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Hepcidin is a peptide hormone that regulates iron homeostasis, acting by 

preventing iron export from cells, and therefore promoting a decrease in the blood 

iron concentration. Insufficient hepcidin production promotes increased dietary iron 

absorption and increased release of iron from the tissues (mostly the spleen and 

liver), leading to iron overload. Excess iron is deposited in the parenchyma, 

causing tissue damage. This is commonly observed in patients with hereditary 

hemochromatosis (HH), an iron overload disease caused by deficient production 

of the hormone hepcidin. HH, as well as other disorders, is known to be a risk 

condition for lethal infections by siderophilic bacteria, whose growth and virulence 

are enhanced by iron. For example, Vibrio vulnificus (V. vulnificus), a Gram-

negative siderophilic bacterium, may cause fulminant and deadly sepsis in patients 

with severe HH, while healthy people resist the infection and only develop mild 

symptoms. The work presented here aims to elucidate the mechanisms of 

susceptibility to V. vulnificus infection, focusing on the hypoferremic response 

triggered by hepcidin. Additionally, based on our findings we sought to develop a 

strategy to mitigate the infection in susceptible mice. 

We infected wild-type (WT) and hepcidin-deficient (Hamp1-/-) mice with V. 

vulnificus and found that hepcidin deficiency resulted in increased bacteremia and 

decreased survival of infected mice, which could be partially ameliorated by 

dietary iron depletion. WT mice responded to the infection by acutely increasing 

hepcidin production after inflammatory stimuli triggered by interleukin 6 (IL-6) and 

activin B, leading to a decrease in serum iron. This response was critical to 

prevent rapid bacterial growth and consequent septic shock. Disruption of this 

response in Hamp1-/- mice accounted for the development of severe infection and 

lethality.  

Based on our findings, we attempted to elicit a protective response in the highly 

susceptible Hamp1-/- mice. For that purpose, we administered minihepcidins 

(synthetic hepcidin agonists) to infected mice before or a few hours after infection. 

Minihepcidins induced hypoferremia, which resulted in decreased bacterial loads 

and decreased mortality, regardless of initial iron levels. The effect of 

minihepcidins on bacterial growth was a consequence of the hypoferremic 

response rather than a direct bactericidal effect.  
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To investigate the role of iron in V. vulnificus virulence, we studied bacterial growth 

ex vivo. We observed that high iron sera from hepcidin-deficient mice supported 

extraordinarily rapid bacterial growth and that growth was inhibited in hypoferremic 

sera. Furthermore, the presence of non-transferrin-bound iron (NTBI), particularly 

Fe (III), was critical to trigger V. vulnificus growth in serum and plasma, which can 

partially explain the severe infection observed in iron-overloaded individuals. V. 

vulnificus was previously shown to respond to iron concentrations through the 

Ferric Uptake Regulator (Fur) system. However, infection with a Fur deletion 

mutant caused the same mortality as WT V. vulnificus. Alternative candidates 

involved in iron-induced growth and virulence were found by RNA sequencing of 

V. vulnificus, grown in the presence or absence of NTBI.  

In summary, the work presented in this thesis demonstrates that hepcidin-

mediated hypoferremia is a critical host defense mechanism against V. vulnificus 

infection, and offers an explanation for the poor prognosis of this condition in 

severely iron overloaded individuals. The removal of NTBI from circulation is 

essential to prevent rapid bacterial growth and septic shock. This can be 

accomplished by administration of minihepcidins, which were shown to mitigate 

infections by siderophilic bacteria in susceptible mice. Therefore, minihepcidins 

constitute a promising strategy to treat siderophilic infections in susceptible 

patients, including those with iron overload disorders such as hereditary 

hemochromatosis or thalassemia. 
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A hepcidina é a hormona que regula a homeostasia do ferro, actuando de forma a 

prevenir a exportação de ferro das células. Assim, a ação da hepcidina provoca 

uma diminuição da concentração de ferro no sangue. A produção insuficiente de 

hepcidina resulta num aumento da absorção de ferro proveniente da dieta, bem 

como um aumento da libertação de ferro dos tecidos (principalmente o baço e o 

fígado), o que leva à sobrecarga de ferro. O ferro em excesso é depositado no 

parênquima e resulta no desenvolvimento de lesões nos tecidos. Este fenómeno é 

observado em doentes com hemocromatose hereditária (HH), uma doença de 

sobrecarga de ferro causada pela produção insuficiente da hormona hepcidina. A 

HH, assim como outras doenças, é um factor de risco para o desenvolvimento de 

infeções letais causadas por bactérias siderofílicas, cujo crescimento e virulência 

são exacerbados na presença de ferro. Por exemplo, a Vibrio vulnificus (V. 

vulnificus) é uma bactéria siderofílica e Gram-negativa, que pode causar sepsis 

fulminante e letal em pacientes com HH grave. Contudo, pessoas saudáveis são 

resistentes a esta infeção e apenas manifestam sintomas ligeiros. O trabalho 

apresentado nesta tese tem o objetivo de elucidar os mecanismos que explicam a 

suscetibilidade a infeções causadas por V. vulnificus, focando-se na resposta de 

diminuição de ferro no sangue pela ação da hepcidina. Adicionalmente, 

pretendemos desenvolver uma estratégia para combater a infeção em murganhos 

altamentes suscetíveis a esta infecção. 

Murganhos do tipo selvagem (WT) ou deficientes na produção de hepcidina 

(Hamp1-/-) foram infetados com V. vulnificus, tendo-se verificado que a deficiência 

em hepcidina resulta num aumento do número de bactérias no hospedeiro e a 

uma diminuição na taxa de sobrevivência após infeção. Ambos os aspetos foram 

parcialmente melhorados através da utilização de uma dieta pobre em ferro. 

Murganhos WT responderam à infeção através de um rápido aumento da 

produção de hepcidina em reposta ao estímulo inflamatório causado pela 

interleucina 6 (IL-6) e pela ativina B, o que levou a uma diminuição dos níveis de 

ferro no soro. Esta resposta foi fundamental na prevenção do rápido crescimento 

das bactérias e no desenvolvimento de choque séptico. A ausência desta 

resposta em murganhos Hamp1-/- explica o desenvolvimento de infeção grave e 

morte dos animais infectados. 
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Com base nos resultados descritos, tentamos desencadear uma resposta 

protetora em murganhos Hamp1-/-, através de tratamentos com minihepcidinas 

(péptidos sintéticos com ação semelhante à hepcidina), antes ou depois da 

infeção. Estes tratamentos induziram uma diminuição de ferro no soro, resultando 

num decréscimo do número de bactérias no hospedeiro e diminuição da taxa de 

mortalidade dos animais, independentemento dos níveis iniciais de ferro. O efeito 

das minihepcidinas no crescimento bacteriano foi uma consequência da 

diminuição do ferro no soro e não devido a um efeito bactericida. 

De forma a investigar o papel do ferro na virulência de V. vulnificus, estudamos o 

crescimento das bactérias ex vivo. As bactérias cresceram muito rapidamente em 

soro rico em ferro proveniente de murganhos Hamp1-/-, enquanto o crescimento 

foi inibido em soro pobre em ferro. Além disso, a presença de ferro não ligado à 

transferrina (NTBI), particularmente Fe (III), foi fundamental para o crescimento 

em soro e plasma, o que poderá explicar em parte o desenvolvimento de infeções 

graves em doentes com sobrecarga de ferro. A resposta ao estímulo do ferro por 

V. vulnificus ocorre através do sistema Ferric Uptake Regulator (FUR). Contudo, 

infecções com uma bactéria mutante que não possui a proteína Fur causaram a 

mesma taxa de mortalidade que a estirpe selvagem. Procuramos então 

candidatos alternativos envolvidos no aumento do crescimento e virulência 

induzidos pelo ferro, através da sequenciação de RNA de bactérias incubadas 

com ou sem NTBI. 

Em suma, o trabalho apresentado nesta tese demonstra que a diminuição de ferro 

no soro através da hepcidina é fundamental para a proteção contra infeções por 

V. vulnificus. A remoção de NTBI da circulação é essencial para prevenir o 

crescimento bacteriano e o desenvolvimento de choque séptico. Isto pode ser 

conseguido através da administração minihepcidinas, um tratamento eficaz na 

melhoria das infeções por bactérias siderofílicas em murganhos susceptíveis a 

este tipo de infeções. Dessa forma, as minihepcidinas são uma estratégia 

promissora no tratamento de infeções siderofílicas em pacientes suscetíveis, 

incluindo aqueles com doenças de sobrecarga de ferro tais como a 

hemocromatose hereditária ou talassemia. 
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Section 1 - Mammalian Iron Metabolism 

From being produced in the core of massive stars to playing essential roles at the 

cellular level, iron has taken center stage in the history of the universe and in the 

biology of nearly all living creatures. Its exceptional capacity to act both as an 

electron donor and acceptor rendered it a privileged co-factor for enzymes 

involved in various metabolic pathways, such as oxygen sensing and transport, 

mitochondrial respiration, cell proliferation as well as host defense [1]. However, 

this capacity for transferring electrons also makes iron a highly reactive and toxic 

element. Iron catalyzes the formation of reactive oxygen species (ROS) through 

the Haber-Weiss and Fenton reactions, causing damage to DNA, proteins, and 

organelles, and ultimately leading to organ dysfunction [2]. For this reason, iron 

levels must be tightly regulated to fulfill the metabolic demand while avoiding 

excess iron, both at the cellular and systemic levels. Iron toxicity is also avoided 

through coupling the metal ion with prosthetic groups and proteins, both in the 

intra- and extracellular space. Several molecules involved in the intricate network 

of mammalian iron metabolism have been discovered in recent decades and will 

be summarized in this section (Figure 1), with emphasis on the iron-regulatory 

hormone hepcidin. 

 

1.1 - Iron distribution and recycling  

The average adult human contains ~4 grams (g) of iron, from which ~2-3 g are 

found in hemoglobin from erythroid precursors and mature erythrocytes [1]. Other 

iron-rich tissues include the liver and the spleen (containing 0.5-1 g of iron), where 

the iron is mainly stored in hepatocytes and macrophages, and is readily available 

if necessary. The daily iron requirement for erythrocyte synthesis is 20-25 mg. 

However, only 1-2 mg are absorbed through dietary consumption by the 

enterocytes, mostly to compensate for iron losses through shedding of intestinal 

epithelial cells, desquamation of skin, blood losses and sweat [3]. Most of the iron 

is supplied by a highly efficient recycling mechanism, by which senescent or 

damaged erythrocytes are phagocytosed by reticuloendothelial macrophages and 

iron is recovered and delivered back into circulation [4]. This recycling loop 

assures that erythropoiesis is not compromised by the natural variability of dietary 
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iron content, its poor solubility and bioavailability and its inefficient intestinal 

absorption. The enterocytes (absorption) and the macrophages (recycling) are 

therefore two main determinants of iron homeostasis due to their ability to deliver 

iron into blood circulation. The third piece in this puzzle is the hepatocyte, a 

specialized iron storage cell that produces of a plethora of iron-related proteins [5]. 

 

1.2 - Iron absorption and traffic 

Due to the absence of a regulated mechanism of iron excretion, the maintenance 

of appropriate levels of iron in the body relies on the control of dietary iron 

absorption. Dietary iron is found predominantly in its oxidized Fe (III) form or 

associated with heme groups, and is absorbed at the brush border of duodenal 

enterocytes. The mechanism for heme-iron absorption has not been elucidated, 

and it appears to be independent from inorganic iron uptake. The absorption of 

inorganic Fe (III) requires its reduction to Fe (II) partially by the membrane-

associated ferrireductase DcytB (Cybrd1) at the apical membrane of enterocytes 

[6]. Other ferrireductases may be involved in this process since DcytB knockout 

mice present normal iron metabolism [7] except when they are stressed by 

hypoxia [8]. Fe (II) is then transported to the cytosol via the Divalent Metal 

Transporter I (DMT1 / solute carrier family 11, member 2 SLC11A2), a 

proton/divalent transporter [9, 10]. DMT1 is strongly induced by iron deficiency, 

further supporting its important role in iron metabolism [9]. Once in the cytosol, iron 

that is not used for cellular processes is exported into the bloodstream by the 

basolateral transporter ferroportin, the sole known cellular iron exporter [11, 12]. 

Coupled to its export, Fe (II) undergoes oxidation to Fe (III) catalyzed by 

hephaestin, a multicopper oxidase homolog of liver ceruloplasmin, to allow iron to 

be loaded onto the iron transport molecule transferrin (Tf) as a mono- or diferric 

molecule  and delivered to distant tissues [13].  

Transferrin is a glycoprotein with two high-affinity binding sites for Fe (III) [14]. This 

iron transporter ensures efficient delivery of iron to target tissues (mostly the bone 

marrow), while maintaining it in a chemically inert form, thus preventing the 

formation of damaging toxic radicals. Transferrin-bound iron (TBI) is delivered to 

the cells by interaction with the Transferrin Receptor 1 (TfR1) and subsequent 
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endocytosis of the TBI-TfR1 complex [15, 16]. The low pH in the endosomes 

causes iron to be released, followed by reduction to Fe (II) by the 

metalloreductase Six Transmembrane Epithelial Antigen of the Prostate 3 

(STEAP3) [17] and transported to the cytosol by DMT1 [18]. If required for cellular 

processes, iron enters the Labile Iron Pool (LIP), a metabolically active and 

regulatory form of iron [19, 20]. Excess iron can be stored in ferritin, a protein 

"cage" that can accommodate up to 4500 iron atoms [21]. The delivery of iron into 

ferritin is carried out by Human poly (rC)-binding proteins (PCBPs), cytosolic iron 

chaperones [22]. Tf-TfR1 is cycled back to the cell membrane and the neutral pH 

promotes the dissociation of transferrin back into circulation, while TfR1 stays in 

the membrane ready for the next endocytic cycle.  

In normal conditions, iron concentration in plasma ranges from 10 to 30 µM, which 

corresponds to ~30% of transferrin saturation [23]. In iron overload disorders, such 

as hereditary hemochromatosis (HH) and β-thalassemia, iron exceeds transferrin 

binding capacity. In this situation, excess iron binds to low-molecular weight 

compounds, such as citrate and acetate, and also albumin, forming complexes 

collectively known as non-transferrin-bound iron (NTBI) [24, 25]. NTBI is avidly 

taken up by the liver (and at to a lesser extent by the heart and pancreas), 

possibly decreasing the circulation of highly reactive iron species in the blood and 

more widespread toxic damage. However, iron deposition can seriously damage 

parenchymal cells and cause organ dysfunction [26, 27]. The mechanism of NTBI 

uptake by the liver has not been fully clarifeid yet. A candidate for NTBI transport 

is the Zrt-Irt-like protein 14 (Zip14 / SLC39A14), although its relevance in vivo has 

still to be demonstrated [28]. 
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Figure 1. Overview of iron metabolism. Enterocyte: dietary iron is absorbed in duodenal 
enterocytes. The low amount of iron absorbed (1-2 mg) is mostly used to compensate for small 
daily losses. Dietary Fe (III) is reduced  at the apical membrane by the Duodenal cytochrome B 
(Dcytb) and enters the enterocytes via the Divalent Metal Transporter 1 (DMT1). Iron contained in 
heme groups is transported across the apical cell membrane through an unknown mechanism and 
converted to Fe (II) by Heme Oxygenase 1 (HO-1). Intracellular iron is then used for cellular 
processes, delivered to ferritin (Ft) by Poly(rC)-binding proteins (PCBPs) complexes or released via 
ferroportin (Fpn), followed by oxidation to Fe (III) by haephastin (Hph). Fe (III) in the bloodstream 
binds to transferrin (TBI) and is delivered to various tissues, including the bone marrow, where it is 
incorporated in heme groups during erythropoiesis. Hepatocyte: hepatocytes are the primary 
storages of iron in the organism. Besides TBI, these cells are able to take up non-transferrin bound 
iron (NTBI), via an unknown mechanism, although evidence support that the ZRT/IRT-like protein 
14 (ZIP14) may be the NTBI transporter. Similarly to enterocytes, iron can be used, stored within 
ferritin or released via ferroportin. Hepatocytes are also the primary producers of hepcidin, 
therefore acting as important regulators of iron homeostasis. Hepcidin promotes the degradation of 
ferroportin in various cell types which results in higher intracellular iron retention and lower 
systemic iron levels, due to the inhibition of iron absorption from enterocytes and iron release by 
other cells. Macrophage: Macrophages in the spleen and liver are responsible for the 
phagocytosis of senescent or damaged erythrocytes, ensuring that heme-iron is recycled through 
the action of HO-1 and released into the bloodstream through Fpn, maintaining a daily systemic 
iron flux of 20-25 mg that is required for erythropoiesis. 
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1.3 - Regulation of cellular iron - The IRE/IRP system 

Cellular iron levels must be tightly regulated so that the appropriate amount is 

available for metabolic functions, while avoiding toxic damage through the 

formation of ROS. The best characterized model for cellular iron regulation is the 

IRE/IRP system, a post-transcriptional regulatory mechanism that ensures that 

proteins involved in iron uptake, usage, storage and export are coordinately 

regulated according to the intracellular iron levels [29, 30]. This system involves 

the iron regulatory proteins 1 and 2 (IRP-1 and IRP-2) and the conserved iron-

responsive elements (IRE) present in the untranslated regions (UTR) of various 

iron-regulated transcripts. Regulatory IRE can be located in the 3' or 5' regions of 

the UTR and their location dictates the fate of the transcript. Transcripts harboring 

3' IRE are stabilized after binding to IRP, increasing their levels, while 5' IRE 

blocks the translation initiation process [31]. In iron-restricted conditions, IRP is 

recruited to bind IRE located in the 3’ IRE of proteins involved in iron uptake (TfR1 

and DMT1) mRNA, stabilizing the transcripts, and to the IREs in the 5’ UTR of iron 

storage (ferritin), usage (aminolevulinic acid synthetase 2 - ALAS2) and export 

(ferroportin), inhibiting the translation of these mRNAs. The net result is higher iron 

uptake via TfR1 and less iron stored in ferritin complexes and exported via 

ferroportin, leading to higher iron availability. Conversely, in iron-replete cells IRP 

fail to bind IRE, inhibiting iron uptake and promoting the storage and export of 

excess iron. Combined disruption of IRP-1 and IRP-2 results in early embryonic 

lethality in mice, demonstrating the importance of this regulatory system [32]. 

Disruption of only one of the IRPs is compatible with life but results in distinct 

phenotypes depending on the protein mutated: IRP-1 disruption causes 

polycythemia and pulmonary hypertension [33]; IRP-2 deletion results in microcytic 

anemia, iron overload and neurological defects [34]. These phenotypes support 

the idea that the two IRPs have both overlapping and specialized functions. 
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1.4 - Regulation of systemic iron - Hepcidin 

In vertebrates, the regulation of systemic iron levels is orchestrated by hepcidin, a 

25 amino acid peptide hormone synthesized by the liver [35-37]. Hepcidin is 

released in the circulation to control the efflux of iron into plasma from the three 

main iron sources: absorption of dietary iron in the duodenum, release of recycled 

iron from macrophages in the spleen, and release of stored iron from hepatocytes. 

While hepatocytes constitute the major source of circulating hepcidin, other cells, 

such as macrophage, lymphocytes and adipocytes, have been found to express 

hepcidin mRNA, although at much lower levels [38-40]. The pathophysiological 

role of the extrahepatic sources of hepcidin is still unclear. 

Hepcidin inhibits iron release into the plasma by decreasing the amount of 

ferroportin, the only known cellular iron exporter [41]. In mammals, ferroportin is 

abundant in iron-exporting cells - enterocytes, hepatocytes and macrophages - 

and present at lower levels in other organs possibly to prevent iron toxicity (heart 

[42]) or for yet unknown functions (e.g. erythrocyte precursors [43], and the lungs 

[44]). Hepcidin binds to ferroportin and triggers its ubiquitination, presumably by 

inducing a conformational change [45]. This results in endocytosis, subsequent 

lysosomal degradation of the hepcidin-ferroportin complex, and decreased cellular 

iron export. Therefore, the hepcidin-ferroportin interaction decreases iron flux into 

the bloodstream, promoting hypoferremia. Aberrant expression or interaction of 

hepcidin and ferroportin causes or contributes to a large spectrum of iron 

disorders, from iron overload diseases to iron-restricted anemias [46]. Hepcidin 

production is tightly regulated by three main stimuli: iron, erythropoiesis and 

inflammation (Figure 2).  

