
Ahmad Naser eddin

Large Scale Parallel

Subgraph Search

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto
2016

Ahmad Naser eddin

Large Scale Parallel

Subgraph Search

Tese submetida à Faculdade de Ciências da

Universidade do Porto para obtenção do grau de

Mestre em Ciência de Computadores

Advisor: Prof. Pedro Ribeiro

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto

Junho de 2016

2

Para o meu páıs e para a minha familia

3

4

Acknowledgments

Foremost, I would like to express the deepest gratitude and appreciation to my su-

pervisor, Prof. Pedro Ribeiro. Without his guidance, persistent help and incredible

patience this dissertation would not have been possible. He consistently allowed this

thesis to be my own work, but steered me in the right direction whenever he thought

I needed it.

I would like to thank the Erasmus Mundus program especially Phoenix project, for

the financial support that was allowed to me during my master degree. Also I had a

grant from CRACS & INESC-TEC and I want to thank them for it.

I want to thank all the helpful people who I met during these two years in the

university of Porto. In particular David Apaŕıcio who was always willing to help

and give his best suggestions, and Miguel Araújo who gave me the chance to use

a different computational infrastructure. I am grateful to Lama Alimam, for her

continuous support and motivation, she has been like my elder sister in Portugal.

Finally, I must express my very profound gratitude to my parents for providing me

with unconditional love, unfailing support and continuous encouragement throughout

my years of study.

5

6

Abstract

Networks are powerful in representing a wide variety of systems in many fields of study,

from computer science and mathematics to biology and chemistry. In the late 1990s

when researchers started to intensively study diverse real-world networks and their

models, the term complex networks came to use. Networks are composed of smaller

substructures (subgraphs) that characterize them and give important information

related to their topology and functionality. Therefore, discovering those patterns is

very important towards mining the features of networks. Algorithmically, subgraph

search in a network is a computationally hard problem and the needed execution time

grows exponentially as the size of the subgraph or the network increases.

The main goal of this thesis is to scale up the execution of subgraph counting, in-

creasing the limits of its applicability. For that purpose, we present a dynamic

iterative parallel MapReduce strategy general enough to be applicable to any tree-

like unbalanced search. MapReduce is pervasive in every computing cloud, giving our

work a broad scope.

We applied our strategy to two different state-of-the-art algorithms: G-Tries and ESU.

We evaluated our implementions in a large set of representative complex networks from

different fields. The results obtained are very promising. We achieved an efficiency of

up to 92.5% using 32 independent cores and a top speedup of 45.5 when using 64 cores

that share part of their cache. On average, our implementation is able to consistently

obtain an almost linear speedup up to 32 cores, with an average efficiency larger than

80%.

In order to make it easier for the users to do subgraph counting in a fast and user

friendly way, we developed an initial version of a plugin for the well known Cytoscape

network analysis platform. The prototype has a fully functional sequential version of

G-Tries algorithm and it is already available on the app market.

To sum up, this work expands the applicability of subgraph counting algorithms,

paving the way for new discoveries and insights in network science.

7

8

Resumo

As redes são uma poderosa maneira de representar uma grande variedade de sistemas

em muitas áreas de estudo, desde a ciência de computadores e a matemática, até à

biologia ou qúımica. No final da década de 90, quando os investigadores começaram

a estudar mais intensivamente toda uma série de modelos de redes do mundo real, o

termo redes complexas começou a ser usado. As redes são compostas por pequenas

subestruturas (subgrafos) que podem caracterizá-las e que dão importante informação

sobre a sua topologia e funcionalidade. Por isso mesmo, descobrir estes padrões é

muito importante no que toca a analisar as propriedades das redes. Do ponto de

vista algoŕıtmico, a procura de subgrafos é uma tarefa computacionalmente dif́ıcil e o

tempo de execução necessário cresce exponencialmente à medida que o tamanho dos

subgrafos ou das redes aumenta.

O principal objectivo desta tese é melherar a escalabilidade da contagem de subgrafos,

aumentando assim os limites da sua aplicabilidade. Com este propósito em mente,

apresentamos aqui uma estratégia paralela baseada no conceito de MapReduce usando

iterações dinâmicas e sendo geral o suficiente para ser aplicável em qualquer pesquisa

não balanceada em forma de árvore. Plataformas MapReduce são ub́ıquas em clouds

de computação, dando ao nosso trabalho um grande alcance.

Aplicamos a nossa estratégia em dois diferentes algoritmos que são o estado-da-arte:

G-Tries e ESU. Avaliamos as nossas implementações num leque variado de redes com-

plexas representativas de vários domı́nios. Os resultados obtidos são muito promete-

dores. Alcançamos uma eficiência até 92.5% usando 32 cprocessadores independentes

e um máximo de 45.5x de speedup quando usando 64 processadores que partilham

parte da sua cache. Em média, a nossa implementação consegue de forma consistente

obter um speedup quase linear até 32 processaores, com uma eficiência média maior

do que 80%.

Para que seja mais fácil a um utilizador calcular a frequência de subgrafos de uma

maneira mais rápida e amigável, desenvolvemos uma versão inicial de um plugin para

o Cytoscape, uma plataforma de análise de redes. O protótipo desenvolvido contém

9

uma versão completamente funcional da pesquisa sequencial usando G-Tries e está já

dispońıvel para download no ecossistema de plugins do Cytoscape.

Em suma, este trabalho expande a aplicabilidade dos algoritmos de contagem de

subgrafos, abrindo o caminho para novas descobertas na análise de redes.

10

Contents

Abstract 7

Resumo 9

List of Tables 15

List of Figures 17

List of Algorithms 19

1 Introduction 21

1.1 Motivation . 21

1.2 Goals and Contributions . 24

1.3 Organization . 25

2 Subgraph Search 27

2.1 Graph Terminology . 27

2.2 Subgraph Census Problem . 29

2.3 Subgraph Census Applications . 31

3 Algorithms for Subgraph Census 35

3.1 Algorithmic Approaches . 35

3.1.1 Historical overview . 35

3.1.2 Strategy types . 36

3.2 Sequential Algorithms . 37

3.2.1 ESU . 37

3.2.1.1 Computing subgraph frequencies 37

3.2.1.2 ESU search tree . 38

3.2.1.3 Graph Isomorphism Algorithms 38

3.2.2 G-Tries . 40

3.2.2.1 Structure . 41

3.2.2.2 Creating the G-Trie 43

11

3.2.2.3 Computing subgraph frequencies 44

3.3 Parallel Algorithms . 44

3.3.1 Parallel approaches for ESU algorithm 45

3.3.2 Parallel approaches for G-Tries algorithm 46

3.3.3 MapReduce parallel algorithms for subgraph search 46

3.3.3.1 MRSUB . 46

3.3.3.2 Iterative Hadoop MapReduce 46

3.3.3.3 Edge-based join . 47

3.3.3.4 Star join . 47

3.3.3.5 TwinTwig join . 47

3.3.3.6 Multiway . 48

4 Parallel Approaches 49

4.1 MapReduce . 49

4.1.1 Motivation . 49

4.1.2 Programming model . 49

4.1.3 Iterative MapReduce . 50

4.1.4 Frameworks . 50

4.1.4.1 Hadoop . 50

4.1.4.2 MR4C (MapReduce for C) 50

4.1.4.3 Spark . 51

4.2 Parallel Approaches . 52

4.2.1 Static division approach . 52

4.2.2 Iterative with time limit (threshold) approach 56

4.2.2.1 Work sets and work units 60

4.2.2.2 State saving . 60

4.2.2.3 Resuming the work 63

4.2.2.4 Flow Diagram . 65

5 Experimental Evaluation 67

5.1 Common Materials . 67

5.1.1 Computational Environment . 67

5.1.2 Complex Networks . 68

5.1.3 Test Data . 70

5.2 Overhead . 71

5.3 Static Division Approach . 72

5.3.1 ESU - Speedups . 72

5.3.2 G-Tries - Speedups . 73

12

5.4 Iterative with Time-Limit Approach . 74

5.4.1 Fixed threshold . 74

5.4.1.1 ESU - Speedups . 74

5.4.1.2 G-Tries - Speedups . 74

5.4.2 Dynamic threshold . 75

5.4.2.1 ESU - Speedups . 77

5.4.2.2 G-Tries - Speedups . 78

5.4.3 Comparison with competing algorithms 80

6 Cytoscape Plugin 83

6.1 Motivation . 83

6.2 State of the art . 84

6.2.1 NetMatch . 84

6.2.2 CytoKavosh . 84

6.2.3 GraphletCounter . 84

6.3 Motif Discovery Plugin . 85

6.4 Plugin Design . 87

6.4.1 Use Case Diagram . 87

6.4.2 Sequence Diagram . 88

6.5 GUI-Snapshots . 89

6.5.1 Running . 89

6.5.2 showing result . 89

7 Conclusions and Future Work 93

7.1 Contributions . 93

7.2 Future Work . 95

7.3 Closing Remarks . 96

A Cytoscape Plugin using JNI 97

A.0.1 What is JNI . 97

A.1 Count-Occurrences Plugin . 97

A.2 Plugin Design . 98

A.2.1 Sequence Diagram . 98

References 101

13

14

List of Tables

2.1 Number of possible directed and undirected subgraph types 30

3.1 Subgraph census approaches and example algorithms for each approach. . 37

4.1 The difference between the number of occurrences and number of leaves in

the corresponding tree . 53

5.1 The set of networks used for performance evaluation. 70

5.2 Test data: general information about most of the tests that we did. . . . 70

5.3 G-Tries: Comparison between the C++ and Java implementations of the

sequential version. 71

5.4 ESU: Comparison between the C++ and Java implementations for the

sequential version. 72

5.5 G-Tries: Parallel overhead when compared to sequential version 72

5.6 ESU: speedups obtained by applying Static Division approach. 73

5.7 G-Tries: speedups obtained by applying Static Division approach. . . 73

5.8 ESU: speedups for ESU-Iterative with fixed Threshold. 75

5.9 G-Tries: speedups for G-Tries-Iterative with fixed Threshold. 75

5.10 Example about the changing of the threshold from one iteration to the next. 77

5.11 ESU: speedups for ESU-Iterative with dynamic Threshold. 77

5.12 ESU: Speedups for ESU-Iterative with dynamic Threshold 2. 78

5.13 G-Tries: speedups for G-Tries-Iterative with dynamic Threshold. 78

5.14 G-Tries: speedups for G-Tries-Iterative with dynamic Threshold 2. 79

5.15 Comparison between our algorithms and a recent competing one. 81

15

16

List of Figures

1.1 Visualization of the air traffic network. 22

1.2 An example of a pattern of connections in a network. 22

2.1 Adjacency matrix for an example graph G. 28

2.2 Induced occurrences of a subgraph H in a larger graph G. 28

2.3 Occurrences of subgraphs of size 3 in a graph G. 29

2.4 All possible directed and undirected subgraph types of size 3. 30

2.5 Example of similar random networks. 31

2.6 Examples of network motifs found in software graphs 32

2.7 The host incoming link. Adapted from [YCLH06] 33

3.1 An ESU- Search Tree corresponds to calling countSubgraphs(G, 3). 39

3.2 A prefix tree representing a set of four words. 42

3.3 A g-trie representing a set of 6 undirected subgraphs of size 4. 42

4.1 ESU search-tree and dividing the remaining work between four workers . . 61

4.2 The content of the two work units in depth i 61

4.3 G-Tries recursive procedure frozen at a given time 62

4.4 The content of the two work units in depth i 63

4.5 Flow chart for our strategy . 65

5.1 Choosing the best percentage to increase the threshold. 76

5.2 G-Tries: Sequential vs Parallel needed computation time. 79

5.3 G-Tries: Average speedup for all tested networks. 80

6.1 Use Case Diagram for our plugin. 87

6.2 Sequence Diagram for our plugin. 88

6.3 Motif-Discovery: Running the work . 89

6.4 Motif-Discovery: Displaying the result . 90

6.5 Motif-Discovery: using the number of occurrences as a new property. . . . 91

A.1 JNI: steps in writing and running a Hello World program. 99

17

A.2 Count-Occurrences: the main components of the old version. 100

A.3 Sequence Diagram for the old version of our plugin 100

18

List of Algorithms

3.1 ESU: Algorithm for computing the frequency of subgraphs. 38

3.2 Nauty: Algorithm for finding the canonical representation of a graph G1. 40

3.3 VF2: Algorithm for deciding if two graphs G1 and G2 are isomorphic. . 41

3.4 gtrieScanner: Algorithm for computing the frequency of subgraphs. . 45

4.1 ESU: Static-division mapReduce parallel algorithm for computing the

frequency of subgraphs of size k in graph G using w workers. 54

4.2 G-Tries: Static-division, parallel MapReduce algorithm for computing

the frequency of subgraphs of a g-trie T in graph G using w workers. . 55

4.3 ESU: Iterative MapReduce parallel algorithm for computing the fre-

quency of subgraphs of size k in graph G using w workers. 58

4.4 G-Ttries: Iterative MapReduce parallel algorithm for computing the

frequency of subgraphs of a g-trie T in graph G using w workers. 59

4.5 ESU: Saving the state in ESU algorithm in a certain level. 61

4.6 G-Tries: Saving the state in G-Tries algorithm in a certain level. . . . 63

4.7 ESU: resuming the work from a saved state. 64

4.8 G-Tries: resuming the work from a saved state. 64

19

20

Introduction 1
Complex networks describe a wide range of systems in nature and society. These

networks can appear naturally, such as protein interaction networks or food chains,

or they can be man-made, like the internet or the power grid. Complex networks

form the backbones of complex systems and their analysis is of vital importance in a

multitude of fields. Given their scale, this task requires a lot of computation power.

However, with the recent advances in technology, analyzing complex networks has

become possible in much more detail than what was previously possible [Erc15].

1.1 Motivation

In recent years network science has emerged as an important multidisciplinary field,

with applications on areas such as computer science, physics, biology or engineering.

Although its roots are on the older field of graph theory, the analysis of networks has

been receiving an increasing attention due mainly to two important factors [Bar16].

The first contributing factor is the availability of network maps, due to technological

advances that have provided an enormous amount of data which can be represented

by networks. These can be social (e.g. facebook [ML12], twitter [DDLMM13] or co-

authorship networks [New06]), biological (e.g. brain [BS12], protein interaction [AA04]

or metabolic networks [DA05]), spatial (e.g. flights [ARF16], roads [ŠB11] or power

grids [WS98]), textual (e.g. semantic networks [BMZ02]) or even software networks

(e.g. module dependency [vB12]). Several public network repositories are nowadays

available [Kun16, LK14]. Figure 1.1 givens an example visualization of a real network,

in this case the worldwide air traffic between airports.

The second contributing factor is the realization that complex networks from different

areas share non-trivial common topological features. This universality of characteris-

tics serves as a guiding principle for network analysis and gives a wide applicability

to any discoveries. Two examples of common properties are power law degree distri-

butions (leading to scale free networks [Bar09]) and small average distances between

21

CHAPTER 1. INTRODUCTION

Figure 1.1: Visualization of the air traffic network, taken from [Gra16].

nodes (leading to small world networks [WS98]).

In order to extract information from networks, practitioners have have a wide range

of measurements available [CRTVB07]. Some of them describe properties at the

node level (such as its degree) while others describe global metrics (such as the

average distance between nodes). One other way of analyzing a network is to use

an intermediate approach, looking at small topological patterns of interconnections,

bigger than a single node but smaller than an entire network, and trying to understand

what is their role on the global behavior of the network. These small substructures

are subgraphs and they can be seen as basic building blocks of networks [MSOI+02].

Figure 1.2 illustrates the occurrences of a small triangle pattern in a network.

Figure 1.2: An example of a pattern of connections in a network. In this case

22

1.1. MOTIVATION

Subgraphs have been widely used to uncover the design principles of complex networks

networks. Two very important related concepts are network motifs and graphlets.

A network motif is a small connected subgraph that appears in significantly higher

numbers than what one would expect. This idea of overrepresented subgraphs was

introduced by Milo et al. [MSOI+02], and a more detailed definition can be seen

in in Section 2.3). The notion of graphlets is similar, but it essentially disregards

overrepresentation and instead focuses on the number of times a node appears in a

certain position of subgraph [Prž07]. For instance, it quite different to be at the center

or at the periphery of a star shaped subgraph.

Both of these concepts have at its core the task of counting the occurrences of a

given set of subgraphs, that is, computing a subgraph census. This is however a

challenge, since algorithmically speaking it is a computationally hard problem. In

fact, just knowing if a subgraph appears at all in another larger graph is an NP-

complete problem [Coo71], and finding the exact number of times it appears is an

even harder task. Given this, the needed execution time grows exponentially as we

increase the size of the network or the size of the subgraphs being searched.

Performance is the main factor that users care about. One way of improving the

performance was getting faster processors, but nowadays the individual processors are

not getting much faster and the devices are just getting more processors. Parallelism

appears therefore naturally as one the current most efficient ways for improving perfor-

mance [Boy08], and it implies splitting the work between those processors or between

the cores inside one processor.

One way of introducing parallelism on an algorithm is to use the MapReduce frame-

work, which is a programming model that automatically parallelizes the computation

across large clusters, handles machine failures and makes efficient use of the network

and disks by scheduling the communication between workers (cpus, cores, threads,

etc) [DG08]. MapReduce was initially developed by Google in 2008 and it has since

been widely there. For instance, Dean and Ghemawat estimated that an average

of one hundred thousand MapReduce jobs were being executed daily on Google’s

clusters [DG08]. There are many frameworks that support MapReduce, the most

famous one being Hadoop [Apa16a]. However, Hadoop has some drawbacks that

will be illustrated in more detail in section 4.1.4.1. A recent novel framework is

Spark [ZCF+10]. It supports MapReduce applications retaining MapReduces its two

main goals: scalability and fault tolerance. Spark is more than 10 times faster than

Hadoop on disk and it can be up to 100 times faster in memory. To achieve the

mentioned goals Spark introduces an abstraction called RDD, referring to a resilient

23

CHAPTER 1. INTRODUCTION

distributed dataset. RDD is a read-only collection of objects, partitioned across a set

of workers (machines) and in case a partition was lost it can be rebuilt.

An important advantage of using MapReduce is its availability on cloud computing

websites. For instance the user could rent computation time in a cluster in any cloud

computing provider (e.g. amazon web services) and run the algorithm using as many

processors as needed. So the user does not need to have his own powerful machines

to run large graphs. By providing subgraph counting algorithms in a MapReduce

framework we could therefore really make them available to a wider and more general

audience of practitioners in different fields.

