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Abstract

The sustainability of the transport and energy sectors has been considered the

main goal in order to reduce the greenhouse gas (GHG) emissions around the

world, specially, the carbon dioxide (CO2) emissions. The massive deployment

of electric vehicles (EV) and the increase of renewable energy sources (RES), in

the generation portfolio, have been pointed as the main alternative to reduce the

GHG emissions in both transportation and electrical energy sectors. The increase

in RES and the large scale integration of EV in the power systems require flexible

generation units in order to cover the variable characteristic of the wind and the

vehicles’ mobility needs. Apart from the hydro resource, wind has been the main

renewable resource seized for the electricity industry. Countries like Portugal, Spain

and Germany, the wind power has already achieved around 20-30% of the total

installed capacity.

Due to forced generating unit outages, load and wind power forecast errors, an

operational reserve level is required to cover these system variations. The

monitoring of security of supply shall be the responsibility of regulatory entities

in Europe and the long-term assessment of the security of supply can ensure that

the future planned generating systems will be able to meet the load forecast in

terms of their capacities.

This thesis proposes a methodology for modelling EV load behaviour based on the

Poisson process, considering the mobility patterns of the population and different

charging strategies, in order to be included in the adequacy evaluation of the

xiii



security of supply for generating systems with high integration of wind power.

The EV models developed in this thesis account for uncontrolled and controlled

battery charging, which are divided in direct, valley, controlled and vehicle-to-grid

(V2G) charging strategies. The latter is seen in two perspectives: contribution for

operating reserve and compensation of the wind power variation.

It is expected that, under some circumstances, the controlled charging strategies

will create opportunities to the electricity sectors in order to provide ancillary

services, mitigating the EV impact on the adequacy of the security of supply.

This topic is exploited through this thesis assuming the existence of an

aggregation entity that will be responsible to manage the EV charging, in order

to deal with battery charging and stored electrical energy in the batteries. The

developed EV models were included in the Sequential Monte Carlo Simulation

(SMCS) method, which is a probabilistic method able to represent stochastic

behaviour of the system components, taking into account the time dependence

characteristic of their operational states.

The proposed models are assessed through the use of a modified configuration of

the IEEE Reliability Test System 1996 and real systems such as Portugal, Spain

and Greece for 2030 generating system configurations. The performance of the

models were analysed through different integration scenarios with and without

the deployment of EV. From the result analysis, it is possible to conclude that

the massive integration of EV should be monitored through controlled charging

strategies, in order to avoid the necessity of increasing the generation capacity for

future years. The possibilities of controlling and injecting electrical energy back

to the grid have demonstrated that it can provide an effective support for the

operational reserve, maintaining the adequacy of the security of supply in the

same levels as the ones estimated in scenarios with no EV deployment.



Resumo

A sustentabilidade dos setores do transporte e da energia tem sido considerada o

principal objectivo para reduzir a emissão dos gases de efeito estufa (GEE) ao redor

do mundo, especialmente, as emissões de dióxido de carbono (CO2). A integração

em larga escala dos véıculos eléctricos (VE) e o aumento das fontes de energia

renováveis (FER), no portfolio de geração, têm sido apontadas como as principais

alternativas para a redução da emissão dos GEE de ambos os sectores, transporte

e energia eléctrica. O aumento das FER e a integração em larga escala dos VE

nos Sistemas de Energia requerem unidades de geração flex́ıveis, a fim de cobrir a

caracteŕıstica variável do vento e as necessidades de mobilidade dos véıculos. Para

além do recurso h́ıdrico, o vento tem sido o principal recurso renovável aproveitado

pelas companhias de electricidade. Páıses como Portugal, Espanha e Alemanha já

alcançaram ńıveis de geração eólica em torno dos 20-30% da capacidade de geração

instalada.

Devido as falhas não programadas das unidades de geração, dos erros de previsão

da carga e da potência eólica, um determinado ńıvel de reserva operacional é

necessário para atender estas variações do sistema. Na Europa, a monitorização

da segurança do abastecimento é de responsabilidade das entidades reguladoras

e a avaliação a longo prazo da segurança do abastecimento pode garantir que os

futuros sistemas de geração sejam capazes de atender a carga prevista.

Esta tese propõe uma metodologia para a modelização da carga dos VE baseada

no processo de contagem de Poisson, levando em conta o padrão de mobilidade da
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população e as diferentes estratégias de carregamento dos VE. O objectivo é incluir

estes modelos na avaliação da adequação da segurança do abastecimento para

sistemas de geração com alto ńıvel de integração de potência eólica. Os modelos

de VE desenvolvidos nesta tese incluem os conceitos de carregamento controlado

e não controlado das baterias, os quais são divididos em carregamento directo, no

vazio, controlado e “vehicle-to-grid” (V2G). Este último, é desenvolvido sob duas

perspectivas: contribuição para aumento da reserva operacional e compensação na

variação da produção de electricidade a partir da energia eólica.

É esperado que, sob certas circunstâncias, as estratégias de carregamento

controlado criem oportunidades de negócios para os setores de electricidade,

fornecendo serviços de sistema para mitigar o impacto dos VE na adequação da

segurança do abastecimento. Este tópico é explorado, através desta tese,

assumindo a existência de uma entidade agregadora que será responsável pelo

carregamento dos VE com o objectivo de carregar e gerir a energia eléctrica

armazenada nas baterias. Os modelos de VE desenvolvidos foram inclúıdos no

método de Simulação de Monte Carlo Sequencial (SMCS), o qual consiste num

método probababiĺıstico capaz de representar o comportamento estocástico dos

componentes do sistema, levando em conta a caracteŕıstica temporal dos seus

estados de operação.

Os modelos propostos foram avaliados através da utilização do sistema teste de

fiabilidade IEEE 1996 e de sistemas reais tais como Portugal, Espanha e Grécia,

para a configuração dos sistemas de geração de 2030. O desempenho dos modelos

foi analisado através de diferentes cenários de integração de VE. A análise dos

resultados mostra que em caso de integração em larga escala de VE, o carregamento

destes deve ser monitorizado através de estratégias de carregamento controlado

para evitar a necessidade de aumentar a capacidade de geração no futuro. As

possibilidades de controlar e injectar energia eléctrica no sistema têm demonstrado

ser um suporte efectivo para a reserva operacional, mantendo a adequação da

segurança do abastecimento nos ńıveis estimados para cenários sem integração dos

VE.



Resumé

Le développement durable des secteurs du transport et de l’énergie a été

considéré comme étant le principal objectif pour réduire les émissions de gaz à

effet de serre (GES), en général, et le dioxyde de carbone (CO2), en particulier.

Le déploiement massif des véhicules électriques (VE) et la croissance de

l’utilisation des sources d’énergie renouvelable (SER) dans la génération sont

considérés comme les meilleures options pour réduire les émissions de GES dans

les secteurs du transport et de la production d’énergie électrique. Cependant, la

croissance de l’utilisation des SER et l’intégration à grande échelle des VE

exigent un ensemble de centrales électriques avec des générateurs flexibles pour

compenser les variations intrinsèques à la production éolienne et aux besoins du

transport électrique. Sans considérer les ressources hydro-électriques, l’énergie

éolienne est la principale SER développée par l’industrie de production

d’Electricité. Dans des pays comme le Portugal, l’Espagne et l’Allemagne, les

centrales éoliennes ont déjà atteint une pénétration variant entre 20% et 30% de

la puissance totale installée.

Un certain niveau de réserve opérationnelle est nécessaire pour compenser les

variations dues aux pannes et à l’incertitude liée à la prévision de la charge et de

la production éolienne. La sécurité d’approvisionnement devrait être garantie par

les institutions de régulation au niveau européen et son évaluation à long-terme

peut assurer que la génération planifiée pour le futur soit capable de couvrir la

charge prévue.
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Cette thèse propose une méthodologie basée sur le processus de Poisson, en

considérant les habitudes de mobilité de la population et différentes stratégies de

charge des batteries des VE, pour son inclusion dans l’évaluation de la sécurité

de l’approvisionnement dans les systèmes dont la génération connait une forte

pénétration d’énergie éolienne. Les modèles de charge des VE développés dans

cette thèse prennent en compte une charge contrôlée et non-contrôlée des

batteries des VE qui peut être caractérisée en différentes stratégies de charge:

charge directe, charge durant la période de creux du diagramme de la demande

globale, charge non-contrôlée et la possibilité que les batteries puissent injecter

d’énergie dans le réseau en cas de besoin. Cette dernière stratégie présente deux

perspectives: contribution à la réserve opérationnelle et compensation des

fluctuations de la disponibilité de l’énergie éolienne.

Dans certaines circonstances, la charge contr1ôlée des batteries des VE pourra

donc être un atout, pour le système électrique, en fournissant les services

auxiliaires du réseau afin de réduire l’impact des VE sur la capacité du système à

garantir la sécurité de l’approvisionnement. Ce thème a été traité dans cette

thèse en considérant l’existence d’une entité responsable pour la gestion de la

charge des VE en mesure de contrôler l’énergie accumulée dans les batteries. Le

modèle développé pour les VE a été inclus dans la méthode de Simulation

Séquentielle de Monte Carlo (SSMC) capable de représenter le comportement

stochastique des composants du système, en prenant en considération la

dépendance temporelle qui caractérise leurs états d’opération.

Les modèles proposés ont été évalués à travers l’utilisation d’une configuration

modifiée du réseau test de fiabilité IEEE 1996 et des configurations des réseaux

réels du Portugal, de l’Espagne e de la Grèce planifiées pour 2030. Leur

performance a été analysée en utilisant plusieurs scénarios d’intégration avec ou

sans déploiement des VE. L’analyse des résultats a permis de conclure que le

déploiement massif doit être géré à travers une stratégie de charge contrôlée afin

d’éviter la nécessité de devoir augmenter la capacité de génération dans les

années prochaines. Le contrôle de l’énergie emmagasinée dans les batteries avec



la possibilité de pouvoir la réinjecter dans le réseau a démontré qu’il est possible

de fournir une contribution effective en termes de réserve opérationnelle

garantissant ainsi le même niveau de sécurité d’approvisionnement estimé dans

des scénarios sans déploiement de VE.
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Chapter 1

Introduction

1.1 Context and Motivation

Over the past two and a half centuries, the societies have burnt increasing

amounts of fossil fuels to be used on power machines, generate electricity, heat

buildings and transport people and goods. Since the industrial revolution, in

1750, the concentration of carbon dioxide (CO2) in the atmosphere has increased

by roughly 40%, and it continues to rise [4].

Around 11% of the greenhouse gases emitted worldwide each year come from within

the European Union (EU). In 2011, the latest year with available comprehensive

data, EU-15 emissions stood 14.9% below their base year level. Based on estimates

for 2012 by the European Environment Agency, EU-15 emissions averaged 12.2%

below base-year levels during the 2008-2012 period (the target levels were 8%).

This means the EU-15 over-achieved its first Kyoto’s target by a wide margin. The

8% collective reduction commitment has been translated into national emission

reduction or limitation for each of the EU-15 Member States under what is known

as the “burden sharing” agreement [5].
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For 2020, the EU has made a unilateral commitment to reduce overall greenhouse

gas emissions from its 28 Member States by 20% compared to 1990 levels. The

EU has offered to increase this figure to 30% if other major economies agree to

undertake their fair share of a global emissions reduction effort. In consonance with

these objectives, the “2020 climate and energy package” seals the EU commitment

on raising the share of EU energy consumption produced from renewable sources

to 20%, improving the EU’s energy efficiency to 20% and reducing the greenhouse

gas (GHG) emissions by 20% [6].

Portugal intends to have 60% of its generated electricity coming from RES by

2020, in order to satisfy 31% of its final energy consumption of the same year. In

addition, Portugal aims at reducing its dependence on energy imports and on the

use of fossil fuels [7].

Figure 1.1, which is an update of the 2000 World Resources Institute’s flowchart,

makes clear how much CO2 was produced in 2010 and by whom. This figure

distinguishes between sectors according to their primary energy use (coal, gas

and oil), which include mainly industry, transport and energy supply sectors.

This flowchart also shows that the GHG emissions are originated mainly from

two sources: direct and fossil fuel related emissions.

Globally, industry sector accounts for 29% of the GHG emissions, followed by the

transport and electrical energy supply sectors which account for 15% and 13% of

the GHG emissions, respectively. The reduction mark for the transport sector for

2020 is 10% in EU-28 [8]. The electric vehicles (EV) are the main alternative

technologies developed to achieve this goal allowing the reduction of GHG

emissions by zero. From the new EV generation perspective, the hybrid electric

vehicle (HEV) has been introduced in the market. This type of EV mixes the

fossil fuels and electricity power sources reducing significantly, but not totally,

the CO2 emissions. The second alternative is the plug-in hybrid EV (PHEV),

which beyond the fuel mix (fossil fuels and electrical energy) also uses

rechargeable batteries, which can be charged from an external power source. The

2
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Figure 1.1: World GHG Emissions flowchart 2010 [1].

pure EV are the most recent alternative, which also consists of batteries that can

be restored to full charge by connecting a plug to an external wall socket,

however is the only one that has electricity as its only power source. This kind of

vehicle (pure EV) plays a major role in the reduction of GHG emissions. On one

hand, the EV has zero CO2 emissions while used for mobility purpose. On the

other hand, the battery charging can be controlled in order to increase the usage

of renewable energy sources (RES), reducing the GHG emissions from the supply

energy sector side [9].

The deployment of the RES and EV on the electric power systems will certainly

affect the System Operator’s (SO) decision-making in terms of operation and

planning. The increase of renewable sources has been included in the power

system analysis through suitable models and methodologies. The expected large

scale integration of EV in the electric power systems will also require the
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development of adequate models to be considered in the power system analysis

methodologies.

Among other issues, the security of supply at the generation system level is one

of the main concerns of the European Community (EC) to achieve the

implementation of a sustainable climate change policy. The monitoring of the

security of supply is supported by a legal framework at the European level which

is comprised in the Directive 2009/72/EC [10]. This Directive foresees that the

Member States shall ensure the monitoring of security of supply issues. Such task

should be delegated to the regulatory authorities. The monitoring shall, in

particular, cover the balance of supply and demand on the national market, the

level of expected future demand and envisage additional capacity being planned

or under construction, and the quality and level of maintenance of the networks,

as well as measure to cover peak demand and to deal with shortfalls of one or

more suppliers [10].

Under this context, this thesis is concerned with the analysis of the EV impact

on the generation systems with high integration of RES. In generation system

analysis, it is usual not to include the transmission and distribution networks. Such

evaluation can aid regulatory authorities to determine the need of increasing the

generation capacity, identify the incentives for storage facilities to avoid wasting of

renewable generation and other decisions which involve the security of supply.

The assessment of security of supply may be divided into two perspectives:

adequacy and security [11]. The North American Electric Reliability Corporation

(NERC) [12] defines adequacy and security as:

• Adequacy – The ability of the electric system to supply the aggregate

electrical demand and energy requirements of the end-use customers at all

times, taking into account scheduled and reasonably expected unscheduled

outages of system components.

• Security – The ability of the electric system to withstand sudden disturbances
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such as electric short circuits or unanticipated loss of system elements.

Given the current context, this thesis proposes the development of EV models to be

included in the adequacy of supply assessment for systems with high level of RES in

generation portfolio. This analysis is carried out through the adequacy perspective

and the evaluations are performed considering a long-term time horizon [13].

Usually, the adequacy of supply is analysed through the reliability evaluation of

the generating systems, which in turn may be divided in two concepts: static and

operating reserves. The static reserve assessment is performed by evaluating the

difference between the total generating capacity and the total system load. This

evaluation produces risk indices which are used to measure the adequacy level

of the generating systems. Conversely, operating reserve assessment measures the

requirements of the generating systems to cover short-term problems which may

result from uncertainties of the RES and load forecast, and forced outages of the

generating units. These concepts will be further described in detail.

1.1.1 Power System Adequacy Evaluation

The continuous electrical energy supply is affected by random failures of the

electrical components. The integration of different types of generating sources to

provide electricity to a wide range of customers with varying requirements is

another problem that affects the continuous supply of electrical energy, mainly

because of the variable behaviour of the primary energy resources.

Electric power utilities, therefore, should provide an acceptable degree of system

reliability in the planning, design and operation of their systems considering the

existing economical constraints. The term “reliability” when associated with a

power system is a measure of the system’s ability to meet the customer

requirements for electrical energy. Power system reliability evaluation has been

extensively developed over the last sixty years mainly focusing on the adequacy

perspective and there are many publications available on this subject [14].
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The adequacy assessment of a power system can be conducted using either

deterministic or probabilistic techniques. Deterministic techniques explore

empirical information on how a system failure can occur or how system success

can be achieved. For instance, the most common deterministic criterion, N − 1,

dictates that the loss of any bulk system component should not result in system

failure. Hence, these techniques usually consist on evaluating power systems

under pre-selected contingencies of important components failing to capture their

random behaviour. Nevertheless, deterministic criteria are usually easier to

understand by system planners, designers and operators than numerical risk

indices determined using probabilistic techniques.

System behaviour is stochastic by nature, and therefore it is logical to consider

probabilistic methods that are able to model the actual factors that influence

the adequacy of the system. Probabilistic techniques provide quantitative indices,

which can be used to decide whether the system performance is acceptable or

changes need to be made. A probabilistic model of the system can be evaluated

using analytical or simulation methods [15]. The stochastic characteristic of the

hydro, solar, and wind resources are better assessed by simulation methods such

as the Sequential Monte Carlo Simulation (SMCS), which is able to include a

temporal dependency in its evaluation.

As a matter of fact, RES are receiving considerable attention in the continued

growth and development of generating systems. The most integrated renewable

electrical energy source at the present time is wind power. Wind power is a clean,

emissions-free power generation technology. It is based on capturing the energy

from natural forces and has none of the polluting effects associated with

conventional fuels. For instance, 21% of the electricity produced in Spain in

2013 [16] came from wind power sources. Portugal did even better in the first

three months of the same year where 27% of its electricity was generated from

wind [17]. Since wind power production is dependent on the wind resource, the

output of a wind farm strongly varies over time. Due to these fluctuations, the

adequacy of modern generating systems is affected in different ways than
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conventional systems, such as those based on large thermal power stations.

Since power generation plants using wind energy are increasingly integrated into

power systems, it becomes particularly important to assess their effects on the

overall system adequacy. Most of the work on modelling wind power generation

and on using such models for generating system adequacy evaluation has been

done since 1984 [13,18–21].

1.1.2 Electric Vehicles in the Power Systems

The transport and electrical energy sectors will become interdependent in the

years to come by the expected massive deployment of EV. Figure 1.2 presents

penetration scenarios of EV from 2010 to 2030 for the replacement of internal

combustion engine (ICE) vehicles of the (M1) category by EV [2]. For instance,

scenario 2 shows that in 2020 approximately 8% of M1 vehicles sold will consist of

EV which will increase to approximately 27% in 2030.

Figure 1.2: M1 EV uptake rates for each of three scenarios [2].

From the transport sector perspective, the direct benefit of EV, which is

portrayed as a green vehicle implying in zero emissions, is the reduction of CO2
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emissions in the environment. However, the electrical generation portfolio of

many countries continues to be composed, in its majority, by fossil-fuelled power

plants. For instance, the vehicle-weighted average GHG emissions for each

electrical power region in the United States (US) is presented in [22]. This paper

demonstrates that, in average, each pure EV that displaces a gasoline HEV will

increase GHG emissions by more than 7% (considering the increase in electric

power generation to recharge EV batteries and the US generation mix at that

moment). Additionally, each PHEV put in service will increase the GHG

emissions by an average of 10% compared to the gasoline HEV. This problem is

mainly related to the charging strategies promoted. When uncontrollable

charging strategies are used, a great amount of EV owners start charging the EV

batteries when they arrive at home in the evening increasing the peak load

demand. To cover this demand, generating units, which are normally powered by

fossil fuels, may be dispatched increasing the GHG emissions level.

This new demand must be taken into account in the long-term assessment of the

adequacy of supply. On one hand, EV can be considered as an additional demand

that will be added to the conventional load profile. On the other hand, this large

scale integration of EV on the power systems can provide new opportunities for

the electricity sector players in different areas. The possibility to increase the use of

RES to cover this new demand makes the energy systems more sustainable, moving

the idea of increasing the use of fossil fuel sources to meet this load demand growth

away.

In order to achieve a positive impact from the deployment of EV, the charging

strategies must be controlled. From the generating system point of view, two

opportunities could be exploited. One, is considering the EV as an aggregated

load which could be controlled through its charging rate or even moved from one

hour to another promoting active demand side management. The other is taking

into account the possibility of injecting electric power stored in EV batteries

back into the grid, promoting vehicle-to-grid (V2G) concept.
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The population mobility patterns [23] must be studied in order to obtain a

methodology to calculate EV load. This methodology should have as core a

suitable EV arrival distributions that is able to provide chronological aspects of

this new type of load. In addition, the total load profile will also depend on the

adopted charging strategy. Three different charging strategies are explored

in [24]: dumb, dual tariff and smart charging. This thesis uses the same

strategies, but with different names as follows: direct, valley and controlled

charging.

Basically, the direct charging strategy allows the recharging when the EV arrives

at some place. The EV battery charging in valley hours is represented through

the valley charging strategy concept. The controlled charging strategy consists of

EV battery charging in the valley hours too, however the postponement of the

charging is possible when the operational reserve of the system is threatened. The

charging strategies addressed in this thesis will be described in more detail.

To achieve a suitable control level, information and communication technology

is necessary. From the technological perspective, battery life cycle, bi-directional

charging flow, fast charging rates, and so on have been under improvement [25–27]

allowing the implementation of an active interaction between EV and the power

system. In this context, an aggregative entity should be created in order to manage

the charging process and to establish the connection among EV, electricity market

and system operation. The latter activity is the responsibility of the SO which,

under some circumstances (e.g. when the system is threatened), can send orders,

through the aggregative entity, to be followed by the EV. Reference [28] presents

a review of the economical and technical management of an aggregative entity in

aforementioned environment.

To sum up, the opportunities that arise from enabling the control of EV charging

are:

• To use EV to maximize the integration of RES [9].
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• To shift the EV load demand from peak to valley hours, which can avoid

waste of RES, decrease the additional demand in peak hours and postpone

reinforcements in the system.

• To contribute to the operational reserve throughout the V2G charging

strategy, which can avoid load curtailment due to load variability, wind

power forecast errors and unexpected generating unit outages.