 1.4.1 Regulation of hepcidin expression 

Regulation by iron: the control of iron homeostasis by hepcidin represents a 

classical endocrine regulatory system. Hepcidin regulates iron and in turn, 

hepcidin production is regulated by iron in circulation and in liver stores: when iron 

is abundant, hepcidin production is increased to limit dietary iron absorption and 

release from the stores; when iron is required, a decrease in hepcidin production 

allows iron to enter the bloodstream to meet the iron requirements of 

erythropoiesis and metabolic functions [47]. The lack of IRE motifs in hepcidin 



Chapter I - Section 1 

11 
 

mRNA precludes its regulation through the IRE/IRP system. Therefore other 

regulatory mechanism have to come into play. The sensing of extracellular iron 

occurs through an intricate mechanism that effectively senses the iron-bound form 

of transferrin, holotransferrin, via receptors TfR1 and TfR2, together with the 

membrane protein HFE which is able to interact with both receptors [48]. It has 

been proposed that HFE binding to TfR1 is competitively inhibited by 

holotransferrin, causing the displacement of HFE and its subsequent binding to 

TfR2. The HFE-TfR2 binding is further stabilized by holotransferrin and this 

complex stimulates hepcidin expression possibly through bone morphogenic 

proteins (BMP) and/or mitogen-activated protein kinases (MAPK) signaling 

pathways [49].  

The involvement of the BMP/mothers against decapentaplegic homolog (SMAD) 

pathways in transcriptional regulation of hepcidin is strongly supported by the 

development of hepcidin deficiency and iron overload in BMP6-deficient mice [50, 

51] and the loss of hepcidin expression when SMAD4 is disrupted in the liver [52]. 

Interaction of BMPs with their membrane receptors promotes intracellular 

phosphorilation of SMAD1/5/8 which bind to SMAD4 promoting its migration to the 

nucleus, where it binds to the hepcidin promoter to increase hepcidin expression 

[53]. Activation of BMP signaling requires the GPI-linked protein hemojuvelin 

(HJV), which acts as a BMP co-receptor [54]. Disruption of HJV results in a severe 

and early-onset form of hemochromatosis. A soluble form of this protein (sHJV) is 

produced through cleavage of HJV by the pro-hormone convertase furin [55] and 

the transmembrane protein serine 6 (TMPRSS6, also known as matriptase 2), and 

acts as a negative regulator of hepcidin expression [56]. Neogenin, a ubiquitously 

expressed membrane protein, was found to interact with HJV and TMPRSS6, 

regulating BMP signaling and HJV cleavage [57, 58]. There is evidence that 

intracellular iron stores in the liver also stimulate hepcidin production, in part by 

increasing BMP6 concentrations [59], but the mechanism of intracellular iron 

sensing to control hepcidin expression has not been elucidated. 

Regulation by erythropoiesis; The production of erythrocytes is strictly dependent 

on the availability of iron to be incorporated in heme groups and hemoglobin. 

Accordingly, the supply of iron for erythropoiesis must be increased when 

erythropoiesis is stimulated. The long sought "erythroid factor" that inhibits 
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hepcidin expression in response to the erythropoietic drive was recently found and 

named erythroferrone (ERFE) [60]. This peptide hormone is produced by 

erythropoietin-stimulated erythroblasts and suppresses hepcidin synthesis to allow 

the mobilization of iron to the bone marrow. ERFE-deficient mice fail to decrease 

hepcidin in response to hemorrhage or erythropoietin administration, which results 

in a delayed recovery from anemia. The receptor and signaling pathways involved 

in ERFE signaling are still unknown. Other mediators, including the growth 

differentiation factor 15 (GDF15) [61] and the twisted gastrulation protein homolog 

1 (TWSG1) [62], may also be implicated in this response. 

Regulation by inflammation: Hepcidin production is increased during inflammation, 

a response that may have evolved as a host defense mechanism to reduce iron 

availability to invading extracellular pathogens [63, 64]. In support of this idea, 

patients with iron overload disorders, such as hereditary hemochromatosis and β- 

thalassemia are highly susceptible to infection by certain extracellular microbes 

such as Vibrio vulnificus and Yersinia enterocolitica [65]. However, the efficacy of 

this mechanism remains to be shown in vivo. During inflammation, hepcidin 

expression is increased mainly through interleukin 6 (IL-6) [66] and possibly other 

mediators such as Activin B [67]. Binding of IL-6 to its receptor triggers a signaling 

pathway mediated by Janus kinase (JAK) and activation of the signal transduction 

and activator of transcription (STAT) 3 to increase hepcidin transcription [68]. 

Activin B signals through the BMP/SMAD pathway and may act synergistically with 

the JAK/STAT3 pathway to increase hepcidin expression in response to 

inflammation [67]. During chronic inflammation, the sustained stimulation of 

hepcidin production may result in anemia of inflammation (also known as anemia 

of chronic disease) due to the inadequate supply of iron for erythropoiesis [69]. 
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Figure 2. Signaling pathways involved in hepcidin regulation. Inflammation: Hepcidin (HAMP) 

expression is regulated in response to various stimuli, such as inflammation, iron levels, and 

erythropoiesis. Inflammation-mediated hepcidin up-regulation is controlled by several cytokines, but 

IL-6 seems to be the most prominent stimulus. By binding to the IL-6 receptor (IL-6R), IL-6 

activates the JAK/STAT3 pathway. Activin B can also positively regulate hepcidin in inflammatory 

conditions through the BMP-SMAD pathway. Iron: The proposed model for hepcidin regulation in 

response to extracellular iron involves transferrin-bound iron (TBI) binding to TfR1, releasing HFE 

which becomes available to bind TfR2. This interaction increases HAMP expression, by promoting 

the SMAD signaling and possibly also via the MAPK/ERK1-2 pathway. Intracellular iron was shown 

to increase the expression of Bone Morphogenic Protein 6 (BMP6) which can in turn increase 

HAMP expression through the BMP/SMAD pathway. This mechanism also involves the BMP co-

receptor hemojuvelin (HJV) and neogenin, which is thought to stabilize the signaling complex. In 

low iron conditions, TMPRSS6 (matriptase 2) acts as a negative regulator of this pathway by 

cleaving HJV. Erythropoiesis: Erythropoiesis is a strong negative regulator of hepcidin production, 

leading to  increased iron availability for the production of red blood cells. This response is 

mediated by erythroferrone (ERFE), via a still unknown signaling pathway. Other mediators may be 

involved in this response, such as the growth differentiation factor 15 (GDF15) and the twisted 

gastrulation protein homolog 1 (TWSG1). 
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 1.4.2 - Diseases of hepcidin deficiency / hepcidin resistance 

In hereditary hemochromatosis, a genetic iron overload disease, patients have 

deficient hepcidin production leading to an iron-overload phenotype: ferroportin is 

highly expressed on the cell membrane, which results in hyperabsorption of 

dietary iron by the duodenal enterocytes, increased release of iron from recycling 

macrophages and subsequent increase in plasma iron concentrations, transferrin 

saturation and appearance of NTBI [70]. Since there is no regulated iron excretion 

mechanism in humans and animals, excess iron is deposited in the tissues that 

have active uptake transporters for NTBI (mainly the liver, but also heart, pancreas 

and other endocrine glands). Excessive and prolonged uptake of NTBI can result 

in organ damage and failure. Inadequate hepcidin production in response to iron 

loading is most commonly due to mutations in genes encoding iron sensors or 

signaling pathways that regulate hepcidin production. The severity of the disease 

appears to be proportional to the degree of hepcidin deficiency. Autosomal 

recessive mutations in the hemochromatosis gene (HFE) are the most frequent 

cause of genetic iron overload (Type 1), particularly homozygous HFE C282Y 

mutations and occasionally compound heterozygote C282Y/H63D mutations. This 

form of the disease is incompletely penetrant, and clinically-important iron 

overload usually develops only in the presence of modifying factors that further 

decrease hepcidin production (e.g. alcohol [71], or additional genetic variations as 

in GNPAT gene [72]). More penetrant and severe forms of hereditary 

hemochromatosis are fortunately rare and originate from mutations in transferrin 

receptor 2 (Type 3) which cause a disease of intermediate severity and mutations 

in HJV (Type 2A) and the hepcidin gene itself (Type 2B). Mutations in HJV or 

hepcidin lead to an early onset and severe form of the disease called juvenile 

hemochromatosis. Another rare form of hemochromatosis is due to autosomal 

dominant mutations in the hepcidin receptor ferroportin (Type 4). These mutations 

(such as C326S) lead to ferroportin’s resistance to hepcidin, so that iron is 

absorbed and exported to the circulation despite the presence of hepcidin [73].  

Currently, phlebotomy is the treatment of choice to reverse iron overload in 

hereditary hemochromatosis. The loss of each 1 ml of packed erythrocytes 

removes 1 mg of iron and promotes mobilization of iron from iron-loaded tissues 

and into the bone marrow for restorative erythropoiesis. This treatment is highly 
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effective, inexpensive, and has very few side effects, although some patients 

require frequent treatments.  

Low hepcidin is also an important feature of iron-loading anemias, such as β-

thalassemia [74]. Iron overload is the major cause of morbidity and mortality 

associated with this disease, both in non-transfusion-dependent and transfusion-

dependent thalassemia. Defective β-globin production during erythropoiesis 

results in the precipitation of excess α-chains and apoptosis of the erythroid 

precursors during their maturation, causing anemia. In an attempt to compensate 

for the lack of mature red blood cells, erythropoietin production is increased 

causing a massive expansion of the erythroid compartment but this fails to 

generate sufficient mature red cells. In the absence of transfusions, iron overload 

develops due to hyperabsorption of dietary iron secondary to low hepcidin. 

Hepcidin decrease is a result of overproduction of suppressive factors, possibly 

erythroferrone [8] and GDF15 [17], by developing erythroblasts. Treatment by 

transfusion partially corrects the anemia and hepcidin suppression, but it supplies 

very high amounts of iron in the form of red blood cell hemoglobin which is 

eventually degraded and its iron released when these cells are phagocytosed by 

macrophages. Iron overload in β-thalassemia is treated with iron chelators. 

However, adverse effects frequently experienced by patients treated with chelators 

emphasize the need for new therapies, which are currently under development 

[75, 76]. 

 

 1.4.3 - Diseases of hepcidin excess / ferroportin deficiency 

Elevated hepcidin results in hypoferremia and insufficient supply of iron for 

erythropoiesis, leading to several types of anemia [77]. The underlying causes of 

hepcidin elevation in iron-restricted anemias are varied. An example of a genetic 

cause of hepcidin increase is the familial iron-refractory iron deficient anemia 

(IRIDA), an autosomal recessive disorder caused by a mutation in TMPRSS6 

(matriptase-2) [78]. IRIDA patients are not able to suppress hepcidin production in 

iron-deficient conditions, resulting in abnormally increased hepcidin production. 
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Inflammation is a frequent cause of hepcidin overproduction, and chronic 

inflammatory disorders, such as inflammatory bowel disease and rheumatologic 

disorders are associated with elevated hepcidin, hypoferremia and anemia. 

Although anemia of inflammation results not only from hepcidin overproduction but 

also from direct effect of cytokines on erythroid production and lifespan, 

therapeutic targeting of hepcidin is a rational approach as indicated by animal 

models of anemia of inflammation in which ablation of hepcidin is sufficient by 

itself to lessen anemia and accelerate recovery of hemoglobin [79]. 

Anemia is also ubiquitous among patients with chronic kidney disease (CKD). 

Current treatment for this condition involves administration of high doses of 

erythropoiesis-stimulating agents. Studies have shown that the effects of 

erythropoiesis-stimulating agents are potentiated by the administration of 

parenteral iron, suggesting that an iron-restrictive component contributes to the 

pathogenesis of the anemia. CKD patients have increased hepcidin levels that 

likely result from a combination of inflammation and inadequate hepcidin clearance 

by the kidney [80].  

Anemia of cancer is a feature of some malignancies and correlates with disease 

burden, and the intensity of chemotherapy and radiation exposure of the bone 

marrow. Several factors may be involved in the development of anemia: blood 

loss, malnutrition, infiltration of the bone marrow by tumor, and cytotoxic injury to 

bone marrow precursors. However, in some cases, the anemia is also 

accompanied by an increase in hepcidin and cytokine production, resembling 

anemia of inflammation [81]. 

Finally, anemia is a common trait in the elderly population, affecting ~10% of men 

and women over the age of 65. The causes for the anemia may result from 

nutrition deficiencies, blood loss, chronic inflammation, renal disease, or 

myelodysplastic syndrome among other causes. In a recent study, plasma 

hepcidin was found to be increased in elderly subjects presenting with anemia of 

inflammation, anemia of kidney disease, and unexplained anemias when 

compared with participants without anemia [82]. 
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Section 2 - Biology and Virulence of Vibrio vulnificus  

Vibrio vulnificus (V. vulnificus) is a Gram-negative bacterium highly lethal in 

patients with certain underlying disorders, such as chronic liver disease, diabetes, 

immunosuppressive disorders, and iron overload conditions, namely hereditary 

hemochromatosis. Several studies have shown that V. vulnificus virulence is 

highly enhanced when iron is abundant, turning this otherwise mild infection into a 

lethal condition in patients with iron overload, causing fulminant sepsis that often 

culminates in the host's death. The state of the art in the biology, epidemiology, 

and mechanisms of virulence of V. vulnificus will be described in this section. The 

goal of this project is to elucidate the relationship between iron and V. vulnificus 

infection, and to use this knowledge to improve the treatment of the disease. 

 

2.1 - Epidemiology of V. vulnificus  

V. vulnificus is a halophilic microbe ubiquitous in coastal waters, living mainly in 

shellfish such as oysters [83]. The bacteria are more plentiful in seafood during the 

summer months, when most oysters are positive for V. vulnificus [84]. In fact, 

infections by V. vulnificus are more commonly reported during summer and 

through ingestion of raw or undercooked oysters [85]. While this form of 

transmission is the most common, infection can also occur through exposure of 

open wounds to waters or sea creatures contaminated with V. vulnificus [86]. 

Although the number of reported infections is relatively low (900 cases reported by 

the Centers for Disease Control and Prevention [CDC] between 1988 and 2006), 

V. vulnificus is the leading cause of seafood related deaths in the USA, and has 

the highest case-fatality rate among foodborne pathogens, exceeding 50% [87, 

88]. In addition, the number of reported V. vulnificus infections registered a 78% 

increase between 1996 and 2006, with cases described in an ever growing 

geographical region, a phenomenon facilitated by global warming [85]. The 

incidence of infection by this pathogen is expected to increase in the next years, 

and for this reason expanding the knowledge on V. vulnificus infection is crucial to 

tackle this disease.  
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The relative rarity of reported disease compared with the abundance of V. 

vulnificus in coastal waters have two main explanations: 1) not all V. vulnificus 

strains are pathogenic; 2) severe infection affects patients with underlying 

conditions, while healthy subjects very rarely develop grave symptoms. These 

aspects will be discussed below. 

 

2.2 - V. vulnificus biotypes and strains 

V. vulnificus strains are classified into biotypes according to their biochemical and 

serological properties [89]. Biotype 1 is associated with human disease and it is 

further categorized into clinical (C) or environmental (E) strains, according to 

different genetic signatures [90]. C strains are highly virulent and possess a 

genomic island (vcg) important for virulence in other pathogens. E strains are 

enriched in genes associated with metabolic functions. The low percentage of C 

strains in oysters (15.6 C vs. 84.4 E) contributes for the low incidence of the 

disease [90]. Biotype 2 is an eel pathogen, although some studies suggest that it 

may also be an opportunistic human pathogen [91] . Biotype 3 was described 

during a V. vulnificus outbreak in Israel and is associated with wound infection 

after handling of contaminated fish [92]. C and E strains were identified in biotype 

2, while only C strains were detected for biotype 3. All the information discussed 

henceforth refers to the clinical strain of biotype 1. 

 

2.3 - Risk groups for V. vulnificus infection 

V. vulnificus is highly virulent and lethal in humans affected by underlying 

disorders such as chronic liver disease, diabetes, immunosuppression, kidney 

disease, and iron overload disorders, namely hereditary hemochromatosis [88, 93, 

94]. In addition, this infection affects mostly males (89%), possibly due to a 

protective effect by estrogen in females as shown in rat studies [95]. Most of these 

risk groups present several characteristics that impair the response to infection, 

such as decreased complement levels or reduced phagocytic and chemotaxis 

capacity [94]. The reason why patients with hereditary hemochromatosis are so 

susceptible to infection has not been clearly elucidated, but it has been 
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hypothesized that it may have to do with the increased virulence of V. vulnificus in 

an iron-rich environment. This hypothesis will be addressed in ensuing chapters of 

this dissertation with an approach to elucidate the molecular mechanism involved 

in that response. 

 

2.4 - Clinical features of V. vulnificus infection 

V. vulnificus infection develops into three possible outcomes, depending on the 

route of transmission: severe and fulminant primary septicemia, gastro-intestinal 

(GI) tract-limited infection (both caused by ingestion of raw/undercooked 

contaminated seafood), or development of necrotizing wound infections after 

contact of open wounds with contaminated water or sea creatures [96]. The 

incubation time is extremely short, with an average of 26 hours (h) after ingestion 

or 16 h after contact with open wounds [97]. Symptoms include fevers, chills, 

nausea, abdominal pain and secondary skin lesion in the limbs of patients [94]. 

Less common symptoms include meningitis, peritonitis, urinary tract infection, 

osteomyelitis, corneal ulcers and rhabdomyolysis. Since the infection develops so 

fast, early treatment is decisive to prevent mortality. In fact, the median duration 

from patient admission to death is 2 days and there is 100% mortality if not treated 

by 3 days [97]. Although the data on the usefulness of antibiotics is limited, 

treatment includes doxycycline and ceftazidime administration. A recent study 

demonstrated that a combination of ciprofloxacin and cefotaxime was more 

effective in clearing the infection in mice [98]. Amputation of the affected limbs is 

obligatory if there is a necrotizing wound. The development of effective and fast-

acting alternative treatments for the disease is essential to improve the outcome of 

this infection. 
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2.5 - Virulence factors  

The fulminant course of this infection has been intensively studied and two 

hypotheses to explain this phenomenon have been proposed: rapid evasion of the 

immune system and rapid growth rate associated with iron abundance (Figure 3). 

As a foodborne pathogen, V. vulnificus has to cope with the acidic gastric 

environment. Acid tolerance is achieved through a lysin/cadaverin antiporter and a 

lysin decarboxylase, both encoded by the cadBA operon [99]. Mutations in this 

operon lead to a decrease in acid resistance. After passing this first barrier, V. 

vulnificus evades complement opsonization and macrophagic phagocytosis by 

expressing a capsular polysaccharide (CPS) [100]. CPS also masks immunogenic 

structures to avoid recognition by non-specific immune responses and it is 

absolutely required for pathogenicity. Compared to experimentally-designed non-

capsulated strains, encapsulated V. vulnificus are more slowly cleared from the 

bloodstream, more invasive in subcutaneous tissue and more lethal [101]. 