1.2 Goals and Contributions

The main goal of this work is to provide and efficient parallel MapReduce algorithm

for Subgraph Census and make it available to end users in a friendly way.

Since the used technologies do not provide a tight integration with native program-

ming languages, and given that our case study algorithms (ESU [Wer06] and G-

Tries [RS14b]) were originally implemented in C++, one constribution of our work is a

java implementation of the sequential versions of these two subgraph census algorithms.

The original ESU uses an isomorphism test after each individual subgraph occurrence,

and we improved upon this strategy. Using an idea similar to what was done in

FaSE algorithm [PR13], we delay the isomorphism tests to the end of the enumeration

process while also identifying that certain occurrences are of the same type, greatly

decreasing the amount of needed isomorphism tests.

Another major contribution is a MapReduce Strategy for unbalanced ”tree-like” paral-

lel search. The strategy works iteratively as follows: first the work is divided in a round

robin way between the workers; then, after a specific amount of time (a threshold) all

the workers should stop and save their state; afterwards the master node (controller)

collects those states, resets the threshold and divides the remaining work into the

workers again. The master node keeps iterating the work until there is no more work

to do, actively promoting dynamic load balancing by changing the threshold according

to the state of computation (numbers of workers and the amount of time each of them

potentially was idle during the last iteration).

In this work we include an application of this parallel strategy to both ESU and g-

tries algorithms, giving extensive algorithmic details. Furthermore, we have made a

comprehensive experimental evaluation of our implementation of both parallel algo-

24

1.3. ORGANIZATION

rithms in a large set of representative networks from different fields. The obtained

results are very promising and we achieve close to linear speedups up to 32 cores

(average efficiency close to 80%) and a top speedup of 45.5 with 64 cores (limited by

our available hardware, because for more than 32 the cores are not 100% independent

and share some cache).

The last contribution of our work was the development of an initial subgraph census

plugin for Cytoscape software [SMO+03], providing easy and friendly access to some

of our algorithms to the end user. Cytoscape is widely used in the Systems Biology

community and by having a plugin available in the app market, a biologist could use

the software by simply clicking on a few buttons on an already known environment as

opposed to having to install a dedicated command line piece of software.

1.3 Organization

This thesis is structured in seven major chapters:

Chapter 1 - Introduction. Offers an overall view of the problem being studied in

this thesis as well as the motivation behind it. Also it shows the goals and contributions

and it additionally presents the thesis organization.

Chapter 2 - Subgraph Search. Introduces a common graph terminology that will

be used throughout the thesis, gives a detailed description about the computational

problem being studied, and gives some potential applications.

Chapter 3 - Algorithms for Subgraph Census. Gives an explanation of the state

of art and introduces a detailed description of the two main algorithms being used in

this thesis. It also explains the already existing parallel approaches.

Chapter 4 - Parallel Approaches. Justifies the option to apply iterative MapRe-

duce in parallelizing tree-like algorithms in finding motifs and explains the approach

with details for the two algorithms (ESU and G-Tries) which are used as case studies.

Chapter 5 - Performance Evaluation. We access the scalability of our implemen-

tations by doing a thorough study using a large set of representative networks from

different fields.

Chapter 6 - Cytoscape Plugin. Introduces our plugin and details the technologies

being used.

Chapter 7 - Conclusions and Future Work. Concludes the thesis, by summariz-

ing the contributions made and giving directions for possible future work.

25

26

Subgraph Search 2
In this chapter we introduce a common graph terminology to be used throughout the

thesis, we formally define the problem we are tackling and we describe some of its

applications.

2.1 Graph Terminology

Networks are modeled with the mathematical object graph. A graph G is composed

of a collection of vertices (or nodes) V (G) and a set of edges (or connections) E(G).

The size of the graph is the number of vertices it has, and it is written as |V (G)|. The

term k-graph refers to a graph of size k. Edges are composed of pairs of vertices (u, v)

where u and v are from the set of vertices. The order of the pair matters only in the

directed graphs, and in that case the pair will be (from, to) expressing the direction

of the edge, while in undirected graphs edges have no direction as its name implies.

In undirected graphs the degree of a vertex is the number of edges it has. However,

in directed graphs the vertex has two degrees, the indegree (number of ingoing edges)

and the outdegree (number of outgoing edges).

If the graph has no self-loops or multiple edges then it is considered simple graph.

Self-loops are edges from the vertex to itself. The expression multiple edges implies

that there might exist two or more edges connecting the same pair of nodes. In this

thesis we assume that we are only dealing with simple graphs.

The neighbourhood of a vertex u is the set of vertices that share an edge with u. More

formally, u ∈ V (G), v ∈ V (G)⇒ N(u) = v : (u, v) ∈ E(G).

Vertices are distinguished by assigning them labels from 0 to |V (G) − 1|, thus the

comparison u < v refers to a comparison between their labels and in this case it

means that the vertex u has a lower label than v. These labels are used by both

g-Tries and ESU as part of their symmetry breaking conditions, which allow these

algorithms to only count once each subgraph occurrence (more details in section 3.2).

27

CHAPTER 2. SUBGRAPH SEARCH

A binary adjacency matrix GAdj is used to represent the graph G, each cell in the

adjacency matrix GAdj[u][v] represents the existence of an edge (u, v), when (u, v) ∈
E(G)⇒ GAdh[u][v] = 1; otherwise GAdj[u][v] = 0. Figure 2.1 shows an example of an

adjacency matrix of a directed 5-graph.

0

1 2

34

Adjacency Matrix

0
1
2
3
4

0 1 2 3 4

0 1 0 1 0
0 0 1 0 1

0 0 0 0 1
0 1 1 0 0

Graph G

0 0 0 0 1

Figure 2.1: Adjacency matrix for an example graph G.

Some graphs contain another graphs. The contained graph is called a subgraph. A

graph H is a subgraph of a graph G if V (H) ∈ V (G) and E(H) ∈ E(G). This subgraph

H is called induced if ∀u, v ∈ V (G), (u, v) ∈ E(H) if and only if (u, v) ∈ E(G), and

if the graph G has a set of nodes that induce H then this set is called an occurrence

or a match. Distinct matches must have at least one different vertex. The number of

occurrences of H in G is called its frequency. Figure 2.2 shows an example of a graph

G, a subgraph H and its four occurrences.

2

0

4

3

1

0

21

Graph G

2

0

4

3

1

2

0

4

3

1

2

0

4

3

1

2

0

4

3

1

Occurrence #1 Occurrence #2 Occurrence #3 Occurrence #4

Subgraph H

Figure 2.2: Induced occurrences of a subgraph H in a larger graph G.

28

2.2. SUBGRAPH CENSUS PROBLEM

The neighborhood of a subgraph H is the union of all the neighborhoods of its vertices,

N(H) = the union of N(v)∀v ∈ V (H).

Two graphs G1 and G2 are isomorphic (G1 ∼ G2) if there is one to one mapping

between their vertices and there is an edge in G1 if and only if there is an edge

between the corresponding vertices in G2. This problem is computationally hard and it

is neither known to be solvable in polynomial time nor NP-complete [MP14]. Another

similar but different problem is subgraph isomorphism, in which given two graphs G1

and G2 we need to determine if G1 contains a subgraph which is isomorphic to G2.

This problem is known to be NP-complete [Erc15].

2.2 Subgraph Census Problem

As the last section described, just knowing if a graph appears as a subgraph of another

larger graph is already an NP-complete problem. The main computational problem

being solved in this thesis is an even more general version of this problem, that is,

to actually compute the number of occurrences of each subgraph type. Our goal is

precisely to improve the efficiency and scalability of algorithms for this task an we now

define more formally the problem we are tackling.

Definition 2.1 (Subgraph Census Problem). Given a graph G and a subgraph size

k, determine the exact frequencies of all induced occurrences of all possible k-subgraph

types in G. Two occurrences are considered distinct if they have at least one vertex

that they do not share. Other vertices can overlap.

In some cases we may be interested on a smaller set of subgraphs than the entire

set of size k, but the most common application is really to count all subgraphs of a

given size. Figure 2.3 shows an example of a network with six induced occurrences of

3-subgraphs.

2

0

4

3

1

Graph G Subgraphs OccurrencesFrequency

4

2

{0,1,2},{0,2,4},
{1,2,3},{2,3,4}

{0,2,3},{1,2,4}

Figure 2.3: Occurrences of subgraphs of size 3 in a graph G.

29

CHAPTER 2. SUBGRAPH SEARCH

The number of possible subgraphs of a certain size k differs between directed and

undirected graphs. Figure 2.4 displays all the possible subgraph types of size 3.

#1 #2 #3 #4 #5 #6

#8 #9 #10 #11 #12 #13

#7

#1 #2

Directed

Undirected

Figure 2.4: All possible directed and undirected subgraph types of size 3.

It is clear that for the same number of vertices, the number of possible directed graph

types grows faster than what happens in the undirected case. Table 2.1 expresses this

difference up to size 10. These numbers have an huge impact on the tractability of the

subgraph census problem, since as you can see, the number of possible types grows

exponentially as k increases.

Size k 3 4 5 6 7 8 9 10

Number of
Undirected
Subgraphs

2 6 21 112 853 ≈ 104 ≈ 105 ≈ 107

Number of
Directed
Subgraphs

13 199 9364 ≈ 106 ≈ 109 ≈ 1012 ≈ 1016 ≈ 1020

Table 2.1: Number of possible directed and undirected subgraph types with k vertices
up to size 10.

30

2.3. SUBGRAPH CENSUS APPLICATIONS

2.3 Subgraph Census Applications

Subgraph census is an essential core computational task used in many network analysis

methodologies. One very important and widely used methodology involves the concept

of network motifs, a term introduced by Milto et al. in 2002 [MSOI+02]. A motif can

be seen as a connected small subgraph that appears in significantly higher number

than what one would expect. More formally, it is an induced subgraph that appears

more frequently in the original network than in similar randomized networks. The

definition of similarity may differ if we want a more specific null model, but the most

classic model for the randomized networks is to keep the same number of nodes,

number of edges and to preserve the degree sequence. An example of this class of

similar random networks is shown in figure 2.5.

0

1 2

3 4

0

1 2

3 4

0

1 2

3 4

Original Network

Random Networks

Figure 2.5: Example of similar random networks.

Motifs provide a very general and flexible characterization, helping in gaining a deeper

understanding of the topological features of the networks being analyzed. Its first

application was to classify networks based on the types of motifs [MSOI+02]. Since

then they have been widely used in many different fields such as biology ([AA04,

SOMMA02, SK04, KMP+01]) or sociology ([CRBS12, KFMH+11]).

To better exemplify its usage we will now give some practical use cases. Computer

programs have a textual representation following syntactic rules dictated by a pro-

gramming language. Each program is divided into smaller software entities which are

given unique names. Those entities can have relations between each other. In object

oriented programming this relation can be inheritance, or it could be simpler like if a

31

CHAPTER 2. SUBGRAPH SEARCH

class defines an instance of the other. It is useful to represent those programs using

graphs, where vertices represent classes and edges represent the relation between them.

Motifs were used to detect the patterns in software class diagrams and indicate static

dependencies between classes [VS05]. Figure 2.6 shows some examples of network

motifs of size 4 found in software graphs. Each node in the figure represents a class

and the edges indicate the dependencies between classes.

1

2 3

4

1

2 3

4

1

2 3

4

12

3

4

1 2

3 4

Figure 2.6: Examples of network motifs with size=4 found in software graphs.
Adapted from [VS05]

Network motifs were also the basis of a Web Appearance Disambiguation system

(WAD) [YCLH06]. WAD uses the hyperlink structure between web pages to have a

better search for a particular person. It clusters searched pages using network motifs

as an evidence of close relationship between pages. Thus, the WAD system does not

require any background knowledge about the users to do the clustering unlike previous

systems in the area. Pages were represented as vertices and the hyperlinks as edges.

Because the number of incoming links is much smaller than the number of outgoing

links and in order to balance the augmented dataset and collect more incoming links

they collected the pages that have hyperlinks to the domain name using a host-based

augmented process as shown in figure 2.7.

Different variations on the concept of motifs may exist. For instance, colored motifs

are an extension of the motif concept, where the color of the vertices and edges need

to be checked in addition to their connections[LFS06, FFHV07, RS14a]. Another

extension uses the weight of the connections in order to better understand the network

[OSKK05, CRS12]. A trend motif is a graph mining approach used for analysis of

dynamic complex networks where the attributes attached with the vertices or edges

change with time [JMA07]. Finally, anti-motifs refer to the under-represented

subgraphs[MIK+04], that occur in lower numbers than what would be expected. Anti-

motifs are meaningful for some applications [BGP07].

32

2.3. SUBGRAPH CENSUS APPLICATIONS

Host incomming link

Main page in the host

Page incoming link

Figure 2.7: The host incoming link. Adapted from [YCLH06]

33

34

Algorithms for Subgraph
Census 3

The purpose of this chapter is to provide a brief description about the state of art

in algorithms for subgraph census and then explain in details the two case studies

algorithms that are used throughout this thesis (ESU and G-Tries). Finally we

overview the existing parallel approaches.

3.1 Algorithmic Approaches

As seen on the previous chapter, subgraph census is a computationally hard problem

closely related to subgraph isomorphism, an NP-complete problem [Coo71]. There

have been many possible algorithmics approaches to this problem, that we now describe

in more detail.

3.1.1 Historical overview

The first algorithm for motif discovery, called Mfinder, is a simple sequential back-

tracking algorithm [MSOI+02]. The first improvement for this algorithm is Kashtan

[KIMA04] that was developed in 2004 and it had the possibility of sampling subgraphs.

In the same year a different frequency concept was introduced and that led to the

implementation of FPF [SS04].

The first specialized algorithm with symmetry breaking condition appeared in 2005 and

it was named (ESU [Wer06]). In 2006 NeMoFinder algorithm appeared [CHLN06],

and it was the first time that network motifs up to size-12 were discovered. However,

NeMoFinder succeeded in doing so by twisting the motif definition and also by looking

only for a subset of all possible candidates. In 2007 Grochow algorithm [GK07]

introduced the ability to search for a single individual subgraph type based on new

symmetry breaking technique. Kavosh [KAE+09] and MODA [OSMN09] are algo-

rithms that appeared in 2009 with a behavior closer to ESU and Grochow. In 2010 the

G-Tries algorithm [RS10] appeared and outperformed all the previous approaches. It

35

CHAPTER 3. ALGORITHMS FOR SUBGRAPH CENSUS

depends on a novel specialized data-structure encapsulating common substructure.

An improvement to the ESU style class of algorithms appeared in 2013 and it is

called FaSE [PR13]. It avoids the need of an isomorphism test for each subgraph

occurrence by using a customized tree data structure. The last two algorithms, G-

Tries and FaSE, are the state-of-the-art in what concerns general subgraph census.

For specific sets of subgraphs, combinatorical approaches such as ORCA [HD14] or

acc-Motif [MMFDC14] exist, but they limit the expressability of the algorithm to a

limited pre-defined set of subgraph types.

3.1.2 Strategy types

Sequential subgraph counting algorithms can be divided into three conceptual ap-

proaches: Network-centric, subgraph-centric and set-centric.

Network-centric methods search for all subgraphs of size k in the target network

and then apply isomorphism to determine the type of each subgraph in the occur-

rences. Examples of this class of algorithms areESU [Wer06], Kavosh [KAE+09] and

FaSE [PR13]. These methods can compute the frequency of subgraphs (motifs) which

are not in the original network because they compute the complete census of the

respective network, and that network could be the original or similar random one, and

the random network may contain more subgraphs than the original.

Subgraph-centric methods search only for one individual subgraph type at a time.

One weakness of these algorithms is that they do not take advantage of similarities

between subgraphs in different searches. For instance, if the difference between two

subgraphs was only one node, the computation is done as if they were totally different.

An example algorithm of this type is Grochow and Kellis [GK07].

Set-centric methods search for a customized set of subgraphs. They are conceptually

in the middle between the previous two, because they do not search for only one

subgraph at a time, and also not necessary for all subgraphs of a specific size. This

approach was introduced by Ribeiro and Silva with the usage of the g-trie data

structure providing an efficient way of representing general sets of subgraphs [RS10].

Table 3.1 shows the different strategy types, and the algorithms that follow each of

them. At the present date, g-tries provide the fastest general approach for subgraph

census and that is why we decided to base our parallel approach on them. In order to

showcase the general applicability of our parallel strategies we also provide a network-

centric parallel algorithm, as explained in Chapter 4.

36

3.2. SEQUENTIAL ALGORITHMS

Approach
Network-

centric
Subgraph-

centric
Set-centric

Example
algorithms

FaSE,
Kavosh,

NeMoFinder,
ESU, FPF,
Kashtan,
Mfinder

MODA,
Grochow

G-Tries

Table 3.1: Subgraph census approaches and example algorithms for each approach.

3.2 Sequential Algorithms

3.2.1 ESU

ESU is a subgraph enumeration algorithm that follows a network-centric paradigm [Wer06].

It appeared in 2005 and it was faster than the existing algorithms, because it avoids

redundant computations using symmetry breaking conditions to find the occurrence

only once.

3.2.1.1 Computing subgraph frequencies

ESU method starts with a root node and expands from there. When expanding a

vertex, only the nodes that have a label (index) greater than this vertex are allowed

to be expanded, and by doing that the algorithm avoids symmetries. Algorithm 3.1

describes ESU in pseudo-code: it takes as input a graph G(V,E) and enumerates the

size-k subgraphs in this graph. The algorithm iterates throw all the graph vertices, and

starting from each vertex V it establishes an array EXT that has the vertices which

are neighbors to V and their labels are larger than the label of V (Line: 3). Then

EXTEND function is called to extend this vertex and count all subgraph occurrences

that exist under V (line: 4). Each call to the extend function is represented by an edge

from the vertex representing the caller to the one representing the callee. The callee

vertex is labeled (Vsubgraph, EXT) and located at depth |Vsubgraph|. In the iterative

function EXTEND, in each time it calls itself a new node from the extension array

(EXT)is selected for expansion, it is removed from the EXT and its exclusive neighbors

are added to the new extension array (EXT2) (line: 9). This way, the ESU algorithm

ensures that each subgraph will be enumerated exactly once since the non-exclusive

neighbors will be considered in another recursion. An occurrence is found when the

depth equals the subgraph size (line: 6). ESU uses an efficient third party algorithm

called nauty [MP14] for doing the isomorphism test after finding each occurrence

37

CHAPTER 3. ALGORITHMS FOR SUBGRAPH CENSUS

(line: 7), nauty was detailed in section 2.1.1.2.

