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Abstract 

Hexagonal Close-Packed (HCP) metals exhibit a very unconventional mechanical 

behaviour compared with other metallic materials. This is due to the limited number of 

slip systems and twining mechanisms. A very pronounced strength asymmetry between 

yielding in tension and compression is observed at low strain levels and cold rolled 

sheets also show a strong planar anisotropy. Therefore, it is extremely challenging to 

develop accurate constitutive models and robust numerical integration algorithms to 

predict the behaviour of these materials. This has been a major motivation of this thesis.  

Within the present work, a constitutive model proposed by Cazacu and Barlat is 

numerically treated and implemented within an implicit time integration scheme. The 

return mapping algorithm is based on the Closest Point Projection Method (CPPM) 

combined with an inexact line search strategy. Three interpolation methods are 

employed to overcome numerical instabilities and to enlarge the bowl of convergence.  

To be able to handle regions of high rate-sensitivity to rate independent 

conditions, an elastic-viscoplastic model is developed by extending the formulation with 

the viscoplastic formulation proposed by Perzyna. The stability and accuracy of the 

numerical implementation is illustrated for high strain rates, which are characterized by 

very high power-exponents, under different stress states.  

The identification of material parameters is addressed for an AZ31 alloy. Five 

optimization strategies are used to identify the parameters of the material constitutive 

model proposed by Cazacu and co-workers, which employs the principal values of the 

linearly transformed stress deviator. The ability to avoid local minima and obtain the 

global optimization value is assessed and discussed.  

An extended yield criterion that can describe both the anisotropy of the material 

and the yielding asymmetry between tension and compression is also proposed. The 

yield function extends the Barlat 8́9 criterion to capture the behaviour of orthotropic 

HCP metal sheets under plane stress. The proposed criterion can capture very well the 

complex behaviour of HCP metal sheets with a limited number of material parameters. 

The prediction of springback effects in sheet metal forming operations is 

extremely important. Therefore, a generic analytical solution is proposed for arbitrary 

elasto-plastic materials when subjected to external forces. Attention is also dedicated to 

the numerical simulation of springback. Four different yield criteria are used and two 

kinds of hardening law are considered.  

Due to the fact that rate effects on HCP materials not only affect the magnitude 

of the yield surface but also its shape, an extended elasto-viscoplastic constitutive model 

is proposed. The yield surface of the model is obtained through a bilinear interpolation 

method and the numerical integration algorithm, which includes two stages, has been 

developed. The merit of the approach is analysed and discussed. 

The efficiency and robustness of all the developments is illustrated by numerical 

examples, which are compared with results obtained by other authors.   
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Resumo 

Os metais com uma estrutura hexagonal compacta apresentam um 

comportamento mecânico muito pouco convencional. Isto fica a dever-se ao número 

limitado de sistemas de deslizamento e a mecanismos de maclagem. Uma assimetria 

pronunciada é observada entre a tensão de escoamento à tração e compressão para 

baixos níveis de deformação. Simultaneamente, as chapas laminadas a frio evidenciam 

uma forte anisotropia planar. Deste modo, é particularmente desafiante o 

desenvolvimento de modelos constitutivos precisos e  algoritmos de integração 

numérica robustos capazes de prever o comportamento deste tipo de materiais. Tal foi, 

precisamente, a motivação e o desígnio fundamental que estiveram na base dos 

trabalhos desta tese.   

No presente trabalho, um modelo constitutivo proposto por Cazacu e Barlat é 

numericamente tratado e implementado dentro de um esquema de integração implícito. 

O algoritmo de integração das tensões baseia-se no método da Projeção do Ponto Mais 

Próximo, combinado com uma estratégia de pesquisa local. Três métodos de 

interpolação são utilizados com o objetivo de superar as instabilidades numéricas e 

aumentar o domínio de convergência . 

Para poder lidar com regiões de elevada e baixa taxa de deformação, um modelo 

elasto - viscoplástico foi desenvolvido efetuando a extensão da formulação viscoplástica 

proposta por Perzyna. A estabilidade e a precisão da implementação numérica é 

ilustrada para altas taxas de deformação, que se caracterizam por expoentes elevados, 

sob diferentes estados de tensão. 

A identificação dos parâmetros do material é executada para uma liga de 

alumínio AZ31. Cinco estratégias de otimização são usadas para identificar os 

parâmetros do modelo constitutivo do material que foi proposto por Cazacu e 

colaboradores, que utiliza os valores prinicpais do tensor das tensões de desvio após 

transformação linear. A capacidade para serem evitados mínimos locais e obter o valor 

de otimização global é avaliada e discutida . 

É igualmente proposto um critério de cedência, capaz de descrever 

simultaneamente a anisotropia do material e a assimetria do escoamento à tração e à 

compressão. A função de cedência estende o critério Barlat'89 para descrever o 

comportamento de chapas de metal ortotrópico com estrutura hexagonal compacta sob 

um estado plano de tensão. O critério proposto é capaz de captar com exatidão o 

comportamento complexo de chapas de metal com estrutura hexagonal compacta 

recorrendo a um número limitado de parâmetros. 

A previsão de efeitos de retorno elástico em operações de conformação plástica 

de chapa é extremamente importante. Portanto, uma solução analítica genérica é 

proposta para materiais elasto - plástico arbitrários quando sujeitos a forças externas. A 

simulação numérica do efeito de retorno elástico é também alvo de atenção. Quatro 
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critérios de cedência distintos são utilizados e dois tipos de leis de endurecimento são 

considerados. 

Uma vez que o efeito da taxa de deformação para materiais com estrutura 

hexagonal compacta afeta não só a magnitude da superfície de cedência, mas também a 

sua forma, é proposto um modelo constitutivo elasto - viscoplástico alargado. A 

superfície de cedência do modelo é calculada através de um método de interpolação 

bilinear e foi desenvolvido um algoritmo de integração numérica que inclui duas fases. 

O mérito da abordagem proposta é analisado e discutido. 

A eficiência e robustez de todos os desenvolvimentos é ilustrada através de 

exemplos numéricos. Por seu turno, estes são comparados com resultados numéricos e 

experimentais obtidos por outros autores. 
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Chapter 1  

Introduction 

1.1 Background 

Currently there is a strong green awareness over sustainability, resources, energy and 

environment impacts. Concerning CO2 emissions, transportation represents 22% of total 

emissions in world [1] or 28% in USA [2], from which road transports make up the vast 

majority of emissions from this sector. 

In an effort to improve fuel efficiency for energy saving, an eventually competent way 

for reducing the climate-changing CO2 emissions is provided by the application of 

lightweight materials that reduce the overall weight of vehicles in defense, aerospace, 

and automotive industries applications, etc. Although composites, particularly fiber-

reinforced ones, are currently heavily investigated and developed for such purposes, 

lightweight metals, such as titanium alloys and magnesium alloys, remain as the most 

frequently chosen materials, partly due to their low density and high specific strength 

[3]. The United States Automotive Materials Partnership (USAMP) estimates that 

vehicle weight can be reduced by 290 lbs (131 kg) using magnesium alloys instead of 

steel or aluminum alloys [4]. 

Rather than time-consuming experiments, numerical techniques provide fast and cost-

effective means to analyze and optimize the mechanical performance of products, 

having seen an increasing trend in various steps of sheet forming processes, from design 

to testing, over the last three decades [5-10]. The accuracy of metal forming simulation 

depends not only on the forming conditions (friction, tool geometry, etc.), but also on 

the choice of the constitutive model material and its numerical implementation into 

finite element programs. This consequently requires an in-depth knowledge of material 

constitutive models to describe the material behaviour, and methods to implement these 

into user-friendly numerical tools.  

For polycrystalline materials, anisotropic metal plasticity has been a hot topic for many 

decades, and numerous constitutive models have been proposed based on two distinct 

approaches. The first approach, which is referred as crystal plasticity, describes the 

material constitutive behavior at the microstructural level. The polycrystalline behavior 

is described based on the behavior of each individual crystal. The theory of crystal 
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plasticity was developed to study material’s heterogeneous plastic deformation based on 

modeling the slip of dislocations on discrete slip systems within the crystal. The method 

of crystal plasticity works well for solving problems of heterogeneous mechanical 

behavior, and it was extensively developed to study heterogeneous plastic deformation, 

lattice rotation and texture evolution when metals are subjected to large deformation. 

Therefore, this approach is usually conducted to understand the micromechanisms 

involved and to capture the macro mechanical behaviour. Although some studies [11-15] 

employed crystal plasticity to solve practical related problems met in manufacturing 

processes, like metal rolling and forming, simulation and analysis of metal forming 

operations using direct implementation of crystal plasticity approaches is still limited, 

due to the higher computational cost of the analysis. In the second approach, called 

phenomenological approach, the average behavior of all grains directly determines the 

global material behavior and the analysis are performed at the macroscopic level.  

A large number of phenomenological yield functions [16-20] have been developed for 

plastic anisotropy of metals with cubic crystal structure after the original development 

of Hill (1948) [21]. However, the above mentioned constitutive models cannot be used 

directly to capture the behavior of materials with Hexagonal Close-Packed (HCP) 

crystal structure. Constitutive modelling of HCP materials, like magnesium alloys, is a 

rather challenging task because they exhibit a unique behaviour compared to cubic 

metals. Their HCP crystallographic structure promotes a very different mechanical 

behaviour when compared to other metals with Face Centered Cubic (FCC) and Body 

Centered Cubic (BCC) structures, such as steel, aluminium, etc. At room temperature, 

metals with HCP crystalline lattices have a reduced number of available slip systems, 

which makes the accommodation of arbitrary plastic deformation difficult. Therefore 

mechanical twinning goes along with dislocation slip during plastic deformation and 

plays an important role to accommodate the deformation. Mechanical twinning, unlike 

slip, is sensitive to the sign of the applied stress, i.e., if a particular twin can be formed 

under a shear stress, it will not be formed by a shear stress of opposite direction. 

Because of the directionality of twinning, a very pronounced strength asymmetry 

between yielding in tension and compression, usually known as strength differential 

(SD) effect, is observed at room temperature. In addition, the cold rolled sheet also 

shows a strong anisotropy because of the evolution of crystallographic texture as a 

consequence of the rolling process. Hence, it is inevitable to study in detail the 

mechanical behaviour of HCP materials and to find a constitutive model which is able 
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to describe their unconventional stress-strain response. Owing to the unconventional 

yield surface evolution, the shape of the yield surface changes during deformation, 

which may lead to problems on the numerical implementation of the related constitutive 

model with the classical return mapping algorithm within an implicit finite element 

program. It is well-known that Newton ś method can fail to converge if the initial 

values are too far from the solutions due to the change on the shape of the yield surface. 

Thus, the numerical strategy implemented for these kinds of yield locus evolution 

should be investigated. 

The dynamic behavior of HCP materials must also be determined to support their 

introduction into vehicle body structures and high speed forming process. Even for the 

conventional sheet metal forming process, strain rate effects occur during practical 

forming process, although they are usually neglected in many simulations. When the 

deformation is accelerated, the strain rate effect becomes significant. Therefore, it is 

essential to study and be able to predict the strain rate behavior of HCP materials. A 

large number of research works [22-26] have been carried out on the experimental 

investigation of the mechanical behavior of materials under different strain rates and 

presented the stress-strain response with mathematical flow equations. However, for 

materials with HCP crystal structure, the above method may not be sufficient to capture 

the mechanical behavior at different strains, due to the fact that deformation twinning is 

remarkably affected by the deformation strain rate [23, 24]. As a consequence, it is 

necessary to model the constitutive behavior and develop new numerical algorithms for 

different strain rates.  

The elastic recovery of HCP materials, commonly known as springback, is also an 

important phenomenon in sheet metal forming operations. Due to the low elastic 

modulus of these materials, the prediction of springback can be critical in many 

industries, where the final shape has to comply with strict dimensions. It has been one 

of the major concerns in sheet metal forming for decades. Finite element simulation of 

sheet metal forming is a well-established tool which is used in industrial practice to 

evaluate geometrical defects caused by elastic springback. A reliable numerical 

procedure can eliminate the need for experimental try-outs, and hence drastically reduce 

the lead time and manufacturing costs. The low accuracy of springback prediction is 

attributed to the lack of understanding of this phenomenon and to the use of 

oversimplified models that describe, for example, the material behavior or contact 

conditions during the deformation. Since materials with HCP crystal structure 
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demonstrate unconventional mechanical behavior, it is necessary to develop and apply 

accurate constitutive models to improve the prediction of springback behavior in HCP 

materials. 

1.2 Outline of this thesis 

The ambition of this dissertation is to contribute to the advancement of fundamental 

knowledge in the field of modeling and numerical simulation of plastic anisotropy and 

strength differential effects in HCP metals, to the development of strain rate dependent 

viscoplastic material model, and to the analysis of the springback behavior in HCP 

metals. This thesis is divided into ten chapters. Each chapter, except Chapter 1 and 

Chapter 10, addresses one specific topic. In the majority of the situations, the chapters 

are self-contained as they address one topic at a time and have already been prepared for 

publication. The output of this work is to offer enhanced simulation tools to be used for 

the sheet metal forming of HCP metals. 

Chapter 2   

This chapter briefly reviews the underlying deformation mechanisms and the 

mechanical behavior of HCP materials. It is divided into two sections. Section 2.1 

presents the crystal structures of HCP materials. The deformation features of slip 

systems and deformation twinning in HCP metals are introduced. Section 2.2 presents a 

review of the most well-known phenomenological material constitutive models. 

Macroscopic plasticity models are discussed including isotropic and orthotropic yield 

criteria that describe the onset of the plastic behavior, plastic flow rule, and hardening 

laws which model subsequent plastic deformation. 

Chapter 3  

In this chapter, the basic concepts of standard continuum mechanics and 

thermodynamics are summarized for the constitutive model developments addressed in 

the following chapters. This chapter also recalls briefly the principles of quasi-static 

infinitesimal finite element methods. 

Chapter 4  

In this chapter, the Cazacu 0́4 constitutive model is used to describe the mechanical 

behavior for titanium alloys. The formulation of numerical algorithms with the Closest 

Point Projection Method (CPPM) for Cazacu 0́4 model under the usual assumption of 

convexity and associativity is addressed. The accuracy of this implicit integration 
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algorithm for Cazacu 0́4 model is assessed with iso-error maps at different stress states 

and accumulated plastic strain levels. Since the yield surface of titanium evolves from a 

nearly elliptical to a triangular-like shape with the increase of the accumulated plastic 

strain, the maximum curvature of the whole yield surface increases. This leads to the 

increase of nonlinearity of the set of constitutive equations. Aiming to expand the radius 

of convergence of Newton-Raphson scheme and increase the robustness of the CPPM 

algorithm, this chapter introduces inexact line search strategies into the classical CPPM 

implicit scheme. In the line search procedure, an iterative step size for update is 

determined by minimizing a prescribed objective function, such as the square of L2-

norm of residual. The Goldstein ś conditions are used to determine whether the iterative 

step is terminated avoiding excessive iterations with small steps. Three interpolation 

methods for step-length update are investigated, namely quadratic, three points 

quadratic and cubic interpolation method. Results indicate that the line search method 

with CPPM scheme is very useful not only to expand the convergence region, but also 

to improve the computational efficiency, particularly for the line search method with a 

cubic interpolation. 

Chapter 5  

In order to include viscoplastic mechanical behavior, in Chapter 5, an extension of the 

Cazacu 0́4 elasto-plastic anisotropic model that includes the effect of strain-rate is 

proposed. The Perzyna overstress method is used to model rate effects in the inviscid 

(elasto-plastic) model. A fully implicit elastic predictor return mapping method, coupled 

with line search, is implemented within an implicit quasi-static finite element 

environment. The closed form of the associated consistent tangent operator is presented. 

The resulting implementation can deal with small and large power-law exponents. The 

uniaxial tensile and uniaxial compressive tests are performed to evaluate the asymmetric 

mechanical behavior at different normalized strain rates. Finally, iso-error maps are 

used to estimate the accuracy and stability of the model at different strain rates and 

stress states.  

Chapter 6 

Due to the large number of material parameters that need to be determined 

simultaneously for the Cazacu 0́6 constitutive model, the identification strategy needs to 

be carefully selected in order to avoid local minima in the solution. This Chapter 

presents five optimization methodologies to calibrate the material parameters for an 
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AZ31 alloy. In particular, the gradient method, a Genetic Algorithm (GA), a Particle 

Swarm Optimization (PSO) method, a GA combined with the gradient method, and the 

PSO combined with gradient method [27-29]. All the above algorithms are based on the 

use of an error minimization function for computing the anisotropic coefficients, which 

allows to consider the constraints of the solution. The comparison of these strategies is 

presented and discussed. These five optimization strategies are applied to the identify 

material parameters of Cazacu 0́6 model at two typical accumulated plastic strain levels, 

where the shape of the yield surface is, respectively, elliptical and triangular-like. The 

final errors between theoretical and experimental values are compared. The yield locus 

of these two levels obtained from the above five identified strategies are also drawn. 

Finally, the error contour nearby the global optimized result is drawn to better 

understand the selection of identification strategy. 

Chapter 7   

An extended new yield criterion under plane-stress conditions for HCP sheet metal 

forming operations is proposed in Chapter 7. This yield function is able to 

simultaneously capture the tension/compression strength asymmetry effect and the 

anisotropic behavior of HCP materials. This yield criterion is developed by introducing 

an additional asymmetrical parameter into the anisotropic Barlat 8́9 yield criteria. The 

additional material parameter   represents the ratio between the yield stress in tension 

and the yield stress in compression. All material parameters are calibrated for a typical 

magnesium alloy AZ31 with the hybrid Particle Swarming Optimization (PSO) 

algorithm mentioned in Chapter 6. The proposed model is assessed and compared with 

several commonly used anisotropic yield criteria, such as Hill et al.(1948) [19],  Barlat 

et al. (2003) [16] and Cazacu et al. (2006) [17]. The evolutions of the yield surfaces 

calibrated by the above yield criteria are drawn. Two benchmark tests are used to 

validate the proposed model. The comparison between the experimental results and 

finite element simulations indicates that the proposed constitutive model provides very 

accurate predictions for the material response under multi-axial loading. The model is 

also able to describe very well strength differential effects and the anisotropic 

mechanical behavior. The deep drawing of a cylindrical cup, which is a well-established 

benchmark test, is presented to further verify the planar anisotropic behaviour through 

the prediction of the earing profile. 
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Chapter 8   

In order to compensate for the material elastic recovery under sheet metal forming 

operations, it is necessary to quantitatively predict springback. This chapter analyses the 

springback behavior of HCP materials by analytical methods and numerical methods, 

respectively. In the first part of this chapter, the mechanics of plane strain bending in 

combination with axial tension of an elastic-plastic sheet material is considered. A 

generic analytical solution for arbitrary elasto-plastic material is proposed under 

different external tensile conditions. The analytical solution has been implemented 

computationally and is avaiable by running a user developed program. The calculated 

strain distribution through thickness is also compared with experimental results. The 

results showed that the proposed analytical model predicts the main trends of the 

springback behavior of magnesium alloy sheets reasonably well considering the 

simplicity of the analytical approach. In addition, the generic analytical evolution of 

deformation region, including the neutral surface position, the tensile yield critical 

position, the compressive yield critical position, bending force, and bending moment–

curvature relationships for various deformation stages is presented and analyzed. 

Sensitivity tests are also conducted for the effect of an applied tensile force, strain rate, 

and sheet thickness on the springback of asymmetric metals. Besides, the conventional 

symmetric constitutive equations are compared with the asymmetric constitutive 

equations from our model.  

Although the use of analytical models is advantageous because of their simplicity, the 

application of these models is limited to simple geometries. The amount of springback 

also depends upon many process variables such as friction, temperature, variations in 

the thickness and mechanical properties of the incoming sheet material. Moreover, 

complex strain histories and highly nonlinear deformation of the material during the 

forming process increase the difficulty of predicting springback. Therefore, the most 

widely used approach for predicting springback is to carry out computer simulations 

that rely on accurate material constitutive models. In the second part of this chapter, the 

effect of hardening laws and yield function types on spring-back is investigated for the 

AZ31 magnesium alloy. Four different yield criteria of different complexity are 

evaluated in the present investigation: von Mises, Hill, Barlat, and Cazacu 0́6 criteria. 

Two hardening laws are considered. One is the classical isotropic hardening; and the 

other employs the separated stress-strain response under tension and compression as 

hardening law. Since Cazacu 0́6 is able to capture the SD effect, only the other three 
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yield criteria were used in conjunction with separated hardening laws. All constitutive 

models were implemented in a fully-implicit finite element scheme by developing user 

material subroutines for ABAQUS commercial software. Numerical integration through 

the thickness of shell elements creates an additional source of error in the springback 

prediction [30], particularly when the material undergoes elastic plastic deformations.  

All traditional integration rules require a significant number of integration points to 

capture a nonlinear stress profile, especially for materials with high asymmetrical 

mechanical behavior. Therefore, in this chapter, the Number of Integration Points (NIP) 

used in conjunction with the asymmetrical constitutive model is investigated to 

understand the influence of NIP on the springback response. Finally, the springback of 

an unconstrained cylindrical bending test is simulated for all the constitutive models. 

From the results of these simulations, some conclusions regarding the influence of the 

constitutive model for springback simulations are drawn.  

Chapter 9 

The flow behavior of the AZ31B magnesium alloy for extended range of strain rates is 

studied in this chapter. Aiming to describe the flow behavior under tensile stress states 

with different strain rates, three commonly used hardening laws are extended based on 

Perzyna ś theory of viscoplasticity, which are Ludwik, Swift and Você. By comparison 

of the error value between the fitted true stress and experimental stress at each true 

strain, the extended Você strain rate sensitivity formulation is able to provide a 

considerable agreement with experimental curves. In order to describe the mechanical 

behavior under compressive stress states, a new mathematical model is studied. The 

related material parameters are obtained by fitting the proposed equation with the 

corresponding experimental data. The gradient method has been used to obtain the 

global optimal fitting parameters. All these experimental results are used to identify the 

material parameters in Cazacu 0́6 model at different strain rates. The yield loci at 

several levels of accumulated plastic strains are drawn. The material coefficients inside 

the yield function, as well as the size of the elastic domain, are considered to be 

functions of both the accumulated plastic strain and strain rate. A bilinear interpolation 

technique is introduced to determine the evolution of the yield surface based on the 

results from experimental results. The identified constitutive model was implemented 

within the implicit finite element code ABAQUS and used to simulate the benchmark 

test-square cup drawing subjected to different loading conditions. The analysis of the 
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results is helpful to understand the behavior of HCP metal sheets in high speed impact 

or forming process technology.  

Chapter 10 

In this chapter, the main topics addressed in the thesis are briefly summarized and the 

conclusions of this work are drawn from the results obtained in the preceding chapters. 

Furthermore, this thesis also gives further recommendations for future research.  
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Chapter 2  

Hexagonal Close-Packed Materials: Physical 

Aspects and Constitutive Modeling 

If I have been able to see further, it was only because I stood on the shoulders of giants. 

----------------Isaac Newton 

The whole chapter has been divided into two main sections. In the first section, some 

basic knowledge of crystal structure and deformation mechanisms of Hexagonal Close-

Packed (HCP) structured metals was reviewed. In the second section, the 

phenomenological constitutive model was discussed. Several commonly used yield 

criteria in metal forming were summarized. The plastic flow rule and hardening rule 

were also discussed. The review of all above section will be given to provide some 

background to this research project. 

2.1 Review of the crystal microstructure and plastic behavior of HCP materials 

2.1.1 The crystallography of HCP metals 

Three relatively simple crystal structures are found for most of the common metals: 

Face-Centered Cubic (FCC), Body Centered Cubic (BCC) and Hexagonal Close-Packed 

(HCP) [1]. The unit cell of the HCP structure is a hexagonal prism with atoms at its 

corners and atoms at the centers of its upper and lower faces.  

 

Figure 2.1: Hexagonal Close-Packed crystal structures. 
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There are also three atoms in a triangular configuration in a plane at half the height of 

the unit cell; each of these atoms is located directly above the center of an equilateral 

triangle of atoms in the basal plane, as shown in Figure 2.1. Since each of the corner 

atoms in the hexagon is shared by six adjacent cells and each of the face atoms is shared 

by two cells, the total number of atoms per unit cell in the HCP structure is six. 

A comprehensive review of crystallography in HCP materials has been carried out by 

Partridge [2]. The primitive hexagonal unit cell (Figure 2.2 (a)) has axes          

 and corresponding angle        ,      ; The symmetry of the hexagonal 

lattice can be illustrated by the hexagonal prism which can be constructed from three 

primitive hexagonal unit cells, such as shown in Figure 2.2 (b). In the HCP structure the 

atoms are stacked in a sequence of ABABAB…, as demonstrated in Figure 2.2 b. 

 

Figure 2.2: a) The primitive hexagonal unit cell illustrating the axes            and corresponding 

angles         ,       ;  b) the Hexagonal Close-Packed structures; the thick solid line in b) 

delineate the primitive hexagonal unit cell [3]. 

An ideal close packing of spherical atoms in this sequence generates a structure that is 

characterized in terms of lattice dimensions with a     ratio of 1.632, where   and   

represent, respectively, the short and long unit cell dimensions of Figure 2.2 a. None of 

these metals in their pure form has an ideal     ratio. HCP metals are usually classified 

into two groups: those with           and those with          . The former group 

contains only cadmium and zinc, the latter includes Mg, Ti and Zr etc. Magnesium and 

cobalt have a     ratio within 1% of the ideal. However, the coordination number and 

the atomic packing factor for the HCP crystal structure are the same as for FCC: 12 and 

0.74, respectively. 
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In the case of HCP metals, important crystallographic planes and directions of the 

hexagonal lattice can be described with a four index Miller-Bravais notation related to a 

coordinate system of three basal vectors    and the longitudinal axis  .  

2.1.2 Plastic behavior and deformation mechanism of HCP materials 

Deformation mechanisms of metal can be categorized as crystallographic slip, 

deformation twinning and grain boundary sliding. Grain boundary sliding is negligible, 

except for a specific deformation condition such as superplasticity. Therefore, 

crystallographic slip and deformation twinning are two fundamental deformation 

mechanisms accommodating plastic deformation. These two deformation modes 

compete against each other when solid metals deform plastically under applied stresses 

and at a temperature where individual atoms are not mobile [2-4]. 

According to von Mises [5], five independent slip systems are needed to accommodate 

an arbitrary homogenous plastic deformation. Slip often dominates for high symmetry 

cubic crystal whereas deformation twinning is important for metals with lower 

symmetry HCP metals, where the five independent slip systems necessary for arbitrary 

shape change are not easily activated at room temperature. For instance, in FCC metals, 

the twelve      〈   〉  slip systems provide five independent systems and satisfy this 

condition. However, the situation in HCP metals is much more complex owing to the 

following reasons: first, the deformation of HCP metals typically involves both slip and 

twinning, each slip and twinning system having different Critical Resolved Shear 

Stresses (CRSS); second, different families of slip systems and twin systems become 

activated depending on texture, loading, temperature and grain size. In order to know 

further, these two deformation mechanism are summarized in the next subsection. 

a) Slip in HCP Crystals 

Slip is one of the most important plastic deformation mechanisms in crystalline 

materials. It involves the motion of dislocations on a specific crystallographic plane 

along a specific crystallographic direction. The planes on which slip occurs are called 

slip planes, and the directions of the shear are the slip directions, which can be seen in 

Figure 2.3.  
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Figure 2.3: Slip deformation mechanisms [6]. 

These are crystallographic planes and directions that are characteristic of the crystal 

structure. Often, slip planes are the close packed planes and slip directions in the slip 

planes are the close packed directions. The magnitude and the direction of shear 

displacement on a particular plane are given by the Burgers vector [6].  

For metals with Hexagonal Closed Pack (HCP) structure, the close-packed        basal 

planes and close-packed directions 〈      〉 forms slip systems. At low temperatures, 

the three dominant sets of planes which contain this close-packed slip direction are:     

the        basal plane,      the three        prismatic planes, and       the six        

pyramidal planes.  

 

Figure 2.4: Frequently observed deformation modes in HCP metals: Basal 〈 〉, prismatic 〈 〉, and 

pyramidal 〈 〉 slip system in HCP materials [7]. 

Crystallographic slip in HCP single crystals is commonly observed to occur on the 

basal- 〈 〉  or prismatic- 〈 〉  systems. The activation of pyramidal slip systems in 

polycrystalline aggregates occurs primarily due to the large stresses generated in grain-
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boundary regions because of the misorientation between neighboring grains. Higher 

order slip systems on the pyramidal planes {    } in  

〈    〉  (〈 〉   type) or pyramidal        in 〈    〉  directions (〈   〉   type) which 

offers five independent slip systems on its own are present but are usually not favored 

as they have high critical resolved shear stress and are only reported to operate at higher 

temperatures [7]. As such, it is commonly believed that the improved ductility and 

formability at higher temperatures for magnesium alloy is the result of activation of 

higher order non-basal slip systems.  

A non-exhaustive list of deformation modes frequently observed in HCP metals are 

presented in Figure 2.4. The total summary Slip system for HCP materials are listed in 

the Table 2.1. All the crystallographic planes and directions of the hexagonal lattice are 

described with a four index Miller-Bravais notation. 

Table 2.1: Summary of Slip system for HCP materials. 

Burgers vector Slip plane Slip direction 
# of slip systems 

Total independent 

〈 〉 basal       〈    〉 3 2 

〈 〉 prismatic{    } 〈    〉 3 2 

〈 〉 pyramidal{    } 〈    〉 6 4 

〈   〉 pyramidal{    } 〈    〉 6 5 

 

A slip system is only active if the resolved shear stress is greater than the Critical 

Resolved Shear Stress (CRSS) required for slip. Figure 2.5 presents the CRSS for basal 

slip, prismatic slip, pyramidal slip, and twinning as a function of temperature [7, 8]. At 

room temperature, only basal slip is active, which provides only two independent slip 

systems. The other slip systems must be provided by prismatic slip, pyramidal slip, or 

twinning. Prismatic slip and pyramidal slip require a much larger CRSS than basal slip, 

which makes them largely inactive at room temperature. Generally, there are too few 

active slip systems at room temperature for magnesium alloys to exhibit significant 

ductility. As temperature increases, the CRSSs for prismatic and pyramidal slip 

decrease significantly, and these additional slip systems become active. The increase in 

the number of active slip systems with increasing temperature results in a corresponding 

increase in the ductility of magnesium alloys.  
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Figure 2.5: Critical Resolved Shear Stress (CRSS) is plotted against temperature for basal slip, prismatic 

slip, pyramidal slip, and twinning in magnesium [9].  

b) Crystallography of twinning in HCP metals 

Mechanical twinning is defined via a plane only, the twin plane. In contrast to slip, 

deformation by twinning is a homogeneous shear evenly distributed over a three-

dimensional region with sharp boundaries. When mechanical deformation is created by 

twinning, the lattice structure of the material changes. The atoms move only a fraction 

of an interatomic space and this leads to a rearrangement of the lattice structure. 

Twinning is observed as wide bands under the microscope. These wide bands cannot 

be removed by polishing. The crystal structure of resulting twins is identical with that 

of parent matrix, but with a different orientation [10]. The total shear deformation from 

twinning is small and limited. A twinning mode is activated only under tension or 

compression (not both), depending upon the atomic structure. This is known as 

polarization. Deformation twins are typically in the shape of thin plates, as a result of 

the energetic barriers to the formation of twins [10-12]. 

The occurrence of slip is more common than twinning in metals with highly symmetric 

crystal structure, like cubic metals, where many symmetrically equivalent slip systems 

with low CRSS are available. The occurrence of twinning in metals is favored by the 

lack of slip activity such as deformation at low temperature or high strain rate. 

Twinning in magnesium alloy results in the reorientation of a volume of crystal planes 

so that dislocations may be placed in a favorable orientation with respect to the stress 
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direction so that slip can be continued which otherwise is immobile. Deformation 

twinning, however, is especially important for metals with low-symmetry crystal 

structures, like HCP metals, in which five independent slip systems necessary for 

arbitrary shape change are not easily activated at low temperatures or at high speeds. 

Therefore, ductility and formability of HCP metals and alloys are significantly 

influenced by the profuseness of operable twinning modes [11, 12]. 

Deformation twins are formed by a homogeneous simple shear of matrix lattice. Figure 

2.6 illustrates the change from a sphere into an ellipsoid by the twinning shear, where 

the sphere is sheared along crystallographic direction     with shear magnitude       . 

Only two material planes in the sphere remain undistorted after twinning namely, the 

    (first undistorted plane) and     (second undistorted but rotated plane) planes from 

convention. These two planes inclined at an angle        to each other. The magnitude 

of the twinning shear (      ) is given by: 

                     (2.1) 

Plane    , also called twinning plane, contains the crystallographic shear direction     

and experiences no displacement during twinning. However, plane     is rotated to    
  

by twinning. Plane     intersects the plane of shear in direction     and    
  before and 

after twinning, respectively.  

 

Figure 2.6: Crystallographic elements of twinning. 

Four twinning elements,    ,    ,      and     are usually used to quote a twin, but 

only two of them,     and    ,     or     are independent. Twin and matrix lattices are 

associated either by a reflection in certain plane like     or by a rotation of 180° about 
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certain axis like     When twinning is incomplete, and for distance large compared 

with the twin lamella, the dimensional changes may be modified for directions lying in 

the quadrant bounded by      and the plane normal to     and    . This effect is 

important when the twinning shear is large. 

The most common deformation twinning mode in most HCP metals is of the 

      ̅   〈    〉 type, which indicates that       ̅    is the twinning plane    ,[    ] 

is the corresponding crystallographic shear direction    . A schematic of these twinning 

mechanisms is shown in Figure 2.7. The direction and the magnitude of twinning shear 

in HCP metals depend on    ratios, packing densities, interplanar spacings, and 

stacking fault energies. The conjugate twinning plane     and direction     are 

crystallographic ally equivalent of     and    . When a “compressive” twin, which 

shortens   -axes, is activated, the twinning shear direction for       ̅    twin lies along 

〈    〉 if     √  (as for Zn and Cd), when a “tensile” twin operates, the twinning 

shear direction for       ̅     twin lies along 〈    〉 if     √  (as for Mg, Zr and Ti) 

(Stoloff and Gensamer, 1963). The dependence of twinning shear strain          on the 

    ratio due to twinning on the {    }〈    〉 twin system can be expressed by: 

       
        

√    
  （2.2） 

Only the stress which can drag the  -axis back to the ideal ratio could activate the 

twinning. For instance, {    }〈    〉 twinning system in Mg or its alloys can only be 

activated when the   axis is elongated under certain stress state, such as tension in   

direction or compression parallel to the basal plane. Opposite stress states that shorten 

the   axis cannot activate this twining. This is called the polar nature of deformation 

twinning. Twinning can cause large lattice rotations, although the strain achieved is 

small. The angle of rotation and the shear strain of this deformation process depend on 

the activated twinning system. Thus, even at low deformations, twinning causes the 

basal poles to orient rapidly towards the normal direction; that is, parallel to the 

compressive force. 

A significant consequence of the polarization of deformation twinning is that strongly 

textured Mg alloys can exhibit a tension/compression asymmetry, where the yield 

strength of the same sample condition is different if exposed to opposite strain fields, 

such as uniaxial tension versus compression. The yield asymmetry in Mg alloy can be 

quite remarkable; this asymmetry is also a function of the deformation temperature. 
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Considering that extension and contraction twins have different twinning stresses, the 

transition between slip and twin dominated flow will occur at different temperatures 

affecting the yield strength and the resulting yield asymmetry. 

 

(a)Tension twinning                 (b) Compression twinning 

Figure 2.7: Twinning modes for HCP materials. 

2.2 Review of continuum phenomenological constitutive models 

In general, a material model is used to describe the stress-strain behavior of a material. 

It can be divided into two classes. The first model class is a physically-based model 

type representing a mechanical behavior. This kind of model is used to represent both 

microscopic phenomena, such as microstructure evolution, and macroscopic mechanical 

behavior, such as creep and relaxation, on a material scale, where the material 

mechanical behavior has been modeled by analyzing and measuring the dislocation 

density using transmission electron microscopy etc; then the microstructure size and the 

macroscopic stresses can be predicted [10, 12, 13]. The second model class is a 

phenomenological-based model based on the results of mechanical tests on a material. 

This material model is used to predict the mechanical behavior of a material and the 

model can be further used to predict the stress-strain behavior of a mechanical structure 

using, typically, a finite element simulation. The second type of model will be the focus 

of this study. 

For sufficiently small values of stress and strain, a metal will reassume its original shape 

upon unloading. When loaded beyond this reversible (elastic) range, the specimen will 

not reassume its original shape upon unloading, but will exhibit a permanent (plastic) 

deformation. In this section the focus is on the conditions under which a material passes 
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from the elastic to the plastic state. A continuum phenomenological plasticity model is 

commonly used to describe the plastic behavior of a material in a general stress state. A 

complete phenomenological plasticity model is comprised of a yield surface expressing 

a relationship between the stress components at the moment when plastic ‘yielding’ 

occurs, the flow rule expressing the relationship between the components of the strain-

rate, and a hardening law rule describing the evolution of the initial yield stress during 

the forming process. To establish the incremental equations for elastic-plastic hardening 

materials, several conditions are necessary to ensure an appropriate representation of 

plastic flow: continuity, uniqueness, irreversibility, consistency, and the flow rule. All 

these conditions, as well as a yield function, are used to determine a general stress-strain 

relation for plastic deformation. 

2.2.1 Yield criteria 

A yield surface is defined as the closed hyper surface which encloses the elastic region 

in the six-dimensional stress space. The shape of the yield surface depends on the entire 

deformation path from the reference state [14, 15]. Basically the yield function may be 

defined in two different ways: either by assuming that plastic yield begins when some 

physical quantity (energy, stress, etc.) attains a critical value or by approximating 

experimental data by an analytical function. The yield surfaces for actual materials are 

mainly smooth, but may have or develop pointed pyramidal or conical vertices. Physical 

theories of plasticity imply the formation of a corner or vertex at the loading point on 

the yield surface [15]. Experimental evidence, on the other hand, suggests that, while 

relatively high curvature at the loading point is often observed, sharp corners are seldom 

seen. Experiments also indicate that yield surfaces for metals are convex in Cauchy 

stress space, if elastic response within the yield surface is linear and unaffected by 

plastic flow [15, 16]. 

Phenomenological yield surfaces, although nothing more than a curve fit, have a 

number of advantages over yield surfaces obtained with polycrystalline theories. First of 

all, it usually have a simpler mathematical form, and easy to understand and manipulate. 

The physical quantities that are involved are measurable at the macroscopic level, thus, 

there is no need for averaging. Moreover, phenomenological yield surfaces do not 

require complex inputs, like the Orientation Distribution Function (ODF). Generally, all 

the required data are obtainable from a small number of standard tests like uniaxial 

tension and biaxial extension. From the experimental data, the surface can be identified 
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with very little computational cost. Another remarkable advantage is that 

phenomenological yield surfaces can also account for sources of anisotropy other than 

texture. Texture, in fact, is not the only origin of anisotropy in a material: elongated or 

flattened inclusions, voids and grain boundaries contribute as well. 

In case of a multiaxial stress, the most general form of this function may be written 

           (2.3) 

where    is the yield stress obtained from a simple test (tension, compression or 

shearing).   are the six components of the stress tensor expressed in the reference frame 

of interests. Usually in the analysis of sheet metal forming all out of plane components 

of the stress vector are assumed to be equal to zero and the yield criterion is defined in 

the plane stress space. The yield surface reduces to a curve in the plane of the principal 

stresses    and   . The schematic diagram of the yield surface in plane stress space can 

be seen in Figure 2.8. All the points inside the surface (    ) are related to an elastic 

state. The points on the surface (   ) are related to a plastic state. 

 

Figure 2.8: The schematic diagram of yield surface. 

Numerous phenomenological yield criteria were proposed in last decades [12, 17, 18]. It 

can be generally categorized into two kinds, dependent on the material properties: 

isotropic and anisotropic yield criteria. The next subsection will summarize briefly the 

most popular and widely used yield criteria.  
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a) Isotropic yield criteria 

If material is homogenous (it has the same properties throughout its solid body), then 

material can be considered as isotropic (its properties are independent of direction). 

Here two classical isotropic yield criteria are introduced.  

von Mises yield criterion 

This criterion was proposed independently by Huber [19] and von Mises [20] and 

further developed by Hencky [21]. It is based on the observation that a hydrostatic 

pressure cannot cause plastic yielding on the material. Thus, the conclusion that only the 

elastic energy of distortion influences the transition from elastic to a plastic state comes 

naturally. For simplicity, in the following text the criterion will often be referred to as 

the von Mises criterion. This criterion can be written as 

    √
                                      

     
     

  

 
  (2.4) 

This criterion gives better predictions for most polycrystalline metals than Tresca 

criteria. Moreover, it is more suitable in numerical models, since sharp concerns in the 

yield surface are absent. 

Drucker yield criterion 

In order to represent the experimental data located between Tresca and von Mises yield 

surfaces, Drucker [22] proposed the following criterion: 

      
       

   (2.5) 

where    and    are the second and third invariants of the stress tensor, respectively, and 

    is a constant, which defines the curvature of the yield function.  

   
 

 
        (2.6)  

   
 

 
           (2.7) 

Here,     are components of the stress deviator, which can be calculated by 

        
 

 
      (2.8) 

In order to ensure that the yield surface is convex,     is limited to a given numerical 

range,     [          ]. 

This yield criterion can be used to describe strength differential effect between tension 

and compression state. 
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b) Anisotropic yield criteria 

Due to different and complex phenomena occurring during the rolling process, the flat 

rolled products such as sheet metals experience various degrees of anisotropy. As a 

consequence, the flow behaviors characterized by the Tresca and von Mises functions 

only provide a rough and frequently incorrect, estimate of the plastic properties. 

Therefore, use of appropriate anisotropic plasticity models becomes crucial to describe 

the mechanical behavior and ensure reasonable accuracy in finite element predictions. 

Normally rolled sheets exhibit orthotropic symmetry, that is, they have three orthogonal 

symmetry planes. These planes are identified with the direction of their unit normal: the 

rolling, the thickness, and the transverse direction. Yield surfaces that have orthotropic 

symmetry can be easily constructed by fixing the coordinate axes along the directions of 

symmetry. Several anisotropic yield functions have been proposed for sheet metal 

forming analysis in order to correlate with the experimental behavior as accurately as 

possible. However, for the sake of brevity the most frequently-used and only symmetric 

pressure insensitive anisotropic yield functions for sheet metals are reviewed in this 

subsection. 

Hill 4́8 criterion 

When a metal is subjected to large plastic deformations, the grain sizes and grain 

orientations are changed in the direction of deformation. As a result, the plastic yield 

behavior of the material shows directional dependency. Metals that have been processed 

by rolling, for example, will have characteristic material directions.  The form of 

anisotropy exhibited by rolled sheets is such that the material properties are symmetric 

in about three mutually orthogonal planes.  The lines of intersection of these planes 

form an orthogonal set of axes known as the principal axes of anisotropy. The axes are 

(a) in the rolling direction, (b) normal to the sheet, (c) in the plane of the sheet but 

normal to rolling direction.  This form of anisotropy is called orthotropy. To predict the 

anisotropic yield behavior more accurately, Hill [23, 24] developed several yield criteria 

for anisotropic plastic deformations. Hill (1948) proposed a yield condition to the 

quantitative treatment of plastic anisotropy. It is a generalization of the von Mises 

criterion. The yield criterion is expressed by a quadratic function of the following type 

    [              
                

                
  

         
           

           
 ]   ,                                                                                           

(2.9) 
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where,       ,       ,       ,       ,       ,        are material parameters. In the case of 

isotropy 

                                      . (2.10) 

This criterion is restricted to materials with orthotropic physical symmetry, i.e., to those 

with three mutually orthogonal symmetry planes. These can generally be inferred from 

the symmetry of the strain path employed to produce the anisotropy. The constants can 

be calculated with three tensile tests. The relative simplicity of Hill's yield surface 

makes it the most widely used anisotropic yield function, despite its many shortcomings: 

first of all, the surface is quadratic, thus the yield locus will always appear as an ellipse, 

no matter which section is taken, while the experiments show that the real yield locus is 

not an ellipse, at least in the plane-stress plane. Hill ś surface has also another limitation: 

when Lankford coefficient   , Hill 4́8 criterion implies that the ratio of the yield 

stress in biaxial tension to the yield stress in tension      must be less than one, and 

conversely when    ,        . There are some materials in which this is not true. 

The                                and       parameters characterize the current state of 

anisotropy, and can be determined with uniaxial tension and shear test experimental 

data. Material coefficients of Hill'48 are given as follows 

            
 

     
 ; (2.11) 

            
 

     
 ; (2.12) 

            
 

     
 ; (2.13) 

       
 

     
 ; (2.14) 

       
 

     
 ; (2.15) 

       
 

     
 . (2.16) 

where      ,       and       are the tensile yield stresses in the principal directions of 

anisotropy and      ,        and       the yield stresses in shear with respect to these axes. 

When simulating the sheet metal forming process, plane stress is assumed ignoring the 

stress in the thickness direction due to its insignificance compared with the other two 

orthogonal directions. Also assuming that the principal directions of the stress tensor are 

coincident with the anisotropic axes  (                   ) , Hill 4́8 yield 

criteria can be written as a dependence of the principal stress in the following form 
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   (2.17) 

This yield criterion has the advantage that its basic assumption is easy to understand and 

only require a small number of mechanical parameters to determine the yields function. 

The parameters included in the yield functions have a direct physical meaning. 

Hill 7́9 yield criterion 

Following the work of Woodthorpe and Pearce [25] on the anomalous behavior of 

aluminum, Hill in 1979 [26] put forward a new non quadratic yield function similar to 

that of Hosford yield criteria for orthotropic metals. This function was expressed in its 

general form as well as in four special cases. If the directions of the principal stresses 

coincide with axes of anisotropy, the criterion is written as 

   
               |     |

               |     |
         

        |     |
               |         |

         

        |         |
               |         |

       .                                                                                

(2.18) 

Here the    are principal components and   is an exponent which can be a non integer. 

Seven parameters have to be determined experimentally, i.e.       ,        ,        , 

       ,        ,        ,        . As noted by Hosford [27], this general form recognizes 

the possibility of planar anisotropy. However, it cannot be used for loading conditions 

which involve shear relative to 1, 2 and 3 principal axes of anisotropy. If in-plane 

isotropy is assumed, then the criterion is valid, i.e., shear stress terms are not necessary 

since the 1 and 2 axes may be oriented in any direction in the sheet,         (with 

         , integer or non-integer) is a material coefficient and is determined by 

matching the effective stress-strain curves for uniaxial and biaxial tests. 

This yield criteria can be used to describe the woodthrope-Pearce anomalous behavior 

of materials, but it cannot describe the behavior of materials having          and 

        . Due to the non-integer value of the exponent        , it requires special 

numerical procedures even for the solution of quite simple cases. 

Hill 9́0 yield criterion 

The Hill 4́8 yield criterion can deal with the anisotropic metal, but it cannot represent 

“anomalous” behavior. This quadratic yield criterion cannot describe the plastic 

behavior of some materials such as aluminum alloys. This yield criterion proposed by 

Hill in 1979 [26] can only be used when the directions of the principal stresses are 
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coincident with the orthotropic axes. The proposed Hill 9́0 yield criteria can describe 

yield behavior of material with a general coordinate system [28]. Based on the Mohr ś 

circle, Hill (1990) developed another non-quadratic yield function that is also restricted 

to plane-stress conditions: 

    
        |       |
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  ,                                                                        

(2.19) 

where   is the shear yield stress,    is the yield stress in equibiaxial tension, , and two 

parameters        , and         are defined as 
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Being the value of the         exponent as  

        
  [        ]

  (
   
   

)
, (2.22) 

where    and     are the yield stresses along the anisotropic axes, and         is the 

non-quadratic yield exponent. The yield exponent for this formulation will vary for 

different materials and is loosely coupled to the   value. In general, a material with a 

    will have           whereas for    ,             will hold. 

This yield criterion allows describing both the first order anomalous behavior    

         and the second order anomalous behavior               , and is able 

to describe very well the variation of the anisotropy coefficient and of the uniaxial yield 

stress in the plane of the sheet. However, the formulation of this model is not user-

friendly and need large CPU time when used in the numerical simulation of sheet metal 

forming process. 

K-B 9́3 yield criterion 

Karafillis and Boyce (1993) [29] constructed a non-quadratic anisotropic yield criterion 

(so-called    ) by mixing two isotropic yield functions 

    
            |     |

    |     |
    |     |

      

    
    

        
 |  |

    |  |
    |  |

    ,                                                                    
(2.23) 

where     is a material parameter (      ), and   ,    and    are the principal 

values of the Isotropic Plasticity Equivalent (IPE) tensor       that can be found in 
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Karafillis and Boyce (1993). In this formulation, tensor     can describe different kinds 

of material anisotropy (triclinic, monoclinic, orthotropic, etc.). For plane stress 

conditions these values can be calculated as 

     
       

 
 √(

       

 
)
 

    
  , and                                                                        (2.24) 

If       and the     component coefficients are considered isotropic, then this yield 

function represents the Tresca yield criterion when      , and the von Mises yield 

criterion when      , and of course for orthotropic coefficients the Hill 4́8 yield 

function is restored. A good advantage of the criteria was that it uses only a uniaxial 

tensile test for identifying the material parameters. From a mathematical point of view 

the method proposed by Karafillis and Boyce was both elegant and rigorous. The 

disadvantage was the complicated format and the complex identification procedure of 

the parameters. 

Barlat 8́9 yield criterion 

Barlat and Lian (1989) [30] proposed a non-quadratic yield function (so-called Yld89) 

to model the behavior of orthotropic metallic sheets (typically rolled materials) under 

plane stress. This model is restricted to plane-stress conditions. The corresponding yield 

function, written at the outset exclusively in terms of in-plane components of the stress 

tensor, reads 

    
       |     |

       |     |
       |   |

   ,                                                           (2.25) 

where   ,    is described as  

   
          

 
    √(

          

 
)
 

          
 . (2.26) 

The formulation is expressed in an  ,  ,   coordinate system, not necessary coincident 

with the principal directions. The included constants    ,    , and     are calculated 

from relations based on the measured  -values at rolling, transverse and 45
0
 orientations.  

The materials parameters    ,    ,     and     can be determined using the Lankford 

coefficients,   ,    , and    , based upon crystalline plasticity considerations. For face 

centered cubic (FCC) materials, Barlat determined that a value of       is 

appropriate, while for body centered cubic (BCC) materials a value of       is 

appropriate based on crystalline plasticity calculations.     and     is described as 

             √
  

    

   

     
; (2.27) 
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    √
  

    

     

   
. (2.28) 

The proposed yield criterion has great flexibility, and includes all planar stress 

components as well as the planar anisotropy. With correct exponent    , and using the 

equibiaxial stress, a better agreement with yield locus predicted by the Bishop-Hill 

theory is achieved. The reduced numbers of the mechanical parameters make this 

criterion relatively easy for identification. The coefficients inside this model have not a 

direct and intuitive physical significance. This model only can be used in the plane 

stress state. 

Yld91, Yld 94 and Yld97 yield criteria 

A six component non-quadratic yield function (so-called Yld91) without restrictions to 

any stress state was developed by Barlat et al. [31] for orthotropic materials based on 

the isotropic Hosford criteria, which uses a linear transformation of the stress tensor 

    
       |     |

       |     |
       |     |

      ,                                               (2.29) 

where    are the principal values of an isotropic plasticity equivalent (IPE) stress tensor 

defined by 

           (2.30) 

in which   is the Cauchy stress tensor and      is a symmetric and traceless fourth-

ranked tensor. Tensor      introduces the material anisotropy into the formulations and 

its definition can be found in Barlat et al. [31]. 

In order to improve the performance of the above criterion, Barlat et al. [32] proposed 

the following yield criterion (so-called Yld94) to capture the experimental and 

polycrystalline yield surface shapes for alloys with very large amounts of cold reduction 

 (   
     )

      
   

     |     |
         

     |     |
       

  
     |     |

      , 
(2.31) 

where    are the principal values of the same IPE tensor (    ) as the K-B yield 

function. 

Coefficients   
      are further parameters to describe anisotropy and are defined as [32] 

  
           

       
       

   (2.32) 

where     are the components of the transformation matrix      between the principal 

axes of anisotropy to the principal axes of   and   ,   , and    are material coefficients. 

To overcome some limitations of Yld94, Barlat et al. [33] further proposed an improved 
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yield criterion (so-called Yld97) for plane stress cases. They defined another set of 

parameters    that is chosen to represent the angle between the anisotropy axes and the 

direction associated with    or    (            ), whichever has the highest absolute 

value. Then the new coefficients   
      are defined as functions of   ,     and other 

material coefficients. The formulations are rather complex and are not explained here; 

interested readers are referred to the paper [33]. 

The computed yield surfaces are also in good agreement with those predicted by the 

Bishop-Hill theory and experiments. A very good agreement between theory and 

experiment has also been found for the distribution of the uniaxial yield stresses and 

anisotropy coefficients in the plane of sheet. However, a large number of parameters 

ensure a good flexibility of the criteria; it also implies a large number of mechanical 

tests.  

Yld2000–2d yield criterion 

In order to remove the disadvantages of the Yld94 and Yld 97 yield criteria, but aiming 

to preserve their flexibility, Barlat [34] proposed a new model particularized for plane 

stress (2D).The Yld2000 anisotropic yield function presented by Barlat et al. [34] is 

another accurate yield function for aluminum alloy sheets. The Barlat anisotropic yield 

functions are derived based on the approach of linear transformations of a stress tensor. 

The anisotropic yield function for plane stress plasticity can be expressed in general 

form: 

    
          ̅   ̅  , (2.33) 

where          is an exponent determined based on the crystallographic structure of the 

material, and  

 ̅  | ̅ 
   ̅ 

 |
        

  (2.34) 

 ̅   |  ̅ 
    ̅ 

  |
        

 |  ̅ 
    ̅ 

  |
        

  (2.35) 

 ̅ 
  and  ̅ 

  ,      , are the principal values of two linear transformations on the stress 

deviator. The linear transformations on the stress deviator are 

[

 ̅  
 

 ̅  
 

 ̅  
 

]  [

  ̅ 
   ̅ 

  

  ̅ 
   ̅ 

  

    ̅ 
 

] [

   
   
   

]   (2.36) 
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[

 ̅  
  

 ̅  
  

 ̅  
  

]  [

  ̅ 
    ̅ 

   

  ̅ 
    ̅ 

   

    ̅ 
  

] [

   
   
   

]  (2.37) 

where      are the deviatoric stresses,   ̅ 
  and   ̅ 

   are material constants. Due to the fact 

that eight coefficients are incorporated in the linear transformations, we need eight 

material characteristics for evaluating them. We can calibrate the material constants   ̅ 
 , 

  ̅ 
 ,   ̅ 

 ,   ̅ 
  ,   ̅ 

  ,   ̅ 
  ,   ̅ 

   and   ̅ 
   from the yield stresses   ,    ,    , and    and the 

anisotropy parameters   ,     and    . Due to the complexity of the formulation, this 

criterion is not user-friendly. Some parameters could be evaluated by crystal plasticity 

models [34]. 