Interestingly, V. vulnificus experience a phase-variable expression of the capsule 

whose function is still unknown, but it may be more important for environmental 

survival rather than causing human infection [102]. Several other virulence factors 

have been discovered and characterized. V. vulnificus is able to cause cellular 

damage and toxicity through hemolytic factors. The extracellular hemolysin VvhA 

was shown to increase vascular permeability, promote apoptosis of endothelial 

cells and stimulate the inducible nitric oxide synthase in vitro [103, 104]. Injection 

of purified VvhA into mice reproduced several characteristic effects of this infection 

including tissue necrosis and lethality [105]. However, infection with a VvhA-

inactivated strain did not reveal a difference in tissue necrosis and LD50 in iron 

loaded mice, when compared with the wild-type strain [106]. Similar results were 

obtained in experiments involving the non-specific extracellular protease VvpE, in 

which the purified enzyme caused tissue necrosis [107], but VvpE-depletion did 

not have a significant impact mouse survival when compared to bacteria able to 

synthesize this protease [108, 109]. Furthermore, the VvhA/VvpE double-mutant 

strain remained highly cytotoxic [110]. Another virulence factor, the multifunctional-

autoprocessing repeats-in-toxin (MARTX), was found through random 

mutagenesis experiments [111]. This molecule, a homolog of Vibrio cholerae 

RtxA, consists of repeated structural subunits able to form pores in cellular 
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membranes. The importance of MARTX for V. vulnificus virulence was 

demonstrated both in vitro and in vivo [111]. MARTX is increased upon cell-to-cell 

contact and lyses host cells [111]. Mutations in the rtx operons resulted in a 

decreased of cellular damage, bacterial spread to the liver, and mice lethality [111, 

112]. In addition, monoclonal antibodies against V. vulnificus MARTX reduced 

lethality in infected mice [113]. Taken together, these data suggests that MARTX 

is a primary virulence factor, while VvhA and VvpE have auxiliary or negligible 

roles in human infection. Other virulence factors include pili, flagella, outer 

membrane proteins, lipopolysaccharide (LPS) and the metalloprotease VvpM, but 

the specific roles of these are still under investigation. The fulminant septic shock 

observed during infection is a consequence of cytokine hyper-activation [114]. A 

surface lipoprotein IlpA stimulates the production of IL-6 and TNF-α through 

binding to TLR2 [115]. TLR2 knock-out mice showed increased resistance to 

infection with V. vulnificus [116]. TLR5 can also be activated upon binding to V. 

vulnificus flagellin (FlaB) and induces NF-kappaB and IL-8 [117]. Several V. 

vulnificus virulence factors are under the control of global regulators. The cyclic 

adenosine monophosphate (cAMP) - cAMP receptor protein (CRP) system 

controls the expression of hemolysin, metalloprotease and iron-acquisition 

proteins [118-121]. A homolog of V. cholerae AphB, a transcriptional regulator that 

controls virulence factors, was also discovered in V. vulnificus [122, 123]. 

Mutations in either of these global regulators caused a decreased in the LD50 in 

mice, demonstrating their importance for the infection [121, 123]. Interestingly, 

AphB regulates several genes involved in nutrient acquisition and metabolism, 

which may be important for bacterial growth. More recently, another regulator 

named HlyU was found to bind a region upstream of the rtx operon and act as a 

positive regulator of MARTX [124]. 
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Figure 3. Virulence factors involved in V. vulnificus infection. Different strategies applied by V. 

vulnificus in the during an infection, including toxic molecules, hyperactivation of the host’s immune 
system, evasion of the immune system, and iron acquisition from the host.  
 

2.6 - Iron hunt and usage by V. vulnificus 

Several evidence have demonstrated that iron is an important nutrient during V. 

vulnificus infection. The bacteria grow vigorously when iron is abundant in 

mammalian hosts [125]. Interestingly, this bacterium usually resides in oysters, 

which rank among the foods richest in iron. Many severe cases of V. vulnificus 

have been associated with patients suffering from the iron overload disorder 

hereditary hemochromatosis although the exact mechanism that explains this high 

susceptibility has yet to be explained [126]. Infection in hereditary 

hemochromatosis patients is almost exclusively associated with septicemia, even 

though some wound infection cases have been reported [127]. Mortality after V. 

vulnificus infection was directly correlated to serum iron levels [128]. Several 

mechanism for iron acquisition within the host have been reported. These include 

the production of siderophores (secreted molecules that possess high affinity for 

iron) and a mechanism for iron-uptake from heme. V. vulnificus produces two 

types of siderophores: vulnibactin (a catechol-like siderophore), and an unnamed 

hydroxamate [129]. Vulnibactin is required to scavenge iron bound to the iron 

transporter transferrin [130]. Mutations in vulnibactin-associated genes (vuuA, 

venB, vvsA, and vvsB) lead to a decrease in virulence [131-133], although these 

strains are still infectious, suggesting that the bacterium has other ways to acquire 

Evasion of the immune system
• Acid tolerance – (lysin-cadaverine antiporter)
• Resistance to phagocytosis and opsonization 
(capsule)

Toxicity
• Hemolysin (VvhA)
• Proteases (VvpE, VvpM)
• Toxin (MARTX)

Cytokine hyperactivation
• Lipoprotein IlpA
• Flagellin

Iron acquisition
• Siderophores (vulnibactin and hydroxamate)
• Heme receptor (HupA)
• NTBI transporter (?)
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iron. The role of hydroxamate is still unclear. V. vulnificus also expresses 

receptors for exogenous siderophores produced by other bacteria, such as 

deferoxamine and aerobactin [134, 135]. The uptake of iron from red blood cells is 

facilitated by lysing red blood cell through the hemolysin VvhA, thus releasing 

hemoglobin that is taken up by the membrane heme receptor HupA [136]. 

Vulnibactin, HupA and VvhA production is regulated by the Ferric Uptake 

Regulator (FUR) system, a transcriptional repressor ubiquitous in prokaryotes that 

uses iron as signaling stimulus [136-139]. Although several studies have 

demonstrated that transferrin-bound iron is essential for V. vulnificus growth during 

infection, Kim et al reported that the initiation of growth leading to infection 

requires the presence of non-transferrin-bound iron in vitro (NTBI) [140]. However, 

the transporter for these iron species is still elusive. Given the pivotal role of iron 

during human infection, understanding the reasons for the high susceptibility of HH 

patients to V. vulnificus infection is therefore essential in order to prevent and treat 

this infection. 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter I - Section 2 

26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

27 
 

 

 

 

 

 

 

                                                 Section 3 

Background and Research Aims 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter I - Section 3 
 

28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter I - Section 3 

29 
 

Section 3 - Background and Research Aims 

Although the hypoferremic response has been accepted as a host defense 

mechanism to keep iron out of the pathogens' reach, the molecular players 

involved in this response were unclear for a long time. The discovery of iron-

regulatory peptide hepcidin prompted research groups to address if this peptide 

was the critical player in mounting the hypoferremic response. Hepcidin mRNA 

was found to be increased in response to inflammatory stimulus, both in vitro and 

in vivo, as well as in patients with anemia of inflammation [66, 141, 142]. However, 

the physiological relevance of the hepcidin-induced hypoferremic response has 

never been formally demonstrated in the context of an animal infection. We 

decided to address this question by using as an infection model V. vulnificus, a 

Gram-negative siderophilic bacterium highly lethal in patients with hereditary 

hemochromatosis, in a host mouse model lacking hepcidin. The absence of this 

peptide enables the study of the possible critical role of hepcidin for the host 

defense. The main objectives of the work presented here are the following. 

1) Characterize the hypoferremic response in the context of V. vulnificus 

infection and its dependence on hepcidin (Chapter III) 

2) Address the potential usefulness of hepcidin agonists in the 

prevention/treatment of V. vulnificus infection (Chapter IV) 

3) Characterize the mechanism of iron-induced V. vulnificus growth (Chapter 

V) 

The findings observed in response to each of these objectives will be integrated 

and discussed on Chapter VI. We expect that the significant advances made on 

understanding hepcidin as a component of the host response may be applied in 

the future for the management of V. vulnificus infection.  
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Preparation of bacteria 

Vibrio vulnificus CMCP6 strain (provided by Dr. Paul A. Gulig, University of 

Florida) and ΔFur mutant CMCP6 strain (provided by Dr. Joon Haeng Rhee, 

Chonnam National University) were grown in LB-N medium - Luria-Bertani broth 

(BD Difco) containing 0.85% NaCl (Fisher Scientific). Bacterial stocks were stored 

at -80°C in LB-N with 35% glycerol. The day before the experiment, 50 µl of V. 

vulnificus stock was diluted 1:1000 in LB-N and grown at room temperature 

overnight. On the day of the experiment, the culture was diluted 1:30 in LB-N and 

shaken (300 rpm) at 37°C until the optical density at 600nm reached 0.3. Bacteria 

were then harvested by centrifugation (13800g for 10 min at 4°C) and suspended 

in 0.9% sodium chloride injection solution (Hospira) at the required concentrations 

for infections. For in vitro growth analysis, bacteria were suspended in LB-N, 

serum or plasma, as described in later sections. 

 

Animal studies 

All experiments involving animals were approved by the University of California, 

Los Angeles (UCLA) Office of Animal Research Oversight. C57BL/6 wild-type 

(WT) mice were obtained from Charles River Laboratories. Hepcidin-1 knockout 

(Hamp1-/-) mice (originally provided by Dr. Sophie Vaulont [143] and backcrossed 

by us onto the C57BL/6 background using marker—assisted accelerated 

backcrossing [144]) were bred in our vivaria. Only 8-12 weeks old male mice were 

used. WT and Hamp1-/- mice were iron-depleted or iron-loaded using dietary 

manipulations. Starting at 6 weeks of age, WT mice were fed an iron-poor (4 ppm 

Fe) or iron-rich (10000 ppm Fe) diet (Harlan) for 2 weeks. Starting at 4-5 weeks of 

age, Hamp1-/- mice were fed an iron-poor (4 ppm Fe) or standard diet (270 ppm 

Fe) for 4-6 weeks before the infection. The earlier start and longer regime of low-

iron diet in Hamp1-/- mice was necessary to achieve substantial iron depletion 

because these mice are already iron-overloaded at a young age.  

All bacterial infections were performed by subcutaneous (s.c.) injection (100 µl) in 

the interscapular area with 1x103-1x107 CFU of V. vulnificus suspended in 0.9% 

sodium chloride (Hospira). Control mice received equivalent injections of saline. 

For survival experiments, mice were observed for 4 days after infection or were 

euthanized earlier by isofluorane inhalation (Clipper) if they became moribund. For 
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tissue and blood collection, WT and Hamp1-/- mice were infected with 300 CFU 

(and 1x105 CFU only in WT mice) and control animals received saline injections. 

Mice were euthanized 16-18h after infection, were exsanguinated by cardiac 

puncture, and their livers were harvested. For histopathology analysis, Hamp1-/- 

mice were injected with 1x103 CFU of V. vulnificus or saline, euthanized 10-12h 

after infection and a piece of the liver and the injection site (skin) were collected 

into tubes containing 4% formalin (Medical Chemical Corporation). 

To analyze early changes in iron, hepcidin and pro-inflammatory cytokines after 

infection, WT mice (fed an iron-poor or iron-rich diet for 2 weeks) were injected 

with 1x105  CFU of V. vulnificus or saline and animals were euthanized at 3, 6 or 

10 h after infection to harvest blood and tissues. 

To test the therapeutic effects of minihepcidin, mice were injected intraperitoneally 

with 100 nmol of minihepcidin PR73 dissolved in 100 µl of SL220 [144, 145] (a 

PEG-phospholipid based solubilizer, NOF Corp.), whereas control groups were 

injected with the same amount of solvent. For minihepcidin pretreatment studies, 

animals were injected 24 h and 3 h before infection. For treatment studies, animals 

received minihepcidin or solvent injection 3 h after the infection. Mice were 

euthanized 16-18 h after infection, were exsanguinated by cardiac puncture, and 

their livers were harvested for iron and CFU quantification. In survival experiments, 

surviving animals received additional minihepcidin or solvent injections, 24 h and 

48 h after infection. 

 

Iron measurements: serum, plasma, liver and unsaturated iron binding 

capacity 

Mouse blood was collected in serum separator tubes (BD) and allowed to clot at 

room temperature for 30 min followed by centrifugation for 5 min, at 4500 rpm and 

4oC. The serum was transferred to new tubes for serum iron quantification using 

the colorimetric Iron-SL assay (Sekisui Diagnostics) following the manufacturer’s 

instructions. Human plasma samples were centrifuged at 8000g for 10 minutes 

and the supernatants were used for iron quantification using the same assay. 

Unsaturated iron binding capacity (UIBC) in human plasma was measured using 

the colorimetric Unsaturated Iron Binding Capacity assay (Sekisui Diagnostics) 

following the manufacturer's instructions. For liver iron measurements, the tissue 
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was homogenized and a 75 µl sample was added to 1125 µl of protein 

precipitation solution (0.53M HCl and 5.3% trichloroacetic acid, Fisher Scientific). 

The samples were heated at 100 °C for 1 hour, centrifuged for 10 minutes (13000 

rpm at 4°C), and the supernatant was used for the Iron-SL assay (Sekisui 

Diagnostics), measuring the absorbance at 595 nm relative to Iron AA Standard 

(Ricca Chemical Company). Results are expressed as µg Fe per gram of wet liver 

weight. 

 

Bacterial growth analysis 

To measure iron-dependent growth, bacteria were incubated in 100 µl of LB-N or 

heat-inactivated serum (30 min at 56oC) from iron-depleted or iron-loaded mice, at 

a concentration of 1x104 CFU/ml, supplemented with Ferric Ammonium Citrate 

(FAC, Sigma, added to a final concentration of 100 µM), the iron chelator 

deferiprone (Sigma, 150 µM), or protegrin (Bioworld, 0.4 mg/ml), using a 96-well 

plate (Costar 3604) at 37oC with shaking (300 rpm). Bacterial growth was 

measured by plating 6 µl of serial dilutions of each condition (in triplicate) on LB-N 

plates containing 1.5% agar. Plates were incubated at 37°C until colonies were 

visible for enumeration. 

To address the effect of different forms of iron in V. vulnificus growth, bacteria 

were incubated in 250 µl of LB-N or heat-inactivated human plasma (30 min at 56 
oC, followed by centrifugation of 8000g for 15 min to remove debris). Plasma 

samples were obtained from the blood of healthy volunteers at the Ronald Reagan 

UCLA Medical Center after treatment with citrate phosphate dextrose adenine 

(CPDA-1). V. vulnificus was added at a concentration of 1x103 or 1x104 CFU/ml in 

a 96-well plate (Costar 3604), and supplemented with various concentrations of 

FAC, Holo-Transferrin (Serologicals Corporation), Apo-Transferrin (Celliance), 

ferric ammonium sulfate (FAS, Sigma), a combination of FAC and Apo/Holo-

transferrin, or deferiprone (150 µM). Bacterial growth was monitored using a 

Gemini XS microplate reader (Molecular Devices), by measuring the optical 

density at 600nm, each 15 min for 10h, at 37oC with shaking 800 sec before each 

read. 
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Bacterial CFU quantification in blood and liver 

Blood was collected by cardiac puncture into 1.5 ml tubes containing 1 unit of 

heparin (Elkin Sinns Inc.), mixed vigorously and used directly for CFU 

quantification. A piece of liver (~100mg) was mixed with 250 µl of sterile H2O, 

homogenized, centrifuged at 2000 rpm for 5 min and the supernatant collected for 

CFU quantification. Serial 1:5 dilutions (as well as 1:100 and 1:1000) were 

prepared in saline and 6 µl of each sample was plated on LB-N agar plates (1.5% 

agar) and incubated at 37oC until colonies were visible for counting. 

 

Histopathology analysis 

Liver and skin sections were fixed in 4% formalin for 12 h, imbedded in paraffin, 

cut in 5-micron sections and stained with hematoxylin and eosin at the UCLA 

Translational Pathology Core Laboratory. Skin sections were also stained using 

the Gram Stain for Tissue kit (Sigma) following the manufacturer’s instructions. 

Microscopic images were acquired on a Nikon Eclipse E600 microscope using 

Nikon Plan Fluor 4x/0.13, Plan Apo 10×/0.45, Plan Apo 40×/0.95 and Plan Fluor 

100x/1.30 objectives with a Spot RT3 2MP Slider camera and Spot 5.0 software. 

Pictures were assembled using Adobe Photoshop CS5. 

 

Labile plasma iron quantification 

Labile plasma iron (LPI), a redox-active form of non-transferrin bound iron [146], 

was measured using the FeROS eLPI kit (aFerrix) according to the manufacturer’s 

instruction. Briefly, 20 µl of mouse serum was plated in duplicate in 96-well plates 

and treated with 100 µl of LPI reagent containing buffered 2,3-dihydrorhodamine 

and ascorbate, in the presence or absence of an iron chelator. Fluorescence 

resulting from oxidation of 2,3-dihydrorhodamine after exposure to reactive oxygen 

species was measured in a Gemini XS microplate reader (Molecular Devices) 

using 495 nm for excitation and 525 for emission. A kinetic measurement was 

performed every 2 minutes for 40 minutes. The ΔFU/min for each sample, with or 

without the iron chelator, was converted to LPI units by comparing it with the 

standard values obtained in the same test. Values higher than 0.2 were 

considered indicative for the presence of NTBI. 
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Gene expression analysis 

RNA from mouse liver was extracted by TRIzol Reagent (life technologies), and 

cDNA was synthesized using the iScript cDNA Synthesis Kit (Bio-Rad) following 

manufacturer’s instructions. Real-time quantification of transcripts was performed 

in duplicates in a CFX96 Touch Real-Time PCR Detection System (Bio-Rad) using 

Sso Advance SYBR Green Supermix (Bio-Rad) and specific primers for Hamp1 

(fwd: TTGCGATACCAATGCAGAAGA; rev: GATGTGGCTCTAGGCTATGTT), 

Inhbb (fwd: CTCCGAGATCAT CAGCTTTGC, rev: 

GGAGCAGTTTCAGGTACAGCC), Saa1 (fwd: AGTCTGGGCTGCTGAGAAAA; 

rev: ATGTCTGTTGGCTTCCTGTG) and Actb (fwd: 

ACCCACACTGTGCCCATCTA; rev: CACGCTCGGTCAGGATCTTC). Data were 

normalized to the expression of β-actin. 

 

Serum hepcidin assay 

Mouse hepcidin ELISA was performed as previously described [147]. Mouse 

hepcidin-1 monoclonal antibodies, Ab2B10 (capture) and AB2H4-HRP (detection), 

as well as synthetic mouse hepcidin-25, were a generous gift from Amgen. High 

binding 96-well EIA plates (Corning Costar) were coated overnight at room 

temperature with 50 μl/well of 3.6 μg/ml Ab2B10 in 0.2 M carbonate-bicarbonate 

buffer pH 9.4 (Pierce - Thermo Scientific). Plates were washed two times with 

wash buffer - Phosphate Buffered Saline (PBS, Life Tech) + 0.5% Tween-20 

(Fisher Scientific) - and then blocked for 45 minutes with 200 μl/well blocking 

buffer - PBS, 1% Bovine Serum Albumin (BSA, Sigma), 1% goat serum (Sigma), 

0.5% Tween-20. Serum samples (previously diluted in blocking buffer at 1:10000 

for iron-loaded mice or 1:1000 for iron-depleted mice) and standards were 

incubated for one hour at room temperature (50 µl/well), washed four times with 

wash buffer, incubated for one hour with 50 μl/well of 130 ng/ml Ab2H4-HRP, 

washed 4 times and then developed with 100 μl/well Ultra-TMB substrate (Thermo 

Scientific) for 15 min in the dark at room temperature. The reaction was stopped 

by adding 50 μl 2M sulfuric acid, and the absorbance was measured at 450 nm 

using a 96-well plate reader (Molecular Devices). 
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Quantification of inflammatory cytokines in serum 

Inflammatory cytokines (IFN-γ, IL-1β, IL-2, IL-4, IL-5, IL-6, KC/GRO, IL-10, IL-

12p70 and TNF-α) were measured in mouse serum using the Proinflammatory 

Panel 1 (mouse) kit (Meso Scale Discovery) following the manufacturer’s 

instructions. Briefly, 50 µl of standards and 2-fold diluted samples were added to a 

10-spot multiplex plate pre-coated with capture antibodies, and the plate was 

incubated at room temperature with shaking for 2 hours. After washing 3 times 

with wash buffer (PBS supplemented with 0.05% Tween-20), 25 µl of detection 

antibody was added to each well and incubated for 2 hours, washed 3 times and 

incubated with 150 µl of 2X read buffer (provided with the kit). The plate was read 

in a chemiluminescence reader (SECTOR Imager 2400, Meso Scale Discovery), 

and data were analyzed using the MSD Discovery workbench software (Meso 

Scale Discovery). 

 

Minihepcidin synthesis 

Minihepcidin PR73 was synthesized as a C-terminal amide using standard solid-

phase Fmoc chemistry and was purified by preparative reverse-phase high 

performance liquid chromatography (RP-HPLC). Its purity was evaluated by 

matrix-assisted laser desorption ionization spectrometry (MALDI-MS) as well as 

analytical Reversed-phase high performance-liquid chromatography (RP-HPLC). 

From N- to C-terminus the primary sequence of PR73 was: iminodiacetic acid, L-

threonine, L-histidine, L-3,3-diphenylalanine, L-β-homoproline, L-arginine, L-

cysteine, L-arginine, L-β-homophenylalanine, 6-aminohexanoic acid, iminodiacetic 

acid palmitylamide (Ida-Thr-His-Dpa-bhPro-Arg-Cys-Arg-bhPhe-Ahx-Ida(NHPal)-

CONH2). 