This context raises the need to develop EV models that take into account the

mobility patterns and different EV charging strategies in order to estimate the

additional EV load. This thesis proposes two approaches based on Poisson

process to construct models for the EV chronological behaviour. These models

were incorporated in the RESERVE Model which evaluates the adequacy of

security of supply with high integration of RES [13]. This tool is able to estimate

reliability indices that measure the adequacy of generating systems and is based

on the SMCS method. This method has several advantages which ranges from

the possibility of representing the variable characteristic of the renewable

resources, the chronological aspects of the generating unit outages and load

demand to the possibility of providing probability distributions of the observed

events. The background of the main methodologies used to evaluate the security

of supply will be given in Chapter 2.

1.2 Research Questions

According to [10], the European requirements regarding the security of supply

monitoring are:

“...Such monitoring shall, in particular, cover the balance of supply and demand

on the national market, the level of expected future demand and envisaged

additional capacity being planned or under construction, and the quality and level

of maintenance of the networks, as well as measures to cover peak demand and to
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deal with shortfalls of one or more suppliers...”.

From this definition and considering a massive EV deployment in the years to

come, the following research questions were defined.

• Are the conventional methodologies for power system analysis adequate to

assess the security of supply under a massive EV deployment within a large

scale wind power integration scenario?

• Are the opportunities provided by the EV charging strategies relevant for

the electricity sector?

• Does the deployment of EV provoke a negative impact on the security of

supply?

These questions led to the development of hypothesis and assumptions that

support the methodological approach developed in this thesis.

1.3 Main Hypothesis and Assumptions

The methodology presented through this dissertation was developed based on the

Poisson process. This methodology is a stochastic process which counts the

number of events (arrivals) and the time that these events occur within a given

interval based on an expected average value given by the mobility distributions.

Two alternative approaches were implemented: the homogeneous and

non-homogeneous Poisson processes (HPP and NHPP, respectively). The basic

difference between processes is that the HPP counts events with a constant rate

parameter (arrivals average in an hour of a typical day) and the NHPP counts

events with variable rate parameter (arrivals average dependent on the hour of

the day). The NHPP approach was implemented due to the necessity of having a

battery SOC (State of Charge) monitoring for each vehicle in order to develop

the V2G charging strategy.
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The assumptions over which these approaches were developed are:

• The numbers of arrivals counted in disjoint intervals are independent of each

other.

• The probability distribution of the number of arrivals counted in any time

interval only depends on the length of the interval.

• The probability distribution of the number of arrivals is a Poisson

distribution.

• No counted arrivals are simultaneous.

The main consequences of these assumptions are:

• The probability distribution of the waiting time until the next arrival is an

exponential distribution.

• The arrivals are distributed uniformly on any interval of time.

The advantages of the proposed methodology is that the model can be applied to

any mobility pattern since the arrival average parameter is known.

Regarding the charging strategies, the assumptions are:

• Direct charging: the EV battery charging starts after an occurrence of an

arrival.

• Valley charging: the EV battery charging can only be made during valley

hours.

• Controlled charging: the EV battery charging can only be made during

valley hours. However, it is assumed that EV battery charging can be

controlled. The EV respond to a signal, postponing their battery charging

if the operating reserve is threatened.
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• V2G charging: the EV battery charging starts after an arrival occurs.

However, the EV respond to a signal, postponing their battery charging to

inject electric energy back to the grid if the operating reserve is threatened.

The SOC of the batteries is taken into account.

The main hypothesis raised is that an adequate battery charging may contribute

to the adequacy of the security of supply in order to mitigate the EV impact on

the power systems. This hypothesis will be verified in this thesis throughout the

risk indices, which also allow to assess the average load curtailment for each EV

penetration scenario, estimated by the simulation process.

1.4 Thesis Objectives

The main objective of this thesis is to develop EV models capable of representing

the EV charging behaviour in order to measure the EV load impact on the

adequacy of the security of supply.

In order to reach this objective the following goals were persecuted:

• The development of a methodology to build EV models capable of

estimating the EV load and chronologically representing its behaviour for

different charging strategies, which, in turn, affect the total system load

profile.

• To estimate the power availability in the batteries that can be injected into

the grid (V2G model), considering the battery SOC.

• To include the EV models in the SMCS method in order to evaluate the EV

impact on the security of supply.
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1.5 Thesis Structure

This thesis is structured as follows. Chapter 1 presents the context and motivation

of the problem under research as well as the assumptions and main objectives to

be achieved with this thesis.

Chapter 2 presents a background and literature review about the reliability

evaluation and the integration of EV in the power systems. In order to draw a

framework of this thesis, a relevant discussion about short and long-term risk

analysis is presented in Chapter 3.

The development of the EV models are divided between Chapters 4 and 5 which

describe the EV charging strategy modelling and the methodology to include the

EV impact on the SMCS method.

Chapter 6 presents the results and discussions, through the use of test and real

generating systems, about the performance of the proposed EV models. Finally,

this dissertation ends with Chapter 7, where the main contributions, conclusions

and future work are presented.
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Chapter 2

Background and State

of the Art

2.1 Introduction

This chapter presents a literature review about the adequacy of security of

supply and the impact of EV integration in the generating system. The EV

deployment will create an additional electric load that might require more

generating installed capacity. However, active demand side management can be

provided by an aggregation entity that is able to control the EV charging rate or

even postpone the battery charging to hours where the conventional load is

lower. Moreover, this entity can also manage the charged batteries of the EV in

order to contribute with power injection into the grid (V2G concept) [28]. A

sustainable electric system must exploit these control opportunities in order to

increase the integration of RES without compromising the adequacy of the

security of supply.

The integration of EV on the power system analysis has been addressed in the

literature mainly through two different paths: EV as uncontrollable and
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controllable load. The integration of EV as uncontrollable load has generated

negative effects in the power system operation mostly due to the increase in the

load consumption in peak load hours. Under a controlled EV battery charging,

the EV becomes a flexible load capable of storing electrical energy. The EV

integration under a controlled scheme has been seen as a positive way to

contribute to the operational reserve, improving RES integration and avoiding,

at least momentarily, system reinforcement.

In the long-term planning perspective, the monitoring of the adequacy of security

of supply should ensure that the installed generating capacity meets the load

forecast and the generating unit outages with an adequate level of risk. This risk

is assessed through the static reserve evaluation, which consists of measuring the

system balance. A complementary assessment, the focus of this thesis, relies on

the long-term evaluation of the operational reserve, which is concerned with the

flexibility of the generating systems to cope with the short-term

uncertainties.

2.2 Regulation Reserves

The SO has the responsibility of managing the balance between generation and

load to ensure a supply of energy to the final consumer with quality and continuity.

Due to the removal of facilities for regular scheduled maintenance, unexpected

generating unit outages and the uncertainty related to the load forecast, a reserve

level must be kept in order to ensure an adequate and acceptable continuity of

supply during the events with capacity shortage. In terms of short-term system

operation, the effect of these events is translated in frequency imbalances and,

generally, these imbalances are solved automatically and/or by giving set points to

the generating units and flexible loads. The EV, under adequate charging schemes,

represents a flexible load capable of contributing to the systems. This thesis will

exploit this concept in Chapter 5.
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The European Network of Transmission System Operators for Electricity (ENTSO-

E) defines the reserve levels as follows [29]:

• Frequency Containment Reserve (FCR) - The FCR aims at stabilising the

frequency after a system disturbance. For such task, synchronised generating

units must respond to this imbalance.

• Frequency Restoration Reserve (FRR) - The FRR is responsible to offset

the frequency deviation caused by the system disturbance. While the FCR

acts to stabilise the frequency, the FRR corrects the frequency deviation to

the nominal value considering one or more load frequency control areas.

Generally, the FRR is given by an automatic generation control (AGC)

system, which consists of setting the operating points of the generating

units or change the state of flexible loads.

• Replacement Reserve (RR) - The RR is usually activated to reset the FRR

level. Generally, the RR amount is composed by generating units that are

able to start up quickly.

The reserve levels aforementioned are related to the short-term operation of the

system. The SO should define the reserve levels required in a market environment

via suitable operating planning.

The increasing integration of RES has created an additional interest on the

performance assessment of the operational reserve in a long-term time frame [13].

The reserve that is spinning, synchronized and ready to take load up, is generally

known as spinning reserve. When quick start generating units, such as gas

turbines and hydro plants, interruptible loads and assistance from interconnected

systems are taken into account and added to the spinning reserve, then the total

capacity is known as operational reserve.

This long-term evaluation measures the adequacy of the security of supply

considering that the operating reserve should meet the uncertainties related to

the load and RES forecast errors (mainly wind power) and the generating unit
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outages. Hence, this thesis also focuses on the probabilistic assessment of the

operational reserve in a long-term perspective. The framework of this analysis

will be described in Chapter 3.

2.3 Adequacy Assessment Methods

The adequacy assessment of the security of supply can be performed using either

deterministic or probabilistic methods. Deterministic methods have been widely

used in the past and consider only specific configurations of the system which

ignore the stochastic and probabilistic nature of the system’s components. The

probabilistic methods can provide risk values taking into account several operation

scenarios like, for instance, the probability of the forecast load becomes greater

than the generating capacity. The probabilistic methods are, usually, divided into

two methods: analytical and simulation.

2.3.1 Reliability Indices

The main outcome of the probabilistic methods used to assess the adequacy of

the security of supply is the reliability indices. The reliability indices have

different designations regarding the system’s hierarchical level (HL) involved in

the adequacy assessment [30]. This thesis is concerned to the adequacy

evaluation of generating systems, which is usually known as HL-1 system.

Reliability indices are, generally, categorised as probability, energy, frequency and

duration indices [30]. This thesis uses the traditional reliability indices, in order

to analyse the adequacy of the security of supply, which are:

• Loss of Load Probability (LOLP) - this index gives the probability of the

load curtailment.

• Loss of Load Expectation (LOLE) - this index represents the average of load
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curtailed during the evaluation period. It can be expressed in hours/year,

days/year or weeks/year.

• Expected Power Not Supplied (EPNS) - this index represents the average

power curtailed during the evaluation period. It is expressed in MW .

• Expected Energy Not Supplied (EENS) - this index represents the average

energy curtailed during the evaluation period. It is expressed in MWh/year.

• Loss of Load Frequency (LOLF) - this index gives the average number of

load curtailment events during the evaluation period. It is expressed in

occurrences/day, occurrences/week or occurrences/year.

• Loss of Load Duration (LOLD) - this index represents the average duration

of load curtailment events during the evaluation period. It can be expressed

in hours/occurrence, days/occurrence or weeks/occurrence.

2.3.2 Analytical Methods

Analytical techniques represent the system by a mathematical model and calculate

by obtaining the probability mass function of the system states. Equation (2.1)

presents a general formulation to calculate a given reliability index.

E[G(X)] =
∑
x∈A

G(x)p(x) (2.1)

where x is the current state of the random variable X, A is the set of all system

states, p(x) is the probability of the system state x, G(x) is the outcome of the test

function H, which is a mathematical formulation of a given reliability index, for the

system state x. E[G(X)] is the calculated reliability index. The main advantage of

analytical methods is that they, usually, provide reliability indices in a relatively

short computing time. However, the analytical model of the system requires the

use of assumptions in order to simplify the problem. This is the case of almost all
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real power systems and real operating procedures [30]. The analytical methods are,

generally, divided into enumeration, approximate and population-based methods

(PBM).

Enumeration methods

Enumeration methods calculate the probability mass function of the system

states. The system risk model is built through the combination between the

probabilistic state model and the load model. Afterwards, the reliability indices

can be calculated from the system risk model.

The main difference between enumeration methods relies in the algorithms used to

obtain the probabilistic model of the states. The recursive methods were the first

ones to be developed to calculate a Capacity Outage Probability Table (COPT).

These methods recursively add the probabilistic model of the system components’

state.

Firstly, the Forced Outage Rate (FOR) of each unit is calculated according to

Equation (2.2). Afterwards, a table is recursively constructed adding the unit’s

capacity out of service and its probability, calculated using the FOR.

FOR =
λ

λ+ µ
(2.2)

where λ is the Mean Time To Failure (MTTF) and µ is the Mean Time To Repair

(MTTR) of the system’s components. Then, the tables produced can be re-ordered

and the probability value in the table is the probability of exactly the indicated

amount of capacity being out of service. The cumulative probability of a particular

capacity outage state of X(MW ) after a unit of capacity C(MW ) and forced

outage rate U can be added through Equation (2.3).

P (X) = (1− U)P ′(X) + (U)P ′(X − C) (2.3)

where P ′(X) and P (X) denote the cumulative probabilities of the capacity outage

state of XMW before and after the unit is added. In a practical system containing

22



2.3. Adequacy Assessment Methods

a large number of units of different capacities, the table will contain several hundred

possible discrete capacity outage levels.

Analytical methods have limitations on reliability evaluation due to the need of

formulating multiple simplifications to represent the systems [30]. The pure

recursive techniques do not give any indication of the frequency of occurrence of

an insufficient capacity condition, nor the duration for which it is likely to exist.

LOLP and the Frequency Methods (FM) are examples of enumeration methods.

These methods were developed in order to measure the adequacy of generation,

allowing the introduction of some reliability indices, such as the LOLE and the

EENS as a result of bulk power system deficiencies. The most relevant method

capable to include these features (given the historical relevance and extreme

simplicity that allow the best performances) is the Frequency and Duration

(F&D) method.

The F&D method computes the transition rates connecting the different states

that comprise the Markov model. Similarly to the recursive method, the load

model is convoluted with the recursively built COPT in order to calculate the

reliability indices. This method is able to incorporate models for long-term load

forecast uncertainty, scheduled maintenance, or even derated states of the

generating units.

Reference [31] describes the F&D method in its general form. The generating

units and load were represented through multi-state models and hourly data,

respectively. The discrete convolutions and rounding techniques were used to

build the generation and risk models. Therefore, FFT can be applied to decrease

the computational effort. The operating reserve evaluation is provided through

the risk indices analysis, where the LOLP, LOLE, EENS, LOLF and LOLD were

calculated.

Other methods, which are based on discrete convolution [32] are available in the

literature. The Fast Fourier Transform (FFT) [31, 33, 34], is extremely fast when

compared to the methods based on conditional probability especially in the case of
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very large generating systems. Frequency and duration indices can also be obtained

using discrete convolution.

Approximate Methods

These analytical methods use continuous probability expansions, like the

Gram-Charlier Expansion (GCE) and Edgeworth methods, to approximate the

probability mass function of the system states. Reference [35], proposes a

methodology to obtain an accurate probability density function for the capacity

outages through the use of a Fourier Transform method. The proposed method

can also handle the derated outage states of generating units accurately. It is

stated in the paper that the GCE is used to increase the accuracy of the

methodology.

Despite of the efficiency of these methods, its use in smaller systems [36] has

demonstrated that they can provide inaccurate reliability indices. Firstly, the

expansion series are only appropriate for approximating continuous probability

distributions. Secondly, there is no guarantee that the cumulative continuous

probability distribution based on the Gram-Charlier or Edgeworth

approximations is monotone [36].

Population-Based Methods

The Population-Based methods (PBM) seek at the state space representation

with the objective to capture relevant states, for a faster index evaluation. The

PBM promote an oriented-search through those states that have a certain failure

probability, which is predefined through a threshold. Depending on the method

applied, definitions of the threshold may differ. Some PBM techniques are

mentioned as follows:

• Genetic Algorithms-based methods [37,38].
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• Swarm Intelligence-based methods [39,40].

• Hybrid EA/SI EPSO technique [41].

The PBM does not follow the statistical sampling theorems, with both

advantages and disadvantages. The advantage is that they are able to visit the

states of interest must faster than other methods (e.g. statistically based

methods and analytical methods), acquiring acceptable reliability indices earlier

in the estimation process. The disadvantage is concerning to its non-statistical

feature, which takes the statistical traceability unable to define an interval of

confidence related to the solution obtained.

The generating components, usually, have a number of failure events much smaller

than the number of success states. As the PBM visit only the failure states, this

method has an extremely computational efficiency. Other techniques [41] can be

used to improve the search efficacy and efficiency.

2.3.3 Simulation Methods

Over the last decades, the improvement on computation technology has seen some

decisive achievements in the simulation process methods on different applications.

Monte Carlo Simulation (MCS) methods, which are statistically-based, were the

first simulation methods to be widely implemented. They can provide estimates

of the reliability indices and an interval of confidence by simulating the stochastic

behaviour of the system’s components [42]. The measure for result accuracy of the

Monte Carlo methodology is usually characterized by the coefficient of variation

β, calculated through the standard deviation of the estimated expectation and the

estimated index [42]. The mathematical equations used in reliability evaluation

of power systems, through the Monte Carlo method, are addressed in Chapter

3.

Unlike the analytical methods, which try to assess all the system states contained
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in a state space, or approximations of such, through mathematical models and

equations, simulation methods rely on a set of simulations representing the

system’s states.

Non-Sequential Monte Carlo Simulation

Non-Sequential Monte Carlo Simulation consists in sampling system states

independently of the time periods in which they occur. The reliability indices are

estimated by monitoring the state space. It is equally important to calculate the

appropriate test functions for each system state as to estimate the reliability

indices [43]. Each simulation produces an estimate of each of the parameter being

assessed (e.g., the reliability indices) through the appropriated test

function.

The Monte Carlo method can be implemented in the following steps [15]:

1. Initialize the number of samples N = 0;

2. Sample all the components’ system states from their respective probability

distribution and update N ;

3. Calculate the outcome of the test functions for the reliability indices to each

sample system state;

4. Calculate the estimate of the reliability indices as the average of the function

outcomes;

5. Calculate the coefficient of variation β [42]. If the confidence degree is

acceptable then stops, if not, then goes back to step 2.

The NSMCS is not capable of handling the system’s chronological characteristics.

On the other hand, it is able to assess the reliability indices in less computational

time and with less memory storage than the SMCS methods.
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In the last decade, some researchers have tried to include a certain chronological

characteristic on the NSMCS method in order to better represent some system’s

components. For instance, references [44, 45] present a pseudo-chronological

simulation incorporating time varying loads on the NSMCS method. The

objective of this attempt is to combine the efficiency of the NSMCS method with

the ability to model chronological load curves in sequential simulations.

Sequential Monte Carlo Simulation

This simulation method is based on sampling the probability distribution of the

component’s state duration. It is used to represent the stochastic process of the

system operation through the use of its probability distributions, associated with

the MTTF and MTTR values of each system component. Assuming the use of

the two-state Markov Model, these are the operating and repair state duration

distribution functions that are usually assumed to be exponential. Other

distributions, such as Weibull, Normal, and so on, can also be used to represent

different behaviours [46].

Figure 2.1 presents a flowchart in order to illustrate the simulation process.

This flowchart can be described in the following steps:

1. Initiate the components’ state. It is usual that all the components are in the

state “UP”. Define the maximum number of years to be simulated, Nmax

and the convergence criteria β. Set the number of years to one Nyear = 1.

2. Set the simulation time to zero t = 0 and sum one in the number of simulated

years Nyear = Nyear + 1.

3. Sample the components’ system state in an annual basis (the reference period

addressed in this thesis). The exponential distribution is used to approach
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Figure 2.1: Flowchart of the Sequential Monte Carlo Simulation process.

the component’s state duration and is calculated as follows:

Ti = − 1

αi
ln(Ui). (2.4)

Where Ui is a uniformly distributed random number between [0, 1], i stands

for the component number. The MTTF and MTTR values are represented by

α, and are used according to the current system’s state. The load transitions

occur in an hourly basis with 8760 load points.

4. Update the simulation clock t, according to the selected state transitions.

5. In order to obtain yearly reliability indices, evaluate the test function over

the accumulated values.

6. Update the outcome of reliability test functions and the corresponding

indices.
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7. If the simulated year is not in the end, then return to step 4. Otherwise, go

to step 8.

8. Estimate the expected mean values of the yearly indices as the average over

the results for each simulated sequence.

9. Test the stopping criteria according to their definitions in the beginning

of the simulation process. Usually, the number of sampled years and the

convergence index β are the selected criteria to end the simulation process.

10. If the stopping criteria is not reached, then, repeat step 2 each time span and

record the results of each duration sampled for all components. Otherwise,

go to step 11.

11. End the process if the desired degree of confidence is achieved. If not, return

to step 2.

The advantages of the SMCS are:

• It can easily calculate the actual frequency index.

• It considers any state duration distribution, exponential or non-exponential

distributions.

• It is the only method able to calculate the statistical probability distributions

of the reliability indices in addition to their expected value.

• The method is also able to represent hydro and wind series chronologically.

This series bring an important season component that affects the power

output of such generation technologies.

The SMCS method is the one used to evaluate the adequacy of the generating

systems performed in this thesis. Therefore, more attention is given for this

simulation method in Chapter 3.
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2.3.4 Hybrid Methods

Hybrid methods have been developed to improve some characteristics of classic

methods, and since simulation methodologies have already a complete and realistic

approach, the main objective is to improve performance. Even so, the reduction of

computational effort originates an almost unavoidable loss of information and of

its quality.

Analytical/Simulation Methods

Reference [47] merges the Monte Carlo methodology with the LOLP technique

for evaluating the reliability of an hydrothermal generating system. This approach

takes into account the effect of reservoir depletion on the output capacities of the

hydroelectric units. The simulation method is used to acquire the energy states

whilst the analytical technique calculates the reliability indices.

An alternative hybrid method, presented in reference [48], still uses an

analytical/simulation scheme, in which the recursive method is used to

incorporate wind generation and hydro depletion through its hourly usage over

an year interval. The presented method has the aforementioned advantages of the

analytical methods, but loses, for instance, the possibility of computing the

probability distributions of the reliability indices, as computed in the SMCS

method.

The discussion of a new way of examining the probability distributions of the

reliability indices based on an hybrid method is presented in reference [49]. The

test system includes the EV impact on such analysis. The EV representation follows

the basic wind power representation, i.e., they are added as positive capacities on

the system load.
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Simulation/Simulation Methods

The quasi-sequential Monte Carlo simulation is one of the methods that combine

different concepts from the Monte Carlo theory. Reference [50], presents a

method based on the NSMCS. The system’s components’ state are sampled

according to the state space representation. However, the chronology of the load

is kept through the use of the multilevel non-aggregate Markov load model,

instead of the traditional multi-state Markov load model that transforms the

hourly chronological peak load levels into a state space representation. The

quasi-sequential MCS creates a connection with the chronology aspect, by

sampling the availability of the system components for each load level, which

allows the inclusion of other time-dependent characteristics, like the capacity

fluctuation of generating units or scheduled maintenance.