Cazacu 0́4 yield criterion 

To describe both the asymmetry between yield in tension and compression and the 

anisotropy due to deformation twinning, the Drucker model [22] was extended to 

orthotropy by a fourth-order linear transformation operator ( ̂) by Cazacu et al [35, 36].   

Following this theory, the original Cauchy stress     is transformed to a transformed 

tensor    , which is defined as  

     ̂       . (2.38) 

The tensor  ̂  satisfies: (a) the symmetry conditions:  ̂      ̂      ̂      ̂     

               , (b) the requirement of invariance with respect to the symmetry 

group of the material, and (c)  ̂    ̂    ̂     for  =1, 2 and 3, which ensures that 

  is traceless and consequently yielding is independent of hydrostatic pressure. So the  ̂ 

can be represented by  

 ̂  

[
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.  (2.39) 

The Cazacu 0́4 anisotropic yield criteria can be expressed as  

     ̂   
 
 
   ̂  

       (2.40) 

where   
 ,   

  is the second invariant of deviator transformed stress, the third invariant of 

deviator transformed stress, respectively, which can be obtained as  
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        (2.41) 

 ̂ is a constant defined as 

 ̂   [   
    

       
 

   ̂           ]
    , (2.42) 

and   is a material parameter, which can be expressed in terms of the yield in uniaxial 

tension,   , and the yield in uniaxial compression,   , as  

 ̂  
 √    

    
  

    
    

  
  (2.43) 

To ensure convexity, the material constant  ̂ is limited to the range [ 
 √ 

 
 
 √ 

 
]. 

When  ̂    the proposed criterion reduces to the von Mises yield criterion. For any 

 ̂   , the yield function is homogeneous of degree three in stress and represents a 

“triangle” with rounded corners. 

This model can be used to capture the asymmetrical mechanical behavior and 

anisotropic properties for titanium alloy.  However, this criterion is not so sufficient 

flexible to describe the shape of yield surface, which neither triangular nor elliptical.  

Cazacu 0́6 yield criterion 

In order to capture the SD effect and anisotropic mechanical behavior with more 

flexibility, Plunkett et al [10] proposed a new general formulation with principal value 

of the deviatoric stress. It can be expressed by  

   
 ̃  (|  |   ̃  )

 ̃
 (|  |   ̃  )

 ̃
 (|  |   ̃  )

 ̃
, (2.44) 

where   ,   ,    are the principal values of  transform stress  .  ̃  is the introduced 

material parameter. 

 ̃  
   ̃

   ̃
  (2.45) 

 ̃ (
  

  
)  [

   ̃   (
  

  
)
 ̃

    ̃ (
  

  
)
 ̃

]

   ̃

  (2.46) 

For  ̃  [    ] and any integer  ̃   , the anisotropic yield function is convex in the 

variables   ,   ,    (principal transformed stresses). 

The transformed tensor   is defined as  

   ̃ . (2.47) 

where   is the original deviatoric stress tensor;  ̃ is the transformed tensor. 
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The only restrictions imposed on the tensor  ̃ are: (i) to satisfy the major and minor 

symmetries and (ii) to be invariant with respect to the orthotropy group. Thus, for 3-D 

stress conditions the orthotropic criterion involves 9 independent anisotropy coefficients; 

it reduces to the von Mises isotropic yield criterion for  ̃ equal to the 4
th

 order identity 

tensor. It is worth noting that although the transformed tensor is not deviatoric, the 

orthotropic criterion is insensitive to hydrostatic pressure and thus the condition of 

plastic incompressibility is satisfied.  

Let         be the reference frame associated with orthotropy. In the case of a sheet,  , 

  and   represent the rolling, transverse, and the normal directions. Relative to the 

orthotropy axes        , the tensor  ̃ is represent by 

 ̃  

[
 
 
 
 
 
         

         

         

   
   
   

   
   
   

     
     
     ]

 
 
 
 
 

  (2.48) 

So the transformed stress can be obtained by  

   ̃   ̃ ̃   ̃   (2.49) 

where the matrix  ̃ is used to transform the stress to deviatoric stress, which can be 

written by 
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  (2.50) 

So the transformed matrix  ̃ can be obtained by 

 ̃  
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. (2.51) 
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Let  
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;  (2.52) 
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So the transformed stress can be simplified to note by 
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 ̃      ̃      ̃    

 ̃      ̃      ̃    

 ̃      ̃      ̃    

      

      

      ]
 
 
 
 
 
 

 . (2.55) 

The most important advantage of this yield criterion consists in its capability to provide 

an accurate description of the tension/compression behavior specific to the magnesium 

and titanium alloys. 

A brief conclusion about the application of above mentioned yield criteria is drawn as 

follows: 

For isotropic material, the von Mises criterion is preferred. However, in the particular 

case of plane stress, the Tresca criteria can also be applied. For anisotropic materials, 

the present state-of-art is somewhat confusing since most of the above-described yield 

criteria are still being used. The choice of yield criteria will depend on experimental 

restrictions, and no whether biaxial yield stress needs to be measured. Current 

commercial FEM software frequently uses Hill 4́8 and Hill 9́0 yield criteria. Hill 4́8 

yield criterion can be used obtain a simple approximation of the anisotropic behavior of 

sheet metal except aluminum alloys. Hill 9́0, Barlat 9́6 and K-B 9́3 yield criteria can be 

used to obtain more accurate models of the plastic behavior of anisotropic sheet metals, 

especially for aluminum alloys. Cazacu 0́4 and Cazacu 0́6 recently are widely used to 

describe the material with SD effect, particularly for HCP crystalline structure materials. 

2.2.2 Hardening rule 

During the plastic deformation process, the shape of the material changes and shows 

increased amount of strength properties, hence called as strain hardening. Strain 

hardening is an intrinsic hardening mechanism caused by the interactions of dislocations 

with one another resulting in an increased stress for continued dislocation motion and 

the characteristic parabolic nature of the plastic region in a typical polycrystalline stress-
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strain curve. In plasticity, the hardening rule is used to describe the material behavior 

during the plastic deformation. Cyclic loading is a common type of loading in sheet 

metal forming. Therefore, in this section, two simplest approaches:  Isotropic hardening 

and Kinematic hardening will be introduced [37-39].  

a) Isotropic hardening 

Yield loci of a hardening material are usually displayed as iso-contours of the plastic 

equivalent strain or plastic work called as iso-strain or iso-work, respectively, which is 

expressed as the area under the stress-plastic strain curve. In order to describe the 

evolution of the loading surface, the hardening effect of the material can be modeled by 

introducing internal variables. Different representation of common functions can be 

used to provide a best fit the experimental stress-strain curves of different materials. 

Generally, a scalar internal variable and a scalar associate force are suitable for 

modeling the material hardening 

   
 
  (2.56) 

as an internal variable the accumulated equivalent plastic strain is applied. The 

definition of the accumulated equivalent plastic strain can be written as: 

 ̇
 
 

   ̇ 

   
  (2.57) 

The equivalent plastic strain  ̇  is obtained by assuming the equivalence of the stress 

power given by the product of the equivalent quantities and the contraction of the 

tonsorial quantities on two indices.  

Thus for a given yield criterion and flow rule, hardening behavior in any process can be 

predicted from the knowledge of the function   ( 
 
) , and this function may, in 

principle, be determined from a simple standard test (such as uniaxial tension test). 

So many functions have been proposed for the amount of expansion of the yield surface 

as a function of plastic strain. For the isotropic hardening, the yield function equation is 

written as: 

 (   
 
)           ( 

 
)   .  (2.58) 

In a mechanical model it is preferable to use a simple empirical law that approximates 

the data, such as power law, Swift law, Você hardening law, etc. 

Essentially, isotropic hardening in rate-independent plasticity corresponds to a local 

expansion of the yield surface. This results in a global uniform expansion of yield 

surface, without shape change. If the yield stress in tension increases due to hardening 
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the compression yield stress grows the same amount even though you might not have 

been loading the specimen in compression. It neglects the anisotropic effect on the 

subsequent yielding induced by deformation like Bauschinger effect which is observed 

experimentally. 

b) Kinematic hardening 

In the case of monotonically increasing loading, it is often reasonable to assume that 

any hardening that occurs is isotropic. If material elements undergo non-monotonous 

deformations, such isotropic hardening might not be so effective, even though 

deformations are approximately proportional. When sheet parts are removed from tools 

after forming, material elements experience elastic unloading and springback. During 

this reverse loading, material elements usually demonstrate the Bauschinger effect and 

the plastic behavior of material (as a part of cyclic deformation) is different in many 

aspects like yielding, hardening, and even elastic recovery. It is difficult to determine 

the hardening behavior or the expansion (contraction), translation and distortion of the 

yield surface quantitatively without knowledge of the stress strain relation for plastic 

deformation. In classical kinematic hardening models, the yield surface translates freely 

in any direction but is not permitted to rotate. In the modeling of cyclic deformation of 

materials, so-called cyclic plasticity, kinematic hardening must be considered because it 

is able to model different situations in loading and reverse loading conditions more 

realistically [38, 40]. Besides the Bauschinger effect, Ratcheting is another fact that is 

imperative to the definition of isotropic and kinematic hardening. Ratcheting is the 

accumulation of plastic strain, cycle-by-cycle, for stress amplitude with a non-zero 

mean stress. As loading is repeated, each consecutive hysteresis loop will displace 

forward in a pertinent rate due to the failure of complete closure of each loop. 

Ratcheting is generally considered to be dominated by kinematic hardening. 

In order to reproduce the Bauschinger effect, the yield surface equation combined with 

kinematic hardening generally can be written as: 

          (      )        (2.59) 

where  

            (2.60) 

is the relative stress tensor, defined as the difference between the stress   and backstress 

tensor  . The back stress tensor is the thermodynamical force associated with kinematic 

hardening. It represents the translation of the yield surface and determines the location 



Continuum Modelling and Numerical Simulation of Hexagonal Close-Packed Materials 
 

38 

 

of the center of the yield surface in the space of stresses.    represents the initial yield 

strength.  

A number of kinematic hardening models have been proposed to describe elasto-plastic 

mechanical behavior under cyclic loading conditions, such as Prager’s linear kinematic 

hardening model, Ziegler’s linear kinematic model, and Armstrong–Frederick hardening 

model etc [18, 40]. 

c) Mixed isotropic/kinematic hardening 

Rather than purely isotropic or purely kinematic hardening, real-life materials show in 

general a combination of both; that is, under plastic straining, the yield surface 

expands/shrinks and translates simultaneously in stress space. Thus, more realistic 

plasticity models can be obtained by combining the above laws for isotropic and 

kinematic hardening. 

2.2.3 Flow rule 

Once the material is loaded beyond plastic limit the material will yield and plastic strain 

will increase. The material deformation behavior in plastic region is described by the 

plastic strain [18, 40]. The flow rule relates the change of plastic strain tensor to the 

change of stress state. The complete characterization of the general plasticity model 

requires the definition of the evolution laws for the internal variables associated with the 

dissipative phenomena.  

 ̇   ̇   (2.61) 

where   is the flow tensor, which can be written as   

   (   
 
)  (2.62) 

 ̇  is the introduced plastic multiplier, which should abide by the complementarity 

equation. 

In the formulation of multidimensional elasto-plasticity models, it is often convenient to 

define the flow rule in terms of a flow (or plastic) potential. If the plastic potential   is 

differentiable, the evolution of the plastic strain is assumed to be proportional to the 

gradient of the plastic potential   in stress space 

 (   
 
)  

  

  
  (2.63) 

where   is the plastic potential which is a function of the stress tensor and internal 

variables. 
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In general case, the plastic strain rate increment tensor  ̇   is independent of the yield 

function, namely,  

     (2.64) 

which is called as non-associative plasticity.  

In this case, the plastic strain increment is not normal to the yield surface. In other 

words, the yield and plastic potential functions respectively describe the elastic limit 

and plastic strain rate direction independently.  

For materials that obey either Drucker's or Ilyushin's postulate [41], given by the 

appropriate stress or strain cycle inequalities, it follows that the plastic strain increment 

must be co-directional with the outward normal to a locally smooth yield surface, while 

at a vertex it must lie within or on the cone of limiting outward normal. It means that the 

yield function is equal to the plastic potential that is known as associative plasticity  

   . (2.65) 

The associative plastic theory is frequently used to describe deformation flow behavior 

and plays an important role in the guarantee of stability. The non-associative plastic 

flow theory is applied in some materials which dissipate energy by friction or with 

internal-microscopic frictional effects, such as geomaterials like rocks and soils.  

The requirement of differentiability of the flow potential is, however, too restrictive and 

many practical plasticity models are based on the use of a non-differentiable  . In such 

cases, the function   is called pseudo-potential or generalized potential and the 

formulation of the evolution laws for internal variables can be dealt with by introducing 

the concept of subdifferential sets, which generalizes the classical definition of 

derivative. 
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Chapter 3  

Continuum Mechanics and Finite Element 

Method 

What we need is not the will to believe but the will to find out. 

-----------------Bertrand Russell 

In this chapter, the basic concepts of continuum mechanics, laws of thermodynamics 

and constitutive theory of continuous media are briefly reviewed. This chapter is 

separated into three section: the first section contains the fundamental concepts of 

deformation kinematics, various strain stress measures from the continuum mechanics 

point of view; in the second section, several laws of thermodynamics are presented, 

these principles are used to construct the constitutive equation to describe an objective 

physical phenomenon, the last section review briefly the formulation of quasi-static 

finite element method.  

It is important to remark that the contents of this chapter are summarized from many 

established publications [1-3]. The entire notations used in this chapter are referred to 

the book [3].  

3.1 Kinematics of deformation 

Kinematics is the study of motion without regards to the forces responsible for that 

motion. The equations of motion are used to characterize the movement of an object. In 

this section, the theory related to the description of kinematics of deformation is 

summarized, where the concepts of motion and deformation are addressed. 

3.1.1 Material and Spatial Description of Motion 

Two descriptions may be used to characterize the motion of a solid: material or spatial 

descriptions. The material description, also called Lagrangian description, characterizes 

the deformation of the solid with reference to the undeformed configuration of the solid. 

Alternatively, all fields inherent with the motion of a solid may be described using a 

spatial description or Eulerian description. Assumed that the locations of material points 

of a three-dimension body in its reference configuration are denoted by vectors  , the 

general motion of a continuum can be described by   

          (3.1) 
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where,   denotes the location in deformed configuration at time  , which is continuously 

differentiable with respect to  . 

The components of   are the material coordinates of the particle, while those of   are 

the spatial coordinates.  

 

Figure 3.1: Configurations of a deformable body. 

3.1.2 The deformation gradient and polar decomposition 

Deformation at a material point   of a body is characterized by the changes of distances 

between any pair of material points within the small neighborhood of    An 

infinitesimal material element    at the reference configuration is transformed through 

motion as  

         (3.2) 

where,    represents the transformed material element at deformed configuration. 

The tensor   is called the deformation gradient at  , which can also be written as 

       
  

  
  (3.3) 

in the deformed configuration at time  , and the gradient operator    is defined with 

respect to material coordinates.  

Using the previous definition together with the displacement motion, after a 

straightforward algebra manipulation, the equation (3.3) can be re-written in the 

following form: 

              (3.4) 

where,   denotes the second order identity tensor. The deformation gradient is a second-

order two point tensor and in general is not symmetric. It plays a key role in describing 

the local deformation in the vicinity of a particle. 

In the spatial description, the deformation gradient is given by the following expression: 

X
x

E1

E2

E3

e1

e2

e3

Material Configuration Deformed Configuration

u(X,t)
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       [     ]    (3.5) 

The deformation gradient   represents an affine mapping of the neighborhood of a 

material particle from the reference to deformed configuration. To further explain the 

deformation at any material point, by the polar decomposition theorem, the deformation 

gradient   can be decomposed into the product of a proper orthogonal tensor and a 

positive-definite symmetric tensor, such that  

           (3.6) 

Each of these tensors is important in the development of strain measures. The 

symmetric tensor   is the right stretch tensor, with a basis in the reference configuration.  

  is the left stretch tensor, which is an object in the current configuration, and   is the 

rotation tensor, which is a local rotation tensor, connecting both configurations. 

Evidently, 

          (3.7) 

where, the term    represents the transposed of the rotation tensor, so that   and   

share the same eigenvalues.  

3.1.3 Strain measures 

From the description in the section 3.1.2, within an infinitesimal neighborhood of a 

generic material particle  , pure rotations can be distinguished from pure stretching by 

means of the polar decomposition of the deformation gradient. Under the action of pure 

rotations, the distances between particles remain fixed. Its reference configuration is a 

rigid deformation. Under stretching, the region surrounding   is strained, which can be 

characterized by   or  , the distance change between material particles. Owing to that 

there are virtually infinite possibilities to measure strain, the choice of a strain measure 

remains arbitrary, which is dictated by mathematical and physical convenience. A well-

known family of Lagrangian strain tensors, which is based on the Lagrangian triad, is 

defined by: 

     {

 

 
          

   [ ]                
  (3.8) 

where,   is a real number and   [ ] denotes the tensor logarithm of the right stretch 

tensor  .  

Similarly, based on the left stretch tensor, the Eulerian counterpart of the Lagrangian 

family of strain measures above is defined by: 
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     {

 

 
          

  [ ]                       
  (3.9) 

3.1.4 Stress measures 

The stress in a continuum solid is a consequence of the surface forces which are 

transferred within it. These surface forces may be mathematically quantified through the 

Cauchy axiom. 

It is possible to prove that the Cauchy traction depends linearly on the normal unit 

vector   to the considered surface, seen in Figure 3.2. If this relation is satisfied then 

there is a second order tensor,  , such that the Cauchy force is given by: 

      (3.10) 

where,   is the surface traction.  

The second-order tensor is commonly as Cauchy stress tensor and it is characterized for 

being symmetric 

      . (3.11) 

while the Cauchy stress tensor characterize the stress, in a generic point of a continuum 

solid, with regard to the deformed configuration of the solid, in some circumstances, it 

is convenient to define it considering the undeformed configuration. Thus, the material 

version of the Cauchy stress tensor is known as the First Piolla-Kirchhoff stress tensor   

and is mathematically defined as 

         (3.12) 

where,        [  ] is the determinant of the deformation gradient. 

3.2 Kinetics of deformation 

Development of proper constitutive equations for a specific material and determination 

of the evolution laws for assumed internal state variables characterizing the material’s 

behavior are the main challenges of the modern constitutive modeling. This can be 

effectively achieved, so far, through the thermodynamic principles by enforcing the 

balancing laws, the conservation of mass, the conservation of linear and angular 

momentums, and the first and second laws of thermodynamics. This section reviews 

some basic concepts of mechanics and thermodynamics of continuum body. 

In order to state the fundamental laws of thermodynamics, it is necessary to introduce 

the scalar fields  ,  ,   and   defined over body   which represent, respectively, the 

temperature, specific internal energy, specific entropy and the density of heat 



Chapter 3 Continuum Mechanics and Finite Element Method 

 

47 

 

production. In addition,   and   will denote the vector fields corresponding, 

respectively, to the body force (force per unit volume in the deformed configuration) 

and heat flux. 

 

Figure 3.2: Schematic diagram of the Cauchy stress[3]. 

3.2.1 Conservation of mass 

The principle of conservation of mass states that mass is neither created nor destroyed 

within a system. Even though we can have terms which represent sinks or sources of 

mass, these are mathematical constructs that allow us to transfer mass to or from the 

system surroundings. Therefore, the postulate of conservation of mass requires that 

 ̇        ̇   . (3.13) 

3.2.2 Momentum balance 

The conservation of momentum principle is in fact the generalization of Newton ś 

second law of motion for continuum mechanics. It can be stated as follows: the rate of 

change of the total momentum of any given set of particles equals the vectorial sum of 

all the forces acting on this set of particles. The balance of momentum for   can be 

expressed by the following partial differential equation with boundary condition: 

          ̈   in     ; (3.14) 

              in      . (3.15) 

where   is the outward unit vector normal to the deformed boundary       of   and   

is the applied boundary traction vector field on      . 

The above momentum balance equations are formulated in the spatial (deformed) 

configuration. Equivalently, they may be expressed in the reference (or material) 

configuration of   in terms of the first Piola–Kirchhoff stress tensor as  

          ̈       in  ; (3.16) 
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               in   ,  (3.17) 

where       represents the material divergence,   is the reference body force measured 

per unit volume in the reference configuration, which can be written as 

    ; (3.18) 

  is the reference density (mass per unit volume in the reference configuration), which 

can be calculated by 

    ; (3.19) 

  is the reference boundary traction (boundary force per unit reference area) and   is 

the outward normal to the boundary of   in its reference configuration. 

3.2.3 The first principle of thermodynamics 

The first principle of thermodynamics states that the time rate of change of the total 

energy of a continuum body is equal to the sum of the work done by the surroundings 

on the body and the heat added to the body. The total energy of a particle is the sum of 

the kinetic and potential energy. Before stating this principle, it is convenient to 

introduce the product  

   , 

which represents the stress power per unit volume in the deformed configuration of a 

body. The first principle of thermodynamics is mathematically expressed by the 

equation: 

  ̇                (3.20) 

which means that the rate of internal energy per unit deformed volume must equal the 

sum of the stress power and heat production per unit deformed volume minus the spatial 

divergence of the heat flux.  

3.2.4 The second principle of thermodynamics 

The first principle of thermodynamics is a statement of the energy balance, which 

applies regardless of the direction in which the energy conversion between work and 

heat is assumed to occur. The second principle of thermodynamics imposes restrictions 

on possible directions of thermodynamic processes. Clausius invented the 

thermodynamic potential - the entropy - to describe this uni-directional and irreversible 

degradation of energy. Formulated in terms of entropy, the second principle of 

thermodynamics says that whenever some form of energy is transformed into heat, the 
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global entropy increases. It can at best stay constant for reversible processes but can 

never decrease. It is expressed by means of the inequality: 

  ̇      [
 

 
]  

  

 
    (3.21) 

3.2.5 The Clausius-Duhen inequality  

By combination of the first and the first and second principles states above, we obtain 

the classic Clausius-Duhem (C-D) inequality by: 

  ̇      [
 

 
]  

 

 
   ̇                (3.22) 

As a macroscopic theory, irreversible thermodynamics does not give any explanation on 

the origin of entropy. Similarly to the case of plastic strains, the manipulation of entropy 

and other thermodynamic potentials will rely on postulated functions, valid over finite 

domains and containing coefficients to be determined by experiments. 

The introduction of the specific free energy   (also known as the Helmholtz free energy 

per unit mass), defined by: 

        (3.23) 

together with the relation: 

    [
 

 
]  

 

 
      

 

  
      (3.24) 

into the above fundamental inequality results in the Clausius-Duhem inequality: 

     ( ̇    ̇)  
 

 
       (3.25) 

we have defined      . Equivalently, the Clausius-Duhem inequality can be 

expressed in terms of dissipation per unit reference volume as: 

     ( ̇    ̇)  
 

 
       (3.26) 

3.2.6 Constitutive theory 

The constitutive model consists of a set of mathematical equations that relate the 

thermodynamic and kinematic quantities for a specific material within some finite range 

of applicability. When combined, the balance laws and the constitutive model form a 

complete set of equations that can theoretically be solved to determine the response of 

the system to imposed boundary conditions. In this section, the use of internal variables 

to formulate constitutive models of dissipative materials is addressed. 
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The principle of dissipation states that for any admissible process, the material model 

must satisfy the Clausius-Duhem (CD) inequality. An effective alternative to describe 

the dissipative constitutive behavior is the adoption of the so-called thermodynamics 

with internal variables. The thermodynamic state depends only on the instantaneous 

value of the state variables and not on their past history. This hypothesis is intimately 

connected with the assumption of the existence of a (fictitious) state of thermodynamic 

equilibrium known as the local accompanying state described by the current value of the 

state variables. Consider that at any time, the thermodynamic state at a point is defined 

by the set of state variables, as follows: 

        , 

where, the terms  ,    and   are the instantaneous values of the total strain, plastic 

strain, and the term   represents the set of internal variables containing, in general, 

entities of scalar, vectorial and tensorial nature associated with dissipative mechanisms.  

Following the above hypothesis, the specific free energy potential, which plays a crucial 

role in the derivation of the model and provides the constitutive law for stress, is 

assumed to have the form:  

             (3.27) 

It is usual to assume that the free energy can be split as 

                          (3.28) 

into a sum of an elastic contribution,   , whose dependence upon strains and internal 

variables appears only through the elastic strain, and a contribution due to hardening, 

  . Following the above expression for the free energy, and using the chain rule to 

expand the Helmholtz free energy in terms of the independent variables gives 

 ̇  
   

   
  ̇  

   

  
  ̇  

   

   
  ̇  

   

   
  ̇  

   

  
  ̇  

(3.29) 

Now, replacing Equation (3.29) in Equation (3.26), we obtain:  

(   
   

   
)   ̇     ̇     ̇     

(3.30) 

where  

   
   

  
  

(3.31) 

is the hardening thermodynamical force and we note that   is the thermodynamical 

stress associated with the plastic strain while the symbol * indicates the appropriate 

product between   and  ̇. The above inequality implies a general elastic law of the form 
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(3.32) 

So that the requirement of non-negative dissipation can be reduced to 

        ̇   ̇     (3.33) 

where the function   , defined by 

        ̇   ̇     ̇     ̇  (3.34) 

is called the plastic dissipation function. 

3.3 Finite Element Formulation  

Any problem within the context of solids mechanics can be posed as an Initial 

Boundary Value Problem (IBVP). The solution of the IBVP delivers the prediction of 

how a given solid will mechanically behave when subjected to certain boundary 

conditions. Within the scope of this thesis, only quasi-static problems will be addressed, 

hence, any inertial effects will be neglected. The exact solution of such a problem 

requires that both force and moment equilibrium be maintained at all times over any 

arbitrary volume of the body. Thus the IBVP can be stated as follows: 

Given the body force vector          and surface traction vector           , where 

  is the position vector, find the displacement vector         , such that: 

                , (3.35) 

subjected to the boundary conditions 

            , (3.36) 

              , (3.37) 

where    is the vector gradient operator,   is the Cauchy stress tensor,    is the 

prescribed displacement vector,    is the prescribed surface traction vector,   is the 

outward surface unit normal,   is the problem domain which occupies      , with 

boundary such that         and        , see Figure 3.3. 

The preceding formulation can be written in a variational form, yielding the so called 

principle of virtual work. 

∫      
 

 ∫     
 

 ∫        
  

  (3.38) 

To solve this IBVP numerically one of the general methods is the displacement-based 

approach method which is used in this work. Basically, this numerical method requires 

the application of the following three fundamental steps: spatial discretization and 
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temporal discretization, and solve the system of equations by using an iterative 

numerical method.  

 

Figure 3.3: Problem domain and boundaries. 

3.3.1 Spatial discretization 

With a typical finite element framework, the field variables are discretised through the 

so-called interpolation or shape functions. In the case of displacement-based finite 

elements, the interpolated field variables are the displacements. For a given element  , 

the interpolation is assumed to be  

     ∑   
        

     

   

  (3.39) 

where   
       is the shape function associated with node  , and       is the number of 

nodes of the element.  

For the whole discrete global domain, the procedure is exactly the same, thus the global 

interpolation function can also be set as 

             (3.40) 

where    is the global interpolation matrix,   denotes the global vector of nodal 

displacements. 

In addition, the global discrete symmetric gradient matrix,       can be defined as 

      
      

  
  (3.41) 

3.3.2 Temporal discretization 

Besides a spatial discretization, the modeling of materials that have some kind of 

history dependence (e.g. strain-path or strain-rate dependent materials) also requires 

proper time discretization regardless whether they take strain rate effects into account or 
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not. Basically, the procedure for time discretization consists in dividing the overall time 

interval [       ]  into       steps and, for each time step, equilibrium must be 

satisfied. 

Given the set    of internal variables at   , the strain tensor      at time      must 

determine the stress      uniquely through the integration algorithm. Such an algorithm 

defines an (approximate) incremental constitutive function,  ̂ , for the stress tensor: 

      ̂           (3.42) 

whose outcome,     , is expected to converge to the exact solution of the actual 

evolution problem as the strain increments are reduced. 

The integration algorithm also defines a similar incremental constitutive function for the 

internal variables of the model: 

      ̂           (3.43) 

3.3.3 Newton-Raphson method 

After spatial and temporal discretization, the incremental finite element equilibrium 

equation can be written as 

                         , (3.44) 

where      and      are, respectively, the internal and external force vectors, defined by 

     ∫  

 

 ̂             (3.45) 

     ∫  

 

    ∫   

  

       (3.46) 

and   is the residual error. 

In order to solve the equilibrium equation introduced in the previous section, a robust 

and efficient numerical method is required. The most popular and widely used by the 

computational mechanics community is the Newton-Raphson.  

If we perform a Taylor series expansion of the residual about an initial solution,     , we 

obtain 

            [
  

  
]         ({       }

 
)  

(3.47) 

Neglecting high order terms, we obtain 

            [
  

  
]         

(3.48) 

At the intersection of the  -axis,         , rearranging the equation gives 
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                     [
  

  
]
  

      
(3.49) 

To start up the Newton–Raphson iterations, we need an initial guess,     
   

. The initial 

guess is usually taken as the converged (equilibrium) displacement vector at the end of 

the previous increment. The Newton-Raphson iterations are repeated until after some 

iteration    , the following convergence criterion is satisfied:  

|    |

|    
   |

       
(3.50) 

where      is a sufficiently small specified equilibrium convergence tolerance. The 

corresponding displacement vector,     
   

, is then accepted as sufficiently  small to the 

solution of the incremental equilibrium equation. 

Finally, we can get the global tangent stiffness matrix,[ ], which is defined by 

  
  

  
  

(3.51) 

and this matrix is constructed in practice by assembling the element tangent stiffness 

matrices defined as 

  ∫        
(3.52) 

where   is the consistent tangent matrix. The matrix form of the fourth-order consistent 

tangent operator  

  
  ̂

     
  (3.53) 

The consistent tangent operator is the derivative of the incremental constitutive 

function  ̂. This generally implicit function is typically defined by some numerical 

algorithm for integration of the rate constitutive equations of the model.  
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Chapter 4  

The Application of Line Search Strategies in 

Closest Point Projection Method (CPPM) to 

Cazacu´04 Model 

4.1 Introduction 

Metals with HCP crystallographic structure promotes a very different mechanical 

behaviour when compared to other metals with Face Centered Cubic (FCC) and Body 

Centered Cubic (BCC) structures, such as steel, aluminium, etc. At room temperature, 

few slip systems require the activation of twining to accommodate the deformation at 

room temperature. Therefore, a very pronounced strength differential (SD) effect is 

observed owing to the polar nature of twining. Shear occurs only in a single direction 

rather than opposite directions. In addition, they always exhibit strong 

crystallographic texture, particularly for the cold rolling sheet, where the basal planes 

of the grains are aligned with the sheet, leading to a pronounced anisotropy. Owing to 

the unconventional yield surface evolution, the shape of the yield surface changes 

during deformation, which may lead to problems on the numerical implementation of 

the related constitutive model with the classical return mapping algorithm within an 

implicit finite element program. 

In this chapter, Cazacu´04 model and the relevant constitutive equations are briefly 

outlined, followed by a closest point projection integration algorithm for Cazacu´04 

model. The accuracy of this implicit integration algorithm for Cazacu´04 model is 

assessed with iso-error maps at different stress states and equivalent plastic strain 

level. Due to the yield surface of titanium change from the near elliptical to 

triangular-like shape, the curvature of the yield surface increases in some stress states, 

leading to the rise of the nonlinearity of the yield equation. In spite of the Newton-

Raphson iterative scheme being quite attainable and commonly used, operating an 

asymptotic quadratic rate of convergence, it fails to converge for the strong 

nonlinearity leaded by the high curvature of the yield surface. This is particularly 

evident in the large ranges of the initial stress states that are far from the solution. 

Hence, three inexact line search methods are proposed and implemented to overcome 

numerical instabilities. The results indicate that the line search method with CPPM 
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scheme is useful not merely to expand the convergence region but also to improve the 

computational efficiency.  

4.2 Formulation of constitutive model 

4.2.1 Cazacu´04 yield criterion 

Cazacu and Barlat [1-3] have extended Drucker’s isotropic orthotropic yield criterion 

with a fourth-order linear transformation operator (�̂�). They have also constructed 

generalizations of the deviatoric stress invariants. Following this theory, the original 

Cauchy stress {𝝈} is converted to a transformed tensor{𝜮}, which is defined as  

𝛴𝑖𝑗 = �̂�𝑖𝑗𝑘𝑙𝜎𝑘𝑙. (4.1) 

The fourth tensor �̂� is determined by both the material symmetry and mechanical 

anisotropy. For orthotropic materials (such as metal sheets), there are only six non-

zero components in matrix �̂�, meaning that the fourth order linear operator  �̂� can be 

represented by: 

�̂� =

[
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.  (4.2) 

The Cazacu´04 anisotropic yield criteria can be expressed as: 

𝛷 = �̂�(𝐽2
0
 

  �̂�𝐽 
0)1/  𝜎𝑌, (4.3) 

where 𝐽2
0, is the second invariant of deviatoric transformed stress, and 𝐽 

0, is the third 

invariant of deviatoric transformed stress, respectively, which can be obtained as: 

𝐽2
0 =

1

2
𝑡𝑟(𝜮2), (4.4) 

𝐽 
0 =

1

3
𝑡𝑟(𝜮 ). 

(4.5) 

The constant �̂� is defined as: 

�̂� = 3[( 2
2 +   

2 +  2  )
 
2  �̂�( 2 +   ) 2  ]

−1/ , (4.6) 

where �̂�  is a material parameter, which can be expressed in terms of the yield in 

uniaxial tension, 𝜎𝑇, and the yield in uniaxial compression, 𝜎𝑐, as: 



Chapter 4 The Application of Line Search Strategies in CPPM to Cazacu´04 Model 

57 

�̂� =
3√3(𝜎𝑇

  𝜎𝑐
 )

2(𝜎𝑇
  𝜎𝑐

 )
. (4.7) 

To ensure the convexity of the yield function, the material constant �̂� is limited to the 

range[ 
 √ 

2
,
 √ 

 
].  

4.2.2 Associated flow rule  

The flow rule establishes a relation between the stress and the plastic strain 

increments (or rates). Regarding the present Cazacu´04 model, an associated plastic 

flow rule is adopted. Namely, the associated plasticity uses the yield surface function 

𝛷(𝝈, 휀 ̅𝑝) as a plastic dissipation potential. The plastic strain rate is assumed to be 

outward normal to the yield surface in the stress space according to: 

�̇�𝑖𝑗
𝑝 = �̇�

𝜕𝛷

𝜕𝝈𝑖𝑗
, (4.8) 

where �̇� is the plastic strain rate multiplier, 𝛷 is the yield potential.  

Being 𝛷 < 0 , the sets of stress states are defined where the material behaves 

elastically in the sense that �̇� = 0. Besides, being 𝛷 = 0, the stress is restricted to lie 

on the yield surface, and 𝛾 is determined implicitly, according to the Kuhn-Tucker 

conditions: 

𝛾�̇� = 0,   𝛾 ≥ 0,   �̇� ≤ 0. (4.9) 

An equivalent plastic strain rate 휀̇
𝑝
, which is the plastic work rate conjugated to 𝜎𝑒𝑞, 

is defined such that:  

∆𝑊 = 𝝈𝑖𝑗Δ𝜺𝑖𝑗
𝑝 = 𝜎𝑒𝑞∆휀̅

𝑝, (4.10) 

where 𝜎𝑒𝑞 is the effective stress, while  ∆휀̅𝑝 is the equivalent plastic strain increment. 

In conclusion, it is possible to obtain a straightforward relation between �̇� and 휀̇
𝑝
 by 

(the calculated details can be examined in Appendix A): 

∆휀̅𝑝 =
𝝈:
𝜕𝜎𝑒𝑞
𝜕𝝈
𝜎𝑒𝑞

Δ𝛾 = Δ𝛾. (4.11) 

4.2.3 Hardening rule  

In the rate-independent case, the phenomenon of hardening describes the changes in 

yield stress that results from plastic straining. Flow stress 𝜎𝑌 represents the size of the 

yield function during deformation. The formulation of an adequate equation, 

describing changes in the flow stress of the material, will depend on the deformation 
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conditions. To achieve it, a power hardening law was used; the equation can be seen 

as follows: 

𝜎𝑌(휀̅
𝑝) = 𝜎ℎ0 + 𝐾ℎ(휀̅

𝑝)𝑛ℎ , (4.12) 

where 𝜎ℎ0 (initial yield strength), 𝐾ℎ  (strength hardening coefficient), 𝑛ℎ  (strain-

hardening exponent) are material constants. 휀̅𝑝 is the effective plastic strain.  

Box 4.1: Computation of the transfer matrix �̂� and hardening. 

Given the accumulated plastic strain 휀̅𝑝 

(i) Compute the transformed matrix �̂� and material constant �̂� 

 𝑖 =  𝑖(휀̅
𝑝),    (𝑖 = 1,⋯ ,6), 

�̂� = �̂�(휀 ̅𝑝) (�̂� 𝜖  [ 
 √ 

2
,
 √ 

 
]), 

�̂� =

[
 
 
 
 
 
 
 
 
 
     

 
 
  

 
 
  

 

 
  

 

     

 
 
  

 

 
  

 
 
  

 

     

 

0 0 0

0 0 0

0 0 0
0 0 0

0 0 0

0 0 0

  0 0

0   0

0 0   ]
 
 
 
 
 
 
 
 
 

, 

and the derivative of matrix �̂� to equivalent plastic strain 휀̅𝑝 

𝐷�̂� =
𝜕�̂�

𝜕�̅�𝑝
. 

(ii) Hardening law 

𝜎𝑌 = 𝜎𝑌(휀̅
𝑝), 

𝐻𝑌 =
𝜕𝜎𝑌(�̅�

𝑝)

𝜕�̅�𝑝
. 

(iii) Exit 

4.3 Integration algorithm for Cazacu´04 model 

4.3.1 State variable update  

The basic assumption of the return-mapping scheme with small strains is that the 

strain increment is addictively decomposed into elastic and plastic parts: 

�̇� = �̇�𝑒 + �̇�𝑝. (4.13) 

Regarding numerical computation, it is convenient to express the stress and the strain 

increment tensors, used in the stress–strain relations, in a six-component column 
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matrix format. In this matrix, the shear strain increments are multiplied with a factor 

two in order to obtain tensor consistency. Isotropic elastic behavior is assumed until 

yielding is reached. The elastic response of the material is characterized by the 

generalized Hooke’s law that relates stress and elastic strain increments linearly 

through the elastic constitutive tensor 𝐃𝐞. For an isotropic elastic material, the relation 

between the stresses and the strains is given by:  

𝝈 =

[
 
 
 
 
 
𝜎11
𝜎22
𝜎  
𝜎12
𝜎1 
𝜎2 ]
 
 
 
 
 

=

[
 
 
 
 
 
2𝜇 + 𝜆 𝜆 𝜆
𝜆 2𝜇 + 𝜆 𝜆
𝜆 𝜆 2𝜇 + 𝜆

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝜇 𝜇 𝜇
𝜇 𝜇 𝜇
𝜇 𝜇 𝜇]

 
 
 
 
 

[
 
 
 
 
 
휀11
휀22
휀  
2휀12
2휀1 
2휀2 ]

 
 
 
 
 

= 𝐃e𝜺𝒆,  (4.14) 

where the shear modulus 𝜇 and Lamé´s constant 𝜆 can be expressed in terms of the 

Young’s modulus 𝐸  and the Poisson’s ratio ν  as 𝜇 = 𝐸/2(1 + ν)  and λ =

𝜈𝐸/(1 + ν)(1  2ν), respectively. 

 

Figure 4.1: Graphical interpretation of stress return corresponding to the Closest Point Project Method 

(CPPM). 

There exist a number of algorithms and techniques to update both the stresses and 

plastic strains, such as the forward Euler scheme, a generalized trapezoidal or mid-

point algorithm, or the backward Euler (return mapping) scheme [4-6]. For the 

purpose of this work, the implicit, return mapping algorithm was selected. This 
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integration is carried out locally at each Gauss point in typical finite-element 

implementations. At each integration point, a time discretization is introduced. To 

ensure it, let 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁 = 𝑇  be a partition of the time interval [0, 𝑇], 

while letting ∆𝑡𝑛 1  =  𝑡𝑛 1   𝑡𝑛  be the step size in the 𝑛 -th time step. At time 

interval [𝑡𝑛, 𝑡𝑛 1], all variables {𝜺𝑛
𝑒 , 휀𝑛

𝑝
, 𝝈𝑛} at time 𝑡𝑛 are assumed to be known, given 

the strain history from 𝑡𝑛  up to another time 𝑡𝑛 1 . In addition, a return mapping 

algorithm has to be used to update the stress for a finite increment of loading. The 

implicit stress integration for each time increment step can be divided into two steps. 

First, the elastic equations are integrated with total strain increments to obtain an 

elastic predictor. Zero plastic strain increment is assumed (elastic predictor step). 

Then, from an estimation of the total strain increment, an elastic trial stress is 

calculated. If this trial stress satisfies the Kunh-Tucker conditions, it is not only 

assumed to be the actual stress, but also that the material is in the elastic state. If not, 

it is accepted that the material is in the plastic domain.  

The second step is related to the plastic correction: the elastically predicted stresses 

(the trial stress) are projected back onto the yield stress in the direction of the closest 

projection by correcting, iteratively, the plastic strain increments. This is named 

Closest Point Projection Method (CPPM). All stresses, strains and state variable are 

represented in the local material coordination. In addition, it is also convenient to use 

a co-rotational coordinate system in which the basic system rotates with the material. 

The overview of these implicit stress update scheme can be seen in Box 4.2. Stress 

return map corresponding to CPPM is presented in Figure 4.1. 

Regarding the detailed update scheme, it is possible to describe it by firstly assuming 

that the input discrete strain increments are all in elastic regime for a given 𝑛-th time 

step, and that trial elastic strain and trial stress can be determined as: 

𝜺𝑛 1
𝑒 𝑡𝑟𝑖 𝑙 = 𝜺𝑛

𝑒 + ∆𝜺, (4.15) 

𝝈𝑛 1
𝑡𝑟𝑖 𝑙 = 𝐃e𝜺𝑛 1

𝑒 𝑡𝑟𝑖 𝑙, (4.16) 

where 𝝈𝑛 1
𝑡𝑟𝑖 𝑙  is the initial stress for the 𝑛 + 1 time increment step; 𝜺𝑛

𝑒  is the elastic 

strain tensor from last equilibrium state; 𝐃e is the fourth order elastic modulus matrix. 

The trial internal variable is equal to the equivalent plastic strain in the last 

equilibrium state, which could be written as: 

휀�̅� 1
𝑝 𝑡𝑟𝑖 𝑙 = 휀�̅�

𝑝
. (4.17) 

If the following yield condition is satisfied with the trial state value of:  
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𝜎𝑒𝑞(𝝈𝑛 1
𝑡𝑟𝑖 𝑙, 휀�̅� 1

𝑝 𝑡𝑟𝑖 𝑙)  𝜎𝑌(휀�̅� 1
𝑝 𝑡𝑟𝑖 𝑙) < 0, (4.18) 

the deformation of the material at the step 𝑛 + 1 occurs in elastic region. The entire 

updated variable for the current increment step is equal to the trial state. It could be 

written as:  

𝜺𝑛 1
𝑒 = 𝜺𝑛 1

𝑒 𝑡𝑟𝑖 𝑙; (4.19) 

휀�̅� 1
𝑝 = 휀�̅� 1

𝑝 𝑡𝑟𝑖 𝑙 = 휀�̅�
𝑝
; (4.20) 

𝜺𝑛 1
𝑝 = 𝜺𝑛

𝑝
; (4.21) 

𝝈𝑛 1
𝑒 = 𝝈𝑛 1

𝑒 𝑡𝑟𝑖 𝑙. (4.22) 

In case the inequality Equation (4.18) is violated, the deformation moves into the 

elasto-plastic domain, and the trial elastic stress is taken as an initial value to solve the 

plastic corrector problem. The plastic strain increments are obtained to a degree that 

the following new trial stress stays on the new yield surface, which can be written as: 

 𝜺𝑛 1
𝑒 = 𝜺𝑛 1

𝑒 𝑡𝑟𝑖 𝑙  ∆𝜺𝑝 = 𝜺𝑛 1
𝑒 𝑡𝑟𝑖 𝑙  ∆𝛾𝑵𝑛 1. (4.23) 

In the 𝑛 + 1 step, the trial stress should be finally returned back to the yield surface. 

The incremental effective plastic strain, ∆휀�̅� 1
𝑝 

, satisfying the equilibrium state, 

allowing the following yielding condition to hold as: 

𝜎𝑒𝑞(𝝈𝑛 1, 휀�̅�
𝑝 + ∆휀�̅� 1

𝑝 )  𝜎𝑌(휀�̅�
𝑝 + ∆휀�̅� 1

𝑝 ) = 0. (4.24) 

In parallel to what was deducted in the last section, the internal variable could be 

calculated by:  

휀�̅� 1
𝑝 = 휀�̅�

𝑝 + ∆𝛾.  (4.25) 

The previously presented Equations (4.23)-(4.25) area set of non-linear equations. 

The upper boundary condition for this non-linear boundary problem is given by the 

initial trial stress. Respecting the lower boundary, it is determined from the 

equilibrium state variables from last time increment step.  

For the purpose of this study, Newton-Raphson´s iteration method is adopted to solve 

the non-linear equations set at each time step, which is referred as Newton-Raphson´s  

closest point projection algorithm. In order to derive such an iterative loop, 𝒓 

residuals are defined to represent the differences between the current constitutive 

variables and the backward-Euler constitutive variables. This can be presented as 

follows:  
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{

𝒓𝝈 = 𝜺𝑛 1
𝑒  𝜺𝑛 1

𝑒 𝑡𝑟𝑖 𝑙 + ∆𝛾𝑵𝑛 1
𝑟�̅�𝑝 = 휀�̅� 1

𝑝  휀�̅�
𝑝  ∆𝛾

𝑟𝛷 = 𝜎𝑒𝑞(𝝈, 휀�̅�
𝑝 + ∆휀�̅� 1

𝑝 )  𝜎𝑌(휀�̅�
𝑝 + ∆휀�̅� 1

𝑝 )

. (4.26) 

These three residual equations are combined to: 

𝒓 = [

𝒓𝝈
𝑟�̅�𝑝
𝑟𝛷

] = 0. (4.27) 

The truncated Taylor expansion can be applied to the Equation (4.26) that could be 

then it written as: 

{
 
 

 
 𝒓𝜎

(𝑘 1) = 𝒓𝜎
(𝑘) +𝐃𝐞−1𝑑𝝈 + ∆𝛾

𝜕𝑵

𝜕𝝈
𝑑𝝈 + ∆𝛾

𝜕𝑵

𝜕�̅�𝑝
𝑑휀̅𝑝 +𝑵𝑑∆𝛾

𝑟�̅�𝑝
(𝑘 1)

= 𝑟�̅�𝑝
(𝑘)
+ 𝑑휀̅𝑝  𝑑∆𝛾

𝑟𝛷
(𝑘 1) = 𝑟𝛷

(𝑘) +
𝜕𝜎𝑒𝑞

𝜕𝝈
: 𝑑𝝈 +

𝜕𝜎𝑒𝑞

𝜕�̅�𝑝
𝑑휀̅𝑝  

𝜕𝜎𝑌

𝜕�̅�𝑝
𝑑휀̅𝑝.

. (4.28) 

For ease of use in solving the state variables, let 𝝌 = [

𝝈𝑛 1
휀�̅� 𝑛 1
∆𝛾𝑛 1

] .   

The updated residual vector can be given as:  

𝒓𝑛 1
𝑘 1

= 𝒓𝑛 1
𝑘

+ 𝛩𝜕𝝌𝒓𝑛 1
𝑘 1

∙ 𝑑𝝌 = 0. (4.29) 

Being 𝑘 the local iteration number, 𝛩(0 ≤ 𝛩 ≤ 1) is an interpolation parameter. At 

this point, the interpolation parameter 𝛩 is equal to unity. Hence, the above Taylor 

series expansion equation set can be rewrite in commonly used matrix format and 

presented as:  

[

𝐃𝐞−1 + ∆𝛾
𝜕𝑵

𝜕𝝈
∆𝛾

𝜕𝑵

𝜕�̅�𝑝
𝑵

0 1  1
𝜕𝜎𝑒𝑞

𝜕𝝈

𝜕𝜎𝑒𝑞

𝜕�̅�𝑝
 
𝜕𝜎𝑌

𝜕�̅�𝑝
0

] [
𝑑𝝈
𝑑휀̅𝑝

𝑑∆𝛾
]=

[
 
 
  𝒓𝝈

(𝑘)

 𝑟�̅�𝑝
(𝑘)

 𝑟𝛷
(𝑘)
]
 
 
 

. (4.30) 

Define 𝐃𝑒𝑝 = [

𝐃𝐞−1 + ∆𝛾
𝜕𝑵

𝜕𝝈
∆𝛾

𝜕𝑵

𝜕�̅�𝑝
𝑵

0 1  1
𝜕𝜎𝑒𝑞

𝜕𝝈

𝜕𝜎𝑒𝑞

𝜕�̅�𝑝
 
𝜕𝜎𝑌

𝜕�̅�𝑝
0

], 

This allows the incremental state variables to be calculated by:  

[
𝑑𝝈(𝑘 1)

𝑑휀̅𝑝(𝑘 1)

𝑑∆𝛾(𝑘 1)
] = 𝐃ep

−1
∗

[
 
 
  𝒓𝝈

(𝑘)

 𝑟�̅�𝑝
(𝑘)

 𝑟𝛷
(𝑘)
]
 
 
 

. (4.31) 

All the stress, internal variable and plastic multiplier can be all obtained in each 

iterative loop by: 
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[
𝝈(𝑘 1)

휀̅𝑝(𝑘 1)

∆𝛾(𝑘 1)
] = [

𝑑𝝈(𝑘 1)

𝑑휀̅𝑝(𝑘 1)

𝑑∆𝛾(𝑘 1)
] + [

𝝈(𝑘)

휀̅𝑝(𝑘)

∆𝛾(𝑘)
]. (4.32) 

The iterative process is stopped as soon as convergence has been achieved within the 

prescribed convergence criteria, namely, whenever the norm of residual 𝒓 is less than 

a small tolerance value. 

Box 4.2: Fully implicit elastic predictor/return mapping algorithm for the Cazacu´04 model. 

{
 

 
𝜺𝑛 1
𝑒  𝜺𝑛 1

𝑒 𝑡𝑟𝑖 𝑙 + ∆𝛾𝑵𝑛 1
휀�̅� 1
𝑝  휀�̅�

𝑝  ∆𝛾

𝛷 = �̂�(𝐽2
0(𝝈, 휀�̅� 1

𝑝 )
 
2  �̂�(휀�̅� 1

𝑝 )𝐽 
0(𝝈, 휀�̅� 1

𝑝 ))1/  𝜎𝑌(휀�̅� 1
𝑝 )}

 

 
= {
𝟎
0
0
} ; 

(i) Elastic predictor. Given ∆𝜺 and the state variables at 𝑡𝑛, evaluate the elastic 

trial state: 

𝜺𝑛 1
𝑒 𝑡𝑟𝑖 𝑙 = 𝜺𝑛

𝑒 + ∆𝜺; 휀�̅� 1
𝑝 𝑡𝑟𝑖 𝑙 = 휀�̅�

𝑝
; 

𝝈𝑛 1
𝑡𝑟𝑖 𝑙 = 𝐃𝐞𝜺𝑛 1

𝑒 𝑡𝑟𝑖 𝑙. 

For getting all the coefficient parameters in transform matrix �̂� , yield stress and 

hardening ---- Go to Box 4.1. 

𝜮𝑛 1
𝑡𝑟𝑖 𝑙 = �̂�𝝈𝑛 1

𝑡𝑟𝑖 𝑙; 

𝐽2 𝑛 1
0 𝑡𝑟𝑖 𝑙 =

1

2
𝑡𝑟(𝜮𝑛 1

𝑡𝑟𝑖 𝑙2); 

𝐽  𝑛 1
0 𝑡𝑟𝑖 𝑙 =

1

 
𝑡𝑟(𝜮𝑛 1

𝑡𝑟𝑖 𝑙 ); 

𝜎𝑒𝑞 𝑛 1
𝑡𝑟𝑖 𝑙 = �̂�[(𝐽2 𝑛 1

0 𝑡𝑟𝑖 𝑙)
 

  �̂�𝐽  𝑛 1
0 𝑡𝑟𝑖 𝑙]1/ . 

(ii) Check Plastic admissibility 

If    𝛷 = 𝜎𝑒𝑞 𝑛 1
𝑡𝑟𝑖 𝑙  𝜎𝑌(휀�̅� 1

𝑝 𝑡𝑟𝑖 𝑙) ≤ 0; 

Then set ( )𝑛 1 = ( )𝑛 1
𝑡𝑟𝑖 𝑙.and Exit 

(iii) Return mapping. Solve the system of eight equations using the Newton-

Raphson iterative method 

where, 

𝑵𝑛 1 =
𝜕𝛷

𝜕𝝈
, 

For 𝜺𝑛 1
𝑒 ,휀�̅� 1

𝑝
 and ∆𝛾, with 

𝝈𝑛 1 = 𝐃
𝑒: 𝜺𝑛 1

𝑒 . 

(iv) Exit 
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4.3.2 Consistent tangent modular matrix 

On the global level of finite element formulation, a consistent tangent modular matrix 

at the material points is required. The local stiffness is then assembled to get the 

global stiffness of the structure. Consistent tangent modular matrices significantly 

improve the convergence characteristics of the overall equilibrium iterations if a 

Newton-Raphson scheme is used [5, 7].  