 

 

Analysis of minihepcidin and hepcidin-25 bactericidal activity in vitro 

V. vulnificus were incubated in 12 µl of LB-N broth at a concentration of 1x103 

CFU/ml, supplemented with various concentrations (0, 0.9, 2.7, 9.1, 27 and 91 µM) 

of human hepcidin-25 (Peptides International) or minihepcidin PR73, or 4mg/ml of 

protegrin, for 3 h at 37oC with shaking (300 rpm). Bacterial growth was measured 

by CFU quantification as described above. 
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Analysis of the bactericidal and bacteriostatic effects of minihepcidin on V. 

vulnificus  

To analyze the mode of action of minihepcidin PR73 in mouse serum, we used V. 

vulnificus CMCP6 containing pGTR905, a marker plasmid that confers resistance 

to chloramphenicol, as described in Starks et al [148] (Figure 1). The plasmid 

replicates only in the presence of arabinose, which is not found in mouse tissues. 

Thus, the loss of plasmid from the bacterial population during growth in mouse 

serum is a measure of bactericidal activity. The principle is graphically illustrated in 

Gulig et al [149] and in Figure 6, Chapter 4. The plasmid-containing bacterial 

inoculum was first grown in LB-NAC - LB-N broth supplemented with 1% L-

arabinose (Sigma) and 5 µg/ml chloramphenicol (Sigma) - to enable and select for 

plasmid replication. The bacteria were then washed, suspended in LB-N at 1x105 

CFU/ml and 10 µl added to 40 µl of mouse serum in 96-well plates. Serial 5-fold 

dilutions were performed in serum. Serum samples were obtained from Hamp1-/- 

mice kept on an iron-poor or standard diet for 4-6 weeks and injected 24 h and 3 h 

before blood collection with 100 nmol PR73 in SL220 or with SL220 only (5 mice 

per group). Sera were also collected from WT mice kept on iron-poor or iron-rich 

diet for 2 weeks (5 mice per group). For each mouse group, sera was pooled and 

used for in vitro experiments. 96-well plates with bacteria were incubated for 2 h at 

37 C with shaking (300 rpm), using triplicates for each condition. Five µl from each 

well was plated on LB-N and LB-NAC plates (containing 1.5% agar) and CFU 

were counted for each plate as described above. 
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Figure 1. Genetic and physical map of marker plasmid pGTR905. The marker plasmid 
pGTR905 was constructed by the insertion of the pir gene, under the control of the tightly regulated 
araC, pBAD promoter system, into the suicide plasmid pUTmini-Tn5Tag9 at a unique PvuII site 
within the Tn5 transposase gene (tnp) forming the tnp' and ‘tnp gene fragments. Also shown are 
the β-lactamase gene (bla), chloramphenicol-resistance gene (cat), RP4 origin of transfer (oriT), 
and R6K origin of replication (R6K ori). 

 

 

V. vulnificus RNA isolation for sequencing 

V. vulnificus CMCP6 were incubated in 250 µl of heat-inactivated human plasma 

(30 min at 56oC, followed by centrifugation at 8000g for 15 min to remove debris), 

supplemented with 50 µM of FAC to allow growth initiation, in two full 96-well 

plates (Costar 3635). The use of 96-well plates allowed us to follow bacterial 

growth in real time by continually measuring the optical density during the course 

of the experiment. Bacterial growth was monitored using a Gemini XS microplate 

reader (Molecular Devices), by measuring the optical density at 600nm, each 15 

min, at 37oC with shaking 800 sec before each read. At early exponential phase 

(time-point T1, when the average OD600>0.010), one plate was used for bacterial 

RNA isolation using TRIzol reagent (life technologies) following the manufacturer's 

instructions, and bacteria in the remaining plate were pooled, centrifuged and re-

suspended in fresh plasma supplemented with 50 µM FAC or non-supplemented 

fresh plasma and re-incubated in the same conditions. After 5 hours (time-point 

T2), bacteria in each condition (0 µM and 50 µM) were pooled and RNA was 

extracted. RNA integrity and quality was evaluated using the Agilent 2100 

Bioanalyzer (Agilent technologies) at the UCLA Clinical Microarray Core, and 

samples were selected for sequencing if the RNA integrity number was 9.5-10. 

Samples were obtained from 3 independent experiments (total of 9 samples). 
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RNA sequencing 

Libraries were prepared with KAPA stranded RNA-seq library preparation kit 

(Kapa Byosystems). The workflow consists of double-stranded cDNA generation 

using random priming, fragmentation of double stranded cDNA, end repair to 

generate blunt ends, A-tailing, adaptor ligation and PCR amplification. Different 

adaptors were used for multiplexing samples in one lane. Sequencing was 

performed on Illumina Hiseq2000 (Illumina) for a single read 50 run. Data quality 

check was done on Illumina SAV. Demultiplexing was performed with Illumina 

CASAVA 1.8.2. The reads were first mapped to the V. vulnificus transcript set 

using Bowtie2 version 2.1.0 [150] and the gene expression level was estimated 

using RSEM v1.2.15 [151]. TPM (transcript per million) was used to normalized 

the gene expression. Differentially expressed genes were identified using the 

DeSeq program. Genes showing altered expression with p<0.05 and more than 

1.5 fold changes were considered differentially expressed. 

 

Statistical analysis 

The statistical significance of differences between groups was evaluated using 

Student t test if data were normally distributed or Mann-Whitney U test if this 

condition was not met. Survival differences were analyzed using Kaplan-Meier 

survival curves and Log-Rank test. All statistics were done using Sigmaplot 12.5 

(Systat Software). 
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                                            CHAPTER III 

                      Hepcidin-induced hypoferremia 

in V. vulnificus infection 
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Specific aims 

Hypoferremia (decrease in blood iron) during infections has been proposed as a 

host defense mechanism that evolved to restrict iron availability for extracellular 

pathogens but specific support for this hypothesis has been lacking. Infections by 

siderophilic (iron-loving) bacteria, such as Vibrio vulnificus, are severe and often 

lethal in patients with hereditary hemochromatosis (HH), while healthy individuals 

only experience mild symptoms. Since HH patients develop iron overload as a 

consequence of hepcidin deficiency, we hypothesized that hepcidin plays a critical 

role in host defense against V. vulnificus infections. To address this hypothesis, 

we pursued the following aims: 

 a. compare the susceptibility to infection between wild-type and hepcidin 

 deficient (Hamp1-/-) mice  

 b. investigate which forms of iron are relevant to the development of 

 infection (serum iron, liver iron and/or non-transferrin bound iron) 

 c. describe the host defense response in resistant (wild-type) mice 
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Hepcidin is required for resistance to V. vulnificus infection 

Iron is thought to be required for rapid growth of V. vulnificus and lethality during 

infections, as previously demonstrated in mice injected with iron-dextran [128, 

152]. To examine whether the iron-regulatory hormone hepcidin affects the 

response to infection, we compared the severity of V. vulnificus infection in wild-

type (WT) and hepcidin knock-out (Hamp1-/-) mice. Mice were iron-depleted or 

iron-loaded by dietary manipulations, and infected subcutaneously with a low (103 

CFU) or moderate (105 CFU) inoculum of V. vulnificus. In both iron-depleted 

(Figure 1A) and iron-loaded (Figure 1B) conditions Hamp1-/- mice were significantly 

more susceptible than WT mice: iron-loaded Hamp1-/- died within one day after 

infection, iron-depleted Hamp1-/- within next several days, whereas WT mice 

survived the infection. WT mice were susceptible to V. vulnificus infection only 

when iron-loaded (Figure 2 and Table 1) and infected with a large inoculum of V. 

vulnificus (106 CFU). Under those conditions, iron-loaded mice died within 2 days 

after infection while most of the iron-depleted mice still survived (Figure 2A), 

confirming that iron has a striking effect on V. vulnificus lethality. The differential 

susceptibility of WT and Hamp1-/- to V. vulnificus infection was not attributable to 

their baseline liver iron differences because iron-depleted Hamp1-/- mice were 

much more susceptible to infection even though they had lower liver iron stores 

than iron-loaded WT mice, as measured in a parallel set of mice maintained under 

the same conditions as the mice used for the survival experiments (Figure 1C). As 

V. vulnificus is an extracellular pathogen [153], intracellular hepatocyte iron is not 

likely to play a direct role in the growth of these bacteria.  

To examine whether extracellular iron concentrations alter the growth rate of V. 

vulnificus, we assessed bacterial growth ex vivo in sera collected from uninfected 

iron-loaded or iron-depleted WT animals. V. vulnificus growth was greatly 

enhanced in serum derived from iron-loaded compared to iron-depleted mice 

(Figure 2B). Supplementing iron-depleted serum with ferric ammonium citrate 

(FAC) also enhanced bacterial growth. Conversely, addition of the synthetic iron 

chelator deferiprone to iron-rich serum prevented bacterial growth.  
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Figure 1. Vibrio vulnificus infection is highly lethal in hepcidin

survival curves for iron depleted 
lines) or 1x105 (solid lines) CFU of V. vulnificus (n=4
were iron-depleted or iron-loaded by dietary modification (WT: 4 ppm or 10,000 ppm Fe diet for 2 
weeks; Hamp1

-/-: 4 ppm or standard 
Meier log-rank analysis, differences in survival between WT and 
both iron depleted (combined CFU, p<0.05), and iron
p<0.001). (C) Liver iron stores were measured in a parallel set of mice and confirmed the effective 
modulation of iron stores by dietary iron manipulation (n=5
measurements, statistical significance was assessed using student’s t test if 
distributed (**p<0.01) or Mann-Whitney U test if they were not normally distributed (++p<0.01).
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growth in low-iron serum was similar to the growth in standard LB
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. To verify that this mechanism contributed to rapid death of iron

loaded mice, we inspected hematoxylin and eosin (H&E) stained skin (site of 

injection) and liver sections of Hamp1-/- mice injected with 1x103 

or saline. The venules in the skin and hepatic circulation of infected mice 

were greatly dilated compared with saline-treated mice (Figure 3

vasodilatation was accompanied by erythrocyte sludging characteristic of 

circulatory shock. In the skin, massive aggregates of bacteria were visible in the 

perivascular space (Figure 3 E-H). In the liver, no bacteria were seen but there 

was neutrophilic infiltration in perivenular spaces (Figure 3 I-N). These findings are 

consistent with endotoxemic shock. 
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infection is highly lethal in hepcidin-deficient mice. Kaplan
survival curves for iron depleted (A) and iron loaded (B) mice, after infection with 1x10

(solid lines) CFU of V. vulnificus (n=4-11 in each group). WT and Hamp1

loaded by dietary modification (WT: 4 ppm or 10,000 ppm Fe diet for 2 
: 4 ppm or standard diet for 4-6 weeks, see Chapter II). By multifactorial Kaplan

rank analysis, differences in survival between WT and Hamp1
-/- mice were significant in 

both iron depleted (combined CFU, p<0.05), and iron-loaded conditions (combined CFU, 
Liver iron stores were measured in a parallel set of mice and confirmed the effective 

modulation of iron stores by dietary iron manipulation (n=5-10 per group). For liver iron 
measurements, statistical significance was assessed using student’s t test if data were normally 

Whitney U test if they were not normally distributed (++p<0.01).
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To determine whether the susceptibility of Hamp1-/- mice to severe V. vulnificus 

infection was due to greater bacteremia and bacterial dissemination, we assayed 

bacterial CFU counts in blood and liver of iron-depleted and iron-loaded WT and 

Hamp1-/- mice 16 h after infection. Liver CFU counts likely represent extracellular 

bacteria as V. vulnificus does not appear to invade cells [153]. To allow Hamp1-/- 

mice to survive long enough to undergo analysis at the 16 h time point, we injected 

all groups with a small inoculum of bacteria (300 CFU). After infection with this low 

inoculum, only iron-loaded Hamp1-/- mice, but not iron-depleted Hamp1-/- or either 

of the WT groups, had CFU in blood and liver (Figure 4A). For the WT groups, the 

iron-dependent difference in CFUs was observed at a higher inoculum (105 CFU, 

Figure 4B). These data indicate that in both Hamp1-/- and WT mice, bacterial 

replication and dissemination is highly dependent on the host’s iron status.  

Figure 2. V. vulnificus pathogenicity and growth are greatly enhanced by high iron 

concentrations. (A) Kaplan-Meier survival curves for 8-10 week-old WT mice, after s.c. infection 
with 1x106 CFU of V. vulnificus. Iron-loaded mice (red line) died very rapidly, whereas iron-depleted 
mice (blue line) survived the infection, with the difference significant at p<0.001 by log-rank survival 
analysis. (B) Serum was collected from iron-depleted and iron-loaded WT mice. V. vulnificus (1x104

CFU/ml) was incubated for 3 h at 37 oC with shaking (300 rpm) in LB-N broth (black fill), or in 
different sera (gray fill) as indicated. Bacterial growth in LB-N broth and low-iron serum (26 μM Fe) 
was similar, but it was greatly increased in high-iron serum (60 μM Fe) and in iron-depleted serum 
supplemented with FAC (added to a final concentration of 100 μM Fe). Bacterial growth was 
impaired in high iron serum treated with the iron chelator deferiprone (150 μM). Addition of the 
bactericide protegrin (0.4 mg/ml) to high-iron serum killed all the bacteria. Bars represent mean + 
standard deviation (n=7 per group). Statistical significance was assessed using student’s t test 
(**p<0.01). 
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As shown in Figure 1, mortality from V. vulnificus infection did not correlate with 

baseline liver iron concentrations, therefore we hypothesized that the difference in 

baseline serum iron concentrations, baseline non-transferrin bound iron (NTBI) 

and/or the ability to generate hypoferremia may explain the disparate susceptibility 

of Hamp1-/- and WT mice and the iron dependence of bacterial growth in vivo.  

Indeed, WT mice lowered their serum iron concentrations in response to infection 

(Figure 4C, mean of 26 µM in iron-depleted and 30 µM in iron-loaded infected 

mice), whereas Hamp1-/- mice had a much smaller decrease in serum iron (mean 

Figure 3. V. vulnificus infection induces vasodilation, leukostasis and erythrocyte sludging. 

Skin (site of injection) and liver sections of Hamp1
-/-

 mice injected with saline (A, C, E, G, I, K and 
M) or 1 x 103 CFU of V. vulnificus (B, D, F, H, J, L and N). Sections were stained with hematoxylin 
and eosin (A-D and I-N) or Gram stain and tartrazine (E-H). Panels A-B and magnified in C-D: 

dilated venules (v) and arterioles (a), leukostasis and erythrocyte sludging are seen in the skin of V. 

vulnificus-infected mice compared with saline-injected controls. Panels E-F and magnified in G-H: 

numerous bacteria (purple) are seen in perivascular spaces of infected mice (arrow). Panels I-L 

Veins and venules in infected mice are dilated and congested with aggregated erythrocytes (J, L), 
unlike the saline controls (I, K). (E-F) Perivascular neutrophil infiltration (arrows) in infected mice 
(N) but not in saline controls (M). 
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of 63 µM in iron-depleted and 52 µM in iron-loaded infected mice), insufficient to 

affect the replication of V. vulnificus. The slight decrease in Hamp1-/- serum iron 

may be a consequence of decreased food intake, a common trait in sick mice, or 

due to direct effects of inflammatory cytokines on ferroportin mRNA [155, 156]. 

Among Hamp1-/- mice, despite similar serum iron concentrations in iron-loaded and 

iron-depleted groups, the iron-loaded group had higher CFU counts in the blood 

and liver (Figure 4A). This difference in bacterial burden may be related to the 

difference in the serum concentrations of NTBI, a known source of iron for V. 

vulnificus [140]. NTBI was only detected in iron-loaded mice (1.28± 0.60 LPI units), 

but not in the iron-depleted group (Figure 4D), correlating with the bacterial 

burden. WT mice had low NTBI levels, similar to those in iron-depleted Hamp1-/- 

mice, suggesting that NTBI did not contribute significantly to bacterial growth in 

WT mice. Among WT mice infected with the high inoculum (105 CFU), the iron-

loaded group had higher CFU counts in the blood and liver than the iron-depleted 

group (Figure 4B), despite the similar degree of hypoferremia 16 h after infection 

(Figure 4C). As NTBI levels were not significantly different between these two 

groups, it is likely that serum iron concentrations during the early stages of 

infection (prior to the hepcidin increase and hypoferremia) also contribute to 

susceptibility to V. vulnificus infection. Thus, our data suggest that baseline 

concentrations of transferrin-bound and non-transferrin bound iron as well as 

reactive hypoferremia, all of which are controlled by hepcidin, determine the 

replication and dissemination of V. vulnificus in vivo. 
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Figure 4. Iron-dependent dissemination of V. vulnificus in blood and liver. Wild-type and 
Hamp1

-/- mice were iron-depleted or iron-loaded by dietary modification (WT: 4 ppm or 10,000 ppm 
Fe diet for 2 weeks; Hamp1

-/-: 4 ppm or standard diet for 4-6 weeks, see Chapter II), and infected 
with V. vulnificus (n=5-10 per group). (A) and (B) Bacterial counts in blood and liver 16 h after 
infection with 300 CFU (A) and 1x105 CFU (B). Each symbol represents one mouse (iron depleted 
in blue and iron loaded in red); black solid lines represent the mean of CFU counts; black dotted 
line represents the lower limit of detection of CFU counts (calculated as half of the minimum 
detectable CFU counts). (C) Serum iron levels of WT (1x105 CFU) and Hamp1

-/ -(300 CFU) mice 
(white fill = saline groups, grey fill = V. vulnificus groups). Unlike WT mice which decreased their 
serum iron to the mean of ~30 μM, Hamp1

-/- mice did not develop marked hypoferremia after 
infection. (D) Measurement of non-transferrin bound iron (as labile plasma iron, LPI) in serum of 
iron-depleted and iron-loaded WT and Hamp1

-/- mice prior to infection (n=4-6 per group). Statistical 
significance was assessed using student’s t test if data were normally distributed (*p<0.05; 
**p<0.01; ***p<0.001) or Mann-Whitney U test if they were not (+p<0.05; ++p<0.01). 
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Hepcidin levels increase early after V. vulnificus infection 

Only WT but not Hamp1-/- animals were able to generate significant hypoferremia, 

suggesting that hepcidin mediates inflammatory hypoferremia during infection. To 

confirm this hypothesis we analyzed hepatic hepcidin mRNA and serum hepcidin 

protein at 3, 6 and 10 hours after infection with 105 V. vulnificus in iron-loaded and 

iron-depleted WT mice. As expected, iron-loaded mice had higher levels of 

hepcidin mRNA and protein compared to iron-depleted mice at all time points, due 

to the iron stimulus on hepcidin expression (Figure 5A and B). By 6 h after 

infection, both iron-depleted and iron-loaded mice acutely increased their hepatic 

hepcidin mRNA (Figure 5A) as well as serum hepcidin concentration (Figure 5B) 

compared to uninfected mice. At 10 h after infection, serum hepcidin increased 

further in iron-depleted mice and stabilized at very high levels in iron-loaded mice 

(Figure 5B). These increases in hepcidin concentrations were accompanied by a 

significant decrease in serum iron at 6 h and 10 h in iron-depleted mice (Figure 

5C), and a trend toward decreased serum iron in iron-loaded mice. The latter may 

not have decreased serum iron as efficiently because iron–loaded hepatocytes, 

macrophages and enterocytes express more ferroportin [157-159].  

IL-6 is thought to be the predominant stimulus for hepcidin synthesis during 

inflammation [66, 160]. We found dramatically increased serum concentrations of 

this pro-inflammatory cytokine in infected mice starting at 3 h after infection (Figure 

5D), with no differences between iron-depleted and iron-loaded mice. A similar 

increase was also observed for the inflammatory cytokines KC-GRO, IL-12p70, IL-

1β, TNF-α, IL-10 and IL-2, while IFN-γ, IL-4 and IL-5 remained unchanged (Figure 

6C). We also observed early increases in hepatic Saa1 (an inflammatory marker) 

and Inhbb mRNA, which codes for the βB-subunit of activin B, a protein involved in 

an alternative pathway for hepcidin regulation by inflammation, (Figure 6A and B).  
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Interestingly, at 16h after infection, no statistically significant differences in 

hepcidin were observed between infected and saline-treated WT mice, either at 

the hepatic mRNA or serum protein levels (Figure 7A and B), despite increased 

inflammatory markers, including hepatic Saa1 mRNA (Figure 7C) and 

proinflammatory cytokines in the serum (Figure 7E). Inhbb (Activin B gene) mRNA, 

was also increased in infected iron-loaded groups (Figure 7D). These data imply 

that hepcidin production in the liver was rapidly increased early in the course of 

infection by inflammatory mediators induced by bacterial infection. Elevated 

hepcidin in turn caused acute hypoferremia. The hypoferremia appears to 

counterregulate hepcidin so that by 16 h hepcidin levels in infected WT mice were 

no longer different from uninfected controls.  