Algorithm 3.1 ESU: Algorithm for computing the frequency of subgraphs of size k in
graph G.

1: procedure countSubgraphs(G, k)
2: for all vertex v of G do
3: EXT ← u ∈ N(V) : v < u
4: extend({v}, EXT, v)

5: procedure extend(Vsubgraph, EXT, v)
6: if |Vsubgraph| = k then
7: IncrementOccurences(NautyCanonicalLabeling(Vsubgraph))

8: for all vertex v in EXT do
9: EXT2 = EXT ∪ {u ∈ Nexcl(w, Vsubgraph) : u > v}

10: extend(Vsubgraph ∪ {w}, EXT2, v)
return

3.2.1.2 ESU search tree

Figure 3.1 illustrates the structure of the ESU-Tree and details how ESU enumerates

all size-3 subgraphs in the given example which has 5 nodes. Each node in the tree in-

dicates the parameters passed to the EXTEND function, as follows(|Vsubgraph|, EXT).

It is assumed that the nodes in the ESU search tree are ordered according to the same

order that the subroutines they represent are called.

ESU search tree has the following properties:

1. If n1 is a node in the tree, then for every vertex v ∈ EXT (n1), n1 has child

node n2 where v ∈ SUB(n2).

2. For each node n in the tree, and for every vertex u ∈ EXT (n), we have u > v.

where v is the smallest-label vertex inSUB(n).

3. Let n1 and n2 be two nodes in the ESU-Tree which have the same parent node

and n1 < n2, then SUB(n1) contains one vertex u1 which is not contained is

SUB(n2) and vice versa. That means for every child node n3 whose path to the

root contains n2, u1 /∈ SUB(n3).

3.2.1.3 Graph Isomorphism Algorithms

As explained, one the the steps needed for ESU algorithm is computing graph isomor-

phism. For the sake of completeness, we explain some of the possible approaches, given

38

3.2. SEQUENTIAL ALGORITHMS

root

3

4

3

2 4

3

1

2

4

3

1

({1},{3,4})
5

({2},{3,5}) ({3},{4,5})

4

3

1 5

({2,3},{4,5}) ({3,4},{5})

5

({1,3},{4,5,2})

3

1 2

3

2 5

({1,4}, /)

({4}, /) ({5}, /)

Figure 3.1: An ESU- Search Tree corresponds to calling countSubgraphs(G, 3).

that later we switch from Nauty to VF2. There are many algorithms that discover

isomorphism between graphs, the following sections describe one previously designed

and two more recent ones.

Ullman’s Algorithm This algorithm was proposed by Ullman dates back to 1976,

and it forms the basis of many subgraph/graph isomorphism algorithms [Ull76]. In

Ullman’s Algorithm, permutation matrices are generated for the target graph G2 and

these matrices are compared with the subgraph G1 to check isomorphism between

G1andG2. Its time complexity is O(mnn2) and its space complexity is O(n2m) where

m,n are the orders of the subgraph and graph, respectively [Erc15].

Nauty Algorithm Nauty algorithm proposed by McCay, it is a powerful algorithm

in finding graph and subgraph isomorphism [MP14]. Before testing for isomorphism

Nauty algorithm transforms the graphs to be matched to a canonical form, and while

searching for isomorphism it uses vertex invariants and group theory. A partition P of

a graph G divides its vertices into disjoint sets of vertices V 1, ..., Vm. A leaf partition

is a partition that has only singleton sets. Nauty computes the invariants over the

whole graph forming an initial partition, and then it computes the invariants for the

individual partitions to distinguish them. The two main methods in Nauty are refining

a partition and generation the children of a partition. Nauty does a depth-first-search

of the space partitions, it refines each partition before expanding its children as shown

in algorithm 3.2 [Erc15]. A detailed explanation of Nauty can be found in [For96].

VF2 Algorithm VF2 algorithm was introduced by Cordella et al. for exact matching

39

CHAPTER 3. ALGORITHMS FOR SUBGRAPH CENSUS

Algorithm 3.2 Nauty: Algorithm for finding the canonical representation of a graph
G1.

Input: G1(V1, E1)
Output:G2(V2, E2) : a canonical graph

P ←− partition of a single cell V
S ←− stack containing P
while S 6= ∅ do

if u = leaf partition then
update(G2, u)

else
refine(u)
append children of u to S

in graphs [CFSV04]. VF2 is based on depth first search and reduces the search tree

using a refinement procedure. If there are two graphs G1(V1,E1), G2(V2,E2) then the

mapping M between them is defined as a set of vertex pairs(u,v) with u ∈ V1 and v ∈
V2. G1 and G2 are considered isomorphic if and only if the mapping M is a bijective

function and preserves the branch structure of the graphs G1 and G2. The mapping

function does not have any component in the initial state s0, an isomorphic is found

if the partial obtained mapping covers all the vertices of G1; otherwise, a new pair of

vertices is added to the current state enlarging the search tree by DFS.

This algorithm introduces a set of rules, and the candidate pair of vertices p is tested

by a number of pruning rules, p is found compatible with the existing subgraph if it

passes all of these tests. The time complexity of this algorithm in the worst case is

Θ(n!n), and in the best case is Θ(n2). Space complexity is Θ(n) [CFSV04]. Algorithm

3.3 shows how VF2 works to decide if two graphs are ismorphic [Erc15].

A performance comparison done by Foggia [FSV01] says that the VF2 algorithm

obtains the best performance for graphs of small size and for quite sparse graphs,

while for dense graphs the Nauty algorithm obtains the best results.

3.2.2 G-Tries

G-Tries is a very efficient algorithm for network motifs discovery. The idea in this

algorithm is to find a set of subgraphs that is not necessary the all possible subgraphs

of that size, and not only one subgraph type at a time. In comparison with previously

existed algorithms, G-tries is at least two times faster [RS14b], its efficiency is because

of the g-trie data structure which is used as the search space. This identifies the

40

3.2. SEQUENTIAL ALGORITHMS

Algorithm 3.3 VF2: Algorithm for deciding if two graphs G1 and G2 are isomorphic.
1: procedure MATCH(G1, G2, s)
2: Input: Two graphs G1 and G2 and an intermediate state s
3: Output:The mapping between the two graphs G1 and G2
4:

5: if Ms covers all nodes of G1 then return Ms;
6: else compute P (s) of candidate pairs to be included in M(s)
7: for all p ∈ P (s) do
8: if p is compatible with Ms then
9: s′ ←− p ∪Ms

10: compute state s′ obtained by adding p to Ms

11: MATCH(G1, G2, s′)
12:

restore data structures
13:

common substructures between the different subgraphs that are being searched in the

complex network. In the following sections we present the data structure that is used

at the core of this algorithm, the g-trie. We discuss how g-tries are created, how

they can be used for subgraph census and how their structure offers opportunities for

parallelism.

3.2.2.1 Structure

G-Trie is a similar concept to prefix tree [Fre60], prefix trees were introduced by

Fredkin in 1960, they are trees where all the descendant nodes of a node share the

same common prefix. Figure 3.2 shows an example of prefix tree for storing sequences

and some words. It shows also how the same prefixes are aggregated in the same

node. This structure is efficient for searching, and it saves space because the common

prefixes are stored only once.

Furthermore, in the case of graphs, two or more graphs can share smaller subgraph.

G-trie is a prefix tree where each node of the tree represents a vertex in the graph.

The connection between each vertex and its ancestor nodes characterizes it. These

connections are represented as an array of boolean values where the first value of

the array is one if this vertex is connected to the first node and zero if they are not

connected, the second value represents the connection to the second node etc. So all

graphs with common ancestor nodes share the same substructure of the tree. Figure

3.3 shows an example of a g-trie representing 6 undirected subgraphs of size 4.

41

CHAPTER 3. ALGORITHMS FOR SUBGRAPH CENSUS

G

L

O

B

E

E

E

R

N

A

P

H

S

S

1 2 3 4

1 Graph
2 Grass
3 Green
4 Globe

Figure 3.2: A prefix tree representing a set of four words.

#1 #2

#3 #4

#5 #6

#1 #2 #3 #4 #5 #6

Figure 3.3: A g-trie representing a set of 6 undirected subgraphs of size 4. Taken

from [RS14b]

The definition of the g-trie is: ”A multiway tree that can store a collection of graphs.

Each tree node contains information about a single graph vertex, its corresponding

edges to ancestor nodes and a boolean flag indicating if that node is the last vertex of

a graph. A path from the root to any g-trie node corresponds to one single distinct

graph. Descendants of a g-trie node share a common subgraph” [RS14b].

42

3.2. SEQUENTIAL ALGORITHMS

3.2.2.2 Creating the G-Trie

The first step in counting occurrences using G-Tries is to build the g-trie tree that rep-

resents the possible subgraphs, building it happens by repeatedly insert one subgraph

at a time. The operation starts with a tree with empty root node, during the insertion

of a subgraph the tree is traversed to verify if any of the children has a the same

connection to the previous nodes as the graph being inserted. The iterative insertion

is defined by the adjacency matrix representing the graph being inserted. The problem

is that there may be many adjacency matrices representing the same isomorphic class

of graphs. However, to avoid that, g-tries uses canonical labeling to make sure that

isomorphic graphs will always have the same adjacency matrix then they will generate

the same g-trie representation.

The g-trie uses its own canonical representation to be more efficient, the idea is that it

is an iterative algorithm where in each iteration it chooses one node and label it with

the last available labeling position and deletes it from the original graph. The chosen

is the one with the least number of connections. then the lookup tables are updated.

By increasing the amount of common ancestor substructures, the size of the tree is

decreased and therefore the memory needed is decreased too. the following equation

tells how much memory is saved also it shows the identified common substructure.

compressionratio = 1− nodesInTree∑
nodesOfStoredGraphs

The goal is to maximize the compression ratio to reduce the amount of needed memory

as possible, also that will reduce the required time to count frequencies, taking the

advantage that the realworld networks are usually sparse [RS14b].

In order to avoid subgraph symmetry, in an efficient way g-tries generates symmetry

breaking conditions for each subgraph. It uses a procedure close to what was done

by [GK07]. It generates a set of ”less than” conditions between the labels of the

vertices which illustrates their index, such that if a vertex a is less than a vertex b

that means the index of a is smaller. The symmetry breaking conditions are stored

in each node in order to use them, those conditions make the operation of counting

occurrences more efficient.

Using the canonical representation and the symmetry breaking conditions, g-tries make

sure that each subgraph will be found only once, and the search is faster because

some branches will be cut and not explored when the condition is broken and that is

discovered early in the recursion.

43

CHAPTER 3. ALGORITHMS FOR SUBGRAPH CENSUS

3.2.2.3 Computing subgraph frequencies

After having the g-trie constructed, it is ready to count occurrences of subgraphs. The

retrieval of the initial set of graphs can be done easily. For instance, a path from the

root to any other node at depth k with isGraph property set to true represent a graph

with k nodes.

It does two operations on the same time, it backtraks through all possible subgraphs

and apply the isomorphism tests while constructing the candidate subgraphs. Algo-

rithm 3.4 explains how G-tries finds and counts all occurrences of a set of subgraphs

represented in the g-trie T in a graph G. The currently partial match of the graph

vertices to a path in the g-trie is reepresented by Vused. The algorithm starts with

the children of the root of the g-trie (line: 3), and for each vertex in the graph it

calls the recursive census function COUNT with a matched set containing only this

vertex (line: 4). The CENSUS function starts by creating a set of vertices that

completely match the current g-trie node (line: 6). Then this set is traversed (line: 7)

and recursively expanded throw all possible tree paths (lines: 11,12), if the node is a

leaf this means it corresponds to a full subgraph and the frequency is incremented.

Method matchingVertices() generates the set of candidate vertices that match the

required conditions.

It starts by creating the set of candidates (ln :14), by selecting from the matched

vertices which are connected to the current vertex, the vertex with the smallest

number of neighbors is chosen to reduce the number of candidates to the unused

neighbors. then the set of candidates is traversed (ln:16) and each vertex that respects

all connections to the ancestors is added to the set of matching vertices.

Since lexicographically larger representation is used, the initial nodes will have the

maximum possible number of connections and this constrains the search and reduces

the possible matches.

The efficiency of G-tries made us choose to parallelize it. Globally, g-tries are 30.1

times faster, on average, than its competing algorithms.And with a global average

speedup of 44.3 against the competing algorithms[RS14b].

3.3 Parallel Algorithms

We discussed in the previous chapters the importance of subgraph census and motif

discovery on one hand and parallel computing advantages on the other hand. However,

44

3.3. PARALLEL ALGORITHMS

Algorithm 3.4 gtrieScanner: Algorithm for computing the frequency of subgraphs
of a g-trie T in graph G.

1: procedure countAll(T,G)
2: for all vertex v of G do
3: for all child c of T.root do
4: count(c, {v})
5: procedure count(T, Vused)
6: V ← matchingVertices(T, Vused)
7: for all vertex v of V do
8: if T.isLeaf then
9: T.frequency++

10: else
11: for all child c of T do
12: count(c, Vused ∪ {v})
13: function matchingVertices(T, Vused)
14: Vconn ← vertices connected to the vertex being added
15: m ← vertex of Vconn with smallest neighborhood
16: Vcand ← neighbors of m that respect both
17: connections to ancestors and
18: symmetry breaking conditions
19: return Vcand

parallel algorithms in subgraph census problem are scarce.

3.3.1 Parallel approaches for ESU algorithm

Researchers tried to parallelize ESU algorithm using different approaches. Ribeiro,

Silva and Lopes implemented Parallel distributed memory algorithms [RSL12], using

MPI for communication. They proposed two strategies a master-worker and a dis-

tributed control, in which a randomized receiver is employed to provide a dynamic

load balancing during the computation process, and they got almost linear speedups.

A previous work was done by the same authors that does a single complete subgraph

census [RSL10b]. Before that, other research tried to parallelize the Grochowalgorithm

in motif discovery, including both query parallelization, where different subgraphs are

searched for in parallel, and network parallelization, where the original network is

partitioned into overlapping regions, and a single subgraph is searched for in parallel

among the different regions [SCBB08].

In 2005 a parallel algorithm that count motifs up to size 6 appeared [WTZ+05], it

depends on the neighborhood of the vertex that was defined by the author, their

method seeks a neighborhood assignment for each node.

45

CHAPTER 3. ALGORITHMS FOR SUBGRAPH CENSUS

3.3.2 Parallel approaches for G-Tries algorithm

There are not many parallel approaches for G-Tries algorithm. In 2010 parallel

distributed memory algorithm has been implemented using MPI for communication

[RSL10a]. This algorithm depends on randomized receiver-initiated load balancing, it

has the ability to stop the computation at any time and divide its remaining search

space into two parts, give one part to the receiver asking and continue its work with

the second part. It was an efficient algorithm and they obtained near-linear speedup

up to 128 processors. A different parallel algorithm was done using P-threads [ARS14],

it divides the work during the execution dynamically using a diagonal work sharing

strategy. Almost linear speedup was obtained up to 32 cores, and a speedup over 50

for 64 cores.

3.3.3 MapReduce parallel algorithms for subgraph search

There is not any algorithm that does parallelisation for G-Tries algorithm using MapRe-

duce. However, there are two algorithms that parallelize ESU using MapReduce.

Moreover, there are some MapReduce algorithms for different subgraph search al-

gorithms, mainly for subgraph-centric ones (search one subgraph at a time). Most

of them depend on a decomposition strategy where they decompose the searched

subgraph into smaller subgraphs and in each MapReduce iteration join those small

instances to form bigger ones and keep iterating until reaching the required size.

Following examples of those algorithms:

3.3.3.1 MRSUB

MapReduce approach was proposed by Shahrivari, S., & Jalili, S. they presented a

distributed solution for subgraph discovery, they do something close to ESU but their

way to satisfy the load balancing in enumerating subgraphs is by extending edges

instead of vertices. [SJ15].

3.3.3.2 Iterative Hadoop MapReduce

Recently Verma, Vartika, Paul Park Kwon, and Wooyoung Kim implemented an

iterative mapReduce algorithm[VKK15], they had speedups between 1.33 and 37 using

57 cores. Their procedure was to count subgraphs of size 2 then enhance the size of

subgraph by one in each step and repeat until the input size of the subgraph is reached.

This way results in having a large intermediate data to be processed, which expresses

memory constrains. Because of that their best speedups were when the subgraph size

46

3.3. PARALLEL ALGORITHMS

was small (it was 4). A small comparison between their work and ours is shown in

chapter 5.

3.3.3.3 Edge-based join

Edge-based join approach was proposed by Plantenga [Pla13], this is a subgraph-

centric approach in which the pattern subgraph is decomposed into an ordered list

of edges, and the enumeration is done by multible MapReduce iterations, where

in each iteration uses the join operation to grow one edge. This approach is not

efficient, because joining one edge in each round cannot fully make use of the structural

information of the pattern subgraph, which may render numerous partial results. Its

decomposition strategy can be explained via the following example. For a square pat-

tern P where V (p) = v1, v2, v3, v4 and E(P) = (v1; v2); (v2; v3); (v3; v4); (v4; v1), the

optimal pattern decomposition based on EdgeJoin isp0 = (v1; v2); p1 = (v2; v3); p2 =

(v3; v4); p3 = (v4; v1). However, using this pattern-decomposition strategy, the algo-

rithm executes in three MapReduce rounds.

3.3.3.4 Star join

A starJoin approach [SMK93] is a subgraph-centric approach that follows a similar

strategy to the EdgeJoin one, which depends on deviding the pattern subgraph, the

difference is in the composition of the subgraph. It is considered better than EdgeJoin

because it can finish in fewer MapReduce rounds, however, StarJoin still suffers from

the scalability problems due to the generation of many matches when evaluating a star

with many edges. For example, in a social network such as Twitter, it is very common

for a node to have more than 10,000 followers. As a result, this node with its followers

will contribute to over 1012 matches of a single star p0.

3.3.3.5 TwinTwig join

TwinTwigJoin is a subgraph-centric algorithm that follows the left-deep join frame-

work. It does the TwinTwig decomposition using an A*based algorithm, in order

to decompose the searched subgraph. They perform three optimization strategies

to further improve their subgraph enumeration algorithm, namely, order-aware cost

reduction, workload skew reduction, and early filtering. In comparison with the

metioned algorithms that do decomposition (Edge-based join and Star join), the

TwinTwigJoin is faster according to their study [LQLC15].