This consistent tangent modulus is defined by the following relationship: 

𝐃 ≡
𝜕�̂�

𝜕𝜺𝑛 1
=

𝜕𝝈𝑛 1

𝜕𝜺𝑛 1
𝑒 𝑡𝑟𝑖 𝑙  

. (4.33) 

(a) The elastic tangent modular matrix 

If the stress is inside the elastic domain, or on the yield surface, and elastic unloading 

is assumed to occur, the tangent modulus 𝐃 are consistent with any of the integration 

algorithms previously given by:  

𝐃 = 𝐃𝒆 ≡ �̅�
𝜕2𝛹

𝜕𝜺𝑒2
. (4.34) 

Here, we assume the elastic response is isotropic, such that 𝐃𝒆 has the form: 

𝐃𝒆 = 𝜆𝑰⊗ 𝑰 + 2𝜇𝕀, (4.35) 

where  𝑰 is the second order identity tensor, 𝕀 is the four-order symmetric identity 

tensor, 𝜆 and 𝜇 are the Lamé constants and shear modulus, and 𝛿𝑖𝑗 is the Kronecker 

delta. 

(b) The elastoplastic tangent modular matrix 

If the stress occurs on the yield surface and it is also assumed that further plastic 

loading is going to occur, the tangent operator is, in such cases, called the elastoplastic 

consistent tangent and is denoted as 𝐃𝑒𝑝.  

As previously mentioned in regard to the stress update integration algorithm, three 

equations should be met after Newton-Raphson iterative. The corresponding return 

mapping equations are rewritten as follows for the derivation of consistent tangent 

modular matrices conveniently: 

{

𝜺𝑛 1
𝑒  𝜺𝑛 1

𝑒 𝑡𝑟𝑖 𝑙 + ∆𝛾𝑵𝑛 1
휀�̅� 1
𝑝  휀�̅�

𝑝  ∆𝛾

𝛷(𝝈𝑛 1, 휀�̅� 1
𝑝 )

} = {
𝟎
0
0
}. (4.36) 

It is possible to identify, as basic unknowns of the system of algebraic Equations set 

(4.36), the updated elastic strain 𝜺𝑛 1
𝑒 ; the updated set of internal variables 휀�̅� 1

𝑝
; and, 
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lastly, the incremental plastic multiplier, ∆𝛾. The corresponding updated stress tensor 

delivered by the aforementioned returned map is evaluated from the standard potential 

form as:  

𝝈𝑛 1 = �̅�
𝜕𝛹

𝜕𝜺𝑒
|𝑛 1. (4.37) 

Clearly, by changing the elastic trial strain, 𝜺𝑛 1
𝑒 𝑡𝑟𝑖 𝑙, that takes part in the return map 

equations, the solution {𝜺𝑛 1
𝑒 , 𝛼𝑛 1, ∆𝛾}  will change accordingly and so will the 

updated stress 𝝈𝑛 1. In this way, the algebraic system of equations defines an implicit 

function for the stress tensor at 𝑡𝑛 1. The elastoplastic consistent tangent operator, 

𝐃𝑒𝑝 ≡
𝜕𝝈𝑛 1

𝜕𝜺𝑛 1
𝑒 𝑡𝑟𝑖 𝑙  

, (4.38) 

i.e., the derivative of the implicit function for stress, places the linear tangent 

relationship between 𝜺𝑛 1
𝑒 𝑡𝑟𝑖 𝑙  and 𝝈𝑛 1 . Thus, the first step in its derivation is to 

linearize the return mapping equations (having the elastic trial strain – the system 

input – also as a variable). Straightforward differentiation of the general return-

mapping equations yields the following linearized form: 

{
 
 

 
 𝑑𝜺𝑒 + ∆𝛾

𝜕𝑵

𝜕𝝈
𝑑𝝈 + ∆𝛾

𝜕𝑵

𝜕휀�̅�
∙ 𝑑휀̅𝑝 + 𝑑∆𝛾𝑵

𝑑휀̅𝑝  𝑑∆𝛾
𝜕𝛷

𝜕𝝈
: 𝑑𝝈 +

𝜕𝛷

𝜕휀�̅�
∙ 𝑑휀̅𝑝 }

 
 

 
 

= {
𝑑𝜺𝑒 𝑡𝑟𝑖 𝑙

0
0

}. (4.39) 

When rewritten it in the format of matrix product they are presented as:  

[
 
 
 
 𝐃𝑒−1 + ∆𝛾

𝜕𝑵

𝜕𝝈
∆𝛾
𝜕𝑵

𝜕휀�̅�
𝑵

0 1  1
𝜕𝛷

𝜕𝝈

𝜕𝛷

𝜕휀�̅�
0 ]
 
 
 
 

[
𝑑𝝈
𝑑휀̅𝑝

𝑑∆𝛾
] = [

𝑑𝜺𝑒 𝑡𝑟𝑖 𝑙

0
0

]. (4.40) 

Finally, by inverting the above linear relation, we obtain the following:  

[
𝑑𝝈
𝑑휀̅𝑝

𝑑∆𝛾
] = [

𝐷11 𝐷12 𝐷1 
𝐷21 𝐷22 𝐷2 
𝐷 1 𝐷 2 𝐷  

] [
𝑑𝜺𝑒 𝑡𝑟𝑖 𝑙

0
0

]. (4.41) 

At this stage, a symbolic inverted matrix is written to describe the matrix component.  

Obviously, the elastoplastic consistent tangent modulus is: 

𝐃𝑒𝑝 ≡
𝜕𝝈𝑛 1

𝜕𝜺𝑛 1
𝑒 𝑡𝑟𝑖 𝑙

= 𝐃11. (4.42) 

After series mathematic deductions, the elastoplastic consistent tangent can be 

calculated as follows:  
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𝐃𝑒𝑝 = {[𝐃𝑒]−1 + ∆𝛾
𝜕𝑵

𝜕𝝈
 
𝑵⊗ (𝑵 + ∆𝛾

𝜕𝑵
𝜕휀�̅�

)

𝜕𝛷
𝜕휀�̅�

}

−1

. (4.43) 

4.4 Line search strategy 

In case the initial trial state is not close to a solution, the previously mentioned 

Newton iteration cannot guarantee that the convergence is obtained. In such cases, 

line search algorithm and trust-region method are both two commonly used 

approaches to find a minimum �̅� of an objective function 𝑔: Rn → R. 

In order to improve convergence, Armero and Pérez-Foguet [8, 9], as well as Jeremić 

[10] all have used a line search technique for the local iterations. A closed-form return 

formula with line search algorithm in principal stress was employed for the Mohr–

Coulomb failure surface, as described by Borja et al. [11]; Larsson and Runesson 

[12]; and Clausen et al. [13]. DeBorst [14] gave explicit return expressions using 

Koiter’s method, along with a region indicator, to deal with the singular yield points 

of the Mohr–Coulomb model. Following, Crisfield [15] employed a similar approach 

involving a two-vector return procedure. Also addressing this issue, Huang and 

Griffiths [16] compared five previously published algorithms for return mapping to 

Mohr–Coulomb in a finite-element analysis of bearing capacity. 

In the present paper, we set the nonlinear equations as:  

𝒓(𝝌) = {

𝝈𝑛 1  𝝈𝑛 1
𝑡𝑟𝑖 𝑙 + ∆𝛾𝐃𝑒𝑵𝑛 1

휀𝑛 1
𝑝

 휀𝑛
𝑝
 ∆𝛾

𝜎𝑒𝑞  𝜎𝑌

}, (4.44) 

where, 𝒓: Rn → Rn is a vector function, 𝝌 is  

𝝌 = {𝝈, 휀
𝑝
, ∆𝛾}. (4.45) 

Aiming to solve the nonlinear equations with line search method, a scalar-valued 

merit function should be defined, indicating whether a new iterate is better or worse 

than the current one. In this study, we chose a simple and widely used merit function, 

which can be written as:  

𝑔(𝝌):=
1

2
𝒓(𝝌) ∙ 𝒓(𝝌). (4.46) 

The factor 1/2  is introduced for convenience. All of the line search procedures 

require, before anything else, to find a suitable descent direction 𝒑 along which the 

objective function 𝑔(𝝌) will be reduced. This can be calculated by various methods 

[7], such as gradient descent, Newton's method, Quasi-Newton´s method, etc. 
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Following, an initial estimate 𝛼0 is determined and a step size is computed, satisfying 

certain conditions by iterative method to decide how far 𝝌 should move along that 

direction 𝒑. The step size can be determined either by an exactly or inexactly method. 

The basic iterative structure can be presented as follows: 

(a) Select a starting point 𝝌𝟎. 

(b) Determine the search direction 𝒑(𝑘). 

(c) Find the value of 𝛼𝑘 to minimize 𝑔(𝝌𝑘 + 𝛼𝒑𝑘) with respect to 𝛼. 

(d) Set 𝝌𝑘 1 = 𝝌𝑘 + 𝛼𝑘𝒑𝑘. 

At this point, step-length 𝛼𝑘  should be at the range of [0,1] . It should also be 

mentioned that 𝑘 = 0,1,⋯  denotes the line search iteration number. 

4.4.1 Inexact conditions 

To obtain the exact minimized value of the Equation (4.46), it requires expensive 

computation costs, particularly for solving higher dimensional minimum problems. 

Thus, whenever computing the step length   𝛼𝑘 , a trade off should be taken into 

account. If by one hand, it is desirable to choose 𝛼𝑘 , so that a substantial reduction of 

𝑔  is possible, on the other the extended length of time required to accomplish it 

should also be addressed. Fortunately, inexact line searches with sufficient degree of 

descent are capable of guarantying convergence. It can terminate the iterative in finite 

iterates. 

In the matter of inexact line search methods, it is possible to identify several of them 

as suitable to determine step-length   𝛼𝑘 . This topic has been already studied and 

discussed by numerous mathematical researchers such as Goldstein [17], Armijo [18], 

Wolfe [19], Powell [20, 21], Dennis and Schnabel [7]. Among the different inexact 

line search methods, the backtracking line search has been highlighted by researchers 

as a very simple and quite effective one.  

Given the aforementioned conditions, the Goldstein condition is a mostly applicable 

and useful termination condition. If the step length 𝛼 is chosen, new point is �̅� + 𝛼𝒑. 

Selecting 𝛼 ∈ [0,1] and requiring 𝛼 satisfies the following inequality:  

𝑔(𝝌𝑘 + 𝛼𝒑𝑘) ≤ 𝑔(𝝌𝑘) + 𝑐1𝛼∇𝑔𝑘
𝑇
𝒑
𝑘
. (4.47) 

We designed the procedure to be “efficient” in the sense that it computes the 

derivative ∇𝑔(𝝌) as few times as possible. 

where 0 < 𝑐1 < 1. 𝑐1 is usually chosen to quite small. In this thesis, we set 𝑐1 = 10
− . 
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In accordance to the previously described, we assume that 𝒑  is a descent direction 

and that 𝑔  is bounded below along the direction 𝒑 .The line search algorithm 

terminates with 𝛼∗ set to a step length that satisfies the Goldstein´conditions. 

4.4.2 Line search direction 

Each iteration of a line search method computes a search direction 𝒑
𝑘

 and then 

determines how far to move along that direction. The new variables can be updated 

by: 

𝝌𝑘 1 = 𝝌𝑘 + 𝛼𝑘𝒑𝑘. (4.48) 

where, the positive scalar 𝛼𝑘 is called the step length. The success of a line search 

method relies on the effective choices of the direction 𝒑
𝑘
 to ensure that function 𝑔 can 

be reduced along this direction. Specifically, it requires the satisfaction of the 

condition:   

𝒑
𝑘

𝑇
∇𝑔

𝑘
< 0. (4.49) 

Generally, it can be written in the following form:  

𝒑
𝑘
=  𝐁𝑘

−1
∇𝑔

𝑘
, (4.50) 

where 𝐁𝑘  is a symmetric and nonsingular matrix. In the steepest descent method, 𝐁𝑘 

is simply the identity matrix 𝑰, while in Newton’s method, 𝐁𝑘 is the exact Hessian 

∇2𝑔(𝝌𝑘).  In quasi-Newton methods, 𝐁𝑘 is an approximation to the Hessian matrix 

that is updated at every iteration by means of a low-rank formula. 

4.4.3 Interpolation 

Derivative-free line search algorithms include golden section and Fibonacci search 

[20, 21]. All of these sequential search methods typically store three trial points that 

determine an interval containing a one-dimensional minimizer. Golden and Fibonacci 

searches differ in the way trial steep lengths are generated. However, these methods 

narrow the range slowly in the backtracking procedures. The polynomial interpolation 

method may be qualified as a good way to find a value of 𝛼 that satisfies the sufficient 

decrease inexact stopping criterion.  

Assuming that the initial guess 𝛼0 is given, if we have: 

𝑔(𝛼0) ≤ 𝑔(0) + 𝑐1𝛼0𝑔
′
(0). (4.51) 

We are able to sustain that the step length satisfies the condition, and to terminate the 

line search. Otherwise, we know that the interval [0, 𝛼0]  contains acceptable step 
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lengths. Polynomial interpolation methods are generally the most effective in terms of 

efficiency when the function to be minimized is continuous. These methods 

approximate a number of points with a univariant polynomial whose minimum can be 

calculated easily. In this study, three polynomial interpolation methods are selected, 

which are quadratic interpolation, three point quadratic (quadratic 3) interpolations, 

and cubic interpolation.  

(a) Quadratic interpolation method 

In order to have a quadratic fit of the merit function, the coefficients of the function 

are evaluated by making three measurements. The quadratic equation can be written 

as: 

𝑔
𝑞
(𝛼) =  ̃𝛼

2
+ 𝑔

𝑞

′
(0)𝛼 + 𝑔

𝑞
(0). (4.52) 

In order to compute the unknown coefficient  ̃, the following may be selected:   

𝑔
𝑞
(𝛼𝑘−1) =  ̃𝛼𝑘−1

2
+ 𝑔

𝑞

′
(0)𝛼𝑘−1 + 𝑔𝑞(0). (4.53) 

Therefore, we have:  

 ̃ =
𝑔
𝑞
(𝛼𝑘−1)  𝑔𝑞(0)  𝛼𝑘−1𝑔𝑞

′
(0)

𝛼𝑘−1
2 . (4.54) 

Following, the quadratic approximated equation can be written as: 

𝑔
𝑞
(𝛼𝑘) = (

𝑔
𝑞
(𝛼𝑘−1)  𝑔𝑞(0)  𝛼𝑘−1𝑔𝑞

′
(0)

𝛼𝑘−1
2 )𝛼𝑘

2
+ 𝑔

𝑞

′
(0)𝛼𝑘 + 𝑔𝑞(0). (4.55) 

The minimum point of 𝑔
𝑞
 can be estimated by finding the point where the derivative 

of 𝑔
𝑞
 vanishes. Thus setting:  

𝑔
𝑞

′
(𝛼𝑘) = 𝑔𝑞

′
(0) + 2(

𝑔
𝑞
(𝛼𝑘−1)  𝑔𝑞(0)  𝛼𝑘−1𝑔𝑞

′
(0)

𝛼𝑘−1
2 )𝛼𝑘 = 0. (4.56) 

The stationary point of the above equation is obtained by setting the first derivative 

equal to zero to give:  

𝛼𝑘 =
 𝑔

𝑞

′
(0)𝛼𝑘−1

2

2 [𝑔
𝑞
(𝛼𝑘−1)  𝑔𝑞(0)  𝑔𝑞

′
(0)𝛼𝑘−1]

. (4.57) 

(b) Three point quadratic (Quadratic 3) interpolation method 

Quadratic 3 interpolation also uses the same quadratic approximation to fit the data, 

which can be written in a generic form as:  
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𝑔
𝑞 
(𝛼) =  ̃𝛼

2
+ �̃�𝛼 + �̃�. (4.58) 

Various simplifications in the solution of these equations can be reached whenever 

particular characteristics of the points are used. For example, the first point can 

generally be taken as 𝛼 = 0. Other simplifications can be achieved when the points 

are evenly spaced. A general problem formula is defined as follows. 

Given three unevenly spaced point [𝛼1, 𝛼2, 𝛼 ] and their associated function values 

[𝑔
𝑞 
(𝛼1), 𝑔𝑞 (𝛼2), 𝑔𝑞 (𝛼 )], the values of  ̃ and �̃� are determined by measurements 

at three points to determine 𝑔
𝑞 
(𝛼1) , 𝑔

𝑞 
(𝛼2)  and 𝑔

𝑞 
(𝛼 ) , respectively. Hence, 

Equation (4.58) can be written as: 

{

𝑔(𝛼1) =  ̃𝛼1
2
+ �̃�𝛼1 + �̃�

𝑔(𝛼2) =  ̃𝛼2
2
+ �̃�𝛼2 + �̃�

𝑔(𝛼 ) =  ̃𝛼 
2
+ �̃�𝛼 + �̃�

. (4.59) 

The aforementioned equation presents are three linear algebraic equations in  ̃, �̃� and 

�̃�. In matrix form they can be written as: 

[

𝛼1
2
𝛼1 1

𝛼2
2
𝛼2 1

𝛼 
2
𝛼 1

] [
 ̃
�̃�
�̃�
] = [

𝑔𝑞 (𝛼1)

𝑔𝑞 (𝛼2)

𝑔𝑞 (𝛼 )

]. (4.60) 

The minimum point of three parameter interpolation merit function 𝑔
𝑞 

 , as well as 

the point where the derivative of 𝑔
𝑞 

 vanishes, can both be estimated the same way as 

the quadratic interpolation method. Thus setting: 

𝑔
𝑞 

′
(𝛼) = 2 ̃𝛼 + �̃� = 0. (4.61) 

This set of Equations (4.60) can be solved for  ̃, �̃� and �̃�. The results are substituted 

into Equation (4.61) to compute 𝛼
∗

, the stationary point of the quadratic 

approximation to the merit function. The result is as follows:  

𝛼
∗
=

𝑔
𝑞 
(𝛼1)(𝛼2

2
 𝛼 

2
) + 𝑔

𝑞 
(𝛼2)(𝛼 

2
 𝛼1

2
) + 𝑔

𝑞 
(𝛼 )(𝛼1

2
 𝛼2

2
)

2 [𝑔
𝑞 
(𝛼1)(𝛼2  𝛼 ) + 𝑔𝑞 (𝛼2)(𝛼  𝛼1) + 𝑔𝑞 (𝛼 )(𝛼1  𝛼2)]

. (4.62) 

Owing to that the step length 𝛼 are in the range[0,1], so the value of  𝛼1 could be set 

as 0; meanwhile, 𝛼2, and 𝛼  can be set as the previous interpolate value 𝛼𝑘−1,𝛼𝑘−2. 

Thus, the new interpolated value 𝛼𝑘 can be computed as:  

𝛼𝑘 =  
1

2

𝛼𝑘−1
2

[𝑔
𝑞 
(𝛼𝑘−2)  𝑔𝑞 (0)]  𝛼𝑘−2

2
[𝑔
𝑞 
(𝛼𝑘−1)  𝑔𝑞 (0)]

𝛼𝑘−2 [𝑔𝑞 (𝛼𝑘−1)  𝑔𝑞 (0)]  𝛼𝑘−1 [𝑔𝑞 (𝛼𝑘−2)  𝑔𝑞 (0)]
. (4.63) 
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The procedure requires selecting three initial points and computing the optimum of 

the quadratic approximation 𝛼𝑘 , by Equation (4.57). Typically, the procedure 

continues using 𝛼𝑘  as one of the next three points to repeat the application of 

Equation (4.63). The point with the smallest value of 𝑔
𝑞 

 is discarded. The procedure 

is repeated until a tolerance on the dependent variable is reached.   

(c) Cubic interpolation method 

For the cubic interpolation method, it is required to start a quadratic approximation 

𝑔
q
(𝛼) to 𝑔, by interpolating the three pieces of information available—𝑔(0), 𝑔

′
(0), 

and 𝑔(𝛼0), thus obtaining:  

𝑔
q
(𝛼) = (

𝑔(𝛼0)  𝑔(0)  𝛼0𝑔
′
(0)

𝛼0
2 )𝛼

2
+ 𝛼𝑔

′
(0) + 𝑔(0). (4.64) 

 (Note that this function is constructed so that it satisfies the interpolation 

conditions 𝑔
q
(0) = 𝑔(0), 𝑔

q

′
(0) = 𝑔

′
(0), and 𝑔

q
(𝛼0) = 𝑔(𝛼0).)  

The new trial value 𝛼1 is defined as the minimum of this quadratic, that is, we obtain:  

𝛼1 =  
𝑔
′
(0)𝛼0

2

2[𝑔(𝛼0)  𝑔(0)  𝑔
′
(0)𝛼0]

. (4.65) 

If the sufficient decrease condition inequity Equation (4.47) is satisfied at 𝛼1 , the 

search is considered complete. Otherwise, a cubic function is constructed, 

interpolating the four pieces of information 𝑔(0) , 𝑔
′
(0) , 𝑔(𝛼0) , and 𝑔(𝛼1) , 

obtaining:  

𝑔
c
(𝛼) =  ̃𝛼

 
+ �̃�𝛼

2
+ 𝛼𝑔

′
(0) + 𝑔(0). (4.66) 

If settled the following:  

𝑔
c
(𝛼𝑘−1) =  ̃𝛼𝑘−1

 
+ �̃�𝛼𝑘−1

2
+ 𝛼𝑘−1𝑔

′
(0) + 𝑔(0), (4.67) 

𝑔
c
(𝛼𝑘−2) =  ̃𝛼𝑘−2

 
+ �̃�𝛼𝑘−2

2
+ 𝛼𝑘−2𝑔

′
(0) + 𝑔(0), (4.68) 

After arrangement, it is obtained:  

[
𝛼𝑘−1
 

𝛼𝑘−1
2

𝛼𝑘−2
 

𝛼𝑘−2
2 ] [

 ̃
�̃�
] = [

𝑔
c
(𝛼𝑘−1)  𝑔(0)  𝑔

′
(0)𝛼𝑘−1

𝑔
c
(𝛼𝑘−2)  𝑔(0)  𝑔

′
(0)𝛼𝑘−2

]. (4.69) 

Subsequently, the coefficient  ̃ and �̃� can be obtained by:  

[
 ̃
�̃�
] =

[
𝛼𝑘−2
2

 𝛼𝑘−1
2

 𝛼𝑘−2
 

𝛼𝑘−1
 ] [

𝑔
c
(𝛼𝑘−1)  𝑔(0)  𝑔

′
(0)𝛼𝑘−1

𝑔
c
(𝛼𝑘−2)  𝑔(0)  𝑔

′
(0)𝛼𝑘−2

]

𝛼𝑘−1
2
𝛼𝑘−2
2
(𝛼𝑘−1  𝛼𝑘−2)

. 
(4.70) 
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By differentiating 𝑔
c
(𝛼), the stationary point of the cubic approximation to the merit 

function is:  

𝑔
c

′
(𝛼𝑘) = 3 ̃𝛼𝑘

2
+ 2�̃�𝛼𝑘 + 𝑔

′
(0). (4.71) 

Lastly, the result is:  

𝛼𝑘 =
 �̃� + √�̃�2  3 ̃𝑔

′
(0)

3 ̃
. 

(4.72) 

If necessary, this process may be repeated, using a cubic interpolate of 𝑔(0), 𝑔
′
(0) 

and the two most recent values of 𝑔, until the step length  𝛼 satisfies the stopping 

criterion.  

Box 4.3: Line search algorithm. 

1. Input data: 𝝌(𝑘) ≔ {𝝈(𝑘), 휀
𝑝(𝑘)

, ∆𝛾(𝑘)}, compute 𝒓(𝝌(𝑘)) and 𝒑(𝝌(𝑘)): 

𝒓
(𝑘)
≔ 𝒓(𝝌(𝑘)) ≔

{
 

 
𝝈(𝑘)  𝝈𝑛 1

𝑡𝑟𝑖 𝑙 + ∆𝛾𝐃𝑒𝑵(𝑘)

휀
𝑝(𝑘)

 휀𝑛
𝑝
 ∆𝛾(𝑘)

𝜎𝑒𝑞 (𝝈
(𝑘), 휀

𝑝(𝑘)
)  𝜎𝑌 (휀

𝑝(𝑘)
)}
 

 

, 

𝒑
(𝑘)
≔ 𝒑(𝝌(𝑘)) ≔  (𝐉

(𝑘)
)−1𝒓

(𝑘)
, 

where, 

𝐉
(𝑘)
≔ 𝛁𝒓(𝝌(𝑘)) =

[
 
 
 
 
 𝕀 + ∆𝛾

𝜕𝑵(𝑘)

𝜕𝝈
∆𝛾
𝜕𝑵(𝑘)

𝜕휀
𝑝 𝑵(𝑘)

𝟎 1  1

𝑵(𝑘)
𝜕𝜎𝑒𝑞 (𝝈

(𝑘), 휀
𝑝(𝑘)

)

𝜕휀
𝑝  

𝜕𝜎𝑌 (휀
𝑝(𝑘)

)

𝜕휀
𝑝 0

]
 
 
 
 
 

, 

𝑵(𝑘) ≔
𝜕𝜎𝑒𝑞(𝝈

(𝑘),𝜀
𝑝(𝑘)

)

𝜕𝝈
. 

2. Initialize: set 𝑗 = 1, 𝛼(1)
(𝑘)
= 1 and 

𝑔
(𝑘)
≔ 𝒓

(𝑘)
∙ 𝒓
(𝑘)
/2, 

𝒈
′(𝑘)

≔ 𝒓
(𝑘)
𝛁𝒓(𝝌(𝑘)) = 𝐉

(𝑘)
𝒓
(𝑘)

. 

3. Compute the new unknowns, residuals and merit function: 

𝝌(𝑗)
(𝑘 1)

≔ 𝝌(𝑘) + 𝛼(𝑗)
(𝑘)
𝒑
(𝒌)

, 

𝒓(𝑗)
(𝑘 1)

≔ 𝒓 (𝝌(𝑗)
(𝑘 1)

), 

𝑔
(𝑗)

(𝑘 1)
: = 𝒓(𝑗)

(𝑘 1)
∙ 𝒓(𝑗)
(𝑘 1)

/2. 
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4. Check Goldstein´s condition: 

If 𝑔
(𝑗)

(𝑘 1)
≤ 𝑔

(𝑘)
+ 𝑐1𝛼(𝑗)

(𝑘)
𝒈
′(𝑘)𝑇

𝒑
(𝑘)

 Then 

𝝌(𝑘 1) = 𝝌(𝑗)
(𝑘 1)

 and Exit. 

5. Check for maximum number of curve fittings: 

If 𝑗 = 𝑗𝑚 𝑥  Then notify, set 𝝌(𝑘 1) = 𝝌(𝑗)
(𝑘 1)

 and Exit. 

6. Polynomial interpolation to obtain  new value of step length 𝛼(𝑗 1)
(𝑘)

: 

a. Quadratic interpolation method: 

𝛼(𝑗 1)
(𝑘)

=
 𝑔

𝑞

′
(0) (𝛼(𝑗)

(𝑘)
)
2

2 [𝑔
𝑞
(𝛼(𝑗)

(𝑘)
)  𝑔

𝑞
(0)  𝑔

𝑞

′
(0)𝛼(𝑗)

(𝑘)
]
. 

b. Quadratic 3 interpolation method: 

𝛼(𝑗 1)
(𝑘)

=  
1

2

(𝛼(𝑗)
(𝑘)
)
2

[𝑔
𝑞 
(𝛼(𝑗−1)

(𝑘)
)  𝑔

𝑞 
(0)]  (𝛼(𝑗−1)

(𝑘)
)
2

[𝑔
𝑞 
(𝛼(𝑗)

(𝑘)
)  𝑔

𝑞 
(0)]

𝛼(𝑗−1)
(𝑘)

[𝑔
𝑞 
(𝛼(𝑗)

(𝑘)
)  𝑔

𝑞 
(0)]  𝛼(𝑗)

(𝑘)
[𝑔
𝑞 
(𝛼(𝑗−1)

(𝑘)
)  𝑔

𝑞 
(0)]

. 

c. Cubic interpolation method 

𝛼(𝑗 1)
(𝑘)

=
 �̃� + √�̃�2  3 ̃𝑔

′
(0)

3 ̃
, 

where, 

[
 ̃
�̃�
] =

[
(𝛼(𝑗−1)

(𝑘)
)
2

 (𝛼(𝑗)
(𝑘)
)
2

 (𝛼(𝑗−1)
(𝑘)

)
 

(𝛼(𝑗)
(𝑘)
)
 ] [

𝑔
𝑐
(𝛼(𝑗)

(𝑘)
)  𝑔(0)  𝑔

′
(0)𝛼(𝑗)

(𝑘)

𝑔
𝑐
(𝛼(𝑗−1)

(𝑘)
)  𝑔(0)  𝑔

′
(0)𝛼(𝑗−1)

(𝑘)
]

(𝛼(𝑗)
(𝑘)
)
2

(𝛼(𝑗−1)
(𝑘)

)
2

(𝛼(𝑗)
(𝑘)
 𝛼(𝑗−1)

(𝑘)
)

. 

In order to avoid small step length, the final length could be calculated by: 

𝛼(𝑗 1)
(𝑘)

≔ 𝑀𝐴𝑋 {�̃�𝛼(𝑗)
(𝑘)
,   𝛼(𝑗 1)

(𝑘)
}. 

7. Set 𝑗 ← 𝑗 + 1 and Go to 3. 

 

Remark: it is worth to notice that if any 𝛼𝑘 is either too close to its predecessor 𝛼𝑘−1,  

or else too much smaller than 𝛼𝑘−1, it will cause the oscillation of the iterative loops. 

In order to ensure reasonable progress on each iteration, and that the final 𝛼 is not too 

small, the final step length can be calculated by:  

𝛼𝑘 ≔ 𝑀𝐴𝑋{�̃�𝛼𝑘−1,   𝛼𝑘}. (4.73) 
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The detailed line search algorithm is presented in Box 4.3. The parameter �̃� = 0.1 is 

considered in the numerical simulations presented in this thesis. 

4.5 Results and discussion 

4.5.1 Single element validation 

The constitutive model described above was implemented in an implicit finite element 

environment. In this sub-section, the verification of the constitutive model 

implementation was undertaken using a series of single eight-noded brick element test 

cases. In order to reflect the asymmetric mechanical behavior, and to show the 

mechanical response dependent on the state of stress, seven representative test cases, 

as illustrated in Figure 4.2, were considered.  

Table 4.1: Material parameter of Titanium [22]. 

 
𝜌  

(g/cm
3
) 

𝐸 (GPa) 

Modulus 

𝜈 

Poisson´s 

ratio 

𝜎𝑌(휀
𝑝
) = 𝜎ℎ0 + 𝐾ℎ(휀

𝑝
)
𝑛ℎ

 

𝜎ℎ0

（MPa） 

𝐾ℎ

（MPa） 
𝑛ℎ 

Titanium 4.51 120 0.361 208.0 260.536 0.532 

Table 4.2: Material parameters used in the simulation [23]. 

휀̅𝑝  1  2             �̂� 

0.0 0.5454 0.5010 1.09 0.7246 -0.8675 -0.8675 -0.2168 

0.025 0.5231 0.4745 0.9034 0.7309 0.7202 0.7202 -0.2198 

0.05 0.6694 0.5585 1.1030 0.9138 0.9381 0.9381 -0.2291 

0.075 0.6960 0.5969 1.1270 0.9838 0.9716 0.9716 -0.2607 

0.1 0.5356 0.4768 0.8603 0.7761 0.7714 0.7714 -0.2754 

0.2 0.0610 0.0576 0.0869 0.0870 0.0794 0.0794 -0.5908 

0.4 0.0632 0.0620 0.0788 0.0816 0.0801 0.0801 -1.0330 

0.5 0.9547 0.9570 1.2140 1.1810 1.1760 1.1760 -1.1480 

 

The single element with one integration point is subjected to prescribed 

displacements, simulating different stress states. The initial element dimension is set 

to 10 mm. The geometry and the boundary conditions applied to this sample at 

different stress states, namely  

(a) uniaxial tensile along rolling direction; 
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(b)  uniaxial tensile along transverse direction; 

(c) biaxial tensile test; 

(d) uniaxial compressive along rolling direction; 

(e) uniaxial compressive along transverse direction; 

(f) biaxial compressive. 

Respecting the totality of examples presented in this chapter, all the residual norm 

tolerance in the local stress update loops are set to 𝑇𝑂𝐿 = 10− . All the material 

parameters of Cazacu´04 model used in the following simulations are withdrawn from 

reference from the thesis [23] and listed in Table 4.1 and Table 4.2. 

 
  

(a) (b) (c) 

   

(d) (e) (f) 

Figure 4.2: Single element test: (a) uniaxial tensile test in rolling direction; (b) uniaxial tensile test in 

transverse direction; (c) biaxial tensile test; (d) uniaxial compressive test in rolling direction; (e) 

uniaxial compressive test in transverse direction; (f) biaxial compressive test. 

As far as Figure 4.3 is concerned, stress-strain curves at different stress states are 

presented. From this, it can be seen that the results obtained by simulation under 

uniaxial tensile test in the rolling direction match very well with the experimental 

data; meanwhile, under uniaxial compressive tensile test, the obtained results by 
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simulation present a slight deviation from the experimental results.  

The flow stress-strain curve for uniaxial tension tests demonstrates a normal concave-

down shape; on the contrary, the stress-strain curve under uniaxial compressive tests 

presents a concave-up shape whenever the plastic strain is less than 0.4. After this 

value, the flow curve also changes to the same concave-down shape as in uniaxial 

tension test. By the comparison of the stress-strain under the compressive and tensile 

tests, it is quite evident that the strength in the compressive stress state is larger than 

in the tensile one. Besides, the strength differential gap increases with the 

augmentation of plastic deformation. A pronounced strength differential (SD) effect 

between tension stress and compression stress state is detected. This effect is also 

notoriously observable in both the biaxial tensile stress and biaxial compressive stress 

states. Nevertheless, the difference between the rolling and transverse directions is 

very small, whether it takes place in uniaxial tensile stress state or uniaxial 

compressive stress state.  
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Figure 4.3: Stress-strain curves at different stress states. 

The yield surface for pure titanium, at different levels of accumulative effective 

plastic strain, is displayed in Figure 4.4. It is clearly identified that the initial yield 

surface resembles an elliptical shape, and with the increase of the accumulative 
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effective plastic strain; the shape of yield surface evolves from the elliptical-like 

shape to the triangular-like shape. This shape´s evolution of yield surface not only 

reflects the difference of deformation mechanism at different stress state (the changes 

from the slip dominated deformation to twinning dominated plastic deformation), but 

also changes the curvature of the yield locus, which has a great influence on the 

implemented numerical algorithms, particularly, the convergence of Newton-Raphson 

iterative in the stress-update subroutine.   

 

Figure 4.4: The yield surface evolution of pure titanium. 

4.5.2 Comparisons among different integration algorithms 

(a) Comparisons of maximum iterative numbers under different stress states 

As analyzed in the aforementioned section, due to the alternation of deformation 

mechanism, the HCP crystal structure metal demonstrates pronounced anisotropic 

properties and SD effect; this may reflect in the yield locus´s evolution during the 

deformation. This means that the shape´s evolution in the yield locus directly results 

in the curvature change. Using the standard Newton-Raphson closest point projection 

scheme, it is possible to determine the asymptotic quadratic rate of convergence for 

nonlinear system of algebraic equations. However, it requires that initial estimates 

should be close to the final solution. Consequently, this originates difficulties in 
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obtaining the convergence in the stress-updated subroutine due to shape´s change in 

the yield surface. 

In order to investigate the numerical convergence properties, in this section, both 

standard Newton-Raphson´s closest-point projection iterative scheme (N-R CPPM), 

and Newton-Raphson´s iterative scheme with line search algorithm are used in stress-

updated subroutine. For the line search algorithm, three kinds of interpolation 

methods were used, which is quadratic interpolation, three point quadratic (quadratic 

3) interpolation, and cubic interpolation.   

Owing to the anisotropic properties and SD effect, eight points on the yield surface 

are selected, representing a wide range of possible states´ of stress. These points, 

labeled A, B, C, D, E, F, G, H in Figure 4.5, correspond, respectively, to uniaxial 

tensile in rolling direction, biaxial tensile, uniaxial tensile in transverse direction, pure 

shear stress, uniaxial compressive in rolling direction, biaxial compressive, uniaxial 

compressive in transverse direction, and pure shear stress.  

 

Figure 4.5: Schematic diagram of representative stress state. 

Considering the influence of plastic flow direction at each representative stress state, 

unit normal direction �̂�  and tangent direction �̂�  of yield surface are chosen to 

construct the total strain increment. As a result, the total strain increment is assigned 

in the form: 

∆휀( 1,  2) =  ̂1‖∆𝜺‖�̂� +  ̂2‖∆𝜺‖�̂�, (4.74) 
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where  ̂1 and  ̂2 are positive scalars. 

In order to study the convergence during the shape´s change of yield surface, four 

typical effective plastic strain levels: 휀
𝑝
= 0, 휀

𝑝
= 0.2,휀

𝑝
= 0.4 and 휀

𝑝
= 0.6, are 

chosen, in representation of the initial yield surface (elliptical-like yield surface), 

critical yield surface -  in which the shape changes from elliptical-like to triangular-

like shape - , triangular-like evolving surface, and fixed triangular-like shape yield 

surface. 

Meanwhile, two total strain increments，‖∆𝜺‖ = 0.005 and ‖∆𝜺‖ = 0.01, are used 

to study the influence of strain increment on the convergence for different iterative 

algorithms. The convergence iterative numbers in the aforementioned representative 

stress states, obtained from different algorithms, are summarized in the Table 4.3 and 

Table 4.4. In these tables, “NC” denotes non-convergence. The iterative number filled 

in Table 4.3 and Table 4.4 is the maximum iterative number of all plastic directions 

under each representative stress state. Therefore, Table 4.3 and Table 4.4 merely 

present an overview comparison of the different integration schemes. Details are 

explained and discussed in Section 4.5.2 (b). 

Examining Table 4.3, it is possible to observe that when the effective plastic strain 

reaches 휀
𝑝
= 0  (initial yield surface), the Newton-Raphson´s line search with 

algorithm presents the same iterative numbers, in convergence with the standard 

Newton-Raphson scheme. As a matter of fact, in such a case, the line search algorithm 

is not activated. This means that all the interpolated methods generate the same 

results.  

It is not difficult to understand that the initial yield surface is an elliptical-like shape, 

similar to the von-Mises yield criterion, or Hill´48 yield criterion shapes. The 

curvature of the yield surface is not big, and when the small strain increment is 

loaded, the shape´s change of the yield surface is very slightly, keeping its elliptical-

like shape. By this, it is possible to sustain that the standard Newton-Raphson´s 

scheme is enough to obtain the quadratic convergence rate.  

Confronting the results at different strain increments, it is clearly perceived that when 

the strain increment increases from ‖∆𝜺‖ = 0.005  to ‖∆𝜺‖ = 0.01 , the required 

maximum iterative numbers to be convergent have remarkably increase; moreover, 

when the Newton-Raphson´s with line search algorithm is used the maximum 

iterative number has a slightly decrease at the uniaxial tensile stress state in transverse 



Continuum Modelling and Numerical Simulation of Hexagonal Close-Packed Materials 

80 

direction (point C) and biaxial tensile state (D). This is an indication that the line 

search algorithm is activated. In comparison with the iterative number, it is accurate to 

say that the aforementioned three interpolation methods presented the same iterative 

number.  

As a result, it could be summarized that whenever the yield surface displays an 

elliptical-like shape, and the shape does not present significant changes during its 

following evolution, N-R with line search algorithm produces similar results to the 

standard N-R algorithm; besides using standard N-R algorithm it is possible to obtain 

the quadratic convergence. 

Table 4.3: Comparisons of Iterative number at 휀
𝑝
= 0, 휀

𝑝
= 0.6. 

 

Note: Standard N-R denotes Newton-Raphson´s closest-point projection iterative 

scheme; N-R+LQ denotes Newton-Raphson´s iterative scheme with line search 

algorithm, where the quadratic interpolation was used; N-R +LQ3 represents 

 휀
𝑝
 ‖∆𝜺‖ 

TX 

(A) 

TY 

(C) 

BT 

(B) 

CX 

(E) 

CY 

(G) 

BC 

(F) 

Shear 

(D) 

Shear 

(H) 

Standard 

N-R 

0 
0.005 12 12 11 10 10 10 12 12 

0.01 21 23 19 18 18 16 19 20 

0.6 
0.005 NC NC NC NC NC NC NC NC 

0.01 NC NC NC NC NC NC NC NC 

N-R+LQ 

0 
0.005 12 12 11 10 10 10 12 12 

0.01 21 20 18 18 18 16 19 20 

0.6 
0.005 15 16 13 10 10 15 16 16 

0.01 16 16 13 13 13 13 16 16 

N-R 

+LQ3 

0 
0.005 12 12 11 10 10 10 12 12 

0.01 21 20 18 18 18 16 19 20 

0.6 
0.005 15 16 13 10 10 15 16 16 

0.01 16 16 13 13 13 13 16 16 

N-R+LC 

0 
0.005 12 12 11 10 10 10 12 12 

0.01 21 20 18 18 18 16 19 20 

0.6 
0.005 15 16 13 10 10 15 16 16 

0.01 16 16 13 13 13 13 16 16 
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Newton-Raphson´s iterative scheme with line search algorithm, where the three point 

quadratic interpolation was used; N-R+LC represents Newton-Raphson´s iterative 

scheme with line search algorithm, where the cubic interpolation was used. 

TX: represents the uniaxial tensile in rolling direction  

TY: represents uniaxial tensile in transverse direction; 

BT: represents biaxial tensile;  

CX: represents uniaxial compressive in rolling direction;  

CY: represents uniaxial compressive in transverse direction; 

BC: represents biaxial compressive. 

When effective plastic strain 휀
𝑝
 is equal to 0.6, the yield surface has already changed 

into the triangular-like shape, and its shape will not be changed again, not even if the 

material continues undergoing the deformation. That is because the calibrated material 

parameters in Table 4.2 only can supply data with the accumulated plastic strain less 

than 휀
𝑝
= 0.5, so the following deformation keep using the same material parameters 

for transformation matrix as 휀
𝑝
= 0.5.  

From Table 4.3, it can be observed that when effective plastic strain 휀
𝑝
= 0.6, even if 

small strain increment ‖∆𝜺‖ = 0.005 is used, the standard Newton-Raphson cannot 

obtain convergence at all the stress states. Nevertheless, N-R with line search 

algorithm only requires a few iterative numbers to obtain the convergence, slightly 

more than the iterative number at the same stress state of the initial yield surface 

(휀
𝑝
= 0).  

When the strain increment increases into double value,‖∆ε‖ = 0.01, the maximum 

iterative number of N-R with line search algorithm does not show the evidence of a 

significant increase, with almost the same iterative number as small strain increment 

‖∆𝜺‖ = 0.005. Regarding both the fixed elliptical-like shape yield surface (the initial 

yield surface) and the fixed triangular-like shape yield surface (휀
𝑝
= 0.6) without 

shape change during the following deformation load, standard N-R algorithm is able 

to reach a high level of quadratic convergence for the fixed elliptical-like shape yield 

surface (the initial yield surface). In spite of this, and respecting the fixed triangular-

like shape yield surface (휀
𝑝
= 0.6), N-R algorithm does not prove able to obtain 

convergence. Although N-R with line search does not demonstrate a substantially 

higher convergence improvement than standard N-R for the fixed elliptical-like shape 

yield surface (the initial yield surface), on the other hand it can remarkably improve 
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the convergence for the fixed triangular-like shape yield surface (휀
𝑝
= 0.6). With 

respect to fixed yield surfaces, no matter if fixed elliptical-like shape yield surface or 

fixed triangular-like shape yield surface ones, interpolation methods do not present 

different iterative numbers, nor an improvement on the iterative convergence. 

Table 4.4 Comparisons of Iterative number at 휀
𝑝
= 0.2, 휀

𝑝
= 0.4. 

 

In Table 4.4, it is presented the maximum iterative number of all plastic flow direction 

for the yield surface at effective plastic strain 휀
𝑝
= 0.2, while 휀

𝑝
= 0.4. It is also 

possible to observe that for the yield surface of effective plastic strain 휀
𝑝
= 0.2, when 

total strain incremments ‖∆𝜺‖ = 0.005,  the standard N-R iterative scheme is unable 

to obtain convergece at uniaixal tensile stress state (point A)  and biaxial compressive 

stress state ( point F) for all plastic direction. Respecting the other representitive stress 

state, it requires a large iterative number to be in convergence compared with the 

 휀
𝑝
 ‖∆𝜺‖ 

TX 

(A) 

TY 

(C) 

BT 

(B) 

CX 

(E) 

CY 

(G) 

BC 

(F) 

Shear 

(D) 

Shear 

(H) 

Standard 

N-R 

0.2 
0.005 NC 62 43 21 20 NC 35 33 

0.01 NC NC NC NC NC NC NC NC 

0.4 
0.005 NC NC NC NC NC NC NC NC 

0.01 NC NC NC NC NC NC NC NC 

N-R+LQ 

0.2 
0.005 NC NC NC 15 16 NC NC NC 

0.01 NC NC NC 15 17 NC NC NC 

0.4 

0.005 15 15 14 10 11 18 16 16 

0.01 16 16 14 13 13 18 15 14 

N-

R+LQ3 

0.2 
0.005 NC NC NC 15 16 NC NC NC 

0.01 NC NC NC 15 17 NC NC NC 

0.4 
0.005 15 15 14 10 11 18 16 16 

0.01 16 16 14 13 13 18 15 14 

N-R+LC 

0.2 
0.005 NC NC NC 11 16 NC NC NC 

0.01 NC NC NC 13 16 NC NC NC 

0.4 
0.005 10 11 8 8 8 14 10 10 

0.01 10 10 11 10 10 13 11 11 
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initial yield surface; when total strain incremment increases into ‖∆𝜺‖ = 0.01 , it 

proves not able to obtain convergence. This can also be seen in the N-R with line 

search iterative scheme. The details from the comparisons between N-R scheme and 

N-R with line search iterative scheme will be dissucussed further, in the next sub-

section of this study in order to understand the inflence of the line search and 

interpolation method on convergence.   

These nonconvergent results occur because the yield surface of effective plastic strain 

휀
𝑝
= 0.2  is a criterial yield one. From this surface, with the increasement of  

hardening during the subsquent deformation, the shape of yield surface changes 

significant and abruptly, from its elliptical-like shape to a triangular-like one. This 

causes a major alteration in the curvature of the yield surface. Once  a large increment 

is loaded, there is a chance that the initial estimation in the plastic corrected step may 

largely deviate from the final solution, thus originating the nonlinear equation sets 

difficult to converge.  

Concerning the yield surface of effective plastic strain 휀
𝑝
= 0.4, the standard N-R 

iterative scheme  is also unable to obtain convergence for all plastic flow direction 

and at all representitive stress states,  as the fixed yield surface of effective plastic 

strain being  휀
𝑝
= 0.6. Nevertheless, N-R line search is not only able of obtaining 

convergence for all plastic directions and at all representative stress states, as it also 

requires some iterative number to obtain convergence. This is explained by the 

evoluted characteristics of the yield surface. Although the shape of the yield surface 

continues triangularization with the external load, the basic shape has already been 

settled, therefore the continous loading only turns the shape  more triangular. This 

implies that the curvature does not suffer an abruptly change. Instead, it is a smooth 

shape´s evolution. It is possible to concluded that the N-R with line search iterative 

scheme can be effective to improve the convergence as the fixed triangular-like yield 

surface of effective plastic strain is of 휀
𝑝
= 0.6 .  By comparison of different 

interpolation methods in the N-R with line search iterative scheme, it is verifiable that 

both the quadratic and the three parameter quadratic (quadratic 3) interpolations 

present the same results, and that the maximum iterative number at each representitive 

stress state is equal.The cubic interpolation methods present a much smaller 

maximum iterative number than both the aforementioned  interpolation methods. 

Hence, it is possible to argue that the N-R with cubic interpolated line search iterative 
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scheme can remarkably improve the convergence, even in large total strain increment 

loading; besides, the maximum iterative number presents a mere slight increase. We 

then conclude, accordingly to what was previsouly demostrated, that the N-R with 

cubic interpolated line search iterative scheme is a very robust one.  

(b) Comparison of iterative number contours under different stress states  

Even though the above overview discussion has already elucidated some 

improvements of the N-R line search iterative scheme, that is not enough for the 

demonstration of details. In fact, none of the iterative schemes is able to obtain the 

convergence for the yield surface of effective plastic strain 휀
𝑝
= 0.2 at any given 

strain increments. This is illustrative of the fact, that all iterative schemes have some 

places of nonconvergence. It is not possible to demonstrate the specific influence of 

line search and interpolation on the convergence properties during the iterative 

plastic-corrected steps. In this sub-section, some typical iterative number contours, at 

different representative stress states, iterative schemes and total strain increments will 

be presented.  

Although it is possible to use the N-R model for capturing any anisotropic mechanical 

response, the titanium alloy studied in this paper shows only some slightly anisotropic 

properties, which can be seen in the analysis of single element validation in the sub-

section 4.5.1. Therefore, the properties in uniaxial tensile and compressive stress state  

in rolling direction are respectively similar to the uniaxial tensile and compressive 

stress state in transverse direction. This is quite easy to verify if compared with the 

maximum iterative number in Table 4.3 and Table 4.4.  

As a result, in this subsection, four representative stress states will be investigated, 

namely uniaxial tensile in rolling direction, uniaxial compressive in rolling direction, 

biaxial tensile, biaxial compressive. As analysed in the previous sub-section, 

regarding the fixed elliptical-like shape yield surface (the initial yield surface, which 

is also the yield surface of effective plastic strain 휀
𝑝
= 0.0), all the iterative schemes 

demonstrate the same maximum iterative number, together with the fact that the line 

search algorithm does not activate. Thus, the iterative number contour of N-R 

combined with line search algorithm is the same as the standard N-R scheme.  
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(a) Tensile X (N-R) (b) Biaxial tensile (N-R) 

  

(c) Compressive-X (N-R) (d) Biaxial compressive (N-R) 
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(e) Tensile X (N-R +LQ) (f) Biaxial tensile (N-R +LQ) 
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Figure 4.6: Iterative number contours obtained from different integration schemes under different stress 

states at 휀
𝑝
= 0.6.  

In order to describe the influence of line search algorithm on the convergence, two 

representative yield surfaces are chosen.  One is the fixed triangular-like yield surface, 

where the effective plastic strain is of 휀
𝑝
= 0.6; the other is the yield surface at 

effective plastic strain 휀
𝑝
= 0.4, where the shape of yield surface will evolve in the 

following deformation. The total strain increment ‖∆𝜺‖ is set as 0.01. 

Figure 4.6 presents iterative number contours under different stress states at 휀
𝑝
= 0.6.  

From there, it is clear seen that N-R scheme although cannot make all strain 

increment domains converge, some parts are still easy to converge. For example, In 

the case of tensile X (see in Figure 4.6 (a)), if all strain increment is loaded along the 

rolling direction, the N-R scheme is very effective to make problems converge. By 

comparison of iterative number contours between tensile and compressive tests, it is 

clearly seen that the contour is remarkable different. This is also indicates the 

asymmetry of the yield surface. Figure 4.6 (e), (f), (g), (h) present the iterative 

number contours under different stress states obtained by N-R combined line search 

algorithm. From there, it can be seen that in the entire strain increment domain, the 

nonlinear stress updated equations sets can get convergence. The line search 

algorithm can be effective to improve the convergence in the area, where the 

problems cannot converge with the N-R scheme.  
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(a) Tensile X (N-R) (b) Biaxial tensile (N-R) 

  
(c) Compressive-X (N-R) (d) Biaxial compressive (N-R) 

  

(e) Tensile X (N-R+LQ) (f) Biaxial tensile (N-R+LQ) 
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(g) Compressive-X (N-R+LQ) (h) Biaxial compressive (N-R+LQ) 

  
(i) Tensile X (N-R+LQ3) (j) Biaxial tensile (N-R+LQ3) 

  
(k) Compressive-X (N-R+LQ3) (l) Biaxial compressive (N-R+LQ3) 
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Figure 4.7: Iterative number contours obtained from different integration schemes under different stress 

states at 휀
𝑝
= 0.4. 

Figure 4.7 presents iterative number contours for different integration scheme under 

different stress states at 휀
𝑝
= 0.4. From the comparisons, it can be seen that all the 

line search algorithms can improve the convergence. N-R with the 3 point quadratic 

(quadratic 3) interpolated line search algorithm has the same effectiveness to 

convergence as the quadratic interpolated line search algorithm. However, the N-R 

with the cubic interpolated line search algorithm can reduce the iterative number and 

further improve the convergence.  

4.6 Iso-error maps 

In this section, a numerical assessment of the accuracy and stability of the small strain 

  
(m) Tensile X (N-R+LC) (n) Biaxial tensile (N-R+LC) 

  

(o) Compressive-X (N-R+LC) (p) Biaxial compressive (N-R+LC) 
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part of the integration algorithm for the Cazacu´04 constitutive model is discussed. 

Iso-error maps have proved to be an efficient and most reliable tool for testing 

numerically the accuracy of integration algorithms in elasto-plasticity. Besides, they 

are also used to solve some strain controlled problems by the closest-point projection 

algorithm [5, 24].  

Owing  simultaneously to the anisotropy properties and to the shape´s change of yield 

surface, it is possible to verify that with the evolution of equivalent plastic strain 

during the plastic deformation, not only different stress states generate different error, 

but also that the same stress states, at different plastic deformation, have different iso-

error maps. According to the yield surface evolution presented in Figure 4.4, the yield 

surface at the equivalent plastic strain of 0.4 changes from an elliptical-like surface, at 

the small deformation, to a triangular-like one. In order to reflect the influence of the 

yield surface change on the iso-error maps, two yield surfaces were selected as object 

of study. The first is the initial yield surface (the equivalent plastic strain 휀
𝑝
= 0.0), 

identified as surface A hereafter; the second one is the yield surface of the equivalent 

plastic strain of 0.4, identified as surface B. The iso-error map of the initial yield 

surface is obtained starting from a value �̂�𝟎  of the stress lying on the boundary of the 

initial elastic domain and computing the associated strain �̂�𝟎 = 𝐃
e−1�̂�𝟎. Regarding 

the iso-error map of the surface B, the stress magnitude of each stress state should be 

computed according to the Cazacu´04 yield criterion, allowing the associated strain to 

be calculated afterwards by the same method as the initial yield surface.  