 

 

 

Figure 5. WT mice respond to V. 

vulnificus infection by rapidly 

increasing plasma hepcidin 

concentration. WT mice, either iron-
depleted (blue) or iron-loaded (red), 
were injected with 1x105 CFU of V. 

vulnificus (solid lines) or saline (dashed 
lines) and euthanized at 3, 6 or 10 hours
after infection. (A) Hepatic Hamp1

mRNA expression. (B) Serum hepcidin 
concentration. (C) Serum iron 
concentration. (D) The inflammatory 
response to infection was confirmed by 
serum IL-6 assay. Each point represents 
the mean ± standard deviation (n=5 per 
group). Statistical significance was 
assessed using student’s t test if data 
were normally distributed (*p<0.05; 
**p<0.01; ***p<0.001) or Mann-Whitney 
U test if they were not (+p<0.05; 
++p<0.01).  
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induced early during 

infection. qRT-PCR from liver 
samples was performed to 
analyze the mRNA expression 
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depleted mice. Gene 
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panel of 9 pro-inflammatory 
cytokines was analyzed in 

depleted (blue) 
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Figure 7 Liver hepcidin mRNA is 

no longer significantly 

increased at 16 h after infection, 

despite evidence of 

inflammation. Iron-depleted 
(blue) and iron-loaded (red) WT 
and Hamp1-/- mice were injected 
with saline (white fill) or with V. 

vulnificus (grey fill, 1x105 CFU for 
WT and 300 CFU for Hamp1-/-

mice), n=6-8 per group. (A) 

Hepatic Hamp1 mRNA. (B) Serum
hepcidin. (C) Hepatic Saa1 mRNA. 
(D) Hepatic Inhbb mRNA. 
Measurements of mRNA 

concentration are shown as -∆Ct 
relative to actin mRNA. (E) A 
panel of 10 inflammatory cytokines 
was analyzed in serum from iron-
depleted and iron-loaded WT and 
Hamp1-/- mice 16 hours after V. 

vulnificus infection (grey bars) or 
saline injection (white bars). 
Infected mice presented higher 
levels of IL-6, KC-GRO, IL-12p70, 
IL-1β, TNF-α, IL-10 and IL-2. No 
changes were observed for IFN-γ, 
IL-4 and IL-5. The black dotted line 
represents the lower limit of 
detection of the assay. Statistical 
significance was assessed using 
student’s t test if data were 
normally distributed (*p<0.05; 
**p<0.01; ***p<0.001) or Mann-
Whitney U test if they were not 
(+p<0.05; ++p<0.01), n=6-8 per 
group. 
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Regarding the specific aims of the work presented in this chapter, we 

demonstrated that: a) hepcidin-deficient mice are highly susceptible to severe V. 

vulnificus infection, while WT mice are resistant; b) serum iron and non-transferrin 

bound iron are critical for V. vulnificus replication during infections, and liver iron 

stores do not play a significant role during the infection; c) WT mice resist the 

infection by increasing hepcidin production early in the course of infection, 

mounting a hypoferremic response triggered by inflammatory stimuli. 

 

Table 1. Serum and liver iron concentrations in WT mice fed an iron-poor (4 ppm Fe) or iron-rich 

(10000 ppm Fe) diet for 2 weeks (n=8 per group) 

 

 Means ± SD are shown. Statistical significance assessed using Student's t test 

 

 

 

 

 

 

 

 

 

 

 

 Serum Fe (µM) Liver iron (µg/g of wet tissue) 

4 ppm diet 38 ± 9 18 ± 9 

10,000 ppm diet 65 ± 4 425 ± 109 

p-value <0.001 <0.001 
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                                            CHAPTER IV 

       Usefulness of minihepcidins to prevent 

and treat V. vulnificus infections 
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Specific aims 

Based on our findings describing hepcidin-induced hypoferremia as a host 

defense mechanism against V. vulnificus infection (Chapter 3), we sought to 

develop a therapeutic approach for the prevention and treatment of this infection in 

hepcidin-deficient conditions. We used hepcidin-deficient (Hamp1-/-) mice for the 

proof-of-principle studies, with the objective to correct the hepcidin deficiency 

through the administration of hepcidin agonists, therefore mimicking the protective 

response in wild type (WT) mice. The specific aims for this chapter are as follows:  

a. test the usefulness of minihepcidins (hepcidin agonists) in the prevention 

and treatment of V. vulnificus infection in Hamp1-/- mice 

b. describe the mode of action of minihepcidins in this infection (bactericidal 

versus bacteriostatic effect) 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter IV 

Minihepcidin PR73 protects against mortality from 

infections 

To examine the importance of early hepcidin activity for resistance to 

infection, we tested the therapeutic effect of minihepcidin PR73 (a synthetic 

hepcidin agonist, Figure 1) in 

agonists (7- to 9-amino acid peptides) previously described by our laboratory 

[161]. These peptides retain the capacity to bind and promote the degradation of 

ferroportin and were show to possess greater potency and longer lasting effect 

than full-length hepcidin [

associated with the use bioactive hepcidin

short half-life [162] due to rapid renal excretion. Furthermore, the synthesis of 

correctly folded full-length hepcidin is e

production. For this work, we used the minihepcidin PR73 (Figure 1), a peptide 

that contains unnatural amino acids to enhance its biological activity and 

resistance to proteolytic degradation, and also a palmit

clearance through increased binding to albumin 

Figure 1. Molecular structure of minihepcidin PR73. 

sequence of PR73 was: iminodiacetic acid, L
L-β-homoproline, L-arginine, L
aminohexanoic acid, iminodiacetic acid palmitylamide 
Arg-bhPhe-Ahx-Ida(NHPal)-CONH2).
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Minihepcidin PR73 protects against mortality from Vibrio vulnificus

examine the importance of early hepcidin activity for resistance to 

infection, we tested the therapeutic effect of minihepcidin PR73 (a synthetic 

hepcidin agonist, Figure 1) in Hamp1-/- mice. Minihepcidins are synthetic hepcidin 

amino acid peptides) previously described by our laboratory 

. These peptides retain the capacity to bind and promote the degradation of 

ferroportin and were show to possess greater potency and longer lasting effect 

[144]. Minihepcidins circumvent the various problems 

associated with the use bioactive hepcidin-25 as a therapeutic, namely the very 

due to rapid renal excretion. Furthermore, the synthesis of 

length hepcidin is expensive, therefore not ideal for large scale 

production. For this work, we used the minihepcidin PR73 (Figure 1), a peptide 

that contains unnatural amino acids to enhance its biological activity and 

resistance to proteolytic degradation, and also a palmitoyl group to decrease renal 

clearance through increased binding to albumin [163]. 

ture of minihepcidin PR73. From N- to C-terminus the primary 
sequence of PR73 was: iminodiacetic acid, L-threonine, L-histidine, L-3,3-diphenylalanine, 

arginine, L-cysteine, L-arginine, L-β-homophenylalanine, 6
aminohexanoic acid, iminodiacetic acid palmitylamide (Ida-Thr-His-Dpa-bhPro

CONH2). 

Vibrio vulnificus 

examine the importance of early hepcidin activity for resistance to V. vulnificus 

infection, we tested the therapeutic effect of minihepcidin PR73 (a synthetic 

mice. Minihepcidins are synthetic hepcidin 

amino acid peptides) previously described by our laboratory 

. These peptides retain the capacity to bind and promote the degradation of 

ferroportin and were show to possess greater potency and longer lasting effect 

. Minihepcidins circumvent the various problems 

25 as a therapeutic, namely the very 

due to rapid renal excretion. Furthermore, the synthesis of 

xpensive, therefore not ideal for large scale 

production. For this work, we used the minihepcidin PR73 (Figure 1), a peptide 

that contains unnatural amino acids to enhance its biological activity and 

oyl group to decrease renal 

terminus the primary 
diphenylalanine, 

homophenylalanine, 6-
bhPro-Arg-Cys-



 

 

To test the therapeutic effect of the minihepcidin PR73 in 

Hamp1-/- mice were pretreated with PR73 24h and 3h before infection and were 

euthanized 16h after subcutaneous

Administration of minihepcidin caused marked hypoferremia (3 µM in iron

and 9 µM in iron-loaded mice) (Figure 2A). Liver iron stores did not change likely 

because of the short duration of the experi

minihepcidin treatment resulted in decreased numbers of bacteria in blood and 

liver of both iron-depleted and iron
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To test the therapeutic effect of the minihepcidin PR73 in V. vulnificus 

mice were pretreated with PR73 24h and 3h before infection and were 

subcutaneous (s.c.) infection with 300 CFU of V. vulnificus

Administration of minihepcidin caused marked hypoferremia (3 µM in iron

loaded mice) (Figure 2A). Liver iron stores did not change likely 

because of the short duration of the experiment (40 h) (Figure 2B). Importantly, 

minihepcidin treatment resulted in decreased numbers of bacteria in blood and 

depleted and iron-loaded mice (Figure 2C and D).  

Figure 2. Minihepcidin PR73 mitigates 

infection by V. vulnificus 

mice. Hamp1-/- mice (either iron
or iron-loaded) were treated with 100 nmol 
of PR73 (red symbols) or sol
symbols) 24 h and 3 h before infection with 
300 CFU of V. vulnificus. Mice were 
euthanized 16 h after infection (n=10
per group. (A) Serum iron was markedly 
decreased in PR73-injected mice, with no 
difference in serum iron between solvent
injected iron-depleted and iron
mice. (B) Liver iron was higher in
loaded than iron-depleted mice as 
expected. PR73 administration did not
result in significant changes in liver iron 
stores. (C) and (D) V. vulnificus 

undetectable in blood and liver in PR73
treated mice, in contrast to mice treated 
with saline. Each dot represents one 
mouse; black solid lines represent the 
mean of CFU counts. The black dotted line 
represents the lower limit of detection of 
CFU counts (calculated as half of the
minimum detectable CFU counts). 
Statistical significance was assessed using 
student’s t test if data were normally 
distributed (**p<0.01) or Mann
test if they were not (+p<0.05; 
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V. vulnificus infection, 

mice were pretreated with PR73 24h and 3h before infection and were 

V. vulnificus. 

Administration of minihepcidin caused marked hypoferremia (3 µM in iron-depleted 

loaded mice) (Figure 2A). Liver iron stores did not change likely 

ment (40 h) (Figure 2B). Importantly, 

minihepcidin treatment resulted in decreased numbers of bacteria in blood and 

Minihepcidin PR73 mitigates 

V. vulnificus in Hamp1
-/-

mice (either iron-depleted 
loaded) were treated with 100 nmol 

of PR73 (red symbols) or solvent (white 
h before infection with 

. Mice were 
h after infection (n=10-11) 
Serum iron was markedly 

injected mice, with no 
difference in serum iron between solvent-

depleted and iron-loaded 
was higher in iron-

depleted mice as 
expected. PR73 administration did not

changes in liver iron 
V. vulnificus was 

d liver in PR73-
treated mice, in contrast to mice treated 

Each dot represents one 
mouse; black solid lines represent the 
mean of CFU counts. The black dotted line 
represents the lower limit of detection of 
CFU counts (calculated as half of the
minimum detectable CFU counts). 
Statistical significance was assessed using 

test if data were normally 
distributed (**p<0.01) or Mann-Whitney U

p<0.05; ++p<0.01). 
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Pretreatment with PR73 also markedly improved survival: while most of 

treated Hamp1-/- mice died within 2 days after infection with 10

vulnificus, mice treated with minihepcidin survived, regardless of their iron load 

and regardless of the number of bacteria administered (Figure 3 A and B). To test 

whether minihepcidins are effective not only for the prevention but also post

exposure treatment of V. vulnificus

Hamp1-/- mice 3 h after infection with 10

(post exposure treatment) of PR73 significantly increased the survival of these 

highly susceptible mice (Figure 3C).

 

Like healthy humans, WT mice, which appropriately respond to infection by 

inducing endogenous hepcidin, are highly resistant to 

very large inocula of V. vulnificus

mice, minihepcidins did not further protect them from lethal infection (Figure 4), 

showing that endogenous hepcidin is sufficient to protect the host.
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Pretreatment with PR73 also markedly improved survival: while most of 

mice died within 2 days after infection with 103 or 10

, mice treated with minihepcidin survived, regardless of their iron load 

and regardless of the number of bacteria administered (Figure 3 A and B). To test 

whether minihepcidins are effective not only for the prevention but also post

V. vulnificus infection, we injected PR73 in iron

mice 3 h after infection with 103 CFU of bacteria. Even delayed injection 

reatment) of PR73 significantly increased the survival of these 

highly susceptible mice (Figure 3C). 

 

Like healthy humans, WT mice, which appropriately respond to infection by 

inducing endogenous hepcidin, are highly resistant to V. vulnificus infectio

V. vulnificus (106 and 107 CFU) were administered to WT 

mice, minihepcidins did not further protect them from lethal infection (Figure 4), 

showing that endogenous hepcidin is sufficient to protect the host. 

Figure 3. Minihepcidin PR73 prevents 

death due to V. vulnificus 

Hamp1-/-  mice. Kaplan-Meier survival 
curves of 8-10 weeks-old Hamp1

iron-depleted (A) and iron
Hamp1-/- mice survived the infection with 
103 and 105 CFU V. vulnificus

treated with 100 nmol PR73 (red) before 
the infection. (C) Hamp1

resistant to infection even if PR73 was 
administered 3 h after infection. 
Statistically significant differences in 
survival between solvent-
treated mice were assessed using the 
log-rank survival analyzes: p<0.05 for 
the iron-depleted group 10
p<0.01 for the other groups (n=4
group). 

Pretreatment with PR73 also markedly improved survival: while most of the non-

or 105 CFU of V. 

, mice treated with minihepcidin survived, regardless of their iron load 

and regardless of the number of bacteria administered (Figure 3 A and B). To test 

whether minihepcidins are effective not only for the prevention but also post-

infection, we injected PR73 in iron-loaded 

CFU of bacteria. Even delayed injection 

reatment) of PR73 significantly increased the survival of these 

Like healthy humans, WT mice, which appropriately respond to infection by 

infection. When 

CFU) were administered to WT 

mice, minihepcidins did not further protect them from lethal infection (Figure 4), 

Minihepcidin PR73 prevents 

ulnificus infection in 

Meier survival 
Hamp1-/-. Both 

and iron-loaded (B)

mice survived the infection with 
V. vulnificus when 

treated with 100 nmol PR73 (red) before 
Hamp1-/- mice were 

resistant to infection even if PR73 was 
h after infection. 

Statistically significant differences in 
- and PR73-

ssed using the 
rank survival analyzes: p<0.05 for 

depleted group 103 CFU group; 
p<0.01 for the other groups (n=4-5 per 



 

Minihepcidin PR73 mitigate the infection through bacteriostatic activity

Hepcidin was firstly described as an antimicrobial peptide, which possessed 

vitro antimicrobial activity against fungi (

and Aspergillus niger) and bacteri

Staphylococcus epidermidis

addressed the possible bactericidal activity of hepcidin

against V. vulnificus (Figure 5)

LB-N broth containing various concentrations of each peptide, or protegrin (an 

antimicrobial peptide used as a microbicidal control). We observed an increase in 

bacterial CFU when low concentrations of hepcidin or minihepcidin peptide were 

added (0 - 2.7 µM), followed by a dose

higher peptide concentrations, more pro

result suggests that hepcidin and minihepcidin PR73 display bactericidal activity 

against V. vulnificus at high concentrations 
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R73 mitigate the infection through bacteriostatic activity

Hepcidin was firstly described as an antimicrobial peptide, which possessed 

antimicrobial activity against fungi (Candida albican, Aspergillus fumigatus, 

) and bacteria (Escherichia coli, Staphylococcus aureus, 

Staphylococcus epidermidis, and group B Streptococcus) [37]. Therefore, we 

the possible bactericidal activity of hepcidin-25 and minihepcidin PR73 

(Figure 5). We measured the CFU of V. vulnificus 

N broth containing various concentrations of each peptide, or protegrin (an 

used as a microbicidal control). We observed an increase in 

bacterial CFU when low concentrations of hepcidin or minihepcidin peptide were 

2.7 µM), followed by a dose-dependent decrease in bacterial CFU at 

higher peptide concentrations, more prominent for PR73 than hepcidin

result suggests that hepcidin and minihepcidin PR73 display bactericidal activity 

at high concentrations in vitro. 

Figure 4. Minihepcidin PR73 does not further 

protect WT mice from death due to V. vulnificus

infection. Kaplan-Meier survival curves for 8
week-old WT mice (kept on a standard diet, 270 ppm 
Fe), treated with minihepcidin PR73 (red lines) or 
solvent (black lines), 24 h and 3 h before infection 
with 1x106 CFU (dashed lines) or 1x107 

lines) V. vulnificus. No statistically significant 
differences were found between solvent and PR73 
treated mice for each bacterial inoculum (n=5
group). 
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R73 mitigate the infection through bacteriostatic activity 

Hepcidin was firstly described as an antimicrobial peptide, which possessed in 

Candida albican, Aspergillus fumigatus, 

Escherichia coli, Staphylococcus aureus, 

. Therefore, we 

25 and minihepcidin PR73 

V. vulnificus growing in 

N broth containing various concentrations of each peptide, or protegrin (an 

used as a microbicidal control). We observed an increase in 

bacterial CFU when low concentrations of hepcidin or minihepcidin peptide were 

dependent decrease in bacterial CFU at 

minent for PR73 than hepcidin-25. This 

result suggests that hepcidin and minihepcidin PR73 display bactericidal activity 

Minihepcidin PR73 does not further 

V. vulnificus

ier survival curves for 8-10 
old WT mice (kept on a standard diet, 270 ppm 

Fe), treated with minihepcidin PR73 (red lines) or 
h before infection 

7 CFU (solid 
No statistically significant 

differences were found between solvent and PR73 
treated mice for each bacterial inoculum (n=5-6 per 
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To determine if the anti-Vibrio effect of minihepcidin during infection

due to iron restriction of bacterial growth or a direct bactericidal effect of the PR73 

peptide, we measured the growth and killing of a 

chloramphenicol-resistance plasmid, similarly to a published approach (F

[149]. The marker plasmid only replicates in the presence of arabinose, which is 

not present in significant amounts in mouse serum. Bacteria were grown 

sera that were obtained from 

a solvent control. Iron concentrations of these sera are provided in Table 1. After 

incubating bacteria in the mouse sera for 2 h, CFU counts were determined on 

plates that allow only plasmid

chloramphenicol and arabinose) or plates that allow all Vibrio bacteria to grow (no 

chloramphenicol/arabinose). Because the marker plasmid does not replicate in 

bacteria growing in serum, the reduction in CFU of 

reflects the killing of the inoculum. The number of 

growth and killing of bacteria whereas the 

bacteria (T/P) reflects growth only 
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Vibrio effect of minihepcidin during infections 

due to iron restriction of bacterial growth or a direct bactericidal effect of the PR73 

peptide, we measured the growth and killing of a V. vulnificus strain marked by a 

resistance plasmid, similarly to a published approach (F

. The marker plasmid only replicates in the presence of arabinose, which is 

not present in significant amounts in mouse serum. Bacteria were grown 

sera that were obtained from Hamp1-/- mice treated with PR73 minihepcidin or with 

a solvent control. Iron concentrations of these sera are provided in Table 1. After 

incubating bacteria in the mouse sera for 2 h, CFU counts were determined on 

plates that allow only plasmid-containing bacteria to grow (supplemen

chloramphenicol and arabinose) or plates that allow all Vibrio bacteria to grow (no 

chloramphenicol/arabinose). Because the marker plasmid does not replicate in 

bacteria growing in serum, the reduction in CFU of plasmid-containing

the killing of the inoculum. The number of total Vibrio CFU reflects both 

growth and killing of bacteria whereas the ratio of total to plasmid

bacteria (T/P) reflects growth only [149] (Figure 6). 