47

CHAPTER 3. ALGORITHMS FOR SUBGRAPH CENSUS

3.3.3.6 Multiway

A multiway approach does the subgraph enumeration only in one MapReduce round

[AFU13]. It duplicates each edge in different machines so that each machine can enu-

merate the instances independently and no match is missed. However, this approach

encounters serious scalability problems since it keeps the graph in the memory of each

machine. That makes it not scalable for either large data graph G or complex pattern

subgraph P.

48

Parallel Approaches 4
4.1 MapReduce

4.1.1 Motivation

MapReduce, which was developed by Google, is a programming model and an asso-

ciated implementation for processing and generating large datasets that is amenable

to a broad variety of real-world tasks[DG08]. Before developing it Google needed

to process large amounts of raw data for instance, web requests logs and crawled

documents to compute various kinds of derived data as inverted indices, summaries

of the pages crawled per host and the frequent queries in a specific day. This type

of computations is usually conceptually straightforward, but the input data is high.

Furthermore, those computations should be done in a reasonable amount of time,

then the work needs to be distributed across hundreds or thousands of machines. The

issues of how to parallelize the work, distribute the data and handle the failures with

large amounts of complex code were complex, thus MapReduce was developed as a

reaction. MapReduce hides the messy details of parallelization, data distribution, fault

tolerance and load balancing in a library. It is also a powerful interface that enables

automatic parallelization and distribution of large-scale computations. Moreover it can

be used to distribute the work across different clusters and also across different cores

in the same machine. Finally, the MapReduce distributed programming paradigm has

become increasingly supported by companies and computing clusters[DG08].

4.1.2 Programming model

One of the special points of this computation is that it takes as input a set of key/value

pairs and produces as output a set of key/value pairs too. MapReduce operation is

composed of two functions the Map and the Reduce, so the user of the MapReduce

library has to express the computation into those two functions. Map function takes

the input which is a set of key/value pairs and produces as output an intermediate set

of key/value pairs, then the reduce function takes the intermediate key/value pairs,

49

CHAPTER 4. PARALLEL APPROACHES

usually each reducer takes the pairs which have the same key and its job is to merge

them to reduce the set of values for that key and produce zero or one output value

per reduce invocation [DG08].

4.1.3 Iterative MapReduce

Iterative MapReduce is useful for many types of problems including graph problems.

The idea is to call the same Mapper and Reducer multiple times with small alteration

such as the input data. In Fact, each iteration can use the output of the previous

iteration as its input. A simple loop condition is used to proceed the iteration or

break the loop, this condition can be set by the mapper, the reducer or the driver.

4.1.4 Frameworks

4.1.4.1 Hadoop

Hadoop is an open source Big Data framework [Apa16a], it is extremely famous

and widely used. However it has some drawback, Hadoop MapReduce is difficult

to program and needs abstraction, does not leverage the memory of Hadoop cluster

to the maximum, users just get to process a batch of stored data and it is totally

disk oriented. Hadoop Pipes can be used to run C++ code on hadoop cluster [Col16].

Since our code was originally implemented using C++, we tried it but it did not match

our needs.

4.1.4.2 MR4C (MapReduce for C)

MR4C is a framework developed by Google, it is a C wrapper that allows runing native

code within the Hadoop cluster, pairing the advantages of native algorithms like per-

formance and flexibility with the advantages of Hadoop like scalability and throughput.

Therefor MR4C is used in large-scaling advanced data processing algorithms [Goo15].

MR4C does not have a driver (master worker controlling the mappers and reducers),

its mapper and reducer functions are called from a script, because of that the format

of the key/value pairs, it accepts, is different as well. Actually, it needs an input and

output directories to be identified. For this reason MR4C’s mappers take as input the

collection of files which exist in the input directory, then it forms the key value pairs

as follows, the key is the name of the file and the value is its content. The mappers run

with the mentioned input data, and output key-value pairs (files) to the intermediate

directory, where the key is the name of the new file and the value is the result of the

mapper function on the corresponding data.

50

4.1. MAPREDUCE

Then the reducers use those intermediate files as input key/value pairs, apply its

function and write the output as files to the output directory, the number of output

files equals the number of reducers specified by the user.

In our research, we were motivated to use MR4C because the existed implementation

of the G-Tries and ESU algorithms was in C++. However, that was not a good

choice because MR4C is built on top of Hadoop which is disk oriented, then all the

files that were mentioned need to be read and written to the disk using HDFS, and

these operations are time consuming ones. Also our strategy is iterative MapReduce,

as a result many MapReduce operations are going to run which highly increases the

effect of writing to the disk. Moreover in our algorithm the first step is to build the

graph, and that step needed to be repeated in every iteration because of the absence

of a driver (master worker) in MR4C. These consequences were incurring a significant

performance penalty, so MR4C did not meet our needs.

4.1.4.3 Spark

The previous systems are built around an acyclic data flow model, but there are many

popular applications that require a cyclic data flow. Spark focus on those applications

that reuse the same working set across multiple parallel operations and it provides

similar scalability and fault tolerance like MapReduce [ZCF+10]. Unlike Hadoop,

Spark is easy to program,could be used to perform streaming, batch processing and

machine learning in the same cluster, also Spark batch processing is 10 to 100 times

faster than Hadoop MapReduce.

Spark is the first system that allows the usage of general-purpose programming lan-

guage in processing large datasets on a cluster. Spark ensures low latency computa-

tions by caching the partial results across its memory of distributed workers. Resilient

distributed dataset (RDD) is the main abstraction in Spark, it represents a read only

dataset that can be rebuilt if a part of it was lost, if a partition was lost RDD has

enough information to rebuild only that partition. RDD can be cached in memory

and used in multiple MapReduce like parallel operations.

Apache Spark by now has a huge community of users, because programming with

Spark using Scala is much easier, and it is much faster than the Hadoop MapReduce

framework both on disk and in-memory. The mentioned advantages of Spark made us

do a Java implementation for the algorithms we are parallelizing to use it.

51

CHAPTER 4. PARALLEL APPROACHES

4.2 Parallel Approaches

The main bottleneck in subgraph search is the subgraph enumeration which consumes

95% of the execution time. Therefor the key issue in to parallelize the enumeration

computation. This section will explain how we parallelize it using MapReduce. The

evolution of our strategy passed two main approaches, that will be described in the

following sections and for each approach a detailed explanation is given about how we

applied it on our case studies ESU and G-Tries.

4.2.1 Static division approach

This is the naive approach, the idea here is to statically divide the vertices between

the mappers such that each mapper processes its portion and returns the result of

that portion, then the reducers build the whole final result. This is possible because

in tree-like algorithms the enumeration of subgraphs of each vertex is independent, so

calculating the subgraphs starting with any vertex does not depend on any operations

on different vertices. So we divide the vertices between the mappers and then each

mapper enumerates the subgraphs that are under that vertex in the graph, then the

reducers sum those results to display the final result. We decided to divide the nodes in

a round robin way because normally the amount of work in the root nodes is sharply

higher than in the leaves, that is because of the breaking similarity conditions for

instance in ESU tree to expand a vertex it should has a higher label than the label of

the vertex being processed.

The drawback in this way is that the amount of work is unbalanced between workers

(mappers) since graphs are generally unbalanced and the number of subgraphs rooted

from each vertex differs a lot and it may be the case that more than 20% of the work

is under one node.

The following sections describes how we applied this approach on our case studies.

Applying it on ESU

By considering the approach described in algorithm 4.1, the method main is the driver,

it first divides the nodes in a round robin way into a set of work-sets(lines: 8-9) then

each work set will be assigned to a worker. The driver initiates mappers by calling the

map function (line: 10). Each mapper executes the method countSubgraphs with a

set of vertices (vSet) to calculate the number of occurrences under them. The driver

collects the results from the mappers using the reducer (line: 11) which combines the

52

4.2. PARALLEL APPROACHES

partial trees into one tree that has all the occurrences, which are not isomorphic

yet.

Subgraph Isomorphism tests consume a lot of time because ESU algorithm originally

applies isomorphism tests every time it finds a subgraph as explained in section 3.2.1.

Toward reducing that time we apply the idea used in FaSE algorithm [PR13] as follows,

after the reducer finishes we have only one result tree containing all the occurrences.

Then this tree is populated to extract the subgraphs stored in it (line: 12), and a new

MapReduce step starts to do the isomorphism tests between these subgraphs (lines:

16,17). Each mapper now will take the same set of subgraphs and compare each of

them with the rest using VF2 algorithm to detect isomorphism. When two subgraphs

are isomorphic the mapper sum their occurrences and save the id of the second one

to be deleted by the reducer in the driver. After we do all the required isomorphism

test, we print the last final result (line: 19).

Using the tree reduces the number of isomorphism tests because the number of leaves

in the tree is less than the number occurrences. An example that shows the difference

between the number of leaves and the number of occurrences for different subgraph

sizes in two different networks is shown in the table 4.1.

Network
Subgraph

size

Subgraph

types

Number Of

Occurrences

Number of

Leaves

3 2 17,631 3

4 6 63,401 17

5 21 268,694 170

Power 6 101 1,260,958 1,771

7 626 6,340,413 14,441

8 4,516 33,494,650 96,219

9 31,543 183,453,978 565,387

3 13 2,553,830 45

Foldoc 4 198 228,272,189 2,304

5 8,345 29,621,881,964 141,115

Table 4.1: Examples for the difference between the number of occurrences and

number of leaves in the corresponding tree. Adapted from [PR13].

53

CHAPTER 4. PARALLEL APPROACHES

Algorithm 4.1 ESU: Static-division mapReduce parallel algorithm for computing the

frequency of subgraphs of size k in graph G using w workers.
1: procedure main(k,G,w)

2: result←− A tree that will contain the total result.

3: verticesSets←− a list that will contain the work-sets for workers, its length is w.

4: partialResult←− The tree that will contain the result of each worker.

5: nIsoOccs←− List of not isomorphic occurrences

6: finalOccs←− List of isomorphic occurrences

7: ctr = 0

8: while ctr < G.numV erices do

9: verticesSets[ctr mod w].add(ctr); ctr + +

10: partialResult = verticesSets.map(vSet)countSubgraphs(G, k, vSet)

11: result = partialResult.reduce(partialResult1, partialResult2)

12: nIsoOccs = populateMap(result)

13: ctr = 0

14: while ctr < nIsoOccs.length do

15: isoSet←− set of ni isomorphic subgraphs from nIsoOccs

16: partialOccs = workers.map(isoSet)applyIso(isoSet, nIsoOccs)

17: finalOccs += partialOccs.reduce(partialOccs1, partialOccs2)

18: ctr+ = ni

19: Print finalOccs

20: procedure countSubgraphs(G, k, vSet) partialResult=null;

21: for all vertex v of vSet do EXT ← u ∈ N(V) : v < u

22: partialResult =extend(v, {v}, EXT, partialResult)
return partialResult

23: procedure extend(v, Vsubgraph, EXT, partialResult)

24: if |Vsubgraph| = k then partialResult += Vsubgraph;

25: for all vertex v in EXT do EXT2 = EXT ∪ {u ∈ Nexcl(w, Vsubgraph) : u > v}
26: partialResult += extend(Vsubgraph ∪ {w}, EXT2, v, partialResult)

return partialResult

27: procedure applyIso(isoSet, nIsoOccs)

28: toDelete←− Holds the subgraphs’ ids that should not be compared any more.

29: mid = mapper.getID

30: ctr = mid

31: for all subgraph sub1 in isoSet do

32: while ctr < nIsoOccs.length do

33: sub2 = nIsoOccs.get(ctr)

34: if VF2.areIsomorphic(sub1, sub2) then

35: isoSet.update(sub1, sub1.occurrences + sub2.occurrences)

36: toDelete+ = sub2.id

37: ctr+ = mid
return (isoSet + toDelete) 54

4.2. PARALLEL APPROACHES

Applying it on G-Tries

Algorithm 4.2 G-Tries: Static-division, parallel MapReduce algorithm for comput-

ing the frequency of subgraphs of a g-trie T in graph G using w workers.
1: procedure main(G,T,w)

2: result←− A g-trie that will contain the total result.

3: verticesSets←− a list that will contain the work-sets for workers, its length is w.

4: partialResult←− The g-trie that will contain the result of each worker.

5: ctr = 0

6: while ctr < G.numV erices do

7: verticesSets[ctr mod w].add(ctr) ; ctr + +;

8: partialResult = verticesSets.map(vSet)countAllMapper(T, vSet)

9: result = partialResult.reduce(partialResult1, partialResult2)

10: Print result

11: procedure countAllMapper(T, vSet)

12: resArr ←− the auxiliary array.

13: for all vertex v of vSet do

14: for all child c of T.root do

15: count(c, {v}, resArr)
return resArr

16: procedure count(gN, Vused, resArr)

17: V ← matchingVertices(gN, Vused)

18: for all vertex v of V do

19: if gN.isLeaf then

20: resArr[gN.id]++

21: else

22: for all child c of gN do

23: count(c, Vused ∪ {v}, resArr)

24: function matchingVertices(T, Vused)

25: Vconn ← vertices connected to the vertex being added

26: m ← vertex of Vconn with smallest neighborhood

27: Vcand ← neighbors of m that respect both

28: connections to ancestors and

29: symmetry breaking conditions

30: return Vcand

As we can see in algorithm 4.2 the driver builds firstly the graph and the g-trie. Then

it divides the graph vertices in a round robin way between a number of work sets

equal the number of workers (lines: 6-7). After that, each worker will execute the

55

CHAPTER 4. PARALLEL APPROACHES

countAllMapper to calculate the occurrences under its work set. In the end, the

reducers collect the intermediate results and build a complete tree with the complete

final result (line: 9). Isomorphism is insured because of the trie data structure and

its conditions as explained in chapter 3. An important thing to mention is that, while

constructing the g-trie we are assigning a key to each node, keys start from zero. And

when the workers are lunched, each worker creates an array with number of entries

equal the size of the g-trie, to store the occurrences that this worker finds. Every time

the worker finds an occurrence, it increases the corresponding index to the g-trie’s leaf

node (line:20). Then the workers return those arrays to the reducer which merge them

forming the final result.

4.2.2 Iterative with time limit (threshold) approach

As in the previous approach, the nodes are divided between workers in a round robin

way and the workers start with an equal amount of nodes to process. After a fixed

amount of time all of the workers stop and save and return their current state to the

reducer, which collects the saved states. Then the remaining work is divided between

workers and a new MapReduce iteration starts. This approach fixes the weaknesses of

the first approach which resulted from unbalanced work, reducing the idle time (time

when some workers are idle).

This threshold divides the iterative approach into two sub-approaches which are either

a fixed threshold, or a dynamic (or adjustable) threshold. The problem with fixed

threshold is that in case it is low, the number of iterations will be high, that means the

idle time will be very small but a lot of time will be spent to save the state and redivide

work. On the other hand, if the threshold is high, as long as the tree is unbalanced,

many workers will go idle. This strategy was not giving us good speedups, because of

that we developed our last algorithm that adjusts the threshold before every iteration.

In this approach we tried to decrease the weaknesses previously mentioned by mak-

ing the threshold dynamically changing. It starts with an initial value equals to

”(numNodes2) ∗ (motifsize
3)”, then after each iteration we calculate the number of

workers who finished before and the amount of time they were idle, then according to

this information we reset the threshold (either increase or decrease). The threshold is

readjusted as follows; If non of the workers finished before, that means the threshold

is low, so we increase it by 20%. Otherwise we decrease it using the following formula,

newThreshold = ((oldThreshold∗numWorkersWhoWaited)/totalNumWorkers)−
(0.2 ∗ averageWaittedT ime). We explain why we chose those values later in chapter

5.

56

4.2. PARALLEL APPROACHES

Applying it on ESU

Algorithm 4.3 details our strategy. First, as in the static division, the driver constructs

the initial work sets (lines: 8-9). It sets the initial time limit (line: 7). Procedure

extend is able to stop when the time limit exceeds and store the recursion(line:32-

34). In this case, the driver builds the corresponding set of work units and stop the

search. New line was added to the countSubgraphs procedure to test time limit

(line:26), if it was exceeded, it stop doing recursive calls, break the cycle, and return

the partial result combined with the saved state and remaining vertices. The driver

calls the workers and after each iteration it checks if there is more work to do, if yes

it adjusts the threshold (line: 14) and keep iterating until there is no more work left.

Saving the state (line: 33) is an important issue that will be explained in a following

section.

Applying it on G-Tries

Algorithm 4.4 shows how we apply our starategy on G-Tries. The driver starts by

setting the initial time limit (line: 5) and initial work sets (lines: 6-7). Then it lunches

the workers, who will start working. If the time limit exceeds before the worker

finishes its work, the worker saves its location and returns its partial result (line: 26-

29). Each partial result will have two components, the found occurrences (resArr)

and the remaining work in the corresponding work set. The Reducer collects those

partial results, separates the components, adds the occurrences to the final result and

constructs the total remaining work. If we still have remaining work to do, the driver

adjusts the threshold (line: 12) and launches the workers with the new work sets(lines:

8-12).

57

CHAPTER 4. PARALLEL APPROACHES

Algorithm 4.3 ESU: Iterative MapReduce parallel algorithm for computing the
frequency of subgraphs of size k in graph G using w workers.

1: procedure main(w, k,G)
2: result←− A tree that will contain the total result.
3: verticesSets←− a list that will contain the work-sets for workers, its length is w.
4: partialResult←− The tree that will contain the result of each worker.
5: nIsoOccs←− List of not isomorphic occurrences
6: finalOccs←− List of isomorphic occurrences
7: timeLimit = k2 ∗ (G.numV erices)2; ctr = 0;
8: while ctr < G.numV erices do
9: verticesSets[ctr mod w].add(ctr); ctr + +

10: while verticesSets 6= ∅ do
11: partialResult = verticesSets.map(vSet)countSubgraphs(G, k, vSet, timeLimit)
12: result += partialResult.reduce(partialResult1, partialResult2)
13: verticesSets = remainingWork
14: timeLimit = adjustThreshold(numIdleMappers, avgWaitedT ime, timeLimit)

15: nIsoOccs = populateMap(result); ctr = 0;
16: while ctr < nIsoOccs.length do
17: isoSet←− set of ni isomorphic subgraphs from nIsoOccs
18: partialOccs = workers.map(isoSet)applyIso(isoSet, nIsoOccs)
19: finalOccs += partialOccs.reduce(partialOccs1, partialOccs2)
20: ctr+ = ni

21: Print finalOccs

22: procedure countSubgraphs(G, k, vSet, timeLimit) partialResult=null;
23: for all vertex v of vSet do
24: EXT ← u ∈ N(V) : v < u
25: partialResult =extend(v, {v}, EXT, partialResult, timeLimit)
26: if timeLimit exceeded then partialResult.add(unexploredV ertices)
27: return partialResult

return partialCount

28: procedure extend(v, Vsubgraph, EXT, partialResult, timeLimit)
29: if |Vsubgraph| = k then
30: partialResult.add(G[Vsubgraph])

31: for all vertex v in EXT do
EXT2 = EXT ∪ {u ∈ Nexcl(w, Vsubgraph) : u > v}

32: partialResult = extend(Vsubgraph ∪ {w}, EXT2, v, partialResult, timeLimit)
33: if timeLimit exceeded then
34: partialResult.add(saveState)
35: return partialResult;

36: return partialResult

58

4.2. PARALLEL APPROACHES

Algorithm 4.4 G-Ttries: Iterative MapReduce parallel algorithm for computing the
frequency of subgraphs of a g-trie T in graph G using w workers.