In order to show the error difference at different stress states, six points on those two 

representative yield surfaces are selected, representing a wide range of possible stress 

states. These points, labeled A, B, C, D, E, G in Figure 4.8, correspond, respectively, 

to uniaxial tensile in rolling direction, biaxial tensile, uniaxial tensile in transverse 

direction, pure shear stress, uniaxial compressive in rolling direction, biaxial 

compressive, uniaxial compressive in transverse direction, and, lastly, to pure shear 

stress.  
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Yield surface A  (휀
𝑝
=0.0) 

 

Yield surface B (휀
𝑝
=0.4) 

Figure 4.8: Representative stress state at yield surface A ((Equivalent plastic strain 휀
𝑝
= 0.1)) and B 

((equivalent plastic strain 휀
𝑝
= 0.4)). 

To draw the iso-error maps, for each selected representative point on the yield surface, 

a sequence of specified normalized strain increments was considered. Afterward, the 

stresses, corresponding to the states of strain, in accordance to this methodology, are 

computed by applying the closest point projection algorithm. A sequence of strain 
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increments is applied in order to correspond to specified normalized elastic trial stress 

increments of the form:  

∆𝜎𝑡𝑟𝑖 𝑙 =
∆𝜎𝑇
𝜎𝑒𝑞

�̂�𝒑 +
∆𝜎𝑁
𝜎𝑒𝑞

�̂�𝒑, (4.75) 

where, �̂�𝒑 and �̂�𝒑 are, respectively, the unit (in Euclidean norm) projected normal and 

tangent vectors on the 𝜎11  𝜎22 stress plane, and 𝜎𝑒𝑞 is the equivalent stress.  

Applying increments of trial stress in the tangential and normal direction to the yield 

surface, the error is evaluated by:  

𝐸𝑅𝑅𝑂𝑅(%) =
√(𝝈𝑁𝑢𝑚−𝝈𝐸𝑋𝐴𝐶𝑇):(𝝈𝑁𝑢𝑚−𝝈𝐸𝑋𝐴𝐶𝑇)

√𝝈𝐸𝑋𝐴𝐶𝑇:𝝈𝐸𝑋𝐴𝐶𝑇
, (4.76) 

where, 𝝈𝑁𝑢𝑚 is numerical solution, 𝝈    𝑇 is the exact solution. Here, due to the lack 

of an analytical solution, 𝝈    𝑇  is assumed to be the stress obtained by 

subincrementation of each stress increment into 1000 steps.  

By varying the prescribed increment sizes ∆𝜎𝑇 and ∆𝜎𝑁, respectively associated with 

the tangential and normal directions to the yield surface, the related iso-error map can 

be drawn. 

 

Figure 4.9: Iso-error maps when �̂� is equal to identity tensor and �̂� vanishes. 

If all of  1 ,  2 ,   ,   ,   , and    are set equal to one, and �̂�  equal to zero, the 

transformed tensor �̂�, is equal to the identity tensor , originating the degradation of the 

current Cazacu´04 constitutive model into the von Mises model. Figure 4.9 presents 

the contour of the equivalent plastic strain that is obtained by the reduced Cazacu´04 
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model. The iso-error map for this limiting scenario is depicted and it is quite secure to 

conclude that the results are in complete agreement with the von Mises iso-error map.  

  

Tensile X Compressive X 

  

Tensile Y Compressive Y 

  

Biaxial tensile Biaxial compressive 

Figure 4.10: Iso-error maps of yield surface at equivalent plastic strain 휀
𝑝
= 0.0. 
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Figure 4.10 depicts the iso-error maps of the yield surface of effective plastic strain 

휀
𝑝
= 0.0 at six representive points. From there, it is possible to observe that the iso-

error maps in the tension stress state are very similar to the corresponding 

compressive stress state. This also reflects that, in this specific context, the material 

does not present the asymmetrical tension/compression difference (SD effect). This 

can be easily explained by the yield surface shape. When the effective plastic strain is 

휀
𝑝
= 0.0, the yield surface still keeps its classical elliptical-like shape. The iso-error 

maps in point A (uniaxial tensile in rolling direction) displays an eminent difference 

from the corresponding point on the yield surface of von-Mises criterion, which have 

already been shown in Figure 4.9. 

By comparison of the iso-error maps between the point A (uniaxial tensile stress state 

in rolling direction) and the point B (uniaxial tensile stress state in transverse 

direction) in Figure 4.10, it is outstandingly perceived that the iso-error contours are 

different; moreover, the maximum iso-error value of the point A located in a different 

place from the point B, besides being somewhat  larger than the point B. Regarding 

the biaxial tension stress state, the maximum value of iso-error moves close to the 

original point, and its value is much larger than the uniaxial tension state. It also 

indicates that large increment loading would generate a larger deviation from the 

exact value.  

As far as Figure 4.11 is concerned, it displays the iso-error maps of the yield surface 

of effective plastic strain as  휀
𝑝
= 0.6 at six representative stress states. From there, it 

is clearly observable that the iso-error contour of the tension stress state is definitely 

different from the compression stress state, which is justified by the strength 

differential effect. Compared with the yield surface of effective plastic strain of 

휀
𝑝
= 0.0, the iso-error maps also present a significant deal of change. It also reflects 

the evolution of the yield surface from 휀
𝑝
= 0.0 to 휀

𝑝
= 0.6. Comparing the iso-error 

maps between the uniaxial tensile stress state with the uniaxial compressive stress 

state, both of them in rolling direction it is clear that not only the place of maximum 

iso-error makes a change, moving close to original point, but also that the such a 

value is almost twice than the uniaxial tensile stress state in rolling direction. 

Although iso-error maps of stress states, along the transverse direction, are also 

capable of change, the place of maximum value of the compression stress state also 

moves close to original, when compared with the tension stress state. In fact, the 
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maximum value does not present a notorious increase. Similar to the iso-error map of 

the yield surface of equivalent plastic strain 휀
𝑝
= 0.0, the maximum value of the iso-

error map of biaxial stress state is much larger than the uniaxial stress state. The 

biaxial compression stress state has a larger value than the biaxial tension stress state.  

 

 

Uniaxial tensile X Uniaxial compressive X 

 

 

Uniaxial tensile Y Uniaxial compressive Y 

  

Biaxial tensile Biaxial compressive 

Figure 4.11: Iso error maps of yield surface at equivalent plastic strain 휀
𝑝
= 0.6. 
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4.7 Benchmark test-Cup deep drawing  

Deep drawing is one of the most widely used processes for forming sheet metal parts 

in the automotive industry [25]. It is also a popular process in the assessment of 

formability in sheet metals. In this section, the Newton-Raphson with line-search 

cubic interpolation iterative scheme is applied to solve the nonlinear equation set in a 

complicated benchmark test. A validation of the presented approach is discussed, 

based on performed cylindrical cup deep drawing simulations. The dimension of all 

parts was listed as follows: 

Punch diameter: 𝐷𝑝 =97.46 mm 

Punch profile radius: 𝑟𝑝= 12.70 mm 

Die opening diameter: 𝐷𝑑 =101.48 mm 

Die profile radius: 𝑟𝑑 =12.70 mm 

Blank radius: 𝐷𝑏 = 158.76 mm 

The initial thickness of the blank is 1.0 mm. Its schematic diagrams are presented in 

Figure 4.12. 

 

Figure 4.12: Schematic view of circular cup deep drawing. 

The finite element model is presented in Figure 4.13. The left side of Figure 4.13 (a) 

demonstrates half of finite element model; the right side shows the cross section of the 

half cup deep drawing model. The punch, die and blank holder are considered as rigid 

surfaces in the simulation, meshed with linear quadratic rigid elements (R3D4). The 

circular blank is meshed with 6162 reduced integrated eight-noded brick elements 

(C3D8R), which can be seen in Figure 4.13 (b). The displacement of the punch is set 

to be large enough, allowing pulling the whole blank into the die.  

In order to avoid the occurrence of wrinkling during drawing, the constant blank 
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holder force of 30 kN is applied to the blank. The friction is considered with the 

Coulomb model, the coefficient of friction being 0.01 for all contact surfaces. The 

material parameters and hardening parameters, as presented in both Table 4.1 and 

Table 4.2 , are also used in the current benchmark cup drawing model. Besides, an 

automatic time incrementation is used in the finite element simulation, where the 

initial and maximal time increment sizes are specified. In this automatic time 

incrementation, the time increment is reduced if either the global equilibrium iteration 

or the local iteration of the algorithm fails to converge [26]. 

 

(a) Finite element model 

 

(b) Blank mesh 

Figure 4.13: Cup drawing test finite element model. 

The final shape and the equivalent plastic strain contour after the drawing operation 

are presented in Figure 4.14. From this sideview of the contour, it is possible to 

observe, firstly, a pronounced earing effect, and secondly that the maximum plastic 
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deformation primarily occurs at the neighboring place of the earing. This occurs 

because whenever a cylindrical cup deep drawing is performed on circular blanks it 

causes an uneven cup-rim (i.e. a number of high points called ears and an equal 

number of low points known as troughs), as a result of directional properties or 

anisotropy of the blank. The effect of anisotropy in deep drawing is generally viewed 

based on the number of ears, their location with respect to the rolling direction and, 

lastly, to their amplitude. In this simulation, four ears occur after deep drawing. This 

result also validates that Cazacu´04 constitutive model can be used to describe the 

anisotropic mechanical behavior between the rolling and transverse directions. 

 

Figure 4.14: Equivalent plastic strain contour.    

 

Figure 4.15: Equivalent stress contour after drawing. 
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The top view of the equivalent effective stress contour is presented by the Figure 4.15. 

Taking it under consideration, it is quite clear to understand that the stress distribution 

in the bottom of the drawing cup is not isotropic; The contour in transverse direction 

is different from the rolling direction. The maximum stress is concentrated on the 

edge side of the drawing cup. It is also possible to clearly see that, at room 

temperature, the earing profile exhibits four troughs in both RD and TD and ears at 

45
o 
with similar amplitude in their respective directions. 

 

(a) Edge path 

 

(b) Displacement vs edge length 

Figure 4.16: The plot of the punch displacement in the drawing direction vs. the prescribed edge path. 
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The prescribed edge path is demonstrated by Figure 4.16, together with the punch 

displacement along the deep drawing direction. From this figure, it is possible to 

further examine the ear distribution. The troughs locate considerably close to 45
o 

against the rolling direction, while the earrings occur close to the RD and TD 

direction. 

4.8 Conclusions 

In the present paper, the Cazacu´04 constitutive model was described and used to 

model the mechanical behavior of pure titanium.  

Several fully implicit integration stretegies, based on the Closest Point Projection 

Method (CPPM), were implemented within an implicit enviroment. One of these is 

the standard Newton-Raphson Closest Point Projection Method (CPPM), being the 

other three CPPM with line search algorithm by using different interpolation methods.   

As expected, the standard Newton-Raphson (N-R) proved to be convergent, when the 

level of accumulated effective plastic strain was low and the yield surface had a 

elliptical shape, regardless of the initial stress state (uniaxial stress state, biaxial stress 

state, shear stress state, etc.). In this case, the maximum number of iterations was 

around 9-10. When the yield surface presents an elliptical-like shape, and the shape 

does not present a substantial change during its following evolution, N-R with line 

search algorithm presented similar results to the standard N-R algorithm; in this case, 

the N-R algorithm, is able to obtain the quadratic convergence 

In turn, as far as accumulative effective plastic strain as 휀
𝑝
= 0.6 is concerned, the 

yield surface changed more significantly and into a triangular-like shape. The 

standard N-R method is unable to obtain convergence. The N-R with line search 

requires a small iterative number to obtain the convergence, however, all the 

interpolated methods give the same results.  

Respecting the effective plastic strain of 휀
𝑝
= 0.4, the cubic interpolation methods 

presented a much smaller maximum iterative number when compared to both the 

aforementioned  interpolation methods.  

It is possible, then, to sustain that all coupled N-R with line search scheme, 

particularly, N-R with cubic interpolated line search scheme were able to reduce the 

number of iterations significantly.  

Subsequently, iso-error maps have been drawn for two types of yield surface at six 

representative stress states. One of those was an elliptical-like shape, the other a 
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triangular-like one. It was verified that the stability at tensile and compressive stress 

states had a pronounced difference, and also that large increments could not be 

employed, due to the loss of convergence promoted by the model.  

Finally, a benchmark test-cup drawing was performed to validate the model. This 

made it possible to conclude that the simulated results demonstrated how the model 

captured the earing phenomenon after drawing the pure titanium sheet, in agreement 

with the experimental results. 
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Chapter 5  

An Elasto-Viscoplastic Model for Hexagonal 

Close Packed Materials: Formulation and 

Numerical Implementation  

5.1 Introduction 

Titanium alloys are extensively used in defense applications, as well as aerospace and 

automotive industries. In practical engineering problems, materials show the rate-

dependent behavior even at the room temperature. It is therefore necessary to derive the 

constitutive model based on a rate dependent elasto-viscoplasticity model. In the recent 

decades, novel viscoplastic formulations were proposed, which resemble the 

mathematical framework of classical elastoplastic flow theory [1-3]. In view of these 

advances, rate independent plasticity extends to rate dependent material behavior. Well-

established elastoplastic strategies may be used to integrate the viscoplastic rate 

equations based on the algorithmic tangent operator of elastoplasticity [4]. In this 

Chapter, an elasto-viscoplastic model for Hexagonal Close Packed (HCP) materials is 

formulated. The Perzyna overstress viscoplastic model is coupled with Cazacu 0́4 yield 

criterion here and the resulting constitutive model is implemented within an implicit 

quasi-static finite element environment. In the numerical stress integration, a primal 

Closest Point Projection Method (CPPM) integration algorithm and a closed form 

consistent tangent operator are derived. Iso-error maps are used to illustrate the 

accuracy and stability of the algorithm at different strain rates. 

5.2 Formulation of elasto-viscoplastic model 

In the infinitesimal strain domain, similar to the classical plastic model, the total strain 

rate,  ̇, in an elasto-viscoplastic material point can be additively decomposed into an 

elastic component,  ̇ , and a viscoplastic component,  ̇  : 

 ̇   ̇   ̇  , (5.1) 

where the superimposed dot denotes the time derivative. The stress rate,  ̇, is related to 

the strain rate via the constitutive relation  

 ̇      ̇ , (5.2) 
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with    the fourth-order tensor containing the tangential elastic stiffness moduli. 

Furthermore, the viscoplastic strain rate evolves via a flow rule, 

 ̇    ̇ . (5.3) 

The scalar,  ̇, is a non-negative parameter, known as the consistency parameter [5]. The 

vector   is the viscoplastic flow vector. 

Over the last decades, numerous viscoplastic models [6-8] have been proposed. 

Perzyna's overstress theory provides a unified approach to analyze a wide range of 

engineering problems being widely used to capture rate-dependent effects in solid 

materials, such as Luders bands and the Portevin-Le Chatelier effect in metals, shear 

banding and creep in geomaterials, as well as to analyze localization and bifurcation 

properties. The main feature of this model is that the inviscid yield function used for 

describing the viscoplastic strain can become larger than zero, an effect that is known as 

overstress. Viscoplasticity can be modeled by direct incorporation of the time-

dependency in a yield function which, together with the consistency parameter, obeys 

the classical Kuhn-Tucker relations. 

In Perzyna ś model, the extension of traditional elastoplasticity assumes that the ratio of 

the over-stress function and the viscosity defines the viscoplastic multiplier, the 

consistency parameter being expressed by  

 ̇  
〈 ̂(   )〉

 ̂
  (5.4) 

where  ̂ is the viscosity parameter,  ̂ represents the overstress function that depends on 

the rate-independent yield surface     and “〈 〉” are the McCauley brackets, such that: 

〈 ̂(   )〉  {
 ̂(   )             ̂       

                        ̂(   )   
  (5.5) 

The overstress function  ̂ must fulfill the following two conditions: 

(i)  ̂(   ) is continuous in      , 

(ii)  ̂(   ) is convex in      . 

So that a rate-independent elastoplastic model is recovered if  ̂   , which represents 

the value at which the viscosity is negligible. Here, in this chapter, a widely used 

expression for overstress function  ̂ is employed: 

 ̂(   )  (
   

  
)
   ̂

    (5.6) 



Chapter 5 An Elasto-Viscoplastic Model for HCP Materials: Formulation and Numerical Implementation 

107 

where  ̂ is a calibration material parameter, used to normalize the overstress function, 

chosen as the initial yield stress. It may also be used as the hardening stress or the 

combination of both the hardening and the yield stresses. 

5.2.1 Cazacu 0́4 yield criterion 

The yield function proposed by Cazacu et al. [9] was obtained by extending the 

orthotropic Drucker’s isotropic yield criterion with constructed generalizations of the 

invariants of the deviatoric stress. This model has been formulated in detail in Chapter 4 

and will be summarized here for completeness.  

Cazacu 0́4 anisotropic yield function can be expressed by  

     ̂   
 
 
   ̂  

       (5.7) 

where,   
 , is the second invariant of the deviatoric transformed stress, and   

 , is the third 

invariant of deviatoric transformed stress, respectively, which can be obtained as  

  
  

 

 
      , (5.8) 

  
  

 

 
        (5.9) 

where, transformed tensor { } is defined as 

     ̂       . (5.10) 

The fourth-order linear transformation operator ( ̂) can be represented in     matrix 

format as  

 ̂  

[
 
 
 
 
 
 
 
 
     

 
 

  

 
 

  

 

 
  

 

     

 
 

  

 

 
  

 
 

  

 

     

 

   

   

   

   
   
   

    
    
    ]

 
 
 
 
 
 
 
 

  (5.11) 

The constant  ̂ is defined as 

 ̂       
    

       
 
   ̂            

 
 
   (5.12) 

where  ̂ is a material parameter.  
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5.3 Stress integration of elasto-viscoplastic model 

In this section, the evolution of the different quantities from time    to time         

   at each integration point will be treated with CPPM stress integration algorithm. 

Within a typical time interval          , it is assumed that all variables {     
    

     
  

} 

at time    are known, and the stress together with the updated variables, which 

characterize the inelastic response of the material, are pursued for given strain 

increment   . The numerical integration of elasto-viscoplastic constitutive equations is 

typically carried out by means of the so-called elastic predictor return mapping 

schemes. In order to integrate the governing equations in a similar means to generalized 

plasticity, the overstress Perzyna model is chosen. The strain rate is assumed to be 

computed by 

 ̇
  

   ̅     . (5.13) 

A fully implicit elastic predictor return mapping method is implemented within an 

implicit quasi-static finite element environment, having the format given below. 

(i) Elastic predictor 

The material is assumed to behave purely elastically at this current time interval, the 

state variables at    , the total strain increment    is given. Thus, the elastic trial state 

can be evaluated as 

    
          

      (5.14) 

  ̅  
           ̅

  
; (5.15) 

    
             

         (5.16) 

    
              

         (5.17) 

    
          

          
        (5.18) 

    
       ̂    

       (5.19) 

      
        

 

 
       

         (5.20) 

      
        

 

 
  (    

      )   (5.21) 

       
       ̂ (      

       )
 

   ̂      
           . (5.22) 

(ii) Check plastic admissibility 

If the yield function    ̂ (      
       )

 

   ̂      
                 ̅  

           , then the 
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process is indeed within elastic at the current interval. All the variables to be updated at 

time      are assigned the corresponding values at the previous trial stage. Otherwise, it 

goes to a viscoplastic return-mapping stage to obtain all the required variables at time 

    . 

(iii) Return mapping 

As previously mentioned, the consistency parameter in Perzyna ś model is expressed by  

 ̇  
〈 ̂(    )〉

 ̂
 

 

 ̂
〈(

    (       ̅  
  )

  (   ̅  
  )

)

   ̂

  〉  (5.23) 

In order to integrate into the similar nonlinear system of equations to elasto-plastic 

model, the above equation can be rewritten as  

   (       ̅  
  )        (  

 ̂     

  
)
 ̂

    (5.24) 

where    represents the incremental multiplier, which is equal to  ̇  . 

Combined with general viscoplastic nonlinear system of equations for viscoplastic 

model, the new equations system could be written as 

{
 
 

 
     

      
           ̂(       ̅  

  )

  ̅  
     ̅

      ̂(       ̅  
  )

   (       ̅  
  )        (  

 ̂     

  
)

 ̂

}
 
 

 
 

 {
 
 
 
}  (5.25) 

where, the constitutive function  ̂ and  ̂ can be calculated by 

 ̂(       ̅  
  )   ̇    (       ̅  

  )  (5.26) 

   ̂(       ̅  
  )    ̇, (5.27) 

  is the flow vector following the terminology of the rate-independent theory, for the 

associated constitutive model; the plastic strain rate is assumed to be normal to the yield 

surface and, thus, the flow vector can be written as 

     
     

  
  (5.28) 

From this moment on it is possible to the same algorithm to solve the above system of 

eight equations as elasto-plastic model. In order to enhance the convergence of the 

iterative process, a line search method is adopted. The process is stopped as soon as 

convergence is achieved within some prescribed convergence norm. The solution is 

found for     
 ,   ̅  

  
 and   . The stress tensor can be obtained by 

            
 .  (5.29) 
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In order to obtain quadratic convergence in the solution of an initial boundary value 

problem within an implicit finite element environment, it is required to assemble the 

tangent operator consistent with the general algorithm with the tangent stiffness matrix. 

The fourth-order tensor can be obtained by computing the derivative of the updated 

stress tensor      with respect to the final strain     . When the stress state lies within 

the elastic domain and no viscoplastic flow occurs, the tangent operator is the elastic 

tangent operator   . Otherwise, the elasto-viscoplastic consistent tangent operator has 

to be derived by consistently linearizing the viscoplastic return-mapping algorithm 

under viscoplastic flow. The closed form for the viscoplastic tangent operator can be 

expressed by  

    {       
  

  
 

  (    
  

  ̅  )

(
    

  ̅   
   
  ̅  (  

 ̂  

  
)
 ̂
  ̂  (  

 ̂  

  
)
 ̂  

(
 ̂

  
))

}

  

. (5.30) 

It is important to remark that this tangent operator is not symmetric. 

5.4 Numerical examples  

In this section, some numerical examples are presented to verify the implementation of 

the proposed elasto-viscoplastic constitutive model.  

Table 5.1: Material properties for pure titanium [10]. 

   (g/cm
3
) E, Modulus (GPa)  , Poisson’s Ratio 

Titanium 4.51 120 0.361 

Table 5.2: Anisotropy coefficient values of pure titanium corresponding to the yield surface evolution [10]. 

Strain ( 
 
)                    ̂ 

0.0 0.5454 0.501 1.09 0.7246 -0.8675 -0.8675 -0.2168 

0.025 0.5231 0.4745 0.9034 0.7309 0.7202 0.7202 -0.2198 

0.05 0.6694 0.5585 1.103 0.9138 0.9381 0.9381 -0.2291 

0.075 0.6960 0.5969 1.127 0.9838 0.9716 0.9716 -0.2607 

0.1 0.5356 0.4768 0.8603 0.7761 0.7714 0.7714 -0.2754 

0.2 0.061 0.0576 0.0869 0.087 0.0794 0.0794 -0.5908 

0.4 0.0632 0.062 0.0788 0.0816 0.0801 0.0801 -1.0330 

0.5 0.9547 0.957 1.2140 1.181 1.176 1.176 -1.1480 
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The anisotropy coefficient values of pure titanium corresponding to the Cazacu 0́4 

constitutive model are listed in Table 5.2. 

The numerical examples are divided into the second subsections with different 

objectives. In the first set of numerical examples, the uniaxial tensile and uniaxial-

compressive tests are performed respectively to evaluate the asymmetric mechanical 

behavior at different strain rates; in the second set of numerical examples, several iso-

error maps are presented to estimate the accuracy of the CPPM stress integration 

scheme at different strain rates. The material constants, employed in all examples, are 

listed in Table 5.1. 

5.4.1 Single element tests 

In order to verify the implementation of the elasto-viscoplastic constitutive model in the 

FE code, single element simulations were carried out for both plates under two different 

uniaxial stress conditions. 

(a) Uniaxial tensile test 

 

Figure 5.1: Uniaxial tensile tests. 

In this example, a uniaxial stress state is applied to a single eight-node brick element 

(with one integration point). The length of the element is 10x10x10 mm
3
. This example 

is conducted to demonstrate the ability of the finite element formulation to capture 

strain rate sensitivity under uniaxial tension stress state. Four nodes on one face of the 

element were restrained, the element is stretched with a prescribed constant (in time) 

velocity,  ̂  along the rolling direction (x direction). The geometry and the boundary 
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conditions applied to the single element for the uniaxial tensile test in x direction are 

presented in Figure 5.1. 

 

(a)  ̂      

 

(b)  ̂      

 

(c)  ̂       
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(d)  ̂       

Figure 5.2: Uniaxial tensile stress-strain curves ( ̂-power law exponent; see in Equation (5.23) ). 

The normalized stretching rate can be conveniently defined for the unit cell by  ̂   ̂ ̂ 

and the simulation is carried out for three different values of  ̂  

 ̂              . (5.31) 

This choice covers from very slow to very fast strain rates and it is meant to 

demonstrate the robustness of the integration algorithm over a wide range of strain rates. 

In order to show the effect of the rate-sensitivity parameter on the behavior of the 

model, in the uniaxial-tensile stress state, four values of  ̂ are considered  

 ̂                    . (5.32) 

A series of stress-strain curves for each power-law exponent  ̂         ,      and 

      are drawn from the numerical uniaxial tensile test, which are presented, 

respectively, in Figure 5.2 (a), (b), (c), (d). It can be seen that when the power-law 

exponent  ̂ is larger than 1.0, the material shows a significant strain rate sensitivity. The 

mechanical response increases remarkably with the increase of strain rate, when 

 ̂      and  ̂     . In addition, when  ̂     , the material does not yield during 

the deformation and demonstrates a very high stiffness. When the power-law exponent 

 ̂      , although the material still presents viscoplastic mechanical behavior, the 

influence of the strain rate on the response decreases. Particularly, when  ̂       and 

 ̂     , the mechanical response almost coincides. This behavior becomes more 

obvious when the power-law exponent  ̂        In this case, all the stress-strain curves 

coincide and the viscoplastic model is effectively reduced to the Cazacu 0́4 elasto- 

plastic model. 
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(b) Uniaxial compressive test 

 

Figure 5.3: Uniaxial compressive test. 

Owing to the different mechanical behavior of titanium alloy under compressive stress 

states and the tensile stress states, a uniaxial compressive benchmark test is used to 

study the stress integration algorithm of the viscoplastic Cazacu 0́4 model at different 

strain rates. Similar to the tensile test, a single eight-node brick element (see Figure 5.3) 

is loaded with a prescribed displacement. The simulation is also carried out for three 

different values of  ̂  

 ̂              , (5.33) 

and  four values of  ̂         ,          are also studied [7].  

 

(a)  ̂      

 

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000

1200

1400





 

 

 0.0001

 1.0

 10000

 
 

 

X 

Y 

Z 



Chapter 5 An Elasto-Viscoplastic Model for HCP Materials: Formulation and Numerical Implementation 

115 

 

(b)  ̂      

 

(c)  ̂       

 

(d)  ̂       

Figure 5.4: Uniaxial compressive stress-strain curves. 
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Stress-strain curves for the power-law exponent  ̂        
 
,      and       are also 

drawn from this numerical uniaxial compressive test, which are shown, respectively, in 

Figure 5.4 (a), (b), (c), (d). From these, we can observe that the mechanical response 

under compressive stress states also presents strong strain rate sensitivity for high 

power-law exponent. By comparison with the stress-strain curve under uniaxial tensile 

stress states, it can be concluded that the strain rate sensitivity in compression is higher 

than the tensile stress state, which can be concluded from the Figure 5.4 (c). In the 

compression test, the stress-strain curves coincide for all the strain rates when the 

power-law exponent  ̂      
, however, in the scenario of tensile loading the 

mechanical response at high strain rate of     is higher for low   ̂        and 

medium   ̂       strain rates.  

5.4.2 3D iso-error maps of elasto-viscoplastic model 

In order to assess the accuracy of the stress integration algorithm for elasto-viscoplastic 

model, 3D iso-error maps are drawn by standard numerical testing procedure under 

realistic finite time/strain steps [11]. Using the three-dimensional implementation of the 

model, we start from a stress point at time   ,   , lying on the yield surface, and a 

sequence of strain increments is applied corresponding to specified normalized elastic 

trial stress increments of the form 

        
   

   
 ̂  

   

   
 ̂,  (5.34) 

where  ̂  and  ̂  are, respectively, the unit (in Euclidean norm) normal and tangent 

vectors to the yield surface and     is the equivalent stress.  

 

Figure 5.5: Schematic diagram of stress states on the yield surface.  

A 

 σN 𝜎𝑒𝑞 

B  σN 𝜎𝑒𝑞 

 σT 𝜎𝑒𝑞 

  T     
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Applying increments of trial stress in the tangential and normal direction to the yield 

surface, the error is evaluated by 

         
√                           

√             

  (5.35) 

where,      is the numerical solution, and        is the exact solution. Here, due to 

the lack of an analytical solution,        is assumed to be the stress obtained by sub-

incrementation of each stress increment into 1000 steps.  

In order to evaluate the accuracy properties and remarkable robustness at different strain 

rates, several iso-error maps are drawn at low and high strain rates with the non-

dimensional factor: 

 ̂‖ ̇‖ 

Set, respectively, to 1 and 1000. In order to investigate the influence of power-law 

exponent, three values chosen:          .  

In order to analyze the iso-error map under different stress states, we selects two typical 

stress states to study due to the asymmetrical strength effect of pure titanium, which can 

be seen in Figure 5.5. One is the point A under uniaxial tensile stress state; the other is 

point B under uniaxial compressive stress state.  

(a) Iso-error maps under uniaxial tensile stress state 

Figure 5.6 and Figure 5.7 show the iso-error maps under uniaxial tensile stress state 

obtained at the aforementioned low and high strain rates for different power-law 

exponents,  ̂ . 

 

(a)  ̂      
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(b)  ̂       

 

(c)  ̂    (rate-independent) 

Figure 5.6: Iso-error maps under uniaxial tensile stress state with  ̂‖ ̇‖     . 

For the power-law exponent  ̂   , the standard rate-independent Cazacu 0́4 elasto-

plastic model is recovered. The resulting iso-error map is, in this case, identical to the 

rate-independent map. For the small power-law exponent,  ̂     , the iso-error map is 

almost the same as the rate-independent one at the low strain rate (see in Figure 5.6 (b)). 

However, the iso-error map changes significantly at the high strain rate (see in Figure 

5.7 (b)). This also occurs for the power-law exponent  ̂     . It can also be seen that 

the maximum value of iso-error maps for high power-law exponent is higher than in the 
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rate-independent map; nevertheless, it decreases sharply at high strain rate. The larger 

the power-law exponent  ̂, the more strain rate sensitivity of the iso-error value. From 

the maximum iso-error value, it is possible to conclude that the current stress integration 

algorithm is remarkable robust and can effectively handle any power law exponent  ̂ 

from small (corresponding to high rate-sensitivity) to extremely large values 

(corresponding to effectively rate-independent conditions) under low as well as high 

strain rates. 

 

(a)  ̂      

 

(b)  ̂       
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(c)  ̂    (rate-independent) 

Figure 5.7: Iso-error maps under uniaxial-tensile test with  ̂‖ ̇‖      . 

(b) Iso-erro maps under uniaxial compressive stress state 

The iso-error maps under a uniaxial compressive stress state obtained at low and high 

strain rates for different power-law exponents ( ̂), are presented in Figure 5.8 and 

Figure 5.9. The same stress integration algorithms and tolerances are applied to draw 

iso-error maps at uniaxial-compressive stress state.  

 

(a)  ̂      
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(b)  ̂       

 

(c)  ̂    (rate-independent) 
Figure 5.8:Iso-error maps under uniaxial compressive stress state with  ̂‖ ̇‖   .  

From Figure 5.8 and Figure 5.9, the same behavior for the strain rate sensitivity can be 

observed in the uniaxial compressive stress state. From the comparison between the iso-

error maps under uniaxial compressive stress state and under uniaxial tensile stress 

state, it is clear that the iso-error maps are completely different, which illustrates the 

importance of the strength differential (SD) effect. 
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(a)  ̂      

 

(b)  ̂       

 

(c)  ̂    (rate-independent) 
Figure 5.9: Iso-error maps under uniaxial compressive stress state with  ̂‖ ̇‖      . 
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5.5 Conclusions 

In this work, an elastic-viscoplastic constitutive model coupled with Cazacu 0́4 yield 

function is proposed to simulate the mechanical behavior of metals with an HCP crystal 

structure at different deformation strain rates. The CPPM algorithm is implemented 

within an implicit quasi-static finite element environment. Two numerical examples 

show that the integration algorithm can be effectively used at high strain rate even for 

very high power-exponent. It is also shown that the stress evolution under compressive 

stress states is higher than under tensile stress states and presents a higher strain rate 

sensitivity.  
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Chapter 6  

Material Parameters Identification of 

Phenomenological Constitutive Equations by 

Deterministic and Evolutionary Approach 

6.1 Introduction 

In the sheet metal forming, numerical simulation plays a more and more important role 

to design and optimize the processing and tool geometry. Numerical simulation has 

already been proved as efficient and useful to decrease the cost of experimental 

investigations.   These numerical simulations utilize and rely on work material 

constitutive models to simulate deformation conditions that take place in the real sheet 

metal forming process. Therefore, an accurate and reliable constitutive model is 

required to describe the plasticity behavior of metals, particularly for materials with 

Hexagonal Close Packed (HCP) crystal structure, since their HCP crystallographic 

structure promotes a very different mechanical behavior when compared to other metals 

with Face-Centered Cubic (FCC) and Body-Centered Cubic (BCC) structures, such as 

steel, aluminum, etc. [1, 2]. Classical yield criterion and less material parameters 

included are not sufficient. The flexible yield loci are generally necessary to introduce a 

large number of material parameters. Higher complexity of material constitutive 

relations would require more elaborate and robust identification techniques. The more 

material parameters are found in the constitutive model, the more difficult is such 

identification. It not only requires more typical mechanical experiment data to calibrate, 

but also is easy to trap into a local minima value during the optimized process.  

There exist many strategies to find a solution to the optimization problem, namely 

constructing a single Aggregate Objective Function (AOF), the Normal Boundary 

Intersection (NBI), Successive Pareto Optimization (SPO), and Directed Search Domain 

(DSD) methods, evolutionary algorithms, etc. [3, 4]. 

In this Chapter, the Cazacu 0́6 model is summarized in the second section, which 

includes eight material parameters to be identified under the plane stress condition. The 

third section introduces the objective function used in the identification procedure and 

several typical optimized methods, which are gradient method, genetic algorithm, and 

particle swarm optimization. In the fourth section, a comparison of all these optimized 
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methods to identify material parameters in the Cazacu 0́6 constitutive model is 

addressed, proposing the hybrid optimization method between the evolutionary 

optimized method and the classical gradient method, besides, the calibrated results are 

presented and discussed. Finally, the main conclusions are drawn in the last section. 

6.2 Constitutive theory 

To describe both the asymmetry between tension and compression and the anisotropy 

observed in HCP metal sheets, Cazacu et al [1] introduced a general and rigorous 

method which is based on the theory of representation of tensor functions. A fourth 

order linear transformation is multiplied by the stress deviator   to extend an isotropic 

yield function to an orthotropic one, so that the transformed tensor   can be defined as:  

   ̃ . (6.1) 

where  ̃ is a 4th order tensor, which includes nine independent anisotropy coefficients 

for three dimensional stress conditions. Let         be the reference frame associated 

with orthotropy. In the case of a sheet,  ,   and   represent the rolling, transverse, and 

the normal directions. Relative to the orthotropy axes        , the tensor  ̃ is 

represented by 

 ̃  

[
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. (6.2) 

So the transformed stress can be obtained by  
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To describe the strength differential effect between tension and compression, a material 

parameter  ̃  is introduced by Cazacu et al [1] and the orthotropic criterion can be 

expressed by  

    [(|  |   ̃  )
 ̃

 (|  |   ̃  )
 ̃

 (|  |   ̃  )
 ̃
]
   ̃

, (6.7) 

where   ,   ,    are the principal values of  . In order to ensure the convexity of the 

yield function, the introduced parameter,  ̃, should be within the range of  ̃        . 

When the transformed matrix  ̃ is equal to the identity matrix, the proposed formulation 

can reproduce, as a limiting case, the von Mises yield criterion.  

6.3 Identification procedure and optimization methods 

In sheet metal forming it is a common practice to assume that the sheet is approximately 

subjected to a plane stress loading during the entire processing [5]. Thus, the yield 

function may be considered as a function of the in-plane stress    ,    ,    ,    . So 

anisotropy material parameters     and     are not necessary to calibrate. To identify 

the remained material parameters in the Cazacu 0́6 constitutive model, a set of 

experiments should be performed. The most widely experimental used tests are uniaxial 

tensile at different directions. In the current model, in order to calibrate material 

parameters related to the SD effect in the Cazacu 0́6 model, a series of compressive test 

should also be performed. So material parameters    ,    ,    ,    ,    ,    ,     can 

be calibrated from the above experimental tests. The required input variables in the 

identification procedure can be seen as follows: 

 Three directional yield stresses obtained from uniaxial tensile tests at specimens 

having an orientation of 0
0
, 45

0
 and 90

0
 to the original rolling direction of the 

sheet. The associated yield stresses are denoted here as   
 ,    

 ,    
 . 

 Three directional yield stresses obtained from uniaxial compressive tests at 

specimens having an orientation of 0
0
, 45

0
 and 90

0
 to the original rolling direction 

of the sheet. The associated yield stresses are denoted here as   
 ,    

 ,    
 . 

 Three  -values corresponding to   
 ,    

 ,    
 , which are denoted as   

 ,    
 ,    

 . 

In many industrial applications, empirical or physical models involving some unknown 

parameters are used for design or simulation purposes. The identification of the model 

parameters is obtained by using either Trial-and-Error method or an optimization 

method being the act of obtaining the best result under the given circumstances. Trial-

and-Error method is suitable when the model is simple and the number of unknown 
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parameters is reasonable. Optimization method is, however, used when the model is 

complex and a huge number of unknown parameters are under consideration. The Trial-

and-Error method is not sufficient to handle the constitutive model with numerous 

material parameters. Therefore, it is necessary to find the suitable and efficient 

optimization method for the identification of these models.  

The identification of the constitutive models parameters can be formulated as an 

optimization task. Material parameters in the constitutive model are interdependent and 

are difficult to quantify. Therefore, a mathematical optimization model should be built 

to allow this identification. Generally, the optimization problem corresponding to the 

parameters’ identification of experimental values can be formulated as follows: 

determine   material parameters    ,    ,    ,    ,    ,    ,     of a given constitutive 

law by minimizing the summation of the errors squares. The errors are the differences 

between the measured experimental data and computed results at the given calibrated 

points of experimental domain. In this study, the measured experimental data includes 

stress value and   value at different stress state at a certain deformation level. In order to 

avoid the order effect difference between stress and   value, each item is normalized, 

and the final objective function (Error function) could be written as  

     ( )  ∑   (
  

 

  
      )

 

 ∑   (
  

 

  
      )

 

 ∑   (
  

 

  
    )

 

   , (6.8) 

where   is the number of experimental uniaxial tensile yield stresses,   is the number of 

experimental uniaxial compressive yield stress,   is the number of experimental tensile 

Lankford coefficients, while   ,   ,    are weights given to the respective experimental 

values. In this paper, all of these weights coefficient are fixed to 1.0.   
    ,   

     and 

  
   are the theoretical stress values corresponding, respectively, to each of the related 

experimental value. The summary of the computational method could be seen in [6].   

is a vector, which represents the calibrated material parameters 

   ,    ,    ,    ,    ,    ,     and  ̃. 

6.3.1 Classical gradient method  

The gradient-based algorithms usually converge quickly in the vicinity of the solution, 

and are therefore very interesting in terms of rapidity. However, they have some 

limitations, being strongly dependent on user skills. If the initial guess for the set of 

parameters is not carefully chosen, the iterative method can lead to convergence 

difficulties. In the gradient method, it is required to calculate the derivatives of objective 



Chapter 6 Material Parameters Identification of Phenomenological Constitutive Equations  

129 

function with respect to design variables. However, the objective function used to 

identify material parameters is always substantially complicated; the derivatives are not 

easy to calculate by hand. In this paper, finite differencing approach is used to calculate 

the approximation derivatives based on the Tayloy’s theorem. Finite perturbations in the 

variable values of   are used to examine the resulting differences in the function values. 

The approximation of the derivative can be calculated by taking ratios of the function 

difference to variable difference. The general steps of gradient method can be written as 

follows [7]. 

(a) Choose a starting point   . 

(b) Determine the search direction  
   

, here the direction is calculated by the 

approximated finite differencing method. 

(c) Set              
 
 

   
, and       . 

(d) Repeat until the stop criteria is met. 

Remark: the  
 
 value in (c) is calculated by Line search algorithm.  

6.3.2 Genetic Algorithm (GA) method 

Genetic algorithm is derivative-free stochastic search optimization methods inspired by 

the natural process of evolution, adapted to solve optimization problems and are able to 

deal with difficult, big sized, high cardinality and multi-modal problems.  

The genetic algorithm (GA) is a selective random evolutionary search algorithm 

designed to achieve an optimum solution as proposed by Holland [8, 9]. The initial 

solutions (population) are usually randomly generated in the range of prescribed limits. 

Genetic algorithms code the candidate solutions of an optimization algorithm as a string 

of characters usually binary digits, which are usually called chromosomes. Each 

chromosome represents a point in the search space. Each point of the population is 

associated with the fitness function value. This fitness function measures the robustness 

of each solution. The fitness-dependent technique is used to select the parents for the 

next population from the current one, setting them in the mating pool, which is called 

selection. In this process, a probabilistic selection operator ensures the 'fittest' 

individuals the highest probability to produce offspring. 

After the selection, two more basic genetic operators, cross-over, and mutations are 

used to formulate the offspring generation. The next generation of solutions is obtained 

by a crossover technique from the individuals in the mating pool. Two parents generate 

two offspring by passing on parts of their chromosomes. The method exchanges the bits 
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of the chromosome’s bitstream beginning at a single random point and stores them in 

the offspring’s chromosomes. In order to ensure genetic diversity, a mutation operator is 

used. Mutation is a background operator that produced some random changes in various 

chromosomes. Random mutation of newly generated offspring induces variability in the 

population preventing the premature convergence. It plays an important role not only 

replacing the genes lost during the evolutionary process in a new form, but also 

producing new genes; this procedure is referred to as an elitism strategy. After 

evolution, the fitness value of all altered individuals is evaluated and the next selection 

step starts by checking the stopping criterion. This algorithm is repeated until the stop 

criteria are reached [9, 10]. One iteration of the algorithm is referred to as a generation.  

The simplified flowchart of GA algorithm can be seen in Figure 6.1. 

 

Figure 6.1: Flow chart of GA algorithm. 
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Remark: the fitness function (criterion) used in the GA algorithm is the same objective 

function as gradient optimization method, which is used to indicate how good or bad a 

candidate solution is. 

6.3.3 Particle Swarm Optimization (PSO) method 

PSO is a robust stochastic optimization technique based on the movement and 

intelligence of swarms, which is also a kind of evolutionary computational techniques. 

It is motivated from the simulation of social behavior of animals such as bird flocking, 

fish schooling, and swarm. Mathematical description of basic PSO is briefly 

summarized [11, 12]. 

PSO is initialized with a population of random solutions and this initial population 

evolves over generations to find optima. Each particle is represented by a position and a 

velocity in the  -dimensional problem space. The velocity enables each particle to move 

through the problem space instead of dying and mutating the mechanisms of genetic 

algorithms. All the position and velocity should be constraint in the pre-defined ranges. 

Their fitness values are decided by objective function for the position of each particle. 

Each individual is treated as a volume-less particle. Further, each particle has a memory 

and hence is capable of remembering the best position in the search space it visited.  

At each iteration, modification of the position of a particle is performed by using its 

previous position information and its current velocity. Each particle knows its best 

position (personal best) so far and the best position achieved by the group (group best) 

among all personal bests. These principles can be formulated as: 

{
 ̿ 

     ̿ ̿ 
    ̿     (        ̿ 

 )    ̿     (        ̿ 
 )

 ̿ 
     ̿ 

   ̿ 
   

,     (6.9) 

where,  ̿ 
 : velocity of agent   at iteration   

 ̿ 
 : current position of agent   at iteration   

      : personal best of agent   

      : best position in group 

    : random number between 0 and 1 

 ̿: weighting function 

  ̿: weighting factor       

The weighting function  ̿, which is also called inertia weight, is employed to control 

the impact the previous history of velocities on the current velocity, thereby influencing 

the trade-off between global (wide-ranging) and local exploration abilities of the “flying 
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points”. A larger inertia weight facilitate global exploration (search new area) while a 

smaller inertia weight tends to facilitate local exploration to fine-tune the current search 

area. The inclusion of random variable endows the PSO with the ability of stochastic 

searching. The weighting factors,   ̿ , compromise the inevitable trade-off between 

exploration and exploitation. After updating, the new vector  ̿ 
    should be checked 

and secured within a pre-specified range to avoid violent random walking. The updated 

position should also be checked and limited to the allowed range. 

 

Figure 6.2: Flow chart of PSO algorithm. 
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requirement is reached. The simplified flow chart of PSO algorithm can be observed in 

Figure 6.2. 

6.3.4 Hybrid method of evolutionary optimization and gradient optimization 

Owing to what was mentioned above, the classical gradient method is strongly 

dependent on the initial value; it is easy trapped into local minima once a wrong starting 

value is chosen. Stochastic evolutionary methods can overcome local minima; however, 

they frequently are not effective with respect to convergence.  

 

Figure 6.3: Stress-strain curve of AZ31 alloy at room temperature. 

In order to avoid this problem, a hybrid scheme was developed. The hybrid algorithm 

was obtained using the evolutionary algorithm first, to reach a point near the global 

minimum, and then a gradient method was performed to obtain the minima. In this 

paper, the gradient method using the initial value obtained from the GA method is 

denoted as GA+Grad.  If PSO method is used to generate initial value for the 

subsequent gradient methods, this hybrid method is named as PSO+Grad.  

In this contribution, the proposed optimization methods are applied to calibrate the 

material parameters for AZ31 alloy. The experiment tests were performed by Khan et 

al. [13]. All the stress-strain curves are shown in Figure 6.3. Owing to that the yield 

surface of AZ31 alloy has two typical yield locus shapes, which evolves from the 

triangle-like shape to elliptic-like shape during the deformation; two representative 

points are chosen to study the material parameters calibrations with different optimized 
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methods. One is an elliptical-like shape which is correspondence to the  
 

=0.1. The 

other is a triangular-like shape which is correspondence to the  
 

=0.01.The input 

variables for calibration in these two representative points can be seen in Table 6.1. 

Owing to the convex constraint of the Cazacu 0́6 constitutive model, the material 

parameter  ̃ is fixed in the range of [-1.0, 1.0]. The remaining material parameters (   , 

   ,    ,    ,     ,    ,    ) are set in the range of [-2.0, 2.0].   

Table 6.1: Experimental values of the yield stresses and  -values under different loading conditions. 

 
 
   

     
     

    
     

     
    

     
     

  

0.0 216.84 248.27 236.35 99.80 101.41 104.56 0.3063 0.6580 0.5475 

0.1 296.27 308.68 302.59 308.08 372.66 317.38 1.5962 3.0259 2.3269 

6.4 Results and discuss of identification 

In this section, the gradient methods and GA algorithm are performed by MATLAB 

optimization TOOLBOX. PSO method is developed by user developed code.   

6.4.1 Yield surface of equivalent plastic strain ( 
 
=0.1)  

For the classical gradient optimized method, the yield surface starts evolution from a 

classical elliptical yield locus (von-Mises yield criteria) during the optimization. 

Therefore, the starting point (  ) of the gradient optimization method can be chosen as 

                 . In this situation, the Cazacu 0́6 model is reduced to the von Mises 

model. The calibrated material parameters are presented in Table 6.2.  

The error value comparison of the yield surface calibration of  
 
=0.1 among different 

optimization methods is shown in Figure 6.4. From there, it can be concluded that 

classical gradient method and PSO+Grad methods obtain a similar error value, which is 

0.00601. It means that the point                   is a good starting point for gradient 

method. It also means that for the elliptical-like shape yield surface, the calibration 

procedure can be set starting from the yield surface of von-Mises. Meanwhile, the final 

error value obtained from GA and GA+Grad is a little big larger than the gradient 

method and PSO+Grad. It means that the hybrid optimization (GA+Grad) is trapped 

into local minima after performing gradient optimization, where the starting trial values 

are obtained from the GA algorithm. However, the PSO method can jumps out of local 

trap and obtain a good initial value, which is close to the final global optimization value. 
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Therefore, the hybrid PSO+Grad optimization can obtain the same calibrated material 

parameters and yield surface as the classical gradient optimization method.  

Table 6.2: The material parameters of the yield surface ( 
 
=0.1) determined by different optimized 

methods. 

 Gradient GA PSO GA+Grad PSO+Grad 

    0.7922 1.1584 0.4336 1.1622 0.4624 

    1.1066 0.9996 0.7791 0.9936 0.7768 

    0.8679 0.0419 0.5728 0.05163 0.5381 

    -0.01188 0.1949 -0.3588 0.1891 -0.3417 

    -0.003839 0.8528 -0.3314 0.8546 -0.3337 

    0.249 0.8863 -0.0743 0.8829 -0.08086 

    0.9959 0.9177 0.9871 0.9295 0.9959 

 ̃ -0.08515 0.4342 -0.1067 0.4227 -0.08515 

Error 0.00601 0.008819 0.0073 0.008575 0.0060096 

 

Figure 6.4: The error comparison among different optimization methods. 

Figure 6.5 shows the yield surface of  
 
=0.1 obtained from different strategies.  From 

there, it can be concluded that the yield locus obtained from the classical gradient 

method, PSO, and PSO+Grad method is very close, the shape looks like elliptical. 

Nevertheless, the yield surface obtained from GA and GA+Grad is a triangular-like 

shape. Although the error value gap among these optimization methods is not large, 
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from the shape of the yield surface it is easy to conclude that once the optimization is 

trapped into an unsuitable local value, the shape definitely changes.  

 

Figure 6.5: Yield locus of  
 
=0.1 in the         space determined by different optimized methods. 

6.4.2 Yield surface of equivalent plastic strain ( 
 
=0. 01)  

For the yield surface of equivalent plastic strain equal to 0.01, the same starting point is 

used for the classical gradient method as yield surface of equivalent plastic strain 

 
 
=0.1. The calibrated material parameters obtained from hybrid optimized methods are 

presented in Table 6.3. 

Figure 6.6 displays the error value comparison among different optimization methods. 

From there, it is obviously seen that the classical gradient method has a large value 

compared with other optimized methods. It indicates that the classical gradient method 

only gets a local optimization.  It also means that the starting point                   is 

not a good choice in this situation. A hybrid optimization strategy is necessary to 

determine the starting point for the classical gradient method. Although the error value 

obtained by GA algorithm is half of the gradient method, it is still trapped in local 

optimization. PSO algorithm is able to provide a good initial value for the subsequent 

gradient methods, so the PSO+Grad algorithm obtains the least error value. 
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Table 6.3: The material parameters of the yield surface ( 
 
=0.01) determined by different optimized 

methods. 

 Gradient GA PSO GA+Grad PSO+Grad 

    1.3806 0.7133 -0.2704 0.7224 -0.2013 

    1.2963 0.8708 0.1117 0.8642 0.07752 

    0.1478 1.1857 -0.2396 1.1197 -0.2043 

    1.7787 1.7054 -1.1754 1.6975 -1.2433 

    -0.971 -0.05562 0.9854 -0.05378 0.9598 

    -0.6322 0.03232 0.8074 0.0310 0.8308 

    2.267E-5 0.9119 1.0450 0.8895 1.0771 

 ̃ 0.5107 0.9103 -0.6159 1.00019 -0.5908 

Error 0.08992 0.04198 0.0085 0.03524 0.001703 

 

 

Figure 6.6: The final error comparison among different optimization methods. 

Figure 6.7 presents the yield surface of   
 
=0.01 obtained from different optimization 

methods.  From there, it can be concluded that the yield locus obtained from the 

classical gradient method keeps an elliptical shape, but the long axis changes from the 

biaxial stress state into the shear stress state. It is obviously trapped into local minima. 

The shape is not reasonable for the real yield surface.  The GA and GA+Grad have 

already got the triangle-like shape, but it is not in the global optimization value. PSO, 

and PSO+Grad method are very close, the shape looks like triangle.  
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Figure 6.7: Yield locus of  
 
=0.01 in the         space determined by different optimized methods. 

In order to explain clearly, several error value distributions around the global minima 

are drawn. Owing to that there exist eight variables, but it is not possible to draw an 

eight dimensional contour. Therefore, we just list several mutual variables error 

distributions contours, which could be observed in Figure 6.8. From there, it is easy to 

see that the error value distribution near the global minima is very complicated. There 

exists numerous local minima value. Once the wrong initial value is chosen, it is very 

easy to trap into local minima and generate the inaccuracy yield surface. 
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Error Contours of variable     and     

 

Error Contours of variable     and     

 

Error Contours of variable     and  ̃ 

Figure 6.8: Error value contours. 
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6.4 Conclusions  

In this work, five optimized strategies were used to calibrate the material parameters of 

Cazacu 0́6 constitutive model for typical HCP crystal structured material- AZ31 alloy.  

The classical gradient method is effective to calibrate the yield surface at large strain 

levels. At that stage, the yield surface of AZ31 alloy is elliptical-like. The initial value 

of the constitutive model can be chosen as [1 1 1 0 0 0 1 0]. At the low strain levels, the 

yield surface demonstrates triangular-like shape. The above initial value for the gradient 

optimization method is easy trapped into local minima, and evolutionary hybrid 

methods are used. By comparison of GA and PSO, PSO algorithm can escape the local 

minima trap and obtain the global optimization value. The optimized yield surface is 

more accurate. 
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Chapter 7  

An Extended Yield Criterion for Orthotropic 

Metallic Sheets under Plane Stress  

7.1 Introduction 

Sheet metal forming simulations rely on an accurate description of the anisotropic 

yielding behavior. In recent years, numerous studies [1-4] have been conducted using 

the elasto-viscoplastic Crystal Plasticity Finite Element Method (CP-FEM) in order to 

understand the micro-mechanisms involved and to capture the macro mechanical 

behavior. Some efforts have been carried out to model the plastic behavior of 

Hexagonal Close-Packed (HCP) polycrystals using crystal plasticity and continuum 

theories. Because of the complex material behavior, crystal plasticity has been more 

popular in modeling HCP metals. Van Houtte [5] first proposed an approach for 

modeling twinning in a statistical manner. Tome et al. [6] developed the Predominant 

Twin Reorientation (PTR) and Volume Fraction Transfer (VFT) schemes and 

implemented them into their Visco-Plastic Self-Consistent (VPSC) model to represent 

twinning activity. In the PTR scheme, twinning reorientation occurs only on the slip 

system with the highest activity until the grain is exhausted; while in the VFT scheme, 

all twinning reorientations are considered through a volume fraction transfer from the 

old orientation cell to the new orientation cell in the Euler space when twinning occurs. 

