be treated differently, since the values of the absorption and transmission coefficients 

depend on the angle of incidence (Duffie, 1991). Considering an isotropic incident 

radiation, and integrating the radiation transmitted in all directions, one could define an 

incidence equivalent angle such that the direct radiation would result in the same 

transmittance that the diffuse radiation. For horizontally placed collectors, this angle is 

equivalent to 60° (Duffie, 1991).  

The absorptivity and transmissivity depend on the angle of incidence of the incident 

radiation. (Duffie, 1991) also presents curves for determining (τα) as a function of 

incidence angle, relative to the normal incidence, (τα)/(τα)n. For the equivalent angle of 

60º for diffuse radiation: 

(𝜏𝛼)𝑑
(𝜏𝛼)𝑛

= 0.9 
(4.25) 

Therefore, the absorbed radiation flux to consider is given by the following equation: 

𝑞𝑟𝑎𝑑−𝑎𝑏𝑠,𝑀𝑇𝐺 = (𝜏𝐺𝐶𝛼𝑀𝑇𝐺𝐺𝑏 + 0,9𝜏𝐺𝐶𝛼𝑀𝑇𝐺𝐺𝑑)1.01 (4.26) 

The temperature differences between the three elements of the module imply 

conductive fluxes along the y axis, leading to the referred fluxes from the cell (qcond Cell/MTG 

and qcond Cell/MBG in Figure 4.6). The flux concerning the top glass of the module can be 

quantified as: 
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𝑞𝑐𝑜𝑛𝑑𝐶𝑒𝑙𝑙/𝑀𝑇𝐺 =
𝑘𝑀𝐺

𝛿𝑀𝐺
(𝑇𝐶𝑒𝑙𝑙 𝑖,𝑗 − 𝑇𝑀𝑇𝐺 𝑖,𝑗) 

(4.27) 

In the latter equation 𝛿𝑀𝐺  represents the thickness of the module glass. 

ii. Cell+EVA layer 

The cell layer receives the radiation transmitted by the top glass of the module, as 

represented in Figure 4.7. This absorbed radiation will contribute to the electric and thermal 

gains of the cell. By the obstruction caused and the deduction of the electrical gain, there is 

a reduction to the heat transferred to the absorber plate and thermal fluid. 

 

Thus, the electric flux generated is given by: 

𝑒 = ( 𝐺𝑏 + 0.9𝐺𝑑)𝜏𝐺𝐶  𝜏𝑇𝑀𝐺𝛼𝐶𝑒𝑙𝑙 1.01 𝜂𝐸𝑙 𝑖,𝑗 (4.28) 

 The heat gain by radiation is estimated from: 

𝑞𝑟𝑎𝑑 = ( 𝐺𝑏 + 0.9𝐺𝑑)𝜏𝐺𝐶  𝜏𝑀𝑇𝐺𝛼𝐶𝑒𝑙𝑙  1.01 (1 − 𝜂𝐸𝑙 𝑖,𝑗) (4.29) 

The electrical efficiency (El) reduces linearly with the increase of the cell 

temperature, according to eq 2.13. 

The parameters were provided by the cell manufacturer, as presented in Table 4.1. 

Since the cell electrical efficiency depends on TCell,(i,j), it varies along the layer 

Cell/EVA. Total electrical gain can be calculated from: 

𝐸̇ =  ∑ ∑𝜂𝐸𝑙 𝑖,𝑗

𝑁𝑥

𝑗=1

𝑁𝑧,𝑀

𝑖=1

( 𝐺𝑏 + 0.9𝐺𝑑)𝜏𝐺𝐶  𝜏𝑀𝑇𝐺𝛼𝐶𝑒𝑙𝑙  1.01𝐿𝑥𝐿𝑧𝑀 

(4.30) 

The energy balance fluxes in the cell layer is: 

𝑒 + 𝑞𝑟𝑎𝑑 (+𝑞𝑐𝑜𝑛𝑑𝑥𝐶𝑒𝑙𝑙 + 𝑞𝑐𝑜𝑛𝑑𝑧𝐶𝑒𝑙𝑙)

= 𝑞𝑐𝑜𝑛𝑑𝐶𝑒𝑙𝑙/𝑀𝑇𝐺 + 𝑞𝑐𝑜𝑛𝑑𝐶𝑒𝑙𝑙/𝑀𝐵𝐺(+𝑞𝑐𝑜𝑛𝑑𝑥𝐶𝑒𝑙𝑙 + 𝑞𝑐𝑜𝑛𝑑𝑧𝐶𝑒𝑙𝑙) 

(4.31) 

As mentioned before in section 4.1.2, the temperature variation along the absorber 

plate below the PV module glass was not considered, since the plate is very thin and has a 

qcond Cell/BMG  

qcond Cell/MTG  

Module top glass 

Cell+EVA 
Module top glass transmitted radiation 

Module bottom glass 
Absorber plate 

𝑦  

𝑥  

Figure 4.7: Main heat fluxes in the cell layer  

(except transversal qcondx and axial qcondz conductive fluxes) 
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high thermal conductivity. Instead, an equivalent thermal conductivity keq1 is calculated for 

the set bottom module glass/plate: 

𝛿𝑀𝐵𝐺 + 𝛿𝑃

𝑘𝑒𝑞1
=

𝛿𝑀𝐵𝐺

𝑘𝑀𝐺
+

𝛿𝑃

𝑘𝑃
 

(4.32) 

The conductive heat flux from the cell to the bottom glass of the module is given by: 

𝑞𝑐𝑜𝑛𝑑𝐶𝑒𝑙𝑙/𝐵𝑀𝐺 =
𝑘𝑒𝑞1

𝛿𝑀𝐺
(𝑇𝐶𝑒𝑙𝑙 𝑖,𝑗 − 𝑇𝐵𝑀𝐺 𝑖,𝑗) 

(4.33) 

The conductive fluxes will be considered all, or not, by applying the boundary conditions. 

Each parcel is calculated as: 

𝑞𝑐𝑜𝑛𝑑𝑥,𝐶𝑒𝑙𝑙 =
𝑘𝐶𝑒𝑙𝑙

𝐿𝑥
(𝑇𝐶𝑒𝑙𝑙 𝑖,𝑗 − 𝑇𝐶𝑒𝑙𝑙 𝑖,𝑗−1) 

(4.34) 

𝑞𝑐𝑜𝑛𝑑𝑧,𝐶𝑒𝑙𝑙 =
𝑘𝐶𝑒𝑙𝑙

𝐿𝑧,𝑀
(𝑇𝐶𝑒𝑙𝑙 𝑖,𝑗 − 𝑇𝐶𝑒𝑙𝑙 𝑖+1,𝑗) 

(4.35) 

iii. Bottom glass of the module 

This component exchanges heat by conduction with the PV cell, and loses heat to the 

insulation along x and z directions (Figure 4.8), resulting in eq. 4.36. 

 

The thermal losses through the lower surface (qB,M), combine conductive flux 

through insulation and aluminium structure, and convective/radiative loss to the exterior. 

The radiative flux is usually neglected (Duffie, 1991), given its insignificant contribution 

to the heat balance. As referred in section 3.2.2, a plywood plate was applied under the 

absorber plate. The impact of considering this additional resistance on the bottom thermal 

losses was also evaluated, to understand its significance. 

The series resistance, using the electrical circuit analogy, is obtained with eq. 4.37, 

considering 1 cm of plywood plate, 3 cm of rock wool, 1 mm for the aluminium structural 

back plate, and an exterior convection coefficient of 10 W/m2K. 

𝑞𝑐𝑜𝑛𝑑𝐶𝑒𝑙𝑙/𝑀𝐵𝐺  (+𝑞𝑐𝑜𝑛𝑑𝑥𝑀𝐵𝐺 + 𝑞𝑐𝑜𝑛𝑑𝑧𝑀𝐵𝐺) = 𝑞𝐵,𝑀  (+𝑞𝑐𝑜𝑛𝑑𝑥𝑀𝐵𝐺 + 𝑞𝑐𝑜𝑛𝑑𝑧𝑀𝐵𝐺) (4.36) 

Cell+EVA 

Bottom thermal losses qB,M 

𝑦  

𝑥  
Module bottom glass Absorber plate 

Figure 4.8 - Main heat fluxes in the bottom glass of PV module 

(except transversal qcondx and axial qcondz conductive fluxes) 

qcond Cell/MBG  
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𝑅𝑒𝑞 =
𝛿𝑃𝑙𝑦𝑤𝑜𝑜𝑑

𝑘𝑃𝑙𝑦𝑤𝑜𝑜𝑑
+

𝛿𝐼𝑛𝑠

𝑘𝐼𝑛𝑠
+

𝛿𝑆𝑡
𝑘𝑆𝑡

+
1

ℎ𝑎𝑚𝑏
 

(4.37) 

The heat flux qB,M is treated as a convective heat flux, and is calculated by: 

𝑞𝐵,𝑀 =
(𝑇𝑀𝐵𝐺 𝑖,𝑗 − 𝑇𝑎𝑚𝑏)

𝑅𝑒𝑞
 

(4.38) 

The equivalent global heat transfer coefficient will round ≈ 1 W/m2K, so it can be 

neglected in the model. 

With respect to conductive fluxes along the bottom glass of the module, x and z 

directions, it is necessary to account for the dependence on the plate thermal conductivity, 

because it has a significant impact. In one discretized element, the plate thermal conduction 

(kP = 387.6 W/mK) affects 0.15mm, corresponding to the thickness of the plate, compared 

to the thermal conductivity of the glass (kMG= 1 W/mK), applied to a 4 mm thickness. To 

find the equivalent conductivities for the total thickness of the element, the following 

equations are expressed for x and y direct: 

𝑥 :  
𝑘𝑒𝑞𝑥

𝐿𝑥

(𝛿𝑀𝐵𝐺 + 𝛿𝑃)𝐿𝑧𝑀 =
𝑘𝑀𝐵𝐺

𝐿𝑥
𝛿𝐵𝑀𝐺𝐿𝑧𝑀 +

𝑘𝑃

𝐿𝑥
𝛿𝑃𝐿𝑧𝑀 

(4.39) 

𝑧̂ :  
𝑘𝑒𝑞𝑧

𝐿𝑧𝑀

(𝛿𝑀𝐵𝐺 + 𝛿𝑃)𝐿𝑥 =
𝑘𝐵𝑀𝐺

𝐿𝑧𝐶𝑒𝑙𝑙
𝛿𝑀𝐵𝐺𝐿𝑥 +

𝑘𝑃

𝐿𝑧𝐶𝑒𝑙𝑙
𝛿𝑃𝐿𝑥 

(4.40) 

Solving 4.39 and 4.40 for keq will result in the same expression for this equivalent thermal 

conductivity: 

𝑘𝑒𝑞𝑥 = 𝑘𝑒𝑞𝑧 =
𝑘𝑀𝐵𝐺𝛿𝑀𝐵𝐺 + 𝑘𝑃𝛿𝑃

(𝛿𝑀𝐵𝐺 + 𝛿𝑃)
 

(4.41) 

The conductive heat fluxes can then be written as: 

𝑞𝑐𝑜𝑛𝑑𝑥,𝐵𝑀𝐺 =
𝑘𝑒𝑞𝑥

𝐿𝑥
(𝑇𝑀𝐵𝐺 𝑖,𝑗 − 𝑇𝐵𝑀𝐺 𝑖,𝑗−1) 

(4.42) 

𝑞𝑐𝑜𝑛𝑑𝑧,𝐵𝑀𝐺 =
𝑘𝑒𝑞𝑧

𝐿𝑧,𝑀
(𝑇𝑀𝐵𝐺 𝑖,𝑗 − 𝑇𝐵𝑀𝐺 𝑖+1,𝑗) 

(4.43) 

To conclude the presentation of the heat fluxes in the bottom glass of the PV 

module, it should be mentioned that, for the elements at the left boundary (x =0), that are 

in contact with the collector tube, an additional term in the balance equation should be 

added, representing half of the heat transferred to the fluid, on that element (i,j). This will 

be discussed in more detail in section 4.1.6. 
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4.1.5 Thermal balance on the absorber plate 

The analysis regarding the absorber plate, for the part of the hybrid collector not 

covered by the photovoltaic module is slightly simpler. Some of the concepts already 

presented for the photovoltaic module will be adapted. For the schematic representation of 

the heat transfer mechanisms, the reader is referred to Figure 4.2. 

As for the module, the collector area is divided into a number of elements, Nx and 

NZP in the x and z directions, respectively, resulting in a system of equations, that should be 

simultaneously solved for TP(i,j). 