A different load model (Multi-Level Non-Aggregate Markov Load Model) is able

to restore the chronological aspect and is implemented through a

pseudo-chronological simulation [44]. The purpose of this approach is to use the

non-sequential method to select the failure states of the system, and the

sequential method is only used when there is a complete interruption of the

system. The pseudo-sequential Monte Carlo simulation is described in detail in

reference [44]. Despite being one of the most robust methods for power system

analysis, especially for large systems, the Monte Carlo methods retain

considerable difficulties in the probing process of very rare events.

Pseudo-Sequential Monte Carlo Method [51] combines the state system sampling

of the NSMCS with the chronology simulation of the SMCS, processing only the

failure sequences. Prior to the application of the method, a considerable amount

of yearly sequences is simulated using a similar process to the one used in SMCS.

A small difference occurs on Combined Pseudo-Sequential and State Transition

Method [52], sequential simulation is processed through System State Transition

Sampling, which leads to a lower computing time and a loss in the capture of some

chronological events.
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In order to suppress this problem, a Cross-Entropy based Monte Carlo method is

proposed in [53]. Several reduction techniques have already been applied to power

systems, with some presenting better results than others in what regards real power

systems. However, rare events were still a problem deserving little discussion on

reliability related literature. The proposed method in [53] serves as an optimisation

algorithm for the selection of distorted parameters. The main idea is to use an

auxiliary importance sampling density function, whose parameters are obtained

from an optimization process that minimizes the computational effort of the MCS

estimation approach. The Cross-Entropy concept is further applied to the SMCS

method in [54] in order to evaluate generating capacity reliability indices. A slightly

different optimisation process (still based on Cross-Entropy Method) is used. The

proposed methodology suitably modifies the chronological evolution of the system

in order to improve its statistical efficiency and convergence properties.

In order to decrease the computational effort, the Sequential Population Based

Monte Carlo Simulation method is proposed in [41]. This method aims to create

a generating states list, in which the total capacity is lower to the system’s peak

load, using the PBM. Then, the generation state sampled from the SMCS method

are compared to those from generated list. Instead of performing the traditional

SMCS procedure of composition to test the G − L ≤ 0 to all sampled generation

states, the list created in the first phase is used to identify which of them will

proceed to the SMCS composition and evaluation stage. Basically, the insight was

coding the generation states to build a vector with generating units that has the

same capacity and the same stochastic parameters. Therefore, each entry of this

vector is an integer value between zero and the number of “equal” generating units.

The detailed pseudo-codes of the first and second phases can be found in [41]. The

reduction of the computational effort is given, mainly, because additional time to

compose and evaluate all system states is avoided.
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2.3.5 Load and Electric Vehicle Load Modelling

Conventional Load Modelling

Usually, load models are developed through historical observation of the

electrical demand. Depending on the power system analysis method and the

necessary accuracy of the load representation, four models may be used to obtain

the reliability indices. The load model is combined with the COPT or assessed by

the simulation techniques. These representations are transversal for the

aforementioned methods, however its usage depends on the accuracy

needed.

Figure 2.2: Representations of the single load curve.

Figure 2.2 presents four different load models. One considers the annual peak load

for all load cycle. This means that a constant load is compared to the generation

model and then, the LOLP index is determined. This method introduces excessive

errors leading to a too conservative approach (see Figure 2.2 a)).

Another methodology, but still conservative, is the linearisation of a load diagram
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using maximum and minimum load points. This method could not capture the

frequency, since, transitions disappear with the linearisation approach (see Figure

2.2 b)). Other technique is based on the daily or hourly peak demands re-ordering

them to obtain a descendent curve (see Figure 2.2 c)). Nonetheless, this approach

loses the chronological behaviour of the system demand.

The most common representation to index evaluation is modelling load in an hourly

resolution, that is composed by load constant steps through the complete period

(see Figure 2.2 d)). This model, makes possible to build a load representation with

the same parameters as the generation model [31]. The load representation must be

well defined, mainly because different load model representations lead to different

reliability index meanings. For instance, a LOLE of 1.0 days/year obtained through

the peak load demand in a daily resolution, which corresponds to a 365 points in

a year, means that the generation capacity is not sufficient to meet the peak load

demand in an average of 1 day in 365 days of the year. On the other hand, a LOLE

of 1.0 hours/year obtained through the peak load demand in an hourly resolution,

which corresponds to a 8760 points in a year, means that the generation capacity

is not sufficient to meet the peak load demand in an average of 1 hour of the 8760

hours of the year.

Electric Vehicle Load Modelling

The EV brings some different approaches to modelling EV load. Reference [55]

presents a methodology of optimizing power systems demand due to EV charging

load. The EV load is calculated a priori and added (in a distributed way) to

the conventional load points, maintaining it fixed during the process. The results

demonstrate that EV charging load has significant potential to improve the daily

load profile of power systems if the charging loads are optimally distributed. The

SMCS method is used in [56] to evaluate the effects of different EV types, locations

and penetration levels on the IEEE-Roy Billinton Test System (RBTS) Bus-6

distribution test system. More references will be given in the next section which
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is related to the literature review of the EV.

This thesis presents some EV models based on the mobility patterns and expected

EV charging behaviour. Characteristics such as travel distances, battery SOC,

and average time from parked vehicles are also addressed in such approaches. The

resultant EV load is added to the conventional system demand to be evaluated.

Then, the battery charging strategies define the EV load profile. If no charging

control is provided, the EV load increases the conventional load amount requiring

more capacity or operating reserve from the system. On the other hand, if charging

control is provided, the EV load becomes a flexible load with storage capacity,

which supports the opportunities that will be discussed and addressed throughout

this thesis.

2.3.6 Wind Power Modelling

Due to the increasing integration of wind power generation in the grid, it has been

addressed in the probabilistic methodologies of adequacy assessment.

Wind Power modelling for Analytical Methods

References [57, 58] have addressed the wind power generation in analytical

methods. Reference [58] divides the overall system into two subsystems,

containing the conventional and wind units, and a generation system model is

built using a Recursive Algorithm for each of these two subsystems. The power

output of the wind subsystem is calculated for each hour under study and a

vector containing the hourly output of the wind power generation unit subsystem

is created.

The probability model of the wind generation subsystem is modified to take into

account the effect of the fluctuating energy generation. Then, the two subsystems

are combined to calculate the LOLE for the desired hour. Therefore, the reliability

35



Chapter 2

index for the entire period is computed by the summation of all hourly values of

LOLE.

Wind Power modelling for Simulation Methods

In simulation methods [13,59–61], the wind power has been modelled through the

multi-state Markov model, which is used to represent the failure/repair cycle of the

wind farm’s generating units. Usually, this model addresses the transitions between

states as following an exponential distribution and calculated by Equation (5.1).

The wind variability produces fluctuations in the power output of wind turbines,

which is also represented through wind power series (generally in a hourly basis).

These series capture the production of the wind farms in percentage of their total

capacities. Therefore, the maximum capacity of a given wind farm is multiplied

by the correspondent value of the wind power series, according to the simulation

time, and taking into account the generating units’ state of the wind farm, in order

to produce the total wind power generation amount.

2.4 Related Studies on Electric Vehicles

Historically, the electric vehicles appeared in the beginning of the 20th century.

Reference [62] presents a discussion about the use of EV to correct load factor

during the valley period. Curiously, the advantages of the EV had been compared

with the use of horses. Instead of occupying the street and having to spend money

to feed the horses, the EV owners could charge the EV batteries cheaper, during

the night. Nowadays, it is expected that in a near future the EV deployment will

take the place of ICE vehicles. Therefore, the EV assessment has been included in

general power system references.
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Market Environment

Recently, the technological improvement on the batteries and elements of the

network, concepts as controlled/smart charging and V2G are discussed. In this

context, the EV are able to provide electrical energy to the systems. The

accumulated energy from a large group of vehicles, can be bid in the market

through an aggregation entity. The reference [63] presents equations developed

for calculating the capacity for grid power from three types of electric vehicles

(hybrid, battery, and fuel cell vehicles). These equations are applied to evaluate

revenues and costs for vehicles that are used to supply electricity to three electric

markets (peak power, spinning reserves, and regulation). The results suggest that

vehicles probably will not generate bulk power, both because of their

fundamental engineering characteristics and because their calculated per kWh

cost of energy from vehicles is higher than bulk electricity from centralized

generators.

A commercial value of V2G for ancillary services is analysed in reference [64]. It

is described the infrastructure considered to support the integration of EV on the

distribution level. The methodology presented is used to model and analyse the

load demand in a distribution system due to EV battery charging. It is stated

the random characteristic of the EV behaviour and the load demand is calculated

taking the SOC into account. Furthermore, the engineering rationale and

economic motivation for V2G power are compelling. The societal advantages of

developing V2G include additional revenue stream for cleaner vehicles, increased

stability and reliability of the electric grid, lower electric system costs, and

eventually, inexpensive storage and backup for renewable electricity. According

to [65] to properly estimate the cost of charging/discharging EV battery, it is

necessary not only to assess the operational costs, but also the impacts of the

new consumption patterns in the development of long-term power plant

portfolio.

The impact of EV over the market perspective is also presented in reference [28],
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particularly regarding the investment of conventional capacity and in the V2G

role of increasing the renewable sources in the grid. References [28,63,66,67] agree

with the idea of V2G playing an important role in the electricity market as well

as providing ancillary services to power systems.

The foreseeable increase in the use of EV led to the discussion on intermediate

entities that could help manage a great number of EV. In reference [68] an

aggregative agent for EV is defined as a commercial “middleman” between a

system operator and EV. It is provided a bibliographic survey on the aggregative

entity role in the power system operation and electricity market. The idea of an

aggregation entity gives support to the use of controlled schemes to battery

charging.

Power System Environment

The work presented in [69], identified essential elements of an energy distribution

system that was built disregarding the EV charging capacity. Further, they

examined each element, in order to determine its capacity to accommodate the

additional demand that would be created by electric transportation. The EV

charging impact on the electric system was assessed considering the technological

limitations and therefore the charging strategies analysed were the ones that

directly depend on the electric vehicle’s owner’s behaviour.

From the technological perspective battery life cycle, bi-directional charging flow

and fast charging rates were already improved [25–27] allowing the

implementation of an EV active interaction with the power systems. It is

assumed in this thesis that the concepts of aggregation entity (from the market

perspective) and communication (from the technological infrastructure

perspective) presented in the literature review are adequate to make the V2G

concept possible. Therefore, controlled charging schemes are addressed and

discussed throughout this thesis.
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The use of EV to maximize the integration of renewable energy resources in

islanded grids is presented in reference [9]. The assessment was made considering

two different approaches. Firstly, the EV are considered to be only in charging

mode without any control scheme. Secondly, the EV are able to participate in

the frequency control. From a purely technical level, the EV interfaced with the

grid in a smart way can increase robustness of operation to power system

dynamic behaviour. To assess the efficacy of such procedures, the grid integration

of EV was pushed to its limit for each of the adopted charging management

models. The study shows that the system can handle, up to a certain level, the

EV integration without changes in the electricity network if a direct charging

model is used. When the share of EV reaches a certain level, there is the need to

reinforce the grid.

Regarding the changes in the load curve diagram caused by the large integration

of EV, the impact of EV deployment will also be assessed accepting additional

amounts of renewable energy in the power system [70], once EV will increase

the load in the valley hours or by operational reserve that it would represent.

In reference [70] the systems and process needed to pull energy from vehicles and

implement V2G are examined. It quantitatively compares todays light vehicle fleet

with the electric power system. This article stresses that the vehicle fleet has 20

times the power capacity, less than one-tenth the utilization, and one-tenth the

capital cost per prime mover kW. Conversely, utility generators have 10-50 times

longer operation life and lower operation costs per kWh.

References [71, 72] present different approaches to represent EV load. The

modelling of EV made from the distribution system perspective is presented in

reference [71]. The EV load value is calculated through the sum of all vehicles

connected in the grid at that moment, individually. It is only considered the

situation of travelling to work and returning home without considering other

public areas. The start time of charging batteries is dependent on the battery

SOC and has a random component to avoid the same SOC for all batteries. The

charging time is according to the charging scenarios which are: uncontrolled
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domestic charging, uncontrolled off-peak domestic charging, smart domestic

charging and uncontrolled public charging. The EV penetration level determines

the total number of EV that need to be charged and the penetration level refers

to the ratio of EV to the total vehicles at home or work.

Reference [72] presents a different methodology to calculate the load demand of

EV in fast charging stations on a highway. First, they identify the arrival rate

of discharged EV at a charging station. Then, EV charging demand is calculated

with the arrival rate of discharged EV by the M/M/s queuing theory. This work

lies on the distribution level considering only fast charging station points.

Under the uncontrolled domestic charging scenario, reference [73] presents a

methodology to calculate the EV load taking into account the time a vehicle

leaves home, the time a vehicle arrives home and the distance travelled in

between. Then, the proposed methodology is applied on the national power

demand of the Netherlands under different market penetration levels.

The reference [74] presents the evaluation of the EV impact in the German national

grid. For such task, the authors use different charging strategies: uncontrollable

charging, grid stabilization storage (pure V2G) and driven by profit maximization

with V2G deployment. They affirm that the use of uncontrollable charging strategy

(direct charging), increases the daily fluctuations of the national power system of

1.5%. By applying a V2G charging strategy, this is reduced about 16%. The driven

by profit maximization through V2G strategy reflects in a reduction of 12% of the

German power system’s daily fluctuations.

Only a handful of studies considering the impact of EV in the adequacy of

generating/composite systems were found. Reference [75] shows that an adequate

charging strategy could support the reduction of CO2 emissions and increase the

expected deployment of EV in the grid. The EV impact on the generation mix

and transmission network of the US highlighting some aspects such as the

increase in natural gas generation and the reduction of the coal-fired generation

imports is presented in [76]. The reference [77] presents two conclusions about
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the large-scale deployment of EV in the Italian power system. Firstly, the

integration of EV in Italian grid will not have significant impact on its power

system operation and on a fossil fuel consumption. Secondly, the energy cost and

CO2 reductions are the main benefits from the economic perspective.

Reference [78] presents a reliability analysis of distribution systems to measure

the impact of the interruptions in EV charging points considering adverse

weather conditions. This methodology evaluates the EV impact from a

customer’s perspective. Under adverse weather the risk indices increase, but the

main problem is related to the failure duration. While the adverse weather

remains, no repair can be done and the customer is affected.

2.5 Final Remarks

This chapter presented a background and state of the art related to several

techniques and methods used to evaluate the adequacy of the security of supply.

The historical use of analytical methods in power system analysis is mainly given

because of the predominant usage of the thermal generation and fast response.

However, these methods are not able to capture the real behaviour of the electric

systems’ components which are, naturally, stochastic. The improvement on

computational capability associated to the increase of RES integration in the

generation mix led to the implementation of probabilistic methods capable of

including uncertainties related to the variable characteristic of the RES and the

forecast errors of their primary resources. The necessity of diminishing the

computational effort provoked the emergence of hybrid methods. These methods

combined the best of the simulation and analytical methods, but generally the

probability distribution (for instance) is lost in exchange for the gain in

computational effort.

Regarding the deployment of EV, it was stated that they have been addressed in

different power system analysis. From the market perspective the V2G strategy
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is aim of studies. Some papers propose equations to address the revenues and

costs of V2G. However, it is concluded that EV will not inject electrical energy

as a conventional generation mainly because of the cost per kWh that will be

much higher than conventional generation. The necessity of creating an aggregation

entity to manage the storage capacity of the EV batteries is a common consensus

in the related papers. This entity should bill the energy capacity provided by the

EV batteries in the market environment in order to provide operating reserve for

the system.

The system perspective has analysed the EV impact over the power systems. Some

papers state that the EV will not impact the generation systems in the future,

mainly because of the huge system capacity that is calculated in a planning phase

in comparison with the load forecast. However, most of the researchers affirm that

the large scale deployment of EV in uncontrolled charging mode will affect the

adequacy of the power systems. Therefore, intelligent EV charging manage by

an aggregation entity can provide some opportunities in order to mitigate such

impact.

The V2G concept is addressed in this thesis as a charging strategy that allows

the EV to provide operating reserve for the system, mitigating the EV impact

on the generating systems. Another possibility is also exploited, which V2G is an

inexpensive storage and backup for renewable electricity providing electrical energy

to compensate the wind power variation due to the wind fluctuations.
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Short and Long-Term Risk

Analysis

3.1 Introduction

This chapter aims at discussing the short and long-term risk analysis regarding the

adequacy evaluation of generating systems. This analysis became relevant, mainly,

due to the historical development of the energy market and power system.

Power systems have evolved over decades, nevertheless, the main concerns have

always been to provide a safe, reliable and economic supply of electricity to the

customers. The economic issue directly impacts on the degree of redundancy which

should be as economic as possible. In this sense, the amount of redundant or spare

capacities in generation have been inbuilt in order to ensure acceptable continuity

of supply taking the failure events, forced outages of the generating units due to

the scheduled maintenance into account. These considerations may lead the SO to

the following questions [79]:

“how much is redundancy enough to ensure an acceptable reliability level and at
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what cost?”

This issue is a widely recognized problem and several criteria and techniques

have been developed as an attempt to answer that. Those first used were mainly

deterministic based, where typical deterministic criteria are:

• Planning generating capacity: installed capacity equals the expected

maximum demand plus a fixed percentage of the expected minimum

demand.

• Operating capacity: spinning capacity equals expected load demand plus

a reserve which is equal to one or more largest units.

Some of that are still used in planning phase studies, however, the essential

characteristic of deterministic criteria is that it does not account for the

stochastic nature of the system behaviour, of customer demands and of

component failures. Typical probabilistic aspects are:

• Forced outage rates of generating units.

• All planning and operating decisions are based on load forecasting

techniques. Then, the uncertainties are inherent to the forecast methods

which cannot be characterised in deterministic criteria.

Combining conventional generation, unconventional generation with forecast

properties and consumption variability has made the task of fitting large

amounts of wind generation into unit commitment procedures even more

complex. Power system planners and operators are already familiar with a

certain amount of variability and uncertainty, particularly because variability

and uncertainty are related to the system demand. Assuming that the output

from wind generation is not as dispatchable as conventional sources, the level of

unit commitment uncertainty is increased, consequently, making the task of

setting reserve levels more challenging [80–82].
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Risk-based methodologies such as the PJM method [83] are adequate to assess

short-term unit commitment risks considering intervals up to a few hours. Such

evaluation is conditioned to a short period of time, and it is essentially dependent

on the quality of load and wind forecasts.

Usually, these short-term concerns have been seen as a way of controlling the

amount of spinning reserve, providing operators with information on operation

system risks, taking the generating units available at the operation moment into

consideration.

For the medium and long-term assessment, the risk evaluation must account for

the available system capacity performance [13, 60] in order to meet the expected

demand growth, assuring that investment options will result in more robust and

flexible generating configurations that are consequently more secure.

From a technological perspective, the design characteristics of conventional hydro

and thermal generators already enable the generating units to contribute to

system support services, such as voltage and frequency regulation [84]. Recently,

new technologies have been massively connected to the system, such as: wind and

solar power. Although, the current technology allows providing a certain level of

ancillary services, the level of wind unpredictability is still significant and it is

not capable of fully providing the same system support as hydro and gas

technologies.

Moreover, these inherent unpredictable and volatile characteristics of the wind

impose additional requirements to the reserve level. Firstly, the necessary reserve

to deal with the uncertainty that comes from the wind production may increase due

to the fluctuating characteristic of this primary resource. Secondly, this fluctuating

characteristic may also require more flexible conventional generators (hydro and

combined cycle gas turbines) in order to cope with system support services [84].

To deliver both flexibility and system support services, large conventional plants

could be desirable, however they usually require expensive investments [85].
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Assessing reserve requirements to ensure an adequate level of energy supply is an

important aspect for both expansion and operation planning of the generating

systems. In the past, the planning phase concern was related to prepare the

generating systems to meet the long-term load forecast, whereas the operating

phase concerns were related to dealing with short-term load forecast, where

sufficient generation should be scheduled in order to account for load

uncertainties and sudden loss of generating units. With the massive usage of

wind power technology, another set of uncertainties have been introduced on

planning and operating phases.

From the short-term reserve evaluation perspective, the uncertainty linked to the

wind power fluctuations brings huge difficulties to the unit-commitment and

dispatch procedures of the generating systems. From the long-term reserve

evaluation perspective, the uncertainty linked to the massive usage of wind power

makes it difficult to prepare the future generating systems so that they can deal

with large levels of uncertainty (mainly wind power and load forecasting errors)

and thus meet the load forecast for the future.

In summary, the main concern of short-term reserve evaluation is measuring the

unit commitment risk level. Complementary, the decisions on long-term

generation management are essentially around reinforcing bulk generation. In

fact, it is a common knowledge that increasing the participation of renewable

power, mainly wind power, in the total generation mix means that operating and

planning methodologies and standards must be revisited [86].

As the scope of this thesis is within the adequacy of power systems context, this

chapter discusses the short and long-term risk analysis of the generating systems.

The discussion is conducted through the use of two approaches: an analytical

technique that performs an evaluation on unit commitment risk (short-term), and

a SMCS method, which assesses the performance of the long-term operating reserve

[13].

This chapter is organized as follows. Section 3.2 introduces short-term operating
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reserve evaluation. Section 3.2.1 presents the modelling of the generation unit

outages. The demand and wind power forecast uncertainty models, under the

short-term perspective, are presented in Section 3.2.2. The long-term operating

reserve capacity evaluation is introduced in Section 3.3. Section 3.3.1 presents the

modelling of the generation unit outages under the long-term assessment

perspective. The long-term demand representation is addressed in Section 3.3.2.

Section 3.3.3 presents the modelling of the wind power uncertainties for the

long-term assessment.

3.2 Short-term Reserve Evaluation

One of the first methods that included the idea of risk to calculate generating

reserve was the PJM [83]. The basic aim is to evaluate the probability of the

committed generation to meet or fail to meet the expected demand during a

period of time [30]. The PJM method is rooted in short-term concerns where the

main uncertainties involved are load forecast errors and forced generating units

outages.

The concepts are based on the assumptions that failures and repairs are

exponentially distributed. The measurement obtained is a system risk index that

outlines the probability which the existing generation capacity has of not

satisfying the expected load demand, during time period T (lead time) and/or

the probability of the operator not reacting to replace any damaged unit or using

new ones [30,60].

Therefore, the index represents a measurement of the loss of load associated with

the scheduled generating reserve [30,60]. For a single unit, the probability of failure

at interval [0, T ], i.e. Pdown(T ), can be calculated by

Pdown(T ) ≈ P (tup ≤ T ) = 1− e−λT (3.1)

where λ represents the failure rate of a given generating unit. If T << 1, for short
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lead times up to some hours, then Equation (3.1) becomes Pdown(T ) ≈ λT =

ORR. Consequently, it is also possible to build an analytical generation model [30],

with high efficiency and mainly compatible with the operating expectations in

terms of time response.