Besides, the PTR method has been later used to study the deformation mechanisms in 

magnesium alloys [7, 8]. Kalidindi [1] developed a modified VFT scheme in which the 

lattice orientation of the twinned region is predefined. Staroselsky et al. [9] used the 

probabilistic lattice reorientation condition suggested by Van Houtte [5] to model the 

room-temperature behavior of the magnesium alloy AZ31B. In more recent works, the 

models [2, 3, 10, 11] account for more complex phenomena such as geometrically 

necessary dislocations, Hall-Petch effect, and slip-twinning interaction, double twinning. 

Wang et al. [4, 12] developed a comprehensive model for describing the 

twinning/untwinning behavior occurring during cyclic loading for magnesium alloys. 

The physically-based crystal plasticity models are suitable for studying the deformation 

mechanisms. However, a full 3D forming simulation using crystal plasticity model may 

be impractical because of large computation time. Furthermore, its high computational 



Chapter 7 An Extended Yield Criterion for Orthotropic Metallic Sheets under Plane Stress 

144 
 

cost limits its application to real sheet metal forming. Therefore, phenomenological 

yield surface functions are still a good choice in metal forming finite element 

simulations.  

Continuum (non-crystal plasticity) approaches have also been tried to represent the 

behavior of HCP metals. Although numerous yield criteria [13-16] have been proposed 

for cubic materials, all of them fail to capture this unconventional mechanical behavior. 

Cazacu and coworkers (Cazacu and Barlat, 2004 [14], Cazacu et al., 2006 [17] and 

Plunkett et al., 2008 [18]) developed a series of yield criteria for describing anisotropy 

and yield differential effects of HCP metals. Cazacu and Barlat (2004) [14] used the 

generalized second and third invariants of the stress deviator, whereas Cazacu et al. 

(2006) [17] and Plunkett et al. (2008) [18] used the principal values of the linearly 

transformed stress deviator. Barnett et al. [19] proposed an analytical model for one-

dimensional twinning dominated flow in magnesium. Kim et al. [20] used Cazacu’s 

yield function (Cazacu et al., 2006 [17]) and different hardening equations depending 

on the strain paths. Cazacu 0́6 model predicts a high curvature of the yield function in 

loading direction, while the opposite region of the yield function is rather flat. The 

modified Cazacu model was adopted by numerous researchers [21-23] by introducing 

multi-transformed matrix to capture the mechanical behavior. Soare et al. [24] recently 

discussed four, six and eighth-order polynomial yield functions, proposing a scheme of 

material parameter identification based on the numerical optimization technique which 

includes the constraints to satisfy the convexity of the yield loci at several representative 

cross sections of the yield locus. This approach is, however, sophisticated for the 

optimization; in fact, a substantially more material data in addition to   ,    ,    ,   , 

   ,     and   . As for the convexity, their proof presents no major practical problems, 

but theoretically still it is not perfect. 

Lee et al. [20, 25] used a modified Drucker-Prager model for the initial yield surface 

and the two-surface hardening model where the gap between the two functions can be 

controlled to describe the unique hardening behavior. The strength differential (SD) 

effect as well as the initial anisotropy can be captured in a relatively straightforward 

manner by existing models. Lee et al. [20] presented a one dimensional analytical 

model for predicting springback of magnesium alloy sheets. Li et al. [26] proposed the 

constitutive model TWINLAW that uses different kinematic hardening rules depending 

on the dominating deformation mechanisms (slip, twinning, and untwinning), while 

keeping track of the amount of grains that can be twinned. Barlat et al. [27], on their 
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turn, proposed a homogeneous anisotropic hardening rule to describe plastic behavior 

during strain path changes. 

The description of anisotropy based on the non-associated flow rule, where two 

different functions for the yield criterion and the plastic potential are used, has been 

addressed by some studies [28, 29]. In the present chapter, our framework is the 

description of anisotropy with the yield function based on the associated flow rule.  

Although some of yield criteria mentioned before can describe yielding of material with 

good accuracy, this entire model introduces numerous material parameters, and lead to 

the problem of the identification and a great problem for the real application. In this 

chapter, a new anisotropic constitutive model under plane stress condtion is proposed. 

The related material parameters are identified by the hybrid Particle Swarming 

optimization (PSO) algorithm. The comparison of the fitted yield surface between the 

new proposed model and several commonly used yield criteria are also addressed. 

Finally, the proposed constitutive model and several classical anisotropic yield 

functions are implemented by using a primal Closest Point Projection Method (CPPM) 

within an implicit quasi-static finite element environment and applied to the deep 

drawing of a cylindrical cup.  

7.2 Fundamental review on anisotropic yield functions 

Plasticity theory deals with yielding of materials under complex stress states. It is used 

to decide whether or not a material will yield under a stress state and to determine the 

shape change that will occur if it does yield. It is commonly described by a 

mathematical function of the stress states that will cause yielding or plastic flow. 

The yield criterion, as a function of all state variables, can be written in a generic form 

as: 

 (    )          . (7.1) 

For the modelling of mechanical behavior of HCP materials, it is essential to select an 

appropriated yield criterion. Three anisotropic yield functions, (Hill 4́8 [30], Barlat 8́9 

[31], and Cazacu 0́6 [17]), and a new proposed yield criterion were chosen to evaluate 

the mechanical performance of AZ31 alloy. The first two yield functions were selected 

due to the simplicity of their numerical formulas and the small number of experimental 

data required for calibration. The Cazacu 0́6 yield criterion requires more material data 

to identify the anisotropy coefficients and thus is more flexible than the previous two. 
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7.2.1 Hill 4́8 yield criterion 

Hill's (1948) quadratic yield function [30, 32] may be noted as one of the first and most 

comprehensive yield criteria proposed as a generalization of the Huber-Mises-Hencky 

yield function criterion, which has been widely used to evaluate the plastic properties of 

anisotropic metals. The yield function associated with the Hill criterion can be cast in 

the following form: 

    [     (       )
       (       )

       (       )
  

         
           

           
 ]   ,                                                                                            

(7.2) 

where,      ,      ,      ,      ,      ,       are material parameters, which characterize 

the state of anisotropy and to be determined experimentally.  

7.2.2 Barlat 8́9 model 

Barlat et al [31] proposed a more general anisotropic yield criterion based on the 

Hosford’s criterion by expressing it in an  ,  ,   coordinate system, not necessarily 

coincident with the principal directions. The corresponding yield function, written at the 

outset exclusively in terms of in-plane components of the stress tensor, can be written as 

        (
   |     |

       |     |
    (     )|   |

   

 
)

 
   
  (7.3) 

where  

   
          

 
  (7.4) 

   √(
          

 
)  (   )    

   (7.5) 

where    ,    ,     , and     are material constants. The yield function is convex if  

     ,    ,    ,      , and      . 

7.2.3 Cazacu 0́6 model  

Cazacu 0́6 anisotropic yield function can be expressed by  

        [(|  |   ̃  )
 ̃
 (|  |   ̃  )

 ̃
 (|  |   ̃  )

 ̃
]
   ̃

  (7.6) 

where   ,   ,    are the principal values of  . The transformed tensor   can be defined 

as: 

   ̃   (7.7) 
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 where  ̃ is a 4th order tensor, which includes nine independent anisotropy coefficients 

for three dimensional stress conditions, which  is expressed by 

 ̃  
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.  (7.8) 

In order to ensure the convexity of yield function, the introduced parameter,  ̃, should 

be within the range of  ̃  [    ].  

7.2.4 New proposed constitutive model 

The Barlat 8́9 model is simple and highly adequate to capture the anisotropic 

mechanical behaviour. However, it cannot capture the SD effect between tension and 

compression stress state. In order to overcome this insufficiency without the change of 

major form of the yield model, some improving tasks are required. In the present study, 

we extend further the Barlat 8́9 model by adding the term of the absolute value of the 

principal stress, and the extended yield criterion can be seen as 

    (
 |(     )   |     ||

 
  |(     )   |     ||

 
 

 |   |
 

)

   

, (7.9) 

where,  

   
        

 
  (7.10) 

   √(
        

 
)       

   (7.11) 

and  ,  ,  ,   and   are material parameters. Parameters  ,  ,   and   reflect the 

anisotropic mechanical behaviour. Parameter   defines the asymmetrical strength 

between tension and compression stress state. When   is equal to zero, the proposed 

yield criteria can be reduced to the original Barlat 8́9 model. In this contribution, the 

parameter   was calculated by 

     . (7.12) 

Finally, it is important to remark that the yield function is convex when  

   ,  ,  ,  ,    . 
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The mathematical prove of the convexity for this new proposed yield criteria is deduced 

in appendix B. 

Since the effective stress     is the first order homogeneous function in stresses, from 

the work equivalence principle it follows that the law of evolution for the effective 

plastic strain (associated with    ) reduces to  ̇
 
  ̇. The loading-unloading conditions 

can be expressed in Kuhn-Tucker form as Equation (7.13) 

     ̇     ̇   . (7.13) 

The phenomenon of hardening describes the changes in yield stress that result from 

plastic straining and the flow stress,     represents the size of the yield function during 

deformation. 

7.3 The assessment of the new proposed model 

In this section, we will discuss the yield surfaces of the proposed anisotropic criterion 

for different material parameters. In order to evaluate the influence of the new 

introduced parameter   on the yield surface, a set of   value are chosen, which is -0.5, 

0.0, and 0.5. For the original Barlat 8́9 model, the power index     has a great 

influence on the yield surface; thus, in this section, the influence of power index   on 

the proposed model is also discussed.  

 

Figure 7.1: Yield surface of M =2. 
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Figure 7.1 shows the yield surface alternation at different   values with the power index 

  =2. It can be seen that when the   value is equal to zero, the yield surface presents a 

symmetrical ellipse. When the   value is equal to -0.5, the yield surface in the first 

quadrant is shrinked, meanwhile, the yield surface in the third quadrant is expanded. 

The size of the yield surface is also expanded. The   value can be effective to reflect the 

tension-compression asymmetry. It makes the yield surface change from the elliptical 

shape to triangular-like shape. From the comparison between the yield surface of   =0.0 

and   =-0.5 in these two quadrants, the alternation in the third quadrant of the yield 

surface of   =-0.5 presents a larger changes than the first quadrant. It is also seen that 

the turn corner in the first quadrant of the yield surface of   =-0.5 becomes sharper than 

the yield surface of   =0.0; besides, the yield surface of   =-0.5 becomes smoother than 

the yield surface of   =0.0 in the third quadrant. When the   value is equal to 0.5, the 

situation is opposite. 

 

Figure 7.2: Yield surface of M =4. 

Figure 7.2 shows the yield surface alternation at different   values with the power index 

    . It is observable that when the   value is equal to zero, the yield surface is 

symmetrical rectangular-like shape. Besides, it is subjected to a similar evolution law to 

the yield surface of the power index   =2 when the   value changes. When the   value 

is negative, the corner in the first quadrant becomes sharper than the yield surface of 
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     , while the yield surface in the third quadrant become smoother than the yield 

surface of       . Although it still causes a great impact on the size of the yield 

surface, the influence of the same   value on the shape alternation of yield surface 

become smaller, and the yield surface of        still keeps a rectangular-like shape. 

This also can be clearly seen in Figure 7.3, which demonstrates the yield surface 

alternation of power index    .   

 

Figure 7.3: Yield surface of M =6. 

It can be concluded that the introduced material parameter   not only change the size of 

yield surface to capture the asymmetrical strength effect between the tension and 

compression, but also affect the shape of yield surface.  

7.4 Identification procedure for AZ31 Alloy 

In the following sections, we envision applications to sheet forming. It is common 

practice to assume that the sheet is subjected to a plane stress loading during the entire 

processing. Their anisotropy, mainly due to the rolling process, can be reasonably 

approximated within the orthotropic symmetry class. We assume an orthogonal material 

frame assigned to the sheet with the  -axis along the rolling direction, the  -axis along 

the transverse direction in the sheet's plane, and the  -axis in the thickness direction. We 
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let   denotes the stress tensor, and   ,   ,    , its components with respect to the 

material frame. 

To identify material parameters in the above mentioned constitutive models, a set of 

experiments should be performed. The most widely experimental tests used are uniaxial 

tensile at different directions. In the current model, in order to calibrate material 

parameters related to the SD effect, a series of compressive test also should also be 

performed. The required input variables can be seen as follows: 

 Three directional yield stresses obtained from uniaxial tensile tests at specimens 

having an orientation of 0
0
, 45

0
 and 90

0
 to the original rolling direction of the sheet. 

The associated yield stresses are denoted here as   
 ,    

 ,    
 . 

 Three directional yield stresses obtained from uniaxial compressive tests at 

specimens having an orientation of 0
0
, 45

0
 and 90

0
 to the original rolling direction of 

the sheet. The associated yield stresses are denoted here as   
 ,    

 ,    
 . 

 Three  -values corresponding to   
 ,    

 ,    
 , which are denoted as   

 ,    
 ,    

 . 

7.4.1 Determination of the yield stress and the anisotropy parameters at different 

directions 

Consider uniaxial loading in the plane (   ) of the sheet along a direction at angle  ̂ 

with the rolling direction and denoted by   ̂
  and   

 , the uniaxial tensile and uniaxial 

compressive yield stresses, respectively. From the tensor transformation rules, the stress 

components in a uniaxial test specimen with orientation angle  ̂  with respect to the 

original rolling direction are given as  

      ̂     
  ̂  (7.14) 

      ̂     
  ̂  (7.15) 

          ̂      ̂      ̂  (7.16) 

where   ̂ is the yield stress under uniaxial load. When uniaxial tensile test is performed, 

the   ̂  is a positive value and denoted as   ̂
 . If the specimen is under the uniaxial 

compressive test, the   ̂ is a negative value, which can be denoted as -  ̂
 . Therefore, 

the yield stress at different direction under uniaxial tensile test can be given by 

  ̂
  

   

( |(  
    

 )  |  
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  |(  

    
 )  |  

    
 ||

 
  |   

 |
 
)

 
 

 , 
(7.17) 

where  
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The yield stress under uniaxial compressive test can be calculated as follows. 
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where 
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(7.22) 

The anisotropy parameter   ̂ is an important parameter to calibrate the yield surface in 

the sheet metal forming. It is defined as follows: 

  ̂   
   

(       )
. (7.23) 

Owing to that the plastic deformation flows along the normal direction of the associated 

yield surface, and the plastic deformation rate can be written as  

  ̇   ̇
  

    
, (7.24) 

  ̇   ̇
  

    
, (7.25) 

  ̇    ̇   ̇
  

    
, (7.26) 

where  ̇ is a multiplier factor. 

After substitution, the plastic anisotropy is found as follows. For uniaxial tension 

performed along an arbitrary orientation  ̂ measured counterclockwise from the  -axis, 

the ratio of the strain rates   ̂ is defined by: 

  ̂  
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where  
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which leads to  
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where  ̂         and    , and   is the yield function. 

   
  

[ (   )   ]   
; (7.31) 

    
 

[ (   )   ]   
. (7.32) 

7.4.2 Calibration procedure 

The identification of the constitutive models parameters can be formulated as an 

optimization task. Material parameters in the constitutive model are interdependent and 

are difficult to quantify. Therefore, a mathematical optimization model should be built. 

Generally, the optimization problem corresponding to the parameters identification of 

experimental values can be formulated as follows: determine material parameters 

 ,  ,  ,   of a given constitutive law so as to minimize the summation the squares of the 

errors of differences between the measured experimental data and computed results at 

the given calibrated points of experimental domain. In this study, the measured 

experimental data include stress values and   values at different stress states at a certain 

deformation level. In order to avoid the order effect difference between stress and   

value, each item is normalized; consequently, the final objective function (Error 

function) could be written as  

     ( )  ∑   (
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 ∑   (
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   , (7.33) 

where   is the number of experimental tensile yield stresses,   is the number of 

experimental compressive yield stress,   is the number of experimental tensile Lankford 

coefficients, while   ,   ,     are weights given to the respective experimental values. 

In this chapter, all of these weights coefficient are fixed to 1.0. The scalars   
    ,   

     

and   
   are the theoretical stress values corresponding to the related experimental value 

respectively. Owing to that the classical gradient method is strongly dependent on the 

initial value; it is easy trapped into local minima once a wrong starting value is chosen. 

Stochastic evolutionary methods can overcome local minima; however, they very often 

are not effective with respect to convergence. In order to avoid this problem, a hybrid 

scheme was developed. The hybrid algorithm was obtained using first the evolutional 

Particle Swarming optimization (PSO) algorithm to obtain a point near the global 



Chapter 7 An Extended Yield Criterion for Orthotropic Metallic Sheets under Plane Stress 

154 
 

minimum, and then a gradient method was performed to obtain the minima. The 

calibration detail could be seen in Chapter 6. 

7.5 Results and discussion of calibrated yield surfaces 

Akhtar S. Khan et al. [33], reported results of an experimental investigation of the 

monotonic mechanical response of a commercial AZ31 magnesium alloy sheet in 

tension, compression, and simple shear at large strains for different strain rates and 

temperatures. The characterization of the in-plane anisotropy of the sheet was done by 

performing uniaxial tensile and compression tests at the rolling direction (RD), at 45
0
 to 

rolling direction (DD), and at the transverse direction. The material displays significant 

asymmetric yield and hardening behavior. 

 

Figure 7.4: Yield surface evolution—Hill 4́8 yield criterion. 

In this study, all the experimental data used to identify the material parameters for the 

constitutive model is extracted from Akhtar et al. work [33]. These data are applied to 

calibrate the above mentioned yield criteria. In order to evaluate the related evolution 

during deformation, the yield surface will be drawn in five deformation stage, the 

plastic strain of which is 0.01, 0.02, 0.04, 0.06, and 0.08. 
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Figure 7.4 shows the yield surface evolution calibrated by Hill 4́8 yield criterion. 

Owing to that the anisotropic parameter   value is not constant, since it evolves during 

the continuous deformation. The material parameters in Hill 4́8 criterion are calibrated 

for these five equivalent plastic strain levels respectively. From there, it is clearly seen 

that the yield surface cannot pass through all experimental points. It exists a large 

difference gap between experimental data and yield surface under compressive stress 

state. It means that Hill yield criterion cannot fit the experimental results. 

 

Figure 7.5: Yield surface evolution—Barlat 8́9 yield criterion. 

Figure 7.5 shows the yield surface evolution calibrated by Barlat 8́9 yield criterion with 

power index       for these five equivalent plastic strain levels. From there, it is 

clearly seen that the yield surface passes through all experimental points under the 

uniaxial tensile stress state at both rolling and transverse direction. It indicates that the 

Barlat 8́9 model is better to characterize the anisotropic mechanical behavior than 

Hill 4́8 yield criterion. However, this model still keep a large difference gap between 

experimental data and yield surface under compressive stress state.  
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Figure 7.6: Yield surface evolution—Cazacu 0́6 yield criterion with  ̃=2. 

 

Figure 7.7: Yield surface evolution—Cazacu 0́6 yield criterion with  ̃=4. 
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Cazacu 0́6 is a flexible 3-Dimentional yield criterion, which not only can capture the 

anisotropic mechanical behaviour, but also reflect the strength difference (SD) effect. 

Under the plane stress condition, the yield function may be considered as a function of 

the in-plane stress    ,    ,    ,    . Therefore, anisotropy material parameters     and 

    is not necessary to calibrate. This model has already been used to calibrate the 

material with Hexagonal Close-Packed (HCP) structure, such as pure titanium, titanium 

alloy, among others. Several researchers investigate the calibrated yield surface for 

magnesium with different power indexes. In this study, and in order to establish a 

comparison later on, two power indexes are adopted, one is the power index  ̃   , and 

the other one is the power index  ̃   . The yield surface evolution of Cazacu 0́6 

constitutive model with these two power index during deformation are presented in 

Figure 7.6 and Figure 7.7, respectively. 

From there, it is clear seen that the yield surface calibrated by Cazacu 0́6 can pass 

through all given experimental points. However, at the small deformation, the yield 

surface is almost closed to a triangular-like shape. It gives an underestimated value for 

the biaxial tensile stress state. This also occurs in the large power index ( ̃   ).  

 

Figure 7.8: Yield surface evolution—the proposed model. 
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Figure 7.8 demonstrates the yield surface evolution calibrated by the proposed yield 

criteria with the power index    . From there, it can be seen that the calibrated yield 

surface also pass through all the given experimental points. The yield surface evolves 

from the pentagon-like shape to the elliptical shape with the increase of the plastic 

deformation. These results can be explained by the Figure 7.9.  

 

Figure 7.9: Schematic illustration of the yield surface decomposition by deformation mechanism. 

As commonly known, the yield surface is strongly dependent on the deformation 

mechanism. The yield surface dominated by the slip deformation mechanism always 

demonstrates the elliptical-like shape. The yield surface dominated by deformation 

twinning shows a triangular-like shape. For the magnesium alloy, it demonstrates 

complex mechanical behavior. Numerous experiments demonstrate that magnesium 

alloy leaded to plastic deformation under tensile stress state by the slip mechanism, 

however, under the compressive stress state, it is dominated by deformation twinning. 

Therefore, the ideal yield surface should be the combined surface of these two typical 

yield surface shapes.  In the Figure 7.9, the blue elliptical yield surface is used to denote 

the slip dominated mode, the red sector yield surface denotes the twinning dominated 

mode. In view of the above deformation mechanism analysis, the mixed surface consists 
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of two parts, one being the elliptical yield surface in the positive side, the other being 

the sector like shape in the negative side, which is denoted by the black solid line. The 

yield surface calibrated by the proposed yield criteria presents high similarities with the 

analyzed schematically shape. The results also point out that this proposed yield criteria 

is more accurate than the other yield criteria. 

In order to establish a comparison of these models, besides the comparison of the yield 

locus geometry, the description of the planar distribution for uniaxial yield stress must 

also be addressed. The planar distribution of the uniaxial yield stresses predicted by the 

models is presented in Figure 7.10. As one may notice, both of the predicted results 

from the proposed yield criterion and Cazacu 0́6 yield criterion are close to the 

experimental data.  Meanwhile, the predictions of the Hill 4́8 and Barlat 8́9 are in 

poorer agreement with the experimental data, due to the fact that only the uniaxial yield 

stress corresponding to the rolling direction is used by their identification procedure. 

Hence, it is clearly seen that the proposed yield criterion is also flexible enough to 

describe the anisotropic yield criteria for both tensile and compressive loadings. 

Compared with the Cazacu 0́6 model, the proposed yield criterion requires less material 

parameters to be identified. 
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Figure 7.10: Uniaxial yield stress predicted by different yield criteria versus experimental data. 
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7.6 Integration algorithm under plane stress 

7.6.1 Stress and state variable updates 

In sheet metal forming, the plane stress assumption is typically introduced in the 

analysis of bodies in which one of the dimensions – the thickness – is much smaller 

than the others and is subjected to loads that generate dominant stresses perpendicular to 

the thickness direction. In order to incorporate the constitutive models described in 

section 7.2 into an elasto-plastic FE analysis for sheet metal forming, user material 

(UMAT) subroutines under plane stress state were developed and employed in 

conjunction with the FE code ABAQUS/Standard. As the three dimensional constitutive 

model, the subroutine under plane stress is also mainly composed of three parts, which 

deal with: (1) the updating of stresses and state-dependent variables, (2) the detection of 

elastic-plastic transition, and (3) the calculation of the tangent modulus. Three-

dimensional radial return algorithm can be easily modified for the plane strain problem, 

but not for problems with additional constraints on stresses, such as plane stress 

condition. For implicit integration algorithm, three main general approaches may be 

adopted to deal with the plane stress elastoplastic evolution problem. The first one is 

direct inclusion of the plane stress constraint into the three dimensional elastic predictor 

and plastic corrector algorithm equations at each Gauss point. This method requires a 

nested Newton return mapping iteration for plane stress enforcement; the second 

method consists in the use the standard three dimensional return mapping at the Gauss 

point level with plane stress condition added as a structural constraint at the global 

structural level; the third method is the use of plane stress projected constitutive 

equations. The plane stress constraint is enforced at the Gauss point level. In this section, 

the implementation of the third method is summarized for the general case.  

Within the infinitesimal elasto-plastic finite element context, the elastic strains are 

usually much smaller than the plastic strains, and hence an additive decomposition of 

the total strain rate  ̇ into an elastic part  ̇  and a plastic part  ̇  is usually considered. 

Thus, the constitutive equations can be written in a rate form as 

 ̇   ̇   ̇ . (7.34) 

For the plane-stress state, such as in the case of shell or membranes elements 

formulations, the strain component normal to the element in-plane local directions(   ), 

that is,    , is not defined from the kinematics but by the restriction      . However, 

when a shell element is used, ABAQUS generates the transverse stress components (    
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and    ) outside the UMAT based on Mindline assumption with elasticity theory. Thus, 

it is not necessary to include the out-of-plane items during the elasto-plastic stress 

integration procedure. Isotropic elastic behavior is assumed until yielding is reached. 

Therefore, the elastic stress-strain relationship is given by the Hooke's law, which can 

be written as 

 ̇      ̇ , (7.35) 

where,    denotes the fourth order elasticity tensor,  which for the plane-stress 

condition is written as: 

   
 

    
[

   
   

  
   

 

]   (7.36) 

where   is the elastic modulus and   is Poisson’s ratio. Stress and strain tensors (  and 

 ) are stored in vector form for the sake of simplicity and efficiency: 

  {

   
   
   
}, (7.37) 

and 

  {

   
   

   (     )
}. (7.38) 

The shear strain increments are multiplied with a factor two in order to obtain tensor 

consistency. 

It should be noted that the strain components    ,    
 ,    

 
 do not enter in the 

formulation explicitly. The elastic strain    
  can be calculated by the static assumption 

of (     ) that defines constraints for the resulting boundary-value problem, which 

are incorporated in advance in the representation of the tensors in the constitutive 

equations, which can be given by 

   
   

 

   
(   
     

 )   
 

 
(       ). (7.39) 

On the other hand, based on the assumption of constancy of volume the through 

thickness plastic strain    
 

 can be expressed as 

   
   (   

     
 ). (7.40) 

Therefore, the total strain component     can be finally given by 

    ( 
 

(       )
 (    )(   

     
 ))  (   ). (7.41) 
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For a shell element, the thickness is updated based on Equation (7.41) after the stress 

integration procedure. So, the equilibrium equation is still solved under a rigid-normal 

assumption of a shell element (no thickness change).  

The incremental solution of the initial boundary-value problem for elasto-plasticity 

problems requires a discrete time integration of the constitutive equations of the model 

over a time increment. The stress and updated variables, which characterize the inelastic 

response of the material, are pursued for a given strain increment and the previous 

values of the internal variables. The numerical integration of elasto-plasticity 

constitutive equations is typically carried out by means of the so-called elastic predictor 

return mapping schemes, which is called Closest Point Projection Method (CPPM). In 

the algorithm, a trial stress is made to relax to the closest point on the yield surface. A 

summary of the implicit CPPM, developed in this work, is presented in Box 7.1. 

 Box 7.1: Fully implicit closest point projection method (CPPM). 

(i) Elastic predictor. Given    and the state variables at   , evaluate the elastic trial 

state: 
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Cazacu 0́6 yield criterion: 
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New proposed yield criterion: 
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(ii) Check Plastic admissibility 

       If          
        (  ̅  

       )    

Then set ( )    ( )   
           Exit 

(iii) Return mapping. Solve the system of five equations using the Newton-Raphson 

iterative method 

{

    
      

              
  ̅  
    ̅

    
        

}  {
 
 
 
}, 

where 

     
    

  
 

The solution is found for     
 ,   ̅  

 
 and   . The stress tensor can be obtained by 

      
      

  

(iv) Exit 

 

This integration is carried out locally at each Gauss point in typical finite-element 

implementations. At each integration point, a time discretization or to be more precise a 

semi- discretization is introduced. At time interval [       ], all variables {  
    

 
   } at 

time    are assumed to be known, given the strain history from    up to another time 

    , and a return mapping algorithm has to be used to update the stress for a finite 

increment of loading. The implicit stress integration for each time increment step can be 
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divided into two steps. First, the elastic equations are integrated with total strain 

increments to obtain an elastic predictor. Zero plastic strain increment is assumed 

(elastic predictor step). From an estimate of the total strain increment, an elastic trial 

stress is calculated.  If this trial stress satisfies the Kunh-Tucker conditions it is assumed 

to be the actual stress and the material is in the elastic state. If not, the material is in the 

plastic domain. Second step is the plastic corrector step: the elastically predicted 

stresses (the trial stress) is projected back onto the yield stress in the direction of the 

closest projection by correcting, iteratively, the plastic strain increments. All stresses, 

strains, state variables are represented in the local material coordination. Also, it is 

convenient to use a co-rotational coordinate system in which the basic system rotates 

with the material. The overview of these implicit stress update scheme is presented in 

Box 7.1.  

The closest point projection method (CPPM) requires solving a system of non-linear 

equation questions, such as robustness and rate of convergence of the underlying 

algorithms. The detailed update scheme is described as follows. 

By assuming that the input discrete strain increments are all in elastic regime for a given 

 -th time step, a trial elastic strain and trial stress can be determined as: 

    
          

    , (7.42) 

    
            

       , (7.43) 

where     
      is the initial stress for the     time increment step;   

  is the elastic strain 

tensor from last equilibrium state;    is the fourth order elastic modulus matrix under 

plane stress.  As regard to the unknown (    
  )   

     , one starting point can be the 

previously converged out-of-plane elastic strain, which can be set as 

    
         (    

  ) . (7.44) 

The trial internal variable is equal to the equivalent plastic strain in the last equilibrium 

state, which can be written as 

  ̅  
          ̅

 
, (7.45) 

If the yield condition is satisfied with the trial state value 

   (       ̅  
 )    (  ̅  

 )   , (7.46) 

the deformation of the material at the step      is in elastic region. The entire updated 

variable for the current increment step is equal to the trial state. It could be written as 

    
      

       , (7.47) 
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  ̅  
    ̅  

          ̅
 
, (7.48) 

    
    

 
, (7.49) 

    
      

       , (7.50) 

If the inequality Equation (7.46) is violated, the deformation goes into the elasto-plastic 

domain, and the trial elastic stress is taken as an initial value for the solution of the 

plastic corrector problem. The plastic strain increments are obtained such that the 

following new trial stress stays on the new yield surface: 

         
           , (7.51) 

In the     step, the trial stress should be finally returned back to the yield surface. 

The incremental effective plastic strain,    ̅  
  

, satisfies the equilibrium state. Hence, 

the following yielding condition holds  

   (       ̅
     ̅ )    (  ̅

     ̅ )   . (7.52) 

As deducted in the last section, it is possible to calculate the internal variable by 

  ̅  
    ̅

    . (7.53) 

Equations (7.51)-(7.53) are a set of non-linear equations for the three unknowns 

(         
 
      ). It can be written as 

 ( )   , (7.54) 

where 

  {

  
   
   
};    {

    
    
 

     

} , (7.55) 

denote the residual and solution vectors, respectively. 

The upper boundary condition for this non-linear boundary problem is given by the 

initial trial stress while the lower boundary is determined from the equilibrium state 

variables from last time increment step.  The system of three nonlinear algebraic 

equations can be solved by using different iteration procedures. Generally, the Newton-

Raphson iterative algorithm is used to solve the equation set. However, if the material 

constant   in the proposed yield criteria is of large value, the convergence bowl of the 

above Newton-Raphson scheme can be dramatically reduced. Such ill-conditioned 

behaviour stems from the high curvature alteration for large   in the neighbourhood of 

points in stress space. Under such conditions, small changes in stress on the yield 

surface result in large changes in flow vector direction, characterizing a set of stiff 

evolution equations.  Therefore, at this study, a line search algorithm is adopted to 
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stabilize the Newton-Raphson scheme for the range of strain increments expected to be 

present in practical finite element computations, which is referred to as LNR-CPPM 

algorithm. In order to derive such an iterative loop,   residuals are defined to represent 

the differences between the current constitutive variables and the backward-Euler 

constitutive variables. The iteration procedure for this method is characterized by 

 (   )   ( )   
(   )

  (   ), (7.56) 

With 

  (   )   ( 
( )
)
  

  
( )

, (7.57) 

where   denotes the Jacobian matrix of the algebraic system, which can be given by 

  [
       

  

  
  

  

  ̅ 
 

    
    

], (7.58) 

where      
  

  
,    is the multiplier.  

   is the step-length, which can be computed by line search algorithm. 

The iterative process is stopped as soon as convergence is achieved within the 

prescribed convergence criteria, namely, when the norm of residual is less than a small 

tolerance value. The detail of CPPM algorithm combined with line search strategy can 

be seen in Chapter 4. 

7.6.2 Elasto-plastic tangent operator 

In modern computational plasticity, it is now recognized that, in order to achieve the 

asymptotically quadratic rate of force-balance convergence, it is theoretically possible 

to use the global Newton-Raphson force balance iterations, material tangent operators 

that are consistent with the implemented (discrete) form of the constitutive models. This 

leads to so-called consistent tangent operators which generally differ quite significantly 

from the continuum elastoplastic tangent moduli which can be derived from the rate 

form of the constitutive equations and the plastic consistency condition.  

If the stress is inside the elastic domain or if it is on the yield surface and elastic 

unloading is assumed to occur, the tangent modulus   consistent with any of the 

integration algorithms has the same form as the fourth order elasticity tensor under 

plane stress condition, which is given by 

     (7.59) 
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If materials violate the yield function, a elastoplastic consistent tangent    should be 

defined.  

As previously mentioned in the stress update integration algorithm, three equations 

should be met after Newton-Raphson iterative. The corresponding return mapping 

equations are rewritten as follows for the derivation of consistent tangent modular 

matrices conveniently. 

{

    
      

              
  ̅  
    ̅

    

 (       ̅  
 )

}  {
 
 
 
}. (7.60) 

Thus, the first step in its derivation is to linearize the return mapping equations (having 

the elastic trial strain – the system input – also as a variable). Straightforward 

differentiation of the general return-mapping equations yields the following linearized 

form: 

{
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}. (7.61) 

Rewriting Equation set (7.61) in the format of matrix product, we obtain 

[
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] [
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]  [

         

 
 

]. (7.62) 

Finally, by inverting the Equation set (7.62), we obtain 

[
  
  ̅ 

   
]  [

         
         
         

]  [
         

 
 

]. (7.63) 

In the previous system, the inverted matrix is expressed in symbolic form. 

Obviously, the elastoplastic consistent tangent modulus are: 

    
     

     
           . (7.64) 

After a series of mathematic deductions, the elastoplastic consistent tangent can be 

calculated by  

    {[  ]     
  

  
 

  (    
  

  ̅ 
)

  

  ̅ 

}

  

. (7.65) 

It is important to remark that this tangent operator is not symmetric. 

It should be remarked also that for most shell elements, the default shear stiffness values 

are not calculated when the material mechanical behavior is computed by a user-defined 
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subroutine. The transverse shear stiffness should be specified as the initial, linear elastic 

stiffness of the shell in response to pure transverse shear strains in the element 

formulation. The transverse shear stiffness is computed by matching the shear response 

for the case of the shell bending about one axis to a three-dimensional solid element. 

For a homogeneous shell made of a linear, orthotropic elastic material, the transverse 

shear stiffness terms are given by: 

   
   

 

 
    ; (7.66) 

   
   

 

 
    , (7.67) 

and  

   
      

      , (7.68) 

where,    ,      are the material ś shear moduli in the out-of-plane direction. The 

number 5/6 is the shear correction coefficient that results from matching the transverse 

shear energy to that for a three-dimensional structure in pure bending.  

 7.7 Numerical examples 

In order to validate the prediction capability of the developed elasto-plastic formulation, 

two types of numerical examples were considered: single element test, and the circular 

cup drawing. In all the numerical simulations discussed hereafter, the Você hardening 

law was chosen to describe the effective plastic stress-strain hardening relationship, 

which can be expressed by 

        (   
    

 

)   (7.69) 

where   ,   ,    are the material parameters identified by the related uniaxial tensile 

test. The scalar  
 

 denotes the equivalent plastic strain. Material parameters are 

presented in Table 7.1.  

Table 7.1: Material parameters of AZ31B at quasi-static condition. 

   (g/cm
3
) 

  Modulus 

(GPa) 

  Poisson’s 

Ratio 

        (   
    

 

), 

         

AZ31 1.77 45 0.35 195.78 117.57 18.46 

 

Owing to that the shape of yield surface changes during the deformation, the anisotropic 

coefficients are not a constant during deformation, which evolves with the accumulated 

plastic strain. The anisotropic coefficients at several fixed accumulated plastic strain 
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levels were calibrated by the hybrid evolutional optimization method. The yield surface 

evolution during iterative process can be calculated by a linear interpolation scheme 

between a discrete numbers of yield surfaces corresponding to fixed levels of 

accumulated plastic strain. A sufficient number of points were used to ensure that the 

hardening curve was recreated with enough accuracy. The anisotropy coeffcients at the 

prescribed strain level are presented in Table 7.2. 

Table 7.2: Anisotropy coefficient values of AZ31 corresponding to the proposed yield surface evolution. 

 
 
         

0.01 0.647 0.925 0.929 1.91 

0.02 0.739 0.931 0.939 1.94 

0.04 0.581 0.925 0.954 1.98 

0.06 0.118 0.897 0.944 2.24 

 

7.7.1 Single element tests 

One of the element tests is demonstrated the robustness of the numerical scheme of the 

UMAT. In this section, a simple benchmark test is presented to verify the 

implementation of the proposed constitutive model within an implicit quasi-static finite 

element environment. 

A uniaxial stress state is applied to a single four-node shell element (with one 

integration point). The size of the element is 10x10 mm. In order to evaluate the 

asymmetric mechanical behavior, the uniaxial tensile and uniaxial-compressive tests are 

performed.  The material constants, which are employed in the test, are listed in Table 

7.1. The anisotropy coefficient values of magnesium alloy AZ31 corresponding to the 

yield surface evolution are identified with the proposed description in the previous 

section, which can be seen in Table 7.2. 

Figure 7.11 shows the schematic with boundary conditions and load conditions for a 

single element model. This particular test was done with the four-node doubly curved 

reduced integration plane stress elements (ABAQUS element type S4R) with hourglass 

control. The thickness is set to 1 mm. The transverse shear stiffness is computed by 

matching the shear response for the case of the shell bending about one axis to a three-

dimensional solid element, as mentioned in Equation (7.66)-(7.68). 
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(a) Uniaxial tensile along rolling direction (b) Uniaxial compressive along rolling 

direction 

  

(c) Uniaxial tensile along transverse 

direction 

(d) Uniaxial compressive along transverse 

direction 

Figure 7.11: Single element tests  
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Figure 7.12: Stress-strain curves. 
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Figure 7.12 shows the stress strain curve obtained from the numerical simulation with 

the proposed yield criterion. It is clearly seen that there is a strength gap between 

tension and compression stress state in the small deformation. The material has a 

different mechanical response in the rolling direction and transverse direction. The 

stress-strain curve obtained from the proposed approach presents a better agreement 

with experimental value. 

7.7.2 Cup drawing test 

In this subsection, the application of the new proposed constitutive model is extended to 

relatively complex model – a cylindrical cup drawing test.   

Deep drawing with circular punch and blank is a popular process in the formability 

assessment of sheet metals and it verifies the planar anisotropic behaviour through the 

prediction of the earing profile. 

This test was simulated for AZ31 alloy sheet based on the proposed yield function, 

assuming isotropic hardening. The schematic views of the cup drawing process 

analyzed in this chapter are presented in Figure 7.13. The dimension of all parts can be 

seen in Chapter 4.  

 

Figure 7.13: Schematic section view of cup test drawing. 

The simulations were performed with the implicit code ABAQUS/Standard together 

with developed user material subroutine UMAT. The full finite element model is 

demonstrated in Figure 7.14. The tooling is described by discrete rigid surfaces, and 

meshed with linear quadratic rigid elements (R3D4). The circular blank is meshed with 

1045 reduced integrated four-noded shell element (S4R). In order to avoid the 

occurrence of wrinkling during drawing, the constant blank holder force of 25 kN is 

applied to the blank. A standard surface-to-surface contact is defined between the punch 
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and the specimen, where wherein the friction behaviour is described by the Coulomb's 

law. The coefficient of friction is equal to 0.01. 

  

(a) Finite element model (b) Blank mesh 

Figure 7.14: Finite element model of cup drawing test. 

Figure 7.15 and Figure 7.16 show the equivalent plastic strain contour and equivalent 

stress contour after the drawing operation, respectively. From there, it can be clearly 

seen that the material in the transverse direction has larger plastic deformation than in 

the rolling direction. It might not be easy to see the ear phenomenon; however, an 

uneven cup rim and non-circular distribution in the equivalent stress contour can still be 

seen, which indicates that the material has an anisotropic mechanical. 

  

Figure 7.15: Equivalent plastic strain contour. Figure 7.16: Equivalent Stress contour. 

The anisotropic behavior can be better enhanced by extracting nodal displacements at 

the outer flange of cylindrical cup for one quarter of its geometry, as seen in Figure 7.17. 

It is possible to observe that the smallest displacement is located in the node at the angle 
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45
0
 with respect to the rolling direction. The drawing displacement in the rolling 

direction and transverse direction doesn t́ presents remarkable difference.  

 

(a) Selected node path 
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(b) Displacement distribution of the selected node path 

Figure 7.17: Displacement along the cup edge after stamping. 

7.8 Conclusions 

In this paper, the new constitutive model is proposed by extending the original 

Barlat 8́9 yield criteria to capture anisotropic and SD effect simultaneously. The 

influence of the introduced material parameter in the new proposed model was assessed. 

It can be concluded that with the increase of the power index   in the proposed model, 

the yield surface becomes more rectangular. The introduced parameter   can enhance 
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the difference between the tension and compression stress state, making it smoother in 

one side and sharper on the other one. However, this effect is not as obvious when the 

power index value   is big. After that it is also applied to model the mechanical 

behavior of magnesium alloy AZ31. By comparison with other commonly used models, 

such as Hill 4́8 yield criteria, Barlat 8́9 model, and Cazacu 0́6, it proves that the new 

proposed one presents accurate results. A high level of agreement was found between 

theoretical and experimental results; hence a substantially high accurate description for 

the mechanical behaviour of AZ31 alloy is possible, requiring less material parameters 

than Cazacu 0́6 model. Finally, a fully implicit integration algorithm based on CPPM 

algorithm coupled with line search algorithm was implemented within an implicit 

environment. A simple test was used to validate the model and the simulated results are 

able to demonstrate that the new proposed model can be effective to reflect the 

asymmetrical mechanical behavior and anisotropic properties in the real application. A 

benchmark test-cup drawing was performed to show the good consistency of the 

implementation, and the simulated results were able to show that the model captures the 

AZ31B earing phenomenon after drawing, which has a good agreement with 

experimental evidence. 
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Chapter 8  

Analytical and Numerical Analysis of 

Springback for Hexagonal Close-Packed 

Materials 

8.1 Introduction  

Springback is a recovery phenomenon needed to be taken into account when processing 

a variety of metallic parts in automobiles, aircrafts, building products and domestic 

appliances. Once a deformed sheet-metal part is removed from the dies in which it was 

formed, the elastic component of strain is recovered, especially where bending, 

bending-unbending, and reverse bending are performed. The elastic recovery is 

accompanied by strain and, consequently, it causes the final shape of the part to change. 

This additional deformation of sheet metal parts after the loading is removed is called 

springback, which is one of the most critical behavior in sheet metal forming, and a 

considerable amount of time is needed to compensate for this behavior. Springback is a 

complex physical phenomenon, which is mainly governed by the stress state obtained at 

the end of a deformation.  

Several methods are available for the prediction of springback [1-4]. These methods can 

be categorized into two types: analytical methods, on one hand, and the numerical 

methods with finite element analysis, on the other hand. Some researchers also 

proposed semi-analytical approaches [5-7]. The usefulness of numerical methods is 

apparent in their ability to treat complex tool shapes and realistic nonlinear material 

behavior. However, despite a relatively simplified methodology, analytical methods for 

predicting the springback phenomenon of sheet materials have the advantage that the 

process and material effects on the springback can be qualitatively and quickly 

estimated during the design process. Although not generally applicable, these models 

are powerful tools that can be used to quickly visualise dependencies between some 

material and process parameters and the amount of springback. Early analytical 

solutions for springback of plane stress, pure bending with large radius of curvature 

(radius of curvature  =thickness  ) were established for elastic-perfectly plastic material 

response [8], and were extended to plane-strain pure bending [9], and initially curved 

cases [10]. Further developments include solutions for plane-strain bending with 

superimposed tension for arbitrary     [11-14] and for plane-stress bending of narrow 
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strips. This classical analytical approaches are based on pure bending theory without an 

applied tensile force, and the springback is assumed to consist of elastic unbending on 

the removal of the applied moment [9, 15]. Later, the effect of the tensile force 

superimposed on the sheet bending process was considered for perfect plastic [16], rigid 

power law [17, 18], elastic linear hardening [19], and elastic nonlinear power-law 

materials [20].  

Accurate prediction of sheet springback by finite element method also depends strongly 

on the material hardening rule [21, 22]. The commonly used plasticity model describes 

symmetric material behavior, i.e., the stress–strain responses are assumed to be 

approximately the same both in tension and compression. Obviously, these can not  be 

used to capture the mechanical behavior of magnesium alloy sheets with a strong in-

plane texture since these materials have revealed that strong asymmetries exist in both 

the initial yield stress and subsequent flow stress in continuous tension and compression. 

Therefore, without a suitable description of the magnesium alloy’s asymmetric stress–

strain responses, an accurate estimation of the springback in magnesium alloy sheets 

may not be possible. Although Lee et al [23-25] considered the asymmtrical effect and 

derived analytical bending moment–curvature relationships for various deformation 

stages, the hardening curve has already been simplied. The derived equation is only 

available for the linear hardening material.  

From section 8.2 to section 8.5 of this chapter,  an extended analytical method for 

arbitrary material is proposed; besides the mechanics of plane strain bending in 

combination with tension of an elastic-plastic sheet material are considered. 

Furthermore, the generic analytical deformation region evolution, bending force and 

bending moment–curvature relationships for various deformation stages are discussed. 

Sensitivity tests were also conducted for the effect of an applied tensile force, sheet 

thickness on the springback of asymmetric metals, comparing the conventional 

symmetric constitutive equations with the asymmetric constitutive equations from our 

model. From section 8.6 to section 8.9, finite element method is used to simulate the 

springback. Several constitutive models are implemented and applied to study the 

benchmark cylindrical bending test. 

8.2 Analytical theory of springback  

To understand the unusual phenomenon of springback in magnesium alloy sheets, 

especially the reverse effect of the constrained tensile force, a simple but analytical 
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bending theory with applied tensile force is extended in this chapter to the asymmetric 

materials.  

Bending a sheet material along a straight line is considered. Owing to that the bend 

radius is always more than three or four times the sheet thickness, so it could be  

assumed that a plane strain condition exists in the plane perpendicular to the bending 

line and that cross-sections remain plane and normal to the mid-surface after the 

deformation (Kirchhoff hypothesis). A two-dimensional representation of the 

considered problem is shown in Figure 8.1. During bending, a radial direction   and a 

circumferential direction  ̅ can be distinguished. Because of the Kirchhoff hypothesis 

these directions are the principal strain directions. A unit width of a continuous sheet in 

which a cylindrical bent region of radius of curvature   is flanked by flat sheet. The 

bend angle is  , and a moment per unit width  , and a tension (force per unit width)  ̂ 

are applied.  

 

Figure 8.1: A schematic diagram of bending in the longitudinal section. 

In this schematic diagram, any cross section perpendicular to the axis of the member 

remains plane, and the plane of the section passes through point C. The line      

along which the upper face of the member intersects the plane of the couples will have a 

constant curvature. During the bending process, the line     , which is originally a 

straight line, will be transformed into a arc of the circle of center C. Line      is the 

neutral axis, in which the longitudinal normal strain    and stress    are zero, Line 

     is the center line. Line      is the critical line, where the material initiates the 
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compressive yield. Line       is the other critical line, where the material initiates the 

tensile yield. 

These characteristic line separated the longitudinal section of the sheet into four regions: 

the region           (also calledⅠregion  ) is the compressive plastic region;the 

region           (also calledⅡ region ) is the compressive elastic region;the 

region           (also called Ⅲ region) is the tensile  elastic region; lastly, the 

region           (also called Ⅳregion ) is the tensile plastic region. 

 

Figure 8.2:The strain and stress distribution diagram of bending in the cross section. 

8.2.1 Strain calculation 

In order to perform the mechanic analysis for the bending process, the strain and stress 

distribution diagram  in the cross section is drawn in Figure 8.2.  

A line segment of initial length   , situated at the distance   above the mid-surface, 

after bending to an angle   with a radius of curvature   ,will deform to a length  . The 

radius of curvature in the mid-plane is defined as  
 

          , where   is the sheet 

thickness，  is the curvature radius of internal surface      .  

The line segment’s length   at position   can be expressed as: 

  ( 
 

  )   (8.1) 

The initial length    is equal to  
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       (8.2) 

where   is the radius of curvature in the neutral surface plane. 

It is assumed that the distance between the neutral surface plane and the mid-plane is  ̅, 

so the radius of the curvature in the neutral surface plane can be calculated by 

   
 

  . (8.3) 

Therefore, the circumferential true strain is given by: 

     (
 

  
)    (

( 
 

  ) 

  
)    (

     

 
)  (8.4) 

In the case of large  , the difference between the true strain and the engineering strain is 

negligible, and the engineering strain is easier to handle. Thus, The membrane and 

bending engineering strains can be written as follows: 

   
  

  
  (8.5) 

Finally, the total engineering circumferential strain becomes: 

   
   

 
  (8.6) 

Because of the requirement that transverse sections remain plane, identical deformations 

will occur in all planes parallel to the plane of symmetry.  

8.2.2 Positioning the elastic and plastic region 

As long as the norm circumferential stress    does not exceed the initial yield strength 

  
 , Hooke’s law applies, and the stress distribution across the section is linear. 

Otherwise, the plastic yield can be initiated either from the compressive region (or 

above the pseudo-neutral surface) or tensile region (or below the pseudo-neutral 

surface), depending on the magnitude of the applied tensile force and ratio between the 

tensile and compressive yield stresses. Let    and    be variables that determine the 

critical position of yield points in elastic regions where the material is in tension or 

compression stress state (see Figure 8.2), respectively. These variables are defined in 

relation to the neutral line which is situated at       . Therefore, the coordinate of the 

critical yield points in tension is: 

  
         (8.7) 

where, the subscript   denotes tension. 
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The variable    can be calculated by using the initial yield stress in the uniaxial tensile 

stress  

    
  

 

 
  (8.8) 

where   
  is the initial yield strength in the uniaxial tensile test. 

The coordinate of the critical yield points in compression can be given by 

  
         (8.9) 

where the subscript   denotes compression. 

Similary, the variable    can be calculated by using the initial yield stress in the uniaxial 

compressive stress  

    
  

 

 
  (8.10) 

where   
  is the initial yield strength in the uniaxial compressive test. 

The total circumferential strain in the region of plastic deformations can be defined as 

the sum of two parts – elastic strain and the plastic strain due to the material 

workhardening: 

     
    

 
.  (8.11) 

Rewriting the above equation, the strain due to the material workhardening can be 

derived: 

  
       

   (8.12) 

When the position of materials   
      

 , the member locates in the elastic region. 

No plastic deformation occurs,   
   , so the elastic strain   

  is equal to the total strain 

  . 

In the outer regions of the sheet, the stress will be determined by the hardening law, 

although the strain continues to increase linearly with distance from the neutral axis, as 

in the elastic case. The outer region can be separated by the stress state into two sub-

regions, tension and compression regions. 

When the position of materials     
 , the member located in the compression region.  

The plastic strain   
 
 can be given by 

  
       

   
   

 
 

  
 (  

 )

 
  (8.13) 
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where,   
    

   is the hardening law in uniaxial compressive test, which is a function of 

hardening plastic strain.   

When the position of materials      
 , the member is located in the tension region. 

Similarly to compression region,  the   
 
 can be given by 

  
       

  
   

 
 

  
 ( 

 
)

 
  (8.14) 

Owing to that hardening law is dependent of the equivalent plastic strain  
 
, so it is 

required to use a itrative method to calculate the equivalent plastic strain at each given 

position  . 

According to the hardening law, the circumferential stress in the plastic part of the 

material can be written as: 

  {

  
   

 
               

  

            
      

  

  
   

 
             

  

  (8.15) 

where   
  is the flow stress in the uniaxial tensile test,   

  is the flow stress in  the 

uniaxial compressive test.   
  is the initial yield  stress in uniaxial tensile test,   

  is the 

initial yield stress in compressive test. 

8.2.3 Force and moment calculation 

The plastic strain is negative in the compression region; therefore its absolute value is 

used in the power law to calculate the circumferential stress. The forces and bending 

moments acting on the sheet per unit length can then be found from: 

  ∫   

 ̅  

  ̅  

    (8.16) 

  ∫   

 ̅  

  ̅  

     
(8.17) 

The tensile force can be split into three components: 

       
    

   (8.18) 

In this equation    is the force caused by the elastic stress, while   
 

 and   
 

 are the 

tensile and the compressive forces caused by the plastic stresses. The contribution of the 

elastic and the plastic stresses to the total tension will be: 

   ∫   
    ∫  

   

 
  

  
 

  
 

  
 

  
 

 
 

  
[     

         
   ]  (8.19) 
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 ∫   

      
  
 

  ̅  

  
(8.20) 

  
  ∫    

      
 ̅  

  
 .  (8.21) 

Bending moments are produced by transverse loads applied to beams. The bending 

moment acting on a section of the beam, due to an applied transverse force, is given by 

the product of the applied force and its distance from that section. It is balanced by the 

internal moment arising from the stresses generated. This is given by a summation of all 

of the internal moments acting on individual elements within the section. These are 

given by the force acting on the element (stress times area of element) multiplied by its 

distance from the neutral axis,  . 