Applying the energy balance for the absorber plate gives: 

𝑞𝑟𝑎𝑑−𝑎𝑏𝑠,𝑃 (+𝑞𝑐𝑜𝑛𝑑𝑥𝑃 + 𝑞𝑐𝑜𝑛𝑑𝑧𝑃)

= 𝑞𝑐𝑜𝑛𝑣𝑃/𝐺𝐶 + 𝑞𝑟𝑎𝑑𝑃/𝐺𝐶  + 𝑞𝐵 (+𝑞𝑐𝑜𝑛𝑑𝑥𝑃 + 𝑞𝑐𝑜𝑛𝑑𝑧𝑃) 

(4.44) 

The equations for each term were already presented for the photovoltaic module, for what 

they will only be adapted, using the physical properties for the absorber plate: 

𝑞𝑟𝑎𝑑−𝑎𝑏𝑠,𝑃 = (𝜏𝐺𝐶𝛼𝑃𝐺𝑏 + 0.9𝜏𝐺𝐶𝛼𝑃𝐺𝑑)1.01 (4.45) 

𝑞𝑐𝑜𝑛𝑣𝑃/𝐺𝐶 = ℎ(𝑃+𝑀)/𝐺𝐶(𝑇𝑃 𝑖,𝑗 − 𝑇𝐺𝐶) (4.46) 

𝑞𝑟𝑎𝑑 𝑃/𝐶𝐺 = 
𝜎(𝑇𝑃 𝑖,𝑗

4 − 𝑇𝐺𝐶
4)

1
𝜀𝐺𝐶

+
1
𝜀𝑃

− 1
 

(4.47) 

𝑞𝐵,𝑃 = ℎ𝑒𝑞𝐵,𝑃(𝑇𝑃 𝑖,𝑗 − 𝑇𝑎𝑚𝑏) (4.48) 

Once again, the heat conduction along x and z axis can be approximated by: 

𝑞𝑐𝑜𝑛𝑑𝑥,𝑃 =
𝑘𝑃

𝐿𝑥
(𝑇𝑃 𝑖,𝑗 − 𝑇𝑃 𝑖,𝑗−1) (4.49) 

𝑞𝑐𝑜𝑛𝑑𝑧,𝑃 =
𝑘𝑃

𝐿𝑧,𝑃
(𝑇𝑃 𝑖,𝑗 − 𝑇𝑃 𝑖+1,𝑗) (4.50) 

Similarly as for the bottom glass of the PV module, an additional term in the balance 

equation has to be accounted for the elements in the left boundary (j =1) that are in contact 

with the tube, representing half of the heat transferred to the fluid. This will be presented 

in more detail in section 4.1.6. 

For the boundary elements that form the transition interface between the bottom 

glass of the PV module and the plate, the conductive fluxes along z were derived from 

equations 4.36 and 4.44 to obtain: 
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𝑞𝑐𝑜𝑛𝑑𝑧,𝑀𝐵𝐺 𝑁𝑧𝑀,𝑗 =
𝑘𝑃

𝐿𝑧,𝑀
2

⁄
(𝑇𝑀𝐵𝐺 𝑁𝑧𝑀,𝑗 − 𝑇𝑃 1,𝑗) 

(4.51) 

𝑞𝑐𝑜𝑛𝑑𝑧,𝑃 1,𝑗 =
𝑘𝑃

𝐿𝑧,𝑀
2

⁄
(𝑇𝑀𝐵𝐺 𝑁𝑧𝑀,𝑗 − 𝑇𝑃 1,𝑗) 

(4.52) 

4.1.6 Convection heat transfer along the fluid flow in the collector tubes 

The main objective of applying solar thermal collectors is to heat a thermal fluid 

circulating in the tubes with the absorbed solar radiation incident on the plate. Thus, for 

each element on the left boundary (j =1), an additional heat parcel has to be considered, in 

equations 4.36 for the bottom module glass elements (qT,Mi), and in eq. 4.44, for the absorber 

plate elements, respectively. qTi represents the heat that is transferred to the fluid through 

the tube, by a convection mechanism. The formulation of the equations for this term, for 

the bottom glass of the PV module and the absorber plate, are: 

𝑞𝑇,𝑀 𝑖 =
𝑄̇𝑇,𝑀 𝑖

𝐿𝑧𝑀𝐿𝑥𝑀
 

(4.53) 

𝑄̇𝑇𝑀 𝑖 = ℎ𝑓 𝑖(𝑇𝐵𝑀𝐺  𝑖,1 − 𝑇𝑓,𝑖
̅̅ ̅̅ )(2𝜋𝑟)𝐿𝑧𝑀 (4.54) 

𝑞𝑇,𝑃 𝑖 =
𝑄̇𝑇,𝑃 𝑖

𝐿𝑧𝑃𝐿𝑥𝑃
 

(4.55) 

𝑄̇𝑇𝑃 𝑖 = ℎ𝑓𝑖(𝑇𝑃 𝑖,1 − 𝑇𝑓,𝑖
̅̅ ̅̅ )(2𝜋𝑟)𝐿𝑧𝑃 (4.56) 

In order to estimate the local average water temperature (𝑇𝑓,𝑖) in equations 4.54 and 4.56, 

the following approximation was applied: 

𝑇𝑓,𝑖
̅̅ ̅̅ =

𝑇𝑓 𝑖 + 𝑇𝑓 𝑖−1

2
 

(4.57) 

The heat fluxes through the tubes leads to temperature rise along the flow path: 

𝑄̇𝑇𝑖 = 𝑚̇ 𝑐𝑓(𝑇𝑓 𝑖 − 𝑇𝑓 𝑖−1) (4.58) 

The resulting system of equations can be solved after providing the inlet 

temperature of water, which is an input variable. 

The internal convection coefficient depends largely on the flow regime (Re), that is 

usually laminar in solar collector applications, and on the thermal boundary condition. The 

thermal boundary condition for a solar collector can be understood as a constant resistance 

between the flowing fluid and the surroundings at a constant temperature. Constant heat 

flux or constant wall temperature conditions can be assumed. It is recommended a constant-
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wall-temperature assumption for the boundary, since it yields lower heat transfer 

coefficients than a constant heat flux condition (Duffie, 1991). For fully developed laminar 

flow, thermally and dynamically, and for isothermal wall condition, the Nusselt number is 

constant and takes a value of 3.66 (Bejan, 1993). From the Nusselt number it is possible to 

determine the convection coefficient by expression 4.14. For non-developed flow 

conditions, Rohsenow (1961), cited by Duffie (1991), presents a graph for the dependence 

of Nu on the dimensionless group Re Pr Dh/L, as shown in Figure 4.9. 

 
The Prandtl number is given by: 

𝑃𝑟 =
𝜈𝑓

𝛼𝑓
 (4.59) 

where f and f are the kinematic viscosity and thermal diffusivity of the fluid, respectively. 

The EES program, used to solve the system of equations, treated the determination 

of the convection transfer coefficient for each element (hf,i) in a dedicated subroutine.  

4.1.7 Model verification 

Before validation, a verification process accompanied the development of the 

model, by monitoring some results. Verification is the process of determining that a model 

implementation accurately represents the developer’s conceptual description of the model 

and its solution (Thacker et al., 2004). The following expected aspects were checked: 

 The average temperature in the plate was higher than the one in the cells; 

Figure 4.9 - Average Nusselt numbers in short tubes for various Prandtl numbers 

 (Duffie, 1991) 
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 In the photovoltaic module elements, the higher temperature was always 

verified in the cell; 

 The temperature increases, for each part, along x and z directions. 

After assuring, on a first phase, that the model confirms those prerequisites, the 

validation with the experimental results can be carried out. 

4.2 Validation of the developed model with experimental 

results 

Model validation is essential for assuring a significant level of confidence and 

predictive accuracy of the mathematical model, providing evidence that it is sufficiently 

accurate for its intended use. Validation is the process of determining the degree to which 

a model is an accurate representation of the real world from the perspective of the intended 

uses of the model (Thacker et al., 2004). 

The experimental results are used for the validation procedure that is presented 

throughout this section. The validation assessment is applied to the values of the thermal, 

electrical and combined efficiencies, for all the tested conditions selected in section 3.3 

concerning the application of 1, 2, and 3 PV modules. Variables that were not measured 

during the tests, as wind speed (eq. 4.5), and the distinction between the values of diffuse 

and beam radiation (equations 4.26, 4.28 to 4.30 and 4.45), are consulted from climate data 

of TRNSYS for Porto, for the testing periods. The incidence angleThe total process of 

validation for one PV module applied is taken for example, and then the analysis for all the 

tests is summarized. 

4.2.1 Comparison of numerical and experimental results for efficiencies, 

with one PV module applied 

Taking for example the case with one module applied, Figure 4.10 and Figure 4.11 

include comparative results for thermal and electrical efficiencies. The observation shows 

a generally good agreement between both results. 
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For the same configuration, with one PV module applied (PVT1), the degree of agreement 

for the results of thermal and electrical efficiencies was evaluated, through the 

determination of the linear regression parameters. Figure 4.12 and Figure 4.13 present the 

comparison for model efficiencies (thermal and electrical), relative to experimental values. 

The “ideal” named case represents an ideal fit, with slope = 1. Similar analysis was 

extended to the results obtained with 2 and 3 PV modules applied, for thermal, electrical, 

and combined efficiencies. 

 

Figure 4.10 - Comparison of model and experimental values of thermal efficiency,  

with one PV module applied 

Figure 4.11 - Comparison of model and experimental values of electrical efficiency,  

with 1 PV module applied 
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Figure 4.12 - Agreement between model and experimental thermal efficiencies,  

with 1 PV module applied 
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4.2.2 Statistical analysis for a validation assessment 

A similar analysis was extended to the results obtained with 2 and 3 PV modules, 

for thermal, electrical, and combined efficiencies. For a more exhaustive validation of the 

agreement between the model and experimental results, a statistical analysis was applied. 

Based on the regression lines obtained for all the tested conditions, similarly to the 

procedure presented in section 4.2.1, statistical tests were applied to the slope values that 

have been determined. Confidence intervals were then estimated with 95% confidence 

level, and are listed in Table 4.2. 

Table 4.2 – Confidence intervals for regression lines slopes, with 95% confidence level, 

for validation of results of thermal, electrical and combined efficiencies 

 

It is confirmed that the confidence interval includes unity, or is very near, namely 

for one and two modules applied. In case of three photovoltaic modules, the values for 

thermal efficiency present a higher deviation. In this case, the area with only thermal gains 

is small, and the temperature rise in the fluid is also lower, and so, there is a higher 

probability of experimental reading values presenting a higher error. 

Considering the level of approximation achieved, this model can be used as a 

reference, representing the thermal and electrical behaviour a PV/T collector with 

reasonably high accuracy. 

N. PV 

modules 

Th, 

slope 

Low 

limit 

High 

limit 

El, 

slope 

Low 

limit 

High 

limit 

G, 

slope 

Low 

limit 

High 

limit 

1 1.028 1.017 1.040 1.009 1.002 1.017 1.028 1.017 1.039 

2 1.007 0.984 1.030 1.013 1.003 1.023 1.008 0.987 1.029 

3 0.932 0.922 0.941 1.035 1.030 1.041 0.946 0.937 0.954 

Figure 4.13 - Agreement between model and experimental electrical efficiencies,  

with one PV module applied 
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4.3 Parametric analysis of the performance of an hybrid 

PV/T collector 

In this section, it is intended to evaluate the effect of some selected environmental 

variables and operating conditions on the performance of the hybrid PV/Thermal collector, 

besides quantifying the effect of PV cell area (packing factor). The impact of the packing 

factor (Pf), fluid inlet temperature (Tf,In), irradiation level (G) and ambient temperature 

(Tamb) on the thermal (Th), electrical (El) and overall (G) efficiency is characterized, 

through an extensive and systematic analysis. The parametric study will focus on the 

preferred positioning for the PV cells, by comparing the differences between applying cells 

at collector inlet or collector outlet. This study can be further used to support a study for 

optimizing the extent of the application of PV cells, or other constructive practical options 

for an hybrid PV/T collector. 

The installation of photovoltaic cells over the absorber plate causes a reduction of the 

heat gain of the thermal fluid. In general, this loss is not compensated by the electrical gain, 

since the electrical efficiency of the cells is around 15% (relatively to the area of the cells 

applied), which is significantly lower than the thermal efficiency. Therefore, the hybrid 

collector design manages two opposite outputs: the electrical and the thermal gains. The 

optimization issue can be explored under various perspectives, focusing, for example, in 

the global efficiency of the collector, the electrical efficiency per area of PV cells, primary 

energy savings, etc. The purpose of this parametric study is to explore different approaches. 