1: procedure main(T,G,w)
2: result←− A g-trie that will contain the total result.
3: verticesSets←− a list that will contain the work-sets for workers, its length is w.
4: partialResult←− The g-trie that will contain the result of each worker.
5: timeLimit = k2 ∗ (G.numV erices)2; ctr = 0
6: while ctr < G.numV erices do
7: verticesSets[ctr mod w].add(ctr); ctr + +

8: while verticesSets 6= ∅ do
9: partialResult = verticesSets.map(vSet)countAllMapper(T, vSet, timeLimit)

10: result = partialResult.reduce(partialResult1, partialResult2)
11: verticesSets = remainingWork
12: timeLimit = adjustThreshold(numIdleMappers, avgWaitedT ime, timeLimit)

13: Print result

14: procedure countAllMapper(T,G)
15: currentState = null
16: resArr = null←− the auxiliary array.
17: for all vertex v of G do
18: for all child c of T.root do
19: currentState = count(c, {v}, currentState, resArr)
20: if Time Limit exceeded then
21: return currentState
22: return currentState + resArr

23: procedure count(gN, Vused, currentState, resArr)
24: V ← matchingVertices(gN, Vused)
25: for all vertex v of V do
26: if Time Limit exceeded then
27: remainingV = the unexplored vertices in V
28: currentState = saveState(remainingV, hLable, currentMatch, trieID, currentState)
29: return currentState
30: if gN.isLeaf then
31: resArr[gN.id] + +
32: else
33: for all child c of gN do
34: count(c, Vused ∪ {v}, currentState, resArr)

35: function saveState(remainingV, hLable, currentMatch, trieID, currentState)
36: state = trieID + hLable + currentMatch + remainingV
37: currentState += state
38: return currentState

59

CHAPTER 4. PARALLEL APPROACHES

4.2.2.1 Work sets and work units

We define two keywords regarding the work assigned to each worker, work unit and

work set. Work unit is a single state in the search tree from where the worker could

start computing. Work set is a set of work units that is assigned to a worker. For

instance, when we start our work with w workers for example, we divide the nodes in

a round robin way between w work sets and each node represents a work unit. Then

each worker is lunched with a work set to process. After the mappers finish their work,

in case the work is not done yet, the saved states are collected and divided again into

w working sets in a round robin way. Thus the next iteration begins by assigning the

mappers (workers) the new working sets.

4.2.2.2 State saving

When the time threshold is reached, if the mapper has not finished his work set yet, we

should stop the computation and save the search state. The goal is to save the state

of the recursive work by capturing the stack contents in an efficient way. We divide

the current state into a number of work sets, which is equal the number of mappers,

if there is enough work. As a matter of fact, we make sure that if all the workers have

finished their work except this one then in the next iteration all of them will have work

to do (if there is still enough work).

ESU State

In ESU algorithm, in order to safe the state at the vertex where we are, we need to

store the currently explored graph vertices at that level (current) and the unexplored

vertices (EXTension), which is the list of the vertices that were still not traversed.

Figure 4.1 exemplifies our state saving scheme, dashed nodes are the nodes that yet

need to be explored. As shown in the diagram the unexplored nodes in each level are

divided in a round robin way between the workers , also for efficiency reasons we save

only on copy of the current per level per worker so that each work unit has compact

enough information to restart computing. For example in figure 4.1 in the last level the

currently explored vertices are 1, 4, 7, so one work unit that will be received by worker

one is 1, 4, 7, 11, 15, another work unit for worker two will be 1, 4, 7, 12. Supposing we

have two workers, figure 4.2 depicts the content of the two work units in depth i.

Algorithm 4.5 simplifies the part of code in the iterative algorithm that saves the work

units in a certain level of the ESU search tree. The separator is used to separate

states from different levels (depths).

60

4.2. PARALLEL APPROACHES

1

4 5 6

7 8 9 10

12 13

2 3

5 68 9 1011 12 13 2 3

11

2

12

Search Tree

Work Sets

Remaining Work to be Divided

Worker #1 Receives

Worker #2 Receives

Worker #3 Receives

13

3

2

Worker #4 Receives

11 14 15

14

15

8

9

10

5

6

14 15

Figure 4.1: ESU search-tree and dividing the remaining work between four workers

Algorithm 4.5 ESU: Saving the state in ESU algorithm in a certain level.

1: Current←− the currently explored vertices.
2: EXT ←− A list of unexplored vertices in this level.
3: States ←− A list with a length equal the number of workers, will be filled with work

units.
4: if Timelimitexceeded then
5: ctr = 0
6: while ctr < EXT.length do
7: if ctr < States.length then
8: States[ctr]+ = ”separator” + Current

9: States[ctr mod numWorkers]+ = EXT [ctr]
10: ctr + +

Vi: list of currently explored vertices, from depth 0 to depth i

Vi

Vi

Work unit #1

Work unit #2

UVi , UVi ..UVi

2 k

k
UVi : Kth Unexplored vertex in depth i

UVi , UVi ..UVi

1 3 (k-1)

4

Figure 4.2: The content of the two work units in depth i

61

CHAPTER 4. PARALLEL APPROACHES

The size of the saved state will be at maximum O(subgraphsize ∗ V (G)) since we can

only go as far as the subgraph size and the unexplored vertices maximum will equal

to the number of vertices in the graph. However, in practice the content of the state

will be much lower because of the constraints applied on the unexplored vertices’ list.

G-Tries State

Figure 4.3 shows the state of the recursive G-Tries search at a given time.

Depth 0

Matching graph vertex

G-Trie Node

Explored
vertices

... ...

Unexplored
vertices

Current
Vertex

Explored
Nodes

...

Unexplored
Nodes

Current
Node

...

Computed
Units

Explored
vertices

... ...

Unexplored
vertices

Current
Vertex

Explored
Nodes

...

Unexplored
Nodes

Current
Node

...

Computed
Units

Computed
Units

...... ...

Depth 1

Other Depths

Figure 4.3: G-Tries recursive procedure frozen at a given time

The function that enumerates the occurrences in G-Tries algorithm (function COUNT

in algorithm 4.3)contains two cycles, one enumerates all possible graph vertices and the

entire loop enumerates all matching children of the corresponding g-trie node. So when

we save the state in each depth we should save the position in the both cycles. Each

vertex in the graph has a label to define it, and to define the g-trie node we give each

one an id while constructing the g-trie before the enumeration phase. And since the

g-trie is fixed, by knowing the id of a certain node we know its children. As mentioned

we divide the current state at each depth into a number of working sets and each set

is constructed from a set of working units where each unit has enough information to

resume the work later. Supposing we have two workers, figure 4.4 depicts the content

62

4.2. PARALLEL APPROACHES

of the two work units in depth i. Algorithm 4.6 describes the procedure applied inside

the inner cycle when we need to save the state. The separator separates states from

different depths.

Algorithm 4.6 G-Tries: Saving the state in G-Tries algorithm in a certain level.

1: Map←− the currently explored vertices.
2: Fastnei←− A list of unexplored vertices in this level(neighbors of the current vertex).
3: States ←− A list with a length equal the number of workers, will be filled with work

units.
4: if Timelimitexceeded then
5: ctr = 0
6: while ctr < Fastnei.length do
7: if ctr < States.length then
8: States[ctr]+ = ”separator” + Map

9: States[ctr mod numWorkers]+ = Fastnei[ctr]
10: ctr + +

return

ID: g-trie node id

Vi: list of currently explored vertices, from depth 0 to depth i

ID Vi

Lim: aux number for similarity breaking conditions

Lim

ID ViLim

Work unit #1

Work unit #2

UVi , UVi ..UVi

2 k

k
UVi : Kth Unexplored vertex in depth i

UVi , UVi ..UVi

1 3 (k-1)

4

Figure 4.4: The content of the two work units in depth i

4.2.2.3 Resuming the work

As we saw in the previous section, the saved working unit has enough information to

continue its work independently.

In ESU algorithm, the function extend which does the counting, takes as parameters

this information. Algorithm 4.7 shows the countSubgraphs function that receives

the working units (vSet) and calls the counting function. The difference between

calling extend function for a vertex (lines: 3-5) and for a work unit (lines: (6-9) could

63

CHAPTER 4. PARALLEL APPROACHES

be seen in this algorithm too. The current variable expresses the currently explored

vertices and it will have the ones stored in the work unit (line: 8), and EXT variable

will have the vertices that need to be explored which are stored in the work unit too

(line:9).

Algorithm 4.7 ESU: resuming the work from a saved state.

1: procedure countSubgraphs(G, k, vSet, timeLimit) partialResult=null;
2: for all item v of vSet do
3: if v is a vertex then
4: EXT ← u ∈ N(V) : v < u
5: partialResult =extend(v, {v}, EXT, partialResult, timeLimit)
6: else
7: EXT ← v.remainingV ertices
8: current← v.currentlyExploredV ertices
9: partialResult =extend(v, {current}, EXT, partialResult, timeLimit)

10: if timeLimit exceeded then
11: partialResult.add(unexploredV ertices) return partialResult

return partialCount

In G-Tries, we needed a procedure to do the bridge between the saved working unit

and the recursive counting function (count). This procedure is shown in Algorithm

4.8. It iterates through the remaining vertices stored in the saved work unit and

continue counting the occurrences by calling the original census function (lines: 10-

11).

Algorithm 4.8 G-Tries: resuming the work from a saved state.

1: procedure resumeWork(T, Vused, remainingV ertices, currentState)
2: for all vertex v of remainingV ertices do
3: if Time Limit exceeded then
4: remainingV = the unexplored vertices in remainingV ertices
5: currentState = saveState(remainingV, hLable, currentMatch, trieID, currentState)
6: return currentState
7: if T.isLeaf then
8: T.frequency++
9: else

10: for all child c of T do
11: count(c, Vused ∪ {v}, currentState)

64

4.2. PARALLEL APPROACHES

4.2.2.4 Flow Diagram

Figure 4.5 illustrates our strategy.

MapperMapper MapperMapper

Reducer

Reducer

Reducer

Is there
more work

to do?

Adjust Threshold

YES

NO

Print the Result

Do we need
ISOMORPHISM?

NO

Mapper

Mapper

Mapper

Mapper

Split Work

Split Work

Reducer

Reducer

Reducer

Is there
more work

to do?

NO

YES

YES

Figure 4.5: Flow chart for our strategy

65

66

Experimental Evaluation 5
In this chapter we present empirical data obtained by running our parallel methods

on a large, diverse and representative sets of complex networks. First we describe the

computational environment and the networks used. Then for the purpose of studying

the efficiency of our algorithms, we discuss the relative overhead by comparing the orig-

inal sequenial algorithms (C++) with our sequential implementation for them (Java),

furthermore, we compare the sequential algorithms (Java implementation) with our

parallel implementation using only one core. Finally, we do a performance evaluation

for the two parallel approaches (detailed in chapter 4) by doing the scalability tests,

showing the speedups we obtained.

5.1 Common Materials

Our experimental evaluation is organized in two major parts, each part is dedicated

for one parallel approach (Static and Iterative). In each part we gathered results for

the two case study algorithms (ESU and G-Tries). The two approaches were tested

using the same computational environment and networks datasets which are described

next.

5.1.1 Computational Environment

We obtained our results using a 64-core machine, consisting of four 16-core AMD

Opteron 6376 processors at 2.3GHz with a total of 252GB of memory installed. Each

16-core processor is split in two banks of eight cores, each with its own 6MB L3 cache.

Each bank is then split into sets of two cores sharing a 2MB L2 and a 64KB L1

instruction cache. A 16KB L1 data cache is dedicated to each core.

All code was developed in java and compiled using Maven3.3.9 [Apa16b], inside Spark

framework. Moreover, the used time unit is the second.

67

CHAPTER 5. EXPERIMENTAL EVALUATION

5.1.2 Complex Networks

Subgraph search algorithms are ubiquitous and can be applied to any system that

can be modeled as a graph, therefore the possible applications are from many different

scientific fields. For the purpose of testing our work, we chose a diverse set of networks

form various fields of applications, we group those networks according to their field

and describe each of them. Moreover, table 5.1 shows their characteristics.

• Social Networks: describe relations between users from social networks. These

networks are becoming increasingly popular and the study of their structure may

give important insights into social organization [TMP12].

– facebook: undirected network consisting of friend circles gathered from

Facebook [ML12]. Source: [LK14].

• Communication Networks: represent networks related to communications.

– polblogs: directed network of hyperlinks between weblogs on United States

politics, recorded in 2005 by Adamic and Glance [AG05]. Source: [New10].

– company: directed network of ownership of media and telecommunication

companies [NLGC02]. Source: [BM06].

• Biological Networks: networks that model biological processes and concepts,

their structure has been found to give important information and because of that

biological networks are gaining increasing attention.

– neural: directed, weighted network representing the neural network of C.

Elegans [WS98, WSTB86]. Source: [New10].

– metabolic: directed metabolic network of the small nematode round worm

C. elegans [DA05]. Source: [Are14].

• Semantic Networks: represent networks related to connections between con-

cepts.

– foldoc: is a free online dictionary of computing terms, including acronyms,

jargon, programming languages, tools, architecture, operating systems, net-

working, theory, conventions, standards, mathematics, telecommunications,

electronics, institutions, companies, projects, products, history [How10]. It

68

5.1. COMMON MATERIALS

is a directed network where an edge (X,Y) from term X to term Y exists

in the network if the term Y is used to describe the meaning of term X.

Source [BM06].

– september11: is an undirected temporal network, it is based on all stories

released during 66 consecutive days by the news agency Reuters concerning

the September 11 attack on the U.S., beginning at 9:00 AM EST 9/11/2001.

The vertices of a network are words (terms); there is an edge between two

words if they appear in the same text unit (sentence). Source: [BM06].

• Internet Networks: represent relationships between computers, where nodes

represent computers and edges communication.

– gnutella: A sequence of snapshots of the Gnutella peer-to-peer file sharing

network from August 2002. There are total of 9 snapshots of Gnutella

network collected in August 2002. Nodes represent hosts in the Gnutella

network topology and edges represent connections between the Gnutella

hosts. Source: [LK14].

• Wikipedia Networks: Wikipedia is a free encyclopedia written collaboratively

by volunteers around the world. The following networks represent relationships

between Wikipedia users, where nodes represent users and edges votes.

– wikivote: is a directed network that contains all the Wikipedia voting

data from the inception of Wikipedia till January 2008. Nodes in the

network represent wikipedia users and a directed edge from node i to node

j represents that user i voted on user j. Source: [LK14].

• Collaboration Networks: networks consisting of relations between entities

collaborating in the same subject.

– netscience: undirected network containing co-authorships of scientists

working on network experiments and analysis [New06]. Source: [New10].

69

CHAPTER 5. EXPERIMENTAL EVALUATION

Network Group |V (G)| |E(G)| Average
Degree

neural biological 297 2,345 7.9
metabolic biological 453 2,025 4.7
netscience collaboration 1,589 2,742 1.7
polblogs communication 1,491 19,022 12.8
company communication 8,497 6,724 0.8
gnutella internet 8,717 31,525 3.6
foldoc semantic 13,356 120,238 9.0
septemper11 semantic 13,314 243,447 18.3
facebook social 4,039 88,234 21.9
wiki-vote wikipedia 7,115 103,689 14.6

Table 5.1: The set of representative real networks used for performance evaluation.

5.1.3 Test Data

Our algorithm was evaluated up to 64 cores using the mentioned machine and networks.

We searched in each network from table 5.1 for all possible subgraphs of a given size

k. In Table 5.2 we show the size k used and the resulting number of all possible

subgraphs of that size and type (directed or undirected) that was counted in that

network. Furthermore, we show the computing time spent using our last and final

approach using one core, also the growth rate is calculated and shown in order to

expect the required computation for larger subgraph sizes.

Network
Subgraph Number of Computation Growth Rate

Size Occurrences Time (S) AVG STD

septemper11 4 9,969,545,115 2,725 305.6 3.9

foldoc 5 29,621,881,964 6,346 83.0 40.3

polblogs 5 7,347,672,714 2,662 57.5 36.1

company 5 4,335,107,042 782 59.4 74.0

gnutella 6 7,852,428,858 1,964 16.5 12.1

facebook 5 27,925,079,209 4,899 88.8 74.7

social 6 1,181,599,470 632 7.5 5.7

wikivote 4 2,513,413,248 737 56,055.7 96,449.4

netscience 9 886,423,840 2,851 452.3 1062.5

neural 7 37,818,052,163 13,215 2,690.7 5884.1

metabolic 6 9,153,235,252 2,183 552.2 1087.3

Table 5.2: Test data: general information about most of the tests that we did.

70

5.2. OVERHEAD

5.2 Overhead

In the first place we wanted our Java implementation for the sequential algorithms

to be as efficient as possible in comparison with the sequential C++ implementation.

However, Java is slower than C++ in general, because it was designed to be a simple

language. Therefore many of the features available in C++ that give the programmer

control over details were intentionally stripped away. As a result our Java implemen-

tation for G-Tries consumes double the amount of time taken by the C++ one, the

overhead is shown in table 5.3. However, there is still a space to optimize our code

more.

Network Subgraph Size
Sequential C++ Sequential Java

Overhead
Time (s) Time (s)

polblogs 5 511 1,050 ≈ 105%

company 5 157 336 ≈ 114%

netscience 7 7 14 ≈ 100%

polblogs 4 6 12 ≈ 100%

foldoc 5 1838 3,952 ≈ 115%

Table 5.3: G-Tries: Comparison between the original C++ sequential version and
our Java sequential version.