Balancing the external and internal moments during the bending, the bending moment 

can be written in the form 

  ∫   
 ̅  

  ̅  
   .  (8.22) 

The total moment per unit width acting about the mid-plane can be described as a sum 

of three components: 

            
    

   (8.23) 

where    is the elastic part, while   
 
 and   

 
 are the plastic parts of the total bending 

moment in the region of tension and compression. These components can be found as 

follows: 

   ∫   
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(8.24) 

  
  ∫   

       
  
 

  ̅  

  (8.25) 

  
  ∫    

       
 ̅  

  
 

  (8.26) 

8.2.4 Uploading and springback phase 

After bending the sheet to the radius  , a moment   remains. If external loads are 

removed, this bending moment is released and the sheet will spring back to a different 

shape to reach a new equilibrium. The magnitude of the stresses will decrease and the 
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amount of shape change (i.e. change in curvature) can be related to the applied bending 

moment. The change in internal stresses due to elastic unloading reads: 

        . (8.27) 

with 

    
 

 
 

 

 
   (

 

 
)    (8.28) 

where  
 
 is the radius of curvature after unloading. The change in internal stresses 

causes a change in bending moment,   : 

   ∫       
 ̅  

  ̅  

 ∫    (
 

 
)    

 ̅  

  ̅  
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)  (8.29) 

The removal of external loads results in       . Thus the change in curvature is 

related to the applied bending moment via: 

 
 

  
  (

 

 
)      (8.30) 

 (
 

 
)   

   

  
   (8.31) 

The change in curvature leads to a change in bending angle. It can be determined from 

the arc length    of the bend which remains constant after bending and during 

unloading, hence: 

             
 

 
   (8.32) 

An expression for the change in angle    can be obtained by differentiation of the 

above equation to the curvature: 

      (
 

 
)     (

 

 
)  (8.33) 

where    can then be calculated from： 

    
   

  
     (8.34) 

In order to establish a comparison of the springback effect, a springback factor   is 

defined by 

   
   

  
    (8.35) 

In bending, a parameter called the springback ratio is commonly defined as 
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  (8.36) 

Therefore,the relationship between the springback factor   and the springback ratio 

                as 

      . (8.37) 

 

Figure 8.3: Distributions of stress and strain within a beam before and after application of a moment 

sufficiently large to cause plastic deformation. 

8.3 Analytical algorithm description 

Due to the asymmetry mechanical behavior, the neutral plane is not coincident with the 

mid-plane. During the bending process, the neutral plane alternates. The eccentric 

distance   from the mid-plane is initially unknown. It is necessary to determinate the 

location of the neutral plane before calculate the bending moment. After that, the entire 

variables like curvature radius of the neutral plane, and strain at the cross section can be 

calculated. Owing to that the circumferential force is equal to zero (or the external force 

if the external tension force applied), so it is necessary to compute the eccentric distance 

 ̅ based on an iterative method, which is called global iterative process. During the 
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global iterative process, the stress at each position   is calculated by a local iterative if 

the material at that point is located in the plastic deformation region, otherwise, it can be 

calculated directly by elastic Hooke ś law. After that, in order to calculate the total force 

in the circumferential direction, an integration of stress along the radius direction should 

be done. The global iterative process is repeated until the circumferential force vanishes 

(the absolute value is less than the prescribed tolerance) or equal to the external tension 

force. The entire flow chart of the algorithm is shown in Figure 8.4. 

 

Figure 8.4: Flow chart of analytical program for the bending process. 
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The selected material in this chapter is magnesium alloy AZ31. The material Young’s 

modulus is 45 GPa, Poisson’s ratio is 0.35.  

The compressive curve can be fitted by a new proposed equation, which can be written 

as 

          [      [  ( 
 
    )]]  (8.38) 

where,    ,   ,   ,     are material parameters. 

For the uniaxial tensile curve, the classical Você hardening equation is adopted here, 

which can be written by 

        (       
 

)  (8.39) 

where   ,   ,    are material parameters. 

All the above material parameters are calibrated by classical gradient method based on 

the MATLAB toolbox. All the fitted material parameters at different strain rate are 

listed in Table 8.1.  

Table 8.1: Material parameters at different strain rates for tensile and compressive tests. 

 
Strain 

rate 

Compressive Tensile 

          [      [  ( 
 
    )]]         (       

 

) 

                       

RD 

1.0 97.21 122.22 35.40 -0.074 195.78 117.57 18.46 

0.01 86.48 124.24 31.59 -0.076 176.26 133.11 18.74 

0.0001 96.18 112.82 36.50 -0.078 169.30 132.14 18.02 

 

8.4 Validation of the proposed analytical method 

In order to validate the proposed analytical method and programming code, two simple 

bending processes are chosen to make comparisons with theoretical values. One of them 

is the elastic bending process; the other is perfectly-plastic bending process. 

For members made of elastic material, assuming the member to have a rectangular cross 

section of unit width and thickness  , the theoretical moment can be computed by the 

following equation 
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  (8.40) 

The evolution relation of the elastic moment against the bending curvature of the sheet 

for the elastic bending process can be drawn, which is presented in Figure 8.5 (a).  

For members made of symmetric elastic, perfectly-plastic materials, the theoretical 

moment can be calculated by 

  
 

 
 ̅ (  

 

 

  
 

 
 )  (8.41) 

where,  ̅  is the maximum elastic moment for the rectangular beam with unit width, 

which is given by  ̅   
 
  

   ; 

   represents the critical position, which is equal to  
 
  

   . 

The evolution relation between total moment and the bending curvature of the sheet for 

the symmetric elastic, perfectly-plastic bending can be drawn, which is demonstrated in 

Figure 8.5 (b).  

In Figure 8.5 (a) and (b), the theoretical moment evolution against the curvature is 

drawn with black curve; the calculated value obtained from the user developed code is 

drawn with red curve. From the comparisons, it is clearly seen that the proposed 

analytical method and user developed code is able to give a good prediction. 
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(b) Elastic, perfectly-plastic bending 

Figure 8.5: Comparison of moment evolution obtained from the theoretical method and the proposed 

analytical method. 

 

Figure 8.6: Comparison of the strain distribution in the cross section between analytical solution, 

experiments and numerical results. 
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In order to further validate the proposed analytical method and the user developed code, 

a four point bending test was performed on beams of high purity  titanium material by 

Nixon et al [26]. The proposed analytical method is used to compute the strain 

distribution along the thickness. All the experimental data and numerical strain 

distribution in the beam cross section is extracted from literature [26]. Figure 8.6 

demonstrates the circumferential strain distribution through the thickness obtained from 

the numerical simulation by FEM, analytical computation and experiments, respectively. 

From the comparison of Figure 8.6, it can be observed that the theoretical value is 

almost coincident with the calculated value by the proposed analytical method and the 

developed code. Therefore, it further validates the accuracy of both the proposed 

analytical method and the implemented programming code. 

8.5 Results and discussion of analytical method  

After validating the accuracy of the proposed method and code, it is used to investigate 

the influence factors during bending process and make comparisons between 

symmetrical and unsymmetrical materials. The used unsymmetrical material in this 

section is Magnesium alloy AZ31. Except the subsection 8.5.6, the thickness of the 

sheet in the other subsection is set as 0.6 mm. The material parameters used to describe 

the mechanical behavior under uniaxial tensile and uniaxial compressive test can be 

seen in Table 8.1. In order to make a comparison, the symmetrical material uses the 

same stress-strain curve as the unsymmetrical material under uniaxial tension stress 

state. All the bending curvature in this section represents the inner surface curvature of 

the sheet. Owing to the Kirchhoff hypothesis, the curvature radius should be ten times 

greater than the sheet thickness. In this section, the minimum curvature radius is set as 

10 mm.  

8.5.1 The influence of curvature on the neutral surface position, tensile yield 

critical position, and compressive yield critical position 

Figure 8.7 (a) shows the neutral surface position, the tensile yield critical position and 

the compressive critical position inside the sheet cross section for the symmetrical 

material and unsymmetrical materials, respectively. The surface at position of 0.3 is the 

inner surface; the surface at position of -0.3 is the outside surface. 
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(a) Symmetrical material 
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(b) Unsymmetrical material 

Figure 8.7: Position distribution for symmetrical and unsymmetrical material. 

In the Figure 8.7 (a), with the increasing bending curvature, the neutral surface position 

evolution curve is drawn by square black line, which is denoted by  . The initial tensile 

yield position (also called the tensile yield critical position) is denoted by    . The 

initial compressive yield position (also called the compressive yield critical position) is 

a 

c 
b 
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denoted by    . From there, it can be seen that the neutral surface is always coincident 

with the mid-surface of the sheet, which is independent on the bending curvature. As 

the curvature increases (the curvature radius decreases), the tensile yield critical position 

and the compressive yield critical position move closer and closer to the neutral plane 

(here is also the mid-plane). It also means that the tensile and compressive plastic region 

inside the section of the sheet gradually expands with the increasing bending curvature. 

This occurs because with the increase of the bending curvature, the material inside the 

section plane is subjected to increasing deformation; moreover the total strain gradually 

increases. From the Figure 8.7 (a), it is also possible to conclude that these two critical 

positions are symmetrical with respect to the mid-plane. It should be noted that a dotted 

red line a is drawn to separate the figure into two parts. The critical yield position only 

exists in the right region; this means that in the left side, the strain distribution inside the 

section of the sheet is not sufficient to initiate yield from both tensile and compressive 

plastic regions; besides the stress–strain through the thickness is purely elastic, and 

there exists a critical bending curvature, where the material in the surface starts to 

plastic yield. This change does not affect the neutral position, which still locates in the 

mid-plane. That is because the material has isotropic elastic behavior and the same 

stress-strain flow behavior under the tensile and compressive stress states hence the 

material in the inner and outside surfaces yields simultaneously.  

In contrast to the symmetrical material, Figure 8.7 (b) demonstrates a remarkable 

different evolution curves for unsymmetrical material. It can be seen that the neutral 

position is not a straight line during the bending process. With the increasing bending 

curvature, the neutral position moves gradually toward the outside surface. Compared 

with the symmetrical material, the tensile yield critical position and the compressive 

yield critical position are no longer symmetrical and both of them move toward the 

outside surface. The compressive plastic deformation inside the section is much larger 

than the symmetrical material; meanwhile, the tensile plastic deformation reduces 

substantially when compared with the symmetrical material. Not only the plastic 

deformation region alternates, but the elastic region also changes. From the figure, we 

can observe that the distance between neutral position and the compressive yield critical 

position is smaller than the distance between neutral position and the tensile yield 

critical position. This means that although these three typical position evolution curves 

move towards the outside surface, it does not mean that the material in elastic 

deformation region is symmetrical with respect to the neutral surface. Actually, the 
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material is subjected to a higher tensile elastic deformation than compressive 

deformation. From the neutral surface position evolution curve, it is easy to see that 

there exist three stages with the increasing bending curvature. In the left side of red 

dotted line b, the value of the neutral position is zero, which means that it is coincident 

with mid-plane, because that there is no material inside the entire cross section yields, 

all the material surfers elastic deformation. Owing to that the Young’s modulus   in the 

tensile and compressive stress state is the same, so the deformation is symmetrical with 

respect to the mid-plane. In the second stage between line b and line c, the neutral 

position starts to move towards the outside surface. This occurs because the material 

close to the inner surface reaches plastic deformation; meanwhile, the material close to 

the outside surface still presents elastic deformation, and owing to that the strength 

difference between compressive and tensile is very large, with the increasing curvature, 

the neutral surface position moves quickly toward the outside surface. Once the material 

enters into the third stage (the right side of line c), although the neutral surface position 

still moves toward to the outside surface, the changes are not as large as the second 

stage; this is because the strength gap between tensile and compressive is reduced.   

8.5.2 The influence of curvature on the force distribution 

In order to analyze the bending process further, the force distribution evolution in elastic 

region, compressive plastic region, and tensile plastic region are drawn with respect to 

the curvature. Figure 8.8 (a), (b) shows the force-curvature curve for symmetrical and 

unsymmetrical materials, respectively.  

In the Figure 8.8, Ft denotes the value of the force value in the tensile plastic 

deformation region, Fe denotes the force value in the elastic deformation region, and Fc 

denotes the force value in the compressive deformation region. From the Figure 8.8(a), 

it is obviously seen that the total force in the elastic region is always equal to zero, the 

forces value in the compressive plastic deformation region are coincident with the force 

value in the tensile plastic deformation region in the left side of red dotted line-a the 

force is also equal to zero, once the curvature surpasses a critical value, the force 

increase with the increasing the curvature. This is easy to be interpreted by the position 

distribution analysis. In the left side of the red dotted line a, all the material is in elastic 

region, and the elastic deformation is symmetrical with respect to the neutral plane 

(mid-plane), so all the force value is equal to zero. However, in the right side of the red 

dotted line a, with the increasing curvature, the plastic deformation region expands 
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gradually, so the force value in the compressive and tensile plastic region increases 

gradually. 
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(a) Symmetrical material 
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(b) Unsymmetrical material 

Figure 8.8: Force distributions for the symmetrical material and the unsymmetrical material. 

With regard to the unsymmetrical material, the force distribution has a remarkable 

difference from the symmetrical material, which can be seen in Figure 8.8 (b). In the left 

a 

b 
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side of line b, all the material is in the elastic region, and this elastic region is 

symmetrical with respect to the neutral plane (mid-plane), so all the force is equal to 

zero. In the domain between lines b and c, the force in tensile plastic region is still equal 

to zero, however, the force value in the compressive plastic and elastic region increases 

with the increasing curvature. That is because the compressive plastic region enlarges 

gradually with the increasing of the curvature, so the force in compressive plastic region 

increases. Regarding the force in elastic region, that is due to the neutral surface 

position moving toward the outside surface, and the tensile elastic and compressive 

elastic region being no longer symmetrical. In the right side of line c, with the 

increasing curvature, the compressive plastic region continues to expand, so the force in 

compressive plastic region continues to increase, but the material close to the outside 

surface enters into plastic deformation and expands gradually with increasing curvature 

and therefore the force in the tensile plastic region increases. With the unsymmetrical 

expansion of the tensile plastic region and the compressive plastic region, the force in 

elastic region also changes; the force in elastic region reduces with the increasing 

curvature, which is also clearly observed by making a comparison with the distance 

between the yield critical position and neutral position for compressive and tensile 

plastic deformation.  

8.5.3 The influence of curvature on the moment distribution 

With regard to the bending process, the bending moment is an important item to be 

further investigated. In order to analyze the distribution of the bending moment clearly, 

four moment values are drawn with respect to the bending curvature, as shown in Figure 

8.9. These four moment values include the moment in the tensile plastic region, in the 

elastic region, in the compressive region, and the total bending moment, denoted by Mt, 

Me, Mc, Mtotal, respectively.  

Figure 8.9 (a) shows the moment-bending curvature for symmetrical material. In the left 

side of line a, the material is only subjected to elastic deformation, so the moment in the 

tensile plastic region and the compressive plastic region is equal to zero. The total 

bending moment should be equal to the moment in the elastic region. In the right side of 

the line a, the region where the material enters into plastic deformation expands 

gradually with the increasing bending curvature, owing to the symmetry with respect to 

the mid-plane; the moment value in tensile plastic region is also coincident with the 
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compressive plastic region. Meanwhile, the elastic region inside the section decreases 

substantially, therefore, the moment caused by the elastic deformation decreases sharply. 
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(a) Symmetrical material 
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(b) Unsymmetrical material 

Figure 8.9: Bending moment distribution for the symmetrical material and the unsymmetrical material. 
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For the unsymmetrical material (seen in Figure 8.9 (b)), in the left side of line b, the 

material only suffers elastic deformation, so the moment distribution is the same as the 

symmetrical material. The moment in the tensile plastic region is not coincident with 

the compressive plastic region. In the domain between the line b and the line c, the 

material close to the inner surface yields, and the compressive plastic region expands. 

The moment in the compressive plastic region increases with the increasing bending 

curvature. The elastic region not only reduces, but also the neutral surface position 

moves toward the outside surface, so the moment in the elastic region changes. The 

change, however, is complicated, which is dependent on the above two effects. After the 

material close to the outside surface enters into yield, the elastic region sharply 

decreases, so the moment in elastic region decreases quickly. The total bending moment 

continues increase owing to the increasing the moment in the tensile plastic region. 

8.5.4 The comparison of the strain distribution between symmetrical and 

unsymmetrical material 

In order to obtain more information inside the cross section the sheet, it is necessary to 

understand the elastic strains and plastic strains, as well as the total strain distribution 

through the thickness. To clearly demonstrate the difference between symmetrical and 

unsymmetrical material, both of these two materials are bended to the same curvature 

(     mm). The strain distributions are presented in Figure 8.10.  
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(b) Unsymmetrical material 

Figure 8.10: Strain distribution inside the sheet cross section. 

The horizontal axis represents the position through thickness; the vertical axis 

represents the strain value. From the Figure 8.11 (a), it can be clearly seen that the 

neutral plane is coincident with the mid-plane, and all the strain distributions which 

include elastic, plastic and total strain are symmetrical with respect to the point P. The 

material between line b and line c suffers elastic deformation, so the elastic strain 

distribution curve is coincident with the total strain distribution curve. The materials 

where locates in the left side of line b and in the right side of line c is subjected to 

plastic deformation. The furthest the material is from the region between line b and line 

c (also far from the mid-plane), the larger plastic deformation it suffers. Owing to the 

hardening effect, in this stage, the elastic strain still has a slightly increase. 

Figure 8.10 (b) shows the strain distribution of unsymmetrical material through the 

thickness in the cross section the sheet. There are four blue center dotted lines drawn in 

the figure. Line l is the critical line between tensile elastic deformation and tensile 

plastic deformation. Line m denotes the position of the neutral surface. Line k denotes 

the critical position where the material initiates the compressive plastic deformation. 

Line n represents the mid-plane position. From there, it is easy to see that the strain 

distribution is no longer symmetrical. The distance between line l and line m is larger 

than the distance between line m and line k. It means there is a higher number of 
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material subjected to tensile elastic deformation than compressive elastic deformation. 

The maximum value of the elastic strain in the compressive deformation is much 

smaller than in the tensile deformation region. However, the maximum value of the 

plastic strain and the total strain in the compressive deformation is larger than the 

tensile deformation region. 

 

(a) Symmetrical material 

 

(b) Unsymmetrical material 

Figure 8.11: Circumferential stress distribution inside the sheet cross section. 
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The circumferential stress distributions inside the cross section of the sheet are 

presented in Figure 8.11 for symmetrical and unsymmetrical material, respectively. 

From there, it can be concluded that the stress distribution is symmetrical between the 

tensile and compressive stress state. The Figure 8.11 (b) describes the asymmetrical 

hardening between tensile and compressive stress state. 

8.5.5 Influence of strain rate on the bending 

As it is known, stamping velocity has a great influence on the bending process, 

particularly, on the final springback angle. In order to study the influence of the 

stamping velocity, the strain rate effect should be discussed. In this study, three kinds of 

strain rate are investigated: 1 s
-1

, 0.01 s
-1

, and 0.0001 s
-1

. In this section, three aspects 

are used to analyze the influence of strain rate, which are the position, force and 

bending moment. 
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Figure 8.12: Position vs bending cuvature with different strain rates. 

Figure 8.12 shows the position distribution evolution against bending curvature with 

different strain rates. It can be seen that with the increasing strain rate, all the neutral 

surface position, the tensile yield critical position and the compressive yield critical 

position move gradually down (it is also close to the outside surface). By comparison, 

we can see that all these three position distributions in quasi-static (0.0001 s
-1

) is 
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remarkably different from the other two dynamical states. From the moving distance, it 

can be seen that when the strain rate changes, the change of neutral surface position is 

smaller, however, the compressive yield critical position, the tensile yield critical 

position change much larger. It also reflects that with the increasing strain rate, the 

tensile plastic region reduces substantially; however, the compressive plastic region 

increases only slightly generating the expansion of the tensile elastic region.  
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Figure 8.13: Force vs bending curvature with different strain rates. 

Figure 8.13 shows the force-bending curvature with different strain rates. From there, 

by comparison among the force in elastic region, compressive plastic region, and tensile 

plastic region, it is obviously seen that the strain rate effect remarkably affects the 

elastic region. Not only the force in elastic region is changed, the elastic turned point is 

also obviously different with different strain rates. That is because the tensile yield 

critical position is affected by the strain rate, the higher the strain rate, the larger the 

critical curvature value occurs in the outside surface. In contrast, the critical curvature 

value that occurs in the inner surface does not significantly change with the strain rate 

alternation. 

Once the position distribution and force distribution with respect to the strain rate in 

different strain rates conditions are known, the moment distribution with respect to the 

strain rate can be used to comprehensively analyze the influence of the strain rate.  
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Figure 8.14 demonstrates the moment distribution in different strain rates conditions. 

The moment distribution has similar rules to the force distribution. The difference is 

that the moment in the compressive plastic region does not increase with the increasing 

bending curvature as soon as the curvature is larger than a critical value. However, the 

moment in tensile plastic region always increases with the bending curvature increasing. 

With regard to the moment in the elastic region, the differences with different strain rate 

are obvious for the small bending curvature, with the bending curvature increasing, the 

difference gradually reduces, the moment value approaches to zero. The total bending 

moment keeps increasing with the augmentation of the bending curvature, in elastic 

domain, and it is coincident with the moment in the elastic region.  
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Figure 8.14: Moment vs bending curvature with different strain rates. 

Figure 8.15 shows the springback factor   evolution when the bending curvature 

changes with different strain rates. From there, it is obvious to see that when the 

bending curvatures increase, the value of the springback factor   gradually decreases. In 

the left side of the line a, the springback factor   is equal to unit. It means that the angle 

change during the springback stage is equal to the bending angle obtained from the 

previous stamping step. In other words, this is an elastic deformation, all the 

deformation is recovered after the removal of the external force. With the increase of 

the bending curvature, more and more plastic deformation occurs. The deformation that 
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can be recovered is reduced; therefore, the angle change ratio      reduces. From the 

comparisons among different strain rates, the springback factor does not alternate 

significantly. 
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Figure 8.15: Springback factor   vs bending curvature with different strain rates.  

8.5.6 Influence of thickness on the bending 

During bending process, the thickness of the sheet is also a key factor to take under 

consideration. Sheets with different thicknesses affect the stress distribution inside the 

section. In this study, the influence of the sheet thickness on the bending is analyzed by 

establishing a comparison of two sheets. The thickness of these two sheets is 0.6 mm, 

1.0 mm, respectively. 

Figure 8.16 shows the neutral surface position, the tensile yield critical position, and the 

compressive yield critical position evolution for the sheet with the thickness of 0.6 mm 

and 1 mm, when the bending curvature alternates. From there, it is easily seen that the 

gap of all the above three position between these two sheets increases with the 

increasing bending curvature. 

By comparing the evolution curve of the neutral surface position with different 

thicknesses, it is observable that the neutral surface position clearly moves toward the 

outside surface. It also means that the material subjected to compressive deformation 

outstandingly increases with the increasing thickness. Inherently, the elastic region does 

a 
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not change significantly, and both the tensile elastic and compressive elastic regions 

almost keep the same weight. 
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Figure 8.16: Position vs bending cuvature with different thicknesses. 
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Figure 8.17: Force vs bending curvature with different thicknesses. 

Figure 8.17 demonstrates the force evolution curve with respect to the bending 

curvature for the sheets with different thicknesses. From there, it can be seen that the 

force evolution curve in the elastic region, with respect to the bending curvature for 



Chapter 8 Analytical and Numerical Analysis of Springback for Hexagonal Close-Packed Materials 

208 

 

different thicknesses, is almost coincident. It means that the force in the elastic region is 

independent on the sheet thickness.  The critical curvature values where the material in 

the inner surface starts to yield reduces when the thickness of the sheet increases, which 

is called the starting compressive yield curvature. The starting tensile yield curvature 

also reduces when the thickness changes from 0.6 mm to 1mm, and the change of the 

starting tensile yield curvature is larger than the starting compressive yield curvature. 

With the increasing of the bending curvature, the force gap of these two sheets 

gradually decreases.   

Finally, the moment evolution with respect to the bending curvature for different 

thickness of sheet is described in Figure 8.18. From there, it is clearly observed that the 

total moment for the thick sheet (thickness of 1mm) is much larger than the sheet with 

the 0.6 mm thickness. The moment in the elastic region is almost coincident when the 

material in the outside surface starts to the tensile yield stress state; before that, the 

moment in elastic region with different thicknesses has a large gap. The moment in the 

tensile plastic region and compressive plastic region have a similar evolution rule to the 

force evolution with respect to the bending curvature.  
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Figure 8.18: Moment vs bending curvature with different thicknesses. 
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Figure 8.19: Springback factor   vs bending curvature with different thicknesses.  

Figure 8.19 shows the springback factor   evolution when the bending curvature 

changes with different sheet thicknesses. From there, it can be seen that the sheet 

thickness has a great influence on the springback factor  . With the increasing sheet 

thickness, the elastic region shrinks. At the same bending curvature, the springback 

factor   decreases with the increasing sheet thickness. It is also seen that for the thicker 

sheet (     ), the springback factor   reduces sharply when the bending curvature is 

in the range of small value, after that even the bending curvature continues increasing, 

the springback factor   slowly decreases. 

8.5.7 Influence of in-plane tension on springback 

During the sheet metal forming, bending holder and draw bead are always used to 

control the metal flow. This generates an in-plane tension stress, which affects the final 

forming. The schematic diagram can be seen in Figure 8.20. The symbol  ̂ denotes the 

in-plane force of the sheet. The bend angle is  , and a moment per unit width  , as well 

as a tension (force per unit width)  ̂ are applied. 
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Figure 8.20: The schematic diagram of bending under external stretch tension. 

From the analysis of the above sections, the moment distribution in different region has 

a highly similar evolution rule with respect to the corresponding bending curvature 

distribution. Therefore only the position distribution evolution and the moment 

distribution evolution with respect to the bending curvature for different in-plane 

tension force are discussed.  
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Figure 8.21: Position vs bending curvature with different in-plane tension forces. 
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The external in-plane force is denoted by a factor F. This factor F is defined in this 

section as the ratio between external in-plane force and the initial tensile yield strength.  

Figure 8.21 demonstrates the neutral surface position, the tensile yield critical position, 

and the compressive yield critical position evolution with respect to the bending 

curvature for different external in-plane tensile forces. From there, it can be concluded 

that with the increase of the external in-plane tensile force, all these three characteristic 

critical positions move toward inner surface. If compared with the tensile yield critical 

position and the compressive yield critical position, the neutral surface moves much 

more toward the inner surface of the sheet at the same external force. The pure elastic 

region reduces gradually even in the small bending curvature. Besides that, another 

interesting thing is also observed: with the increase of the bending curvature, the moved 

distance of the above three critical positions toward inner surface increases.  

Figure 8.22 shows the moment distributions with different in-plane tension forces. From 

the comparison between the moment distribution in the tensile plastic region and in the 

compressive plastic region, it can be seen that the moment in the tensile plastic region 

increases with the increasing external tensile forces, and the larger the bending 

curvature is, the larger value the moment is. However, in the compressive plastic region, 

there is a mid-range of curvature, where the external force has a great influence on the 

moment. When the bending curvature surpasses this special range and continues to 

increase, the moment does not change substantially, but as a whole the moment in the 

compressive plastic region reduces when the external tensile force increases. 
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(a) Moment in the tensile plastic region (b) Moment in the compressive plastic region 
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(c) Moment in the elastic region (d) Total bending moment 

Figure 8.22: Moment vs bending curvature with different in-plane tension forces. 

Regarding the moment evolution curve in the elastic region with respect to the bending 

curvature, Figure 8.22 (c) demonstrates that with the increasing external force, the 

transition from the low bending curvature stage to the high curvature stage becomes 

more and more sharp. In this transition range of the bending curvature, the moment 

value alternates in an elaborated way. For the small external tensile force, there exists a 

concave down transition curvature range from the small curvature to high curvature, and 

showing that the higher the external force applies the higher the moment in the elastic 

region. When the large external tensile force applies, that concave transition vanishes, 

and is replaced by a sharp peak. In this case, the moment reduces when the external 

tensile force increases. In the high curvature range, the moment in the elastic region 

reduces steeply into almost zero, and the more external force it applies, the quicker the 

moment reduces. It is also notable that the total moment curve increases as the tensile 

force in Figure 8.22 (d). 

Figure 8.23 shows the springback factor   evolution when the bending curvature 

changes with different in-plane tension forces. From there, it can be seen that the 

external in-plane tension force does not alternate the shape of the springback factor   

evolution curve with the bending curvature. At the same bending curvature, the 

springback factor   has a slight increase with the increasing external in-plane forces. In 

a whole, the external in-plane stress has no great influence on the springback effect.  
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Figure 8.23: Springback factor   vs bending curvature with different in-plane tension forces.  

8.6 Numerical simulation of springback  

Nowadays, numerical simulations about springback prediction based on finite element 

methods replace time-consuming trial-and-error methods in tooling design [1, 22]. To 

be able to efficiently use finite element software to predict springback in sheet metal 

forming, springback needs to be considered as a complex physical phenomenon. The 

accuracy of springback calculation is strongly dependent on precise evaluation of the 

stress during forming. The accuracy of sheet metal forming and springback simulation 

depends not only on the forming conditions (contact, friction, tool and binder geometry, 

etc.), but also on the choice of the material constitutive model and its numerical 

implementation into finite element programs. Accurate modeling of springback in sheet 

metal forming requires an accurate understanding of this phenomenon. Some 

researchers have proposed various practical anisotropic yield criterions and successfully 

applied them in commercial sheet metal forming simulation software for materials with 

BCC or FCC crystal structure [27, 28]. However, for the HCP material, not only the 

anisotropy characteristic of the sheet metal, that plays a very important role in 

improving the realistic simulation precision, but also the asymmetrical effect, are both 

crucial factors affecting the prediction of springback. In the following sections, several 

anisotropic constitutive models with an asymmetrical hardening law are implemented in 

the implicit integration scheme, and applied to model the unconstrained cylindrical 
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bending test of Numisheet 2́002 bechmarks. Besides, several critical factors that affect 

the simulation of springback in sheet metal forming are also investigated. 

8.7 Fundamental review of constitutive model 

In a phenomenological model, the mathematical description of the plastic behaviour 

uses three major concepts: the yield criterion, the hardening law and the flow rule. 

The yield condition establishes a convex surface in the stress space, which bounds the 

elastic region. It can be expressed as a function of the so-called “state variables”, for an 

isotropic hardening law, by the general expression 

 (   
 
)        ( 

 
), (8.42) 

where    is a scalar function representing the stress–strain hardening behavior, and 

defining the size of the yield surface. Also,     is the equivalent value of the stress 

tensor  , defined by the yield function. 

8.7.1 Yield criteria review  

A brief description of yield functions was addressed in detail in Chapter 2 and Chapter 7. 

This section presents several yield functions under plane stress condition.  

(a) von Mises yield criterion 

The von Mises criterion is a commonly used isotropic yield criterion. This criterion can 

be written as 

       √
                                 

 

 
  (8.43) 

(a) Hill yield criterion  

The quadratic Hill yield criterion is widely selected to capture the anisotropic 

mechanical properties, which can be written under plane stress condition as  

      [          
            

                
           

 ]     (8.44) 

where,      ,      ,      ,      ,      ,       are material parameters. 

(b) Barlat yield criterion  

In order to include the shear stresses into yield function, Barlat et al [29] proposed a 

more general anisotropic yield criterion based on the Hosford’s criterion by expressing 
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it in an  ,  ,   coordinate system, not necessarily coincident with the principal 

directions. The formulation can be written as 

        (
   |     |

       |     |
            |   |

   

 
)

 
   

  (8.45) 

The coefficients    and    are given by 

   
          

 
  (8.46) 
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(8.47) 

and    ,    , and     are material parameters. 

(c) Cazacu 0́6 anisotropic yield criterion 

To describe both the asymmetry between tension and compression, not disregarding the 

anisotropy observed in HCP metal sheets, Cazacu and Barlat [30] introduced a general 

and rigorous method which is based on the theory of tensor functions representation. A 

material parameter  ̃  is introduced and the proposed orthotropic criterion can be 

expressed by  

       
 ̃  (|  |   ̃  )

 ̃
 (|  |   ̃  )

 ̃
 (|  |   ̃  )

 ̃
  (8.48) 

where   ,   ,    are the principal values of  . The transformed tensor   can be defined 

as: 

   ̃   (8.49) 

 where  ̃ is a 4th order tensor, which includes 7 independent anisotropy coefficients for 

plane stress conditions. The tensor  ̃ is represent by 
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. (8.50) 

In order to ensure the convexity of yield function, the introduced parameter,  ̃, should 

be within the range of  ̃  [    ]. When the transformed matrix  ̃  is equal to the 

identity matrix, the proposed formulation can reproduce, as a limiting case, the von 

Mises yield criterion.  

(d) New proposed yield criterion 
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In the chapter 7, we extent further the Barlat 8́9 model by adding the term of the 

absolute value of the principal stress, the extended yield criterion can be seen as 

    (
 |         |     ||

 
  |         |     ||

 
 

 |   |
 

)

   

  (8.51) 

where,  

   
        

 
  (8.52) 

   √ 
        

 
        

   (8.53) 

and  ,  ,     and   are material parameters. Parameters  ,  ,   and   reflect the 

anisotropic mechanical behavior. Parameter   defines the asymmetrical strength 

between tension and compression stress state. In this contribution, the parameter   was 

calculated by 

     . (8.54) 

The loading-unloading conditions can be expressed in Kuhn-Tuckner form as Equation 

(8.55). 

     ̇     ̇   . (8.55) 

The phenomenon of hardening describes the changes in yield stress that result from 

plastic straining and the flow stress,     represents the size of the yield function during 

deformation. 

8.7.2 Hardening law 

For processes in which the sheet metal is subjected to relatively linear loading paths 

(such as hemispherical punch stretching or cup-drawing), the simple assumption of 

isotropic hardening may provide accurate springback predictions. 

An appropriate equation describing changes in the flow stress of the material depends 

on deformation conditions. The AZ31 magnesium alloy has asymmetric property, which 

means it has different strain and stress curves for tension and compression process. 

Based on this, different hardening law is proposed for the simulation. The same 

separated hardening laws are chosen as the analytical method to describe the uniaxial 

true stress-strain curve response in both tension and compression stress states. All the 

mechanical parameters can be identified by the related experimental test, which can be 

seen in Table 8.1. 
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8.8 Implementation of the constitutive model 

In this section, the numerical solution strategy adopted in this work is summarized. The 

incremental solution of the initial boundary-value problem for elasto-plasticity problems 

requires a discrete time integration of the constitutive equations of the model over a 

time increment, from a known state at time    to the unknown state at     , given the 

total strain increment   . Therefore, the discretization of the constitutive equations 

within a generic pseudo-time interval  [       ]  is performed for all above mention 

constitutive models. 

The numerical integration of elasto-plasticity constitutive equations is typically carried 

out by means of the so-called elastic predictor return mapping schemes. A fully implicit 

elastic predictor return mapping algorithm, which is called Closest Point Projection 

Method (CPPM), is implemented within an implicit quasi-static finite element 

environment. In the algorithm, a trial stress is made to relax to the closest point on the 

yield surface.  

The elastic predictor step of the algorithm in the present case is clearly identical to that 

of the plane stress projected in von Mises model and, therefore, requires no further 

consideration. However, the return mapping step requires the solution of the algebraic 

system of equations. 

{

    
                  

  ̅  
    ̅

    

        
     (  ̅  

 ) 

}   {
 
 
 
}  (8.56) 

where     
 ,  ̅  

 
     are the unknowns and      is the flow vector.  

The procedures of the elastic predictor step are described in details in Box 8.1. 

Notice that, for the yield criteria (von Mises yield criterion, Hill 4́8 yield criterion) with 

a separated hardening law, the hydrostatic pressure   is used as the criteria to select the 

uniaxial tensile or uniaxial compressive stress-strain response curve as the hardening 

law in the constitutive model. For the Cazacu 0́6 yield criterion and the new proposed 

yield criterion in Chapter 7, only the uniaxial tensile stress-strain curve is considered as 

the hardening law, due to that the yield function can describe the asymmetrical 

mechanical behavior.  
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Box 8.1: The implementation of Closest Point Projection Method (CPPM) for springback simulation 

(i) Elastic predictor. Given    and the state variables at   , evaluate the elastic trial 

state: 

    
          

     ;   ̅  
          ̅

 
; 

    
             

       ;     
              

       ;  

     
          

          
      ; 

       
            

      . 

(ii) Check Plastic admissibility 

For the yield criteria (von Mises, Hill 4́8) with a separated asymmetrical hardening 

model 

If     
         Then 

         
        

    ̅  
         ; 

Else 

         
        

    ̅  
        . 

End If 

      For the other yield criteria (Cazacu 0́6, New proposed yield criterion) with an 

isotropic hardening model 

         
        

    ̅  
        . 

If       

Then set              
       and Exit 

(iii) Return mapping. Solve the system of five equations using the Newton-Raphson 

iterative method 

{

    
      

              

  ̅  
    ̅

    

        

}  {
 
 
 
}  ,   

where 

     
    

  
, 

The solution is found for     
 ,   ̅  

 
 and   . The stress tensor can be obtained by 

            
 . 

(iv) Exit 
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8.9 Numerical results on the unconstrained cylindrical bending simulation 

The unconstrained cylindrical bending and springback analysis from Numisheet 2́002 

international benchmark is chosen to test the solid-shell element performance in large 

bending deformation and springback analysis. Kim and Hyung Jong [31] completed the 

stamping experiments and provided the experiment parameters and test results. This 

example has been frequently taken by many researchers because it involves the simple 

die geometry but complex contact condition. Besides the accuracy of the element model 

can be conveniently evaluated. The FE model of unconstrained cylindrical bending is 

presented in Figure 8.24. The cylindrical punch and die are considered as rigid surfaces 

in the simulation. The rectangular blank is meshed with the reduced integrated four-

noded shell element (S4R). The initial blank is a 120 mm×30 mm×0.6 mm square plate. 

The material used in the simulation is AZ31, and the material parameters are identified 

in Table 8.1. The whole process is separated into two steps. The first step, called 

forming step, consists in the cylindrical punch moving down to a specific position by 

setting the prescribed punch stroke, which is called stamping step. The second step is 

the springback step, where all the contact information among punch, blank and die are 

removed. After the forming process, the effect of dies on blank deformation is not 

considered during the springback prediction. The springback is considered as a process 

of residual stress unloading. The total process is conducted by a standard implicit 

scheme in the finite element software ABAQUS/standard solver.  

 

Figure 8.24: The geometric model of springback test for simulation. 
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The friction behavior was modeled using the Coulomb friction law. The friction 

coefficient    between the blank and the punch was assumed to be the same as the 

friction coefficient    between the blank and a die of 0.1. 

The following set of boundary conditions has been applied: a reference point is 

specified on each rigid surface. For the reference point on the die surface all degrees of 

freedom (i.e. displacement in horizontal and vertical directions and rotation) have been 

suppressed. For the reference point on the punch surface, the displacement component 

in horizontal direction and the rotation are suppressed, while the displacement of the 

punch in vertical direction is specified. In the analysis of sheet metal forming it is 

common practice to assume that the elastic modulus remains constant. 

There are several critical factors that influence the simulation of springback in sheet 

metal forming. A detailed study of numerical issues associated with springback 

prediction was carried out by Li et al. [22]. However, the parameters affecting the 

numerical simulation of springback are specific to each problem. Particularly, the 

material has a strong strength differential (SD) effect. Therefore, a detailed investigation 

is carried out to evaluate the effect of the integration point, yield criteria.  

8.9.1 Analysis of the plastic deformation  

  

(a) The total strain contour in the top surface (b) The total strain contour in the bottom surface 

  

(c) The plastic strain contour in the top surface (d) The plastic strain contour in the bottom surface 

Figure 8.25: The strain contour in the top and bottom of the plate. 

Figure 8.25 shows the strain distribution in the top and bottom surface after stamping 

process. Figure 8.25 (a) and Figure 8.25 (b) demonstrates the total strain contour on the 
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surface of the plate. Figure 8.25 (c) and Figure 8.25 (d) demonstrate the equivalent 

plastic strain contour on the surface of the plate.  Here, the surface of “           ” 

denotes the top surface, also denoting the surface that suffers compressive longitudinal 

stress. The surface of “           ” denotes the surface that suffers tensile 

longitudinal stress. By comparison of the (a) and (b) in Figure 8.25, it can be seen that 

the magnitude of maximum strain in the top surface is much larger than in the bottom 

surface. It indicates that the neutral surface of the plate locates close to the bottom 

surface. In each transverse section, it is found that the material in the center of the top 

surface have a larger strain than the marginal part. However, the material on the bottom 

surface has an opposite distribution, while the material located in the margin of the edge 

has a larger strain. This rule also occurs in the plastic strain contour.  

8.9.2 Effect of Number of Integration Point (NIP) through thickness  

Most shell elements require numerical integration of stress through the thickness to 

obtain bending moments and tensile forces. This introduces numerical error in the 

results. Some parameters may affect the local strain/stress significantly, such as Number 

of Integration Points (NIP) through thickness.  

Figure 8.26 shows the simulation results by the von Mises yield criterion using S4R 

with a variable number of integration points along the shell thickness. It can be 

observed that the springback angle increases with the increase of the integration point 

number through thickness. After the integration point is larger than 13, the springback 

angle gets to a stable value. 

 

Figure 8.26: The springback angle simulated by von Mises with different NIP through thickness. 
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By comparison of the springback angle between the value of 5 integration point through 

thickness and the stable value, it is possible to find that the absolute magnitude gap is 

0.6
0
, and the relative gap error is 0.85%. Many integration points are required to obtain 

springback results within 1% of the limiting case (with sufficient integration points that 

springback angle no longer changes with additional points). It means that five 

integration points could be enough to obtain good results. Taking under consideration 

the computational cost, five integration points through the thickness is the best choice 

for the symmetrical material.  

Figure 8.27 presents the springback angle evolution as simulated by the proposed yield 

criteria with a variable number of integration points through thickness. From there, it is 

found that similarly to the results obtained by von Mises yield criteria, the springback 

angle increases with the increment of the integration point’s number though thickness.  

However, it is seen that the absolute magnitude value between 5 integration point and 

the stable value is up to 2.60, the relative error is equal to 6.13%. This gap value is 

much larger than the results obtained by von Mises. It indicates that the influence of 

integration points on the asymmetrical material is much larger than the symmetrical 

material. That is due to the fact that the neutral surface is not coincident with the mid-

plane of the plate, the strain though thickness is asymmetrical. 

 

Figure 8.27: The springback angle simulated by the proposed yield model with different NIP through 

thickness. 

As analyzed in the Section 8.5, for the magnesium alloy, the neutral plane moves 

toward the outside surface that is subjected to the tensile stress state. It results in that the 
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distance between neutral plane and outer surface becomes small, and the total stress 

distributed in these zone narrows. In order to obtain accurate results, it is necessary to 

increase the integration point number for the asymmetrical material.  

A variety of techniques can be used for numerical integration. At their simplest, most 

rely on fitting an approximate function through a number of points at which the 

integrand is calculated, also integrating analytically the approximating function. 

ABAQUS supply two integration methods for the shell element in their library. One is 

Simpson integration method, the other is Gauss integration method. The Simpson 

integration method is the default option for the shell element in the ABAQUS. The 

simulated results obtained from different integration algorithm through thickness are 

presented in Figure 8.28. From there, it can be seen that the results obtained from the 

Gauss integration method have a narrower gap than the results obtained from the 

Simpson integration method, besides requiring a less number of integration points 

through thickness to get the stable springback value when compared with Simpson 

integration method. Therefore, it can be concluded that the Gauss integration point is a 

better choice in this particular case. 

 

Figure 8.28: The comparison of two integration methods. 

8.9.3 Influence of yield criteria on springback 

The yield function used in the finite element simulations of the forming operations is 

very important in the view of prediction springback, since they represent a convex yield 

stress surface in the stress field, which limits the elastic range of the materials. In order 
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to study the influence of the yield criteria on the springback, several yield criteria, like 

von Mises, Hill 4́8, Barlat 8́9 and Cazacu 0́6 yield criterion are implemented in the 

present study. In order to describe the asymmetrical hardening, several authors also use 

a simple method to modify classical anisotropic constitutive models by adopting 

different stress-strain responses for the tension and compression stress state, 

respectively.  

In this study, the von Mises and Hill 4́8 criteria are also implemented by the above 

separated mechanical response. In order to avoid the influence of the number of 

integration point, total plate is meshed with shell element S4R, where 13 integration 

points are used through thickness.  
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Figure 8.29: Springback back simulated by different yield criteria. 

Figure 8.29 demonstrates the springback angle simulated by the above different yield 

criteria. Mises-Asym denotes that the results are obtained by adopting the von Mises 

yield criterion with a separated isotropic hardening under tension and compression 

stress state, respectively. Hill-asym means Hill yield criterion with a separated isotropic 

hardening law. From there it is clearly seen that all the yield criteria which cannot 

reflect the asymmetrical strength effect, like classical von Mises. Hill and Barlat yield 

criteria is larger than the other yield criteria which consider the SD effect, also having a 

great deviation from the analytic results. It means that the SD effect has a great 

influence on the springback. By the comparison of the remaining results obtained by the 

simulation and analytic criteria, it is clear that the result obtained by Cazacu 0́6 yield 
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criteria is close to the prediction by analytic methods. Hill-asym model can also give a 

good prediction in this simple benchmark case.  

8.10 Conclusions 

In this chapter, two types of methods (analytical and numerical method) were used to 

study the springback behavior of Magnesium alloy. Therefore, the chapter was divided 

into two parts. 

In the first part, a generic analytical method was proposed. This model can not only be 

used to the prediction of the symmetrical model, but also the unsymmetrical model. 

This model is available for arbitrary mechanical hardening behavior. The verification 

and validation of this analytical model was performed by experimental and simulation 

analyses. After that, it was applied to analyze the mechanics of the AZ31 plate during 

bending process. The influence of the sheet thickness, bending curvature, strain rate and 

in-plane external tension stress on the neutral surface distribution, the distribution of the 

force and the moment in elastic, compressive plastic, tension plastic of the plate section 

were investigated, respectively.  

 For the bending of unsymmetrical material, there exist four typical regions: 

compression plastic region, compression elastic region, tension elastic region 

and tension plastic region. These four regions are not symmetrical; the neutral 

surface is not coincided with the mid-plane. With the increasing bending 

curvature, the compression region expanded. The neutral surface also moved 

toward outside surface.  

 By the comparison of springback factor of plates with different thickness, the 

springback factor presented a significant increase when the plate thickness 

augmented.  

 With an applied external in-plane tension force, the bending moment increased 

with the increasing external tension force. The incremental moment gap of each 

external tension force augmented with the increasing bending curvature.   

In the second part, a series of constitutive models were implemented by user-defined 

material subroutines into the commercial nonlinear finite element code ABAQUS. The 

CPPM numerical algorithm was used to integrate the stress and other state variables 

over each time increment. All these constitutive models can be categorized into two 

types. One is the conventional yield criteria coupled with pure isotropic hardening 

model. These constitutive models itself can only reflect the anisotropic properties. The 
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other model can capture anisotropic and SD effect simultaneously. By comparison of 

the springback angle of the unconstrained cylindrical bending test using the above 

anisotropic models, the model considering the SD effect was able to obtain a more 

accurate prediction than the previous model. The elaborated model takes into account 

the anisotropic behavior of materials and asymmetrical strength at the same time. Then 

several simulations with varied integration number through thickness were performed. It 

was concluded that for the symmetrical material, 5 integration points through the 

thickness are sufficient to obtain a convergence solution for springback, and the 

asymmetrical model is more sensitive of NIP through thickness than the symmetrical 

material. Therefore, it is necessary to employ a higher number of integration points 

through thickness.   
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Chapter 9  

An Extended Elasto-Viscoplastic Model: 

Formulation and Numerical Implementation 

9.1 Introduction 

Even though large numbers of studies on the plastic deformation behavior of 

magnesium (Mg) alloys have been carried out, most of them have their focus on the 

materials response under quasi-static loading conditions [1-5]. However, in some 

structural applications, components must be designed to operate over a broad range of 

strain rates and temperatures. For instance, the high strain rate behavior is of great 

interest to automotive, aerospace and/or defense industries since wide range of critical 

components must have the proper mechanical properties to work under severe loading 

conditions, such as crash or impact. Furthermore, in most metalworking processes, 

materials undergo large amounts of strain at different strain rates, such as 

electromagnetic forming. Strain hardening and strain-rate sensitivity, determining the 

formability of magnesium alloys, have been identified as important factors to take under 

consideration in the effort of making this material compete with other structural 

materials for practical applications. Therefore, it is inevitable to study the mechanical 

behavior of Mg alloy at dynamic strain rates. Kocks and Mecking [6, 7] observed that 

strain hardening rates are different for different deformation modes. They attributed this 

behavior to differences in the texture evolution behavior. In Mg alloys, the variations in 

the strain hardening behavior can also be ascribed to the influence of the initial texture 

on slip and twinning. Ulcacia et al [8-10] carried out a series of experiments and 

investigated the mechanical behavior at high strain rates of AZ31 magnesium alloy 

sheet, as well as the influence of the strain rate and temperature on the deformation 

mechanisms by means of Electron Back Scatter Diffraction (EBSD) and neutron 

diffraction. It is shown which amount of mechanical twinning occurs at a similar plastic 

work under different strain rates. It is concluded that the twinning plays an important 

role on high strain rate deformation of this alloy. The microstructure of AZ31 is 

presented in Figure 9.1. Although twinning cannot dominate plasticity at large strains, 

since the shear strains are modest even at large twinned volume fractions, deformation 

twinning can give rise to a radical reorientation of the volume fraction of the crystal that 
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has twinned. This leads to substantial texture modification. Subsequent plasticity by slip 

in a twin-modified texture then progresses quite differently due to the anisotropic nature 

of the deformation mechanisms. These amounts of occurred mechanical twinning 

undoubtedly alter the yield asymmetrical mechanical behaviors at high strain rates from 

the quasi-static conditions owing to their polarity. 

  

(a)  =20 
0
C,  ̇       s

-1
, 

       (b)  =20 
0
C,  ̇      s

-1
, 

        

Figure 9.1: Microstructures of AZ31B magnesium alloy sheet under different strain rates [9]. 

In order to be able to accurately simulate some high impact processes, including metal 

forming, crashworthiness, and high velocity impact problems, it is necessary to 

understand the material behavior at different deformation conditions. This entails the 

need to develop the constitutive behavior that describes the material behavior at various 

deformation conditions.  In recent years, numerous studies [11, 12] have been 

conducted with the elasto-viscoplastic Crystal Plasticity Finite Element Method (CP-

FEM) in order to understand the micro-mechanisms involved and capture the macro 

mechanical behavior. But its high computational cost limits its application to real sheet 

metal forming. Phenomenological yield surface functions are still a good choice in 

engineering practice. The phenomenological models are actually designed for simplicity 

of computational implementation for static and dynamic analysis as they are relatively 

easy to calibrate with a minimum set of experimental data in the form of stress–strain 

curves at different strain rates and temperatures. Although numerous computational 

models with the existing yield criteria [6, 13, 14] such as Hill from 1948 and 1990, 

Hosford, Barlat, or Barlat and Lian, Karafillis et al have been proposed to describe 

temperature and strain-rate effects on the inelastic response, all of them can give rise to 

robust predictive methods for simulating the anisotropic high strain-rate behavior of 

Body Centered Cubic (BCC) and Face Centered Cubic (FCC) polycrystals. However, 

they fail to capture this unconventional mechanical behavior of HCP crystal structure 
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materials. Cazacu and Plunkett et al. [15] used the Perzyna ś theory of viscoplasticity 

with the Cazacu 0́6 yield for describing the high strain-rate and large deformation 

behavior of HCP polycrystals. Although the Cazacu 0́6 model used the transformed 

principal stress with a fourth-order linear transformation operator on the Cauchy stress 

tensor, to simultaneously account for the initial plastic anisotropy and strength 

differential (SD) effect, it is also able to reflect both the anisotropic and yield 

asymmetrical mechanical behavior. In spite of this, it still fails to describe the rate-

dependent yield surface, i.e. the influence of mechanical twinning occurred at high 

strain rate on the yield surface. It cannot only describe the uniformly expansion of the 

material's yield loci as the strain rates is increased to higher values.   

Therefore, the objectives of this chapter are the development of rate-dependent material 

constitutive models that integrate a nonlinear elasto-viscoplastic model and their 

implementation into an implicit nonlinear finite element scheme. The proposed model 

employs an extended Cazacu 0́6 yield surface which accounted for the influence of 

strain rate on material response based on Perzyna ś theory of viscoplasticity.  The 

viscoplastic strain is modelled using Perzyna ś viscoplasticity theory. The outline of this 

paper is as follows: in section 9.2, the flow curves at different strain rates are fitted by 

the Perzyna viscoplastic model. The material parameters inside this model are identified 

by the least square optimization method by using the experimental data at different 

strain rates. In section 9.3, the Cazacu 0́6 yield criterion is briefly described.  In section 

9.4, the material parameters in the viscoplastic constitutive equations are modeled as a 

function of strain rate. Section 9.5 implements the extended elasto-viscoplastic model 

using a primal Closest Point Projection Method (CPPM) within an implicit finite 

element environment. The numerical algorithms and computational implementation of 

the constitutive model in the FE code ABAQUS are presented in detail. In section 9.6, 

several numerical examples are performed in order to validate and test the formulated 

constitutive model. 

9.2 Determine the flow curves at different strain rates 

Khan et al [16] carried out standard quasi-static and dynamic tensile or compressive test 

to study the mechanical response and texture evolution of AZ31 at large strains for 

different strain rates. The true stress-strain data at room temperature under different 

strain rates in literature [16] is extracted in this study to characterize the relevant rate-

dependent mechanical behavior and on this basis to determine material parameters of 
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the flow curve. In order to obtain the effective true stress–true plastic strain curves, the 

plastic strain is calculated from the true stress–true strain data by removing the elastic 

strain, which can be determined by 

  
     

 

 
    (9.1) 

where   is Young’s modulus and   is Poisson’s ratio, and   is the true stress. 