The first one is to confirm the best positioning for installing the PV cells, comparing the 

installation at the inlet side with the outlet side of the collector. It is expected to find better 

electrical efficiencies when the PV cells are placed near the inlet, since the plate absorber 

temperatures are lower. The effects of positioning and percentage of the collector with PV 

cells are analysed separately and combined. The question is whether it is possible to 

maximize the outputs (electrical or total), and to identify how the different parameters can 

be used to optimize the efficiencies. 

The analysis is based on the results for thermal, electrical and overall efficiencies 

obtained through simulation, using the mathematical model. Some simplifications were 

introduced in the model presented in section 4.1, to adapt it to more realistic dimensions 

and conditions (for instance, no plywood plate would be used), and to make it more flexible 

to the systematization needed, reducing simulation time. The adapted model used for this 
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parametric study considers for the photovoltaic module just the PV cells, instead of a PV 

module, without any encapsulation material of finite thickness and absorptivity. This is 

possible through the use of alternative encapsulating technologies, like dye-sensitized solar 

cell or other thin-film methods. Moreover, the glass cover complies with the traditional 

function of protection from diverse weather conditions or mechanical damages. Only the 

simplification details that were introduced to the original model will be referred, together 

with the particular geometric conditions and material properties. This concerns mainly the 

heat balance in the photovoltaic element. 

Some conclusions of this study have already been published (João and Oliveira, 

2015). 

4.3.1 Characterization of the geometry and physical properties of materials 

considered for the model 

The collector geometry used for this study is based on the original dimensions of 

the thermal collector, 1.125 m × 2 m, before the adaptation made for experimental tests. 

The characteristic geometry modelled, corresponding to half the collector section between 

two tubes, is represented in Figure 4.14. The photovoltaic cells are directly attached to the 

absorber plate. The collector has 9 tubes in total, and the absorber plate surface area is 2,1 

m2. The total water flow rate is 40 g/s, which is in agreement with the typical values verified 

in thermal collectors (15-20 g/s/m2), and close to the ASHRAE standard flow rate per unit 

area for glazed liquid flat plate collectors of 20 g/s/m2. 

 

The materials used for the different components in the model and their physical 

characteristics are listed in Table 4.3. The values were chosen from literature (Duffie, 1991) 

and commercial references. 

Figure 4.14 - Geometric details of the computational domain 
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Table 4.3 – Physical and optical properties of the collector components used in the simulation 

4.3.2 Particular adjustments to the mathematical model 

In order to simplify the application of the model to the parametric study focused on 

the positioning of the cells, two versions of the mathematical model were created, 

considering, for the same ratio of area covered by the cells, its application at the inlet side 

(“IN”) and at the outlet side (“OUT”) (for example, for 10% of area with cells, two situations 

were evaluated, considering these 10% at the entrance, "10%IN", and at the outlet, 

"10%OUT"). 

Comparing to the mathematical model formerly presented in section 4.1.4, the 

formulation of heat fluxes here will be is much simpler, since the photovoltaic module only 

consists of the cells. The adaptations that need to be considered are presented next. 

Regarding the thermal balance over the glass cover (see eq. 4.1), the term for 

radiation heat flux has to be rewritten: 

𝑞𝑟𝑎𝑑 𝐶𝑒𝑙𝑙/𝐺𝐶 = 
𝜎(𝑇𝐶𝑒𝑙𝑙

̅̅ ̅̅ ̅̅ 4
− 𝑇𝐺𝐶

4)

1
𝜀𝐺𝐶

+
1

𝜀𝐶𝑒𝑙𝑙
− 1

 
(4.60) 

The average cell temperature (𝑇𝐶𝑒𝑙𝑙
̅̅ ̅̅ ̅̅ ) is now: 

𝑇𝐶𝑒𝑙𝑙
̅̅ ̅̅ ̅̅ =  

∑ ∑ 𝐴𝑖,𝑗
𝑁𝑥
𝑗=1

𝑁𝑧,𝑀
𝑖=1 𝑇𝐶𝑒𝑙𝑙𝑖,𝑗

𝐴𝐶𝑒𝑙𝑙
 

(4.61) 

The convection heat transfer between the glass cover and the cells can be defined as: 

𝑞𝑐𝑜𝑛𝑣(𝑃+𝐶𝑒𝑙𝑙)/𝐺𝐶 = ℎ(𝑃+𝐶𝑒𝑙𝑙)/𝐺𝐶(𝑇(𝑃+𝐶𝑒𝑙𝑙)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑇𝐺𝐶) (4.62) 

𝑇(𝑃+𝐶𝑒𝑙𝑙)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the average value for temperature for the total area of the surface below the 

glass cover, and can be determined as: 

Element Material Property 

Glass cover Low iron glass  Absorptivity GC = 0.02 (Guardian Industries Corp.) 

 (Solatex) Emissivity GC = 0.88 (Duffie, 1991) 

  Transmissivity GC = 0.90 (Also Media Ltd, 2013) 

Absorber Copper covered AbsorptivityP = 0.96 (Duffie, 1991) 

plate with  Emissivity P = 0.10 (Duffie, 1991) 

 selective coating Thermal conductivity kP = 387.6 W/mK 

Tubes Copper Thermal conductivity kP = 387.6 W/mK 

Photovoltaic  Absorptivity C = 0.90 (Dupeyrat et al., 2011a) 

cells  Emissivity C = 0.90 (Dupeyrat et al., 2011a) 

  Characteristic values at reference temperature Tref = 20 C: 

Cellref = 0.15; ref= 0.04 K-1 (Skoplaki and Palyvos, 2009a) 
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𝑇(𝑃+𝐶𝑒𝑙𝑙)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =  

𝑇𝐶𝑒𝑙𝑙
̅̅ ̅̅ ̅̅ 𝐴𝐶𝑒𝑙𝑙 + 𝑇𝑃

̅̅ ̅ 𝐴𝑃 

𝐴𝐶𝑒𝑙𝑙 + 𝐴𝑃
 

(4.63) 

The convective heat transfer between the cells and the glass cover is analogous to the one 

obtained for the top glass of the module: 

𝑞𝑐𝑜𝑛𝑣𝐶𝑒𝑙𝑙/𝐺𝐶 = ℎ(𝑃+𝐶𝑒𝑙𝑙)/𝐺𝐶(𝑇𝐶𝑒𝑙𝑙 𝑖,𝑗 − 𝑇𝐺𝐶) (4.64) 

The heat balance for the photovoltaic cell can be written as: 

𝑒 + 𝑞𝑟𝑎𝑑  (+𝑞𝑐𝑜𝑛𝑑𝑥𝐶𝑒𝑙𝑙 + 𝑞𝑐𝑜𝑛𝑑𝑧𝐶𝑒𝑙𝑙)

= 𝑞𝑐𝑜𝑛𝑣𝐶𝑒𝑙𝑙/𝐶𝐺 + 𝑞𝑟𝑎𝑑𝐶𝑒𝑙𝑙/𝐶𝐺  (+𝑞𝑐𝑜𝑛𝑑𝑥𝐶𝑒𝑙𝑙 + 𝑞𝑐𝑜𝑛𝑑𝑧𝐶𝑒𝑙𝑙) + 𝑞𝐵 

(4.65) 

where the electric power flux and the radiation heat flux are redefined as: 

𝑒 = ( 𝐺𝑏 + 0.9𝐺𝑑)𝜏𝐺𝐶  𝛼𝐶𝑒𝑙𝑙  1.01 𝜂𝐸𝑙 𝑖,𝑗 (4.66) 

𝑞𝑟𝑎𝑑 = ( 𝐺𝑏 + 0.9𝐺𝑑)𝜏𝐺𝐶  𝛼𝐶𝑒𝑙𝑙  1.01 (1 − 𝜂𝐸𝑙 𝑖,𝑗) (4.67) 

The calculation of electrical efficiencies for each element (i,j) can be obtained from eq. 2.15 

The conductive fluxes along the PV cells, qcondx,Cell (i,j) and qcondZ,Cell (i,j), are similar to eq. 

4.34 and 4.35.  

For the determination of the heat loss through the lower surface (qB) it will just be 

included the convection coefficient to the exterior, and, thus: 

𝑞𝐵 𝑖,𝑗 = ℎ𝑒𝑞,𝐵,𝐶𝑒𝑙𝑙(𝑇𝐶𝑒𝑙𝑙 𝑖,𝑗 − 𝑇𝑎𝑚𝑏) (4.68) 

The heat transferred to the fluid has also to be considered in the heat balance equation 

applied for the PV cells, in the boundary elements j=1, for the zone of the plate with PV 

cells. To be determined, eq. 4.53 can be combined with: 

𝑄̇𝑇,𝑖𝐿𝑧,𝐶𝑒𝑙𝑙  𝐿𝑥 = ℎ𝑓 𝑖(𝑇𝐶𝑒𝑙𝑙 𝑖,1 − 𝑇𝑓,𝑖
̅̅ ̅̅ )(2𝜋𝑟)𝐿𝑧,𝐶𝑒𝑙𝑙 (4.69) 

The model described corresponds to the one presented in the work by João and Oliveira 

(2015). 

4.3.3 Analysis of the performance for a solar thermal-only collector 

Despite the study focussing on the performance of hybrid collectors, the case of a 

thermal-only collector was modelled, for reference and verification of the adapted model. 

The temperature distribution along the plate absorber and the effect of the water inlet 

temperature in the thermal efficiency are presented. 

Figure 4.15 shows the temperature distribution obtained for the absorber plate, 

without the application of photovoltaic cells, for input conditions: Tf,IN = 20C, Gb = 800 
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W/m2
, Gd = 200 W/m2

, Tamb = 20 C. It can be seen that the temperature increases in cross-

sectional direction from the tube axis (x = 0) into the plane of symmetry, (x = 0.053) and 

also along the flow (z axis). Under these conditions the plate temperature ranges from 21.9 

°C (point A) to 53.8 °C (point B). 

 

The effect in thermal efficiency of increasing the water inlet temperature, (Tf,IN) from 20ºC 

to 60ºC can be verified in Figure 4.16. 

 

 The coefficients of the regression line in Figure 4.16 represent the thermal yield at 

zero thermal losses, Th0, and thermal loss factor, F´UL, according to eq. 2.11. The values 

obtained are acceptable, for sheet and tube selective collectors (Th0 reaches 76%, and F´UL 

assume values of about 4 W/m2K for market available models, as said in section 2.1). 

Figure 4.15 - Plate temperature distribution without PV cells  

(Tf,IN = 20C, Gb = 800 W/m2, Gd=200 W/m2, Tamb= 20 C) 

B 

A 

Figure 4.16 – Thermal efficiency curve for a solar thermal-only collector 

(Gb = 800 W/m2, Gd=200 W/m2, Tamb= 20 C) 

B 
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4.3.4 Baseline characterization of the effect of different parameters 

Through this study, the influence of several parameters on the hybrid collector 

performance is analysed. If the separated effects may not look clear from the start, the 

analysis of their combined effects becomes more relevant. 

In order to establish a clear starting point, the effects of some parameters can be 

already pointed out, based on results accepted from the practice and from literature. For 

example, increasing fluid inlet temperature (Tf,IN) causes a reduction in the thermal (Th), 

electrical (El) and global (G) efficiencies. On the other hand, increasing the area covered 

with PV cells causes an increase in El, and a decrease in Th and G. When the area of PV 

cells does not cover all the surface of the plate absorber, it is better for electrical efficiency 

to place them near the inlet side of the collector, because it is the area of the absorber plate 

with lower temperatures, and where the desired cooling effect of the PV cells is more 

intense. Table 4.4 summarizes this baseline scenario. 

Table 4.4 - Effect of the different parameters on efficiencies of the hybrid collector 

 

In Table 4.4, the unknown effects of the parameters are classified as “?”. In the same 

table, the electrical “intensive” efficiency (El*) is also considered, since it is an important 

feature for evaluating the performance of the hybrid collector. El* can be relevant to isolate 

the effect of different parameters on the electrical performance itself. 

It is, thus, interesting, to focus the analysis in parameters with opposite effects, or 

with an impact which is not clear from the start. It is expected that the decrease in thermal 

and global efficiencies caused by increasing Tf,IN is enhanced by the effect of the packing 

factor. 

Parameter: Th El G El* 

Tf,In     
Pf    ? 

In vs Out ?  ?  