On the other hand, our Java implementation for ESU algorithm was faster than the

C++ one, because of the delay of isomorophism tests as explained in Chapter 4. Also

because we are building the subgraph incrementally on fly, so that when we reach the

required depth, the subgraph will be already built and only needs to be inserted in the

trie. However, when the subgraph size is large our implementation becomes slower,

and that happens because we are using a different isomorphism algorithm (VF2),

which is slower than the one used in the original algorithm (Nauty) when the searched

subgraph size is large. For instance, in the forth example shown in table 5.4, the

539 seconds spent as follows, 18 seconds in counting the subgrahs and building the

trie, and 521 seconds in doing the isomorphism tests. This problem could be solved by

having a java implementation for Nauty algorithm and using it instead when searching

large subgraphs. Table 5.4 shows a comparison between the both the original C++

implementation and our java implementation for ESU.

In addition, we compared the execution time of our parallel algorithms using only one

core with the original sequential algorithm, in order to study the imposed overhead by

our parallel solution and by Sark. Table 5.5 shows the overhead imposed by applying

our second and final approach (Iterative with dynamic threshold) on G-Tries algorithm

which is in average 112%, this overhead is mainly caused by the time limit tests, which

71

CHAPTER 5. EXPERIMENTAL EVALUATION

Network Subgraph Size
Sequential C++ Sequential Java # Times

Time (s) Time (s) Faster

foldoc 4 728 108 ≈ 6.7

polblogs 4 148 26 ≈ 5.7

company 4 97 12 ≈ 8.1

netScience 7 87 539 ≈ 0.2

Table 5.4: ESU: Comparison between the original C++ sequential version and our
Java sequential version.

means the amount of time spent by each worker to compare the amount of time it has

been running with the threshold.

Network Subgraph Size
Sequential Single Worker

Overhead
Time (s) Time (s)

gnutella 6 942 1,964 ≈ 108%

foldoc 5 3,952 6,346 ≈ 60%

polblogs 5 1,050 2,661 ≈ 150%

company 5 336 782 ≈ 130%

Table 5.5: G-Tries: Comparison between the sequential version and the parallel
version with one core.

5.3 Static Division Approach

In this approach, the graph vertices are divided in a round robin way between workers

and each worker processes its portion. In fact the results were not good in general,

because this approach depends on the balance in the graph, which means it will be

perfect if the amount of work under each vertex is equal, and that wont happen in

practice. Usually the work is not balanced and some times it may be up to 20% of

the occurrences under one vertex, in this case the speedup will not exceed 5 even if

the number of cores equals the number of vertices. The following sections show the

speedups obtained by applying this approach on our case study algorithms.

5.3.1 ESU - Speedups

In order to see the scalability of this approach, the speedups of applying it on ESU

algorithm are shown in table 5.6. As shown, the speedups we got were between 3.3

and 12.5.

72

5.3. STATIC DIVISION APPROACH

Network
subgraph #workers: speedup

size 2 4 8 16 32 64

polblog 5 1.6 2.6 4.3 8.5 6.6 7.7

foldoc 5 1.7 2.9 4.5 5.9 7.4 8.3

septemper11 4 1.8 3.3 5.1 7.3 9.0 10.8

gnutella 6 1.8 2.7 3.3 4.6 4.9 5.6

social 6 1.6 3.0 4.7 7.3 6.8 12.5

wikivote 4 1.0 1.7 2.8 3.7 4.9 5.5

company 5 1.0 1.5 2.2 2.9 3.3 3.6

power 7 1.0 1.8 3.0 4.8 5.4 5.1

neural 6 1.3 1.9 1.8 2.4 2.5 3.3

metabolic 6 1.9 3.4 7.7 15.3 17.1 11.0

Table 5.6: ESU: speedups obtained by applying Static Division approach.

5.3.2 G-Tries - Speedups

Table 5.7 shows the speedups obtained by applying the static division approach on

G-Tries algorithm, speedups are between 2 and 17. The variation of the speedups is

high from one graph to another, because this approach depends on the distribution

of the subgraphs in the tested graph. Because of that we can see good speedups in

some cases as gnutella and some very low speedups like in facebook. As a result,

this approach has some weaknesses that will be solved in the second approach.

Network
subgraph #workers: speedup

size 2 4 8 16 32 64

polblog 5 1.5 2.4 4.1 6.1 6.9 7.0

foldoc 5 1.5 1.8 2.0 2.3 2.5 2.4

september11 4 1.9 3.3 4.4 5.5 6.9 7.5

company 5 1.1 1.1 1.1 1.2 1.1 1.1

gnutella 6 1.8 3.6 5.5 9.4 11.3 16.6

facebook 5 1.1 1.9 1.9 2.0 2.0 1.9

netscience 6 1.7 2.6 3.6 4.1 4.5 5.2

wikivote 4 1.9 2.9 4.7 7.7 9.1 8.7

neural 7 1.3 1.9 2.1 2.6 2.5 3.1

metabolic 5 1.3 1.4 1.3 1.4 1.4 1.5

Table 5.7: G-Tries: speedups obtained by applying Static Division approach.

73

CHAPTER 5. EXPERIMENTAL EVALUATION

5.4 Iterative with Time-Limit Approach

This approach was developed to solve the problems of the Static Division one, by using

iterative MapReduce depending on a time limit (threshold) to stop workers, collect

partial results and redivide the work. Furthermore, for the purpose of maximizing the

speedups, the threshold should change from one graph to another. In order to decide

what should be the threshold, we did many tests and chose the values that in general

maximized the speedups. As a result the initial threshold is being set according to the

following formula: threshold = ”(numNodes2) ∗ (motifSize3)”nanoseconds, as could

be seen it depends on the graph size and the searched subgraph’s size. After the first

iteration, the threshold expresses two cases fixed and dynamic threshold, which means

either it is going to keep the same value for all the iterations, or it will be readjusted.

The following sections show the results we got using each of them.

5.4.1 Fixed threshold

The results obtained were better than the ones from the first approach, as could be

seen in the speedups tables in the following sections. However, the problem of this

fixed threshold is that when the its value is high many workers are going idle, and

when the threshold is low, a lot of time is being spent in saving the states of the

workers and redividing the work.

5.4.1.1 ESU - Speedups

Speedups are strongly affected by the threshold and in general we got higher speedups

when it was lower, because the time spent in reducers and the time required to save

the state and continue work from a saved state is optimized. As shown in table 5.8,

the results were better than the ones obtained using the static division approach. For

instance, in the first example polblog, the speedups increased from to 7.7 to 19.2, and

in neural graph the speedups increased from 3.1 to 16.2 which is a good improvement.

5.4.1.2 G-Tries - Speedups

The speedups obtained by applying this approach on G-Tries were better than on ESU

as table 5.9 shows. The average speedups obtained was 28.6. However, as shown in

the table some times the speedups are around 40, and sometimes 16. This difference

in the achieved speedups is mainly because of the effect of the threshold, since the

initial value is not always suitable for the specific case we are computing.

74

5.4. ITERATIVE WITH TIME-LIMIT APPROACH

Network
subgraph #workers: speedup

size 2 4 8 16 32 64

polblog 5 1.9 3.6 6.1 10.3 12.5 19.2

foldoc 5 1.6 3.1 5.2 7.2 10.3 12.9

facebook 5 1.9 3.5 4.0 6.8 9.6 12.5

company 5 1.7 3.0 5.1 7.1 9.2 11.7

september11 4 1.7 3.2 4.7 7.4 12.1 17.3

wikivote 4 1.8 3.2 5.7 8.1 12.4 14.9

netscience 7 1.9 3.4 5.7 7.7 10.0 9.2

gnutella 6 1.7 2.9 4.3 5.6 6.4 8.7

neural 6 1.9 3.4 5.3 8.1 13.4 16.2

metabolic 6 1.9 3.3 5.7 9.8 16.4 17.7

Table 5.8: ESU: speedups for ESU-Iterative with fixed Threshold.

Network
subgraph #workers: speedup

size 2 4 8 16 32 64

polblog 5 1.6 3.8 8.2 15.4 26.0 36.1

foldoc 5 1.9 3.8 7.2 10.7 22.9 27.6

septemper11 4 1.9 3.6 7.1 12.7 19.7 25.8

gnutella 6 1.9 3.8 7.1 11.2 17.1 21.3

company 5 1.9 3.7 6.3 7.6 14.0 16.7

facebook 5 1.9 3.9 7.7 14.2 26.4 38.9

wikivote 4 1.9 3.9 7.3 13.2 23.0 33.5

neural 7 1.9 3.9 7.5 14.3 27.8 41.4

metabolic 6 2.0 4.0 7.2 13.0 18.1 22.6

netscience 9 1.8 3.9 6.3 10.3 17.3 21.7

Table 5.9: G-Tries: speedups for G-Tries-Iterative with fixed Threshold.

5.4.2 Dynamic threshold

The best results were obtained by applying this approach which adjusts the threshold

during the computation as follows. First the workers start computation with an initial

threshold value equal to the one in the fixed threshold:

threshold = ”(numNodes2) ∗ (motifSize3)”nanoseconds.

Then after every iteration the threshold is readjusted according to the number of

workers who waited in the previous iteration and how much time they waited. There

are two cases, either non of the workers wait, or some of them do. In case non of the

workers went idle in the previous iteration we increase the threshold by 20%, in order

to choose the amount of time that should be increased, we did tests on three different

networks, figure 5.1 shows the results we got, our goal was to maximize the speedup.

Because of that, we chose the percentage 20% to be the used one. On the contrary, if

some workers went idle during the previous iteration, we decrease the threshold by an

75

CHAPTER 5. EXPERIMENTAL EVALUATION

amount equal to:

newT = oldT−((oldT∗numIdleWorkers)/totNumWorkers)−(0.2∗avgWaittedT ime).

We got this formula by supposing that it should depend on the previous information

which are, the number of workers who went idle and waited (numIdleWorkers), and

the average amount of time that each worker waited (avgWaittedT ime). Then in order

to decide the percentages, we did many tests and chose the formula that maximized

the speedups for the majority of the tested graphs.

We should reassert that in our machine each pair of cores shares its 2MB L2 and 64KB

L1 instruction cache. This makes it harder to obtain better speedup because these

cores are not completely independent. However, the results we obtained are promising,

as could be seen in the next sections. The speedups from G-Tries algorithm were better

than the ones from ESU, that is because saving the occurrences in the trie is proposing

an overhead in ESU, and this problem does not exist in G-Tries since we know the

subgraphs beforehand.

Figure 5.1: Choosing the best percentage to increase the threshold.

Table 5.10 shows an example that describes how the threshold is changing after each

iteration, each line in the table represents an iteration, and the needed information to

change the threshold is displayed.

76

5.4. ITERATIVE WITH TIME-LIMIT APPROACH

Iteration Threshold (s)
Total number # workers average waited

of workers who waited time (s)

1 4.4 64 0 0

2 5.3 64 0 0

3 6.3 64 0 0

4 7.6 64 8 1.4

5 6.4 64 33 1.7

6 2.8 64 58 1.4

7 0.1 64 54 0.08

8 0.1 64 61 0.09

Table 5.10: Example about the changing of the threshold from one iteration to the
next.

5.4.2.1 ESU - Speedups

We were able to obtain speedups up to 23.4 by applying our final approach on ESU

algorithm, the results are better than the ones ones obtained using the previous

approaches. Table 5.11 expresses the obtained speedups.

Network
subgraph #workers: speedup

size 2 4 8 16 32 64

polblog 5 1.9 3.5 6.1 10.4 17.1 23.4

foldoc 5 1.6 3.2 5.0 7.4 10.6 13.7

septemper11 4 1.8 3.1 5.2 8.5 12.7 18.3

gnutella 6 1.7 3.0 4.1 5.8 7.3 9.5

wikivote 4 1.7 3.1 5.4 8.3 11.5 12.4

facebook 5 1.8 3.9 5.0 10.4 19.4 21.0

company 5 1.8 3.2 5.1 8.1 10.3 12.4

neural 6 1.9 3.2 6.5 9.44 15.7 16.5

metabolic 6 1.9 3.9 7.2 11.6 17.9 20.5

netscience 7 1.9 2.5 5.1 8.5 10.0 16.0

Table 5.11: ESU: speedups for ESU-Iterative with dynamic Threshold.

Directed subgraphs

Table 5.12 shows that our strategy is general and could be applied when searching

directed subgraphs, since the results were similar to the ones obtained before when

searching for undirected subgraphs.

77

CHAPTER 5. EXPERIMENTAL EVALUATION

Network
subgraph #workers: speedup

size 2 4 8 16 32 64

company 5 1.7 3.1 5.3 7.8 10.5 11.1

septemper11 4 1.6 3.2 4.7 7.9 13.0 17.9

wikivote 4 1.8 3.1 5.2 8.1 11.6 12.7

Table 5.12: ESU: Speedups for ESU-Iterative with dynamic Threshold when

searching for directed subgraphs.

5.4.2.2 G-Tries - Speedups

This section shows the promising results we got by applying our strategy on G-Tries

algorithm. We achieved 92.5% efficiency using 32 cores, also with 64 cores we still

achieve speedups up to 45.5.

Table 5.13 expresses the obtained speedups.

Network
subgraph #workers: speedup

size 2 4 8 16 32 64

polblog 5 1.9 3.6 7.2 13.6 26.0 41.8

foldoc 5 1.9 3.6 7.1 14.2 26.4 42.1

septemper11 4 1.9 3.7 6.9 12.7 24.1 36.0

gnutella 6 1.9 3.8 6.7 12.5 24.3 40.1

company 5 1.9 3.8 7.1 12.2 20.1 25.2

facebook 5 1.8 3.4 7.1 13.9 25.4 36.6

wikivote 4 1.9 3.8 7.1 12.5 20.6 25.1

neural 7 1.9 3.7 7.3 13.9 26.1 43.2

metabolic 6 1.9 3.6 7.1 13.9 26.6 40.0

netscience 9 1.9 3.9 6.8 11.3 19.0 25.9

Table 5.13: G-Tries: speedups for G-Tries-Iterative with dynamic Threshold.

Directed subgraphs

The previous tests were done by searching for undirected subgraphs. However, for the

purpose of showing that our strategy is general and could be applied when searching

directed subgraphs, the following test were done. Table 5.14 shows that speedups were

very similar to the ones obtained before.

Figure 5.2 shows the relation between the required computation time and the number

of workers, showing the difference between the parallel and sequential versions. As

shown in the figure, with one core the parallel version is slower because of the overhead,

but with two and more cores it becomes much faster until reaching a speedup of 45.5

78

5.4. ITERATIVE WITH TIME-LIMIT APPROACH

Network
subgraph #workers: speedup

size 2 4 8 16 32 64

foldoc 5 1.9 3.4 5.4 13.0 26.1 43.6

company 5 1.8 3.8 6.6 13.5 23.3 31.4

wikivote 4 1.9 3.4 5.4 13.0 29.6 45.5

Table 5.14: G-Tries: speedups for G-Tries-Iterative with dynamic Threshold when
searching for directed subgraphs.

using 64 cores. In this figure, the vertical access represents the computation time in

seconds and the horizontal access represents the number of cores. Furthermore, with

such speedups, some examples which were very hard to run will be possible and that

gives the user the ability to search for larger subgraphs, which is very important toward

extracting new information from that network. For instance, we run a test on wikivote

network to find subgraphs of size 5 using the sequential version, it took around two

days (47 hours); However, using our parallel algorithm and using 64 workers it took

1.2 hours.

Figure 5.2: G-Tries: Sequential vs Parallel needed computation time for the polblog
network with k = 5.

Figure 5.3 summarizes our results for g-tries iterative MapReduce using dynamic

thresholding, by plotting the average speedup of all tested networks in both the

directed and undirect cases. We can clearly see that we achieve close to linear speedup

up to 32 cores and even in the 64 cores case we obtain considerable speedup only limited

by the used hardware. Furthermore, detailed analysis of the results shows that the

better speedups are obtained for the cases in which the computation time is higher.

79

CHAPTER 5. EXPERIMENTAL EVALUATION

This means that we are cutting the needed time in the use cases that most need it

and means that we could potentially scale well for bigger cases. For instance, in the

company network, the computation time for 32 cores is already only 39 seconds and

it is hard to improve upon this. By contrast, in the neural network, 32 cores take 506

seconds and so there is still room for parallel improvement when doubling the number

of processors.

Figure 5.3: G-Tries: Average speedup for all tested networks.

5.4.3 Comparison with competing algorithms

In section 3.3 we mentioned different parallel algorithms in the area of subgraph search.

Since most of the mentioned algorithms do not parallelize the same algorithms, it was

not possible to compare our results with theirs; However, our strategy is different and

does not have the weaknesses of the large intermediate data nor the memory issues

that they have.

The most recent algorithm of the mentioned ones do parallelize an algorithm that we

are parallelizing using MapReduce [VKK15]. In order to compare our results with

theirs, and since they do not have their code online, we use the table of results in

their paper. Their second best speedup was using a protein protein interaction (PPI)

network which has 2,365 nodes, and searching for subgraphs of size 7 in this network.

The processors in our machine is slower, ours are 2.3 GHz and theirs are 3.4 GHz.

However, we use the same number of cores toward making the comparison as close as

possible. Table 5.15 shows the obtained results, As shown in the table, our sequential

80

5.4. ITERATIVE WITH TIME-LIMIT APPROACH

ESU is faster than theirs, and our speedups and efficiency are higher. Furthermore, G-

Tries is 16 times faster using one processor. Moreover, our speedup and efficiency are

much higher as shown in the table. As conclusion, to do this test using approximately

the same machine, their parallel algorithm took 5.5 hours, our parallel ESU took 2.2

hours and our parallel G-Tries took 4.4 minutes.

Method Sequential time Parallel time Speedups Efficiency

competitor ESU 172,800 19,686 8.78 ≈ 15.7%

our ESU 142,950 7,854 18.20 ≈ 32%

our G-Tries 9,539 266 35.86 ≈ 64%

Table 5.15: Comparison between our algorithms and a recent competing one.

81

82

Cytoscape Plugin 6
In this chapter we present our plugin inside the Cytoscape software, which was

developed toward making the subgraph search algorithms more user friendly. First, we

express the characteristics of Cytoscape. Then we explain the features of our plugin

and how it works showing some diagrams and screen-shots.

6.1 Motivation

Cytoscape is an open source software platform for large-scale the visualizing and

analysis of complex networks, and integrating these networks with annotations, gene

expression profiles and other state data [Cyt02b]. It was originally created at the

Institute of Systems Biology in Seattle in 2002. Now, it is developed by an international

consortium of open source developers. The current version, 3.2.1, was released in

February 2015.

Cytoscape provides a set of features for data integration, analysis and visualization.