  
 
 is the plastic strain,    is the total true strain. 

The term flow stress is used to describe the stress necessary to continue deformation at 

any stage of plastic strain. Mathematical descriptions of true stress–strain curves are 

needed in engineering analyses that involve plastic deformation, such as predicting 

energy absorption in automobile crashes, designing of dies for stamping parts, analyzing 

the stresses around cracks, etc. This mathematical equation usually is a function of 

strain with many empirical constants by fitting the experimental test data. There are two 

approaches to determine the constitutive behavior relation of AZ31 magnesium alloy. 

The first is describing the behavior in terms of microstructure, deformation conditions 

and various materials constants related to the properties of the material. The second 

approach solely describes the behavior in terms of the deformation conditions and 

various material constants. It is also named engineering models as they are more 

common in engineering applications. Usually, these empirical models have little physics 

in them and usually the constants cannot be related to any physical process or 

phenomenon. In spite of this inherent disadvantage, these models are extensively used 

in FEM codes to model plasticity as they require low computational resources and 

provide excellent fits for a given deformation condition. Owing to that the AZ31 

magnesium alloy has asymmetric mechanical behavior, which means it has different 

strain and stress curves for tension and compression process, and different flow laws 

should be chosen to describe the uniaxial true stress-strain curve response in tension and 

compression stress state respectively. Dynamic flow curve modeling should take into 

account parameters such as strain, strain rate in order to accurately capture the strain 

rate sensitivity behaviour of materials. A constitutive relation needs to define the 

dependence of flow stress on coupled effect of strain hardening, and strain rate. In order 

to integrate the influence of strain rate into the usual flow equation at room temperature, 

the flow equation is expressed as multiplicative terms, as follows: 
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)  (9.2) 



Continuum Modelling and Numerical Simulation of Hexagonal Close-Packed Materials 

233 

 

where,   ( 
 
) represents the usual flow law part, which is independent on strain rate. 

 ̃ ( ̇
 
)  is a function of strain rate. A choice of different constitutive equations is 

available to describe strain rate dependency, such as piecewise linear plasticity, plastic 

kinematic hardening, etc. In this contribution, Perzyna’s overstress function is adopted 

to govern the time dependent straining of the material. Therefore, strain rate part can be 

written as 

 ̃ ( ̇
 
)  (   ̂ ̇

 
)
 ̂

  (9.3) 

9.2.1 Identification of the material parameters of flow rules 

The calibration of the flow law is performed using an optimization procedure, 

regardless of its complexity. To do so, we begin by defining an error parameter to 

quantify the error between a simulated curve and the corresponding experimental data. 

The error in stress between simulation and experiment is measured at several discrete 

plastic strain values. Each error value is divided by the measured experimental stress 

value at that plastic strain level. The quadratic values of these normalized error values 

are then averaged as follows: 

      
 

   
∑ (

  
   

 
     )

    

   

  (9.4) 

where the subscript     defines the number of experimental tests used to measure 

stress points. The subscripts    ,     refers respectively to the simulated values by 

proposed flow equations, and experimental values.  

To this end a least-squares error functional is considered as an identification criterion in 

order to minimize the distance of the simulated data to the experimental data. A general 

framework and technical details for the minimization of the least-squares error 

functional is presented elsewhere, see [17, 18]. 

9.2.2 Tensile flow curve  

As regarding the strain hardening part, considerable effort has been directed toward 

developing empirical relations that describe the hardening behavior of polycrystalline 

materials. Different hardening laws have been proposed by several authors, such as 

Ludwik [19], Swift [20], and Você [21]. These hardening laws have been widely used to 

describe the work-hardening behavior of materials. In order to accurately describe the 

flow behavior of the materials at different strain rates, the true stress ( ) - plastic strain 
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(  
 

) data along the rolling direction is fitted to three modified flow models by 

integrating the Perzyna’s overstress function into the above mentioned work hardening 

models- modified Ludwik law, modified Swift law and modified Você law. 

(i) Modified Ludwik law 

    [        
 
   ] (   ̂  ̇

 
)
 ̂ 

  (9.5) 

where:     is the initial strength (MPa),    is material parameter,   is the strain-

hardening exponent,  ̂  is the strain-rate sensitivity index,   ̂  is the viscosity-related 

parameter. 

(ii) Modified Swift law 
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  (9.6) 

where:    is the strength coefficient (MPa),      is the pre-strain,    is the strain-

hardening exponent,   ̂  is the strain-rate sensitivity index,  ̂  is the viscosity-related 

parameter. 

(iii) Modified Você law 
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)
 ̂

  (9.7) 

where:   ,    ,    is the material parameters,  ̂ is the strain-rate sensitivity index,  ̂ is 

the viscosity-related parameter. 

 

(a) Modified Ludwik flow law 
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(b) Modified Swift flow law 

 

(c) Modified Você flow law 

Figure 9.2: Stress-strain relations for AZ31 under tensile test at RD direction. 

It must be noted that the reason that a proper flow function generally gives appropriate 

results for applications involving monotonic loading is that the functions presented in 

Equation (9.5) to Equation (9.7) are capable of providing a suitable fit to the uniaxial 

tensile stress-strain curve for different orientations with respect to the rolling direction. 

After material parameters identification using a least-squares method, three flow laws 

(Modified Ludwik flow law, Modified Swift flow law, Modified Você flow law) 

predictions for the three different strain rates illustrated in Figure 9.2 have been 

obtained. It can be seen that significant increase of stress response is observed with the 
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increase of strain rate. All the models are more or less capable of describing the trends 

at various strain rates. However, by the comparison of errors among different flow laws 

in Figure 9.3, it is clearly seen that the modified Você model has least error value and 

meet a better accordance between experiments and simulations than the other two 

models. 
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Figure 9.3: Error comparisons among different flow laws. 

9.2.3 Compressive flow curves 

Owing to that the magnesium alloy demonstrates an asymmetrical mechanical behavior 

between tension and compression test, the stress-strain curve under compression test 

exhibits concave start-up phase caused by the occurrence of massive twinning, which is 

obviously different from the stress-strain curve under tension test. Thus, the 

mathematical description of the characteristic of stress-strain curves under compression 

test is available to use the same flow equation as tensile test. It is obvious that it should 

be a complex mathematical function to describe the flow behavior under compression 

test.  

After the analysis of physical essence and curve shape of compressive flow curve, a 

new flow law is proposed to capture the atypical stress-strain response, which can be 

written as 

    [         [      [   ( 
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where     ,    ,    ,      is material parameters identified by the related compressive 

test,   ̂  is the strain-rate sensitivity index,  ̂   is the viscosity-related parameter. 

For evaluation of parameters of the function, the same calibration procedure as tensile 

test was used, with the utilization of the gradient optimization method. A special 

attention was dedicated to the initial estimates of the parameters of the function. The 

progression of the calibrated functions, in comparison with experimental data, is 

demonstrated in Figure 9.4. 

 

Figure 9.4: Stress-strain relations for AZ31 under compressive test at RD direction. 

It is evident that the determined functions describe accurately the experimental data. By 

comparison with the stress strain response under tensile test, the tension-compression 

asymmetry is generally observed. These stress differences are consistent with the 

predominance of crystallographic slip in tension and        twinning followed by 

strain hardening in compression. Although the strain hardening rate also increases with 

increasing strain rate, the influence of strain rate on the flow stress under compressive 

test is clearly less than tensile test. This means that these dynamic mechanical properties 

of AZ31 magnesium sheet enhances further SD effect, and it may affect the evolution of 

yield surface during the deformation. 

9.3 Constitutive formulation of elasto-viscoplastic model 

Regarding viscoplastic model, material behavior there are basically three different 

approaches [22]: formulations with a yield surface, which demarcate an elastic domain, 
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formulations without yield surfaces and, lastly, formulations based on overstress. 

Generally, for the construction of the viscoplastic material model, the total stress is 

decomposed into two parts, namely a rate-independent equilibrium stress     and a rate-

dependent overstress   . However, due to the influence of the strain rate on the shape of 

yield surface of HCP structure materials, the equilibrium stress part of the constitutive 

model should also be strain rate dependent. The objective of this section is to develop a 

macroscopic anisotropic model that describes simultaneously the influence of strain-rate, 

and evolving texture on the inelastic response of metals with HCP crystalline structure.   

9.3.1 Kinematic and flow rule for elasto-viscoplasticity 

The constitutive equations are formulated within a geometrically linear theory for small 

strains. The strain-rate   can be decomposed additively into an elastic part  ̇  and a 

viscoplastic part  ̇  ,  

        . (9.9) 

According to the Perzyna’s overstress approach, the viscoplastic strain can be written as  

 ̇    〈 ̂〉 . (9.10) 

The evolution of the viscoplastic strain-rate is considered to be given by an overstress 

type law of the form: 

 ̇  
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  ]      ̂   

                                           ̂   

  (9.11) 

where,   is a viscosity parameter, and  ̂ is a strain-rate sensitivity constant. 

    is the yield function, which is different from the quasi-static yield function. It can be 

expressed as the function of stress tensor, accumulated plastic strain and strain rate,   is 

a vector normal to the above yield function, which can be defined (in a rate form) as 

  
    

  
  (9.12) 

9.3.2 Cazacu 0́6 yield formulation 

To describe the strength differential effect between tension and compression, a material 

parameter  ̃ is introduced and the proposed orthotropic criterion by Cazacu and Plunkett 

et al [14]. This model has been presented in detail in Chapter 6, and will be summarized 

here for completeness. It can be expressed by  

   
 ̃  (|  |   ̃  )

 ̃
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 ̃
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 ̃
  (9.13) 
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where   ,   ,    are the principal values of  . The transformed tensor  , which can be 

defined as:  

   ̃   (9.14) 

where  ̃  is a fourth order tensor, which includes nine independent anisotropy 

coefficients for three dimensional stress conditions.   

The transformed matrix  ̃ can be obtained by 
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. (9.15) 

When the transformed matrix  ̃ is equal to the identity matrix, the proposed formulation 

can reproduce, as a limiting case, the von Mises yield criteria. In order to ensure the 

convexity of yield function, the introduced parameter,  ̃, should be within the range of 

 ̃        . 

9.4 Parameter identification of constitutive model 

A similar identification procedure to the strain rate independent constitutive model in 

Chapter 6 is adopted. Experimental results from uniaxial tension and compression yield 

stresses in rolling direction, 45
0
 to rolling direction, and transverse direction, and  -

ratios in the rolling, and transverse to rolling directions for the uniaxial tensile case are 

used. The error function is also based in the summation of the squares of the errors 

defined from a comparison between the results obtained from the constitutive equations 

for a given set of parameters to be identified and the corresponding experimental values. 

The difference is that all the data should be selected at the same plastic strain and strain 

rate level. A hybrid evolutionary optimization method is done to minimize the 

comparative errors between numerical results, obtained from the constitutive equations 

at each accumulated plastic strain and strain rate. In this contribution, three accumulated 

strain levels are chosen, 0.03, 0.06, and 0.1. Three strain rate are adopted, 0.0001 s
-1

, 

0.01 s
-1

, 1 s
-1

. 
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Figure 9.5: Yield surface evolutions with different strain rates at plastic strain of 0.01. 

 

Figure 9.6: Yield surface evolution with different strain rates at plastic strain of 0.03. 
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Figure 9.7: Yield surface evolutions with different strain rates at plastic strain of 0.06. 

The comparison between predicted yield surfaces by the proposed strain rate dependent 

yield criterion and the corresponding experimental results at different strain rate, levels 

are presented in Figure 9.5 to Figure 9.7, respectively. From these figures, it can be seen 

that excellent correlation exists at all these experimental conditions. The extended 

Cazacu 0́6 model is available to properly capture the anisotropic stress response at 

different strain rate. From the comparison, it can be seen that with the increase of the 

strain rate, the yield surface presents a significant change, particularly for the large 

strain rate. The yield surface at different stress state expands at different deformation 

level. It indicates that the strain rate not only enhances the asymmetrical mechanical 

behavior, but it also affects the anisotropic properties. Thus, it is necessary to take the 

strain rate effect into account during the high speed deformation. 

9.5 Implementation of extended elasto-viscoplastic model 

To solve nonlinear boundary value, the finite element numerical scheme iteratively try 

out discrete displacements at the discretized material space until trial values ultimately 

satisfy the static principle of momentum or the equilibrium equation. The total process 

is discretized into small steps and variables such as stresses, strains are incrementally 
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integrated throughout the process. The solution is thus obtained for the chosen values of 

pseudo-time in the incremental sequence:                      . If 

the deformation is assumed to follow the proportional true strain path during the time 

step following the incremental deformation theory and also if the strain rate remains 

constant during the step, the strain rate is conveniently given by the strain increment as  

 ̇  
  

  
  (9.16) 

where    is the true strain increment in the materially embedded coordinate system.  

In displacement-based finite element formulations, stress updates take place at the 

Gauss points for a prescribed nodal displacement. In other words and as for most 

numerical schemes which are built to solve a constitutive equation, we suppose that the 

strain history path is known. We are then interested in the evolution of the other 

problem variables, in particular the stresses, the viscoplastic strain, and the total strain. 

The integration of the rate equations is a problem of evolution that can be regarded as 

follows. At incremental sequence   the total strain field and the plastic strain field as 

well as the hardening parameters are known: 

{           
    

  
}. 

The elastic strain and stress fields are regarded as dependent variables which can always 

be obtained from the basic variables through the relations 

  
       

  
. (9.17) 

The elastic part is assumed to be strain rate independent.  

In viscoplasticity, all the stress values are admissible, since the consistency parameter of 

the classical plasticity is replaced by a parameter  ̇, defined by the constitutive Equation 

(9.11). The discrete form of that equation can be written as 

   
  

 ̂
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  ]  (9.18) 

Implicit return mappings rely heavily on Newton-Raphson schemes to iteratively arrive 

at a solution. These schemes typically construct residual vectors   as a function of the 

unknowns, which can be written as 
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with     
       ,   ̅  

  
,    as the unknowns. Solution to the local system of generally 

nonlinear equations is achieved when        and the rate of convergence is 

intimately dependent on the consistent local tangent. A flow chart explicating the fully 

implicit return mapping algorithm is given in Box 9.1. The asymptotic quadratic rate of 

convergence of this iterative scheme makes this approach a very attractive one. 

However, it is limited to global convergence properties, and often leads often to a lack 

of convergence for large ranges of the initial trial state, particularly for the strong 

nonlinear evolution equations arisen from the high curvature of the yield function. It 

requires using line search algorithm to increase the efficiency of the Newton Raphson 

method. Owing to that the influence of the strain rate on the shape of yield surface, it 

results that the initial trial stress state and trial state variables may be too far from the 

solution. Besides the line search algorithm may not be enough to enhance convergence. 

In order to solve this problem, two iterative processes are adopted. In the first iterative, 

strain rate keeps as a constant, herein which is set as 0, after the first iterative process 

converges, the obtained results are used to be considered as the initial value for the 

second iterative process. 

Box 9.1: Fully implicit CPPM of extended elasto-viscoplastic model . 

(i) Elastic predictor: Given    and the state variables at   , evaluate the elastic trial 

state: 
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     |   ̃  
     )

 ̃
]

 

 ̃
; 

(ii) Check plastic addmissibility: 

         If            
           ̅  

            

        Then set              
       and Exit. 

(iii) Return mapping:  Solve the system of eight equations using the Newton-

Raphson iterative method (see Box 9.2) 

     {

  

  
  

  
}           for           {

 
 
  

  
} 

where 

       
      

               

  
     ̅  

     ̅
      

   
   (    ̅  

    ̇   

  
)

  (  ̅  
  

)
 (   ̂

  

  
)
 ̂

 

 

The solution is found for     
 ,   ̅  

  
 and   . The stress tensor can be obtained by 

            
   

(iv) Exit 

Box 9.2: Implementation of Newton iteration process for the extended viscoplastic model. 

(1) Input data: {    
        ̅

  
} and     

       . 

(2) Initialization: set      

     {
    

     

  ̅
  

 

}. 

(3) Compute the residual  
   

 and the jacobian  
   

 

If         then 

 ̇
  

  ; 

 (    )  

{
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Else 
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; 

 
   

  (    )     
   

    
   

. 

End if 

(4) Apply the Line Search Scheme In Box 9.3. 

Input:        ,  
   

,  
   

, and      . 

Output:       . 

(5) If         then    

Check convergence  Set the converge value as the initial value of new iterative 

(      
     

)  (        
       

), and        . 

Go To (3).     

else  

Check convergence  Set (         
  

)  (        
       

), and Exit. 

End if 

(6)  Set       and Go To 3. 

 

The application of a Newton scheme in the solution of the resulting non-linear algebraic 

equations is summarized in Box 9.2.  All the equations are written in residual form and 

the Jacobian matrix utilized in the iterative process identified. The line search algorithm 
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is briefly summarized in Box 9.3. This procedure is iterated until the criterion ‖ ‖  

    is satisfied. Here, ‖ ‖ is the norm of the vector   and     is a numerical tolerance. 

A tolerance value of      was used for     in this contribution. 

Note that, when implementing the Newton-Raphson iterative procedures, a flag 

parameter (IFLAG) has been introduced allowing to only perform one iterative process 

when IFLAG =1 and two iterative processes when IFLAG =0. This allows the 

comparison between two iterative calculations, using exactly the same analysis 

computational tools. 

(a) Bilinear interpolation 

Due to that only a finite set of pre-strain levels and pre-strain rate levels are obtained by 

the material parameter identification procedure. Therefore, it is necessary to utilize a 

interpolation method to the material coefficients  ̃ ( 
  

  ̇
  

);  ̃ ( 
  

  ̇
  

)  and their 

corresponding derivative with respect to the strain and strain rate during the stress 

integration scheme. 

In mathematics, bilinear interpolation is an extension of linear interpolation for 

interpolating functions of two variables (in this contribution, accumulated plastic strain 

 ̅   and strain rate  ̇
  

 on a regular 2D grid). Given the anisotropic coefficients in  ̃ 

matrix, and  ̃ at a finite set of pre-strain levels (  
  

   
  

     
  

) and pre-strain 

rate level ( ̇ 

  
  ̇ 

  
    ̇ 

  
) , the bilinear interpolation is to perform linear 

interpolation in accumulated plastic strain direction first, and then again in the strain 

rate direction. Although each step is linear in the sampled values and in the position, the 

interpolation as a whole is not linear but rather quadratic in the sample location. The 

detail can be seen as follows. 

Assumed that given values at four nearby points         
  

  ̇ 

  
 ,         

  
  ̇ 

  
 , 

        
  

  ̇ 

  
 , and        

  
  ̇ 

  
 , find desired value at point  ( ̅    ̇

  
) see in 

Figure 9.8.  

Firstly, a linear interpolation along the x-direction (plastic strain factor) is performed. 

The value of point    ( ̅    ̇ 

  
) and point    ( ̅    ̇ 

  
) can be calculated by  

      
  
  

  ̅  

  
  

   
         

 ̅     
  

  
  

   
          (9.20) 
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  ̅  

  
  

   
         

 ̅     
  

  
  

   
          (9.21) 

 

Figure 9.8: Schematic diagram of bilinear interpolation. 

After values of mid-interpolated points    and    are obtained, the value of the desired 

point   can be calculated by interpolating the above two mid-interpolated points in the 

 -direction (strain rate factor), which can be written as 

     
 ̇ 

  
  ̇

  

 ̇ 

  
  ̇ 

        
 ̇
  

  ̇ 

  

 ̇ 

  
  ̇ 

         (9.22) 

After a series of mathematical operations, the desired estimate of  ( ̅    ̇
  

) can be 

written as 
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  )       .    

(9.23) 

In order to obtain the derivative of the value at the desired point   with respect to the 

accumulated plastic strain and strain rate, which is required in the stress integration 

algorithm, the partial derivate to the plastic strain  ̅   could be calculated by 

  ( ̅    ̇
  

)

  ̅    (
      

  
  

   
  ) (

 ̇ 
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(9.24) 
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The partial derivate of the desired estimate to the strain rate  ̇
  

can be computed by 

  ( ̅    ̇
  

)
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  ̅  

  
  

   
  ) (
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 ̇ 
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  ) . 

(9.25) 

Box 9.3: A line search algorithm for the extended viscoplastic model. 

(1) Input data:     ,  
   

,  
   

. 

(2) Initialize:   

Set    ,     
   

  ,  
   

  
   

  
   

    and  
    

    
   

. 

(3) Compute the new unknowns, residual and merit function: 

    
     

          
   

 
   

  

    
     

  (    
     

)  

    

     
     

     
     

     
    

(4) Check Goldstein ś condition 

If     

     
  

   
       

   
 

     
 

   
  Then Set            

     
 and Exit. 

If        Then Set            
     

 and Exit. 

(5) Compute new value of Linea search parameter: 

      
   

 
  ̃  √ ̃    ̃ 

 
   

  ̃
  

where, 
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In order to avoid small step length in the iterative process, the final length could 

be calculated by  

      
   

    { ̃    
   

          
   

}  

(6) Set       and Go To (3). 
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(b) Consistent tangent matrix 

In an implicit displacement based FE formulation, equilibrium in a time step can be 

obtained by means of the Newton-Raphson method. The viscoplastic consistent tangent 

modulus is needed for implicit finite element codes to preserve the quadratic rate of 

convergence in the solution of an initial boundary value problem by linearizing the 

nonlinear equilibrium equation at each iteration. Consistency in this context means that 

the formula for the tangential stiffness matrix is consistent with the underlying time 

integration scheme. The tangent operator consistent with the general algorithm is 

needed to assemble the tangent stiffness matrix.  

To construct the consistent elasto-viscoplastic modulus, the change of the stress is 

evaluated by a special return mapping algorithm corresponding to an infinitesimal 

change of total strain increment is considered. The fourth-order tensor can be found by 

computing the derivative of the updated      with respect to the final strain     . 

Analogously to the general procedure for the rate-independent case, when the stress 

state lies within the elastic domain and no viscoplastic flow is possible, the tangential 

stiffness matrix is equal to the elasticity matrix  

      . (9.26) 

Otherwise, the elasto-viscoplastic consistent tangent operator can be derived by 

consistently linearizing the consistency viscoplastic return-mapping algorithm under 

viscoplastic flow. Considering the time step    , the viscoplastic strain increment is 

defined as  

 ̇   
      . (9.27) 

Consequently, the stress-strain relation and the internal variables read 

    
                 . (9.28) 

The consistent tangent operator can be obtained by differentiating the above equation, 

which gives 

     
       

  
 

   

  
    

  

  
       (9.29) 

After rearranging equation 9.34 can be written as 

  

     
       

 {       
  

  
 

   

  
 }

  

  (9.30) 

The incremental multiplier derivative is obtained by differentiating the Equation (9.18) 

with respect to  . This gives  
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Then, with substitution of Equation (9.31) into Equation (9.30) we obtain the following 

closed form expression for the viscoplastic consistent tangent operator:  
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. (9.32) 

It should be noted that the operator     in the present case is not symmetric. When the 

yield function is independent on the strain rate, it is reduced to the general viscoplastic 

hardening constitutive consistent tangent matrix.  

9.6 Numerical verification and examples 

The stress update algorithm and the calculation of the viscoplastic consistent tangent 

moduli presented in the section 9.5 are implemented in the commercial finite element 

code ABAQUS/Standard by writing a user-defined material subroutine UMAT.  

Table 9.1: Material parameter of AZ31B. 

 
  

(g/cm
3
) 

Modulus 

  (GPa) 

Poisson’

s Ratio   

Flow Curve  

    [     (       
  

)] (   ̂ ̇
  

)
 ̂

 

   

(MPa) 

   

(MPa) 
    ̂  ̂ 

AZ31 1.77 45 0.35 169.30 132.14 18.02 0.009162 7287.65 

 

In this section, several numerical benchmark tests are performed in order to validate the 

proposed elasto-viscoplastic model and assess the performance of the developed user 

subroutine. All the material parameters used in the benchmark numerical tests are 

presented in Table 9.1. The modified Você flow law was used to describe the uniaxial 

true stress-strain curve response at rolling direction. The description of flow law can be 

seen in Equation (9.7). 

9.6.1 Single element test 

In order to validate the performance of return mapping algorithms, two simple single 

element tests are performed. One is the biaxial tensile test; the other one is the biaxial 



Continuum Modelling and Numerical Simulation of Hexagonal Close-Packed Materials 

251 

 

compressive test. The single element is subjected to the prescribed displacements to 

simulate the different stress state, such as biaxial tensile and compressive tests. The 

initial element dimension is set equal to 10 mm. In all examples presented in this 

chapter, the residual norm is set to         . 

(a) Biaxial tensile test 

Table 9.2 and Table 9.3 list the evolution of residual for one Newton-Raphson iterative 

strategy and two Newton-Raphson iterative strategies return mapping algorithms under 

biaxial tensile test, respectively.  

Table 9.2: Residual norm of one-iterative return mapping algorithm for biaxial tensile test. 

Iteration number Residual 

1 49.72627 

2 12.30161 

3 0.227088 

4 1.41E-03 

5 1.11E-05 

6 3.97E-12 

Table 9.3: Residual norm of two-iterative return mapping algorithm for biaxial tensile test. 

Iteration number Residual 

First iterative 

1 49.93169 

2 5.269009 

3 0.287509 

4 4.22E-03 

5 9.25E-05 

6 2.23E-10 

Second iterative 

1 2.23E-10 

 

From the comparison, it can be seen that the one-iterative return mapping strategy 

requires six iterative to get convergence, meanwhile, the two-iterative return mapping 

strategy also requires six iterative to obtain the initial value for the second iterative 
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procedure, one more iterative to get convergence. This means that these two return 

mapping strategies have a similar effect to converge under biaxial tensile test.  

(b) Biaxial compressive test 

Owing to the different mechanical behavior of Magnesium alloy under compression 

stress state from the tension stress state, a biaxial compressive test is used to study these 

two above mentioned return mapping integration algorithms. The residual norms of 

these two strategies are listed in Table 9.4 and Table 9.5, respectively.  

Table 9.4: Residual norm of one iterative return mapping algorithm for biaxial compressive test. 

Iteration number Residual 

1 1.9125E-003 

2 1.7244E-003 

3 NC 

Table 9.5: Residual norm of two-iterative return mapping algorithm for biaxial compressive test. 

Iteration number Residual 

First iterative 

1 0.142657 

2 0.102714 

3 5.49E-03 

4 1.76E-07 

Second iterative 

1 3.08E-04 

2 1.68E-10 

Note: NC represents non convergence  

From the Table 9.4, it can be seen that the iteration cannot be converged if the one-

iterative return mapping algorithm is chosen. That is because the initial trial value is far 

from the solution. However, these two iterative return mapping algorithms only requires 

fourth iterative to obtain initial values for the second iterative process (see in Table 9.5). 

It makes the initial values closely approaches the solution. Thus, only two more iterative 

processes can get the final converge in the second iterative procedure. This indicates 

that the two-iterative integration algorithm can effectively improve the convergence. 
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9.6.2 Square box drawing 

Deep drawing is a manufacturing process that is used extensively in the sheet metal 

forming into geometries that include cup or box like structures. Finite element 

simulations provide an effective mean to investigate the interaction between the process 

parameters and the material response. They provide useful information for fine-tuning 

the production processes. In this study the deep drawing process of square cups is 

modeled for the magnesium alloy AZ31B using FEA to validate further the proposed 

elasto-viscoplastic model and show the applicability of the proposed integration 

algorithm.  

 

Figure 9.9: Finite element model of square box. 

Finite element of the square cup drawing process is schematized in Figure 9.9. Given 

the symmetry of the problem, it is sufficient to model only a one- quarter sector of the 

box. However, for easier visualization we employ a one-quarter model. Symmetry 

boundary conditions are applied at the quarter edges of the blank. The punch and the 

blank holders are allowed to move only in the vertical direction. Allowing vertical 

motion of the blank holder accommodates changes in the blank thickness during 

forming. The movement of the punch is defined using a reference node. This reference 

node was also employed to obtain the drawing force during the simulation. The rigid die 

is a flat surface with a square hole 102.5 mm by 102.5 mm, rounded at the edges with a 

radius of 10 mm. The rigid square punch measures 100 mm by 100 mm and is rounded 

at the edges with the same 10 mm radius. The rigid blank holder can be considered a flat 

Punch 

Die 

Blank holder 

Blank 
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plate, since the blank never comes close to its edges.We use four-node, three-

dimensional rigid surface elements (type R3D4) to model the die, the punch, and the 

blank holder. The blank is initially square, 200 mm by 200 mm, and is 0.6 mm thick. 

The blank is modeled with eight-node, brick elements (type C3D8R). 

The material of the blank is in contact with the face of the punch, the die and the holder. 

Contact interaction is considered between the blank and the punch with a friction 

coefficient of 0.25 and between the blank and the die with a friction coefficient of 0.125. 

Two different constitutive models are applied into the above square box drawing 

process. One is the strain rate dependent yield function model; the other is the strain rate 

independent yield function model. 

(a) Equivalent plastic strain distribution 

Figure 9.10 shows the contour of equivalent plastic strain obtained from rate dependent 

constitutive model and rate independent constitutive model, respectively. 

 
 

(a) Rate dependent (b) Rate independent 

Figure 9.10: Contours of equivalent plastic strain. 

From the comparison, it can be seen that the distribution of equivalent plastic strain is 

different. The plastic deformation of rate dependent yield function model is mainly 

localized in corner place; in contrast, the plastic deformation of rate independent yield 

function model distributes along the edge. The maximum value of the equivalent plastic 

strain for rate dependent model is larger than the strain rate independent model.  

(b) Punch force 

Figure 9.11 shows the force evolution reaction on the punch during the drawing process. 

From there, it is clearly seen that the punch force–displacement curve for the rate 

independent yield function model is lower than for rate dependent yield function model. 
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That is because during the deep drawing of square cups, the parts of the blank are 

subjected to different deformation rate under different deformation zones. It does not 

only affect the flow hardening law, but it also makes the yield surface different at 

different zones for the rate dependent model.  
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Figure 9.11: Punch force-displacement curves. 

9.7 Conclusions 

The work in this chapter describes an extended elasto-viscoplastic constitutive model 

that has been employed to capture the mechanical behavior of AZ31 alloy under 

different strain rates. Strain rate dependence of yield behavior of AZ31 alloy was 

investigated analytically. The material constants of the model have been calibrated as a 

function of equivalent plastic strain and strain rate, thus allowing the implementation of 

the corresponding constitutive equations in a UMAT subroutine of the ABAQUS 

platform. In order to enhance the convergence, two return mapping algorithms were 

adopted: one is the Newton-Raphson iterative combined with line search algorithm; the 

other is two Newton-Raphson iterative combined with line search algorithm. The 

validation of the UMAT has been carried out by several benchmark tests. The general 

conclusions of this study can be listed as follows: 
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 Você extended flow law can describe the mechanical behavior of AZ31 alloy at 

each uniaxial stress state under different strain rates at room temperature. 

 The extended elasto-viscoplastic model takes the influence of strain rate on the 

shape of yield surface and can capture the mechanical behavior on the multiaxial 

stress space. It describes effectively the evolution of the anisotropic, asymmetric 

effects with the strain rate. From the presented simulations of the square box deep 

drawing, it can be concluded that the shape of the yield locus has an important 

effect on the calculated punch force–displacement curve. This was demonstrated 

by the difference in the results obtained for the strain rate independent yield 

surface and strain rate dependent yield surface. 

 Two-iterative return mapping algorithm can effectively improve the convergence 

compared with the classical one iterative return mapping algorithm. 
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Chapter 10  

Conclusions and Future Work 

Accurate simulations of forming processes using the finite element method require 

reliable constitutive models to describe the mechanical behavior of materials. The study 

of this topic is of great importance and, in recent years, has been subjected to numerous 

studies regarding the formulation of mathematical models capable of describing the 

mechanical behavior in the most realistic way. These scientific developments bring to 

the industry, in general, competitive gains with regard to the development of more 

efficient and durable mechanical components as well as the improvement of 

manufacturing processes. 

In this chapter, the implications and importance of the work presented in this thesis are 

discussed with the intention of accurately describing the mechanical quasi-

static/dynamic behavior of Hexagonal Close-Packed (HCP) crystal structure and 

applying the various theoretical facets into practical metal forming process. The 

conclusions drawn from these studies and recommendations for further research are 

presented. 

10.1 Conclusions 

This study focuses on two categories of HCP crystal metals: titanium alloys and 

magnesium alloys. Detailed conclusions for the developments proposed in this thesis 

are given as follows.  

Chapter 4 

In this chapter, a brief summary of the formulation of Cazacu 0́4 constitutive model was 

presented and used to model the quasi-static mechanical behavior of a titanium alloy. 

Several fully implicit integration algorithms of the Cazacu 0́4 model based on the 

Closest Point Projection Method (CPPM) were implemented within an implicit 

environment. They can be classified into two types: the first is the standard Newton-

Raphson Closest Point Projection Method (N-R CPPM) and the second is the Newton-

Raphson Closest Point Projection Method combined with line search algorithms (L-

CPPM). In particular, the second strategy was combined with three different 

interpolation algorithms, namely quadratic (LQ), three points quadratic (LQ3), and 

cubic (LC) interpolation. All these integration methods have been investigated under 
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different stress states and strain increments. It was concluded that whenever the level of 

accumulated plastic strain is low and the yield surface has an elliptical shape or an 

elliptical-like shape, regardless of the initial stress state (uniaxial stress state, biaxial 

stress state, etc.), and the shape does not present a substantial change during its 

following evolution, the standard Newton-Raphson (N-R) proved to be convergent. The 

L-CPPM presented similar results to the standard N-R algorithm. Nevertheless, when 

the yield surface changed more significantly into a triangular-like shape, the standard N-

R method doesn t́ achieve convergence while the L-CPPM scheme was able to converge 

and reduce the number of iterations significantly. Through the comparison of the 

iterative number coutours with different interpolated line search algorithms during the 

yield surface evolution, it is possible to conclude that the cubic interpolation method 

converges in less iterations when compared to the other two aforementioned 

interpolation methods. Therefore the line search strategy, particularly the cubic 

interpolated line search coupled CPPM integration algorithm is very effective, and the 

minimization of the ojective functional is superior from the viewpoint of the 

computational cost. 

Subsequently, iso-error maps have been drawn for two types of yield surface at six 

representative stress states. One of them departure from a yield surface with an 

elliptical-like shape, the other a triangular-like one. It was verified that the stability at 

tensile and compressive stress states had a pronounced difference, and also that large 

increments could not be employed, due to the loss of convergence promoted by the 

model.  

Finally, a benchmark test-cup drawing was performed to validate the model. This 

allows to conclude that the model was able to capture the earing phenomenon in an 

effective manner after drawing the pure titanium sheet in agreement with the 

experimental results. The presented integration algorithm is suitable for the application 

to highly nonlinear problems. 

Chapter 5 

In order to simulate the dynamic mechanical behavior of metals with an HCP crystal 

structure at different strain rates, in this chapter, an elasto-viscoplastic constitutive 

model coupled with Cazacu 0́4 yield function is proposed. The model employed the 

CPPM coupled with the line search algorithm and was implemented within an implicit 

quasi-static finite element environment. Two numerical examples show that the 
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integration algorithm can be effectively used at high strain rates even for very high 

power-exponents. It is also shown that the stress evolution under compressive stress 

states is higher than tensile stress states and presents higher strain rate sensitivity.  

Chapter 6 

This chapter addresses the identification of material parameters of a phenomenological 

constitutive model for magnesium alloy. The aggregate-objective optimization 

technique has been developed to assess the optimal set of coefficients of the Cazacu06  ́

yield criterion. The optimization problem with a multi-objective nature has been solved 

in a single run by combining each objective of the problem of assessing the optimal 

coefficients into the single objective function. Five optimization strategies were used to 

calibrate the material parameters of Cazacu 0́6 constitutive model for a typical HCP 

crystal structured material- AZ31 alloy.  The classical gradient method is effective to 

calibrate the yield surface at small deformation. At that stage, the yield surface of AZ31 

alloy has an elliptical-like shape. The initial value of material parameters of the 

constitutive model can be chosen as                  . At large deformations, the 

precious initial value is easily trapped into local minima, and hybrid evolutionary 

methods are used. By comparison of hybrid GA and hybrid PSO optimized strategies, it 

can be concluded that hybrid PSO algorithm can escape the local minima trap and 

obtain the global optimization value, giving a better accuracy to the optimized yield 

surface.  

Chapter 7 

In this chapter, a yield criterion for numerical analyses of sheet forming processes was 

developed to model the mechanical behavior of HCP crystal structure material by 

extending the classical Barlat 8́9 model. The proposed yield function was expressed in 

terms of the stress components under plane stress condition. The influence of the 

introduced material parameter in the new model was assessed. It can be concluded that 

with the increase of the power index   in the proposed model, the yield surface 

becomes more rectangular. The parameter   can enhance the difference between tensile 

and compressive stress states, making the shape of the yield surface smoother on one 

side and sharper on the other side. However, this effect is not so noticeable when the 

power index value is small. The novel constitutive model was developed to account for 

the complexity of the yielding behavior of magnesium alloys. The convexity of the 
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proposed yield function was also proved. The material identification procedure proposed 

in chapter 6 was successfully applied to the AZ31 magnesium alloy. The evolution of 

the shape of the yield locus was also accommodated by expressing the model 

parameters as a function of the equivalent plastic strain. By comparison with other 

commonly used models such as Hill 4́8 yield criteria, Barlat 8́9 model, and Cazacu 0́6, 

it was possible to show that the new model has a close agreement with theoretical and 

experimental results, is able to capture the mechanical behavior of AZ31alloy, and 

requires less material parameters than Cazacu 0́6 model. Finally, a fully implicit 

integration algorithm under plane stress condition based on the CPPM coupled with line 

search algorithm was implemented within an implicit environment. The calibrated 

model was employed in a simple test to validate the model, and the simulated results are 

able to show that the new proposed model can reflect the asymmetrical mechanical 

behavior and anisotropic properties in real applications. A benchmark test-cup drawing 

was performed to show the robustness of the implementation, and the simulated results 

show that the model captures the earing phenomenon after drawing the AZ31B sheet, in 

close agreement with the experimental results. 

Chapter 8 

To obtain reliable information from the FE analysis of springback, it is essential to fully 

understand the phenomenon and to carefully consider all sources of error of its 

prediction. In this chapter, two types of methods (analytical and numerical) were used to 

study the springback behavior of magnesium alloy. Therefore, the whole chapter can be 

divided into two parts. 

The springback dependency on some material and process parameters was demonstrated 

with the help of a simple analytical model. In the first part, a generic analytical method 

was proposed. The presented analytical model can be used to predict the change of 

curvature in the elastic-plastic sheet in the case of plane strain bending under tension. 

This model not only can be used to predict a symmetrical model, but also an 

unsymmetrical model. It is available for arbitrary mechanical hardening behavior. The 

verification and validation of this analytical model was performed by experimental and 

simulation analyses. In particular, it is applied to analyze the mechanics of a AZ31 plate 

during bending process. The influence of the thickness, bending curvature, strain rate 

and in-plane external tensile stress on the neutral surface distribution, the distribution of 
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the force and the moment in elastic, compressive plastic, tensile plastic of the plate 

section, respectively.  

 For the bending of an unsymmetrical material, there exist four typical regions, 

compressive plastic region, compressive elastic region, tensile elastic region and 

tensile plastic region. These four regions are not symmetrical, and the neutral 

surface is not coincided with the mid-plane. With the increasing bending 

curvature, the compressive region expands. The neutral surface also moves 

towards the outside surface.  

 By analyzing the springback factor of plates with different thickness, it is 

possible to conclude that the springback factor has a significant increase when 

the plate thickness increases.  

 Tension strongly affects the bending moment. With an applied external in-plane 

tensile force, the bending moment increases with the increasing external tensile 

force. The incremental moment gap of each external tensile force increases with 

the increasing bending curvature.   

For a successful FE analysis of springback, it is important to prepare an adequate 

numerical model. Special attention must be given to choosing the appropriate 

constitutive law which must accurately represent the material behavior during 

deformation. In the second part, a series of constitutive models were implemented in 

user-defined subroutines into the commercial nonlinear finite element code ABAQUS. 

The CPPM algorithm was used to integrate the stress and other state variables over each 

time increment. All these constitutive models can be categorized into two types. The 

first is the conventional yield criteria coupled with pure isotropic hardening model. 

These models can only reflect the anisotropic properties. The second model can capture 

anisotropic and SD effects simultaneously. By comparison of the springback angle of 

the unconstraint cylindrical bending test using the above anisotropic models, the model 

considering the SD effect is able obtain a more accurate prediction than the previous 

models. The elaborated model takes into account the anisotropic behavior of materials 

and asymmetrical strength at the same time. Several simulations with different Number 

of Integration Points (NIP) through thickness were performed. It was concluded that for 

the symmetrical material, five integration points through the thickness are sufficient to 

obtain a convergence solution for springback, and the asymmetrical model is more 

sensitive of the NIP through thickness than the symmetrical material. Therefore, it is 

necessary to employ more integration points through the thickness.   
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Chapter 9 

The work in this chapter describes an extended elasto-viscoplastic constitutive model 

that has been employed to capture the mechanical behavior of AZ31 alloy under 

different strain rates. An equivalent plastic strain and strain rate dependent anisotropic 

material model was investigated for AZ31 alloy sheet. The material parameters of the 

extended elasto-viscoplastic model were established and calibrated as a function of 

equivalent plastic strain and strain rate, thus allowing the implementation of the 

corresponding constitutive equations in a UMAT subroutine of the ABAQUS platform.  

In order to enhance the convergence, two return mapping algorithms were adopted: one 

is the Newton-Raphson iterative combined with line search algorithm; the other is two 

Newton-Raphson iterative combined with line search algorithm. The validation of the 

UMAT has been carried out by several benchmark tests. The general conclusions of this 

study can be listed as follows: 

 This chapter investigates the identification of the whole set of parameters of three 

strain rate dependent flow law using the optimized algorithm. Você extended flow 

law can describe the mechanical behavior of AZ31 alloy at each uniaxial stress 

state under different strain rates at room temperature. 

 The extended elasto-viscoplastic model takes the influence of strain rate on the 

shape of yield surface and can capture the mechanical behavior on the multiaxial 

stress space. It describes effectively the evolution of the anisotropic, asymmetric 

effects with the strain rate.  

 Two-iterative return mapping algorithm can effectively improve the convergence 

compared with the classical one iterative return mapping algorithm. From the 

presented simulations of the square box deep drawing, it can be concluded that the 

shape of the yield locus has an important effect on the calculated punch force–

displacement curve. This was demonstrated by the difference in the results 

obtained for the strain rate independent yield surface and strain rate dependent 

yield surface. This numerical example also indicates that the two iterative return 

mapping is more robust and stable. 

10.2 Suggestions for future work 

The deformation behavior of magnesium alloys at high strain rates (10
3
 s

-1
) and at 

elevated temperatures has not been thoroughly investigated yet. The influence of 

temperature, loading condition (tension-compression) and texture on the deformation 
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mechanisms and flow stress at high strain rates is still unknown. Future work should 

take into account various strain rates and temperature effects. The application of the 

developed constitutive models to other forming conditions as well as industrial 

examples should also be investigated in future works.  

Furthermore, in order to improve the predictive ability of constitutive models for sheet 

metal processes undergoing cyclic loading (such as alternative tension-compression or 

bending unbending stresses in deep drawing processes including draw beads), the 

kinematic hardening effects associated with stress reversal should be taken into account 

in future research work. 
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Appendix A   

Equivalent Plastic Strain Rate of Cazacu´04 

Model 

An equivalent plastic strain rate 휀̇
𝑝

which is the plastic work rate conjugate to the 

equivalent stress 𝜎𝑒𝑞. The plastic work rate is defined such that:  

�̇� = 𝝈𝑖𝑗�̇�𝑖𝑗
𝑝 = 𝜎𝑒𝑞휀̇

𝑝
.  (A.1) 

According to the associated plastic flow rule, the plastic strain rate can be written as 

�̇�𝑖𝑗
𝑝 = Δ𝛾

𝜕𝜎𝑒𝑞

𝜕𝝈
.  (A.2) 

Thus,  

𝝈:
𝜕𝜎𝑒𝑞

𝜕𝝈
= 𝜎𝑖𝑗 [

�̂�3

3𝜎𝑒𝑞
2

(
3

2
𝐽2
0
1
2

𝜕𝐽2
0

𝜕𝛴𝑘𝑙
− �̂�

𝜕𝐽3
0

𝜕𝛴𝑘𝑙
) �̂�𝑘𝑙𝑖𝑗].  (A.3) 

After regrouping the equation, it can be given by:  

𝝈:
𝜕𝜎𝑒𝑞

𝜕𝝈
=

�̂�3

3�̅�𝑒𝑞
2 (

3

2
𝐽2
0

1

2
𝜕𝐽2

0

𝜕𝛴𝑘𝑙
− �̂�

𝜕𝐽3
0

𝜕𝛴𝑘𝑙
) �̂�𝑘𝑙𝑖𝑗𝜎𝑖𝑗   

                                 =
�̂�3

3𝜎𝑒𝑞
2 (

3

2
𝐽2
0

1

2𝛴𝑘𝑙 − �̂� (𝛴𝑘𝑚𝛴𝑚𝑙 −
2

3
𝛿𝑘𝑙𝐽2

0))𝛴𝑘𝑙   

                                           =
�̂�3

3𝜎𝑒𝑞
2 (

3

2
𝐽2
0

1

2𝛴𝑘𝑙𝛴𝑘𝑙 − �̂�(𝛴𝑘𝑚𝛴𝑚𝑙𝛴𝑘𝑙 −
2

3
𝛿𝑘𝑙𝛴𝑘𝑙𝐽2

0)). 

 (A.4) 

According to the definition of 𝐽2
0 , 𝐽3

0 , 𝜎𝑒𝑞 , regrouping the above equations and 

simplifying, it is rewritten as   

𝝈:
𝜕𝜎𝑒𝑞

𝜕𝝈
=

�̂�3

3𝜎𝑒𝑞
2

(
3

2
𝐽2
0
1
2(2𝐽2

0) − �̂�3𝐽3
0) =

3�̂�3

3𝜎𝑒𝑞
2

(𝐽2
0
3
2 − �̂�𝐽3

0) = 𝜎𝑒𝑞 .  (A.5) 

So 

𝝈:
𝜕𝜎𝑒𝑞

𝜕𝝈
𝜎𝑒𝑞

= 1,  (A.6) 

∆휀̅𝑝 =
𝝈:

𝜕𝜎𝑒𝑞

𝜕𝝈
𝜎𝑒𝑞

Δ𝛾 = Δ𝛾. 

 (A.7) 
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Appendix B   

Proof of the Convexity of the Proposed Yield 

Function 

In order for a material to be a stable plastic material, one of the main requirements that 

yield surfaces must satisfy is convexity. The convexity of the yield surface is a 

consequence of the work assumption or can be derived as a consequence of the 

assumption of maximum rate of dissipation. It also guarantees a unique relationship 

between the stresses and plastic strain increments assuming an associated flow rule.  

In mathematics, a real-valued function 𝑓(𝒙)  defined on an interval is called convex (or 

convex downward or concave upward) if the line segment between any two points on 

the graph of the function lies above the graph, in a Euclidean space (or more generally a 

vector space) of at least two dimensions. Equivalently, a function is convex if its 

epigraph (the set of points on or above the graph of the function) is a convex set. Well-

known examples of convex functions are the quadratic function. 𝑓: R𝑛 → R is convex if 

Dom 𝑓 is convex and for all 𝑥, 𝑦 ∈ 𝑑𝑜𝑚 𝑓, 𝛩 ∈ [0,1] 

𝑓(𝛩𝒙 + (1 − 𝛩)𝑦) ≤ 𝛩𝑓(𝑥) + (1 − 𝛩)𝑓(𝑦).  (B.1) 

This also can be judged by evaluating its Hessian matrix.  

For the plane stress state, owing to the third principal stress is equal to zero, therefore, 

there only exists two in-plane principal stress 𝜎1, 𝜎2 . So the Hessian matrix �̂� is the 

second derivative of the yield function, which can be writeen as 

�̂� = (
�̂�11 �̂�12

�̂�12 �̂�22

),  (B.2) 

where, 

�̂�11 =
𝜕2Φ

𝜕𝜎11
2 ,  (B.3) 

�̂�22 =
𝜕2Φ

𝜕𝜎22
2 ,  (B.4) 

�̂�12 =
𝜕2Φ

𝜕𝜎11𝜕𝜎22
.  (B.5) 

If and only if �̂�11 ≥ 0 (�̂�22 ≥ 0 )  and �̂�11�̂�22 − �̂�12
2 ≥ 0 , the Hessian matrix is 

positive semi-definite. The related yield functions to be convex. 

Let  
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�̂� = 𝑎[(𝐾1 + 𝐾2) − 𝑐|𝐾1 + 𝐾2|]
𝑀 + 𝑎[(𝐾1 − 𝐾2) − 𝑐|𝐾1 − 𝐾2|]

𝑀 + 𝑓|2𝐾2|
𝑀. (B.6) 

where,  

𝐾1 =
𝜎11+ℎ𝜎22

2
,  (B.7) 

𝐾2 = √(
𝜎11−ℎ𝜎22

2
)2 + 𝑏2𝜎12

2 .  (B.8) 

and 𝑎, ℎ, 𝑓, 𝑏 , 𝑐 , and 𝑀 are material parameters. 

Then 

�̂�11 =
𝜕2�̂�

𝜕𝜎11
2 ,  (B.9) 

�̂�22 =
𝜕2�̂�

𝜕𝜎22
2 ,  (B.10) 

�̂�12 =
𝜕2�̂�

𝜕𝜎11𝜕𝜎22
.  (B.11) 

Therefore 

�̂�11�̂�22 − �̂�12
2 =

𝜕2�̂�

𝜕𝜎11
2

𝜕2�̂�

𝜕𝜎22
2 − (

𝜕2�̂�

𝜕𝜎11𝜕𝜎22
)
2

.  (B.12) 

The derivative of �̂� with respect to stress component can be calculated by 

𝜕�̂�

𝜕𝜎11
=

1

2
[

𝜕�̂�

𝜕𝐾1
+

𝜕�̂�

𝜕𝐾2
(
𝜎11−ℎ𝜎22

2𝐾2
)],  (B.13) 

𝜕�̂�

𝜕𝜎22
=

ℎ

2
[

𝜕�̂�

𝜕𝐾1
−

𝜕�̂�

𝜕𝐾2
(
𝜎11−ℎ𝜎22

2𝐾2
)],  (B.14) 

𝜕2�̂�

𝜕𝜎11
2 =

1

4
[
𝜕2�̂�

𝜕𝐾1
2 +

𝜕2�̂�

𝜕𝐾2
2 +

𝜕2�̂�

𝜕𝐾1𝜕𝐾2
(
𝜎11−ℎ𝜎22

𝐾2
)],  (B.15) 

𝜕2�̂�

𝜕𝜎11𝜕𝜎22
=

ℎ

4
[
𝜕2�̂�

𝜕𝐾1
2 −

𝜕2�̂�

𝜕𝐾2
2],  (B.16) 

𝜕2�̂�

𝜕𝜎22
2 =

ℎ2

4
[
𝜕2�̂�

𝜕𝐾1
2 +

𝜕2�̂�

𝜕𝐾2
2 −

𝜕2�̂�

𝜕𝐾1𝜕𝐾2
(
𝜎11−ℎ𝜎22

𝐾2
)]. (B.17) 

After a series mathematical operation, we can obtain  

�̂�11�̂�22 − �̂�12
2 =

ℎ2

4
[
𝜕2�̂�

𝜕𝐾1
2

𝜕2�̂�

𝜕𝐾2
2 − (

𝜕2�̂�

𝜕𝐾1𝜕𝐾2
)
2

]. (B.18) 

If we consider the yield function �̂� is the function of variables 𝐾1 and 𝐾2, then  

𝜕2�̂�

𝜕𝐾1
2

𝜕2�̂�

𝜕𝐾2
2 − (

𝜕2�̂�

𝜕𝐾1𝜕𝐾2
)
2

, 

is the determinant of Hessian matrix of yield function �̂� with respect to variables 𝐾1 and 

𝐾2,where, 

�̂�11
´ =

𝜕2�̂�

𝜕𝐾1
2, (B.19) 

�̂�22
´ =

𝜕2�̂�

𝜕𝐾2
2, (B.20) 
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�̂�12
´ =

𝜕2�̂�

𝜕𝐾1𝜕𝐾2
. (B.21) 

This indicates that if the yield function �̂� is convex to variables 𝐾1 and 𝐾2, it is also 

convex to the stress components. 

In order to simplify the scripts, let  

�̂� = (𝐾1 + 𝐾2) − 𝑐|𝐾1 + 𝐾2|, (B.22) 

�̂� = (𝐾1 − 𝐾2) − 𝑐|𝐾1 − 𝐾2|. (B.23) 

The derivative of �̂� with respect to 𝐾1 and 𝐾2 can be calculated by 

𝜕�̂�

𝜕𝐾1
= 𝑎𝑀�̂�𝑀−1 (1 − 𝑐

𝐾1+𝐾2

|𝐾1+𝐾2|
) + 𝑎𝑀�̂�𝑀−1 (1 − 𝑐

𝐾1−𝐾2

|𝐾1−𝐾2|
),  (B.24) 

𝜕�̂�

𝜕𝐾2
= 𝑎𝑀�̂�𝑀−1 (1 − 𝑐

𝐾1+𝐾2

|𝐾1+𝐾2|
) − 𝑎𝑀�̂�𝑀−1 (1 − 𝑐

𝐾1−𝐾2

|𝐾1−𝐾2|
) + 2𝑓𝑀|2𝐾2|

𝑀−1, (B.25) 

𝜕2�̂�

𝜕𝐾1
2 = 𝑎𝑀(𝑀 − 1)�̂�𝑀−2 (1 − 𝑐

𝐾1+𝐾2

|𝐾1+𝐾2|
)
2

+ 𝑎𝑀(𝑀 − 1)�̂�𝑀−2 (1 − 𝑐
𝐾1−𝐾2

|𝐾1−𝐾2|
)
2

, (B.26) 

𝜕2�̂�

𝜕𝐾2
2 = 𝑎𝑀(𝑀 − 1)�̂�𝑀−2 (1 − 𝑐

𝐾1+𝐾2

|𝐾1+𝐾2|
)
2

  

                                   +𝑎𝑀(𝑀 − 1)�̂�𝑀−2 (1 −
𝐾1−𝐾2

|𝐾1−𝐾2|
)
2

+4𝑓𝑀(𝑀 − 1)|2𝐾2|
𝑀−2, 

 (B.27) 

𝜕2�̂�

𝜕𝐾1𝜕𝐾2
= 𝑎𝑀(𝑀 − 1)�̂�𝑀−2 (1 − 𝑐

𝐾1 + 𝐾2

|𝐾1 + 𝐾2|
)
2

 

                                         −𝑎𝑀(𝑀 − 1)�̂�𝑀−2 (1 − 𝑐
𝐾1−𝐾2

|𝐾1−𝐾2|
)
2

. 