Legend: : causes decrease; : causes increase; ?: uncertain 
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4.3.5 Influence of PV cell positioning (Inlet vs Outlet), ratio of area covered 

with cells (Pf), and fluid inlet temperature (Tf,IN) 

The analysis presented in this subsection is carried out considering the following 

environmental conditions: ambient temperature (Tamb) of 20°C, and direct (Gb) and diffuse 

(Gd) radiation of 800 W/m2 and 200 W/m2, respectively. 

It is not simple to completely separate the different parameters. First, the best option 

for positioning the PV cells is analysed, according to thermal and global efficiency, in order 

to complete Table 4.4. For this purpose, different values of the packing factor (Pf) were 

considered for the simulations (25%, 35%, 50% and 75%), for configurations with the PV 

cells starting from the flow entry zone, noted by “IN”, and from the exit zone, noted by 

“OUT”. The graphical representation of the thermal (Th), and global (G) efficiencies, is 

shown in Figure 4.17 and Figure 4.18, for Tf,IN varying from 20C to 60C. According to 

linear trend lines coefficients determined according to Figure 4.18, the decrease with Tf,IN 

was in average of about 5/(Km2/W) for G. The values for Pf = 75% were not included in 

Figure 4.17 and Figure 4.18, for a better perception of the graphic. Selected results from 

simulation, for values of Tf,IN=20ºC, 40ºC and 60ºC are shown in Table 4.5 and 4.6. 

 
 

Figure 4.17 - Thermal efficiency of PV/T collector:  

Influence of Tf,IN, Pf and layout (“In” vs “Out”) (Gb = 800 W/m2, Gd = 200 W/m2, Tamb = 20 ºC) 
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It is clear that a larger area with PV cells causes the reduction of both thermal 

(Figure 4.17) and global (Figure 4.18) efficiencies, as expected (see Table 4.4). This 

reduction is also confirmed in Table 4.5 and Table 4.6, where the thermal and combined 

efficiencies for zero reduced temperatures, respectively, are presented. The Th reduction 

with Pf is enhanced with the increase of Tf,IN, ranging, with the “Inlet” layout, from 8.6% 

for Tf,IN=20ºC to 14% for Tf,IN=60ºC. 

In terms of thermal efficiency, it can be observed that the application of the cells at 

the inlet side is better. It can be concluded from the results in Table 4.5 that the effect of 

positioning is more pronounced for higher values of the fluid inlet temperature (Tf,IN), 

namely for Pf = 25%.  

Table 4.5 –Thermal efficiencies at zero reduced temperatures,  

for different values of Pf, Tf,IN and layout In vs Out 

 
Analysing the results for global efficiency, installing the PV cells at the inlet is also 

convenient, as can be seen in Figure 4.18. On the other hand, that effect is intensified by 

the increase Tf,IN only for Pf ≤ 50%, as can be confirmed through Table 4.6. The added 

effects of Tf,IN and Pf in the decrease of global efficiency can also be confirmed, i.e., the G 

decrease caused by the increase of PV cells area becomes stronger with Tf,IN, ranging from 

3.5% for Tf,IN=20ºC to 9.9% for Tf,IN=60ºC, in the “Inlet” layout. 

Figure 4.18 - Global efficiency of PV/T collector:  

Influence of Tf,IN, Pf and layout (“In” vs “Out”) (Gb = 800 W/m2, Gd = 200 W/m2, Tamb = 20 ºC) 

Th Pf = 25% Pf = 35% Pf = 50% Pf = 75% 

Tf,IN IN OUT IN OUT IN OUT IN OUT 

20ºC 72.7% 72.1% 71.0% 70.3% 68.5% 67.7% 64.1% 63.6% 

40ºC 65.1% 63.4% 62.1% 61.2% 59.1% 58.1% 54.0% 53.3% 

60ºC 56.9% 53.9% 52.3% 51.4% 48.8% 47.7% 42.8% 42.0% 
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Table 4.6 - Global efficiencies at zero reduced temperature, 

 for different values of Pf, Tf,IN and layout In vs Out 

 

In Figure 4.19 it is possible to observe the combined effects of positioning and Pf, 

in terms of global efficiency. It is clear that the global efficiency decreases with the 

percentage of collector area covered with PV cells, and confirms the best results for PV 

cells applied at the inlet side. So, applying the PV cells preferentially at the inlet will reduce, 

although in a small scale, the decrease in global efficiency caused by the increase in packing 

factor. The effect of positioning will have more impact for hybrid collectors with balanced 

areas with, and without, PV cells. Even though the installation of PV cells at the inlet side 

is objectively proved to favour the hybrid collector performance, its impact on global 

efficiency is very small. 

 

The effect of the location of PV cells in the electric efficiency, both with reference 

with the total area of collector (El) and the area with cells (El*), will not be referred, 

because it is already known. The combined effects of the positioning of PV cells in 

electrical efficiencies with Tf,IN will also not be mentioned, because of its very small value. 

The packing factor (Pf) is a very important parameter in this analysis, especially 

with the aim of optimizing the hybrid collector. Its effect on the decrease in thermal (Th) 

and global (G) efficiencies can be noticed in Figure 4.17 and Figure 4.18, respectively. In 

Figure 4.20 the influence of Pf in Th and G can be more clearly observed. It can be verified 

that the increase in Pf is not enough to compensate the decrease in thermal efficiency, but 

G Pf = 25% Pf  = 35% Pf  = 50% Pf  = 75% 

Tf,IN IN OUT IN OUT IN OUT IN OUT 

20ºC 75.3% 74.6% 74.6% 73.8% 73.7% 72.7% 71.8% 71.1% 

40ºC 67.5% 65.7% 65.4% 64.5% 63.8% 62.8% 61.0% 60.3% 

60ºC 59.1% 56.0% 55.3% 54.3% 53.1% 52.0% 49.2% 48.4% 

 

Figure 4.19 - Global efficiency – Influence of Pf and location (“In” vs “Out”)  

(Tf,IN = 20C, Gb = 800 W/m2, Gd = 200 W/m2, Tamb = 20 C) 
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attenuates that effect: the linear decrease of Th and G with Pf is of 17% and 7%, 

respectively. 

 

Referencing to Table 4.4, the analysis of the combined effects of Pf and Tf,IN in 

electrical efficiency is seen in Figure 4.21. By application of linear trend lines, the effect of 

Pf in can be quantified in about 2.7% per 25% Pf increase, which is significant, attending 

to the average values of El. It can be observed that, despite the increase in Tf,IN causing a 

reduction in electrical efficiency (El), this effect is so small that can be neglected. 

 

In Figure 4.22 the influence of Pf and Tf,IN can also be observed, regarding the 

electric power generated per area of PV cells, which can be understood as the average 

efficiency of the PV cells (El*). By application of linear trend lines, the effect of Pf can be 

quantified in about 0.04% per 25% Pf increase. Thus, Pf has no significant influence in 

El*. An increase of the inlet fluid temperature causes a decrease in the average efficiency 

of the PV cells, of about 0.4/(Km2/W). The combined influence of both parameters is not 

clear. 

Figure 4.20 - Influence of Pf in Th and G, for  

Tf,IN = 20C, Gb = 800 W/m2, Gd = 200 W/m2 and Tamb = 20 C 

Figure 4.21 - Influence of Pf and Tf,IN in the electrical efficiency of an hybrid collector, 

for Gb = 800 W/m2, Gd = 200 W/m2 and Tamb = 20 C 
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Table 4.4 can now be completed, and the update is seen in Table 4.7. 

 Table 4.7 - Effects of different parameters on hybrid collector efficiencies 

 

In conclusion, an absolute optimization for the ratio of the area of the hybrid 

collector with PV cells is not possible, in terms of efficiencies. The results obtained through 

this developed model can be complemented with the inclusion of design variables, as the 

energy needs, climatic data, together with values of local energy costs, in order to quantify 

the effect of the packing factor. 

4.3.6 Combined effects of incident radiation and ambient temperature 

In this subsection the influence of the climatic variables (solar radiation (G), and 

ambient temperature (Tamb)) on the performance of the hybrid collector is analysed, together 

with the effect of the packing factor (Pf) and fluid inlet temperature (Tf,IN). It is expected 

that the efficiencies improve with higher values of G and Tamb, because the energy received 

by the system is higher, and the heat loss through the glass cover reduces. 

The influence of solar radiation and ambient temperature on thermal and global 

efficiencies are presented in Figure 4.23, considering values for the global incident solar 

radiation from 400 to 1000 W/m2, and ambient temperature of 10C, 20C and 30C. The 

results refer to simulations for Pf= 40%, with PV cells installed at the inlet, and a fluid inlet 

temperature of 40C. 

Parameter: Th El G El* 

Tf,IN  -   
Pf    - 
In vs Out     

Figure 4.22 - Influence of Tf,IN and Pf  in electric PV cells efficiency  

(Gb = 800 W/m2, Gd = 200 W/m2, Tamb = 20 ºC) 

Legend: : causes decrease; : causes increase; -: no significant effect 
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The results in Figure 4.23 confirm the expected effect of G and Tamb in the increase 

of thermal and global efficiencies. The thermal efficiency ranges from 38.2% to 57.2%, for 

Tamb = 10ºC, and from 60.2% to 66.2% for Tamb = 30ºC. The values of G, for the same 

conditions, range from 42.2% to 61.0% and from 64.1% to 70.0%, respectively. The values 

of the efficiency are more affected by G for a low ambient temperature. This is expected, 

because both parameters cause an increase in the efficiencies, and, for high values of both 

G and Tamb, their effects are added, concentrating the range of values of the efficiencies. As 

the difference between the values of G and Th is almost constant, the electrical efficiency 

(El) seems not to be significantly affected by Tamb and G. 

In order to get a more detailed overview of each factor, G and Tf,IN, in the global 

efficiency, the results have been organized with G in the x axis for values of fluid inlet 

temperature of 40ºC and 60ºC, with Pf = 40% and Tamb =20ºC, as shown in Figure 4.24. It 

can be confirmed that G decreases with Tf,IN. Regarding the effect of solar radiation on G, 

Figure 4.24 shows that it depends on Tf,IN. For values of G ranging from 400 to 800 W/m2, 

G ranges from 53.2% to 65.5% for Tf,IN. = 40ºC and from 28.6% to 55.2 % for Tf,IN= 60ºC. 

For Tf,IN =25ºC, the effect of solar radiation on G is very small, with values for G ranging 

from 70.2% to 72.6%, for the same range of G. Thus, the influence of solar radiation in the 

global efficiency increase is enhanced by the effect of Tf,In. 

 

a)              b) 

Figure 4.23 - Effect of G and Tamb on thermal (a) and global (b) efficiency, 

for Pf=40% and Tf,IN = 40C 
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 The combined effects of Tf,IN (40ºC and 60ºC), Tamb (10ºC, 20ºC and 30ºC) and G 

can be verified in Figure 4.25. 

 

The results from Figure 4.25 confirm the effects of all the parameters in the global 

efficiency, already mentioned: the influence of the solar radiation in the increase of global 

efficiency is enhanced by an increase of the fluid inlet temperature and reduced by an 

increase of the ambient temperature. Analysing the influence of Tamb in the global efficiency 

with Tf,IN =40ºC, it is verified that G varies from 40.2% to 62.9% for a range in Tamb from 

10ºC to 30ºC, with G = 400 W/m2. For G = 1000 W/m2, global efficiency varies from 59.8% 

to 69.3%, for the same range of Tamb. That can be explained because, with low radiation, 

the thermal losses through the glass cover will have great influence in the thermal 

efficiency. As G increases, the relative influence of those losses will decrease. 

Figure 4.24 - Influence of G and Tf,IN in global efficiency (G), for Pf=40% and Tamb = 20C 
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Figure 4.25 - Influence of G, Tf,IN and Tamb in global efficiency, for Pf=50% 
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 The analysis of the effect of the packing factor (Pf) in the global efficiency (G) can 

be observed in Figure 4.26, for values of solar radiation ranging from 400 W/m2 to 1000 

W/m2, together with the influence of the ambient temperature (Tamb), for an inlet fluid 

temperature (Tf,IN) of 40ºC. Values for Pf of 25%, 50% and 75%, and ambient temperatures 

of 10ºC, 20ºC and 30ºC were considered. The results confirm that G decreases with the 

packing factor. In order to simplify the text, the corresponding results from the simulations 

are presented in Table 4.8. 

 

Table 4.8 - Influence of Tamb and Pf in the global efficiency of an hybrid collector, for Tf,IN= 40ºC 

 

Analysing the results from Table 4.8, it can be verified that the effect of G in the 

increase of the global efficiency is intensified by the increase in packing factor. An increase 

of Pf also enhances the effect of Tamb on G. 