Figure 3.1, shows two possible commitments in accordance with their technology

predominance. The use of a merit order, to represent the generation commitment,

is a common practice on the adequacy evaluation of the generating system. Even

though, the generation and load are distributed over the power system network,

the merit order, in a single bus representation, is based on the generating unit cost

and technology in order to give a guidance of the dispatch procedure.

Figure 3.1: Unit commitment representation based on technology predominance.

Currently, to deal with variable generation from the operating perspective two

different categories of generating systems were identified from the technological

point of view: predominantly thermal generation and predominantly hydro

generation.

In the predominantly thermal system, the commitment of generating units starts

48



3.2. Short-term Reserve Evaluation

using less flexible technologies, such as Coal and Nuclear turbines (see Figure 3.1).

These generating units deliver inertia (stability) to the system and meet a major

portion of the system load. However, these units are running in the low uncertainty

zone (see Figure 3.1) of the unit commitment basis due to the low costs and their

inability to deliver flexibility.

In the predominantly hydro system, the commitment of generating units starts

using large hydro plants which have fast response to ensure system stability. This

system has high level of flexibility, however the variability of its primary resources

affects the produced power requesting more installed power capacity.

The reserve capacity, which is synchronized (spinning) to take load up, is based on

the generating units with more flexibility, such as gas and hydro turbines, lying in

the high uncertainty zone (see Figure 3.1) of the unit commitment basis.

From a generation assessment perspective, it is usual not only to consider the

synchronised units in their assessment, but non-synchronised units such as hydro

and gas turbines as fast tertiary reserve.

Furthermore, for both examples and from the operating reserve evaluation

perspective, the challenge is to verify whether these generating units are enough

to deal with fast and enormous power variations. Usually, these power variations

require a certain level of quick generation response, which are addressed by hydro

and gas technologies. The flexibility of the generating system is also an issue that

should be evaluated in the planning phase of the generating systems. In this

thesis, flexibility is considered the feature ascribed to a system capable of

accommodating generation variation.

Nowadays, there are a considerable number of flexibility sources to deal with the

variability of RES [12]. Hydro predominant systems, generally have enough

flexibility to integrate large amounts of variable wind power. In these cases, the

main concern is to coordinate hydro and wind power in order to avoid loss of

wind production, since water is storable whereas wind is not. Procedures based
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on water storage involving pumping facilities by wind power during convenient

operation hours is one of the solutions applied to coordinate hydro and wind

production from the operating perspective.

Once the system technology category is defined, unit commitment or dispatch

procedures may be organized as operational decisions. In general, the operational

decisions involve technical constraints related to the reserve needs and economic

issues. Depending on the method used to define the level of the synchronized

reserve and/or fast tertiary reserve, these operational decisions may lead to over-

scheduling, which could be more reliable but also costly, or may lead to under-

scheduling, which could be more affordable and yet unreliable.

Analytical-based approaches are essentially mathematical formulations based on

enumeration methods. The aim of these approaches is to calculate probability

density functions using generation and load risk models. In general, the reserve risk

model is built considering system generation and load as independent variables.

Therefore, the reliability indices are calculated through a simple mathematical

manipulation. This type of approach is mostly applied for operational purposes

due to its computational efficiency and simple implementation. In this context,

the following sections will present an analytical method to model generating unit

outages as well as the usual approaches to model load demand and wind power

forecast uncertainties.

3.2.1 Modelling Generating Unit Outages

One of the analytical method advantages is to reduce the modelling dependence,

where the stochastic behaviour of system’s components is defined through

mathematical enumerative procedures. The system load and wind power

forecasts are, in this context, treated independently through dedicated systems

and consequently modelled outside of the analytical model. The system risk

index is calculated using a Capacity Outage Probability and Frequency Table
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(COPFT) [53].

Another issue regarding this type of evaluation is related to the Outage

Replacement Rate (ORR) parameter, which is similar to the Forced Outage Rate

(FOR) [30] used in planning studies. The main difference between FOR and

ORR is that the latter is not simply a fixed characteristic of a unit, but it is a

time-dependent quantity affected by the value of the lead time considered. Hence,

it is possible to build a generation model equal to the capacity and frequency

outage probability table [53] in order to assess risks on hourly basis.

While the COPFT is built, it is possible to follow an intuitive process based on

decoupling G (system capacity) in different subsystems, mainly to convolve all

stochastic capacities G and L (system demand) at an appropriate moment of the

evaluation. The information linked to resource fluctuation, such as water inflows

or wind variability, is complementary to the stochastic model and, most of the

time it is applied to the calculation of G [49].

To cope with short-term concerns, a COPFT is built including all committed

generating units, which follows a two-state Markov Model, resulting from simple

information on capacities (cg), probabilities (pg) and frequencies (fg) linked to the

unit commitment decision, represented as follows:

G = {cg, pg, fg} (3.2)

Time-dependent power sources, such as wind power, are rarely included in the

conventional generation model. Although wind turbines behave as hydro or thermal

units from the stochastic point of view, the key factors linked to wind capacity

are wind speed and direction, which behave differently, for instance, from hydro

depletions. Usually, wind power generation, addressed on short-term operating

reserve evaluation, is a quantity provided by wind power forecast tools and, at

the moment, it is considered as a complementary input in unit commitment risk

evaluation.

In the same way, the value of the system load L is also provided by load forecast
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tools, and it is considered as a complementary input in unit commitment risk

evaluation. Consequently, the reserve model will be an appropriate combination

of generation model G with system load L and system wind power generation, in

order to set the spinning reserve based on the pre-established risk criterion. Most

importantly, this pre-established risk criterion should be followed in accordance

with the operator experience.

3.2.2 Modelling Demand and Wind Power Forecast

Uncertainties

Usually, conventional generation models do not comprise generation variability,

like wind power. While large hydro and thermal power plants have no significant

variability in their power production, the wind power generation varies with its

primary resource, which in turn is different throughout time.

The variations of the wind power are often represented through a sequence of

percentage values (wind series), and generally, it is given in the same basis

resolution of the load, e.g., 8760 capacity points. The wind series represent the

seasonal wind behaviour and different annual scenarios. The probability indexed

in each series gives the occurrence chance of each one. In order to combine the

probabilities and frequencies of the wind power with conventional generation

ones, the wind series of each wind farm is converted into impulses to perform a

convolution. At least, three different manners were identified to consider the

wind power’s effect on reserve evaluation [31]:

• The wind capacity of each wind farm is convolved with the conventional

generation.

• The summation of the total wind farm capacities is convolved, in an hourly

basis, with the conventional generation.

• The wind capacity of each wind farm is added, in an hourly basis, as a
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negative load on the load points.

The latter case follows an ordinary procedure of the load model, which is described

in [31].

During the operation, one has to make decisions in accordance with the last

information on what has occurred in the system, and taking the remaining load

and wind power forecasting uncertainties into account. The demand forecast

uncertainty, close to the real-time operation (up to 2 hours), is usually negligible,

while the wind power forecast uncertainty is still relevant.

The Normalized Mean Absolute Error (NMAE), of the very-short wind power

forecasting varies from 1-2% (10-15 min. ahead) to a maximum of 10% around 2

hours ahead, considering a time resolution of 10 min. However, it is hard to beat

the persistence model performance for such a short time horizon [87]. When the

time resolution increases to up to 1 hour, the improvement with respect to the

persistence model is even more difficult, so it is a common practice to assess unit

commitment risk using the last known wind power occurrence as the forecast for

the next period, given by

Ŵi(t+ k) = Wi(t) (3.3)

where, Wi(t) is the last known wind power generation at instant t, and Ŵi(t+ k)

is the forecast wind power generation launched at instant t for the horizon k. Note

that, the wind forecast error, from a short-term reserve evaluation is still hard to

define. Therefore, the persistence method provides guidance when assessing unit

commitment risk.

3.2.3 A Simple Example

From an operating perspective, one of the main concerns of a system operator is

regarding the composition of the spinning reserve. This decision is usually made

according to economic aspects combined with a unit commitment risk
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evaluation.

Table 3.1, presents a generation model built using the COPT for the entire

generation system as in [53]. The generation capacities are the total installed

capacity of the thermal subsystem and the total capacity of the hydro subsystem

in December.

Table 3.1: Example of the PJM method application.

Capacity
Cumulative Probability

Lead Times of

In (MW) Out (MW) 1 hour 2 hours 3 hours 4 hours

9,189 400 6.23 ×10−07 1.25 ×10−06 1.87 ×10−06 2.49 ×10−06

9,239 350 8.21 ×10−07 1.64 ×10−06 2.46 ×10−06 3.28 ×10−06

9,392 197 1.90 ×10−06 3.81 ×10−06 5.71 ×10−06 7.61 ×10−06

9,434 155 3.33 ×10−06 6.66 ×10−06 9.99 ×10−06 1.33 ×10−06

9,489 100 4.19 ×10−06 8.37 ×10−06 1.26 ×10−05 1.67 ×10−06

9,513 76 4.88 ×10−06 9.77 ×10−06 1.47 ×10−05 1.95 ×10−06

9,545 44 5.23 ×10−06 1.05 ×10−05 1.57 ×10−05 2.09 ×10−06

9,554 35 5.58 ×10−06 1.12 ×10−05 1.67 ×10−05 2.23 ×10−06

9,564 25 5.92 ×10−06 1.18 ×10−05 1.78 ×10−05 2.37 ×10−06

9,569 20 8.97 ×10−06 1.79 ×10−05 2.69 ×10−05 3.59 ×10−06

9,577 12 9.55 ×10−06 1.91 ×10−05 2.86 ×10−05 3.82 ×10−06

9,589 0 1.00 1.00 1 1

Therefore, from the total system installed capacity of 11,391 MW, the wind power

installed capacity of 1,526 MW was reduced in accordance with the wind regime,

as well as the effect of the hydro resources, also in accordance with hydro inflow in

December, which corresponded to 276 MW. It is assumed that the latter reduction

is a result of the availability of hydro resources during an operation procedure.

The main idea is to characterize an operation scenario to deal with the PJM

method.

The lead times of 1, 2, 3 and 4 hours and their respective cumulative probability

are related to each capacity in and capacity out. The main assumption made by the
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PJM is that the load will remain constant throughout the analysis period. Thus,

the unit commitment risk can be directly deduced by Table 3.1. For instance,

a forecast wind power production of 330 MW and a load forecast of 9,569 MW

are assumed for the next hour. Using Table 3.1, it is possible to set a spinning

reserve of 350 MW for a risk level of 8.21x10−07 and a lead time of 1 hour. In this

case, the wind power generation was considered to be out of the generation model,

mainly due to its hard forecast properties and chronological features similar to the

load.

It is important to highlight that during the operation analysis, the unit

commitment risk level assumed is a result of the generation capacity available at

the moment of the operation. In fact, the operator usually uses the PJM by

identifying if this generation capacity is enough to meet the load forecast with an

acceptable risk level.

3.3 Long-term Reserve Evaluation

The generating systems, in a long-term perspective, are usually assessed through

the evaluation of the system’s balance. The comparison of the total system

available capacity with the total system demand is known as the static reserve

evaluation. From an operating reserve perspective, represented in the long-term

evaluation, the technique relies on verifying whether the planned generation

system is able to cope with the system uncertainties. The next sections will

present an usual method to evaluate the static and operating reserves, in a

long-term perspective.

Static Reserve Evaluation

The static evaluation aims of verifying whether a given configuration of the

generating systems will be able to meet the load forecast demand for a year in
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the future. In order to assess the static reserve, the following equation is tested in

each state transition of the SMCS process.

G− Lf ≤ 0 (3.4)

where G represents the total system generating capacity available and Lf is the

total system load forecast. The random variable G, depends on the availability

of the equipment and on the capacity fluctuations caused by hydrological and

wind resources. The random variable L depends on the hourly load forecast and

can be affected by both short and long-term uncertainties, as demonstrated in

[13]. The test performed in Equation (3.4) determines whether or not a failure

occurs. If Equation (3.4) is true, then a failure occurs and the reliability indices

are calculated.

Operating Reserve Capacity Evaluation

Most recently, the massive usage of wind power as an alternative green energy

resource, imposed another type of uncertainty that is directly linked to the unit

commitment task. On the one hand, wind power production provides some system

benefits, such as reduction in the operating costs of the system and reduction in

CO2 emissions. On the other hand, it can bring huge hourly variations in power

generation in the short-term horizon.

The wind power forecasting errors directly affect the unit commitment decisions

and they must be taken into account to adequately measure the unit commitment

risk level. Clearly, the decisions are based on the generating units available at the

moment when the decision is made, which generally happens 1 or 2 hours before

the operation.

As wind power has only started being used massively a decade ago, the existing

hydro and thermal generation need to cope with these current issues. Furthermore,

there is a clear movement towards the use of gas turbines as flexible generation

alternative, since hydro plants present more restrictions in terms of construction
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time and environmental awareness. Bearing in mind this transition from less to

more variable generating system sources, some concepts linked to the generating

system assessment were revisited considering a planning perspective.

Over the last years, the traditional long-term adequacy assessment of the

generating capacity has assumed two different perspectives: the aforementioned

static reserve [30] and a new perspective on operating reserve capacity [13, 60].

The operating reserve capacity evaluation is concerned with the long-term

analysis of the generating system capacity and flexibility to cope with the

short-term variations, which can occur during the system operation [13,60].

The generating capacity available at each operating period is affected by planned

and forced outages and by the short-term fluctuations of the primary energy

resources. Moreover, this capacity must be capable of not only supplying the

load, but also accommodating the difference between the actual achievement and

short-term forecasts of wind power, while complying with the operational rules

established by the utilities, such as minimum primary and secondary reserve

levels and unit commitment priorities.

Therefore, it is possible to model some operational procedures to assess the

adequacy of the operating reserve under a planning perspective, named as

operating reserve capacity (ORC) evaluation, which consists of the

secondary reserve plus the fast tertiary reserve available at the moment of the

evaluation. The tertiary reserve is composed by those generating units capable of

taking load in a short period of time, such as 1 hour.

As the ORC is an extension of the static reserve evaluation, the original static

reserve equation is rewritten as

Rst = G− Lf (3.5)

where, Rst is the static reserve capacity. From the operating reserve perspective,

short-term problems are addressed through the system uncertainties which are

represented in terms of capacities: the availability of the generating units ∆G,
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the load deviations due to the load forecast errors ∆Lf and the variability of the

wind power ∆WS. These new variables are addressed in the original static reserve

equation, yielding the long-term operating reserve equation, as follows:

Rop = G+ ∆G+ ∆WS − (Lf + ∆Lf ). (3.6)

As an attempt to represent some short-term issues, the primary reserve RP and the

secondary reserve RS are also addressed in the latter equation, resulting in

Rop = G+ ∆G+ ∆WS − (Lf + ∆Lf +RP +RS). (3.7)

Under an unexpected situation of forced unit outage, some generating units of the

system can be scheduled rapidly in order to cover this problem. The total capacity

of these units is called fast tertiary reserve, because they are units that can be

quickly synchronised up. From the operating perspective G means the synchronised

capacity, then the variable G is suppressed and changed by GSync. Therefore, the

variables Lf , RP and RS should be met by this synchronised capacity.

Rop = GSync + ∆G+ ∆WS − (Lf + ∆Lf +RP +RS). (3.8)

The Equation (3.8) is split to represent the ∆G variable which is the balance

between the synchronized generating units and the summation of the system load

forecast, primary and secondary reserve requirements.

∆G = GSync − (Lf +RP +RS) (3.9)

The capacity of the forced outage generating units is computed during the Gsync

scheduling procedure.

The operating reserve is, therefore, the sum of theRS andRT and means generating

units available to be used on the deviations of the system. This balance is tested

and the identification of the events of insufficient operating reserve capacity is

made according to the following Equation

RS +RT − (∆Lf −∆WS −∆G) ≤ 0. (3.10)
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Where RS is the secondary reserve requirement, RT is the fast tertiary reserve

capacity, ∆Lf and ∆WS are the system load and system wind power forecast

errors, respectively.

This new perspective may be illustrated in Figure 3.2, and can be viewed as a

way to assess, in terms of flexible capacity, the future generating system to

accommodate a large percentage of wind power.

As showed in Figure 3.2, the generating unit synchronisation is given according to

a merit order to meet the system requirements (Lf , RP and RS). The secondary

reserve RS and the fast tertiary reserve RT plus the hatched capacity (see Figure

3.2), which represents the discrete effect of the generating units scheduling, form

the operating reserve capacity.

Figure 3.2: Operating Reserve Capacity evaluation.

Success and failure states are properly verified whether or not the operating reserve

capacity is sufficient to compensate for the difference between load and generation

deviations at each hour, during an established observation time.

Throughout this perspective, the system capacity and flexibility are evaluated

in order to prepare the future generating system to cope with the entire set of

59



Chapter 3

uncertainties [84].

Due to the uncertainty of the system load forecast and the variable primary

resources, the task of evaluating the operating reserve capacity using

probabilistic methods is advisable [30]. To cope with uncertainties from a

planning perspective, the Monte Carlo simulation methods are still the standard

to assess the adequacy of power systems. Besides that, the SMCS, specifically,

has the advantage of providing probability distribution functions associated to

reserve requirements related to a set of uncertainties linked to the power balance

problem.

The SMCS makes keeping track of several features related to the operating

history of system states possible. Its flexibility also makes modelling uncertainty

details possible, which is a valuable information for generating systems with large

renewable sources in their energy mix. After evaluating each system state,

performance indices are estimated using the expected value equation. As

described in [15], let Q denote the unavailability (failure probability) of a system

and xi be a zero-one indicator variable which states whether or not a value

equation is true.

The estimate of the system unavailability is given by

Ê[G] =
1

N

N∑
u=1

G(yu) (3.11)

where yu is the sequence of system states in year u, G(yu) is the reliability test

function evaluated at yu, N is the number of simulated years (samples) and G is

the random variable which maps G(yu) values. The uncertainty surrounding the

estimated indices is given by the variance through

V (Ê[G]) =
Ê[G]− Ê[G]2

N
(3.12)

The stochastic process convergence is tested using the coefficient of variation β as

follows.

β =

√
V (Ê[G])

Ê[G]
· 100% (3.13)
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Following the SMCS procedure, the conventional system reliability indices may be

estimated. This traditional view can provide important information on loss of load

events and, in this case, the simulation will monitor the success and failure states

of the static and operating reserves, where the following reliability indices will be

calculated [15]: LOLP, LOLE, EENS, LOLF and LOLD.

In order to illustrate the estimate of a reliability index, using Equation (3.11), the

formulation of the LOLE index is exemplified. Let the LOLP of a given state x be

described as

LOLP (x) =

{
1, if x is FAILURE

0, if x is SUCCESS.
(3.14)

The LOLE function can be written by

GLOLE(yu) =
1

8760

∑
n∈S

d(xi)LOLP (xn) (3.15)

where x is a given state n of the system states set S in a year u. d(xu) is the

duration of a given system state and 8760 is the period under analysis. Therefore,

following the Equation (3.11) the LOLE index can be estimated as follows

LOLE =
1

N

N∑
u=1

GLOLE(yu). (3.16)

The LOLE is the average number of hours in a given period (in this thesis this

period corresponds to one year) in which the hourly load is expected to exceed the

available generating capacity.

By using the same concept presented in Equations (3.11), (3.12) and (3.13), the

uncertainties surrounding the operating reserve concept might be monitored to

investigate, in detail, the uncertainty impacts on the performance of the operating

reserve from a long-term perspective. The following sections will introduce all of

these deviations as random variables. Although the LOLE index does not indicate

the severity of the deficiency nor the frequency nor the duration of loss of load,

it is the most widely used probabilistic criterion in generating capacity planning

studies [15].
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3.3.1 Modelling Generating Unit Outages

The SMCS method is generally used to accurately reproduce the entire cycle of

generating unit outages [13]. The failure/repair cycle of the generating units is

represented by two-state and multi-state Markov Models (as seen in Figure 3.3) and

their transitions are usually approached by an exponential probability distribution

[13,60].

Figure 3.3: Markov Model representations.

The representation of hydro and thermal power plants follow, in general, the two-

state Markov Model, as illustrated in Figure 3.3 a). Using a simplified model,

hydro plants have their maximum output multiplied by their corresponding value

of the hydro series [13, 60]. The hydro series are the available volume of water

in the reservoir for each hydro plant region. This information can be given as a

monthly average value, which will represent the seasonal water variability or even

in a smaller resolution as a weekly basis. This latter, makes introducing a set of

rules to the scheduling procedure possible in order to guarantee a maximum energy

usage of the hydro units, for instance.

The residence time of the hydro and thermal plants representation in each state
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is calculated according to

T = − 1

α
ln(U) (3.17)

where T is the residence time of each generating unit and α assumes λ, which is

the mean time to failure (MTTF), if the current state is “Up” or it assumes µ,

which is the mean time to repair (MTTR), if the current state is “Down”. U is a

uniformly distributed random number which is sampled in the interval [0,1].

Instead to model the wind power capacity to convolve with the load (as showed in

Section 3.2.2), here, it is modelled to convolve with the conventional generation.

The capacity of wind turbines might be represented by a multi-state Markov Model

(as illustrated in Figure 3.3 b), to characterise the failure/repair cycle of a wind

farm. Then, the capacity associated to the kth state is given by:

Ck = (N − k)C, k = 0, 1, ..., N (3.18)

where C is the capacity of a single generating unit. N is the number of wind farm’s

generating units and k is the generating unit state. With the objective to reduce the

number of states during the SMCS procedure, a simple truncation process defines

the desired order of accuracy. Therefore, instead of N + 1 states, a smaller number

up to the capacity CL will limit this model [43]. Similarly to the hydro depletion,

the maximum output of a wind turbine is multiplied by the corresponding value

of the wind series.

3.3.2 Modelling Demand Forecast Uncertainty

The seasonal characteristic of the load shapes the load profile throughout the year.

For instance, due to the high temperature of the summer season, the electrical load

is impacted mainly by air conditioners, whereas the electrical load in the winter

season is characterised by electric heating resulting in different load profiles. In

order to achieve good results in the reliability assessment of generating systems,

the detailed modelling of the load is desired, however this accuracy depends on

the amount and the quality of available data [45].
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The load model, usually consists of 8760 load steps. In order to track the

chronological characteristic of the load profile, a state space representation can

be approached by Markov model. Some models keep the chronological aspects of

the load tracked, contributing to the reduction of the computational effort,

however the SMCS method sequentially follows these load steps during the

simulation procedure process.