Figure 5. Minihepcidins possess bactericidal 

activity in vitro. V. vulnificus (1x10
were grown in 12 µl of LB-N broth, supplemented 
with various concentrations (0, 0.9, 2.7, 9.1, 27 
and 91 µM) of murine hepcidin
curved), minihepcidin PR73 (solid black curve), 
or protegrin (PG1, solid grey curve), for 3 h at 37 
oC with shaking (300 rpm). At 3 h, 5 µl f
condition were collected and used for CFU 
quantification. At low concentrations (0 
bacterial growth was slightly improved by the 
addition of hepcidin-25 and PR73. At higher 
concentrations both 25-hepcidin and PR73 show 
a dose-dependent bactericidal effect, more 
prominent in PR73 treated samples. The 
antimicrobial peptide protegrin (control) killed all 
the bacteria at a very low concentrations. Results 
represent the average of 2 ind
experiments. 

s in vivo was 

due to iron restriction of bacterial growth or a direct bactericidal effect of the PR73 

strain marked by a 

resistance plasmid, similarly to a published approach (Figure 6) 

. The marker plasmid only replicates in the presence of arabinose, which is 

not present in significant amounts in mouse serum. Bacteria were grown ex vivo in 

PR73 minihepcidin or with 

a solvent control. Iron concentrations of these sera are provided in Table 1. After 

incubating bacteria in the mouse sera for 2 h, CFU counts were determined on 

containing bacteria to grow (supplemented with 

chloramphenicol and arabinose) or plates that allow all Vibrio bacteria to grow (no 

chloramphenicol/arabinose). Because the marker plasmid does not replicate in 

containing Vibrio 

Vibrio CFU reflects both 

of total to plasmid-containing 

Figure 5. Minihepcidins possess bactericidal 

(1x103 CFU/ml) 
N broth, supplemented 

with various concentrations (0, 0.9, 2.7, 9.1, 27 
and 91 µM) of murine hepcidin-25 (dashed 
curved), minihepcidin PR73 (solid black curve), 

grey curve), for 3 h at 37 
5 µl from each 

condition were collected and used for CFU 
quantification. At low concentrations (0 - 2.7 µM), 
bacterial growth was slightly improved by the 

25 and PR73. At higher 
hepcidin and PR73 show 

bactericidal effect, more 
prominent in PR73 treated samples. The 
antimicrobial peptide protegrin (control) killed all 
the bacteria at a very low concentrations. Results 
represent the average of 2 independent
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After incubation in ex vivo sera, total CFU were 15-20-fold lower in sera of 

minihepcidin-treated Hamp1-/-  mice compared to the sera of solvent-treated 

Hamp1-/- mice (Figure 7A), regardless whether the donor mice were on low or high 

iron diet, mirroring the in vivo CFU results (Figure 2 C,D). In contrast, CFU of the 

plasmid-containing bacteria were merely 1.7-1.9-fold lower in minihepcidin-treated 

sera relative to the solvent sera (Figure 7B), demonstrating that the peptide had 

only a slight bactericidal effect in serum. T/P ratios (i.e. bacterial growth) were 

about ten-fold lower for sera from the minihepcidin-treated mice compared with the 

solvent controls (Table 1), indicating that minihepcidin-triggered hypoferremia 

significantly decreased bacterial replication.  This effect of hypoferremia on V. 

vulnificus growth was also replicated using sera from noninfected WT mice that 

Figure 6. Use of plasmid pGTR905 to differentiate the replication rate from the death 

rate of V. vulnificus in mouse serum. The marker plasmid (blue circle) only replicates in 
the presence of arabinose, which is not present in significant amounts in mouse serum. 
Left panel: under standard conditions (normal replication and no death), a representative 
population of 2 plasmid-containing bacteria after three divisions yields 16 bacteria, 2 of 
which contain the plasmid (proportion of plasmid-containing bacteria = 0.125). Central 

panel: if PR73 decreases the replication rate (e.g. only one division occurs within the 
same time period), the total number of bacteria will be lower (4 CFU) and the proportion of 
plasmid-containing bacteria will be higher (0.5). Right panel: if PR73 increases killing 
without affecting the replication rate (e.g. half of the bacteria are killed), the total number 
of bacteria will be lower (8 CFU), but the proportion of plasmid-containing bacteria will be 
the same as in standard conditions (0.125). Therefore, the total number of bacteria 
reflects both growth and killing of bacteria whereas the ratio of total to plasmid-containing 
bacteria reflects growth only.  



Chapter IV 

66 

 

were fed low- or high-iron diet (Figure 7 C and D). Moderately hypoferremic sera 

(because of low-iron diet) slowed down V. vulnificus growth compared to iron-rich 

sera (because of high-iron diet), as shown by a more than 10-fold decreased T/P 

ratio (Table 1), without affecting the number of plasmid-containing bacteria (Figure 

7D). Thus, minihepcidin-induced hypoferremia rather than a direct antimicrobial 

effect of minihepcidin was responsible for slower V. vulnificus replication. The fact 

that WT mice did not present increased resistance to V. vulnificus when treated 

with minihepcidin (Figure 4) further supports the conclusion that the bactericidal 

effect of minihepcidins in vivo is likely irrelevant. 

All the experiments described in this chapter successfully addressed the proposed 

specific aims for this chapter, as we have shown that: a) minihepcidins efficiently 

prevent and treat V. vulnificus infection in the highly susceptible Hamp1 -/- mice; b) 

minihepcidins control infection mostly through a bacteriostatic effect promoted by 

iron restriction. The protective effect of hepcidin agonists in hepcidin-deficient mice 

strongly supports the conclusion presented in Chapter III, placing hepcidin as a 

critical component in the host defense against V. vulnificus. 

 

 

 

 



 

 

 

 

 

Figure 7. Minihepcidin PR73 acts in serum by slowing bacterial growth. 

collected from iron-depleted or
injected with PR73 or solvent, and from iron
with PR73). Serum iron concentrations are shown in Table 1. 
non-replicating marker plasmid pGTR905 were incubated in these sera 
and CFU were determined either on plates without chloramphenicol (
plates with chloramphenicol and arabinose (allows growth of only 
bacteria). (A) PR73 greatly 
bacteriostatic and bactericidal effects. 
containing bacteria indicating only a small bactericidal effect. 
bacteria was much higher in serum from iron
depleted mice, as expected. 
yield of plasmid-containing bacteria indicating that hypoferremia by itself does not have a 
bactericidal effect. Each vertical bar represents the mean, and error bars represent 
standard deviation for 3 independent experiments (with 3 replicates in each experiment). 
The black dotted line represents the number of plasmid
that diluted plasmid copy number to 1 plasmid per bacterium (bacteria in the original 
inoculum carried 5 plasmids per bacterium). 
student’s t test (*p<0.05; **p<0.01; ***p<0.001). 

67 

Figure 7. Minihepcidin PR73 acts in serum by slowing bacterial growth. 

depleted or iron-loaded 8-10 weeks-old Hamp1-/- mice that were 
injected with PR73 or solvent, and from iron-depleted or iron-loaded WT mice (not treated 
with PR73). Serum iron concentrations are shown in Table 1. V. vulnificus 

mid pGTR905 were incubated in these sera in vitro

and CFU were determined either on plates without chloramphenicol (total

plates with chloramphenicol and arabinose (allows growth of only plasmid

PR73 greatly reduced total bacterial yield, which reflects the sum of 
bacteriostatic and bactericidal effects. (B) PR73 only slightly reduced the yield of plasmid
containing bacteria indicating only a small bactericidal effect. (C) The number of total 

higher in serum from iron-loaded WT mice than in serum from iron
depleted mice, as expected. (D) Different serum iron concentrations did not affect the 

containing bacteria indicating that hypoferremia by itself does not have a 
l effect. Each vertical bar represents the mean, and error bars represent 

standard deviation for 3 independent experiments (with 3 replicates in each experiment). 
The black dotted line represents the number of plasmid-containing bacteria after growth 

diluted plasmid copy number to 1 plasmid per bacterium (bacteria in the original 
inoculum carried 5 plasmids per bacterium). Statistical significance was assessed using 

test (*p<0.05; **p<0.01; ***p<0.001).  
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Figure 7. Minihepcidin PR73 acts in serum by slowing bacterial growth. Serum was 
mice that were 

loaded WT mice (not treated 
V. vulnificus carrying the 

in vitro for 2 h, 
total bacteria) or 

plasmid-containing

reduced total bacterial yield, which reflects the sum of 
PR73 only slightly reduced the yield of plasmid-

The number of total 
loaded WT mice than in serum from iron-

Different serum iron concentrations did not affect the 
containing bacteria indicating that hypoferremia by itself does not have a 

l effect. Each vertical bar represents the mean, and error bars represent 
standard deviation for 3 independent experiments (with 3 replicates in each experiment). 

containing bacteria after growth 
diluted plasmid copy number to 1 plasmid per bacterium (bacteria in the original 

Statistical significance was assessed using 
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Table 1. Serum iron concentrations and bacterial growth in sera ex vivo 

 

 

Solvent sera Minihepcidin sera 

Serum iron Log10(T/P) Serum iron Log10(T/P) 

Hamp1-/- mice, 

standard diet 

66 µM 1.84±0.21 13 µM 0.90±0.02** 

Hamp1-/- mice, 

low-iron diet 

64 µM 1.70±0.13 4 µM 0.63±0.53* 

Means ± SD are shown. *p=0.028, **p=0.0017 compared to solvent sera 

 

High-iron diet Low-iron diet 

Serum iron Log10(T/P) Serum iron Log10(T/P) 

WT mice 64 µM 1.75±0.06 37 µM 0.56±0.15* 

Means ± SD are shown. *p=0.0002 compared to high-iron sera 
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                                             CHAPTER V 

              Molecular mechanism of iron-

triggered V. vulnificus virulence 
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Specific aims 

 As described in Chapters III and IV, iron is a critical component for the 

development of severe infection by V. vulnificus. For that reason, failure to 

decrease serum iron during infections leads to increased bacterial virulence and, 

ultimately, to the death of the host. The present chapter is focused on the bacterial 

response to iron by addressing the following aims: 

 a. identify which iron species are relevant to promote rapid bacterial 

 growth 

 b. address the molecular mechanism by which iron affects V. vulnificus 

 virulence 
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NTBI is required for V. vulnificus growth initiation 

When circulating iron exceeds the transferrin binding capacity, iron is bound to 

small molecules, such as citrate, acetate and albumin. This iron species are highly 

reactive and collectively known as NTBI. NTBI starts appearing in circulation when 

transferrin saturation exceeds 60%, and therefore is usually found in patients with 

iron overload disorders and may contribute to the increased susceptibility to 

bacterial infections. Since this form of iron is not sequestered by tightly binding 

proteins and is readily available for uptake by invading microbes, we decided to 

investigate the effect of NTBI on V. vulnificus growth. In LB-N broth, bacteria were 

able to grow at moderate rate even when no Ferric Ammonium Citrate (FAC, a 

form of NTBI) was added to the medium (Figure 1A), showing that the iron 

included in the broth composition is sufficient to allow bacterial replication. 

However, bacterial growth rate was increased as more FAC was made available. 

By 40 µM of FAC, bacteria reached the maximum growth rate, which remained 

similar up to 100 µM FAC. Interestingly, after 6h of incubation we observed a dose 

dependent effect of iron on bacterial survival. Bacteria survived for longer periods 

as more FAC was added to the broth, and reached a plateau phase when FAC 

concentrations were higher than 30 µM. To better understand the role of NTBI 

during infection, we performed the same experiment using inactivated human 

plasma instead of LB-N. This experimental approach resembles in vivo infections, 

as V. vulnificus is mainly present in the blood of infected hosts. V. vulnificus did 

not grow in human plasma without FAC supplementation, despite measurable iron 

concentrations (38 µM). Addition of at least  20 µM FAC was required to trigger 

bacterial growth (Figure 1B). Interestingly, the exponential growth phase in plasma 

started at the same time as in LB-N (3.5 h). The inability to grow in plasma at low 

FAC concentrations suggests that some factor in the plasma is blocking bacterial 

growth, and this hindrance is overcome by the presence of NTBI. At 6h we 

observed a decrease in the optical density (OD), which may imply some bacterial 

death. However, bacteria rapidly recovered and reached a plateau phase at 8h. 

These changes may reflect an adaptive response in bacterial behavior that allows 

for their survival when iron is abundant. As expected, when  iron was made 

inaccessible by adding the synthetic iron chelator deferiprone, bacteria were not 

able to grow in either LB-N or in human plasma. 
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The shift in V. vulnificus growing capacity in human plasma occurred in a narrow 

range of FAC concentrations (between 20 and 30 µM). Since the plasma was 

obtained from a healthy donor, whose transferrin is not fully saturated with iron, we 

hypothesized that bacteria start to grow when the amount of FAC added is enough 

to saturate transferrin, and therefore NTBI appears in the plasma. To test this 

hypothesis, we repeated measurements of bacterial growth in human plasma 

supplemented with FAC, but using plasma from 6 different donors. We estimated 

the total amount of iron needed for bacterial replication (baseline plasma iron + 

minimum amount of FAC added that allowed bacterial growth) and compared it 

with the total iron binding capacity of transferrin (TIBC) in each sample (Figure 2). 

We observed that bacteria only grew when the amount of total iron in the plasma 

is very close to complete transferrin saturation, strongly suggesting that NTBI is 

the stimulus that enables rapid V. vulnificus replication. This fact could also explain 

why bacteria is able to grow in LB-N medium even without FAC supplementation, 

since in this medium iron is not bound to transferrin and therefore is readily 

available to be taken up by the bacteria. 
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Figure 1. Iron is required for V. vulnificus growth in human plasma. V. vulnificus

(1x103 CFU/ml) were grown in 250 µl of LB-N broth (A) or inactivated human plasma (38 
µM of iron) (B), supplemented with various concentrations of ferric ammonium citrate 
(FAC, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 µM) or deferiprone (DFP, 150 µM), for 
10 h at 37 oC with shaking (300 rpm). Bacterial growth was measured every 15 min by 
quantification of the optical density at 600 nm (OD 600nm). A. V. vulnificus growth rate 
and survival were enhanced as more FAC was added to LB-N broth, reaching a maximum 
growth rate at 40-100 µM. B. Bacterial growth was abolished in human plasma, unless 
more than 20 µM of FAC was added. Growth was prevented in both LB-N and human 
plasma by the addition of deferiprone. Each line represents mean (n=3) ± standard 
deviation. 
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To further prove that NTBI is required for V. vulnificus growth initiation in human 

plasma, we compared the growth curves in plasma supplemented with FAC, holo-

transferrin (bound to iron), apo-transferrin (not bound to iron), and a combination 

of FAC with each form of transferrin (Figure 3). As observed in previous 

experiments, V. vulnificus were able to grow when FAC was added to the plasma 

(Figure 3A). However, bacteria did not reach exponential phase when iron was 

added as transferrin-bound iron (Figure 3B), which implies that this bacterium at 

low densities is not able to scavenge iron from transferrin. When bacteria were 

incubated with a combination of FAC and holotransferrin (Figure 3D), they initiated 

rapid exponential growth already at 20 µM FAC (rather than 40 µM) suggesting 

that transferrin-bound iron contributes to the iron pool utilized by the bacterium. A 

very similar pattern was obtained when bacteria were grown in combination with 

FAC and apotransferrin (Figure 3E), further strengthening that hypothesis. 

Interestingly, ferrous ammonium sulfate (FAS) did not trigger bacterial growth, 

even though iron was not bound to transferrin (Figure 3F). We therefore 

hypothesize that only iron in the ferric (III) form, and not in the ferrous (II) form is 

used for bacterial growth. This fact is of importance in the context of an infection 

since most of the NTBI in humans is circulating as ferric (III) iron. Altogether, these 

Figure 2. V. vulnificus growth in human 

plasma occurs when iron concentrations 

exceed the iron-binding capacity of 

transferrin. Plasma iron (white) and 
unsaturated iron binding capacity (UIBC, grey) 
were measured in 6 human plasma samples 
(A-F) to calculate the total iron binding capacity 
(TIBC = plasma iron + UIBC). Each plasma 
sample was then supplemented with increasing 
concentrations of FAC, and bacterial growth 
assessed as in Figure 1B. The minimum
amount of iron needed to enable V. vulnificus 

growth was calculated as the initial plasma iron 
+ lowest concentration of FAC that allowed 
bacterial growth in each sample. The minimal 
amount of iron required for bacterial growth 
was very close to the transferrin saturation 
point, which coincides with the presence of 
NTBI. 
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results show the importance of NTBI as a critical factor for rapid V. vulnificus 

growth leading to severe infections in iron loaded individuals. 

 

 

The Ferric Uptake Regulator (Fur) system is dispensable for V. vulnificus 

lethality 

The remarkable effect of iron on V. vulnificus growth and virulence led us to 

address the mechanism by which this bacterium uses iron as a signal to trigger its 

pathogenic behavior. We hypothesized that the Ferric Uptake Regulator (Fur, also 

known as Ferric Uptake Repressor) system might play a role in the bacterial 

Figure 3. NTBI is required for V. vulnificus growth initiation. V. vulnificus (1x103

CFU/ml) were grown in 250 µl of inactivated human plasma (26 µM of iron), supplemented 
with various concentrations (0, 20, 40, 60, 80, and 100 µM) of (A) ferric ammonium citrate 
(FAC), (B and D) holo-transferrin (Holo-Tf) alone or in combination with 100 µM of FAC, 
(C and E), apo-transferrin (Apo-Tf) alone or in combination with 100 µM of FAC, (F) and 
Ferrous Ammonium Sulfate (FAS), for 10 h at 37 oC with shaking (300 rpm). Bacterial 
growth was measured every 15 min by quantification of the optical density at 600 nm (OD 
600nm). V. vulnificus growth only started when FAC was added to the plasma at 40-100
µM. Bacteria did not grow in plasma supplemented with Holo-Tf or Apo-Tf, unless excess 
FAC was added to the plasma. Unlike FAC which contains ferric iron, FAS which contains 
ferrous iron did not support growth of V. vulnificus in plasma. Each line represents mean 
(n=3) ± standard deviation. 
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response to iron. Fur is a transcription factor ubiquitous in Gram-negative bacteria 

that uses iron as a co-repressor. It acts by repressing the transcription of genes 

that contain a Fur binding site, such as genes involved in iron acquisition, 

synthesis of siderophores, tricarboxylic acid cycle and protection against ROS 

damage (Figure 4A). In the absence of iron, Fur is not able to bind to DNA, thus 

target genes are not repressed. Emerging evidence have shown that Fur can also 

function as a gene activator through indirect pathways that involve small RNAs, 

recruitment of RNA polymerase holoenzyme, or by functioning as an antirepressor 

[164]. Since this is a well documented mechanism for iron-dependent genetic 

control we decided to investigated the ability of a V. vulnificus Fur-deletion mutant 

(ΔFur) to cause lethal infection. We hypothesized that ΔFur strain will have greatly 

decreased virulence compared to a WT strain. However, after infecting mice with 

103 or a 105 bacteria, we observed that the ΔFur mutants were as lethal as the 

Fur-expressing native strain in the highly susceptible Hamp1-/- mice (Figure 4B 

and C). As expected, WT mice remained resistant to infection with either bacterial 

strain. This result strongly suggest that the Fur system is not essential for the 

increased virulence observed in iron-loaded hosts and prompted us to look for 

alternative candidates to explain that phenomenon. 

 

 

 

 



 

Iron induces changes in V. vulnificus 

To find molecular pathways involved in iron

performed RNA sequencing to compare the transcripts of bacteria

human plasma supplemented or not with FAC. Since bacteria do not replicate in 

non-supplemented human plasma (Figure 1

bacteria in the presence of 50 µM of FAC (Figure 5

exponential growth phase (T1), bacteria were recovered and divided in 3 groups: 

one group was harvested for RNA isolation (T1), and the other two groups were 

further incubated with 50 µM of FAC or without FAC until mid

Figure 4. The Ferric Uptake Regulator (Fur) system is dispensable for 

lethality. (A) Fur is a DNA binding protein that regulates the expression of iron
genes. In low iron conditions, Apo
binding site and as a consequence the transcription of target genes is not repressed. 
When iron is abundant, it binds to Fur allowing DNA binding and repression of target 
genes. (B and C) Kaplan-Meier survi
which expresses Fur, or mutant 
(black lines) and Hamp1-/- mice (red lines) after infection with 10
Fur-expressing (solid lines) or Fur mutant (dashed lines) strains of 
CFU groups and n=4 in 10
analysis, differences in survival between mice infected with the WT 
Fur mutant were not statistically significant for either mouse genotype at either inoculum.