Figure 4.26 - Influence of G, Pf and Tamb in the global efficiency of the hybrid collector,  

for Tf,IN= 40°C 

35%

40%

45%

50%

55%

60%

65%

70%

75%

400 500 600 700 800 900 1000


G

G, W/m2

ACell=25%,Tamb=10ºC ACell=50%, Tamb=10ºC ACell=75%,Tamb=10ºC

ACell=25%,Tamb=20ºC ACell=50%, Tamb=20ºC ACell=75%,Tamb=20ºC

ACell=25%, Tamb=30ºC ACell=50%, Tamb=30ºC ACell=75%,Tamb=30ºC



 
Numerical and experimental study of a solar hybrid collector for combined production of electricity and heat 

139 

The combined effects of Pf and Tf,In can be observed in Figure 4.27, for solar 

irradiation ranging from 400 W/m2 to 1000 W/m2, and Tamb = 20ºC. 

 
 It can be seen from Figure 4.27 that the effect of Pf in global efficiency slightly 

decreases with an increase in solar radiation. 

4.4 Concluding remarks 

This chapter is devoted to the development of a numerical model to evaluate the 

performance parameters of an hybrid collector, through values of thermal, electrical and 

global efficiency, considering input conditions of solar radiation (G), ambient temperature 

(Tamb), inlet fluid temperature (Tf,IN) and different ratios of area covered with PV cells (Pf). 

The model was validated with the experimental results obtained on chapter 3, and 

used in a parametric analysis, to characterize the influence of different variables in the 

efficiency of the hybrid collector.  

A detailed analysis was carried out, over the separated and combined effect of the 

different selected parameters (PV cells layout, Pf, Tf,IN, G and Tamb), on the hybrid collector 

performance.  

The results from the numerical solution of the model confirm already expected 

behaviour characteristics: 

- the existence of applied PV cells causes a decrease in global efficiency, and G 

decreases linearly with Pf about 7%, for Tf,IN = 20ºC and Tamb = 20ºC. 

Figure 4.27 - Effect of Pf and Tf,IN in global efficiency, for Tamb= 20ºC 

15%

20%

25%

30%

35%

40%

45%

50%

55%

60%

65%

70%

400 500 600 700 800 900 1000


G

G, W/m2

Tf,In=40ºC, Pf=25% Tf,In=40ºC,Pf=50% Tf,In=40ºC,Pf=75%

Tf,In=60ºC,Pf=25% Tf,In=60ºC,Pf=50% Tf,In=60ºC,Pf=75%



 
Numerical and experimental study of a solar hybrid collector for combined production of electricity and heat 

140 

- a Tf,IN increase leads to a decrease in global efficiency, ranging from 

4.1/(Km2/W) for Pf = 0% to 5.3 (Km2/W) for Pf = 50%. 

- an increase in ambient temperature and solar radiation is associated with an 

increase in the global efficiency. 

Those results were complemented with more interesting information about hybrid PV/T 

collectors. Various conclusions can be highlighted: 

- positioning the PV cells near the inlet side of the fluid, where the average 

temperature in the thermal fluid, the absorber plate, and the PV cells is lower, do 

not significantly favour global efficiency. However, it has more impact when the 

areas of the hybrid collector with and without cells are balanced; 

- the negative effect of an increase in the inlet fluid temperature is emphasised with 

the increase of the packing factor; 

- the separated effects of Tamb and G in the increase of G are inhibited mutually by 

the complementary parameter; 

- the G increase with G is reduced with Tf,IN and increased with Pf; 

- the G increase with Tamb is increased with Pf. 

Establishing an optimum value or relation for the area covered with cells is not 

possible. That analysis will have to be related with the specific purposes of the application 

of the hybrid collector, taking into account the energy demand profiles, in order to calculate 

a payback period and perform an economic analysis that would provide an optimum 

solution. The ecological benefits of using clean and renew- able energy sources that are 

associated with these hybrid collectors should also been quantified. 

The analysis carried out includes extensive information on the influence of 

significant factors to the performance of the hybrid collectors, that can be used in future 

works. 
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Chapter 5.  

 

Optimization of a hybrid solar collector 

regarding economic performance and 

environmental impact  

The primary application for solar hybrid collectors is in buildings, mainly for hot 

water systems, with the extra benefit of the electrical output that can be used for supplying 

the building power needs. Presently, in Portugal there is no economic advantage in selling 

electricity to the grid, since the governmental incentives allowing high feed-in tariffs no 

longer exist. Therefore, the first option is to use the electricity generated by the collectors 

for internal consumption. Then, a surplus can be sold to the grid at 90% of its purchase cost 

(MINISTÉRIO DO AMBIENTE, 2014). In this chapter, an evaluation of the performance 

of domestic systems integrating PV/T hybrid collectors is made, taking into account energy, 

economic and environmental perspectives. 

A parameter with direct impact on the costs and savings of hybrid systems is the 

collector area ratio covered with PV modules, which corresponds to the packing factor (Pf). 

This factor affects in different ways the thermal and electrical efficiencies. The increase of 

that ratio will cause an almost proportional increase in the electrical power output, and a 

decrease in the thermal output. As stated several times before, the overall efficiency will 

decrease. However, it is pertinent and more important to analyse the impact of the packing 
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factor in terms of energy and cost, by comparison to a consumption scenario using 

conventional energy sources, like natural gas and grid electricity. The energy savings can 

be obtained considering the different costs related to the electrical and thermal energy 

outputs, which have different values for the consumer. The approach presented here aims 

to help defining the best option for configuring the collector PV area ratio, on the 

consumer’s perspective. 

A basic system will be first characterized, suitable for the domestic energy needs of 

a typical household of 4 persons. The study will be conducted with reference to the 

application of typical PV modules with 32 cells, covering different area ratios of the solar 

collectors, corresponding to 1, 2, 3 and 4 PV modules. In order to adapt the system to the 

Domestic Hot Water (DHW) needs, two collectors will be considered, each one with a 

typical area, and sufficient to allow the application of 4 PV modules. The volume of the 

storage tank of the solar collector circuit was determined according to established rules, 

based on the collector area. It is also considered that all the generated electricity is 

consumed, instantaneously or at a later time. For the latter situation, the efficiency of the 

storage equipment is not considered. 

The model developed and presented in chapter 4 is used to obtain the thermal 

parameters of performance of the hybrid collector for different values of the packing factor 

(Pf), corresponding to 1, 2, 3 and 4 PV applied modules. A dynamic analysis of the 

energetic performance of the system is then performed for two typical Portuguese climatic 

regions, Porto and Faro, using an adequate dynamic simulation software (TRNSYS). By 

integrating the hybrid collector efficiency characteristics with climatic data and DHW daily 

loads, it is possible to estimate the annual thermal and electrical energy supplied by the 

hybrid collector. Thus, the energy and economic savings can be evaluated, by comparison 

with a conventional system, which was considered to use a natural gas heater and electricity 

from the grid. The environmental value of the system is also evaluated, through the 

calculation of CO2 saved emissions. 
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5.1 Applications of hybrid collectors in buildings 

Liquid photovoltaic/thermal (PV/T) collectors are used to heat water and 

simultaneously produce electricity for various domestic and industrial applications (Kumar 

et al., 2015). 

The largest market potential is for domestic hot water (DHW) applications, possibly 

combined with space heating. Although most collectors are installed on single-family 

houses, the share of large systems for collective applications is expected to increase. In the 

PV/T roadmap (Affolter et al., 2006), water heating systems for the residential market are 

indicated as the main market for glazed PV/T systems, while public pool systems and large 

hot water systems (both for collective applications and for utility application such as 

hospitals, campgrounds and homes for the elderly) are presented as interesting niche 

markets (Zondag, 2008). 

The application of hybrid collectors in industry is also an option, once they can 

partly satisfy the high demand of energy for both heat and electricity in industries. 

However, the temperature of the cooling medium must not be allowed to be too high as it 

will have a detrimental effect on the module efficiency. Hence, the system is inherently a 

low-temperature set-up and will only serve applications where a pre-heated medium is 

preferably used (Erdil et al., 2008). 

Zhang et al. (2012) refer that the studies related to economic and environmental 

analyses of the systems with hybrid collectors done so far are adequate to indicate the 

performance of the PV/T technology in terms of its economic and carbon benefits, and 

addressing the following approaches: 

(1) PV/T energy saving potential, its cost augment, estimated payback time and life 

cycle cost saving; 

 (2) PV/T Energy Payback Time and Greenhouse-gas Payback Time and their 

relevance with the system's energy and exergy efficiencies. 

However, not sufficient studies analyse the influence of the choice of Pf on system 

energetic, economic and environmental performances. This is an important issue for the 

consumers (and also manufacturers), when deciding the best configuration for the hybrid 

PV/T collector. This chapter aims to help addressing that issue. 
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5.2 Performance assessment of systems with hybrid 

collectors 

The evaluation of the performance of PV/T systems is complex and the comparison 

of the output energy is not a sufficient criterion to assess the performance of the PV/T 

collectors, due to the interaction of thermal and electrical efficiencies and the different 

forms and values of the output energy. 

As the thermal and electrical outputs depend on the incident radiation, the yield of 

solar collectors is not only determined by the quality of the collector, but at least as much 

by the climate and the type of system it is used in. For the effect of the climate, important 

differences are the annual amount of irradiance and the variation of the irradiance over the 

year. In particular, cold but sunny winter days are good for solar space/water heating. Due 

to the very high difference between summer and winter irradiance, the Northernmost 

climates require a large amount of storage to obtain a significant solar input for space 

heating, while regions such as the south of Canada, the USA or Japan can cover a much 

larger share of their heating load with direct solar heating (Zondag, 2008). 

Important parameters of system performance are the required temperature level and 

the solar fraction obtained. In thermal systems the solar savings fraction, or solar fraction 

(fS), is the useful energy obtained from solar energy divided by the total energy needs of a 

conventional system, without solar collectors. The solar fraction can be used to determine 

the Energy Savings, taking into account the energy consumption of the reference system 

(Dupeyrat et al., 2014). 

The influence of the packing factor and the water flow rate in the overall 

performance of hybrid PV/T systems applied in a UK domestic building, was considered 

in a study by Herrando et al. (2014). The results show that, for the case of the UK (low 

solar irradiance and low ambient temperatures), a complete coverage of the solar collector 

with PV together with a low collector flow-rate are beneficial in allowing the system to 

achieve a high coverage of the total annual energy (heat and power) demand, while 

maximising the CO2 emissions savings. In addition, the emission assessment indicates that 

a PV/T system can save up to 16.0 tonnes of CO2 over a lifetime of 20 years, which is 

significantly (36%) higher than the 11.8 tonnes of CO2 saved with a PV-only system. 
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This chapter analyses the impact of the packing factor in the energy, economic and 

environmental performance of a hybrid DHW/electrical system, for a household of 4 

occupants. 

5.3 Evaluation of the energetic and economic performance 

of a Domestic Hot Water system using hybrid solar 

collectors 

The analysis carried out along this section aims the choice/optimization of the 

packing factor of a hybrid collector, for the given application. The area of the collector is 

chosen in order to fit 4 PV modules, with 32 5” cells each. The dimensions of the PV 

module are 1.1 m x 0.6 m, and so the area of each collector will be 1.1 x 2.4 (2.64) m2. 

However, in order to represent a more realistic scenario that matches a typical daily load of 

DHW for a 4 persons’ household, the dynamic simulation will be carried out considering 

the use of two collectors. The Portuguese regulation for energy performance of residential 

buildings (REH) (DR, 2013), based on the former existing regulation for thermal behaviour 

of buildings (RCCTE), establishes a domestic hot water consumption of 40 l/occupant and 

a solar collector area of at least 1 m2/occupant, which results in the use of two collectors 

with the aforementioned dimensions. 

The primary/solar circuit includes the hybrid solar collectors, connected in parallel, 

a single speed pump and a controller to turn the flow on/off. A stratified storage tank with 

a coil heat exchanger is used for transferring the heat to the secondary circuit, which 

supplies the system for DHW use. An auxiliary heater is considered to fulfil the hot water 

needs, when the heat from solar collectors is not enough. 