It supports the visualization of nodes and edges as a two dimensional network using a

variety of layout algorithms. Hierarchical layout, spring-embedded layout, and circular

layout are examples of the supported layouts [SMO+03]. Moreover, it supports a wide

variety of visual properties in order to control the appearance of the nodes and edges,

for instance node color, shape and size; edge color, thickness and style.

Additionally, more specialized algorithms are added to Cytoscape as plugins. Plugins

are given access to the core network model and can control the network display

[SMO+03]. Furthermore, plugins could be developed by anyone by using the open

Cytoscape API which is based on java. Most of the plugins are freely available in the

Cytoscape applications store [Cyt02a].

83

CHAPTER 6. CYTOSCAPE PLUGIN

6.2 State of the art

There is not any plugin in Cytoscape application store that does the motif discovery

in the same way we do. However, the following plugins do similar functions:

6.2.1 NetMatch

NetMatch was developed in 2011, it finds user defined network motifs [SBS+11]. The

user can choose a specific motif from a list of motifs, and the plugin will count the

occurrences of this specific motif, unlike our plugin which counts all the k-size motifs.

NetMatch works only with two old versions of cytoscape which are 2.7 and 2.8.1,

knowing that the current Cytoscape version is 3.4.0.

6.2.2 CytoKavosh

CytoKavosh plug-in was developed in 2012, it uses Kavosh algorithm for finding

network motifs and is based on counting all k-size sub-graphs of a given network graph

(directed or undirected) [MNAR+12]. However, they only support Linux OS, and the

old versions of Cytoscape. CytoKavosh does not work with windows OS neither with

3.0.0 and newer versions of Cytoscape. The main difference between CytoKavosh and

our plugin is the algorithm used in counting motifs, we use G-Tries which is in average

25 times faster than Kavosh. Moreover, we have more visualization features that will

be explained next.

6.2.3 GraphletCounter

It computes the graphlet signatures of individual nodes or of motifs, which can be spec-

ified by files generated by the motif-finding tool mfinder [WS11]. Although graphlet

and motif are similar concepts, the difference between them is that random networks

are not used to verify over-representation in graphlets. GraphletCounter plugin dis-

plays graphlet signatures visually within Cytoscape, and can output graphlet data for

integration with larger work-flows. Equally to the previous plugins, it does not work

with newer versions of Cytoscape.

84

6.3. MOTIF DISCOVERY PLUGIN

6.3 Motif Discovery Plugin

In order to satisfy the needs of users in doing network motif discovery (subgraph search)

and take the advantages of existing network visualization software like Cytoscape, we

developed our user friendly, easy to use and fast plugin.

This plugin uses the current fastest motif discovery algorithm which is G-Tries, which

makes it very fast.

Generally speaking, after installing the plugin, the user specifies the required parame-

ters (motif size, motif type, number of random networks), and the plugin will execute

the G-Trie algorithm on the current network using the specified parameters and then

visualize the result using the visualization power of Cytoscape.

The current version of the plugin allows its user to do the following:

• Load his network into the Cytoscape environment: this is the first step

that the user does, he can either draw the network by adding nodes and edges or

he can load it from a file. In addition, it is not a problem if the nodes’ numbers

in the graph file start from zero or one or any number.

• Specify the size of the motif : the current version allows the user to count

motifs of sizes between 3 and 9.

• Specify the motif type: the user can count directed or undirected sub-

graphs.

• Specify the number of random networks: in order to measure the statistical

significance for the network (Z-Score).

• Run the algorithm: after loading the network and choosing the required

parameters, the user can run the algorithm by pressing the run button.

• See the work progress: while the algorithm is running, there will be a progress

bar that shows how far along it is in the process. Moreover, there is a label that

tells the expected remaining time. For this purpose we run a sampling algorithm

to expect the number of occurrences, this will take a very small amount of time

before we run the algorithm, and after having it we run the required algorithm

and set the progress bar depending on the current number of occurrences and

the expected one.

• See the results in a friendly way: the results are shown in a table of three

columns (motif representation , number of occurrences, Z-Score).

85

CHAPTER 6. CYTOSCAPE PLUGIN

• Change the order of the subgraphs: rows in the result table could be ordered

depending on any of the last two columns (descending or ascending).

• Select any of the table rows and the plugin will draw the corresponding

subgraph: because it is hard for the user to know the subgraph according to

its binary representation, especially when the size is large, we developed an

algorithm that draws the subgraph which correspond to the selected raw. The

subgraph is drawn in the same working area toward not confusing the user with

new windows.

• Select any of the table rows and the plugin will color the network

according to the occurrences of this subgraph: this is one of the most

important features which uses the Cytoscape node’s color attribute. We color

the nodes according to the number of times each one occurred in the selected

subgraph, for instance if there are two occurrences for subgraph of size 3 :

(1,2,3)(1,4,5) then node 1 appeared two times and the other nodes appeared

only once, in this case the color of node 1 will be different from the others. In

the current version we are coloring the nodes with maximum ten colors, in other

words we divide the range of number of appearances into ten ranges, each range

will be colored in the same color, the used colors are shown and ordered in the

interface.

• See the range of frequencies that each color represents: by clicking on

any of the ten colors, in the plugin interface, it will tell the user the range of

frequencies that it represents.

86

6.4. PLUGIN DESIGN

6.4 Plugin Design

6.4.1 Use Case Diagram

Figure 6.1 shows an outside view of the system through a use case diagram. It

represents the interaction between our unique actor (user) and the different use cases

in which the user is involved.

Figure 6.1: Use Case Diagram for our plugin.

87

CHAPTER 6. CYTOSCAPE PLUGIN

6.4.2 Sequence Diagram

As an illustration, figure 6.2 is a sequence diagram that shows object interactions

arranged in time sequence. It depicts components involved in the scenario and the

sequence of messages exchanged between them to carry out the functionality of the

scenario.

Interface Java Side

Select Subgraph Size

Enter number of random networks

Create Graph

Run Sampling

Expected Number Of Occurrences

Expected Remaining Time

How Many Occurrences Have You Found Until Now

Number of Occurrences Found Until Now

loop

While Process is
 not finished

Ubrate Progress Bar and Remaining Time Label

USERUser

Ordered Result

Color Nodes According to a Subgraph Which Nodes Occurred in this Subgraph and how many Times

Color Nodes

loop

loop

Java algorithmsInterface

Run Methode

Figure 6.2: Sequence Diagram for our plugin.

88

6.5. GUI-SNAPSHOTS

6.5 GUI-Snapshots

6.5.1 Running

Figures 6.3 shows how the system looks like while the algorithm is running. The user

can see the work progress and the expected remaining time.

Figure 6.3: Motif-Discovery: Running the work

6.5.2 showing result

In figure 6.4, the work is done and the result is displayed. A summary about the work

could be seen below the run button, it includes the number of types of subgraphs found,

the number of occurrences and the computation time. Moreover, the table shows the

details about each subgraph type. The small subgraph above the table visualizes the

subgraph that the user selected, to the right of this subgraph is the color set used, the

light green will be the color representing the least frequent nodes and the dark red

is the color of the most appeared ones. Moreover, when the user clicks any of those

89

CHAPTER 6. CYTOSCAPE PLUGIN

colors, a message box will tell him where it appears as show in the figure. As shown

in the work place the nodes are colored according to their occurrences in the selected

subgraph type, the numbers attached with these colors are shown in the table below

the work space in the column #occurrences, in this table each row represents a node.

Figure 6.4: Motif-Discovery: Displaying the result

Furthermore, the are adding the number of occurrences as new property of the node,

and that will allow the user to use it in different visualization functions, for instance

he could adjust the layout depending on this new property as shown in figure 6.5. Also

it could be exported from cytoscape as a csv file.

After all, the plugin is now available in Cytoscape app store and could be downloaded

and directly used [eR16], it does not depend on any library unlike the first version

that is explained in appendix A. Moreover, it works with any operating system, we

testes it on Windows, Mac and Linux.

90

6.5. GUI-SNAPSHOTS

Figure 6.5: Motif-Discovery: using the number of occurrences as a new property.

91

92

Conclusions and Future Work 7
Complex networks are used in a wide range of artificial and natural systems. The

detection of small patterns in these networks lead to a better understanding of their

structure and functionality. This operation is called subgraph search and has been

applied to networks in many fields. However, it is a computationally hard problem

and because of that its application is limited by the size of the pattern being searched

and the size of the network. For the purpose of decreasing those limitations, this work

develops a parallel MapReduce strategy that speeds up subgraph census in complex

networks. Moreover, a plugin to do subgraph search in a friendly way was built

inside Cytoscape software. This chapter summarizes the main contributions done and

concludes with a directions for future work.

7.1 Contributions

The main goal of this thesis is to large scale the Subgraph Search and make it

available to users in a friendly way. The following points are the main contributions

of our work.

• Java implementation of ESU and G-Tries: Since the technologies we are

using do not support native languages, and our case study algorithms (ESU,

G-Tries) are implemented using C++, our first contribution of the thesis is a

java implementation for the sequential versions of those algorithms.

• Delay ismorphism tests in ESU: For the purpose of making ESU faster, the

isomorphism test were delayed to the end of the enumeration operation, instead

of doing them after finding each occurrence. This results in reducing the required

number of tests which are time consuming.

• Map-Reduce Strategy for unbalanced ”tree-like” parallel search:

This is the major contribution. We designed and implemented a general scal-

able parallel MapReduce strategy for subgraph search treelike algorithms. Our

93

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

implementation was done inside Spark framework, which is widely available on

cloud computing providers such Amazon Web Services, and is also available on

different operations systems.

– Strategy application in both ESU and G-Trie

We apply the strategy on both ESU and G-Tries algorithms, which are

different, ESU is network-centric algorithm and G-Tries is set-centric one.

Since MapReduce was not originally developed for this kind of data, so in

order to do load balancing between the workers, we dynamically divide the

search tree among them, we developed an efficient sharing mechanism that

is able to stop, save the remaining work in a collection of work sets and

resume the execution. By being able to successfully apply our strategy to

two different algorithms we also display its generality.

– Thorough empirical analysis we test the scalability of our strategy by

doing an extensive experimental evaluation for the implementation of both

algorithms. We tested them using large set of representative networks from

different fields. Speedups up to 45 were achieved using a machine with 64

cores.

To the best of our knowledge, there is not any MapReduce for set-centric

subgraph search algorithms, so ours is the fastest available MapReduce one.

Regarding the network-centric algorithms, our parallel ESU performs better

than the existing MapReduce approach. As a result, our strategy expands

the limits of subgraph counting applicability, allowing an exploration of

larger subgraphs in bigger networks.

• Motif Discovery Plugin

we developed a plugin for subgraph census in Cytoscape software, the goal of this

plugin is using the visualization power of Cytoscape to make the subgraph search

more friendly for the user, especially people who are not from computer science

and not familiar with command line. The plugin was published in the application

market of Cytoscape, and now any user can use it by simply downloading it from

the market.

94

7.2. FUTURE WORK

7.2 Future Work

There are still many areas that deserve improvement, either in the strategy itself in

order to achieve better speedups, or by adding more features to the plugin to advance

its usage. Next we mention some points for future research.

• Intelligent automatic way in adjusting the threshold: Since the main

factor affecting the speedups, is adjusting the threshold, we would like to study

how this process can be automated in a more intelligent way toward achieving

better speedups.

• Supporting larger networks by applying the strategy on other al-

gorithms that do not use adjacency matrix: a major limitation of

ESU and G-Tries algorithms is assuming that the entire network can fit in

the main memory. This limits the applicability to relatively small networks.

And nowadays networks with billions of nodes are becoming widely available.

Therefore, we would like to apply our strategy on algorithms that does not use

adjacency matrix.

• Apply the strategy on sampling algorithms which give an approxima-

tion about the number of occurrences; we would like to parallelize an efficient

sampling algorithm using our strategy. Moreover, this sampling could help

in knowing the perfect way in adjusting the threshold for the network being

processed, that is by running the sampling before the exact enumeration.

• Real world scenarios Practically speaking, we would like to use the advan-

tages of the scalability of our algorithm in analyzing real world networks, by

searching for new subgraph patterns that can lead to deeper understanding of

their structure.

• Making the code public In order to let all practitioners benefit from our

scalable algorithm we are planing to make our code public, so that any person

can use it either in his machine or in a computing cloud.

• Publish our work by submit it to conference or journal: because of

time constrains we have not managed to submit our work to be published yet,

but we are going to do that.

• Gephi version of the plugin For the purpose of letting more people count

subgraphs in a fast and friendly way, we would like to do another plugin inside

95

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Gephi software which is widely used as Cytoscape. In fact, those two software

are widely used by users who study networks.

• Add more feature to the plugin In this work, we presented the first version of

our plugin, which we plan to continue improving. For instance, we will parallelize

the algorithm using pthreads to take the advantages of multiple cores in the user’s

machine. Also, we will study the possibility of mining the users’ results if they

permit, and do researches on that data from all over the world.

7.3 Closing Remarks

We feel that the main objectives of this thesis were accomplished. A general MapRe-

duce strategy was developed and applied on two different algorithms. Moreover, a

user friendly plugin was developed and published. On the other hand, for the author,

researching subgraph search and parallelization approaches in addition to working

with open source software (Cytoscape), have been very interesting, and contributed

in developing his programming and research skills.

96

Cytoscape Plugin using JNI A
Motif-Discovery plugin was developed in the same time with our parallel strategy, so

before having the java implementation of G-Tries, we used the existing C++ code of

the algorithm and because Cytoscape API is based on Java we used JNI (Java Native

Interface) to make the bridge between the java interface and the C++ algorithm, more

details about the version that uses JNI could be found in the appendix A.

However, after having the Java implementation, we decided to use it, in order not to

force the user to install external libraries, for the purpose of making the installation

and usage of the plugin easy and do not depend on any external software or library.

A.0.1 What is JNI

JNI (Java Native Interface) is a powerful feature that allows taking the advantage of

the java platform, and still use the code written in native languages. JNI is a two way

interface, it permits the java application to call native code and vice versa. Using JNI,

java application invokes the native methods in the same way as it is invoking methods

that are implemented in java [Lia99]. As shown in figure A.1, writing and running a

program with the use of JNI needs 6 main steps.

A.1 Count-Occurrences Plugin

This plugin supports three different algorithms for motif discovery which are G-Tries,

ESU and Subgraph. Since we started developing the plugin before having our java

implementation for the mentioned algorithms, we needed to use the available c++

implementation which is very optimized. However, the Cytoscape API is based on

Java, for that reason we used JNI (Java Native Interface) to make the bridge between

the Java interface and the C++ algorithms. Generally speaking, the plugin consists of

two main parts, the core and the interface; The core illustrates the native algorithms

97

APPENDIX A. CYTOSCAPE PLUGIN USING JNI

and the interface is the java code which uses the visualization power of Cytoscape.

Those two parts are connected throw JNI as shown in figure A.2.

The Core

The native algorithm form the engine of the plugin. For the purpose of using the

existed C++ code we needed to do the following; After generating the header file

of the java interface (step 3 in figure A.1), we implemented the C++ class of this

header file, which works like the controller of the core, it has the function that will be

invoked from the java interface (native functions), those functions invoke the census

algorithms. Moreover, the census algorithms’ functions needed to be edited for the

purpose of being invoked the way we wanted. After all, we packaged them all together

in a dynamic link library (.dll) package.

The Interface

The interface or the java part is the code that will use the core data structure and

windows of Cytoscape. It has the controls that the user will use to enter his ... the

interface will invoke the native procedures with this information,

A.2 Plugin Design

A.2.1 Sequence Diagram

As an illustration, figure A.3 is a sequence diagram that shows object interactions

arranged in time sequence. It depicts components involved in the scenario and the

sequence of messages exchanged between them to carry out the functionality of the

scenario.

98

A.2. PLUGIN DESIGN

1-
Crate class

that declares the
native method

2-
Use javac
to compile
the program

3-
Use javah to

generate header
file

4-
Write the C

implementation
of the native method

5-
Compile C code

and generate
native library

6-
Run the program

using the java
interpreter

HelloWorld.java

HelloWorld.class

HelloWorld.c

HelloWorld.h

HelloWorld.dll

"Hello World!"

Figure A.1: JNI: steps in writing and running a Hello World program. Adapted
from [Lia99]

99

APPENDIX A. CYTOSCAPE PLUGIN USING JNI

Interface
(Java code)

Core
(C++ code)

JNI

Figure A.2: Count-Occurrences: the main components of the old version.

Interface Java Side

Choose Methode

Select Subgraph Size

Run Methode

Create Graph

Done

Run Sampling

Expected Number Of Occurrences

Expected Remaining Time

How Many Occurrences Have You Found Until Now

Number of Occurrences Found Until Now

loop

While Process is
 not finished

Ubrate Progress Bar and Remaining Time Label

Result

USERUser

Run Method

Ordered Result

Color Nodes According to a Subgraph Color Nodes Which Nodes Occurred in this Subgraph and Howmany Times

Occurred NodesColor Nodes

loop

loop

Java SideInterface C++ Side

Figure A.3: Sequence Diagram for the old version of our plugin .

100

References

[AA04] István Albert and Réka Albert. Conserved network motifs allow protein–

protein interaction prediction. Bioinformatics, 20(18):3346–3352, 2004.

[AFU13] Foto N Afrati, Dimitris Fotakis, and Jeffrey D Ullman. Enumerating

subgraph instances using map-reduce. In Data Engineering (ICDE),

2013 IEEE 29th International Conference on, pages 62–73. IEEE, 2013.

[AG05] Lada A. Adamic and Natalie Glance. The political blogosphere and the

2004 u.s. election: Divided they blog. In 3rd International Workshop on

Link Discovery, LinkKDD ’05, pages 36–43, New York, NY, USA, 2005.

ACM.

[Apa16a] Apache. Apache hadoop.

https://hadoop.apache.org/, 2016.

[Apa16b] Apache. Apache maven project.

http://maven.apache.org/index.html, 2016.

[Are14] Alex Arenas. Alex arenas website - network datasets.

http://deim.urv.cat/~alexandre.arenas/data/welcome.htm, 2014.

[ARF16] Miguel Araujo, Pedro Ribeiro, and Christos Faloutsos. Faststep:

Scalable boolean matrix decomposition. In Pacific-Asia Conference on

Knowledge Discovery and Data Mining, pages 461–473. Springer, 2016.

[ARS14] David Aparicio, Pedro Ribeiro, and Fernando Silva. Parallel subgraph

counting for multicore architectures. In IEEE International Symposium

on Parallel and Distributed Processing with Applications. IEEE CS,

August 2014.