77 

V. vulnificus transcriptome 

find molecular pathways involved in iron-induced virulence by V. vulnificus 

performed RNA sequencing to compare the transcripts of bacteria

human plasma supplemented or not with FAC. Since bacteria do not replicate in 

ed human plasma (Figure 1B and Figure 2), we first incubated 

bacteria in the presence of 50 µM of FAC (Figure 5A). At the beginning of the 

al growth phase (T1), bacteria were recovered and divided in 3 groups: 

one group was harvested for RNA isolation (T1), and the other two groups were 

further incubated with 50 µM of FAC or without FAC until mid-exponential phase 

The Ferric Uptake Regulator (Fur) system is dispensable for 

Fur is a DNA binding protein that regulates the expression of iron
genes. In low iron conditions, Apo-fur (Fur not bound to iron) is not able to bind to the Fur
binding site and as a consequence the transcription of target genes is not repressed. 
When iron is abundant, it binds to Fur allowing DNA binding and repression of target 

Meier survival curves for mice infected with native 
which expresses Fur, or mutant V. vulnificus lacking the Fur regulator (ΔFur). WT mice 

mice (red lines) after infection with 103 (B) or 10
ines) or Fur mutant (dashed lines) strains of V. vulnificus 

CFU groups and n=4 in 105 CFU groups). By multifactorial Kaplan-Meier log
analysis, differences in survival between mice infected with the WT V. vulnificus

not statistically significant for either mouse genotype at either inoculum.
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V. vulnificus we 

performed RNA sequencing to compare the transcripts of bacteria growing in 

human plasma supplemented or not with FAC. Since bacteria do not replicate in 

igure 2), we first incubated 

A). At the beginning of the 

al growth phase (T1), bacteria were recovered and divided in 3 groups: 

one group was harvested for RNA isolation (T1), and the other two groups were 

exponential phase 

The Ferric Uptake Regulator (Fur) system is dispensable for V. vulnificus

Fur is a DNA binding protein that regulates the expression of iron-responsive 
not bound to iron) is not able to bind to the Fur-

binding site and as a consequence the transcription of target genes is not repressed. 
When iron is abundant, it binds to Fur allowing DNA binding and repression of target 

val curves for mice infected with native V. vulnificus

lacking the Fur regulator (ΔFur). WT mice 
) or 105 CFU (C) of 

V. vulnificus (n=8 in 103

Meier log-rank 
V. vulnificus and the 

not statistically significant for either mouse genotype at either inoculum. 
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(T2). This approach is expected to mimic the in vivo response, since bacteria 

either stop growing due to the hepcidin-induced hypoferremia  in WT mice 

(reproduced in the 0 µM group), or continue to grow when NTBI remains in the 

plasma of Hamp1-/- mice (reproduced in the 50 µM group). FAC supplementation 

resulted in faster growth rate when compared to non-supplemented plasma. In 

non-supplemented plasma, bacteria were still able to grow, although at a much 

lower rate. This is probably due to the uptake of NTBI prior to the switch to 0 µM 

FAC. To compare the genetic changes responsible for different growth rates we 

recovered RNA at the earliest time point of the exponential phase (T1), and at mid-

exponential phase for each group (T2). RNA sequencing analysis revealed several 

differentially expressed genes among the experimental groups (Figure 5B). We 

were particularly interested in genes differentially expressed due to the presence 

versus absence of iron (T2 50 µM vs T2 0 µM) and also due to the different growth 

phase experienced by the bacteria (T2 0 µM vs T1 and T2 50 µM vs T1). By 

intersecting the data corresponding to these comparisons we found 117 

differentially expressed genes, included in groups II and VI (Figure 5B), and 

represented as a heat map on Figure 5C, and listed in Table 1 (group II) and Table 

2 (group VI). 

Group II represents transcripts that were modulated when NTBI was removed  (T2 

50 µM vs T2 0 µM) and after bacteria triggered exponential growth in the 

conditions of iron restriction (T2 0 µM vs T1). Only 10 transcripts were found in this 

analysis, including 5 transfer RNAs (tRNAs) and 4 ribosomal RNAs (rRNAs). 

These were decreased after iron was removed, pointing to a halt in protein 

synthesis. We hypothesize that the bacteria adopts a new behavior to conserve 

energy in response to the sudden nutrient restriction. The UDP-3-O-[3-

hydroxymyristoyl] N-acetylglucosamine deacetylase transcript was also decreased 

in this condition. This enzyme undertakes the first committed step on lipid A 

biosynthesis (innermost part of the endotoxin lipopolyssacharide). This could 

partially explain the decrease in V. vulnificus virulence in animals able to develop 

hypoferremia after infection.  



 

 

Figure 5. Iron-induced transcriptome changes during 

vulnificus (1x103 CFU/ml) were 
of iron), supplemented with 50 µM of ferric ammonium citrate,
rpm). At the beginning of the exponential phase (T1) bacteria were recovered for RNA 
isolation or were additionally incubated with FAC (50 µM, black) or no FAC (0 µM, grey), 
then harvested at mid-exponential phase (T2) for RNA isolation. Bacterial growth was 
measured every 15 min by quantification of the optical density at 600 nm. Each data point 
represents the mean ± standard deviation (n = 192 until T1 and n = 48 from T1 to T2)
This experiment is representative of 3 biological replicates. 
representative of differentially expressed genes found by RNA sequencing of the RNA 
samples represented in Figure 5A (3 biological replicates for each sample). Using ANOVA 
statistical analysis, genes were considered differentially expressed if the fold change was
> 1.5 or < -1.5, and p < 0.05. 
differentially expressed genes found for groups II and VI (Figure 5B). Thes
represent genes differentially expressed at different growth phases (T1 vs T2) in response 
to iron restriction (Group II) or iron abundance (Group VI).
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induced transcriptome changes during V. vulnificus growth

) were incubated in 250 µl of inactivated human plasma
supplemented with 50 µM of ferric ammonium citrate, at 37 oC with shaking (300 

rpm). At the beginning of the exponential phase (T1) bacteria were recovered for RNA 
isolation or were additionally incubated with FAC (50 µM, black) or no FAC (0 µM, grey), 

exponential phase (T2) for RNA isolation. Bacterial growth was 
measured every 15 min by quantification of the optical density at 600 nm. Each data point 
represents the mean ± standard deviation (n = 192 until T1 and n = 48 from T1 to T2)
This experiment is representative of 3 biological replicates. (B) Venn diagram 

of differentially expressed genes found by RNA sequencing of the RNA 
samples represented in Figure 5A (3 biological replicates for each sample). Using ANOVA 

tistical analysis, genes were considered differentially expressed if the fold change was
0.05. (C) Heat map representing the hierarchical clustering of 117 

differentially expressed genes found for groups II and VI (Figure 5B). Thes
represent genes differentially expressed at different growth phases (T1 vs T2) in response 
to iron restriction (Group II) or iron abundance (Group VI). 
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growth. (A) V. 

human plasma (23 µM 
C with shaking (300 

rpm). At the beginning of the exponential phase (T1) bacteria were recovered for RNA 
isolation or were additionally incubated with FAC (50 µM, black) or no FAC (0 µM, grey), 

exponential phase (T2) for RNA isolation. Bacterial growth was 
measured every 15 min by quantification of the optical density at 600 nm. Each data point 
represents the mean ± standard deviation (n = 192 until T1 and n = 48 from T1 to T2). 

Venn diagram 
of differentially expressed genes found by RNA sequencing of the RNA 

samples represented in Figure 5A (3 biological replicates for each sample). Using ANOVA 
tistical analysis, genes were considered differentially expressed if the fold change was

Heat map representing the hierarchical clustering of 117 
differentially expressed genes found for groups II and VI (Figure 5B). These groups 
represent genes differentially expressed at different growth phases (T1 vs T2) in response 
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Group VI represents transcripts that were differentially expressed due to the 

presence of NTBI (T2 50 µM vs T2 0 µM), leading to fast exponential growth (T2 

50 µM vs T1). We found a list of 107 transcripts (Table 2) involved in a wide range 

of bacterial functions, as well as several hypothetical proteins. These functions 

include membrane transport and sensing (outer membrane protein U, type IV 

secretory pathway, small conductance mechanosensitive channel, ABC-type 

transporter, methyl-accepting chemotaxis protein), virulence (vieSAB three-

component system, FOG repeats, HipA-like protein, putative oxetanocin A 

biosynthetic enzyme), stress response (dnaJ-class molecular chaperone and 

SOS-response transcriptional repressor LexA-like protein), transcription (DNA-

binding protein H-NS, DNA-binding protein inhibitor Id-2 related protein, AraC-type 

DBA-binding domain-containing protein), and mithocondrial respiration 

(phospholipase D-family protein and Rhs family protein). All these transcripts were 

increased when compared to bacteria incubated without FAC and to bacteria 

initiating the exponential growth phase. Together with the massive increase in 

rRNA transcripts, these changes indicate that bacteria are undergoing an 

extremely active metabolic state, with dynamic membrane transport, increased 

protein synthesis, and increased virulence. The concerted increase of vieS, vieA 

and vieB strongly points that the vieSAB three-component regulatory system may 

be important for V. vulnificus behavior in the presence of iron. Two- and three-

component regulatory systems allow bacteria to sense and rapidly respond to 

environmental changes, based on the stimulus triggering the response. The 

vieSAB system was described in V. cholerae as an important pathway for the 

production of major virulence factors, such as the cholera toxin, and also in the 

adaptation to the transition between the environment and the host [165, 166]. We 

hypothesize that a similar pathway may be responsible for the changes observed 

in V. vulnificus in response to iron, and the role of the vieSAB three-component 

system will be characterized in future studies. 

In this chapter, we achieved our specific aim by identifying NTBI, specifically Fe 

(III) species, as the critical form of iron that promote rapid bacterial growth and 

high virulence in V. vulnificus (aim a). Even though we could not fully elucidate the 

molecular mechanism involved in this process (aim b) we excluded the iron 
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sensitive Fur system, while proposing alternative candidates, namely the three-

component system vieSAB. 

 

Table 1. Iron-induced transcriptome changes during V. vulnificus growth - Group II. 

This group represent genes differentially expressed at different growth phases in 

response to iron restriction. Transcripts were considered differentially expressed if the fold 

change was > 1.5 or < -1.5, and p < 0.05, using ANOVA statistical analysis. 

 
T2 50 µM vs T2 0µM T2 0 µM vs T1 

Transcript p-value Fold change p-value Fold change 

VV1_tRNAPhe2_tRNA 0.04777 2.98 0.02968 -3.26 

VV1_tRNAPhe3_tRNA 0.04777 2.98 0.02968 -3.26 

VV1_tRNAMet6_tRNA 0.00210 1.82 0.00996 -1.59 

VV1_tRNAMet8_tRNA 0.00210 1.82 0.00996 -1.59 

VV1_tRNAMet9_tRNA 0.00210 1.82 0.00996 -1.59 
VV1_0571_UDP-3-O-[3-hydroxymyristoyl] N- 
acetylglucosamine deacetylase 

0.00729 1.80 0.01112 -1.72 

VV1_r03_rRNA 0.03410 1.71 0.00507 -2.11 

VV1_r06_rRNA 0.03410 1.71 0.00507 -2.11 

VV1_r09_rRNA 0.03410 1.71 0.00507 -2.11 

VV1_r19_rRNA 0.03410 1.71 0.00507 -2.11 
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Table 2. Iron-induced transcriptome changes during V. vulnificus growth - Group VI. 

This group represent genes differentially expressed at different growth phases in 

response to iron abundance. Transcripts were considered differentially expressed if the 

fold change was > 1.5 or < -1.5, and p < 0.05, using ANOVA statistical analysis. 

 
T2 50 µM vs T2 0µM T2 50 µM vs T1 

Transcript p-value 
Fold 

change 
p-value 

Fold 
change 

VV1_r01_rRNA 0.00604 67.42 0.00604 67.32 

VV1_r04_rRNA 0.00604 67.42 0.00604 67.32 

VV1_r10_rRNA 0.00604 67.42 0.00604 67.32 

VV1_r15_rRNA 0.00604 67.42 0.00604 67.32 

VV1_r18_rRNA 0.00604 67.42 0.00604 67.32 

VV1_r21_rRNA 0.00604 67.42 0.00604 67.32 

VV1_1686_Outer membrane protein OmpU 0.00265 2.53 0.00875 1.88 

VV1_3208_hypothetical protein 0.00024 2.46 0.00011 3.20 

VV1_3214_hypothetical protein 0.00132 2.33 0.00145 2.28 

VV1_3210_hypothetical protein 0.00026 2.29 0.00017 2.58 

VV1_3215_glycosyltransferase 0.00172 2.29 0.00166 2.31 

VV1_3213_hypothetical protein 0.00184 2.28 0.00191 2.26 

VV1_3207_protein cII 0.00029 2.28 0.00016 2.64 

VV1_3209_hypothetical protein 0.00048 2.28 0.00019 2.96 

VV1_0381_hypothetical protein 0.00017 2.27 0.00038 1.94 

VV1_0395_hypothetical protein 0.00041 2.23 0.00027 2.46 

VV2_0746_hypothetical protein 0.00802 2.22 0.00297 3.12 

VV1_0399_hypothetical protein 0.00031 2.21 0.00018 2.53 

VV1_2044_hypothetical protein 0.00059 2.21 0.00018 3.10 

VV1_3216_hypothetical protein 0.00119 2.21 0.00155 2.08 

VV1_3212_Heparinase II/III-like protein 0.00137 2.19 0.00169 2.09 

VV1_3221_hypothetical protein 0.00045 2.18 0.00014 2.99 

VV1_0396_hypothetical protein 0.00031 2.17 0.00017 2.53 

VV1_0394_hypothetical protein 0.00062 2.14 0.00028 2.63 
VV1_2045_Predicted ATP-binding 
 protein involved in virulence 

0.00066 2.12 0.00018 3.04 

VV1_0398_ATP-dependent protease  
HslVU, ATPase subunit 

0.00045 2.12 0.00026 2.41 

VV1_0393_Ribosomal protein L22 0.00034 2.12 0.00017 2.51 
VV1_0392_Predicted HD  
superfamily hydrolase 

0.00033 2.10 0.00017 2.42 

VV1_3177_hypothetical protein 0.00127 2.09 0.00034 3.02 
VV1_0397_DnaJ-class molecular  
chaperone with C-terminal Zn finger domain 

0.00081 2.08 0.00046 2.37 

VV1_0391_Nucleotidyltransferase/DNA 
polymerase involved in DNA repair 

0.00033 2.04 0.00016 2.39 

VV1_0389_hypothetical protein 0.00026 2.02 0.00012 2.41 

VV1_0383_hypothetical protein 0.00027 2.00 0.00014 2.28 

VV1_3217_hypothetical protein 0.00100 1.99 0.00278 1.68 
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T2 50 µM vs T2 0µM T2 50 µM vs T1 

Transcript p-value 
Fold 

change 
p-value 

Fold 
change 

VV1_0387_hypothetical protein 0.00026 1.99 0.00011 2.38 

VV1_0778_Glycosyltransferase 0.00138 1.98 0.00295 1.74 

VV1_0386_Putative transposase 0.00027 1.97 0.00015 2.21 

VV1_0380_hypothetical protein 0.00037 1.97 0.00091 1.71 

VV1_2042_hypothetical protein 0.00082 1.96 0.00019 2.77 
VV1_0390_SOS-response transcriptional  
repressor LexA -like protein 

0.00061 1.95 0.00027 2.32 

VV1_2041_Predicted transcriptional regulator 0.00023 1.95 0.00006 2.62 

VV1_0400_hypothetical protein 0.00064 1.95 0.00031 2.26 
VV1_0388_Type IIA topoisomerase, A 
subunit 

0.00036 1.94 0.00014 2.35 

VV1_0382_Predicted ATP-dependent  
endonuclease of the OLD family 

0.00032 1.93 0.00014 2.27 

VV1_0378_Predicted transcriptional regulator 0.00050 1.92 0.00023 2.23 

VV1_0375_Chromosome segregation 
ATPase 

0.00028 1.91 0.00014 2.17 

VV1_3201_Response regulator VieB 0.00146 1.90 0.00037 2.59 

VV1_0379_hypothetical protein 0.00044 1.90 0.00028 2.07 
VV1_3202_Sensory box sensor  
histidine kinase/response regulator VieS 

0.00120 1.90 0.00028 2.63 

VV1_0377_FOG: TPR repeat 0.00041 1.88 0.00018 2.21 
VV1_0376_Type IV secretory pathway,  
VirD2 component 

0.00051 1.87 0.00022 2.19 

VV1_3252_hypothetical protein 0.00046 1.86 0.00010 2.58 

VV1_2046_Predicted transcriptional regulator 0.00102 1.85 0.00025 2.48 

VV1_0385_Putative transposase 0.00059 1.84 0.00023 2.19 
VV1_0373_Predicted phage-specific 
 transcriptional regulator 

0.00012 1.84 0.00008 1.97 

VV1_2040_ATPase involved in DNA repair 0.00063 1.83 0.00014 2.48 
VV1_3200_Transposase and inactivated 
derivatives 

0.00165 1.81 0.00036 2.46 

VV1_2038_Predicted transcriptional regulator 0.00027 1.78 0.00006 2.31 

VV1_3178_Transposase 0.00177 1.77 0.00034 2.48 

VV1_2047_HipA-like protein 0.00243 1.74 0.00055 2.30 

VV1_3180_Transposase 0.00071 1.73 0.00012 2.38 

VV1_2039_ATPase involved in DNA repair 0.00030 1.73 0.00005 2.35 

VV1_0374_DNA-binding protein H-NS 0.00043 1.72 0.00024 1.88 
VV1_3199_Transposase and inactivated 
derivatives 

0.00169 1.72 0.00035 2.29 

VV2_0665_hypothetical protein 0.00195 1.70 0.00026 2.51 

VV1_3183_Predicted transcriptional regulator 0.00267 1.68 0.00068 2.12 

VV1_3185_hypothetical protein 0.00406 1.66 0.00130 2.00 

VV1_2902_DNA-binding protein inhibitor  
Id-2-related protein 

0.00029 1.66 0.00017 1.78 

VV1_0209_Cysteine synthase A( EC:2.5.1.47 
) 

0.01557 1.66 0.00850 1.84 

VV2_1224_Rhs family protein 0.00305 1.65 0.00082 2.03 
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T2 50 µM vs T2 0µM T2 50 µM vs T1 

Transcript p-value 
Fold 

change 
p-value 

Fold 
change 

VV1_2048_Integrase 0.00136 1.63 0.00028 2.08 

VV2_0219_hypothetical protein 0.00056 1.62 0.00006 2.38 

VV1_3203_Response regulator VieA 0.00254 1.62 0.00053 2.07 

VV1_1806_hypothetical protein 0.00317 1.62 0.00093 1.94 

VV1_2036_hypothetical protein 0.00049 1.61 0.00011 1.97 
VV1_2610_cAMP-binding proteins - 
 catabolite gene activator and regulatory  
subunit of cAMP-dependent protein kinase 

0.00299 1.61 0.00135 1.79 

VV1_1807_AraC-type DNA-binding  
domain-containing protein 

0.00160 1.60 0.00056 1.85 

VV2_0666_hypothetical protein 0.00319 1.60 0.00036 2.34 
VV1_3175_Putative oxetanocin A  
biosynthetic enzyme 

0.00277 1.60 0.00042 2.17 

VV2_0667_Integrase 0.00391 1.60 0.00051 2.27 

VV1_3187_hypothetical protein 0.00363 1.59 0.00084 1.99 

VV2_1692_hypothetical protein 0.00272 1.59 0.00026 2.38 

VV2_0664_Cysteinyl-tRNA synthetase 0.00230 1.58 0.00025 2.29 

VV1_0008_hypothetical protein 0.00090 1.58 0.00019 1.96 
VV1_2037_Type I restriction enzyme 
 EcoEI R protein 

0.00072 1.58 0.00014 1.99 

VV1_3190_Putative transcriptional regulator 0.00242 1.57 0.00073 1.85 

VV1_3186_hypothetical protein 0.00463 1.57 0.00111 1.94 
VV1_0007_Small-conductance  
mechanosensitive channel 

0.00294 1.57 0.00065 1.95 

VV1_0401_hypothetical protein 0.00104 1.56 0.00121 1.54 

VV1_0372_Phage integrase 0.00089 1.55 0.00055 1.64 
VV2_1569_DNA-binding HTH  
domain-containing protein 

0.00399 1.55 0.00061 2.05 

VV1_1805_Methyl-accepting  
chemotaxis protein 

0.00183 1.54 0.00050 1.82 

VV2_0676_hypothetical protein 0.00207 1.54 0.00022 2.16 

VV1_2027_hypothetical protein 0.00008 1.54 0.00003 1.73 

VV1_3197_Phopholipase D-family protein 0.00241 1.53 0.00041 1.95 
VV2_1570_DNA-binding HTH  
domain-containing protein 

0.00276 1.53 0.00030 2.13 

VV1_3181_Transposase 0.01179 1.53 0.00198 2.03 
VV1_0009_ABC-type transport 
 system, periplasmic component 

0.00157 1.53 0.00034 1.86 

VV2_0669_hypothetical protein 0.00269 1.51 0.00019 2.26 
VV2_0908_Molybdenum cofactor  
biosynthesis enzyme 

0.00750 1.50 0.00088 2.07 

VV2_1223_hypothetical protein 0.00599 1.50 0.00144 1.81 
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The growth of pathogens in their hosts is critically dependent on the pathogens’ 

ability to capture and utilize iron. The hosts have evolved several 

countermeasures to restrict the bioavailability of iron and effectively starve the 

microbes, while bacteria have become more efficient in scavenging iron from the 

host [167]. Hepcidin-induced hypoferremia has been proposed as an important 

host defense mechanism by decreasing iron availability for the pathogen [167, 

168]. However, support for its role has been lacking. We hypothesized that this 

defense mechanism is relevant in the protection against siderophilic bacteria, in 

which iron is crucial for the development of severe infection. In this study, we 

demonstrate that hepcidin-induced acute hypoferremia is an important host 

defense mechanism against the siderophilic bacterial pathogen V. vulnificus. We 

also explore the use of hepcidin agonists to treat susceptible mice, and the 

mechanism by which this bacterium uses iron to enhance its growth and virulence. 