The primary circuit flow rate is determined according to IPQ (2007), which 

specifies a flow rate of 0.02 kg/s/m2, based on the area of the absorber. Different criteria 

for the definition of the storage tank volume can be found, some of them based directly on 

the daily load and others in the collector area. Kalogirou (2009) states that the annual 

performance of liquid-based solar energy systems is insensitive to the storage capacity, as 

long as it is higher than 50 litres of water per square meter of collector area. Based on this 

criteria, a typical tank with 300 litres is used. 
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The dynamic simulation of the system, performed on an hourly basis for all the days 

along the year, was modelled using TRNSYS (TRNSYS). A system modelled with 

TRNSYS comprises the different components that constitute the real system. The TRNSYS 

library covers a wide range of components already pre-patterned, named as “type”, and 

already includes models for hybrid PV/T solar collectors. The simulation time step was set 

to 0.1 h. The components used for the system and its main features are described next. The 

detailed information can be consulted in Appendix A. 

5.3.1 Characterization of the components of the DHW hybrid system, 

according to TRNSYS 

Each component in the TRNSYS library is characterized by PARAMETERS. The 

functions developed internally for each “type” need INPUTS, and calculate OUTPUTS, 

within its specific application. The parameters are fixed characteristics of the elements. The 

sequence of the components can be established through links, which make the transposition 

of the outputs of one element to the inputs of the following element. A scheme of the system 

is presented in Figure 5.1. 

 

Figure 5.1 – Scheme of the Solar Domestic Hot Water (SDHW) system, developed in TRNSYS 

 

The physical properties of water, specific heat (c) and density (), are considered 

constants for all the elements of the system, with the values of 4.19 kJ/kg K and 1000 kg/m3. 
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 The “Load DHW profile” allows to distribute the water needs along the 24 h of a 

day. It was specified in absolute terms, using l/h. A daily consumption of 160 l for a typical 

household with 4 occupants was considered, respecting the indication of 40 l/occupant. The 

daily needs were distributed by the morning period (6h-10h) and in the evening (17h-23h). 

The type 14b for Water Draw forcing function in the utility menu of TRNSYS was used. 

 The pump used in the primary closed circuit corresponds to a single speed pump, 

which is able to maintain a constant fluid outlet mass flow rate (“type 114”). According to 

the specification of 0.02 kg/s/m2, based on the area of the absorber, by IPQ (2007), the mass 

flow rate is set to 380 kg/h, which corresponds to the “rated flow rate” parameter. Type114 

sets the downstream flow rate based on its rated flow rate parameter and the current value 

of its control signal input. The “rated power consumption” parameter is set to 124 W and 

the “overall pump efficiency” input to 0.5. Those values are based on the technical data of 

a pump used for solar DHW systems, circulation group AGS-10, from Vulcano. 

 A control element is necessary to command the circulation of the fluid, when the 

temperature difference between the collector outlet and the cold outlet of the storage tank 

exceeds an upper dead band value, or turn off the pump when that difference is lower than 

a lower dead band value. The upper and lower dead bands are defined in this case as 4ºC 

and 2ºC, respectively. This function is accomplished by a “type 2b” differential controller 

with hysteresis, with a successive distribution control strategy. The output control function 

is linked to the pump as an input, in order to command turning it on/off, as can be seen in 

Figure 5.1. This output is on/off type. 

 The main component of this system is the hybrid PV/T collector, which corresponds 

to a “type 50a”, included in the photovoltaic panels group. It is based on the mathematical 

model of a flat plate collector with constant losses, type 1, adding a PV module. It simulates 

a hybrid collector and incorporates the analysis and work of Florschuetz (1976) for flat 

plate collectors operated at peak power. This TRNSYS element treats the instantaneous 

thermal efficiency of the collector based on the Hottel-Whillier equation (Duffie, 1991), 

already presented as eq. 2.11. The mathematical model developed and presented in chapter 

4 is used to obtain the reference characteristics of the thermal efficiency, FR and UL, for the 

different cases of 1, 2, 3 or 4 PV modules applied, considering cover transmittance (GC) of 

0.85 and plate absorptivity (P) of 0.93. 
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The glass cover transmittance (GC), the plate absorptivity (P) and the collector loss 

coefficient (FRUL) are given as parameters in the menu for “type 50a”. It was not accounted 

for the linear dependency of UL with the fluid and ambient temperatures. Instead of the 

overall collector heat removal efficiency factor (FR), this element of TRNSYS uses as 

parameter the collector efficiency factor (F´), that represents the ratio of the actual useful 

energy gain to the useful gain that would result if the collector absorbing surface had been 

at the local fluid temperature. The parameter F´ is determined by the equation (Duffie, 

1991): 

𝐹𝑅 =
𝑚𝑐̇

𝐴𝐶𝑈𝐿
[1 − 𝑒𝑥𝑝 (−

𝐴𝐶𝑈𝐿𝐹´

𝑚̇𝑐
)] 

(5.1) 

 Another important parameter is the packing factor, which represents, for this 

TRNSYS element, the ratio of PV cell area to absorber area. 

 A summary of those parameters need for the definition of the “type 50a” collector 

is listed in Table 5.1, for the studied cases of 1, 2, 3, and 4 PV modules applied, in order to 

obtain the TRNSYS parameters UL and F´ through eq. 5.1. The mass flow rate 

corresponding to one collector is 0.0528 kg/s and the collector area is 2.64 m2. 

Table 5.1 - Characteristic parameters for the calculation of thermal efficiency  

for the PV/T collector in TRNSYS 

 
 

The electrical efficiency is calculated based on the temperature coefficient of solar 

cell efficiency (ref) and the reference temperature for solar cell efficiency (TRef), that are 

taken as parameters. The cell efficiency at the reference temperature (El,Tref) is taken as an 

input. Other inputs for type 50a element are the inlet fluid temperature, fluid mass flow 

rate, ambient temperature and incident radiation. The inlet fluid temperature is corrected 

dynamically by the output of the pump, and the flow rate is the same as for the one taken 

for the pump. The environmental conditions of temperature and radiation are outputs of the 

climatic file defined in the element “weather”. Simulations were run for Porto and Faro. 

In the “weather” element, the climatic file corresponding to the location that is being 

simulated is selected from the database. It was defined that there was no tracking, and the 

 1 PV module 2 PV modules 3 PV modules 4 PV modules 

FR (τα)n 0.671 0.616 0.564 0.512 

FR UL 4.945 5.348 5.739 6.116 

UL 5.826 6.865 8.039 9.450 

F´ 0.875 0.805 0.739 0.672 

Pf 0.188 0.376 0.564 0.752 
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azimuth and slope of the collector were given as an input. The azimuth is always 0, 

corresponding to the south. The slope for the collectors () follows the optimization for all 

year use, that depends on the latitude of the location (), indicated also by Água Quente 

Solar (2004): 

 =  -5 (5.2) 

The storage tank allows the heat transfer from the hot water leaving the collector in 

the primary circuit to the utilization circuit. A stratified tank was used, with fixed inlets and 

uniform losses, corresponding to type 4a in TRNSYS library. Six levels of stratification 

were defined, each one with the same height of 0.3 m. The tank capacity was calculated 

based on the collector area, with a ratio of 50 L/m2, resulting on 264 L. This value was 

approximate to the standard useful capacities of commercialized tanks, that is, in this case, 

295 L. The tank loss coefficient parameter was determined based on technical data of 

commercialized tanks, in this case a Junkers thermal storage tank S-ZB300, with 50 mm 

insolation of thermal conductivity of 0.034 W/mK. For a better understanding of the terms 

used in TRNSYS the menu of this element, a scheme is showed in Figure 5.2. 

 

Figure 5.2 - Scheme of the storage tank (TRNSYS type 4a) 

 

In this TRNSYS type, fluid entering the hot side of the tank is added to the tank 

node below the first auxiliary heater. To disable the operation of that element, the maximum 

heat rate of that element is set to zero. This parameter disables any value that can be 

introduced as a parameter for the set point temperature and dead band. This type also allows 

to consider a second heating element, which heat rate is also set to zero. Fluid entering the 

cold side of the tank enters the bottom node. 

This element receives the outlet temperature and the flow rate of the type 50a as 

inputs for the inlet at the hot side, and gives information of the temperature and flow rate 

in the cold side as an output to the pump type 114 input. 

The temperature of the cold side inlet corresponds to the temperature of the water 

grid, which is set to 15ºC, as a constant input. The mass flow rate for this inlet is taken by 

the “Load DHW profile” output, and it corresponds to the hot side outlet flow rate. The 

Hot side 

Cold side 

Heat 

source 
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temperature at the hot side outlet results on the heat delivered by the heat source. The 

ambient temperature is a constant input, which is set to 20 ºC. 

An auxiliary heater is applied in the usage circuit after the fluid leaves the storage 

tank, in order to supply the remaining heat, for the case that the outlet temperature of the 

tank is lower than the utilization temperature, which is defined as 60 ºC. This value 

corresponds to the set point temperature input, for “type 6” selected element from the 

existing TRNSYS library. The parameters need are the maximum heating rate, overall loss 

coefficient for heater during operation, and the efficiency. The maximum heating rate was 

defined as 24 kW, based on technical data of a commercialized model of a wall mounted 

boiler, Vulcano AQUASTAR ZWC 24/28. In order to account for the losses when the 

required heating load is not of 100%, an efficiency of 85% was considered, for a nominal 

efficiency of 90.6%. The overall loss coefficient for heater during operation accounts for 

extra losses to the ambient. As the efficiency was under assessed, this value was set to zero. 

Graphical outputs to verify an adequate response of the system were added to the 

system, through online plotters. Through “Collector data” plotter, graphics of the solar 

hybrid collector variables are visualized, including the temperatures at the inlet and outlet 

of the collector, mass flow rate, incident radiation, rate of useful energy gain and electrical 

power output. The “Use” plotter includes the variation of variables of the utilization circuit 

and the storage tank: temperatures at the storage tank outlets, in the cold and in the hot side, 

temperature and flow rate at the auxiliary heater outlet, and rate of energy delivery to the 

fluid stream, at the auxiliary heater. 

5.3.2 Evaluation of the energetic performance of the system 

The interest of using a solar hybrid collector for a DHW system can be assessed by 

the savings in the conventional energy to fulfil the heating needs along the year. Thus, it is 

necessary to determine those total needs, the fraction that can be obtained through the solar 

collector, which corresponds to the solar fraction, and the remaining energy that has to be 

supplied by an auxiliary heater. The extra electrical output that is obtained with the PV 

modules of the hybrid collector have also to be accounted for. The electrical output from 

the collector and the heat obtained from the primary circuit in the storage tank represent the 

annual energy savings. Those energy savings have to be converted on the actual economic 

savings, depending on the value of the electrical and thermal power. 
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The thermal and electrical outputs of the solar collector depend on the climate where 

the collector will be applied, mainly on the radiation and the ambient temperature. The 

annual savings reached with the use of a hybrid collector are evaluated for two different 

characteristic Portuguese climates: Porto, with temperate climate, but cloudy and humid, 

and Faro, with warm climate, sunny and dry. 

A dynamic simulation of the DHW system described in the previous section, was 

run for one year, for both climates: Porto and Faro. The relevant variables were integrated, 

on an hourly basis, along the period defined for simulation, through Quantity Integrators, 

of type 24. The outputs were exported to files, through Printers. The variables that are 

recorded are the incident radiation flux on the tilted surface (G), rate of useful energy gain 

(QColl) and electrical power output (EColl) in the hybrid collector, energy rate to load in the 

storage tank (QColl-DHW), rate of energy delivery to the fluid stream at the auxiliary heater, 

(QAux) and total needs of heat for the DHW applications (QDHW). 

“Daily integration” calculates the totals for each day, for the 365 days of the year, 

for the selected variables, and “Simulation integration” for the annual totals. 

In tables 5.2 and 5.3 the relevant energy totals along one year are listed, for the two 

climates, and for the different packing factors considered. The total saved thermal energy 

(QTH-S) during one year results from the affectation of thermal energy saved (QColl-DHW) with 

the collectors by the efficiency of a typical boiler, considered 85%: 

QTH-S= QColl-DHW/0.85 (5.3) 

Table 5.2 - Energy totals and final energy annual savings with the use of hybrid DHW system, in 

Porto, for different values of Pf 

 
 

 

 

 

 

 

 Pf = 19% Pf = 38% Pf = 56% Pf = 75% 

G (kWh/m2/y) 1791 1791 1791 1791 

QColl (kWh/y) 3090 2619 2211 1834 

EColl (kWh/y) 217 442 677 922 

QColl-DHW (kWh/y) 2760 2365 2019 1698 

QAux (kWh/y) 632 830 1069 1361 

QDHW (kWh/y) 3059 3059 3059 3059 

Saved thermal energy (kWh/y) 3247 2782 2375 1998 

Saved electrical energy (kWh/y) 217 443 678 922 

Total energy savings (kWh/y) 3464 3225 3053 2919 
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Table 5.3 - Energy totals and final energy annual savings with the use of hybrid DHW system, in 

Faro, for different values of Pf 

 
 

 It can be verified from Table 5.2 and 5.3, referent to Porto and Faro, respectively, 

that the increasing of the packing factor causes a reduction on the total energy savings. 