The error between the load forecast and the actual load is included in the load

modelling, as showed in Equation (3.19). From this definition two uncertainty

levels may be represented: short and long-term load forecasting errors, which can

be simulated through the SMCS process. In the short-term representation, an

hourly uncertainty is calculated during the simulation, whereas the long-term load

uncertainty is calculated once a simulated year. The latter, causes an effect over

all load profile while the short-term load forecasting error inserts a noise in the

chronological representation of the load.

La(t) = Lf (t) + ∆L(t) (3.19)

where Lf (t) is the forecast load in the hour t that comes from the chronological

modelling, La(t) is the actual load at hour t and ∆L(t) is the short-term

uncertainty assumed to follow a Gaussian distribution [13] with zero mean and a

standard deviation proportional to the load. The standard deviation of this

normally-distributed error in Equation (3.19) is assumed to be a percentage of

the load.

The main implication of this short-term load forecast is that it directly affects

the decisions related to the amount of spinning reserve, as well as fast tertiary

reserve.
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3.3.3 Modelling Wind Power Forecast Uncertainty

The state of the art in day-ahead wind power forecasting provides a normalized

root mean square error between 15 and 20% [88] of installed capacity, which in

fact has an impact on the task of fitting large amounts of wind generation into

unit commitment or dispatch procedures.

Some researchers have assumed normally-distributed errors for short-term

forecasting [86], mainly based on the amount and the geographical dispersion of

wind power [89]. Nevertheless, other researchers affirm that the distribution of

the actual wind power forecasting error is not normally-distributed [90].

While wind speed distribution is generally approached through the Weibull and

Beta distributions [91, 92], the analysis made over the wind speeds data for six

onshore sites in Germany [91] showed that for relevant wind speed range (where

the wind is useful for wind power generation), the probability density functions

can also be Gaussian. On the other hand the non-linear relation between the wind

speed and wind power leads the wind power prediction errors to non-Gaussian

distributions.

In fact, wind speed, and therefore wind generation, is usually modelled using

stochastic processes due to the complexity of wind behaviour. A simplified

method based on the persistence method is presented to characterise the error of

wind power due to the short-term wind forecasting procedure.

∆Wi(t) = Wi(t)−Wi(t− τ) (3.20)

where Wi(t) is the wind production for an individual wind farm at hour t, Wi(t−τ)

is the last known wind production for such wind farm, and ∆Wi(t) is the wind

power deviation of this individual wind farm at hour t due to the error in the wind

forecasting procedure.

After identifying the wind power deviation for each wind farm at hour t, it is

necessary to define the system deviation, which will be the sum of all individual
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wind farm deviations.

∆WS(t) =
k∑
i=1

∆Wi(t), i = 1, 2, ..., k (3.21)

where ∆WS(t) is the system wind deviation. The persistence method is the largest

one used to represent the uncertainty of the wind power forecast, since it has a

simple implementation and a adequate level of accuracy, as mentioned in Section

3.3.3.

3.3.4 Relationship between Generation and

Load Uncertainties

The aforementioned system uncertainties may be viewed as a positive or negative

impact on the system balance, depending on how suddenly they occur and on the

magnitude and direction of the variations. Table 3.2 shows a summary of

consequences (upward or downward reserve) that should be monitored during the

adequacy evaluation of the generating systems concerned with these

variations.

The concept of net load forecast is usually applied in the literature [93] to refer to

the imbalance caused by load and wind power forecast deviations. This concept

is not used here, mainly because all variation models are considered statistically

independent events and an additional major variation has been modelled using the

generating outages.

The effects shown in Table 3.2, reinforce the need for assessment of long-term

operating reserve. These events involve not only the load and wind power

forecasting errors, but also the generating outage variations. Therefore, the

power balances may have negative or positive effects to the system with upward

or downward reserve as consequence. As the adequacy evaluation of the

generating system, performed in this thesis, is concerned to the long-term power
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Table 3.2: Relationship among the system uncertainties.

Variables Conditional
Deviation Reserve

Effects Need

Id. ∆L ∆G ∆WS if d up or down

A + - - - upward

B
- - - (∆G+ ∆WS) > ∆L + downward

- - - (∆G+ ∆WS) ≤ ∆L - upward

C
- - + (∆G+ ∆WS) > ∆L + downward

- - + (∆G+ ∆WS) ≤ ∆L - upward

D
+ - + (∆G+ ∆WS) > ∆L + downward

+ - + (∆G+ ∆WS) ≤ ∆L - upward

E
+ + + (∆G+ ∆WS) > ∆L + downward

+ + + (∆G+ ∆WS) ≤ ∆L - upward

F
- + - (∆G+ ∆WS) > ∆L + downward

- + - (∆G+ ∆WS) ≤ ∆L - upward

G
+ + - (∆G+ ∆WS) > ∆L + downward

+ + - (∆G+ ∆WS) ≤ ∆L - upward

H - + + + downward

balance, the downward reserve can be disregarded since the approach used

is based on the system capacities.

The first analysis from Table 3.2 is the collective event A. This event shows that

the load forecast error is positive (i.e., the actual load is greater than the expected

one) and both wind power forecast error and the synchronised generating units

are negative (i.e., the amount of generating power is lower than the expected one).

This collective event has as consequence an upward requirement of reserve. The

event H, shows the opposite situation. The system uncertainties collaborate with

the system requesting downward reserve.

The ∆G variable is the balance between the synchronized generating units and the

summation of the forecast system load, primary and secondary reserves, as seen in

Equation (3.9). From A to D cases of Table 3.2, ∆G assumes negative values. This

means that all the synchronised generating units available are not able to meet
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the operating system requirements plus the system load forecast. However, this

does not mean a failure state of the operating reserve capacity. For instance, this

lack of capacity might be compensated by the load and wind power forecasting

errors which might contribute to the system. Therefore, these possibilities lead to

a downward or upward reserve, according to Table 3.2.

On the contrary, from E to H cases, the ∆G assumes positive values. This means

that there is enough synchronised capacity to deal with the system requirements.

Nonetheless, this situation does not imply on success state of the operating capacity

reserve evaluation. As matter of fact, if the surplus of the synchronised capacity

plus the fast tertiary reserve (operating reserve capacity) are not enough to meet

the load and wind power forecasting errors, assuming that these uncertainties

require more electric power generation, then a failure state is established. The

above analysis can be expanded to the ∆L and ∆WS uncertainties, according to

Table 3.2.

3.3.5 A Simple Example

This section presents an illustrative example of the previous discussion highlighting

the impact of the system uncertainties in the operating reserve capacity evaluation.

Table 3.3 presents the reliability indices of the static and operating reserve capacity

evaluations, which were performed through the use of a modified version of the

IEEE RTS 1996 [60].

Table 3.3: Example of the SMCS method application.

LOLE (h/y) EENS (h/y) LOLF (h/y) LOLD (h/y)

β(%) β(%) β(%) β(%)

Static Reserve 0.3456 66.49 0.1360 2.5398

(3.30) (4.99) (3.90) -

Operating Reserve 0.7679 129.30 0.4785 1.6047

(4.08) (4.97) (4.41) -
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The LOLE index of 0.34 hours per year, of the static reserve evaluation, gives an

idea of the amount of time that the load is expected to exceed the total available

generating capacity. From this perspective the test system can be considered quite

reliable.

From the operating reserve capacity evaluation, the LOLE index of 0.7679 h/y

gives an idea about the flexibility of the generating system configuration facing the

system deviations. In other words, it shows the amount of time that the deviations

of the system are expected to exceed the available committed capacity plus the

fast tertiary reserve.

3.4 Electric Vehicle Demand Modelling

The estimation of EV load based on mobility patterns is an adequate approach,

since no EV data is available, to include this type of load in the static reserve

evaluation. From the operating reserve capacity perspective, the uncertainty

related to the EV load estimation is not significant, but the opportunity that

they arise to contribute to the operational reserve should also be taken into

account.

Under an adequate charging strategy the EV charging rate can be controlled or

even postponed. Analogously to Equation (3.19), the total EV load is given

by

LEV total = LEV −∆LEV (3.22)

where LEV is the estimate EV load, LEV total is the actual EV load, and ∆LEV is

the portion of EV load which is able to contribute to the system if the operating

reserve capacity is threatened. This action is named as controlled charging

strategy .

This new variable ∆LEV , directly affects the reduction of LEV total and indirectly

affects the increase of operating reserve Rop. This action differentiates the
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charging strategy from the V2G procedure. Both controlled and V2G strategies

are described in Chapter 5.

3.5 Final Remarks

This chapter presented a discussion about the operating reserve capacity evaluation

considering a generation portfolio composed by a high integration level of RES.

Two operating reserve perspectives were presented. Firstly, a short-term operating

reserve evaluation was discussed and the generation units and load modelling were

described. This perspective aims at evaluating whether the unit commitment of

the generating units is enough to meet the load forecast through an acceptable risk

level. Secondly, the long-term operating reserve evaluation was introduced as an

extension of the static reserve concept. This evaluation was renamed to operating

reserve capacity evaluation due to its objective of evaluating whether the available

operating reserve is enough to meet the uncertainties of the system: load and wind

power forecast errors, and forced outages of the generating units. The fluctuation

characteristics of the hydrological and wind resources were also addressed, since

they impact on the total available capacity of the generation systems.

Table 3.2 presented the analysis of the independent random variables related to the

system uncertainties. The upward and downward reserves were analysed through

the system uncertainties impact that, jointly, have on the ORC evaluation. As

this thesis is concerned to the long-term perspective, the downward reserve is not

addressed on the long-term evaluation of the operating reserve capacity.

The possibility of EV controlled charging schemes was introduced in the

operating reserve capacity context. The massive deployment of EV may present

opportunities to contribute to the electricity sector through the increase of the

operational reserve. Uncontrolled charging schemes are addressed in Chapter 4

whilst the controlled charging strategies are described in Chapter 5.
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Electric Vehicle Modelling

4.1 Introduction

The gradual replacement of ICE vehicles by EV requires studies which are

appropriate to measure the impact of EV in the security of supply. The EV

impact depends, mainly, on the mobility pattern and charging behaviour. The

EV demand will certainly impact the conventional load and perhaps compromise

the adequacy of the security of supply.

Assuming that utilities and traders have interest in encouraging the EV owners

to charge their vehicles in some specific hours of the day, offering lower energy

prices, and/or an aggregation entity will manage the vehicles’ charging, the EV

can effectively contribute to reduce its impact on the generating systems.

Under this level of controllability, the EV load has been seen as a flexible load,

where two perspectives are presented: EV charging under an active demand side

management and EV charging as an electrical component that can inject electrical

energy into the grid. These actions are known as controlled charging strategies.

For a better understanding, these charging strategies are briefly commented in
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this chapter. The detailed description of the controlled charging models, is given

in Chapter 5.

In order to represent the uncontrolled and controlled charging models, Figure 4.1

classified the EV charging strategies as follows.

Figure 4.1: Classification of EV Models.

Where uncontrolled charging model means the EV models that do not follow a

charging strategy, in fact, the decision of charging the EV batteries is taken by

the EV owner instead. These models are named as the direct and valley charging

strategies. The controlled charging models are the ones that the battery charging

behaviour follow a strategy chosen by the driver.

This chapter presents the EV developed models and the proposed methodology

to include these models in the SMCS method in order to measure the EV impact

on the adequacy evaluation of the security of supply. Section 4.2 presents the

mobility pattern study which provides the basic information needed to build the

EV models. The counting process methodology is described in Section 4.3. The

next step is building the EV load profile. For such task, a brief discussion about

load shape estimation is provided. The charging strategies are described in Section

4.4 and the EV load shape estimation from the two counting process perspectives
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are presented in Section 4.6. Section 4.7 describes the integration of the proposed

EV models into the SMCS method. Finally, the final remarks are presented in

Section 4.8.

4.2 Mobility Pattern

The mobility of the population is a phenomenon closely related to the land

planning, in the urban and regional aspects, the accessibility and the way how

the living spaces are structured (home, work, leisure) and hence livelihoods.

Mobility surveys are generally aimed to know the family lifestyle, from the

perspective of demand for services and infrastructure for transport, allowing to

characterise the movements of the population and how these movements are

related to the structuring of the territories. These features contrast with the

surveys made at the entities which provide services or transport infrastructure

(private or public companies), from the perspective of supply.

In order to improve urban ordination and public transport, mobility behaviour is

usually characterised throughout statistical data gathered by official government

entities. Reference [94] used mobility pattern to estimate, under some assumptions,

the EV load and, therefore, the EV impact on the operation and expansion of

power systems. The idea proposed in this thesis is using the average number of the

population arrivals, as input of the proposed methodology, to calculate, under some

assumptions, the estimate of EV arrivals throughout the simulation process.

The data related to the mobility pattern used throughout this thesis is presented

in [23] and, therefore, this section aims at describing, in detail, how it is gathered.

The information in [23] allows to characterise the short duration mobility of the

resident population from 33 counties of the north region of Portugal. This had a

representation of almost 70% of the population that lives in this space. The region

covers almost counties identified in areas 2, 3, 4, 5 and 6 of the Figure 4.2.
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Figure 4.2: Sample of the northern regions of Portugal.

The variables of interest are organized as: number of performed trips, arrival and

departure times of each trip, duration of the trips, used transportation type,

transfer among different types of transport, distinction between the mobility of

weekdays and weekends.

The information was obtained by direct interview, and the observation units are:

household1 and individual. This survey admits a sampling error of 10% (per county

or neighbourhood) and a confidence interval of 95%.

The total interviewed population is about 213.727 individuals divided in four big

regions: 27% in Cávado / Ave, 64.5% in Grande Porto, 5.5% in Vale do Sousa /

Baixo Tâmega and 3% in Entre Douro e Vouga.

1A household consists of one or more people who live in the same dwelling and also share at

meals or living accommodation, and may consist of a single family or some other grouping of

people.
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The total estimate for a specific characteristic in such county is given by

Θ̂c =
∑
i,j

xijc
yijc

Ŷijc. (4.1)

where i is the gender, j is the age group, xijc represents the total of a feature

in the stratum ij in the county c, obtained from the sample values. yijc is the

total individuals in the stratum ij in the county c, in the sample, and Ŷijc is

the independent estimate of the population in the stratum ij in the county c,

corresponding to May 2000. The characteristics involved in the estimations are

the arrival/departure times, average time and distance to make a trip for specific

places, such as: work, school, leisure, home, and so on.

The accuracy of the estimator Θ̂c was evaluated in relative terms throughout the

coefficient of variation, expressed in percentage and obtained through the following

equation

ˆC.V. =

√
ˆvar
(

Θ̂c

)
Θ̂c

· 100% (4.2)

where ˆvar
(

Θ̂c

)
is the estimate of Θ̂c variance.

The variance is calculated through the random group method2. Therefore, the

variance estimator is given as follows

v̂
[
Θ̂c

]
=

1

k − 1

k∑
r=1

λr

(
Θ̂r − Θ̂c

)2
(4.3)

where

λr =
mr

n
(4.4)

and

Θ̂r =
xr
yr
Ŷc (4.5)

2The random group method of variance estimation amounts to selecting two or more samples

from the population, usually using the same sampling design for each sample; constructing a

separate estimate of the population parameter of interest from each sample and an estimate

from the combination of all samples; and computing the sample variance among the several

estimates [95].
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where k is the number of sub-samples, r is the r− th random group r = 1, ..., k, xr

represents the total of a feature in group r, obtained through the sample values.

yr is the total individuals in group r of the sample, and Ŷc is the independent

estimate of the population in county c.

In order to control the quality of the survey, 5% of the sample was reinterviewed

being obtained a consistency rate of 98% of the answers. Taking advantage of the

data separation related to the transport mode, Table 4.1 presents the expected

arrivals of the motorised population, during an ordinary weekday, divided through

different reasons of making a trip in the north region of Portugal.

This table relates the citizen mobility when people go to work, leisure, shopping or

home in an hourly basis. The associated percentages are the density information

of the mobility and the expected arrivals parameter per hour. Note that, during

the overnight, almost no vehicle arrivals happen. On the other hand, the peak

periods at work hour, lunch time and return home revealed the daily Portuguese

habits.

Assuming that EV owners are able to charge the EV batteries wherever they are

parked, the total expected number of arrivals is the parameter used as input to

the counting process. Figure 4.3 represents this arrival distribution of the total

motorised population in an ordinary weekday.

Figure 4.3: Weekday arrivals distribution.
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Note that the three peak periods related to work hour, lunch time and return

home, appear in the figure from 7 to 9 h., from 12 to 15 h. and from 17 to 19

h.

Table 4.1: Distribution of trips throughout the day - per reason.

Hour

Arrivals

Total Labour Shopping Leisure
Return

Others
Home

Percentage

0 0,1 0,0 0,1 0,1 0,3 0,1

1 0,0 0,0 0,0 0,0 0,0 0,0

2 0,0 0,0 0,0 0,0 0,0 0,0

3 0,0 0,1 0,0 0,0 0,0 0,0

4 0,0 0,1 0,0 0,0 0,0 0,0

5 0,3 1,1 0,0 0,1 0,0 0,2

6 0,9 2,6 0,3 0,3 0,2 1,0

7 5,8 16,6 1,2 2,6 0,2 8,6

8 10,9 27,4 5,7 4,4 0,6 16,3

9 7,7 10,6 11,6 4,7 0,9 10,8

10 5,3 3,2 12,8 4,7 1,6 4,4

11 2,9 1,7 4,9 2,5 3,0 2,3

12 6,7 2,0 8,9 4,8 13,9 4,0

13 7,5 13,7 4,9 6,1 6,4 6,5

14 7,6 10,5 8,8 9,2 2,3 7,3

15 5,8 2,9 9,1 8,1 2,8 6,0

16 4,4 1,8 6,9 4,9 4,1 4,1

17 5,8 1,5 6,1 4,1 10,9 6,2

18 8,0 1,3 5,8 5,7 18,8 8,3

19 6,0 0,9 4,4 5,6 13,9 5,2

20 5,1 0,7 3,7 9,8 7,6 3,8

21 4,9 0,7 3,3 14,0 3,7 2,9

22 2,5 0,4 1,2 5,8 3,8 1,2

23 1,7 0,3 0,3 2,4 4,9 0,8

Total 100.0 100.0 100.0 100.0 100.0 100.0
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Analogously, Figure 4.4 represents the arrivals distribution of the motorised

population, during an ordinary weekend. The figure presents an increase in the

number of arrivals during the valley period in comparison with Figure 4.3. On

the other hand, the decrease in the number of arrivals in the morning period

confirms the expected weekend habits. Moreover, three peak periods were

identified: from 23 to 1 h., from 12 to 14 h. and from 19 to 21 h.

Figure 4.4: Weekend arrivals distribution.

Note that in both figures, 4.3 and 4.4, the evening period, which is related to return

home, can be related to the peak demand period of the day. Therefore, assuming,

for instance, that the population will start to charge the EV batteries as soon

as they arrive home, then, the battery charging will increase the traditional peak

period of the conventional system load.

The survey presented through this section generated the arrivals distributions

showed in Figures 4.3 and 4.4. From these ones, the arrivals averages, in an

hourly basis, can be used as the only parameter needed to estimate the number

of EV, which will proceed to battery charging.
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4.3 Proposed Counting

Process Methodology

Different EV load representations have been mentioned in the literature [55,73,75–

77, 96–99]. This thesis proposes a probabilistic technique to estimate the number

of EV arrivals based on mobility pattern information.

It is assumed that the EV arrivals occur randomly, therefore, the Poisson process

can be used to estimate these arrivals based only on the expected arrival

parameter. The reference [100] also attests the importance of using Poisson

process in many stochastic models, such as: calls arriving at a help desk centre,

traffic light problems, car arrivals at a fuel station, and so on. This thesis, aims

at using arrival distributions data, generally provided by mobility surveys, which

can be viewed from two different perspectives leading to the development of two

counting process approaches.

These approaches were developed, by the author, within the framework of two

research projects, the European project MERGE (Mobile Energy Resources in

Grids of Electricity) [101] and the Portuguese project REIVE (Smart Grids with

Electric Vehicles) [102].

One perspective is based on the homogeneous Poisson process and its major

characteristic is counting the EV arrivals using one single variable: the expected

arrival rate λ. The second one was developed in order to increase the detailed

representation of the EV arrivals by the inclusion of an arrival time variable in

the problem. This perspective is based on the non-homogeneous Poisson process,

which counts the EV arrivals continuously, using a time dependent expected

arrival rate λ(t).

The principle behind these proposed approaches, considers that cars arrive at

different charging points at random moments of the day in accordance with a

Poisson distribution with λ rate. It is also considered that each arrival would
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correspond either to different types of events, where the EV needs to connect to

the grid and proceed to battery charging or to a type of event where the EV do

not need to proceed to battery charging. Both types of events may be viewed as a

Poisson process.

Next sections present the methodology and clarify the differences between these

two counting process approaches which are the ones that define the number of EV

arrivals during the SMCS procedure.

4.3.1 Homogeneous Poisson Process

The homogeneous Poisson process is characterised by a constant rate parameter λ,

also known as intensity, such that the number of arrivals in time interval (t, t+ τ ]

follows a Poisson distribution with associated parameter λτ . This relation is given

by:

P [(N(t+ τ)−N(t)) = k] =
e−λτ (λτ)k

k!
k = 0, 1, ..., (4.6)

where N(t + τ) − N(t) = k is the number of arrivals in time interval (t, t + τ ].

The rate parameter λ is the expected number of arrivals that occur per unit time.

The HPP assumes a counting measure where the number of arrivals in an interval

(t, t+τ ] is independent of the number of arrivals in other interval as (t+1, t+1+τ ].

Figure 4.5 depicts the HPP.

In this thesis, the HPP is performed for each hour during an yearly sample of

the simulation process. It means that for each hour of different days, the same λ

parameter is expected. For instance, hour 1 of day 1 has the same λ parameter as

the hour 1 of the day 2, and of the day 3 until the end of the year. As the EV

arrivals are clustered in an hourly basis (τ = 1), in order to calculate the EV load

in the same time horizon of the conventional load, it is assumed that the remaining

time in charging state is fixed and dependent on the technical characteristic of the

80



4.3. Proposed Counting Process Methodology

Figure 4.5: The counting process through an HPP.

battery, as capacity and charging rate. In this approach it is also assumed that

the EV charging happens once a day for a fixed battery charging requirement and

this happens in the end of the first trip. These assumptions can be parametrised

in the inputs of the model.