 

NTBI: a molecular trigger of V. vulnificus virulence 

As a crucial factor in essential metabolic processes, iron is an essential nutrient for 

most living creatures, including pathogens. A group of bacteria, designated 

siderophilic, have developed mechanisms to use iron to increase their growth and 

virulence, thus making iron an essential element for disease progression [169]. An 

example is V. vulnificus, a deadly pathogen in patients with iron overload disorders 

such as hereditary hemochromatosis, but also in patients with immunodeficiencies 

or chronic liver or renal disease. The development of therapies targeting the 

bacteria requires the understanding of how V. vulnificus senses and uses the iron 

stimulus to trigger their virulence. Despite the evident link between the iron uptake 

and virulence of V. vulnificus, the molecular mechanism by which excess iron 

reprograms V. vulnificus for very rapid growth is still elusive. We speculate that 

high iron concentrations, or possibly the related presence of one or more non-

transferrin bound iron (NTBI) forms in the environment of V. vulnificus, activate a 

genetic program for very rapid growth, leading to septicemia, evidence of septic 

shock at necropsy and early mortality. We observed that not all forms of iron were 

able to promote V. vulnificus growth in human plasma, as bacteria did not grow 

when supplemented with Holo-Tf, but grew very efficiently when moderate to high 
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concentrations of NTBI (in the form of FAC) were added. At low FAC 

concentrations, iron may be taken up by transferrin in plasma, which is 

approximately 30% saturated in healthy individuals [25]. If enough FAC is added to 

exceed the iron-binding capacity of transferrin, iron circulates as NTBI. In some of 

the plasma samples used for growth experiments, V. vulnificus started growing 

even if transferrin was not fully saturated, which may be explained by the fact that 

in various conditions NTBI appears in blood even when transferrin is not fully 

saturated [170, 171]. Additionally, this could explain why not only people with iron 

overload disorders develop disease. NTBI has been reported in patients with 

diabetes [172, 173], renal disease [174, 175], and liver disease [25], all conditions 

that lead to an increased susceptibility to V. vulnificus infections. The hypothesis of 

NTBI as the stimulus for V. vulnificus virulence has been previously explored by 

Kim et al [140]. The authors analyzed bacterial growth in cirrhotic ascites and 

observed that bacteria required NTBI for growth initiation and subsequent 

siderophore synthesis. This conclusion is strengthened by our results using human 

plasma, which likely represents the milieu of bacterial replication during human 

infection. The production of siderophores is a metabolically expensive mechanism 

for bacteria, but beneficial for the population since siderophores can be taken up 

by bacteria in the vicinity [176]. Therefore, we can speculate that bacteria only 

invest energy in siderophore production in iron-replete condition that allow for 

bacterial replication, in a mechanism controlled by iron and quorum sensing. 

Additionally, we observed that V. vulnificus specifically requires iron as Fe (III), 

which constitutes the main form of iron circulating as NTBI [177], mainly bound to 

citrate, acetate, or albumin [171, 178]. This suggests the presence of an iron 

transporter that specifically transports Fe (III), although such protein has never 

been reported. 

 

Iron induces changes in V. vulnificus transcriptome 

The control of iron homeostasis in prokaryotes is controlled by the transcriptional 

regulator Fur (Ferric uptake regulator) [138]. This protein was first described in E. 

coli [179] and later found to be conserved among Gram-negative and Gram-

positive bacteria [180], including V. vulnificus [181]. Fur acts as a transcriptional 
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repressor that uses iron as a co-repressor, and regulates the transcription of 

genes involved in iron metabolism and/or virulence. We addressed the role of Fur 

in the development of V. vulnificus infection by comparing the lethality of a Fur-

deletion mutant (ΔFur) to the WT strain and observed no differences in mouse 

survival, arguing against a significant role of this system in the context of human or 

animal infection. Therefore, we used RNA sequencing to look for alternative 

candidate pathways that could explain the virulence program initiated by V. 

vulnificus in the presence of iron. Previous studies have analyzed the 

transcriptome of V. vulnificus during infections by comparing clinical vs 

environmental strains [182], or clinical strains exposed to seawater vs human 

serum [183]. These approaches are not suitable to fully answer our question, as 

they analyze different bacterial strains (and therefore look for intrinsic differences 

between strains) or differences relative to the environment independently of the 

iron levels. Therefore, we decided to develop a different approach, in which we 

mimicked the conditions experienced by the bacteria during infections. According 

to our data in animal models of V. vulnificus, bacteria encounter iron in the blood, 

where iron concentration is either decreased through an hypoferremic response in 

WT mice or is maintained at a high level in hepcidin-deficient animals. We started 

the analysis by incubating V. vulnificus in human serum containing iron (as FAC) 

to allow bacterial growth and at the beginning of exponential growth we either 

removed iron or re-incubated bacteria with iron. Comparison of the transcriptome 

in the beginning of log phase with mid-log phase (with or without iron) allows us to 

look for genetic changes that lead to differential bacterial growth in response to 

iron. We found 117 differentially expressed genes of interest involved in several 

metabolic pathways such as membrane transport and sensing, virulence, stress 

response, transcription, and mitochondrial respiration, as well as several 

transcripts corresponding to hypothetical proteins. This indicates that bacteria 

exposed to iron may adopt a "virulence program", characterized by an extremely 

active metabolic state, enhanced membrane transport and virulence. By 

examining the expression of genes that are involved in common signaling 

pathways, we found a concerted increase in vieS, vieA and vieB, components of 

the vieSAB system. This is a three-component system found in V. cholerae 

responsible for the production of virulence factors and involved in the transition 

between the environment and the host [165, 166]. This system acts as a stimulus-
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response coupling mechanism that allow bacteria to sense and respond to 

changes in the environmental conditions. Based on our findings we can speculate 

that NTBI could be the stimulus that triggers this response. Even though the 

relevance of the genetic targets found in our analysis is not yet validated, our 

results clearly demonstrates that iron has a significant impact in V. vulnificus 

virulence during infections, and therefore removal of iron is critical for host 

defense. 

 

Hypoferremia and host protection 

The critical role of iron in the severity of V. vulnificus infection suggests that iron 

levels in the host are highly relevant for the outcome of infection. In fact, Starks et 

al have previously reported that WT mice injected i.p. with iron dextran required a 

105-fold lower inoculum to develop systemic disease when compared with non-iron 

dextran-treated mice [152]. Although this is a useful model to study V. vulnificus 

infection, it does not represent the development of the disease in humans, who 

develop iron overload as a result of faulty iron homeostasis and consequently 

increased dietary absorption. Therefore, in this study we used two animal models 

of iron overload obtained through dietary (10000 ppm Fe diet) or genetic (Hamp1-/-

) manipulation, as well as iron-depleted animals (4 ppm Fe diet). In our mouse 

models, the order of susceptibility to rapid mortality from V. vulnificus was Hamp1-/- 

iron-loaded > Hamp1-/- iron-depleted > WT iron-loaded > WT iron-depleted. This 

together with studies of the effect of serum iron on V. vulnificus growth ex vivo 

indicated that plasma iron concentrations during the course of infection determined 

the growth of V. vulnificus and host mortality. Hamp1-/- mice were more 

susceptible to lethal infection, even when they had the same baseline serum iron 

and lower liver iron stores than iron loaded WT mice. However, serum iron 16 h 

after infection was acutely decreased in WT mice, while Hamp1-/- were not able to 

mount the same response. This suggests that acute hypoferremia after infection is 

a major iron-related determinant of resistance to V. vulnificus. This hypoferremic 

response is essential to remove NTBI from circulation, and therefore prevent the 

initiation of rapid bacterial growth followed by sepsis. 
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WT mice developed hypoferremia within hours after infection with V. vulnificus, 

and this response was dependent on early induction of hepcidin, preceded by a 

rise in inflammatory cytokines such as IL-6 and activin B. IL-6 acts as an 

inflammatory signal that triggers hepcidin expression in the liver through the 

JAK/STAT3 pathway [66, 184, 185]. Activin B, through SMAD1/5/8 signaling [67], 

is also a stimulus for hepcidin production in response to inflammation. We found 

that expression of Inhbb, encoding the activin βB-subunit, is increased prior to the 

hepcidin response, suggesting that the two pathways may cooperate in the 

induction of hepcidin during infection. A recent study proposed that hepcidin-

independent hypoferremia may take place during inflammation, as ferroportin 

expression is decreased through TLR-2 and TLR-6 signaling [155]. Although we 

cannot exclude that this mechanism is effective in our model, the very small 

decrease in serum iron concentrations after infection and the rapid death of 

Hamp1-/- mice argues against its physiological relevance in V. vulnificus infections. 

 

Minihepcidins are an effective treatment against V. vulnificus 

To further examine if hepcidin-induced hypoferremia is an effective component in 

the innate immune response against V. vulnificus, we analyzed the therapeutic 

effects of minihepcidins in Hamp1-/- mice. Minihepcidins are synthetic hepcidin 

agonists previously shown to bind ferroportin and induce its endocytosis and 

proteolysis, thus preventing iron overload in hepcidin-deficient mice [144, 145]. In 

the current study, the short-term minihepcidin treatment robustly decreased serum 

iron without altering liver iron stores. Both pretreatment with minihepcidin and 

administration 3 h after the infection protected the highly susceptible Hamp1-/- 

mice from dying after infection, even with a large inoculum of V. vulnificus. 

Minihepcidin-treated mice had much lower concentrations of bacterial CFU in the 

blood and liver, presumably because of a lower bacterial growth rate due to 

decreased plasma iron. WT mice with their intact endogenous hepcidin response 

to infection were not further protected by minihepcidins injections. This limitation is 

not clinically important because healthy humans do not develop severe V. 

vulnificus infections. Another study [186] showed that treatment with tilapia 

hepcidin TH(2-3) did increase survival rate in Balb/C mice infected with V. 
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vulnificus, and that TH(2-3) had both antimicrobial and immunomodulatory effects. 

However, effects on iron metabolism were not investigated and it is not known if 

TH(2-3) interacts with murine ferroportin. 

Since hepcidin and its fragments have microbicidal effects in vitro [37], we tested if 

the minihepcidin had a bactericidal effect on V. vulnificus. First, we analyzed the 

bactericidal effect of native hepcidin and minihepcidins in LB-N broth and 

observed a decrease in bacterial numbers as the concentrations of peptides was 

increased. However, as in the study describing the microbicidal effects of hepcidin 

[37], these were only observed when the peptides were added to very high 

concentrations, not possible to reach under physiological conditions. To approach 

this question in a way that resembles infection in mice, we used a V. vulnificus 

strain containing a marker plasmid, pGTR905, that functions as a replicon only in 

the presence of arabinose (a sugar not found in relevant concentrations in animal 

tissues). We demonstrated that the minihepcidin-containing serum had only a 

slight bactericidal effect that was not sufficient to explain the dramatically lower 

number of total bacterial CFU. Rather, the slower growth of bacteria in sera from 

minihepcidin-treated mice was caused by the low iron concentrations in those 

sera. The dependence of V. vulnificus growth in ex vivo sera on the serum iron 

concentrations was confirmed in WT mice where serum iron was manipulated not 

by the administration of minihepcidin but by changing the dietary iron content. The 

composition of sera is also not favorable for the direct microbicidal activity of 

hepcidin which is dependent on acidic pH that is not physiologic in serum [187]. 

Immune response to V. vulnificus infection 

We cannot exclude the possibility that immunological differences exist between 

Hamp1-/- and WT mice, even when Hamp1-/- mice are kept on a low iron diet. 

Hepcidin deficiency results in altered tissue iron distribution and iron-depleted 

macrophages, and this could potentially affect innate immune signaling [188, 189]. 

Also, NTBI has been proposed as a modifier in the generation of T lymphocyte 

subsets, which can also influence the immune response [190]. In this study we 

focused on the events that happen during the first 12-16 hours, during which 

susceptible mice die. This early response suggests that leukocyte subsets do not 

play a significant role, and neutrophils are rapidly recruited but overmatched by 
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bacteria as we observed in the liver of infected mice. We measured a panel of 10 

pro-inflammatory-cytokines in infected WT and Hamp1-/- (either iron-depleted or 

iron-loaded) and we found no significant differences in the levels of circulating 

cytokines between the genotypes, suggesting that the immune response is not 

significantly altered in Hamp1-/- mice. Besides, the ability of minihepcidins to 

rapidly alleviate the mortality of Hamp1-/- mice from V. vulnificus infection would 

argue that any immunological differences between Hamp1-/- and WT mice are 

minor or acutely reversible by hepcidin or its analogs. We can therefore speculate 

that, even though Hamp1-/- mice present a functional immune response, the host 

cannot cope with the extremely rapid bacterial growth when iron is abundant and 

therefore is not able to clear the infection before sepsis develops. This may 

partially explain why patients with hereditary hemochromatosis are more 

susceptible to pathogens that thrive in the presence of iron but not to infections by 

other pathogens. We therefore conclude that the deficiency of the hormone 

hepcidin constitutes a new form of innate immune deficit. 

 

Considerations on the proposed mechanism in human patients 

Human hereditary hemochromatosis (HH) is described as risk factor for lethal 

infection with V. vulnificus. This infection is, however, extremely rare in spite of the 

very high frequency of the disease, suggesting that not all patients exhibit the 

same susceptibility. It is well known that the severity of hepcidin deficiency and 

iron overload in HH is highly variable. Rare forms of HH with absolute hepcidin 

deficiency are clinically very severe, but the most common form caused by the 

pC282Y HFE mutation [191] is extremely heterogeneous, varying from a simple 

biochemical abnormality to very severe forms of chronic liver disease. This 

variability can be attributable to both genetic modifiers (e.g. gender and the 

GNPAT gene [72]) and environmental factors (e.g. alcohol intake) [192]. 

Therefore, patients with mild or intermediate phenotypes will likely not be at 

increased risk of siderophilic infections. Indeed, studies in HFE knockout mice 

showed appropriate decrease in serum iron in response to LPS [193]. Only when a 

second hemochromatosis gene TfR2 is ablated is the hypoferremic response to 

LPS lost [193]. It is plausible to assume that, like the HFE mouse model, in the 
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absence of additional genetic or comorbid factors, most patients with HFE 

mutations may appropriately respond to infections by increasing hepcidin and 

developing hypoferremia. In contrast, the loss of hepcidin in Hamp1-/- mice 

generates a particularly severe form of the disease and it nearly completely 

ablates the hypoferremia of infection. We hypothesize HH patients with very low 

baseline hepcidin and impaired hepcidin response to infection, either because of 

the pattern of causative mutations and/or the presence of comorbid factors, will be 

the ones with increased susceptibility to infections with siderophilic bacteria.  

 

Future perspectives and concluding remarks 

After being discovered and described as a component of the innate immunity 

through its bactericidal activity, the position of hepcidin in homeostasis has shifted 

to a central role in the orchestration of mammalian iron metabolism. Although 

recent developments in iron research unveiled additional molecular mediators of 

iron homeostasis, most of these directly or indirectly converge on hepcidin. The 

importance of this peptide hormone in iron metabolism is also supported by the 

pathogenic role of hepcidin deficiency in iron overload diseases (hereditary 

hemochromatosis and thalassemia) and hepcidin excess in some forms of 

anemia. The discovery that hepcidin expression was enhanced by inflammation 

revealed a potential involvement in the immune response. In this study we 

demonstrate that hepcidin has come full circle as a component of the innate 

immunity, although not as antimicrobial peptide but rather as a means for the host 

to keep iron out of the pathogen's reach (Figure 1). 

Hepcidin plays an important role in host defense against siderophilic bacteria such 

as V. vulnificus by controlling baseline plasma iron concentrations (specifically 

NTBI) and mediating hypoferremia in response to infection. These effects prevent 

the rapid growth of V. vulnificus so that other innate immune mechanisms are 

sufficient to control the infection. However, we still do not know how relevant this 

mechanism is in the context of other infections. Experiments using additional 

siderophilic as well as non-siderophilic bacteria are currently being undertaken to 

address this issue.  
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Pointing to potential therapeutic applications, pre- or post-infection administration 

of hepcidin agonists to hepcidin-deficient mice increased their resistance to V. 

vulnificus infection and protected them from consequent mortality. Hamp1-/- mice 

were efficiently rescued through an acute treatment with 3 doses of minihepcidins 

(3, 24 and 48h after infection). This effective short-term treatment is clinically 

relevant, as it decreases the chances of side effects that could arise from long-

term administrations, such as anemia or increased susceptibility to infections by 

intracellular pathogens, as iron is retained in macrophages. By fighting the 

bacteria in two fronts: directly killing the pathogens (using antibiotics) while 

preventing their rapid growth (using hepcidin agonists), we hope that 

minihepcidins may prove to be useful as a coadjuvant therapy in the treatment of 

such a deadly disease. Nevertheless, its application in human patients still 

requires a series of experiments beyond our mouse models before we can safely 

guarantee that this treatment fulfills its potential. 

Although this thesis elucidates some aspects regarding the relevance of iron for V. 

vulnificus to cause severe infection in susceptible patients, the exact mechanism 

involved in that process is still not understood. We propose some candidate genes 

and pathways that require further validation and functional testing. We believe that 

the discovery of this mechanism may be important not only for V. vulnificus 

infection but may also be shared with other siderophilic pathogens and therefore 

become a molecular target in this type of infections. 

In summary, this thesis for the first time demonstrates the critical role of hepcidin 

in innate immunity, and represents a significant advance in clarification of the 

molecular pathobiology of host resistance to V. vulnificus, in which hepcidin was 

shown to play a key role, as well as in the perspective of developing novel 

therapies to treat this infection (through minihepcidins) and pointing the way for 

bacteria-targeted approaches to prevent the development of lethal infection.  
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High plasma 
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Wild-type Hepcidin-deficient
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Figure 1. Hepcidin-induced hypoferremia 

restricts pathogen growth. The 
multiplication of pathogenic microbes is 
dependent on an adequate supply of 
bioavailable iron. In response to infection, 
the host releases cytokines, such as IL-6, 
which stimulate hepcidin production in the 
liver: Early in infection, increased hepcidin 
lowers plasma iron, restricting its availability 
to invading V. vulnificus, slowing its growth 
and decreasing its pathogenic effects.
Hamp1-/- mice lack hepcidin, leading to high 
plasma iron concentration and appearance 
of NTBI that persists even during infection 
with V. vulnificus, causing rapid multiplication 
of the pathogen and fulminant disease. 
Treatment of Hamp1-/- mice with 
minihepcidin induces acute hypoferremia, 
slowing pathogen growth and allowing the 
host to control the infection. 
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