This analysis accounts for the thermal and electrical energy equally. Regarding the 

different cost of thermal energy and electricity, the impact of the packing factor may change 

when analysing the results from the economic perspective. In the following section an 

analysis is carried out, considering the economic impact of the different values of the 

packing factor on the annual energy cost, for the same type of domestic household. 

5.3.3 Analysis of the influence of the packing factor on annual energy 

savings for a DHW system using hybrid solar collectors 

 The annual energy savings  obtained through TRNSYS and listed in Table 5.2 and 

5.3 are converted to the equivalent economical savings, considering the domestic tariff for 

natural gas and electrical power in Portugal, that is 0.093 €/kWhTh and 0.218 €/kWhEl, 

respectively, according to average values from eurostat (2015a). 

The values for the energetic and economic savings achieved for Porto and Faro are 

listed in Table 5.4 and Table 5.5, respectively. 

Table 5.4 - Energetic and economic annual savings with the use of hybrid DHW system, 

 in Porto, for different values of Pf 

 
 

 Pf = 19% Pf = 38% Pf = 56% Pf = 75% 

G (kWh/m2/y) 2186 2186 2186 2186 

QColl (kWh/y) 3919 3351 2854 2393 

EColl (kWh/y) 255 521 801 1093 

QColl-DHW (kWh/y) 3463 2985 2565 2175 

QAux (kWh/y) 255 391 591 890 

QDHW (kWh/y) 3059 3059 3059 3059 

Saved thermal energy (kWh/y) 4074 3512 3018 2559 

Saved electricity (kWh/y) 255 521 801 1093 

Total energy savings (kWh/y) 4329 4033 3819 3652 

 

 Pf = 19% Pf = 38% Pf = 56% Pf = 75% 

Saved thermal energy (kWh/y) 3247 2782 2375 1998 

Saved electricity (kWh/y) 217 443 678 922 

Thermal energy savings (€/y) 302 259 221 186 

Electricity savings (€/y) 47 96 148 201 

Total annual savings (€/y) 349 355 369 387 
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Table 5.5 - Energetic and economic annual savings with the use of hybrid DHW system, 

 in Faro, for different values of Pf 

 

 Although the thermal energy savings are higher than the ones for electricity, it can 

be observed in Table 5.4 and Table 5.5 that the economical balance is mainly influenced 

by the savings in electrical power, because of the high price of electricity in Portugal. This 

implies that annual savings depends on the packing factor. The graphic representation of 

the results for the annual savings is showed in Figure 5.3 and 5.4, for a better perception of 

the tendencies. 

 

Figure 5.3 - Annual savings with the hybrid solar DHW system,  

for costs with natural gas and electricity, in Porto 

 

Figure 5.4 - Annual savings with the hybrid solar DHW system,  

for costs with natural gas and electricity, in Faro 
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 Pf = 19% Pf = 38% Pf = 56% Pf = 75% 

Saved thermal energy (kWh/y) 4074 3512 3018 2559 

Saved electricity (kWh/y) 255 521 801 1093 

Thermal energy savings (€/y) 379 327 281 238 

Electricity savings (€/y) 56 114 175 239 

Total annual savings (€/y) 434 440 455 476 
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It can be confirmed from the analysis of Figures 5.3 and 5.4 that the total savings 

increase with the packing factor, namely in Faro. 

 The same procedure is carried out for a different country, where the relation of the 

tariffs for electricity and natural gas is lower than for Portugal. In Bulgaria, the domestic 

tariff for natural gas and electrical power are 0.049 €/kWh and 0.083 €/kWh respectively. 

This country presents one of the lowest relative price for electricity, compared to natural 

gas. The results are listed in Table 5.6, and presented graphically in Figure 5.5. 

Table 5.6 - Energetic and economic annual savings with the use of one hybrid collector, 

 in Sofia, Bulgaria, for different values of Packing Factor 

 
 

 
Figure 5.5 - Annual savings with the hybrid solar DHW system,  

for costs with natural gas and electricity, in Sofia, Bulgaria 

 

 It is observed from Figure 5.5 that, even in this scenario, the annual savings depend 

mainly from the packing factor, but in this case with a lower proportion. 

 It can be then concluded than the best configuration for a hybrid collector is the 

maximum area of the absorber covered with PV cells. A packing factor of 100% cannot be 

achieved, because there is a minimum space without PV cells that is needed to encapsulate 

the cells and integrate the electrical connections. 
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 Pf = 19% Pf = 38% Pf = 56% Pf = 75% 

Saved thermal energy (kWh/y) 2182 1860 1580 1328 

Saved electricity (kWh/y) 164 333 508 691 

Thermal energy savings (€/y) 91 77 66 55 

Electricity savings (€/y) 14 28 42 57 

Total annual savings (€/y) 104 105 108 113 
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5.4 Environmental impact for different packing factors 

The already referred study by Herrando et al. (2014) also included an estimation of 

the possible emissions savings achieved by the installation of a PV/T system, compared to 

the emissions associated with the use of conventional energy sources, based on the common 

current practices of buying the electricity from the grid, and using a boiler, heat pump or 

electrical heater to satisfy the hot water demand. With regards to electricity, the emission 

saving is due to the difference between the emissions associated with the purchase of all 

electricity from the grid and the emissions incurred after a PV/T unit is installed, while the 

hot water saving arises from the reduction in the required fuel for heating, from the 

conventional levels to the lower auxiliary heating levels needed by the PV/T system. 

They concluded that the CO2 emission savings due to PVT hot water production are 

more significant than the equivalent emission savings due to electricity production. 

Nevertheless, the total percentage of emission reductions is more sensitive to the electrical 

than the thermal emissions, due to the fact that the contribution of electricity generation 

towards the total emissions is higher than that associated with hot water production. 

Furthermore, the emission reductions due to hot water production decrease strongly as flow 

rate increases, due to the lower amount of net heat added to the tank, which means that 

more auxiliary heat is required. Therefore, low collector flow-rates can achieve a higher 

percentage of total emission savings. The emissions savings due to PVT electricity 

production increase as the covering factor Pf increases, while those due to hot water 

production decrease. Still, since the CO2 emissions due to electricity production are 

significantly larger than those for hot water production, the total emission reductions follow 

the electrical trend, suggesting the use of high covering factors. 

An analysis to the effect of the packing factor will be then presented, now in the 

perspective of the environmental impact. The savings on natural gas and electricity can be 

transposed to the corresponding avoided emissions of greenhouse gases. It was used 

emission factors defined in Despacho nº 17313/2008 (DR, 2008) that correspond to 56.1 

kg CO2e/GJ for natural gas and 0.47 kg CO2e/kWh for electricity. 
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Table 5.7 - Annual savings on CO2 emissions with the use of a hybrid DHW system, in Porto, for 

different values of Pf 

 

Table 5.8 - Annual savings on CO2 emissions with the use of a hybrid DHW system, in Faro, for 

different values of Pf 

 
 

 Similarly to what happened with the annual savings, a higher packing factor also 

improves the environmental impact of the use of hybrid solar collectors in DHW systems. 

The type of the relation can be verified in Figure 5.6. 

 
Figure 5.6. Annual saved emissions dependence on the packing factor  

for hybrid solar DHW system, in Porto and Faro 

 

 It can be confirmed in Figure 5.6 that the saved emissions during one year increase 

with the packing factor used in the hybrid solar collector, with a second order relation. 

5.5 Conclusions 

In this chapter a domestic hot water system with integrated hybrid solar collectors 

was modelled, using the TRNSYS software for dynamic simulation along one year. The 

thermal and electrical performance of the system was characterized, for different values of 

the packing factor of the hybrid collector, and considering the climatic data from Porto and 
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 Pf = 19% Pf = 38% Pf = 56% Pf = 75% 

Saved Natural Gas CO2 emissions (kg CO2e) 656 562 480 403 

Saved electricity CO2 emissions (kg CO2e) 102 208 318 433 

Total saved emissions (kg CO2e) 758 770 798 837 

 

 Pf = 19% Pf = 38% Pf = 56% Pf = 75% 

Saved Natural Gas CO2 emissions (kg CO2e) 823 709 609 517 

Saved electricity CO2 emissions (kg CO2e) 120 245 377 514 

Total saved emissions (kg CO2e) 943 954 986 1031 
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Faro. The results were assessed with respect to the energy and economic savings. The 

environmental benefits of the use of solar hybrid collectors was also evaluated, through the 

calculation of the CO2 saved emissions, by comparison with the use of a traditional system, 

for equivalent energy outputs, using natural gas and electricity. The studies were all 

conducted focusing in the influence of the packing factor. It was concluded from the 

analysis the following main features: 

- The total energy savings along one year decrease with the packing factor, with 

a linear proportion of 971 kWh/y for Porto 1207 kWh/y for Faro; 

- The annual savings increase with the packing factor, due to the high cost of 

electricity, with a linear proportion of 66€ for Porto and 75€ for Faro. This 

corresponds to total savings (gas and electricity) up to 0.1265 €/kWhth for Porto 

and 0.1556 €/kWhth for Faro, regarding annual energy demand of the studied 

DHW system. 

- The saved CO2 emissions through the use of solar hybrid collectors in DHW 

systems increase with the packing factor, with a higher proportion for a system 

installed in Faro, 159 kg CO2e, compared with Porto, with a coefficient of 143 

kg CO2e. This corresponds to total savings up to 0.2736 CO2e/kWhth for Porto 

and 0.3370 kg CO2e/kWhth for Faro, considering the annual energy demand of 

the studied. 

This analysis leads to the general conclusion that a high packing factor is 

advantageous, according to the perspective of economic savings and environmental benefit. 

These findings can contribute to the diversification of the current range of commercial 

products available for solar energy conversion, which in Portugal are limited to 

photovoltaic-only and thermal-only panels. The ecological impact is well defined, and may 

supply grounding arguments for the certification entities, in a process of certification of a 

commercial PV/T collector. This advantage can also be integrated in a larger perspective 

of institutional measures to benefit the acquisition of “environment friendly” systems, 

recognizing the contribution of such a technology for the achievement of goals included in 

international measures for the climate change. Those incentives, combined with the 

monetary savings that were also quantified, may represent evidence for manufacturers and 

users for the assertion of PV/T collectors on the solar technology market. It is never too 
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much to reinforce the idea of the saved installation space and improved aesthetics, with the 

combined production of electricity and heat in the same equipment. 
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Chapter 6.  

 

General conclusions and future work 

This chapter summarizes the main contributions and findings from this thesis for the 

formulation of mathematical models of hybrid PV/T collectors. The topics for possible 

future work are also identified. 

6.1 Summary of the work developed and main findings 

The global purpose of this work was the characterization of the performance of water 

hybrid PV/T solar collectors, through experimental tests and a parametric analysis carried 

out using a developed mathematical model. It was of particular importance to understand 

the effect of the packing factor (Pf) on the collector performance, and to verify the best 

layout for the application of the PV modules. 

The experimental tests were performed using a prototype with area of about 0.5 m2, 

instrumented in order to measure the useful heat and power for different operational 

conditions of the water inlet temperature (Tf,IN), under registered environmental conditions 

(Tamb, G). It was followed a procedure defined by the standard for test methods of thermal 

systems (IPQ, 2007). The PV modules used consisted in 4x2 series arrangements of 5” c-

Si cells. The cells, with nominal efficiency of about 18%, were encapsulated into EVA 

layers and laminated between two layers of 4mm thick glass. Three sets of tests were carried 

out in order to identify the effect of Pf, corresponding to the application of 1, 2 and 3 PV 
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modules over the absorber plate. Those configurations corresponded to Pf of 24%, 49% 

and 73%, respectively. The results for the thermal (Th), electrical (El) and combined 

efficiency (G) were presented as linear functions of the reduced temperature difference 

(T*). Chauvenet criterion was applied to the results of Th to discard outliers from the final 

set of observations, previously validated according to stability conditions. In Table 6.1 are 

listed the regression analysis coefficients for Th, El and G obtained for the three 

configurations. 