Using Algorithm 1, which is based on the inverse-transform method, Figure 4.6 is

generated and gives the number of arrivals per hour during the chronological

simulation. In this sample, those three peak periods (see Figure 4.3) are

highlighted, although the peak period of the morning presented a lower value

than the expected.

where n is the number of experiments, Un is a uniformly distributed random

variable and N is a Poisson random variable which represents the number of

arrivals. For fixed intervals e−λ
(
λn

n!

)
is the probability mass function of N and

while a is greater than e−λ, the number of arrival is increased by one.

Equation (4.7) gives the departure time for a fixed requirement of the battery

capacity. Assuming a certain level of proportionality among the different types

of EV for all samples under analysis, the total EV fleet will be proportionally

divided into different EV types [2]. The departure time Tdn is then calculated

through:
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input : Expected number of arrivals λ at hour t

output: X← n− 1 // Number of arrivals at hour t

n← 0;

a← 1;

while a ≥ e−λ do

Un← U(0, 1);

a← aUn;

n← n+ 1;

end

Algorithm 1: HPP based on the Inverse-Transform method.

Tdn = Tan +
Cbj
Rcj

· κ (4.7)

where Tan is the EV arrival time. Cbj is the battery capacity and Rcj is the charging

rate and κ is a battery charging coefficient which ranges from [0, 1].

The departure time calculated through Equation (4.7) is according to the EV

Figure 4.6: Sample of the HPP.
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charging strategy. For instance, the arrival and departure time for valley charging

strategy is into the valley hours range. It means that if a vehicle arrives at 9 o’clock

and departures at 13 o’clock, its battery charging time will occur from 23 to 3 h,

considering 23 h the start battery charging hour for this strategy.

Simple Numerical Example

Supposing an ordinary week day and a fleet of 20 EV. At 20 h, using the rate

parameter λ of Figure 4.3 in the Algorithm 1, the sampled number of EV arrivals

which proceeds to battery charging is achieved.

Table 4.2: Example of the HPP application.

a n U(0, 1) a = aU λ e−λ N

1.000 0 0.99 0.990 2.2 0.01 −
0.990 1 0.90 0.891 2.2 0.01 −
0.891 2 0.98 0.873 2.2 0.01 −
0.873 3 0.30 0.261 2.2 0.01 −
0.261 4 0.03 0.007 2.2 0.01 −
0.007 − − − − − 3

Table 4.2 shows 4 iterations of the counting process method until achieving the

stopping criterion. At the end, 3 EV are expected to arrive at 20 h to charge their

batteries according to their charging strategies.

4.3.2 Non-homogeneous Poisson Process

The non-homogeneous Poisson process consists of continuously counting the

number of arrivals where the expected ones may change over time. This is

characterised by a continuous rate parameter λ(t). The NHPP has been used to
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describe numerous random phenomena [103] including cyclone prediction [104],

arrival times of aircraft to airspace around an airport and database transaction

times [105].

The NHPP assumes N = {Nt, t ≥ 0} for which the number of points in non-

overlapping intervals are independent, but the rate parameter at which points

arrive is time dependent. If λ(t) denotes the rate parameter at time t, the number

of points in any interval (a, b] has a Poisson distribution with mean

λa,b =

∫ b

a

λ(t)dt. (4.8)

Thus, the number of arrivals in time interval (a, b], given as N(b)−N(a), follows

a Poisson distribution with associated parameter λa,b, and is calculated

through:

P [(N(b)−N(a)) = k] =
e−λa,b(λa,b)

k

k!
k = 0, 1, ..., . (4.9)

Note that, an homogeneous Poisson process is a special case of NHPP which

consists of the rate parameter λ(t) becomes constant. Figure 4.7 illustrates the

construction of an NHPP based on the acceptance-rejection method. The idea of

this method is to first find a constant rate function λ(t) = maxλ which

dominates the desired rate function λ(t), next generates from the implied HPP

with rate λ(t) = maxλ, and then rejects an appropriate fraction of the generated

arrivals so that the desired λ(t) is achieved. Formally a two-dimensional HPP is

generated on the strip {(t, x), t ≥ 0, 0 ≤ x ≤ λ}, with constant rate, and then all

points are projected bellow the graph of λ(t) onto the t-axis.

The points of the two-dimensional process can be viewed as having a time and

space dimension. The arrival epochs form one-dimensional Poisson process with

rate parameter maxλ and the positions are uniform in interval [0,maxλ]. This

suggests the following alternative procedure for generating NHPP: each arrival

epoch of the one-dimensional HPP is rejected with probability 1− λ(Tn)
maxλ

where Tn
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Figure 4.7: The counting process through an NHPP.

is the arrival time of the n-th event. The epochs not rejected define the NHPP. The

basic difference between the counting process approaches is regarding the different

time resolutions.

While the HPP model clusters the vehicle arrivals in an hourly basis, the NHPP

model counts the EV arrivals continuously. The Equation (4.10) generates the EV

departure time. The NHPP is performed in the beginning of the SMCS procedure

generating an annual arrival and departure times vector. The characteristic of

observing the individual arrivals makes sampling the SOC of each vehicle possible,

as can be seen in the right side of Equation (4.10). The departure time Tdn of each

vehicle is then calculated through:

Tdn = Tan +Wn ·
Cbj
Rcj

(4.10)

where Wn is a uniformly distributed number between [0, 1]. Cbj is the battery

capacity and Rcj is the charging rate. These electrical parameters are divided into

different EV categories j, as can be seen in [2]. The period between the arrival

and departure of an EV is the battery charging time of the battery charging

requirement.
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The arrival/departure vector is sorted in an ascendant order. Then, the EV load

is updated through the simulation process in each arrival/departure time. From

the use of the Algorithm 2, which is based on the acceptance-rejection method,

and Equation (4.10), the number of EV arrival, the arrival and departure times

are presented in Figure 4.8, which is a sample of this proposed approach.

input : Expected number of arrivals λ(t)

output: X← n and tan // Number of arrival at instant tan

i← 0;

n← 0;

t′← 0;

λmax← maxλ(T );

while t′ ≤ 8760 do

i← i+ 1;

Ui← U(0, 1);

t′← t′ − 1
λmaxln(Ui)

;

Vi← U(0, 1);

if Vi <
λ(t)
λmax

then

n← n+ 1;

tan← t′;

end

end

Algorithm 2: NHPP based on the Accept-Rejection method.

where λmax is the maximum value of λ(t) in period T , t′ is the EV arrival time,

i is the iteration counter, Ui and Vi are uniformly distributed random numbers, n

is the accepted arrival, Tan is the accepted arrival time and N is the number of

arrivals.

Figure 4.8 presents the vehicles’ arrivals and departures between two hours. The

NHPP approach was modelled to monitor the vehicles individually and, therefore,

the number of EV load calculation is much bigger than the HPP approach, which
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Figure 4.8: Sample of the NHPP.

clusters the EV load in an hourly resolution, resulting in a bigger computational

effort, as can be seen in Chapter 6.

Simple Numerical Example

Supposing a fleet of 20 EV, the number of EV arrivals which will proceed to battery

charging from 18 to 21 h is calculated using the Algorithm 2. Table 4.3 presents

the counting process following the NHPP method. After 4 iterations, the method

will return 1 EV arrival at 18 h, none EV arrivals at 19 h and 1 EV arrival at 20 h.

Using Equation (4.10) the departure times can be calculated and the EV load is

estimated. Then, the EV load profile is defined according to the battery charging

strategy chosen.
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Table 4.3: Example of the NHPP application.

i Un t(h) Vn λ(t)/λmax N

0 0.83 6.14 0.58 0.26 0

1 0.23 6.23 0.18 0.26 1

2 0.42 6.38 0.81 0.26 1

3 0.75 7.54 0.19 0.10 1

4 0.09 8.05 0.27 0.70 2

4.4 Uncontrolled Charging Models

The battery charging strategy is the main characteristic that gives the shape of

the EV load profile. This defines whether or not an EV will proceed to battery

charging, at the moment of its arrival. Generally, two types of uncontrolled battery

charging strategies are mentioned: direct and valley charging.

In this thesis, the uncontrolled models are the ones that not allow the possibility

of an aggregation deal with the battery charging. Although, in valley charging, a

certain level of control could be applied, allowing the EV owner to set the charging

time of the EV. The uncontrolled models also allow the use of different percentages

for EV battery charging strategies in the same simulation process.

4.4.1 Direct Charging Strategy

This charging model aims at representing those EV owners who will proceed to

battery charging as soon as they arrive. In this context, any type of control scheme

is applied to the EV charging.

Figure 4.9 is a sample of the simulation process and shows the impact on the

ordinary conventional load profile of such charging strategy.
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Figure 4.9: System load profile using EV direct charging strategy.

The “Lf” line represents the conventional load forecast and the “Lf +LEV ” line is

the summation of the conventional and the EV load profiles. Note that, the total

load profile is not proportional if compared to the conventional one. Actually, this

EV load profile reflects the citizens behaviour when a direct charging strategy is

applied.

Generally, this strategy leads to the increase of peak demand, which is an undesired

strategy for the system operation perspective, since the EV load profile follows

the human daily habits. Commonly, this type of strategy onerous the EV owner,

because of the high energy prices of the day and peak periods.

4.4.2 Valley Charging Strategy

This strategy aims at giving a kind of incentive by the traders/electric companies

in order to stimulate the demand side management. It is expected for lower energy

prices during valley hours. At the same time it is expected a lower conventional

load demand during this period. Figure 4.10 is a sample of the simulation process

and shows the illustration of the EV load impact on the conventional load.
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Figure 4.10: System load profile using EV valley charging strategy.

The “Lf” line represents the conventional load forecast and the “Lf + LEV ” line

reflects the summation of the conventional and EV load profiles when the valley

charging strategy is applied. It is supposed that all EV owners agree with this

charging strategy since that there is no battery charging during the day. In this

context, a low impact on the system adequacy assessment is expected, since the

EV load increases the total load demand only in the valley period. However, since

it is an uncontrolled battery charging strategy, above a certain EV integration level

is possible to move the peak load demand to the valley hours, as it will be showed

in Chapter 6.

4.5 Controlled Charging Models

The controlled charging strategies are the ones that provide some opportunities

to the electricity sector. Through an aggregation entity, which would control the

battery charging, the EV could either change its charging rate according to some

parameters set by the EV owners (time of departure, SOC needed, and so on),

promoting demand side management or could inject the electric energy stored in

its battery, promoting V2G.
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4.5.1 Controlled Charging Strategy

The concept of controlled charging is related to the possibility of allowing an entity

to have a certain level of controllability over the EV battery charging. Generally, in

the electric system distribution level, controlled charging means that the battery

charger responds to a signal that changes the charger set point. This signal is

interpreted by the charger and the charging rate might be controlled in order to

modulate the EV load at that moment.

Figure 4.11: System load profile using EV controlled charging strategy.

In this thesis, controlled charging concept is the action of postponing the EV

battery charging in order to release the generating units scheduled to meet the

estimated EV load. Figure 4.11 illustrates the possible system state transition

when a controlled charging strategy is applied.

Assuming a deficit of available generating capacity at 17 h, the

“Lf + LEV (controlledcharging)” line represents the response of the controlled

charging strategy. It is capable of reducing the charging rate, releasing available

generating units to meet the system uncertainties, shifting the EV charging to

the valley period. Note, in Figure 4.11, that the decreased EV load at 17 h. is,

therefore charged at 23 h. The detailed implementation of this strategy will be
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described in Chapter 5.

4.5.2 Vehicle-to-Grid Charging Strategy

The V2G concept is the ability of combining both battery charging and injection

of electric energy to the system. This is possible due to a bi-directional converter

which allows this level of charging controllability. From an ORC perspective, the

V2G is viewed as an opportunity to increase the renewable energy source

integration in the generating systems by both smoothing the wind power

variability and/or providing secondary reserve to the system. Both concepts are

better described in Chapter 5 where the controlled charging strategies are

exploited in detail.

Figure 4.12 illustrates one probable situation of increasing the operating reserve.

The “Lf + LEV (V 2G)” line represents the V2G charging strategy impact on the

total system load while the “G + V 2G” line is the V2G impact on the available

generating capacity.

Assuming that the G and Lf + LEV lines represent the normal operation of the

system, it is possible to identify a deficit of generating capacity at 17 h. Mobilising

EV to inject stored electrical energy back to the grid, the system operation passes

to be represented by the G+ V 2G and Lf + LEV (V 2G) lines.

Note that taking the EV SOC into account, the vehicles under a V2G charging

strategy can effective increase the operating reserve capacity available, in order

to solve the possible system failure state. The amount of injected capacity starts

to charge at 23 h. Chapter 5 will present the V2G charging strategy in more

detail.
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Figure 4.12: System load profile using V2G charging strategy.

4.6 Conventional Load and Proposed EV Load

Estimation

Load shapes provide a means of understanding of how much energy is being used

at different times of the day, week, season, or throughout a complete year. When

the energy use patterns are being developed for groups of equipments with

similar functions, the results are commonly referred to as end-use load shapes

which represent the habit of the citizens about energy use. The most common

end-use categories for the commercial, residential, and industrial classes are

presented in Table 4.4.

In order to include some new end-use categories for the current classes, it is

necessary to approach EV as a new load trend, which will influence the future

load shapes. From these main categories, the EV charging might impact on the

Residential and Industrial, since the EV owners probably will charge the EV

batteries in the own place. On the other hand, the Commercial category, will

probably use public or private infrastructure to charge the EV batteries, once

they, generally, do not have an infrastructure that allows them to charge the EV

battery in their own place.
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Table 4.4: Common end-use categories by customer class

End-Use Category Commercial Residential Industrial

Air conditioning • • •
Space heating • • •
Interior lighting • • •
Miscellaneous equipment • •
Domestic hot water • • •
Computers •
Cooking •
Refrigeration equipment •
Ventilation • •
Exterior lighting • •
Process equipment •
Motors •
Stoves / ovens / ranges •
Refrigerators / freezers •
Televisions / stereos •
Dishwasher •
Clothes washer / dryer •

Electric Vehicles Charging • •

Electric utilities have historically made large use of end-use load shapes in the

energy and load forecasting. For these purposes, utilities are commonly faced to

predict what their future capacity will be considering factors as: the current base

load, the expected change in the number of residential homes, commercial stores,

and industrial facilities, or even more, the change in equipment efficiencies over

time. However, the massive EV load integration on the power systems could be

viewed as a break of paradigm changing the ordinary load shapes and end-use

patterns.

Based on the forecast supply and demand curves, a utility usually wishes to

examine its current and future state of generation capacity under short and

long-term perspectives. This thesis is proposing an alternative way to estimate

EV load through the use of a counting process, based on the expected number of
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arrivals (mobility pattern). The EV load estimation can be calculated according

to the following procedures.

4.6.1 EV Load from the Homogeneous Poisson

Process

The EV counting process method gives the number of EV which proceeds to

battery charging. It is assumed that all connected vehicles will charge their

batteries if allowed to the chosen charging strategy. In fact, the counting process

does not change with different charging strategies; on the contrary, the EV load

profile changes according to the charging strategy.

In order to calculate the EV load, the battery electric parameters and the

different types of EV must be taken into account. This being defined, the

following procedure may be adopted

LEV (t) =
∑
j

LEV j(t) ·Nj(t) j = 1, 2, ... (4.11)

where Nj(t) is the number of EV arrivals of the type j, in hour t. LEV j(t) is the EV

load in hour t. This EV load, calculated for each hour of the simulation process,

remains in charging mode until the departure time, calculated in Equation (4.7), is

reached. Therefore, the adequacy evaluation of the generating systems is analysed

for each transition (hourly) of the EV charging mode.

Figure 4.13 illustrates the procedure to calculate the EV load using the HPP. In

this illustrative example, the different colours are the EV arrivals counted through

the HPP.

At 19 h. one EV arrival is identified and it is assumed that this vehicle connects

to the grid to charge its battery during 3 hours. At hour 20 h, two EV arrive in a

certain place to be charged and their consumption is added to the demand of the

last vehicle already in charging mode. At 21 h, four EV are in charging mode.
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Figure 4.13: Illustration of the EV load calculation through HPP.

Note that for illustrative purposes, a fixed battery charging requirement needs a

charging time of three hours. Then, because of the chronological characteristic of

the EV arrivals, the load increases as the arrivals happen, assuming that the EV

owners will charge the EV batteries as soon as they park. However, after three

hours the EV is already charged and is disconnected to the grid, decreasing the

EV load as showed in hour 22 and 23 h of Figure 4.14.

The Figure 4.14 gives the total EV load profile for each hour, according to the

direct charging strategy. Moreover, this load is added in each system load state

transition of the SMCS, chronologically.

Figure 4.14: EV load profile using HPP and direct charging strategy.
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Figure 4.15: EV load profile using HPP and valley charging strategy.

Now, imagine the same previous illustrative example. However, let the direct

charging strategy be changed by the valley charging strategy. Figure 4.15 gives

an idea of the EV load.

The EV arrivals occurred during the daylight, are connected to charge the EV

batteries in the valley hours (for instance, at 23 h). Then, this EV load is added

on the system load, chronologically. As the system load is lower in the valley hours,

it is expected a low EV impact when this charging strategy is applied.

4.6.2 EV Load from the Non-homogeneous Poisson

Process

The EV load curve of the NHPP, is performed for all samples under analysis

integrating the area formed by the arrival and departure times (see Figure 4.16).

Therefore, the EV load is given by the following equation

LEV (t) =
∑
j=1

∫ Tdn

Tan

LEV j(t)dt (4.12)

where Tan and Tdn are the arrival and departure times, respectively. As mentioned

before, the arrival and departure times form a sorted vector in time. Therefore,

the adequacy evaluation of the generating systems is analysed in each transition
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Figure 4.16: Illustration of the EV load calculation through NHPP.

(arrival or departure) of the EV charging mode.

Figure 4.16 illustrates an EV arrival which proceeds to charge the battery at Ta1

and left the charging mode at Td1 when the SOC is achieved. A second EV arrival

happened at Ta2 and left the charging mode at Td2. The integration of the hatched

curve is the EV load. In this case, the SMCS evaluates each transition instant, in

order to keep a continuous tracking of the load. As mentioned before, the detailed

description of the active charging models is given in Chapter 5 under the contexts

of the homogeneous and non-homogeneous Poisson processes.

4.7 Proposed EV Models Integration

on SMCS Method

As the electric system components, the EV load is chronologically represented

through the SMCS method. This method relies on repeated random sampling to

obtain numerical results by running simulations many times over in order to

calculate those same probabilities heuristically. The main advantage of this

method is the possibility to generate probability distribution of the events. The
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Figure 4.17: Chronology of the Sequential Monte Carlo Simulation.

chronological procedure of the generating system adequacy evaluation is

illustrated in Figure 4.17.

From the static reserve evaluation perspective, Figure 4.17 shows system failure

state in three moments. As previously mentioned, the evaluation is conducted

from two different perspectives: static reserve and operating reserve capacity

evaluations, as in [13]. The objective is to evaluate the impact and opportunities

for uncontrolled and controlled charging strategies that EV could have in the

future generating systems.

4.7.1 Static Reserve Evaluation with Electric Vehicles

The Equation (3.4) presented in Chapter 3 is used to measure the level of risk

in which a future generating system configuration is able to meet the forecast

load.

In order to include the effect of the EV load in this generation assessment, the
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Equation (3.4) is then modified according to Equation (4.13)

G− (Lf + LEV ) ≤ 0 (4.13)

where LEV is the total EV load calculated through the EV models.

4.7.2 Operating Reserve Capacity Evaluation

with Electric Vehicles

Originally, Equation (3.10) is set to assess the risk indices associated to the long-

term operating reserve. It captures the risk of forecast errors linked to load and

wind power generation, as well as the forced outages of the generating units. The

inclusion of EV in the generating system should also be represented in the ORC

evaluation. Therefore, the Equation (3.9) is then modified in order to meet this

new random variable according to Equation (4.14).

∆G = Gsync − [(Lf + LEV ) +RP +RS] (4.14)

where LEV is the total EV load, as previously stated. This change is illustrated

through the Figure 4.18, where the expected EV load is added on the conventional

system load.

Figure 4.18: Operating Reserve Capacity evaluation with EV.
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Figure 4.18 is a general representation of the operating reserve capacity

evaluation. The synchronised generating units meet the system requirements as

in Equation (4.14). The hatched block, represents the discrete effect of the

scheduling procedure. Then, as stated in Equation (3.10) the available capacity

sinchronised RS plus the fast tertiary reserve RT should meet the system

deviations. From the left to the right side of Figure 4.18, the system moves from

a success to a failure state.

Regarding the EV integration in SMCS method, the Figure 4.19 shows the

flowchart of the entire procedure. Basically, the simulation process is divided into

five stages: system composition, system state selection, state evaluation, EV load

control and end of the simulation process.
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Figure 4.19: Flowchart of the system adequacy evaluation.
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The Input data gives all data information needed to proceed to the simulation.

The inputs are:

• Generation system data: the generation system data consists on

gathering all required information such as generating unit identification,

generating type (thermal, hydro, wind, and so on), rated power, maximum

power, minimum power, production cost, region identification of the

renewable sources (in order to meet the resources series according to their

location), MTTF, MTTR, scheduled maintenance, model type (two or

multi-state Markov model), initial state and mobilization (units able to

participate of the fast tertiary reserve).

• Renewable sources data: this input data is related to the variable

energy resources. For instance, the hydro generation is dependent on the

water availability in the reservoir of each hydro plant. The wind generation

is dependent on the wind series available in each region of the wind farms.

The solar incidence also varies according to the region of the solar plant.

Therefore, these input data enhance the results provided by the

methodology.

• Conventional load profile: generally, the conventional load profile is given

in an hourly basis in p.u. as a percentage of the annual peak load. Then, this

input data is generally composed by 8760 load points.

• EV data: analogously to the conventional load, the EV data is given through

its rate parameter λ which is the distribution of the expected EV arrivals

in an hourly basis. This information might be characterised for an ordinary

weekday and/or weekend day.

It is a common knowledge that, the accuracy of the assessment is dependent on

the accuracy of the input data.

The System state selection samples the generating units system state. This

stage calculates, for instance, the yearly sample states of the generating units
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defining their up and down cycles. It is in this stage that the effect of the long-

term load uncertainty is included in the conventional load annual sample. The

renewable energy series are also selected (sampled) in this stage.

Afterwards, the simulation process evaluates each system state, in the State

evaluation stage, according to each system component transition,

chronologically, as showed in Figure 4.17. The evaluation consists of testing the

Equation (4.13) for the static reserve evaluation and Equation (3.10) modified by

the Equation (4.14) for the operating reserve capacity evaluation.