[Bar09] Albert-László Barabási. Scale-free networks: a decade and beyond.

science, 325(5939):412–413, 2009.

101

https://hadoop.apache.org/
http://maven.apache.org/index.html
http://deim.urv.cat/~alexandre.arenas/data/welcome.htm

REFERENCES

[Bar16] Albert-Laszlo Barabasi. Network science. Cambridge University Press,

2016.

[BGP07] Kim Baskerville, Peter Grassberger, and Maya Paczuski. Graph animals,

subgraph sampling, and motif search in large networks. Physical Review

E, 76(3):036107, 2007.

[BM06] Vladimir Batagelj and Andrej Mrvar. Pajek datasets.

http://vlado.fmf.uni-lj.si/pub/networks/data/, 2006.

[BMZ02] Vladimir Batagelj, Andrej Mrvar, and Matjaz Zaversnik. Network

analysis of texts. University of Ljubljana, Inst. of Mathematics, Physics

and Mechanics, Department of Theoretical Computer Science, 2002.

[Boy08] Chas Boyd. Data-parallel computing. Queue, 6(2):30–39, 2008.

[BS12] Ed Bullmore and Olaf Sporns. The economy of brain network organiza-

tion. Nature Reviews Neuroscience, 13(5):336–349, 2012.

[CFSV04] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A

(sub) graph isomorphism algorithm for matching large graphs. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 26(10):1367–

1372, 2004.

[CHLN06] Jin Chen, Wynne Hsu, Mong Li Lee, and See-Kiong Ng. Nemofinder:

Dissecting genome-wide protein-protein interactions with meso-scale

network motifs. In Proceedings of the 12th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 106–115.

ACM, 2006.

[Col16] Smith College. Running cpp programs on hadoop.

http://cs.smith.edu/dftwiki/index.php/Tutorials, 2016.

[Coo71] Stephen A Cook. The complexity of theorem-proving procedures.

In Proceedings of the third annual ACM symposium on Theory of

computing, pages 151–158. ACM, 1971.

[CRBS12] Sarvenaz Choobdar, Pedro Ribeiro, Sylwia Bugla, and Fernando Silva.

Comparison of co-authorship networks across scientific fields using mo-

tifs. In Advances in Social Networks Analysis and Mining (ASONAM),

2012 IEEE/ACM International Conference on, pages 147–152. IEEE,

2012.

102

http://vlado.fmf.uni-lj.si/pub/networks/data/
http://cs.smith.edu/dftwiki/index.php/Tutorials

REFERENCES

[CRS12] Sarvenaz Choobdar, Pedro Ribeiro, and Fernando Silva. Motif mining in

weighted networks. In Data Mining Workshops (ICDMW), 2012 IEEE

12th International Conference on, pages 210–217. IEEE, 2012.

[CRTVB07] L da F Costa, Francisco A Rodrigues, Gonzalo Travieso, and

Paulino Ribeiro Villas Boas. Characterization of complex networks: A

survey of measurements. Advances in physics, 56(1):167–242, 2007.

[Cyt02a] Cytoscape. Cytoscape app store.

http://apps.cytoscape.org/, 2002.

[Cyt02b] Cytoscape. Cytoscape software.

http://cytoscape.org/, 2002.

[DA05] Jordi Duch and Alex Arenas. Community detection in complex networks

using extremal optimization. Physical review E, 72(2):027104, 2005.

[DDLMM13] Manlio De Domenico, Antonio Lima, Paul Mougel, and Mirco Musolesi.

The anatomy of a scientific rumor. Scientific reports, 3, 2013.

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data

processing on large clusters. Communications of the ACM, 51(1):107–

113, 2008.

[eR16] Ahmad Naser eddin and Pedro Ribeiro. Motif-discovery - cytoscape

plugin.

http://apps.cytoscape.org/apps/motifdiscovery, 2016.

[Erc15] Kayhan Erciyes. Complex Networks: An Algorithmic Perspective. CRC

Press/Taylor & Francis Group, 2015.

[FFHV07] Michael R. Fellows, Guillaume Fertin, Danny Hermelin, and Stéphane

Vialette. Sharp tractability borderlines for finding connected motifs

in vertex-colored graphs. In Proceedings of the 34th International

Colloquium on Automata, Languages and Programming (ICALP), pages

340–351, 2007.

[For96] Scott Fortin. The graph isomorphism problem. Technical report,

Technical Report 96-20, University of Alberta, Edomonton, Alberta,

Canada, 1996.

[Fre60] Edward Fredkin. Trie memory. Communications of the ACM, 3(9):490–

499, 1960.

103

http://apps.cytoscape.org/
http://cytoscape.org/
http://apps.cytoscape.org/apps/motifdiscovery

REFERENCES

[FSV01] Pasquale Foggia, Carlo Sansone, and Mario Vento. A performance

comparison of five algorithms for graph isomorphism. In Proceedings

of the 3rd IAPR TC-15 Workshop on Graph-based Representations in

Pattern Recognition, pages 188–199, 2001.

[GK07] J. Grochow and M. Kellis. Network motif discovery using subgraph enu-

meration and symmetry-breaking. Research in Computational Molecular

Biology, pages 92–106, 2007.

[Goo15] Google. Mapreduce for c.

https://github.com/google/mr4c, 2015.

[Gra16] Martin Grandjean. Connected world: Untangling the air traffic network.

http://www.martingrandjean.ch/connected-world-air-traffic-network/,

2016.

[HD14] Tomaž Hočevar and Janez Demšar. A combinatorial approach to

graphlet counting. Bioinformatics, 30(4):559–565, 2014.

[How10] Editor Dennis Howe. The free on-line dictionary of computing.

http://www.foldoc.org/, 2010.

[JMA07] Ruoming Jin, Scott McCallen, and Eivind Almaas. Trend motif: A graph

mining approach for analysis of dynamic complex networks. In Data

Mining, 2007. ICDM 2007. Seventh IEEE International Conference on,

pages 541–546. IEEE, 2007.

[KAE+09] Z. Kashani, H. Ahrabian, E. Elahi, A. Nowzari-Dalini, E. Ansari,

S. Asadi, S. Mohammadi, F. Schreiber, and A. Masoudi-Nejad. Kavosh:

a new algorithm for finding network motifs. BMC bioinformatics,

10(1):318, 2009.

[KFMH+11] L Krumov, C Fretter, M Müller-Hannemann, K Weihe, and M-T Hütt.

Motifs in co-authorship networks and their relation to the impact of

scientific publications. The European Physical Journal B, 84(4):535–540,

2011.

[KIMA04] N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon. Efficient sampling

algorithm for estimating subgraph concentrations and detecting network

motifs. Bioinformatics, 20(11):1746–1758, 2004.

104

https://github.com/google/mr4c
http://www.martingrandjean.ch/connected-world-air-traffic-network/
http://www.foldoc.org/

REFERENCES

[KMP+01] S Kalir, J McClure, K Pabbaraju, C Southward, M Ronen, S Leibler,

MG Surette, and U Alon. Ordering genes in a flagella pathway by anal-

ysis of expression kinetics from living bacteria. Science, 292(5524):2080–

2083, 2001.

[Kun16] Jérôme Kunegis. The koblenz network collection.

http://konect.uni-koblenz.de/, 2016.

[LFS06] Vincent Lacroix, Cristina G. Fernandes, and Marie-France Sagot. Motif

search in graphs: Application to metabolic networks. IEEE/ACM

Transactions on Computational Biology and Bioinformatics, 3(4):360–

368, 2006.

[Lia99] Sheng Liang. The Java Native Interface: Programmer’s Guide and

Specification. Addison-Wesley Professional, 1999.

[LK14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large

network dataset collection.

http://snap.stanford.edu/data, June 2014.

[LQLC15] Longbin Lai, Lu Qin, Xuemin Lin, and Lijun Chang. Scalable subgraph

enumeration in mapreduce. Proc. VLDB Endow., 8(10):974–985, June

2015.

[MIK+04] R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat,

M. Sheffer, and U. Alon. Superfamilies of evolved and designed networks.

Science, 303(5663):1538–1542, March 2004.

[ML12] Julian McAuley and Jure Leskovec. Learning to discover social circles in

ego networks. In P. Bartlett, F.C.N. Pereira, C.J.C. Burges, L. Bottou,

and K.Q. Weinberger, editors, Advances in Neural Information Process-

ing Systems 25, pages 548–556. 2012.

[MMFDC14] Luis AA Meira, Vińıcius R Máximo, Álvaro L Fazenda, and Ar-

lindo F Da Conceição. Acc-motif: accelerated network motif detection.

IEEE/ACM Transactions on Computational Biology and Bioinformatics

(TCBB), 11(5):853–862, 2014.

[MNAR+12] Ali Masoudi-Nejad, Mitra Ansariola, Zahra Razaghi, Ali Salehzadeh-

Yazdi, and Sahand Khakabimamaghani. Cytokavosh plugin.

http://apps.cytoscape.org/apps/cytokavosh, 2012.

105

http://konect.uni-koblenz.de/
http://snap.stanford.edu/data
http://apps.cytoscape.org/apps/cytokavosh

REFERENCES

[MP14] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism,

{II}. Journal of Symbolic Computation, 60(0):94 – 112, 2014.

[MSOI+02] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri

Chklovskii, and Uri Alon. Network motifs: simple building blocks of

complex networks. Science, 298(5594):824–827, 2002.

[New06] M. E. J. Newman. Finding community structure in networks using the

eigenvectors of matrices. Physical Review E, 74(3):036104, 2006.

[New10] Mark Newman. Network data sets.

http://www-personal.umich.edu/~{}mejn/netdata/, 2010.

[NLGC02] Kim Norlen, Gabriel Lucas, Mike Gebbie, and John Chuang. Eva:

Extraction, visualization and analysis of the telecommunications and

media ownership network. In Proceedings of International Telecom-

munications Society 14th Biennial Conference (ITS2002), Seoul Korea.

Citeseer, 2002.

[OSKK05] Jukka-Pekka Onnela, Jari Saramäki, János Kertész, and Kimmo Kaski.

Intensity and coherence of motifs in weighted complex networks. Physical

Review E, 71(6):065103, 2005.

[OSMN09] Saeed Omidi, Falk Schreiber, and Ali Masoudi-Nejad. Moda: an efficient

algorithm for network motif discovery in biological networks. Genes &

genetic systems, 84(5):385–395, 2009.

[Pla13] Todd Plantenga. Inexact subgraph isomorphism in mapreduce. Journal

of Parallel and Distributed Computing, 73(2):164–175, 2013.

[PR13] Pedro Paredes and Pedro Ribeiro. Towards a faster network-centric

subgraph census. In International Conference on Advances in Social

Networks Analysis and Mining, pages 264–271. IEEE, 2013.

[Prž07] Nataša Pržulj. Biological network comparison using graphlet degree

distribution. Bioinformatics, 23(2):e177–e183, 2007.

[RS10] Pedro Ribeiro and Fernando Silva. G-tries: an efficient data structure for

discovering network motifs. In ACM Symposium on Applied Computing,

2010.

106

http://www-personal.umich.edu/~{ }mejn/netdata/

REFERENCES

[RS14a] Pedro Ribeiro and Fernando Silva. Discovering colored network motifs.

In Proceedings of the 5th International Workshop on Complex Networks

(CompleNet), March 2014.

[RS14b] Pedro Ribeiro and Fernando Silva. G-tries: a data structure for storing

and finding subgraphs. Data Mining and Knowledge Discovery, 28:337–

377, March 2014.

[RSL10a] Pedro Ribeiro, Fernando Silva, and Lúıs Lopes. Efficient parallel

subgraph counting using g-tries. In IEEE International Conference on

Cluster Computing (Cluster), pages 1559–1566. IEEE Computer Society

Press, September 2010.

[RSL10b] Pedro Manuel Pinto Ribeiro, Fernando MA Silva, and Lúıs MB Lopes.

Parallel calculation of subgraph census in biological networks. In

BIOINFORMATICS, pages 56–65, 2010.

[RSL12] Pedro Ribeiro, Fernando Silva, and Lúıs Lopes. Parallel discovery of

network motifs. Journal of Parallel and Distributed Computing, 72:144–

154, 2012.

[ŠB11] Lovro Šubelj and Marko Bajec. Robust network community detection us-

ing balanced propagation. The European Physical Journal B, 81(3):353–

362, 2011.

[SBS+11] D. Shasha, Gary Bader, D. Skripin, A. Pulvirenti, G. Pigola, R. Giugno,

and A. Ferro. Netmatch plugin.

http://apps.cytoscape.org/apps/netmatch, 2011.

[SCBB08] Michael Schatz, Elliott Cooper-Balis, and Adam Bazinet. Parallel

network motif finding. Techinical report, University of Maryland Insitute

for Advanced Computer Studies, 2008.

[SJ15] Saeed Shahrivari and Saeed Jalili. Distributed discovery of frequent

subgraphs of a network using mapreduce. Computing, 97(11):1101–1120,

2015.

[SK04] Olaf Sporns and Rolf Kötter. Motifs in brain networks. PLoS Biol,

2(11):e369, 2004.

[SMK93] Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper. Optimizing

join orders. Citeseer, 1993.

107

http://apps.cytoscape.org/apps/netmatch

REFERENCES

[SMO+03] Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S Baliga, Jonathan T

Wang, Daniel Ramage, Nada Amin, Benno Schwikowski, and Trey

Ideker. Cytoscape: a software environment for integrated models of

biomolecular interaction networks. Genome research, 13(11):2498–2504,

2003.

[SOMMA02] Shai S Shen-Orr, Ron Milo, Shmoolik Mangan, and Uri Alon. Network

motifs in the transcriptional regulation network of escherichia coli.

Nature genetics, 31(1):64–68, 2002.

[SS04] Falk Schreiber and Henning Schwobbermeyer. Towards motif detection

in networks: frequency concepts and flexible search. Proc. Intl. Wsh.

Network Tools and Applications in Biology (NETTAB’04), pages 91–

102, 2004.

[TMP12] Amanda L Traud, Peter J Mucha, and Mason A Porter. Social

structure of facebook networks. Physica A: Statistical Mechanics and

its Applications, 391(16):4165–4180, 2012.

[Ull76] Julian R Ullmann. An algorithm for subgraph isomorphism. Journal of

the ACM (JACM), 23(1):31–42, 1976.

[vB12] Lovro Šubelj and Marko Bajec. Software systems through complex

networks science: Review, analysis and applications. In Proceedings of

the First International Workshop on Software Mining, SoftwareMining

’12, pages 9–16, New York, NY, USA, 2012. ACM.

[VKK15] Vartika Verma, Paul Park Kwon, and Wooyoung Kim. Iterative hadoop

mapreduce-based subgraph enumeration in network motif analysis. In

Cloud Computing (CLOUD), 2015 IEEE 8th International Conference

on, pages 893–900. IEEE, 2015.

[VS05] Sergi Valverde and Ricard V Solé. Network motifs in computational

graphs: A case study in software architecture. Physical Review E,

72(2):026107, 2005.

[Wer06] Sebastian Wernicke. Efficient detection of network motifs. IEEE/ACM

Transactions oon Computational Biology and Bioinformatics (TCBB),

3(4):347–359, 2006.

[WS98] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’

networks. Nature, 393(6684):440–442, 1998.

108

REFERENCES

[WS11] Christopher Whelan and Kemal Sonmez. Graphletcounter - cytoscape

plugin.

http://apps.cytoscape.org/apps/graphletcounter, 2011.

[WSTB86] John G White, Eileen Southgate, J Nichol Thomson, and Sydney

Brenner. The structure of the nervous system of the nematode

caenorhabditis elegans. Philosophical Transactions of the Royal Society

of London. B, Biological Sciences, 314(1165):1–340, 1986.

[WTZ+05] Tie Wang, Jeffrey W Touchman, Weiyi Zhang, Edward B Suh, and

Guoliang Xue. A parallel algorithm for extracting transcriptional

regulatory network motifs. In Bioinformatics and Bioengineering, 2005.

BIBE 2005. Fifth IEEE Symposium on, pages 193–200. IEEE, 2005.

[YCLH06] Kai-Hsiang Yang, Kun-Yan Chiou, Hahn-Ming Lee, and Jan-Ming Ho.

Web appearance disambiguation of personal names based on network

motif. In WEBI, 2006.

[ZCF+10] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker,

and Ion Stoica. Spark: Cluster computing with working sets. HotCloud,

10:10–10, 2010.

109

http://apps.cytoscape.org/apps/graphletcounter

	Abstract
	Resumo
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Motivation
	Goals and Contributions
	Organization

	Subgraph Search
	Graph Terminology
	Subgraph Census Problem
	Subgraph Census Applications

	Algorithms for Subgraph Census
	Algorithmic Approaches
	Historical overview
	Strategy types

	Sequential Algorithms
	ESU
	Computing subgraph frequencies
	ESU search tree
	Graph Isomorphism Algorithms

	G-Tries
	Structure
	Creating the G-Trie
	Computing subgraph frequencies

	Parallel Algorithms
	Parallel approaches for ESU algorithm
	Parallel approaches for G-Tries algorithm
	MapReduce parallel algorithms for subgraph search
	MRSUB
	Iterative Hadoop MapReduce
	Edge-based join
	Star join
	TwinTwig join
	Multiway

	Parallel Approaches
	MapReduce
	Motivation
	Programming model
	Iterative MapReduce
	Frameworks
	Hadoop
	MR4C (MapReduce for C)
	Spark

	Parallel Approaches
	Static division approach
	Iterative with time limit (threshold) approach
	Work sets and work units
	State saving
	Resuming the work
	Flow Diagram

	Experimental Evaluation
	Common Materials
	Computational Environment
	Complex Networks
	Test Data

	Overhead
	Static Division Approach
	ESU - Speedups
	G-Tries - Speedups

	Iterative with Time-Limit Approach
	Fixed threshold
	ESU - Speedups
	G-Tries - Speedups

	Dynamic threshold
	ESU - Speedups
	G-Tries - Speedups

	Comparison with competing algorithms

	Cytoscape Plugin
	Motivation
	State of the art
	NetMatch
	CytoKavosh
	GraphletCounter

	Motif Discovery Plugin
	Plugin Design
	Use Case Diagram
	Sequence Diagram

	GUI-Snapshots
	Running
	showing result

	Conclusions and Future Work
	Contributions
	Future Work
	Closing Remarks

	Cytoscape Plugin using JNI
	What is JNI
	Count-Occurrences Plugin
	Plugin Design
	Sequence Diagram

	References