Table 6.1 – Regression analysis coefficients for Th, El and G obtained for  

configuration with 1, 2 and 3 PV modules applied 

 
 

 The experimental results confirm some already known facts. The application of PV 

modules in a solar thermal collector reduces its thermal efficiency. Moreover, the increase 

in Pf intensifies that reduction, as can be easily found in the existing literature. However, 

the influence of Pf in the thermal losses (F´ULTh) determined experimentally was still not 

referenced. Statistical techniques were applied to prove the existence of a correlation 

between Pf and the regression analysis coefficients for Th. It was found an almost linear 

reduction of 2% in Th per 24% Pf increase. The values for the thermal losses were found 

to increase with Pf from typical values for flat plate selective solar collectors of 4 W/(m2K) 

to 5.3 W/(m2K) with Pf = 24% and 6.26 W/(m2K) for Pf = 49%. A higher emissivity of the 

PV cells, compared with the one of the absorber plate, results in higher losses that may 

explain that fact.  

The increase of Pf obviously leads to a roughly linear increase in El, of about 2.5% 

per 24% of Pf increase. Nevertheless, the values of the electrical efficiency estimated based 

in the real PV area (El*) were much lower than the nominal values of PV cells efficiency, 

as can be confirmed in Table 6.1. It was not identified a consistent relation between Pf and 

El*. Specific comparison between the experimental results and referenced values found in 

literature was presented in subsections 3.3.1 and 3.3.3. References addressing to the 

influence of Pf in the electrical losses, reflected on the slope of El, are scarce, namely 

experimental studies. 

Pf 

Intercept, 

F´Th,0 

(%) 

Slope, 

F´ULTh 

(Wm-2K-1) 

Intercept, 

F´El,0 

(%) 

Slope, 

F´ULEl 

(Wm-2K-1) 

Intercept, 

F´G,0 

(%) 

Slope, 

F´ULG 

(Wm-2K-1) 

24% 69 -5.30 2.6 -0.052 73 -5.84 

49% 67 -6.26 5.4 -0.156 73 -6.41 

73% 64 -6.40 7.6 -0.147 71 -6.54 
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The opposite effects of Pf in the thermal and electrical efficiencies does not allow 

to understand at the outset the Pf effect on the global efficiency. It was found a very small 

decrease of G for the Pf increase from 49% to 73%. However, already existing references 

state the opposite effect. Nevertheless, the differences are small. Once again, the 

experimental study of the Pf effect in the slope of G is a contribution to the global 

knowledge on the hybrid PV/T solar collectors. 

 The estimation of the uncertainty associated to the calculations of the thermal 

(uc(Th)) and electrical (uc(El)) efficiencies was exposed in section 3.3.3. It was found that 

the major contributor to the uc(Th) and uc(El) was the irradiance (G), due to the long period 

since the calibration of the pyranometer. The uncertainty associated to the electrical 

efficiency, of about 0.4%, can be neglected for the settlement of the uncertainty of the 

global efficiency. The uncertainty associated to the global efficiency is, thus, the 

uncertainty associated to the thermal efficiency (uc(Th)), that are about 7% (see table 3.8). 

 A comprehensive analysis on the effects of environmental (G, Tamb), operational 

(Tf,IN) and design parameters (Pf, layout “In” vs “Out”) on the thermal (Th), electrical (El, 

El*) and combined (G) efficiencies of a PV/T-w collector was presented in chapter 4. 

This parametric study was carried out based on the results obtained through a developed 

mathematical model of a generic PV/T collector, implemented using EES software. The 

model was adapted to the particular geometry of the tested prototype, in order to be 

validated. The numerical and experimental results of Th, El and G were first compared 

through of a linear regression analysis. Statistical tests were applied to the slope values that 

have been determined, and its confidence intervals were estimated with 95% confidence 

level. Namely for the configurations with 1 and 2 PV modules applied, that interval 

included unity, or presented a maximum deviation of 0.002 (Table 4.2), meaning that a 

good degree of agreement between experimental and numerical results was achieved. 

 The analysis of the influence of PV cell layout, Pf and Tf,IN was performed with 

ambient temperature of 20ºC, and total irradiance of 1000 W/m2. The separated effects of 

some of the referred parameters were already known: an increase in Tf,IN leads to the 

decrease in the efficiencies, Pf favours El but causes a decrease of Th and G, and the 

“Inlet” layout favours El and El*. Reporting to Figure 4.20, the linear decrease of Th and 

G with Pf was 17.1% and 7%, respectively. The analysis focused mainly in the unknown 

effects, and in the combined effects of conflicting parameters. 
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It was proved with the parametrical study that applying the PV modules on the inlet 

side of the collector is the best option, both regarding for Th and G, but with low 

significance. Simulations were carried out for different values of Pf (25%, 35%, 50% and 

75%), considering the two layouts: PV modules applied at the inlet (“In”), and at the outlet 

(“Out”). It was proved that the influence of the layout was more pronounced for balanced 

values of Pf (Figure 4.19). The combined effect of Tf,IN was also included, considering inlet 

fluid temperatures of 20ºC, 40ºC and 60ºC. The impact of the layout adopted was slightly 

more pronounced for the combined efficiency results, with a maximum difference of 3.1% 

for Pf=25% and Tf,IN = 60ºC (Table 4.6). This is understandable, since the configuration 

with Pf = 25% is the most “unbalanced”, with extreme minimum and maximum values for 

cells average temperature, respectively for “in” and “out” configurations. Reporting to 

Figures 4.21 and 4.22, the decrease of El and El* with Pf is in the order of 2.6% and 

0.04% per 25% increase in Pf, so, basically, Pf has no effect in El*. It was found a linear 

decrease in El* with Tf,IN of about 41%/(Km2/W), while, for El it ranged from 

10%/(Km2/W) for Pf = 25% to 41%/(Km2/W), for Pf = 100%. 

The effect of the ambient temperature (Tamb) and solar irradiance (G) in the increase 

of Th is well known from literature and practice. Its combined influence was analysed, 

considering values for G from 400 to 1000 W/m2, and ambient temperature of 10C, 20C 

and 30C. A maximum value of 71.3% was found for G, with G = 1000 W/m2, Tamb = 30ºC 

and Pf = 25%. It was found that the effect of G reduces with Tamb, both for results of Th 

and G. Similarly, it was found that G inhibits the effect of Tamb on G. The combined effect 

of Tf,IN was also included, considering temperatures ranging from 25ºC to 60ºC. Despite its 

effect is opposite to the one of G, it was verified that it enhances the increase of G with G. 

The combined effects of G, Tamb and Pf were also addressed. It was found that the Pf 

enhances the increase of the combined efficiency with G, namely for a low value of Tamb 

(10ºC). 

The performance of a DHW system integrating PV/T hybrid collectors for a typical 

4 person household is carried out in chapter 5, taking into account energy, economic and 

environmental perspectives. A dynamic simulation was developed using TRNSYS, 

considering two distinct climates in Portugal: Porto and Faro. The impact of Pf was 

assessed, through its impact in the annual energy, economic and CO2 emissions savings 

through the use of the PV/T collector. 
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It was concluded that the annual energy savings decreased with Pf, which was 

expected, since the former conclusions indicated that the electric output obtained with more 

PV cells area did not make up for the heat lost with its application. However, when the 

annual energy savings were converted in economic savings, through the attribution of 

electricity and natural gas prices in Portugal, it was verified that the electricity saved with 

Pf increase pays off the savings decrease in natural gas. Through a perspective of CO2 

emissions saved, it was also proved that maximize Pf benefits the environmental 

performance of a PV/T system. Thus, PV/T collectors with maximum Pf are advantageous 

for the users. 

 As a global conclusion, the use of hybrid PV/T collectors are favourable according 

to an economical perspective of annual savings. However, it was not proved an improved 

global energetic performance, when compared with thermal-only collectors, in those 

absolute terms. The value of the electric output, in particular situations when it is need, may 

contribute to relativize that disadvantage. Other collateral grounds, like compactness of the 

system and aesthetics of the building, may also be valid for the option for a PV/T collector. 

The environmental benefits are strong, and are maximized with maximum values of Pf. 

6.2 Future work 

Throughout the present work, several relevant findings were identified, in the context 

of achieving the main objectives purposed. The presented work focused on different aspects 

of the performance evaluation of hybrid solar collectors, some of which may be further 

developed. 

It was found that the increase of the area of the solar collector with PV cells applied 

has a negative effect on the energetic performance of the system. In order to complement 

this study, an analogous analysis can be developed, based in the exergy performance of the 

PV/T collector. The impact of Pf should be also focused. 

The economic assessment of the performance of the hybrid collector just took into 

account the savings through the energy that could be annually retained. This study could 

be complemented with a life cycle cost analysis, with the inclusion of the initial and 

operational cost of the system and economic scenarios. 
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The relevance of the use of hybrid collectors could be also more perceived, when its 

performance is assessed when integrated in examples of real buildings, with real cases of 

energetic demands. Two different interesting situations could be its integration in zero-net 

energy buildings, or in isolated buildings with no electric grid. 

 Those complementary studies would contribute to a global perception of the 

benefits, and disadvantages, of the application of PV/T collectors. 
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A1 – Load profile - Type 14b 

i. Parameters 

25 points besides the initial point 

Table A1 

 Value of time(h) Water Draw (kg/h) 

0 0 0 

1 6 0 

2 6 5 

3 7 5 

4 7 30 

5 8 30 

6 8 25 

7 9 25 

8 9 5 

9 10 5 

10 10 0 

11 17 0 

12 17 5 

13 18 5 

14 18 25 

15 19 25 

16 19 30 

17 20 30 

18 20 20 

19 21 20 

20 21 10 

21 22 10 

22 22 5 

23 23 5 

24 23 0 

25 24 0 
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A2 – Pump - Type 114 

i. Parameters 

Table A2-i 

Rated flow rate (kg/h) Rated power (W) Motor heat loss fraction 

380 124 0 

 

ii. Inputs 

Table A2-ii 

Overall pump efficiency Motor efficiency 

0.5 0.9 

 

 

A3 – Differential controller with hysteresis for 

temperature - Type 2b 

i. Parameters 

Table A3-i 

Number of oscillations High limit cut-out (ºC) 

5 95 

 

ii. Inputs 

Table A3-ii 

Upper input 

temperature Th 

(ºC) 

Lower input 

temperature Tl 

(ºC) 

Monitoring 

temperature Tin 

(ºC) 

Input 

control 

function 

Upper dead 

band DT(ºC) 

Lower dead 

band 

DT(ºC) 

20 10 20 0 4 2 
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A4 – PV/T collector – Photovoltaic panels -Type 

50a 

i. Parameters 

Table A4-i 

Area 

(m2) 

Collector 

fin 

efficiency 

factor 

Collector 

plate 

absorptance 

Collector 

loss 

coefficient 

Cover 

transmittance 

Temperature 

coefficient of 

solar cell 

efficiency 

Reference 

temperature 

for cell 

efficiency 

Packing 

factor 

5.28 Table 5.1 0.93 6.8646 0.85 0.0045 25 Table 5.1 

 

ii. Inputs 

Cell efficiency: 0.18 

 

 

A5 – HVAC – Auxiliary heaters - Type 6 

i. Parameters 

Table A5-i 

Maximum heating rate 

(kW) 

Overall loss coefficient for 

heater during operation 

Efficiency 

24 0 0.85 

 

ii. Inputs 

iii. Table A5-i 

Control function Set point temperature (ºC) Temperature of 

surroundings (ºC) 

1 60 20 
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A6 – Thermal storage – Stratified storage tank - 

Fixed inlets – Uniform losses - Type 4a 

i. Parameters 

Six nodes, distant 0.3 m between each node. 

Table A6-i 

Tank 

volume 

(m3) 

Tank loss 

coefficient 

(W/m2K) 

Monitoring 

temperature 

Tin (ºC) 

Auxiliary 

heater 

mode 

Node 

containing 

heating  

element 1 

Node 

containing 

thermostat 1 

Setpoint 

temperature 

for element 

1 

0.295 0.68 20 1 1 1 8 

 

Deadband for 

heating element 

1 (ºC) 

Maximum 

heating rate of 

element 1 (kW) 

Node containing 

heating element 2 

Deadband for 

heating 

element 2 

Setpoint 

temperature for 

element 2 

5 0 1 1 55 

 

Deadband for 

heating element 

2 (ºC) 

Maximum 

heating rate of 

element 2 (kW) 

Node containing 

heating element 2 

Deadband for 

heating 

element 2 

Setpoint 

temperature for 

element 1 

5 0 1 1 55 

 

ii. Inputs 

Table A6-ii 

Hot side 

temperature (ºC) 

Cold side 

temperature (ºC) 

Environmental 

temperature (ºC) 

Control 

signal for 

element 1 

Control 

signal for 

element 1 

45 15 20 0 0 

 

 

 