According to the static and operating reserve capacity concepts, at this moment

the static reserve evaluation goes to the end of a simulation process stage where the

indices are computed and processed if the convergence criterion is reached.

The ORC evaluation may need to pass by the EV load control stage, where

the EV is able to contribute to the system when this one is threatened, i.e., the

Equation (3.10) is true. Finally, after all indices have been computed and when

the convergence criterion is reached, the simulation process ends.

4.8 Final Remarks

This chapter has presented the EV model to be included in the adequacy

evaluation of the generating systems. The models were based on two different

approaches of the Poisson process: the homogeneous Poisson process and the

non-homogeneous Poisson process. In general, both HPP and NHPP follow the

next assumptions:

1. N(0) = 0 – There is no arrival event in time t = 0.

2. Independent increments – The proposed approaches are modelled under

the assumption that each rate parameter λ happens in totally independent

intervals. It means that the numbers of occurrences counted in disjoint
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intervals are independent of each other.

3. Stationary events – Regarding the first approach, the HPP is performed

for each hour independently. It is assumed that the probability distribution

of the number of occurrences counted in any fixed time interval only depends

on the length of the interval (one hour in this case).

4. Probability distribution of N(t) – From the arrivals characteristic of the

motorised population, it is assumed that N(t) is a Poisson distribution.

5. Counted occurrences – No counted occurrences are simultaneous.

As a consequence of these assumptions, it is expected that the probability

distribution of the inter-arrival time becomes an exponential distribution. The

main difference between the EV models approached by the HPP and the ones

approached by the NHPP are the departure time estimate and the individual EV

arrival. The departure time defines the charging time. Therefore, the charging

time estimated through the NHPP is according to Equation (4.10), which

estimate different charging requirement for each EV. The charging time

estimated through the HPP is according Equation (4.6), which assumes a fixed

charging requirement for all vehicles that arrive at a certain place in the same

hour.

Regarding the battery charging models, a summary of their assumptions is

provided.

1. Direct charging strategy – This strategy, for both HPP and NHPP

approaches, considers that EV proceed to battery charging after an arrival

occurrence.

2. Valley charging strategy – This strategy, for both HPP and NHPP

approaches, considers a fixed period in the valley hours for EV charging

battery.
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3. Controlled charging strategy – This strategy, for both HPP and NHPP

approaches, is only applicable in ORC studies.

4. Departure time in HPP – The characteristic of clustering the EV arrivals

in an hourly basis leads this approach to consider the departure time fixed

and total dependent on the battery parameters.

5. Departure time in NHPP – The battery SOC is sampled and

consequently, the departure time of each vehicle is different.

The chart showed in Figure 4.20, presents, step by step, an overview of the EV

models.

This structure is applied during the SMCS process and, at the end, the

conventional load is affected by the EV load. Next chapter, describes in more

detail, the controlled and V2G charging strategies which are the ones that might

Figure 4.20: General structure of the EV models.
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contribute to the electric systems in order to mitigate the EV impact and/or

increase the participation of the renewable energy sources in the generating

systems.
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Controlled Electric Vehicle

Charging Modelling

5.1 Introduction

The uncontrollable charging strategies, addressed in the previous chapter,

represents the EV as a conventional load, the EV owner being free to charge the

vehicle at any time of the day. The main difference of the EV load profile is

related to the periods of the day in which the EV owners will charge the battery.

These strategies do not account controlled models, which could effectively

manage the EV battery charging.

From [106] the electric vehicles could provide system support in 81% of the time,

when charging spots are available at home and at work. Then, smart charging

schemes are desirable in order to mitigate the EV impact and to exploit EV as an

electrical component that is able to provide ancillary services for the system.

The main challenges of the integration of electric vehicles as active components

of the electric system are the infrastructure, management and control sectors.
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From the technological point of view, the expected large scale deployment of

equipments on the grid such as the energy boxes, the transformer controllers and

the improvement of the distribution management systems (DMS) is viewed as an

opportunity to create active demand side management solutions and control

strategies to reduce the EV impact on the power systems, taking advantage of

their ability to provide ancillary services through an aggregation entity.

The smart electronic devices record consumption of electric energy in intervals of

an hour or less and communicate that information at least daily back to the utility

for monitoring and billing purpose. They also enable a two-way communication

between the device and the aggregation entity. These aspects make these charging

schemes possible, at least, from the technological infrastructure perspective.

The charging process of these structures can take less than half an hour (for fast

charging rates) up to 8 hours (for slow charging rates). In this sense and, assuming

a higher price to charge the EV battery in fast charging stations, it is expected

that EV will be connected to the grid for large periods of time, being potentially

possible to exploit their storage capacity to enable a grid support service.

Since the choice for controlled charging schemes will always be a decision taken

by the EV owners, this thesis addresses two possible charging schemes which fit

the EV owners’ needs and the system requirements. In one hand, an active

demand side management strategy is implemented in order to contribute for the

provision of the operating reserve capacity, which is named as controlled

charging strategy. On the other hand, a V2G charging strategy is

developed to mobilise enough electric power capacity to increase the operating

reserve in moments where conventional generation capacity is not available and

to compensate the impact of the wind variability on the operating reserve

capacity.

In normal operating conditions, a commercial aggregation entity is expected to

manage and control the EV charging in controllable mode. The main objective is

clustering the EV, and exploit business opportunities in the electricity markets to

110



5.2. Active Charging Framework

provide reserve. Throughout this thesis, the definition of reserve is an amount of

available electric energy capacity to meet unexpected variation on load, renewable

power and generating capacity due to forced outages.

In order to successfully respect the agreements, both with the clients and with

the electricity market, the EV aggregator must be capable of sending set-points to

the charging points related to rates of charge. In [67], an optimization approach

to support the aggregation agent participating in the day-ahead and secondary

reserve sessions is presented. The aggregator will be responsible for managing the

EV charging; therefore, whenever the security of operation is threatened, it is able

to mobilise EV to provide operating reserve in order to aid the system.

Before the description of the proposed EV models, two sections are included to

give technological support for the controlled charging schemes: an overview on the

specifications for the EV charging interface, communication and smart metering

technologies and a life cycle study which is a matter of interest in V2G studies.

Each model were developed in the framework of the European projects MERGE

and STABALID, respectively.

This chapter is organised as follows. Section 5.2 presents an overview on the active

charging framework for V2G strategy. The controlled charging model is described

in Section 5.3. The reliability aspects of V2G are presented in Section 5.4. Section

5.5 presents the V2G charging model approach and in Section 5.6 presents the

final remarks.

5.2 Active Charging Framework

Technologically, the achievement of a plug-and-play capability for the interface

linking electric vehicles and grid is desirable. This interface must be able to access

identical charging points (CP) across Europe, for instance, that can be used by

any equipped vehicle, just as the roaming technology for cell phones.
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Basically, this plug-and-play should consist of a power stage and an information

and communication technology (ICT) stage. A power stage embraces the physical

connections and functionalities between EV owner (user) and charging point. The

ICT stage communicates between, at least, five identified parties: the user, the EV

itself, the charging point, the SO and the aggregation entity. Figure 5.1 shows an

illustrative representation of this relationship.

Figure 5.1: Information and Communication Technology scheme.

The definitions for the identified parties are:

• The charging point is the equipment containing the electrical and

communication connection to the EV owner, electricity grid, system

operator and aggregation entity. It is composed by the electricity meter,

the communication modules, the electronics and software needed to control

the charging process, a main control board, and a connector for the

charging cable to be plugged into.

• The electric vehicle interacts with the charging point in order to give the

needed information: state of charge and charge/discharge rate. The charging

electronics (AC-DC converter, AC-AC converter, power electronics etc.) are

112



5.3. Proposed Controlled Charging Modelling

embedded in the EV as an option of the vehicles manufacturers.

• The EV owner (user) needs to provide the inputs needed by the charging

point software: departure time, how many kilometres the user needs to drive

or desired SOC.

• The system operator is the responsible entity for the

transmission/distribution system, and the one that provides electrical

power for such charging point.

• The aggregator is the entity that manages the EV charging and mobilises

the EV in order to provide operating reserve to the system.

These features define the basic framework to an aggregation entity provides the

controlled charging schemes. Next sections present the controlled charging

model and the V2G charging model for adequacy evaluation of generating

systems.

5.3 Proposed Controlled

Charging Modelling

Differently from the conventional flexible loads, the EV have batteries capable

of storing electric energy to be used later. Through the vehicles mobilisation, an

aggregation entity may supply reserve for the system. This action needs to consider

a predefined SOC that must be guaranteed to ensure the EV usability.

The main objective of the controlled charging strategy is to avoid the impact that

uncontrolled charging strategies may have on the electric systems and, at the same

time, to provide operating reserve to the grid releasing generation capacity to meet

the system variations.

Figure 5.2 illustrates such situations. After the system requirements have been
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met, through the synchronised generating units, the Equation (4.14) is tested. In

situation (a), it is showed that the operating reserve capacity (ORC) is sufficient

to cover all system uncertainties, resulting in a success state. However, due to

the variation of the wind power, the load forecast error and the forced outages

of the generating units, situation (b) presents a system failure state, where the

result of Equation (4.14) becomes true.

Thus, assuming that the EV battery charging can be quickly interrupted, by

decreasing the EV load, as showed in situation (c), the operating reserve

RS + RT , is increased through the release of pre-scheduling generating units.

These units were synchronised to meet the additional load that EV represents.

Since, these EV stopped and the EV can effectively contribute to the operational

reserve of the system and perhaps change the system state from a failure to a

conditioned success state. Note that the released pre-scheduled generating

units are part of the ones scaled to meet the additional EV load demand.

Therefore, this action makes possible to take advantage of load shifting instead

of the ordinary load curtailment. In turn, the EV, which releases reserve for the

electric system, will be charged at another hour, when no generation deficit is

expected.

Moreover, as the ORC evaluation has the objective to measure the system

flexibility when dealing with the system variability, through the already

mentioned risk indices, the management of a massive EV charging may avoid or

postpone the generating system reinforcement. On the other hand, the

simulation process using different charging strategies may provide, through the

risk indices analysis, a notion of the charging strategy required in order to

maintain the system reliability when an EV fleet is integrated in the electric

system without changing the desired generating system configuration.
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Figure 5.2: Operating Reserve Capacity evaluation with controlled charging

strategy.

The flowchart presented in Figure 4.19, was modified to include this charging

strategy. Figure 5.3 shows a new flowchart for the SMCS process, which can be

described by the following steps:

1. Initiate all the component state. Commonly, it is assumed that all the

components are in the state UP. Define the maximum number of years to

be simulated, Nmax and the convergence criteria β. Set the number of years

to one Nyear = 1.

2. Set the simulation time to zero t = 0 and sum one in the number of simulated

years Nyear = Nyear + 1.

3. Define the EV model approach desired. If HPP is the chosen one, go to step

4. Otherwise, go to step 5.

4. Sample the current state duration of each system’s component. If using an

exponential distribution to approach the state duration, then it is calculated

as follows:

Ti = − 1

αi
ln(Ui). (5.1)
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Figure 5.3: Flowchart of the SMCS with the EV controlled charging strategy.

Where Ui is a uniformly distributed random number between [0, 1], i stands

for the component number. The MTTF and MTTR values are represented

by α according to the current system’s state. The load transitions occur in

an hourly basis with 8760 load points. Go to step 6.

5. Sample the current state duration of each system’s component through

Equation (5.1). Sample the EV arrivals and calculate the departure time of
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each one, according to Equation (4.10). The load transitions occur in an

hourly basis.

6. Update the simulation clock t, according to the selected state transition. If

using the NHPP approach, each arrival is considered as a state transition.

Otherwise, the EV load is added in each system load transition.

7. In order to obtain yearly reliability indices, evaluate the test function over

the accumulated values. If a failure state occurs, then go to step 8. If a success

or conditional success state occurs, go to step 10.

8. Reduce the EV load of the vehicles in controlled charging mode to be charged

later after the departure hour defined before the failure occurrence. Return

to step 7. If there is no EV in controlled charging mode, go to step 9.

9. Update the outcome of reliability test functions and the corresponding

indices.

10. If the simulated year is not in the end, then return to step 4 or 5, according

to the EV model approached chosen. Otherwise, go to step 11.

11. Estimate the expected mean values of the yearly indices as the average over

the results for each simulated sequence.

12. Test the stopping criteria according to their definitions in the beginning of

the simulation process.

13. If the stopping criteria is not reached, repeat the step 2 each time span and

record the results of each duration sampled for all components. Otherwise,

go to step 14.

14. End the process if the desired degree of confidence is achieved. If not, return

to step 2.
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5.4 Reliability Aspects of Vehicle-to-Grid

The variable characteristic of some primary renewable resources, especially wind,

and the fact that, in general, renewable generation units are not capable of fully

providing secondary reserve services, has been pointed out as a difficulty in

integrating it in the power systems without additional investments to guarantee

system stability.

In order to overcome these problems, technical solutions that enable the

management of the energy produced by RES should be considered and

implemented. Among the possible solutions, large stationary batteries installed

at strategic points of the electricity network can be used as a solution that allows

a larger integration of RES while keeping the power systems stability and quality

of service levels unchanged and, at the same time, reducing the renewable energy

wasted. Although these battery systems are distributed over the networks, this

thesis uses the aggregated capacity provided by them, in order to evaluate the

security of supply from the operating reserve capacity perspective.

From all different large stationary batteries, Li-ion technology is considered as

one of the best solutions due to its intrinsic characteristics, providing an

energy-to-power ratio adequate to be used in combination with the various types

of RES. However, the lack of experience by the end-users, especially for large

scale integration levels, raises a number of questions related to the safety and

performance of these battery systems at the considered scale.

Smaller Li-ion batteries are already being used for other purposes, such as cell

phones and portable computers, what lead to the definition of several standards

(UL, UN, IEEE, and so on.). The emerging interest on hybrid and electric vehicles

also lead to the definition of several other standards (SAE, IEC, and so on.). Since

in the industrial framework, the deployment of large Li-ion batteries is just at

an initial stage, there are presently no available standards for this specific field

of application. Considering this conjecture and in order to regulate safety issues
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and increase market acceptability, a specific standard focused on safety testing for

stationary Li-ion batteries is necessary and is an issue addressed in the STABALID

project [3].

The STABALID project intended to deliver a proposal for a new standard,

defining the most appropriated testing methodology for stationary Li-ion

batteries. According to [107], this storage system is composed of 10 parallel

strings, each one comprising 29 battery modules, delivering a nominal 700 V and

a rated energy of 40, 56 or 60 kWh. In addition, each string is controlled by a

Battery Management Module (BMM). This component guarantees that the

charging and discharging of the strings do not violate the operating limits.

Moreover, it can continuously monitor the state of charge (SOC), the state of

health (SOH) and other vital data of the Li-ion modules, such as

temperature.

The SBS also contains a Master Battery Management Module (MBMM), which

is responsible for monitoring and controlling the 10 parallel battery strings, and

an active cooling system that maintains the temperature of the modules within

optimal operating boundaries. A fire prevention system is also available to prevent

destructive consequences, such as fire or explosion.

These storage systems have been developed by different companies, such as ABB

Group, A123 Systems and SAFT Batteries among others. These three companies

have already installed their stationary SBS, to support the wind power plants,

as presented in Figure 5.4 which gives an overview of some real storage system

facilities.
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Figure 5.4: Stationary Storage Battery Systems.

The main issue regarding V2G is the charge/discharge of the vehicle’s battery,

which impacts on its life cycle. Next section presents the development of a

methodology to evaluate the life cycle of LI-ion batteries.

Life Cycle Analysis of Batteries

The Li-ion battery provides an adequate energy-to-power ratio to be used in

combination with the various types of RES. The literature shows that the outage

probability of Li-ion batteries increases as the battery wears out [108]. For that

reason, the Li-ion battery was submitted to different number of charging and

discharging cycles until an outage occurs. The following procedure is applied in

the battery life cycle study.

Let the random variable X, which follows the Weibull distribution (see Figure

5.5), be the number of discharges at 80% DOD (Depth of Discharge) that a

battery experiences until the occurrence of a forced outage. The probability

density function of this distribution is

f (x, α, β) =
β

α

(x
α

)β−1
e−( xα) (5.2)

where α > 0 is the scale parameter and β > 0 is the shape parameter. Figure 5.5

illustrates different probability density functions according to the the number of

discharges X.
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Figure 5.5: Potential risks of the Li-on battery to failure [3].

α and β can be computed from a reliable source of data by using a curve fitting

analysis for each type of failure mode (FM) that a battery may experience. The

FM considered in STABALID project refers to possible problems occurred during

manufacture, packing, transport and installation phases. The FM were divided

into 6 categories:

1. Irreversible “Damage”: Failure but no leakage, no venting, no fire or flame,

no rupture, no explosion, and no thermal runaway.

2. Leakage: Light smoke, no venting, no fire or flame, no rupture, no explosion

and no thermal runaway.

3. Venting: Heavy smoke, no fire or flame, no rupture, no explosion and no

thermal runaway.

4. Fire or Flame: No rupture and no explosion.

5. Rupture: Disintegration of the battery but no explosion.

6. Explosion: Explosion, i.e., high thermal and kinetic energy release.

121



Chapter 5

After sampling an outage which, is according to the two-stage random sampling

procedure based on the probabilities calculated in [3], the number of discharges at

80% DOD until the outage actually happens is drawn from the respective Weibull

distribution. The shape of the cumulative probability distribution (CDF) of the

number of discharges at 80% for each failure mode is depicted in Figure 5.6.

Figure 5.6: Cumulative risks of the Li-on battery to failure.

After this two-stage sampling procedure, the sequential Monte Carlo simulation

method is used to count the number of discharges of the strings. For creating a

realistic representation for the charging and discharging process of the strings of

the SBS, the maximization of the usage of wind power was selected as an operation

strategy. According to this strategy, the energy stored in the Li-ion battery system

is injected into the grid, when, after the dispatch of the conventional generating

units, the load is greater than the wind power available.

The maximum discharge rate, the minimum SOC of the battery, the discharging

efficiency, and the duration of the system state sampled are taken into account

to determine the quantity of energy to be injected into the grid. On the other

hand, the Li-ion battery system is charged when the system load is less than the

wind power available, which configures the most common condition for battery

charging. The amount of energy stored is calculated based on the battery electrical
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characteristics previously mentioned.

As a simple example, Figure 5.7 illustrates the charges and discharges of the SBS

during a 5-hour-operation. These operations depend on the wind power variations

and on the system load behaviour, which are random variables that also depend

on time (see Figure 5.7). Consequently, the detection of the number of discharges

at 80% DOD until the occurrence of the forced outage previously sampled is only

possible through sequential Monte Carlo simulation.

Figure 5.7: Sequential charging and discharging of a SBS.

Every time there is a discharge, the respective accumulator is updated. For this

purpose, the following equation is used

NOD := NOD +
DOD

80%
(5.3)

where NOD (Number of Discharges) stands for counting the number of discharges

and the DOD is the difference between the SOC at the beginning and the SOC

at the end of the analysed period in percentage of the maximum SOC of the

string.

The loss of storage capacity of the strings over time until the maximum number of

discharges at 80% DOD (MNOD) is reached was also modelled in this approach.
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For the purpose of this work, it was assumed that the decrease of capacity follows

a linear curve, as depicted in Figure 5.8.

Figure 5.8: Decrease of the battery capacity.

From the proposed methodology, it is possible to estimate the life cycle of the

LI-ion battery for different operation purposes. The one described in this section

relies on the assumption that the SBS are able to compensate the wind power

variations.

Next section presents the proposed V2G model. Some aspects of the V2G model

(battery parameters, time of charge/discharge and SOC estimation) follow the

model developed in the STABALID project, however, the life cycle methodology

is not addressed in the adequacy evaluation of the generating systems. It can be

performed separately using the type of the EV battery parameters.

5.5 Proposed Vehicle-to-Grid

Charging Modelling

Due to the necessity of having a battery SOC monitoring, the modelling of the

V2G strategy was addressed through the NHPP approach, which is able to obtain
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the EV arrivals and the time in charging mode for each vehicle. Therefore, the

update of the energy available in each vehicle’s battery is carried out for each

evaluation moment.

Figure 5.9 presents an illustrative example of a possible system configuration in a

single bus representation. The figure is composed by the conventional generation,

renewable energy sources (as wind power), conventional and EV loads and storage

battery systems.

Figure 5.9: Electric components of a single bus representation.

In the operating reserve capacity context, the V2G strategy is divided in two

perspectives. Firstly, the V2G charging model provides operating reserve capacity

to the power systems throughout the mobilisation of connected vehicles in periods

where the deficit of generation capacity is foreseen. Secondly, the V2G charging

model supports the electric systems as a SBS, compensating the impact of the

wind forecast error in the operating reserve level.

When the simulation process starts, it is assumed a 100% battery SOC, i.e., the

EV battery is fully charged. Then, if a discharge is necessary the SOC is updated
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according to (5.4).

SOCi(t) = SOCi(t− τ)− ∆R(t) · d
NB(t) · ηdischarge

(5.4)

Where, SOCi(t) is the state of charge at the moment t for each vehicle i, SOCi(t−
τ) is the last known SOC of the battery for each vehicle i. ∆R(t) represents

the capacity needed to cover a failure state of the operating reserve or the wind

power forecast error in the moment t according to the V2G selected mode in the

beginning of the simulation and d is the duration of the actual system state. NB(t)

is the number of EV available to inject electrical energy in the grid connected at

time t and, ηdischarge is the discharge efficiency related to the battery technical

parameters.

The discharged vehicles are relocated to charge their batteries later and the

departure hour is postponed in order to guarantee the EV battery requirement.

In this case, the updating of the SOC is given according to

SOCi(t) = SOCi(t− τ) +
∆R(t) · d
NB(t)

· ηcharge (5.5)

Where ηcharge is the charge efficiency related to the battery technical

parameters.

The operational limits of the batteries are also taken into account. All batteries

have a minimum SOC and a maximum SOC which are considered as the

delivering energy limits to the system. The simulation parameters can be

changed, nonetheless it was assumed, for all EV batteries, 30% and 80% as

minimum and maximum battery SOC, respectively.

The total available energy for V2G charging is given by the summation of the EV

batteries’ SOC of all connected vehicles that are in V2G mode at the evaluation

moment. Usually, just a percentage of the total vehicle fleet is considered to be in

V2G charging mode and this value is a parameter of the simulation process.