(B.28) 

Thus, 

𝜕2�̂�

𝜕𝐾1
2

𝜕2�̂�

𝜕𝐾2
2 − (

𝜕2�̂�

𝜕𝐾1𝜕𝐾2
)
2

= 4𝑎2𝑀2(𝑀 − 1)2�̂�𝑀−2�̂�𝑀−2 (1 − 𝑐
𝐾1+𝐾2

|𝐾1+𝐾2|
)
4

   

                                       +4𝑓𝑀(𝑀 − 1) [𝑎𝑀(𝑀 − 1)�̂�𝑀−2 (1 − 𝑐
𝐾1+𝐾2

|𝐾1+𝐾2|
)
2

+

                                        𝑎𝑀(𝑀 − 1)�̂�𝑀−2 (1 − 𝑐
𝐾1−𝐾2

|𝐾1−𝐾2|
)
2

] |2𝐾2|
𝑀−2. 

(B.29) 

Therefore, when 𝑀 > 1, 𝑎, 𝑐, 𝑓 > 0, we can obtain that  

�̂�11
´ �̂�22

´ − �̂�12
´ �̂�12

´ =
𝜕2�̂�

𝜕𝐾1
2

𝜕2�̂�

𝜕𝐾2
2 − (

𝜕2�̂�

𝜕𝐾1𝜕𝐾2
)
2

≥ 0. (B.30) 

Then  

�̂�11�̂�22 − �̂�12
2 =

ℎ2

4
[
𝜕2�̂�

𝜕𝐾1
2

𝜕2�̂�

𝜕𝐾2
2 − (

𝜕2�̂�

𝜕𝐾1𝜕𝐾2
)
2

] ≥ 0. (B.31) 

It is concluded that the proposed yield function is convex function. 
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Appendix C   

Derivatives of Cazacu´04 Constitutive Model 

The yield function of Cazacu´04 model can be written as:  

𝜎𝑒𝑞 = �̂�(𝐽2
0

3

2 − �̂�𝐽3
0)1/3,  (C.1) 

𝜮 = �̂�𝝈,  (C.2) 

𝐽2
0 =

1

2
𝑡𝑟(𝜮2),  (C.3) 

𝐽3
0 =

1

3
𝑡𝑟(𝜮3),  (C.4) 

�̂� = 3[(𝑎2
2 + 𝑎3

2 + 𝑎2𝑎3)
3

2 − �̂�(𝑎2 + 𝑎3)𝑎2𝑎3]
−1/3.  (C.5) 

Derivatives of the yield function by the Cartesian components of the stress tensor are 

evaluated using the equivalent form of the yield function given as follows. 

First derivative of 𝐽2
0with respect to stress tensor 𝛴ij can be given by:  

𝜕𝐽2
0

𝜕𝜮𝑖𝑗
= 𝑆𝑖𝑗.  (C.6) 

First derivative of 𝐽3
0 with respect to stress tensor 𝜮𝑖𝑗 can be calculated by 

𝜕𝐽3
0

𝜕𝛴𝑖𝑗
= 𝑆𝑖𝑘𝑆𝑘𝑗 −

2

3
𝛿𝑖𝑗𝐽2

0.  (C.7) 

First derivative of the deviatoric transformed stress 𝑆𝑖𝑗 with respect to stress tensor𝜮𝑚𝑛, 

or second derivative of 𝐽2
0 with respect to stress tensors 𝛴𝑖𝑗 and 𝛴𝑚𝑛: 

𝜕2𝐽2
0

𝜕𝜮𝑖𝑗𝜕𝜮𝑚𝑛
= 𝛿𝑚𝑖𝛿𝑛𝑗 −

1

3
𝛿𝑖𝑗𝛿𝑚𝑛.  (C.8) 

Second derivative of 𝐽3
0 with respect to stress tensors 𝛴𝑖𝑗 and 𝛴𝑚𝑛: 

𝜕2𝐽3
0

𝜕𝜮𝑖𝑗𝜕𝜮𝑚𝑛
= 𝑆𝑛𝑖𝛿𝑗𝑚 + 𝑆𝑗𝑚𝛿𝑛𝑖 −

2

3
𝑆𝑖𝑗𝛿𝑚𝑛 −

2

3
𝑆𝑚𝑛𝛿𝑖𝑗.  (C.9) 

Using the chain rule, the derivative of both the second and third invariants of deviatoric 

transformed stress, with respect to the Cauchy stress can be obtained by:  

𝜕𝐽2
0

𝜕𝝈
=

𝜕𝐽2
0

𝜕𝜮

𝜕𝜮

𝜕𝝈
,  (C.10) 

𝜕𝐽3
0

𝜕𝝈
=

𝜕𝐽3
0

𝜕𝜮

𝜕𝜮

𝜕𝝈
.  (C.11) 

Therefore, the derivative of yield function to the Cauchy stress is:  

𝑵 =
𝜕𝛷

𝜕𝝈
=

�̂�3

3𝜎𝑒𝑞
(
3

2
𝐽2
01/2 𝜕𝐽2

0

𝜕𝝈
− �̂�

𝜕𝐽3
0

𝜕𝝈
).  (C.12) 
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The derivative of coefficient �̂� to equivalent plastic strain can be given by:  

𝜕�̂�

𝜕̅𝑝
= − [(𝑎2

2 + 𝑎3
2 + 𝑎2𝑎3)

3

2 − �̂�(𝑎2 + 𝑎3)𝑎2𝑎3]
−

4

3
   

             [(
3

2
(𝑎2

2 + 𝑎3
2 + 𝑎2𝑎3)

1

2) (2𝑎2
𝜕𝑎2

𝜕̅𝑝
+ 2𝑎3

𝜕𝑎3

𝜕̅𝑝
+ 𝑎2

𝜕𝑎3

𝜕̅𝑝
+ 𝑎3

𝜕𝑎2

𝜕̅𝑝
) −

𝜕𝑐̂

𝜕̅𝑝
(𝑎2 + 𝑎3)𝑎2𝑎3 − 2𝑎2𝑎3�̂� (

𝜕𝑎2

𝜕̅𝑝
+

𝜕𝑎3

𝜕̅𝑝
)]. 

 (C.13) 

Owing to the dependence of the transformed matrix �̂� on the equivalent plastic strain, 

the derivative of the second and third invariants of the deviatoric transformed stress 

with respect to the equivalent plastic strain can be given by:  

𝜕𝐽2
0

𝜕̅𝑝
=

𝜕𝐽2
0

𝜕𝜮

𝜕𝜮

𝜕̅𝑝
,  (C.14) 

𝜕𝐽3
0

𝜕̅𝑝
=

𝜕𝐽3
0

𝜕𝜮

𝜕𝜮

𝜕̅𝑝
.  (C.15) 

and the 
𝜕𝜮

𝜕̅𝑝
 can be calculated by:  

𝜕𝜮

𝜕̅𝑝
=

𝜕�̂�

𝜕̅𝑝
𝝈 =

𝜕�̂�

𝜕𝑎𝑚

𝜕𝑎𝑚

𝜕̅𝑝
𝝈.  (C.16) 

Finally, the derivative of the yield function to the equivalent plastic strain can be given 

by:  

𝜕𝜎𝑒𝑞

𝜕̅𝑝
=

𝜕�̂�

𝜕̅𝑝
(𝐽2

0
3

2 − �̂�𝐽3
0)1/3 +

�̂�3

3𝜎𝑒𝑞
2 (

3

2
𝐽2
0

1

2
𝜕𝐽2

0

𝜕̅𝑝
− �̂�

𝜕𝐽3
0

𝜕̅𝑝
−

𝜕𝑐̂

𝜕̅𝑝
𝐽3
0).  (C.17) 

Owing to that, the transformed matrix �̂� is independent on the stress tensor, so the 

second order derivative of 𝐽3
0 ,𝐽2

0 to the Cauchy stress can be calculated by:  

𝜕2𝐽2
0

𝜕𝝈2 =
𝜕2𝐽2

0

𝜕𝜮2

𝜕𝜮

𝜕𝝈
,  (C.18) 

𝜕2𝐽3
0

𝜕𝝈2 =
𝜕2𝐽3

0

𝜕𝜮2

𝜕𝜮

𝜕𝝈
. C.19) 

So, the second order derivative of yield function to Cauchy stress can be obtained by:  

𝜕2𝜎𝑒𝑞

𝜕𝝈2 = −
2

𝜎𝑒𝑞

𝜕𝜎𝑒𝑞

𝜕𝝈
⊗

𝜕𝜎𝑒𝑞

𝜕𝝈
+

�̂�3

3𝜎𝑒𝑞
2 (

3

4
𝐽2
0−

1

2
𝜕𝐽2

0

𝜕𝝈
⊗

𝜕𝐽2
0

𝜕𝝈
+

3

2
𝐽2
0

1

2
𝜕2𝐽2

0

𝜕𝝈2 − �̂�
𝜕2𝐽3

0

𝜕𝝈2 ).  (C.20) 

while the derivative of flow direction 𝑵 to equivalent plastic strain can be obtained by : 

𝜕2𝜎𝑒𝑞

𝜕𝝈𝜕̅𝑝
= (

�̂�2

𝜎𝑒𝑞
2

𝜕�̂�

𝜕̅𝑝
−

2�̂�3

3𝜎𝑒𝑞
3

𝜕𝜎𝑒𝑞

𝜕̅𝑝
) (

3

2
𝐽2
0

1

2
𝜕𝐽2

0

𝜕𝝈
− �̂�

𝜕𝐽3
0

𝜕𝝈
) +

�̂�3

3𝜎𝑒𝑞
2 (

3

4
𝐽2
0−

1

2
𝜕𝐽2

0

𝜕𝝈

𝜕𝐽2
0

𝜕̅𝑝
+

3

2
𝐽2
0

1

2
𝜕2𝐽2

0

𝜕𝝈𝜕̅𝑝
− �̂�

𝜕2𝐽3
0

𝜕𝝈𝜕̅𝑝
−

𝜕𝑐̂

𝜕̅𝑝
. 

 (C.21) 
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Appendix D   

Derivatives of New Constitutive Model 

𝐾1 =
𝜎11+ℎ𝜎22

2
,  (D.1) 

𝐾2 = √(
𝜎11−ℎ𝜎22

2
)2 + 𝑏2𝜎12

2 . 
 (D.2) 

The new proposed yield criteria is shown as follows 

𝜎𝑒𝑞 = (𝑎(𝛴1 − 𝑐|𝛴1|)
𝑀 + 𝑎(𝛴2 − 𝑐|𝛴2|)

𝑀 + 𝑓|2𝐾2|
𝑀)1/𝑀,  (D.3) 

where 

𝛴1 = 𝐾1 + 𝐾2,  (D.4) 

𝛴2 = 𝐾1 − 𝐾2.  (D.5) 

The first derivative of 𝐾1, 𝐾2 with respect to stress componet 

𝜕𝐾1

𝜕𝝈
= [

1/2
ℎ/2
0

],  (D.6) 

𝜕𝐾2

𝜕𝝈
=

1

2𝐾2
[

(𝜎11 − ℎ𝜎22)/2

−ℎ(𝜎11 − ℎ𝜎22)/2

2𝑏2𝜎12

] =
�̃�

2𝐾2
. 

 (D.7) 

where 

�̃� = [

(𝜎11 − ℎ𝜎22)/2

−ℎ(𝜎11 − ℎ𝜎22)/2

2𝑏2𝜎12

].  (D.8) 

The derivative of 𝐾1, 𝐾2 with respect to the equivalent plastic strain 

𝜕𝐾1

∂
𝑝 =

𝜕ℎ

∂
𝑝

𝜎22

2
,  (D.9) 

𝜕𝐾2

∂
𝑝 =

1

2𝐾2
(2𝑏𝜎12

2 𝜕𝑏

∂
𝑝 − (

𝜎11−ℎ𝜎22

2
)

𝜎22

2

𝜕ℎ

∂
𝑝).  (D.10) 

The second derivative of 𝐾1, 𝐾2 with respect to stress component 

𝜕𝐾1
2

𝜕2𝝈
= 𝟎,  (D.11) 

𝜕𝐾2
2

𝜕2𝝈
= −

1

𝐾2

𝜕𝐾2

𝜕𝝈
⊗

𝜕𝐾2

𝜕𝝈
+

1

2𝐾2

𝜕�̃�

𝜕𝝈
.  (D.12) 

where 
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𝜕�̃�

𝜕𝝈
= [

1/2 −ℎ/2 0

−ℎ/2 ℎ2/2 0

0 0 2𝑏2

].  (D.13) 

The second derivative 𝐾1, 𝐾2 with respect to stress and equivalent plastic starin 

𝜕𝐾1
2

𝜕𝝈∂
𝑝 = [

0
𝜕ℎ/𝜕휀

𝑝
/2

0

],  (D.14) 

𝜕𝐾2
2

𝜕𝝈∂
𝑝 = −

1

𝐾2

𝜕𝐾2

∂
𝑝

𝜕𝐾2

𝜕𝝈
+

1

2𝐾2

𝜕�̃�

∂
𝑝.  (D.15) 

where 

𝜕�̃�

∂
𝑝 =

[
 
 
 
 −

𝜕ℎ

𝜕
𝑝

𝜎22

2
𝜕ℎ

𝜕
𝑝 (−

𝜎11

2
+ ℎ𝜎22)

4𝑏𝜎12
𝜕𝑏

𝜕
𝑝 ]

 
 
 
 

.  (D.16) 

In order to derivative the yield function to variable, here we set 

�̃�1 = 𝑎|(𝐾1 + 𝐾2) − 𝑐|𝐾1 + 𝐾2||
𝑀

,  (D.17) 

�̃�2 = 𝑎|(𝐾1 − 𝐾2) − 𝑐|𝐾1 − 𝐾2||
𝑀

,  (D.18) 

�̃�3 = (2 − 𝑎)|2𝐾2|
𝑀.  (D.19) 

So the yield function can be written as 

𝜎𝑒𝑞 = (�̃�1 + �̃�2 + �̃�3)
1/𝑀.  (D.20) 

So, the first derivative of �̃�1, �̃�2 and �̃�3 with respect to stress can be given by 

∂�̃�1

∂𝝈
=

𝑀�̃�1

𝐾1+𝐾2
(
∂𝐾1

∂𝝈
+

∂𝐾2

∂𝝈
),  (D.21) 

∂�̃�2

∂𝝈
=

𝑀�̃�2

𝐾1−𝐾2
(
∂𝐾1

∂𝝈
−

∂𝐾2

∂𝝈
),  (D.22) 

∂�̃�3

∂𝝈
=

𝑀�̃�3

𝐾2

∂𝐾2

∂𝝈
.  (D.23) 

The first derivative of �̃�1 , �̃�2  and �̃�3  with respect to equivalent plastic strain can be 

given by 

∂𝜎𝑒𝑞

∂
𝑝 =

1

𝑀
(�̃�1 + �̃�2 + �̃�3)

1

𝑀
−1 (

∂�̃�1

∂
𝑝 +

∂�̃�2

∂
𝑝 +

∂�̃�3

∂
𝑝). 

 (D.24) 

where 

∂�̃�1

∂
𝑝 =

�̃�1

𝑎

∂𝑎

∂
𝑝 +

𝑀�̃�1

𝐾1+𝐾2
(
∂𝐾1

∂
𝑝 +

∂𝐾2

∂
𝑝) − 𝑎𝑀|(𝐾1 + 𝐾2) − 𝑐|𝐾1 + 𝐾2||

𝑀−1
  

               |𝐾1 + 𝐾2|
∂𝑐

∂
𝑝, 

 (D.25) 

∂�̃�2

∂
𝑝 =

�̃�2

𝑎

∂𝑎

∂
𝑝 +

𝑀�̃�2

𝐾1−𝐾2
(
∂𝐾1

∂
𝑝 −

∂𝐾2

∂
𝑝) − 𝑎𝑀|(𝐾1 − 𝐾2) − 𝑐|𝐾1 − 𝐾2||

𝑀−1
   (D.26) 
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              |𝐾1 − 𝐾2|
∂𝑐

∂
𝑝, 

∂�̃�3

∂
𝑝 = −

∂𝑎

∂
𝑝 |2𝐾2|

𝑀 +
𝑀�̃�3

𝐾2

∂𝐾2

∂
𝑝.  (D.27) 

The second derivative of �̃�1, �̃�2 and �̃�3 with respect to stress 

∂2�̃�1

∂𝝈2 =
𝑀

𝐾1+𝐾2
(

∂𝐾1

∂𝝈
+

∂𝐾2

∂𝝈
) ⊗

∂�̃�1

∂𝝈
−

𝑀�̃�1

(𝐾1+𝐾2)2
∂(𝐾1+𝐾2)

∂𝝈
⊗

∂(𝐾1+𝐾2)

∂𝝈
  

                           +
𝑀�̃�1

𝐾1+𝐾2
(
𝜕𝐾1

2

𝜕2𝝈
+

𝜕𝐾2
2

𝜕2𝝈
), 

 (D.28) 

∂2�̃�2

∂𝝈2
=

𝑀

𝐾1−𝐾2
(

∂𝐾1

∂𝝈
−

∂𝐾2

∂𝝈
) ⊗

∂�̃�2

∂𝝈
−

𝑀�̃�2

(𝐾1−𝐾2)2
∂(𝐾1−𝐾2)

∂𝝈
⊗

∂(𝐾1−𝐾2)

∂𝝈
   

                          +
𝑀�̃�2

𝐾1−𝐾2
(
𝜕𝐾1

2

𝜕2𝝈
−

𝜕𝐾2
2

𝜕2𝝈
), 

 (D.29) 

∂2�̃�3

∂𝝈2 =
𝑀

𝐾2

∂𝐾2

∂𝝈
⊗

∂�̃�3

∂𝝈
−

𝑀�̃�3

𝐾2
2

∂𝐾2

∂𝝈
⊗

∂𝐾2

∂𝝈
+

𝑀�̃�3

𝐾2

𝜕𝐾2
2

𝜕2𝝈
.  (D.30) 

The second derivative of �̃�1 , �̃�2  and �̃�3  with respect to stress and equivalent plastic 

strain 

∂2�̃�1

∂𝝈∂
𝑝 =

𝑀

𝐾1+𝐾2

∂�̃�1

∂
𝑝 (

∂𝐾1

∂𝝈
+

∂𝐾2

∂𝝈
) −

𝑀�̃�1

(𝐾1+𝐾2)2
∂(𝐾1+𝐾2)

∂
𝑝

∂(𝐾1+𝐾2)

∂𝝈
  

                                  +
𝑀�̃�1

𝐾1+𝐾2
(

𝜕𝐾1
2

∂𝝈∂
𝑝 +

𝜕𝐾2
2

∂𝝈∂
𝑝), 

 (D.31) 

∂2�̃�2

∂𝝈∂
𝑝 =

𝑀

𝐾1−𝐾2

∂�̃�2

∂
𝑝 (

∂𝐾1

∂𝝈
−

∂𝐾2

∂𝝈
) −

𝑀�̃�2

(𝐾1−𝐾2)2
∂(𝐾1−𝐾2)

∂
𝑝

∂(𝐾1−𝐾2)

∂𝝈
    

                                  +
𝑀�̃�2

𝐾1−𝐾2
(

𝜕𝐾1
2

∂𝝈∂
𝑝 −

𝜕𝐾2
2

∂𝝈∂
𝑝), 

 (D.32) 

∂2�̃�3

∂𝝈∂
𝑝 =

𝑀

𝐾2

∂�̃�3

∂
𝑝

∂𝐾2

∂𝝈
−

𝑀�̃�3

𝐾2
2

∂𝐾2

∂
𝑝

∂𝐾2

∂𝝈
+

𝑀�̃�3

𝐾2

𝜕𝐾2
2

∂𝝈∂
𝑝.  (D.33) 

Finally, the derivative of the yield function with respect to stress can be given by 

∂𝜎𝑒𝑞

∂𝝈
=

𝜎𝑒𝑞
1−𝑀

2𝑀
(
∂�̃�1

∂𝝈
+

∂�̃�2

∂𝝈
+

∂�̃�3

∂𝝈
). 

 (D.34) 

The derivative of the yield function with respect to equivalent plastic strain 

∂𝜎𝑒𝑞

∂
𝑝 =

𝜎𝑒𝑞
1−𝑀

2𝑀
(
∂�̃�1

∂
𝑝 +

∂�̃�2

∂
𝑝 +

∂�̃�3

∂
𝑝). 

 (D.35) 

The second derivative of the yield function with respect to stress 

∂2𝜎𝑒𝑞

∂𝝈2
=

1−𝑀

𝜎𝑒𝑞

∂𝜎𝑒𝑞

∂𝝈
⊗

∂𝜎𝑒𝑞

∂𝝈
+

𝜎𝑒𝑞
1−𝑀

2𝑀
(
∂2�̃�1

∂𝝈2
+

∂2�̃�2

∂𝝈2
+

∂2�̃�3

∂𝝈2
). 

 (D.36) 

The derivative of the yield function with respect to stress and equivalent plastic strain 

∂2𝜎𝑒𝑞

∂𝝈∂
𝑝 =

1−𝑀

𝜎𝑒𝑞

∂𝜎𝑒𝑞

∂
𝑝

∂𝜎𝑒𝑞

∂𝝈
+

𝜎𝑒𝑞
1−𝑀

2𝑀
(

∂2�̃�1

∂𝝈∂
𝑝 +

∂2�̃�2

∂𝝈∂
𝑝 +

∂2�̃�3

∂𝝈∂
𝑝). 

 (D.37) 
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Appendix E   

Derivatives of Barlat´89 model 

The formulation of Barlat´89 model is written as follows 

𝜎𝐵𝑎𝑟𝑙𝑎𝑡 = (
𝑎𝐵𝐿|𝐾1+𝐾2|𝑀𝐵𝐿+𝑎𝐵𝐿|𝐾1−𝐾2|𝑀𝐵𝐿+ (2−𝑎𝐵𝐿)|2𝐾2|𝑀𝐵𝐿

2
)
1/𝑀

, 
 (E.1) 

where 𝐾1 and 𝐾2 are given by 

𝐾1 =
𝜎11+ℎ𝐵𝐿𝜎22

2
,  (E.2) 

𝐾2 = √(
𝜎11−ℎ𝐵𝐿𝜎22

2
)2 + (𝑏𝐵𝐿)2𝜎12

2 , 
 (E.3) 

and 𝑀𝐵𝐿 , 𝑎𝐵𝐿, ℎ𝐵𝐿 , and 𝑏𝐵𝐿 are material parameters. 

Let 

𝑓𝐵𝐿 = 𝑎𝐵𝐿|𝐾1 + 𝐾2|
𝑀𝐵𝐿 + 𝑎𝐵𝐿|𝐾1 − 𝐾2|

𝑀𝐵𝐿 + (2 − 𝑎𝐵𝐿)|2𝐾2|
𝑀𝐵𝐿.  (E.4) 

Then  

𝜎𝐵𝑎𝑟𝑙𝑎𝑡 = (
𝑓𝐵𝐿

2
)
1/𝑀𝐵𝐿

. 
 (E.5) 

The equation of the flow vector 𝑵 , defined below, requires the terms of the first 

derivative of the function 𝑓𝐵𝐿 depending on 𝜎11, 𝜎22 and 𝜎12.  

𝑵 =
1

2𝑀𝐵𝐿
(
𝑓𝐵𝐿

2
)

1−𝑀𝐵𝐿
𝑀𝐵𝐿 𝜕𝑓𝐵𝐿

𝜕𝝈
, 

 (E.6) 

and 

𝜕𝑵

𝜕𝝈
=

1

2𝑀𝐵𝐿
(
𝑓𝐵𝐿

2
)

1−𝑀𝐵𝐿
𝑀𝐵𝐿 𝜕2𝑓𝐵𝐿

𝜕𝝈2
+

1−𝑀𝐵𝐿

4𝑀𝐵𝐿
2 (

𝑓𝐵𝐿

2
)

1−2𝑀𝐵𝐿
𝑀𝐵𝐿 𝜕𝑓𝐵𝐿

𝜕𝝈
⊗

𝜕𝑓𝐵𝐿

𝜕𝝈
 . 

 (E.7) 

The first derivative of 𝑓𝐵𝐿 with respect to 𝜎11, 𝜎22 and 𝜎12is: 

𝜕𝑓𝐵𝐿

𝜕𝜎11
=

𝑀𝐵𝐿

2
[𝑎𝐵𝐿 (1 +

𝜎11− ℎ𝐵𝐿.𝜎22

2𝐾2
) |𝐾1 + 𝐾2| 

𝑀𝐵𝐿−1 + 𝑎𝐵𝐿 (1 −

𝜎11− ℎ𝐵𝐿𝜎22

2𝐾2
) |𝐾1 − 𝐾2| 

𝑀𝐵𝐿−1 + (2 − 𝑎𝐵𝐿)2
𝑀𝐵𝐿 (

𝜎11− ℎ𝐵𝐿𝜎22

2𝐾2
) |𝐾2| 

𝑀𝐵𝐿−1], 
 (E.8) 

𝜕𝑓𝐵𝐿

𝜕𝜎22
=

𝑀𝐵𝐿ℎ𝐵𝐿

2
[𝑎𝐵𝐿 (1 −

𝜎11− ℎ𝐵𝐿𝜎22

2𝐾2
) |𝐾1 + 𝐾2| 

𝑀𝐵𝐿−1 + 𝑎𝐵𝐿 (1 +

𝜎11− ℎ𝐵𝐿𝜎22

2𝐾2
) |𝐾1 − 𝐾2| 

𝑀𝐵𝐿−1 − (2 − 𝑎𝐵𝐿)2
𝑀𝐵𝐿 (

𝜎11− ℎ𝐵𝐿.𝜎22

2𝐾2
) |𝐾2| 

𝑀𝐵𝐿−1], 
 (E.9) 

𝜕𝑓𝐵𝐿

𝜕𝜎12
=

𝑀𝐵𝐿(𝑏𝐵𝐿)2𝜎12

𝐾2
[𝑎𝐵𝐿(𝐾1 + 𝐾2)|𝐾1 + 𝐾2| 

𝑀𝐵𝐿−2 − 𝑎𝐵𝐿(𝐾1 − 𝐾2)|𝐾1 −

𝐾2| 
𝑀𝐵𝐿−2 + 2(2 − 𝑎𝐵𝐿)(2𝐾2)

𝑀𝐵𝐿−1]. 

 (E.10) 
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The second derivative of function 𝑓𝐵𝐿 with respect to 𝜎11  

𝜕2𝑓𝐵𝐿

𝜕𝜎11
2 =

𝑀𝐵𝐿

4
{𝑎𝐵𝐿 [

1

𝐾2
(1 − (

𝜎11− ℎ𝐵𝐿𝜎22

2𝐾2
)
2

) |𝐾1 + 𝐾2| 
𝑀𝐵𝐿−1 + (𝑀𝐵𝐿 −

1) (1 +
𝜎11− ℎ𝐵𝐿𝜎22

2𝐾2
)
2

 |𝐾1 + 𝐾2| 
𝑀𝐵𝐿−2] +

𝑎𝐵𝐿 [−
1

𝐾2
(1 − (

𝜎11− ℎ𝐵𝐿𝜎22

2𝐾2
)
2

) |𝐾1 − 𝐾2| 
𝑀𝐵𝐿−1 + (1 −

𝜎11− ℎ𝐵𝐿𝜎22

2𝐾2
)
2
(𝑀𝐵𝐿 −

1) |𝐾1 − 𝐾2| 
𝑀𝐵𝐿−2] + (2 − 𝑎𝐵𝐿)2

𝑀𝐵𝐿 [
1

𝐾2
(1 − (

𝜎11− ℎ𝐵𝐿𝜎22

2𝐾2
)
2

) |𝐾2| 
𝑀𝐵𝐿−1 +

(𝑀𝐵𝐿 − 1) (
𝜎11− ℎ𝐵𝐿𝜎22

2𝐾2
)
2
|𝐾2| 

𝑀𝐵𝐿−2]}. 

 

(E.11) 

The second derivative of function 𝑓𝐵𝐿 with respect to 𝜎22: 

𝜕2𝑓𝐵𝐿

𝜕𝜎22
2 =

𝑀𝐵𝐿(ℎ𝐵𝐿)2

4
{𝑎𝐵𝐿 [

1

𝐾2
(1 − (

𝜎11− ℎ𝐵𝐿𝜎22

2𝐾2
)
2

) |𝐾1 + 𝐾2| 
𝑀𝐵𝐿−1 +

(1 −
𝜎11− ℎ𝐵𝐿𝜎22

2𝐾2
)
2
(𝑀𝐵𝐿 − 1)|𝐾1 + 𝐾2| 

𝑀𝐵𝐿−2] +

𝑎𝐵𝐿 [
1

𝐾2
(1 − (

𝜎11− ℎ𝐵𝐿𝜎22

2𝐾2
)
2

) |𝐾1 − 𝐾2| 
𝑀𝐵𝐿−1 − (1 +

𝜎11− ℎ𝐵𝐿𝜎22

2𝐾2
)
2
(𝑀𝐵𝐿 −

1)|𝐾1 − 𝐾2| 
𝑀𝐵𝐿−2] + (2 − 𝑎𝐵𝐿)2

𝑀𝐵𝐿  [
1

𝐾2
(1 − (

𝜎11− ℎ𝐵𝐿𝜎22

2𝐾2
)
2

) |𝐾2| 
𝑀𝐵𝐿−1 +

(𝑀𝐵𝐿 − 1) (
𝜎11− ℎ𝐵𝐿𝜎22

2𝐾2
)
2
|𝐾2| 

𝑀𝐵𝐿−2]}. 

 (E.12) 

The second derivative of function 𝑓𝐵𝐿 depending on 𝜎12 is: 

𝜕2𝑓𝐵𝐿

𝜕𝜎12
2 =

𝑀𝐵𝐿𝑏𝐵𝐿

𝐾2
[(1 −

𝜎12
2 (𝑏𝐵𝐿)2

𝐾2
2 ) {𝑎𝐵𝐿|𝐾1 + 𝐾2|

𝑀𝐵𝐿−1 − 𝑎𝐵𝐿|𝐾1 − 𝐾2|
𝑀𝐵𝐿−1    

              −2(2 − 𝑎𝐵𝐿)(2𝐾2)
𝑀𝐵𝐿−1} +

(𝑏𝐵𝐿)2𝜎12
2

𝐾2
(𝑀𝐵𝐿 − 1)  

[𝑎𝐵𝐿(|𝐾1 + 𝐾2| 
𝑀𝐵𝐿−2 + |𝐾1 − 𝐾2| 

𝑀𝐵𝐿−2) + 2𝑀𝐵𝐿(2 − 𝑎𝐵𝐿)(𝐾2)
𝑀𝐵𝐿−2]]    

 

(E.13) 

The second derivative of function 𝑓𝐵𝐿 depending on 𝜎11 and 𝜎22: 

𝜕2𝑓𝐵𝐿

𝜕𝜎11𝜕𝜎22
=

𝑀𝐵𝐿ℎ𝐵𝐿

4
{𝑎𝐵𝐿 [−

1

𝐾2
(1 − (

𝜎11− ℎ𝐵𝐿𝜎22

2𝐾2
)
2

) |𝐾1 + 𝐾2| 
𝑀𝐵𝐿−1  +

(𝑀𝐵𝐿 − 1) (1 +
𝜎11−ℎ𝐵𝐿𝜎22

2𝐾2
) (1 −

𝜎11− ℎ𝐵𝐿𝜎22

2𝐾2
) |𝐾1 + 𝐾2| 

𝑀𝐵𝐿−2] +

𝑎𝐵𝐿 [
1

𝐾2
(1 − (

𝜎11− ℎ𝐵𝐿𝜎22

2𝐾2
)
2

) |𝐾1 − 𝐾2| 
𝑀𝐵𝐿−1 + (1 −

𝜎11− ℎ𝐵𝐿𝜎22

2𝐾2
) (1 +

𝜎11−ℎ𝐵𝐿𝜎22

2𝐾2
) (𝑀𝐵𝐿 − 1) |𝐾1 − 𝐾2| 

𝑀𝐵𝐿−2] − (2 − 𝑎𝐵𝐿)2
𝑀𝐵𝐿 [

1

𝐾2
(1 −

(
𝜎11− ℎ𝐵𝐿𝜎22

2𝐾2
)
2

) |𝐾2| 
𝑀𝐵𝐿−1 + (𝑀𝐵𝐿 − 1) (

𝜎11− ℎ𝐵𝐿𝜎22

2𝐾2
)
2

 |𝐾2| 
𝑀𝐵𝐿−2]}. 

 (E.14) 

The second derivative of function 𝑓𝐵𝐿 depending on 𝜎12 and 𝜎11: 



Continuum Modelling and Numerical Simulation of Hexagonal Close-Packed Materials 

281 

 

𝜕2𝑓𝐵𝐿

𝜕𝜎12𝜕𝜎11
=

𝑀𝐵𝐿(𝑏𝐵𝐿)
2𝜎12

2𝐾2
[(

𝜎11 − ℎ𝐵𝐿𝜎22

2𝐾2
2 ){

𝑎𝐵𝐿 (
|𝐾1 − 𝐾2|

𝑀𝐵𝐿−1

−|𝐾1 + 𝐾2|
𝑀𝐵𝐿−1)

−2(2 − 𝑎𝐵𝐿)(2𝐾2)
𝑀−1

} 

                             +(𝑀𝐵𝐿 − 1)

[
 
 
 
 
𝑎𝐵𝐿 (

(1 +
𝜎11−ℎ𝐵𝐿𝜎22

2𝐾2
) |𝐾1 + 𝐾2| 

𝑀𝐵𝐿−2

−(1 −
𝜎11−ℎ𝐵𝐿𝜎22

2𝐾2
) |𝐾1 − 𝐾2| 

𝑀𝐵𝐿−2
)

+2𝑀𝐵𝐿 (
𝜎11−ℎ𝐵𝐿𝜎22

2𝐾2
) (2 − 𝑎𝐵𝐿)(𝐾2)

𝑀𝐵𝐿−2
]
 
 
 
 

]
 
 
 
 
 

.  

 (E.15) 

The second derivative of function 𝑓𝐵𝐿 depending on 𝜎12 and 𝜎22, we obtain the above 

expression: 

𝜕2𝑓𝐵𝐿

𝜕𝜎12𝜕𝜎22
=

𝑀𝐵𝐿(𝑏𝐵𝐿)
2ℎ𝐵𝐿𝜎12

2𝐾2
[(

𝜎11 − ℎ𝐵𝐿𝜎22

2𝐾2
2 ){

𝑎𝐵𝐿 (
|𝐾1 + 𝐾2|

𝑀𝐵𝐿−1

−|𝐾1 − 𝐾2|
𝑀𝐵𝐿−1)

+2(2 − 𝑎𝐵𝐿)(2𝐾2)
𝑀𝐵𝐿−1

} 

                        +(𝑀𝐵𝐿 − 1)

[
 
 
 
 
𝑎𝐵𝐿 (

(1 −
𝜎11−ℎ𝐵𝐿𝜎22

2𝐾2
) |𝐾1 + 𝐾2| 

𝑀𝐵𝐿−2

−(1 +
𝜎11−ℎ𝐵𝐿𝜎22

2𝐾2
) |𝐾1 − 𝐾2| 

𝑀𝐵𝐿−2
)

−2𝑀𝐵𝐿 (
𝜎11−ℎ𝐵𝐿𝜎22

2𝐾2
) (2 − 𝑎𝐵𝐿)(𝐾2)

𝑀𝐵𝐿−2
]
 
 
 
 

]
 
 
 
 
 

. 

. 

 (E.16) 
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Appendix F   

Derivatives of Cazacu´06 Yield Criterion 

The formula of Cazacu´06 is written as 

𝜎𝑒𝑞 = [(|𝛴1| − �̃�𝛴1)
�̃�

+ (|𝛴2| − �̃�𝛴2)
�̃�

+ (|𝛴3| − �̃�𝛴3)
�̃�
]
1/�̃�

,  (F.1) 

where 

𝛴1 = 2𝑐𝑜𝑠(�̃�)√
𝐽2
0

3
+

𝐼1
0

3
,  (F.2) 

𝛴2 = 2𝑐𝑜𝑠 (�̃� −
2𝜋

3
)√𝐽2

0

3
+

𝐼1
0

3
, 

 (F.3) 

𝛴3 = 2𝑐𝑜𝑠 (�̃� +
2𝜋

3
)√𝐽2

0

3
+

𝐼1
0

3
, 

 (F.4) 

and  

𝐽2
0 =

1

2
𝑡𝑟(𝜮2),  (F.5) 

𝐽3
0 =

1

3
𝑡𝑟(𝜮3),  (F.6) 

𝐼1
0 = 𝑡𝑟(𝜮).  (F.7) 

The derivative of Lode angle �̃� to deviatoric stress invariant 𝐽2
0,𝐽3

0 

𝜕�̃�

𝜕𝐽2
0 =

3√3

4𝑠𝑖𝑛3�̃�

𝐽3

𝐽2
0 5/2,  (F.8) 

𝜕�̃�

𝜕𝐽3
0 = −

1

6𝑠𝑖𝑛3�̃�
(

3

𝐽2
0)

3

2
.  (F.9) 

So the derivative of principal stress to the second deviatoric stress invariant 𝐽2
0 

𝜕𝛴1

𝜕𝐽2
0 = −

3𝐽3
0𝑠𝑖𝑛�̃�

2𝐽2
0 2𝑠𝑖𝑛3�̃�

+
1

3
𝑐𝑜𝑠�̃� (

3

𝐽2
0)

1/2

,  (F.10) 

𝜕𝛴2

𝜕𝐽2
0 = −

3𝐽3
0𝑠𝑖𝑛(�̃�−

2𝜋

3
)

2𝐽2
0 2𝑠𝑖𝑛3�̃�

+
1

3
𝑐𝑜𝑠 (�̃� −

2𝜋

3
) (

3

𝐽2
0)

1/2

,  (F.11) 

𝜕𝛴3

𝜕𝐽2
0 = −

3𝐽3
0𝑠𝑖𝑛(�̃�+

2𝜋

3
)

2𝐽2
0 2𝑠𝑖𝑛3�̃�

+
1

3
𝑐𝑜𝑠 (�̃� +

2𝜋

3
) (

3

𝐽2
0)

1

2
.  (F.12) 

and the derivative of principal stress to the third deviatoric stress invariant 𝐽3
0 

𝜕𝛴1

𝜕𝐽3
0 =

𝑠𝑖𝑛�̃�

𝐽2
0𝑠𝑖𝑛3�̃�

,  (F.13) 

𝜕𝛴2

𝜕𝐽3
0 =

𝑠𝑖𝑛(�̃�−
2𝜋

3
)

𝐽2
0𝑠𝑖𝑛3�̃�

,  (F.14) 
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𝜕𝛴3

𝜕𝐽3
0 =

𝑠𝑖𝑛(�̃�+
2𝜋

3
)

𝐽2
0𝑠𝑖𝑛3�̃�

.  (F.15) 

The second derivative of principal stress to the deviatoric stress invariant𝐽2
0, 𝐽3

0 

𝜕2𝛴1

𝜕𝐽2
0 2 = 3𝐽3

0𝐽2
0  −3 𝑠𝑖𝑛�̃�

𝑠𝑖𝑛3�̃�
−

3𝐽3
0

2𝐽2
0 2 (

𝑐𝑜𝑠�̃�

𝑠𝑖𝑛3�̃�
−

3𝑠𝑖𝑛�̃�𝑐𝑜𝑠3�̃�

(𝑠𝑖𝑛3�̃�)
2 )

𝜕�̃�

𝜕𝐽2
0  

−
1

3
𝑠𝑖𝑛�̃� (

3

𝐽2
0)

1

2 𝜕�̃�

𝜕𝐽2
0 −

√3

6
𝑐𝑜𝑠�̃�𝐽2

0  −3/2
, 

 (F.16) 

𝜕2𝛴1

𝜕𝐽2
0𝜕𝐽3

0 = −
3

2
𝐽2
0 −2 𝑠𝑖𝑛�̃�

𝑠𝑖𝑛3�̃�
−

3𝐽3
0

2𝐽2
0 2 (

𝑐𝑜𝑠�̃�

𝑠𝑖𝑛3�̃�
−

3𝑠𝑖𝑛�̃�𝑐𝑜𝑠3�̃�

(𝑠𝑖𝑛3�̃�)
2 )

𝜕�̃�

𝜕𝐽3
0  

−
1

3
𝑠𝑖𝑛�̃� (

3

𝐽2
0)

1

2 𝜕�̃�

𝜕𝐽3
0, 

(F.17) 

𝜕2𝛴2

𝜕𝐽2
0 2 = 3𝐽3

0𝐽2
0  −3

𝑠𝑖𝑛(�̃�−
2𝜋

3
)

𝑠𝑖𝑛3�̃�
−

3𝐽3
0

2𝐽2
0 2 (

𝑐𝑜𝑠(�̃�−
2𝜋

3
)

𝑠𝑖𝑛3�̃�
−

3𝑠𝑖𝑛(�̃�−
2𝜋

3
)𝑐𝑜𝑠3�̃�

(𝑠𝑖𝑛3�̃�)
2 )

𝜕�̃�

𝜕𝐽2
0   

−
1

3
𝑠𝑖𝑛 (�̃� −

2𝜋

3
) (

3

𝐽2
0)

1

2 𝜕�̃�

𝜕𝐽2
0 −

√3

6
𝑐𝑜𝑠 (�̃� −

2𝜋

3
) 𝐽2

0  −3/2
, 

 (F.18) 

𝜕2𝛴2

𝜕𝐽2
0𝜕𝐽3

0 = −
3

2
𝐽2
0 −2

𝑠𝑖𝑛(�̃�−
2𝜋

3
)

𝑠𝑖𝑛3�̃�
−

3𝐽3
0

2𝐽2
0 2 (

𝑐𝑜𝑠(�̃�−
2𝜋

3
)

𝑠𝑖𝑛3�̃�
−

3𝑠𝑖𝑛(�̃�−
2𝜋

3
)𝑐𝑜𝑠3�̃�

(𝑠𝑖𝑛3�̃�)
2 )

𝜕�̃�

𝜕𝐽3
0  

−
1

3
𝑠𝑖𝑛 (�̃� −

2𝜋

3
) (

3

𝐽2
0)

1

2 𝜕�̃�

𝜕𝐽3
0, 

(F.19) 

𝜕2𝛴3

𝜕𝐽2
0 2 = 3𝐽3

0𝐽2
0  −3

𝑠𝑖𝑛(�̃�+
2𝜋

3
)

𝑠𝑖𝑛3�̃�
−

3𝐽3
0

2𝐽2
0 2 (

𝑐𝑜𝑠(�̃�+
2𝜋

3
)

𝑠𝑖𝑛3�̃�
−

3𝑠𝑖𝑛(�̃�+
2𝜋

3
)𝑐𝑜𝑠3�̃�

(𝑠𝑖𝑛3�̃�)
2 )

𝜕�̃�

𝜕𝐽2
0   

−
1

3
𝑠𝑖𝑛 (�̃� +

2𝜋

3
) (

3

𝐽2
0)

1

2 𝜕�̃�

𝜕𝐽2
0 −

√3

6
𝑐𝑜𝑠 (�̃� +

2𝜋

3
) 𝐽2

0  −3/2
, 

 (F.20) 

𝜕2𝛴3

𝜕𝐽2
0𝜕𝐽3

0 = −
3

2
𝐽2
0 −2

𝑠𝑖𝑛(�̃�+
2𝜋

3
)

𝑠𝑖𝑛3�̃�
−

3𝐽3
0

2𝐽2
0 2 (

𝑐𝑜𝑠(�̃�+
2𝜋

3
)

𝑠𝑖𝑛3�̃�
−

3𝑠𝑖𝑛(�̃�+
2𝜋

3
)𝑐𝑜𝑠3�̃�

(𝑠𝑖𝑛3�̃�)
2 )

𝜕�̃�

𝜕𝐽3
0  

−
1

3
𝑠𝑖𝑛 (�̃� +

2𝜋

3
) (

3

𝐽2
0)

1

2 𝜕�̃�

𝜕𝐽3
0. 

 (F.21) 

The derivative of equivalent stress 𝜎𝑒𝑞 to principal stress 

𝜕𝜎𝑒𝑞

𝜕𝛴1
= 𝜎𝑒𝑞

1−�̃� (|𝛴1|−𝑘𝛴1)�̃�

𝛴1
,  (F.22) 

𝜕𝜎𝑒𝑞

𝜕𝛴2
= 𝜎𝑒𝑞

1−�̃� (|𝛴2|−𝑘𝛴2)�̃�

𝛴2
, 

 (F.23) 

𝜕𝜎𝑒𝑞

𝜕𝛴3
= 𝜎𝑒𝑞

1−�̃� (|𝛴3|−𝑘𝛴3)�̃�

𝛴3
, 

 (F.24) 

The second derivative of equivalent stress to principal stress 

𝜕2𝜎𝑒𝑞

𝜕𝛴𝑖𝜕𝛴𝑗
= (1 − �̃�)𝜎𝑒𝑞

−�̃� 𝜕𝜎𝑒𝑞

𝜕𝛴𝑗

(|𝛴𝑖|−�̃�𝛴𝑖)
�̃�

𝛴𝑖
+

(�̃�−1)𝜎𝑒𝑞
1−�̃�(|𝛴𝑖|−�̃�𝛴𝑖)

�̃�

𝛴𝑖
2 𝛿𝑖𝑗.  (F.25) 
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The derivative of principal stress 𝛴𝑖 to the transformed stress 𝛴𝑗𝑘 

𝜕𝛴1

𝜕𝛴𝑖𝑗
=

𝛿𝑖𝑗

3
+

𝜕𝛴1

𝜕𝐽2
0

𝜕𝐽2
0

𝜕𝛴𝑖𝑗
+

𝜕𝛴1

𝜕𝐽3
0

𝜕𝐽3
0

𝜕𝛴𝑖𝑗
,  (F.26) 

𝜕𝛴2

𝜕𝛴𝑖𝑗
=

𝛿𝑖𝑗

3
+

𝜕𝛴2

𝜕𝐽2
0

𝜕𝐽2
0

𝜕𝛴𝑖𝑗
+

𝜕𝛴2

𝜕𝐽3
0

𝜕𝐽3
0

𝜕𝛴𝑖𝑗
,  (F.27) 

𝜕𝛴3

𝜕𝛴𝑖𝑗
=

𝛿𝑖𝑗

3
+

𝜕𝛴3

𝜕𝐽2
0

𝜕𝐽2
0

𝜕𝛴𝑖𝑗
+

𝜕𝛴3

𝜕𝐽3
0

𝜕𝐽3
0

𝜕𝛴𝑖𝑗
.  (F.28) 

The second derivative of principal stress 𝛴𝑖 to the transformed stress 𝛴𝑗𝑘 

𝜕2𝛴1

𝜕𝛴𝑖𝑗𝜕𝛴𝑚𝑛
=

𝜕2𝛴1

𝜕𝐽2
0 2

𝜕𝐽2
0

𝜕𝛴𝑖𝑗

𝜕𝐽2
0

𝜕𝛴𝑚𝑛
+

𝜕2𝛴1

𝜕𝐽2
0𝜕𝐽3

0 (
𝜕𝐽2

0

𝜕𝛴𝑖𝑗

𝜕𝐽3
0

𝜕𝛴𝑚𝑛
+

𝜕𝐽3
0

𝜕𝛴𝑖𝑗

𝜕𝐽2
0

𝜕𝛴𝑚𝑛
)  

                                      +
𝜕2𝛴1

𝜕𝐽3
0 2

𝜕𝐽3
0

𝜕𝛴𝑖𝑗

𝜕𝐽3
0

𝜕𝛴𝑚𝑛
+

𝜕𝛴1

𝜕𝐽2
0

𝜕2𝐽2
0

𝜕𝛴𝑖𝑗𝜕𝛴𝑚𝑛
+

𝜕𝛴1

𝜕𝐽3
0

𝜕2𝐽3
0

𝜕𝛴𝑖𝑗𝜕𝛴𝑚𝑛
, 

 (F.29) 

𝜕2𝛴1

𝜕𝛴𝑖𝑗𝜕𝛴𝑚𝑛
=

𝜕2𝛴2

𝜕𝐽2
0 2

𝜕𝐽2
0

𝜕𝛴𝑖𝑗

𝜕𝐽2
0

𝜕𝛴𝑚𝑛
+

𝜕2𝛴2

𝜕𝐽2
0𝜕𝐽3

0 (
𝜕𝐽2

0

𝜕𝛴𝑖𝑗

𝜕𝐽3
0

𝜕𝛴𝑚𝑛
+

𝜕𝐽3
0

𝜕𝛴𝑖𝑗

𝜕𝐽2
0

𝜕𝛴𝑚𝑛
)  

                                      +
𝜕2𝛴2

𝜕𝐽3
0 2

𝜕𝐽3
0

𝜕𝛴𝑖𝑗

𝜕𝐽3
0

𝜕𝛴𝑚𝑛
+

𝜕𝛴2

𝜕𝐽2
0

𝜕2𝐽2
0

𝜕𝛴𝑖𝑗𝜕𝛴𝑚𝑛
+

𝜕𝛴2

𝜕𝐽3
0

𝜕2𝐽3
0

𝜕𝛴𝑖𝑗𝜕𝛴𝑚𝑛
, 

 (F.30) 

𝜕2𝛴1

𝜕𝛴𝑖𝑗𝜕𝛴𝑚𝑛
=

𝜕2𝛴3

𝜕𝐽2
0 2

𝜕𝐽2
0

𝜕𝛴𝑖𝑗

𝜕𝐽2
0

𝜕𝛴𝑚𝑛
+

𝜕2𝛴3

𝜕𝐽2
0𝜕𝐽3

0 (
𝜕𝐽2

0

𝜕𝛴𝑖𝑗

𝜕𝐽3
0

𝜕𝛴𝑚𝑛
+

𝜕𝐽3
0

𝜕𝛴𝑖𝑗

𝜕𝐽2
0

𝜕𝛴𝑚𝑛
)  

                                      +
𝜕2𝛴3

𝜕𝐽3
0 2

𝜕𝐽3
0

𝜕𝛴𝑖𝑗

𝜕𝐽3
0

𝜕𝛴𝑚𝑛
+

𝜕𝛴3

𝜕𝐽2
0

𝜕2𝐽2
0

𝜕𝛴𝑖𝑗𝜕𝛴𝑚𝑛
+

𝜕𝛴3

𝜕𝐽3
0

𝜕2𝐽3
0

𝜕𝛴𝑖𝑗𝜕𝛴𝑚𝑛
. 

 (F.31) 

The derivative of the transformed stress 𝛴𝑘𝑙 to the original stress 𝜎𝑚𝑛 

𝜕𝛴𝑘𝑙

𝜕𝜎𝑚𝑛
= �̃�.  (F.32) 

So the derivative of the equivalent stress 𝜎𝑒𝑞 to the original stress 𝜎𝑚𝑛  

𝜕𝜎𝑒𝑞

𝜕𝜎𝑚𝑛
=

𝜕𝜎𝑒𝑞

𝜕𝛴𝑖

𝜕𝛴𝑖

𝜕𝛴𝑗𝑘

𝜕𝛴𝑗𝑘

𝜕𝜎𝑚𝑛
.  (F.33) 

The second derivative of the equivalent stress 𝜎𝑒𝑞 to the stress 𝜎𝑚𝑛 

𝜕2𝜎𝑒𝑞

𝜕𝜎𝑚𝑛𝜕𝜎𝑝𝑞
=

𝜕2𝜎𝑒𝑞

𝜕𝛴𝑖𝜕𝛴𝑙

𝜕𝛴𝑙

𝜕𝛴𝑠𝑡

𝜕𝛴𝑠𝑡

𝜕𝜎𝑝𝑞

𝜕𝛴𝑖

𝜕𝛴𝑗𝑘

𝜕𝛴𝑗𝑘

𝜕𝜎𝑚𝑛
+

𝜕𝜎𝑒𝑞

𝜕𝛴𝑖

𝜕2𝛴𝑖

𝜕𝛴𝑗𝑘𝜕𝛴𝑠𝑡

𝜕𝛴𝑠𝑡

𝜕𝜎𝑝𝑞

𝜕𝛴𝑗𝑘

𝜕𝜎𝑚𝑛
.  (F.34) 

The second derivative of the equivalent stress 𝜎𝑒𝑞  to the stress  𝜎𝑚𝑛  and equivalent 

plastic strain 

𝜕2𝜎𝑒𝑞

𝜕𝜎𝑚𝑛𝜕̅𝑝
=

𝜕2𝜎𝑒𝑞

𝜕𝛴𝑖𝜕𝛴𝑙

𝜕𝛴𝑙

𝜕𝛴𝑠𝑡

𝜕𝛴𝑠𝑡

𝜕̅𝑝

𝜕𝛴𝑖

𝜕𝛴𝑗𝑘

𝜕𝛴𝑗𝑘

𝜕𝜎𝑚𝑛
+

𝜕𝜎𝑒𝑞

𝜕𝛴𝑖

𝜕2𝛴𝑖

𝜕𝛴𝑗𝑘𝜕𝛴𝑠𝑡

𝜕𝛴𝑠𝑡

𝜕̅𝑝

𝜕𝛴𝑗𝑘

𝜕𝜎𝑚𝑛
  

+
𝜕𝜎𝑒𝑞

𝜕𝛴𝑖

𝜕𝛴𝑖

𝜕𝛴𝑗𝑘

𝜕2𝛴𝑗𝑘

𝜕𝜎𝑚𝑛𝜕̅𝑝
. 

 (F.35) 

The derivative of the equivalent stress 𝜎𝑒𝑞 to the equivalent plastic strain 

𝜕𝜎𝑒𝑞

𝜕̅𝑝
=

𝜕𝜎𝑒𝑞

𝜕𝛴𝑖

𝜕𝛴𝑖

𝜕𝛴𝑗𝑘

𝜕𝛴𝑗𝑘

𝜕𝜎𝑚𝑛
.  (F.36) 
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