The maximum charging/discharging times are also limited by the

charging/discharging rates of the EV batteries and are updated every time a
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charging/discharging event occurs. These values are calculated through the

following equations

maxtmpCharge(t) =
SOCmax(t)− SOC(t)

ε
(5.6)

maxtmpDischarge(t) =
SOC(t)− SOCmin(t)

ε
(5.7)

where ε is the charging/discharging rate of the battery. The operation purposes of

the V2G model is presented in the next sections.

5.5.1 Vehicle-to-Grid for Operating Reserve Capacity

The EV mobilisation provides operating reserve for the system when a deficit of

available generating capacity is identified. The available energy stored in the EV

batteries can be injected in the grid through a signal sent by the aggregation entity

to the EV in V2G mode.

The discharge of the EV batteries occur according to an identified system failure

state. Figure 5.10 shows an illustrative example of such situation. A failure event

Figure 5.10: Illustration of the expected ORC failure state.
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Figure 5.12: Battery charging according V2G strategy for ORC.

is identified between 18:30 and 20 hours. This means that the available operating

reserve capacity is not able to meet the system uncertainties.

Supposing that the aggregation entity had mobilised vehicles to provide reserve,

according to the parameters given by the EV owners, Figure 5.11 shows the

reduction of the expected EV load (dashed box), the increase on the operating

reserve provided through the V2G strategy (in blue), and the amount of EV load

postponed to be charged in another period where no system failure state is

foreseen.

Figure 5.11: Energy injected and postponement of the battery charging.
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Figure 5.12 shows the final situation for this example. Note that, the aggregation

entity needs to respect a SOC threshold set by the EV owner in order to guarantee

the usability of the vehicle.

On the other hand, at the moment where a system failure event is foreseen, the

user needs to maintain the EV connected in the grid in order to provide reserve

for the system.

Figure 5.13 summarises the conditional success state due to the V2G charging

strategy. The blue line indicates the increase in the operating reserve through the

mobilization of EV.

Figure 5.13: Illustration of the conditional success state due to V2G strategy.

5.5.2 Vehicle-to-Grid for Wind Power Generation

Balance

Due to the variability effect of the RES on the operating reserve, this model

intends to compensate the wind forecast error, mitigating the impact by an

increase usage of wind power in the generation portfolio. In order to illustrate

this effect, a simulation is performed in a test system by removing the constraints

of the battery technical parameters, i.e., the vehicle has no limits for the battery
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charging/discharging rates and capacity. Therefore, this scenario should result in

a fully correction of the wind power forecast error by the injection of the electric

energy stored in the EV batteries.

Figure 5.14 presents the performance of the V2G strategy (in a daily period),

the annual average values of the EV battery capacity and the wind forecast error

(WFE) before and after the wind power compensation. The negative values of

the “WFE - before” line, mean that the wind power production is lower than

the expected one, therefore it is necessary to inject electric energy from the EV

batteries to correct such situation. This is highlighted by the “EV SOC” line,

where the negative slopes mean the discharges of the batteries.

Figure 5.14: Performance of the V2G charging strategy for wind generation

balance.

On the other hand, the positive values of the “WFE - before” line, mean that there

are surplus on the wind power generation and it could be used to charge the EV

batteries that are connected in the system, as showed through the positive slopes

of the “EV SOC” line.

As there are no battery operational constraints, the “WFE - after” line is zero for

all period. This means that, when necessary the V2G strategy is able to meet the
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wind power variation throughout the injection of electric energy into the grid.

One supposition based on this operation strategy is that the large-scale integration

of electric vehicles could support the integration of more renewable energy sources

in the generating systems. Consequently, the EV can charge its batteries through

the use of this renewable energy, decreasing the renewable energy waste.

5.6 Final Remarks

This chapter presented the developed active charging strategies, controlled and

V2G models, in order to mitigate the EV impact on the security of supply and

provide system support through the existence of an aggregation entity.

The controlled charging strategy was thought as an active demand side

management scheme that through the aggregation entity the load shift is carried

out in order to release synchronised capacity of the power plants to meet system

uncertainties. The impact of this strategy could be measured evaluating the

operating reserve capacity through the reliability indices provided in the SMCS

process. The main assumption of the controlled charging strategy is that the

vehicle used to provide operating reserve will be charged during the valley hours

due to the characteristic of low load demand in this period.

The V2G charging strategy was modelled through the NHPP approach due to

the necessity of the individual battery SOC monitoring. Firstly, the V2G strategy

provides an increase of the operating reserve when a system failure state is foreseen.

In this sense, the aggregation entity has the responsibility of guaranteeing the

parameters given by the EV owners to ensure vehicle usability. On the other hand,

the EV owners need to guarantee that the EV remain connected on the grid while

this one is providing electrical energy back to the grid. Secondly, the V2G charging

strategy has the purposes of compensating the wind power forecast error impact

on the wind power variation. The increase on the operating reserve capacity and
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the decrease of the renewable energy wasted can be achieved through the use of a

V2G charging strategy.
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Simulation and Result Analyses

6.1 Introduction

This chapter discusses the impact of electric vehicle charging on the security of

supply through the adequacy evaluation of the generating systems. The proposed

methodology, described in Chapters 4 and 5, is applied by simulating different

generating systems, which are divided into test and real systems.

Regarding the test system, this chapter presents the analysis of the adequacy

evaluation of the modified IEEE Reliability Test System 1996 using the proposed

models. This system was modified [60] in order to include a higher level of

renewable energy sources in the original generation portfolio. Firstly, hydro series

were included in order to represent the seasonal hydrological condition of the

hydro plants. Secondly, a thermal unit was substituted by wind power plants in

order to increase the renewable sources in the system.

Several simulations were performed in the framework of the MERGE and REIVE

projects. In this thesis, the simulations of the Portuguese, Spanish and Greek

generating systems using a forecast scenario for 2030 with and without deployment
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of EV are discussed. The simulation result analyses are presented according to the

approach (HPP or NHPP) and the battery charging strategy1. Then, the risk

indices are presented and discussed from the static reserve and operating reserve

capacity perspectives.

The chapter is organised as follows. As the forecasted scenarios were built from

past systems, Section 6.2 describes the test and real system references. Firstly, the

original IEEE RTS 1996 is described in Section 6.2.1. Secondly, the descriptions

of the generating systems for Portugal 2010, Spain 2010 and Greece 2009 are

given. The IEEE RTS 1996 HW and the Portuguese, Spanish and Greek generating

systems as well as the EV penetration scenarios for 2030, are presented in Section

6.3.

Regarding the validation of the tool, it is carried out in the modified RTS-96, and

the results are presented in Section 6.4. Afterwards, reference reliability indices

are given using the test and real generating system scenarios in order to build a

comparison basis. These results are presented in Section 6.5.

Section 6.6 presents the results of the static reserve and operating reserve

capacity evaluations for the test and real systems according to the proposed EV

models. This section is divided into different modelling approaches (HPP and

NHPP). Section 6.7 presents a brief comment about the computational burden of

the presented simulation cases. Finally, the Section 6.8 outlines the final

remarks.

6.2 System Descriptions

This section gives a brief description of the IEEE Reliability Test System - 1996

(RTS-96) and the Portuguese (PGS), Spanish (SGS) and Greek (GGS) Generating

1In order to simplify the result tables and figures, the direct, valley, controlled and vehicle-

to-grid battery charging strategies are tagged as DC, VC, CC and V2G, respectively

134



6.2. System Descriptions

Systems, which are used throughout this chapter.

6.2.1 IEEE Reliability Test System - 1996

The report described in [109] presents an enhanced test system (RTS-96) to be

used in bulk power system reliability evaluation studies. The objective of a test

system is the possibility of new and existing reliability evaluation techniques being

compared to the benchmark studies performed on these systems. The test system

was developed based on the original IEEE Reliability Test System (named as

RTS-79) to reflect changes in evaluation methodologies and to overcome perceived

deficiencies.

The original configuration of the RTS-96 consists of 96 generating units divided

into five different technologies with a total installed capacity of 10,215 MW and

the annual peak load of 8,850 MW. Figure 6.1 depicts the installed capacity of

each technology.

Figure 6.1: Original generation technology sharing for the RTS-96.

The static reserve corresponds to 16.3% of the total generation installed capacity.

From the renewable point of view, 900 MW are based on hydro power plants, which

consist of 8.8% of the generation portfolio. Moreover, 9,315 MW are divided into

different thermal technologies (see Figure 6.1).
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6.2.2 Real Generating Systems

This section describes the configuration of the real generating systems. The

objective is giving reference to the forecast scenarios that will be presented

later.

Portuguese Generating System - 2010

In 2010, the Portuguese Generation System had about 18 GW of installed capacity

in which more than 25% consisted of hydro power plants. The thermal generation

was over 40%, highlighting the natural gas technology (21%), which has been

increasing significantly, mainly due to the flexibility that needs to cope with wind

variations.

Figure 6.2: Generation technology sharing for the PGS-2010.

Regarding the “Special Regime”, which consists of electricity generation through

mini-hydro, co-generation, biomass and wind power, it accounts for 33% of the total

generation installed capacity in Portugal in 2010, where wind power accounts for

more than 20% (see Figure 6.2).

As a matter of fact, Portugal has been one of the European countries with great
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deployment of renewable energy sources. In 2013, Portugal achieved 27% of its

electricity generated from wind resource [17].

Spanish Generating System - 2010

In 2010, the Spanish Generation System increased about 3,717 MW, resulting in

97,447 MW of total generation installed capacity. This significant amount of

generation capacity is strongly linked to the commitment of new renewable

energy facilities, consisting of more than 27% of the total generation installed

capacity, where 20% comes from wind power and 7% comes from other renewable

technologies (see Figure 6.3).

Figure 6.3: Generation technology sharing for the SGS-2010.

However, in order to preserve the generating flexibility and to deal with wind

variations, an amount of 25% of the generation installed capacity comes from the

combined cycle power plants [110].

During this year, Coal power plants were 12% of the total generation portfolio, due

to the unusual decrease of the demand and a generating system review face to a

large diffusion of renewable production. In the same year, fuel and gas production

remained only 3% of the total energy production. Hydroelectricity increased to 35%
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considering the small-hydro power plants. Spain has 8 nuclear power plants placed

over six different locations, which represent 8% of the total generation installed

capacity.

Greek Generating System - 2009

The Greek interconnected system serves the needs of the mainland and a few

interconnected islands. Gross electricity demand during 2009 was about 53.7 TWh.

The compound annual growth rate of electricity demand reached about 4% in the

last decade. The demand is met mainly by thermal power and large hydro plants,

which together achieved 97% of the total generation installed capacity, 13,344 MW

at the end of 2009. Figure 6.4 presents the different technologies of the GGS in

2009.

Figure 6.4: Generation technology sharing for the GGS-2009.

The main production centre is situated in the North-West of Greece in the vicinity

of a lignite rich area. Significant hydro production takes place in the North and

Northwest of the country, while some lignite production is also available in the

South of Greece (Peloponnese peninsula). Small-Hydro shares 2% of the generation

installed capacity whilst the special regime is almost 1%.

Wind farms reaches a total of 0.4% of the generation installed capacity, most of
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which is in the island of Evia and in Thrace. These wind farms contributed to

about 3% of the electricity needs during 2009.

A number of islands, such as Crete, Rhodes and others are not connected to the

mainland system. These autonomous systems represent approximately 8% of the

electricity demand in Greece [111]. The electricity generation on these islands

relies on petroleum products and, to a much lesser extent, on RES. The system is

interconnected with Albania, Bulgaria, and F.Y.R.O.M. via three 400-kV tie lines

of a total Available Transfer Capacity of 600 MW and to Italy via an asynchronous

400-kV AC-DC-AC link with a transfer capacity of 500 MW.

The system is also connected with Turkey with a 400-kV line since the summer

of 2008, but the commercial operation of this interconnection had not started in

2009, as the Turkish system was synchronised with ENTSO-E only in September

2010.

6.3 Scenarios Description

Different scenarios are presented in order to perform the reliability studies. In the

test system, changes were made to increase the participation of renewable energy

sources and include hydro power monthly variation. In the real system scenarios,

the generating system configurations are forecasts for the year of 2030.

6.3.1 IEEE Reliability Test System - 1996 HW

The first version of the IEEE Reliability Test System was developed in 1979 by

the Application of Probability Methods (APM) Subcommittee of the Power

System Engineering Committee [112]. This system was developed to test and

compare results from different power system reliability evaluation methodologies

based on a standardised data. In 1986, a second version of the RTS was
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developed and published [113]. The experience with RTS-79 helped by including

critical additional data requirements and the need to include the reliability

indices of the test system.

The RTS-86 expanded the data system related to the generating system. This was

marked by the increase in the number of generating units and the inclusion of data,

such as unit derated states, unit scheduled maintenance, load forecast uncertainty

and the effect of the interconnection. The major advance of the RTS-86, was the

publication of the system reliability indices obtained through the use of rigorous

techniques without any approximations in the evaluation process.

Several changes in the electric utility industry have taken place since the

publication of the RTS-79. These changes along, motivated the task force2 to

suggest a multi-area RTS incorporating additional data.

The RTS-96 was developed to represent as much as possible all the different

technologies and configurations that could be encountered on any system.

However, since 1996 the renewable energy sources gained a significant

participation on energy mix for several countries, namely EU countries. Then, a

modified version of the RTS-96 was proposed in [60].

This system was named as IEEE Reliability Test System 1996 HW (RTS-96 HW).

“H” is related to the changed made to cope with the monthly variation of the stored

water in the basins, which affects the hydro power capacity and “W” refers to the

substitution of a 350 MW coal unit by 1526 MW of wind power. The ratio between

350/1526 ≈ 0.23 is a capacity factor to cope with wind power variability.

The original generation installed capacity was 10,215 MW, from this total 900

MW are hydro power units and 9,315 MW are from thermal sources. The annual

peak load is 8,550 MW. The changed made increased the generation installed

2Co-Chairmen: C. Grigg and P. Wong; P. Albrecht, R. Allan, M. Bhavaraju, R. Billinton, Q.

Chen, C. Fong, S. Haddad, S. Kuruganty, W. Li, R. Mukerji, D. Patton, N. Rau, D. Reppen, A.

Schneider, M. Shahidehpour, C. Singh.
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capacity to 11,391 MW, and the percentage of renewable power has increased to

21.3% (between hydro and wind power plants). Figure 6.5 shows the generation

technology sharing for the RTS-96 HW.

Figure 6.5: Original generation technology sharing for the RTS-96.

The thermal generation subsystem has 78 units with capacity varying from 12 up

to 400 MW, totalling 9,315 MW (almost 79% of the total generation installed

capacity). The hydro generation subsystem is composed by 18 units of 50 MW

each, distributed in three power stations. The capacity variation of these units is

simulated according to five hydro series, which is referred to the average monthly

power capacity, with the same probability of occurring. The wind power

subsystem has 763 units of 2 MW, distributed among three regions with different

wind characteristics: region I and III have 267 units each one and, region II has

229 units.

The wind power fluctuation is characterised through three wind series for each

wind region. The series reflects the variability of the wind power average, in an

hourly basis. These series are classified as favourable, average and unfavourable,

and their corresponding probabilities of occurrence are 25%, 50% and 25%.
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6.3.2 Real Generating Systems Scenarios

The Portuguese, Spanish and Greek generating system configurations studied in

this thesis are the ones forecasted for year of 2030. This section presents these

future systems in detail and afterwards, the EV scenarios for 2030 are also

described in order to be included in the adequacy evaluation of the real

generating systems.

Portuguese Generating System - 2030

The forecasted peak load for 2030 is 14,384 MW while the planned generation

capacity is 28,339 MW, which is composed by 4,589 generation units with

capacities ranging from 1 MW to 557 MW. Figure 6.6 depicts the generation

portfolio for 2030.

Figure 6.6: Generation technology sharing for the PGS-2030.

The primary reserve is set to 53 MW and the secondary reserve is 650 MW. The

tertiary reserve is composed of 100 hydro units and 2 thermal units, that are able to

be started in less than one hour, totalling 12,423 MW. However, this amount may
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vary according to the dispatch, once these units can be used to meet the load or the

primary/secondary reserve requirements. The short and long-term uncertainties of

the load are 5% and 0%, respectively.

Wind, small-hydro and special regime units are always scheduled for production

prior to any other units. Hydro and thermal units are scheduled subsequently.

The scheduling priority between thermal and hydro units vary with the strategy

selected at the beginning of each sampled year.

Spanish Generating System - 2030

The SGS accounts for 139,357 MW of generation installed capacity, which

comprises 25,411 generation units with capacities ranging from 1 MW to 1,087

MW. The expected peak load is 64,000 MW. Figure 6.7 depicts the technology

sharing of the Spanish generation portfolio.

The primary and secondary reserves are set to 351 MW and 900 MW, respectively.

The tertiary reserve is calculated according to the generating units available to,

Figure 6.7: Generation technology sharing for the SGS-2030.

143



Chapter 6

rapidly, take load up at the moment of the evaluation. To give an idea, the total

generation capacity of these selected units is 24,983 MW and consists of 436 hydro

and 48 thermal units. The short and long-term uncertainties of the load are 4%

and 2%, respectively.

The first units to be scheduled for production are the wind generators. Small-

hydro and special regime units come second and third in the scheduling priority,

respectively. Hydro and thermal units are used only after all the aforementioned

units. The scheduling priority between thermal and hydro units vary with the

strategy selected at the beginning of each sampled year. Pure pumped storage

hydro units are the last ones to be scheduled.

Greek Generating System - 2030

The configuration of the GGS for 2030 consists of an expected peak load of

15,665 MW and 26,461 MW of generation installed capacity, which consists of

8,321 generation units with capacities ranging from 17 kW to 600 MW. Figure

6.8 illustrates the Greek generation portfolio for 2030.

Figure 6.8: Generation technology sharing for the GGS-2030.
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The primary reserve is set to 80 MW and the secondary reserve is 615 MW. The

units that compose the tertiary reserve are 33 hydro units and 17 thermal units

totalling 4,688 MW. This amount may vary according to the available generating

units at the moment of the system state evaluation. The short and long-term

uncertainties of the load are 2% and 6%, respectively.

The first units to be scheduled for production are the wind and the special regime

generators. The small-hydro and the thermal units come second and third in the

scheduling priority. Hydro units are the last ones to be used.

Analysis of the Real Generating Systems

Figure 6.9 presents the main generation technologies for each country from the

reference to the forecasted generating systems. Portugal had an increase of 8%

and 3% in the total installed hydro and renewable technologies, respectively, from

2010 to 2030. On the other hand, the total installed thermal technology decreases

about 12%.

Regarding the total generation capacity in Spain, the 2030 scenario presents a

reduction in the hydro capacity of 4%. The thermal technology remains the same

whilst the renewable technology increases about 4%.

The Greek system presents an expected reduction of the hydro and thermal

technologies about 6% and 30%, respectively. On the other hand, the renewable

technology increases 36% from 2010 to 2030.

The trend in increasing the participation of renewable energy sources is verified in

these countries. However, the thermal generation remains the greatest technology

used in Spain and Greece cases. Portugal is the one that, apparently bet on a more

balanced and flexible generation system.
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Figure 6.9: Expected generation technology growth.

6.3.3 Electric Vehicle Scenarios

The forecasted EV scenarios were defined in [2], in the framework of the MERGE

project. In this report, three EV penetration levels were achieved, from 2010 to

2030, for five countries: Germany, UK, Spain, Portugal and Greece. This thesis will

present the performances of the EV models considering the EV scenarios related

to Portugal, Spain and Greece.

Following these statements, three EV penetration scenarios and corresponding EV

uptake rates (annual sales percentage) are defined with an explanation of the key

drivers that underline them.

• Scenario 1 is an estimate of EV uptakes that is the most likely of the three

scenarios to occur in reality.

• Scenario 2 is a more aggressive EV uptake scenario than is expected to occur.

It was recommended as the prime focus for the MERGE project partners to

use in their studies as it will provide better information on the effects of mass

integration of EV on the grid.
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• Scenario 3 is a very aggressive EV uptake scenario. It is unlikely that the

number of EV in this scenario will be exceeded.

Historical vehicle sales and attrition rates are showed in [2]. Although the

information provided is related to the year 2010 to 2030, the data used in this

thesis is related to the EV penetration scenarios for 2030, as presented in Table

6.1. The percentage value is the EV estimate of the total vehicle fleet.

Table 6.1: EV fleet scenarios for 2030.

Scenarios Portugal Spain Greece

Low
209,254 1,187,477 287,432

(2.64%) (3.60%) (3.75%)

Moderate
446,700 2,534,935 605,003

(5.64%) (7.69%) (7.90%)

Aggressive
870,955 4,942,510 1,148,379

(11.00%) (15.00%) (15.00%)

The penetration levels name (scenario 1, scenario 2 and scenario 3) of

reference [2] are changed to low level (EV-LL), moderate level (EV-ML) and

aggressive level (EV-AL) scenarios. These scenarios names are referred

throughout this chapter.

Controlled models scenario

In order to present the performance of such models, the simulations using the

test system considered 100% of the vehicle fleet, in controlled charging mode, of

the aggressive scenario. Regarding the V2G strategy, it was considered 70% of the

total vehicle fleet of the aggressive scenario. These strategies must have a significant

number of vehicles in order to mobilise a considerable amount of electrical energy

capacity. Depending on the SOC available, but in the sense of giving an idea for

the reader, 70% of the aggressive scenario means about 1812 GWh, considering

147



Chapter 6

the battery parameters of the M1 passenger car [2].

6.4 Validation of the Adequacy Evaluation of

Generating Systems Tool

As benchmark results can be found in [60], the RTS-96 HW is the chosen test

system to perform the validation of the adequacy evaluation of generating systems

tool.

For such task, a simple simulation reproducing the Case 2, in [60], was performed

using the Normal scenario (see [60]), and disregarding the EV models. Table 6.2

presents the static reserve evaluation published in [60] and the ones obtained

through the tool used by the author.

Note that only the LOLE index is presented in [60] and, therefore, only the LOLE

index reached through the used tool is presented in Table 6.2.

Table 6.2: Validation case of the Static reserve evaluation.

Scenario LOLE (h/y) β (%)

Reference 0.3449 3.34

Proposed tool 0.3456 3.30

Assuming reference [60] as a benchmark case, the comparison between LOLE

values leads to the validation of the tool.

As the operating reserve evaluation presented in [60] follows a different approach,

the risk indices cannot be compared; however, the risk indices presented in Table

6.3 were estimated using the same scenario of the static reserve evaluation

performed for the validation case.
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Table 6.3: Operating reserve capacity evaluation of the RTS 96 HW.

LOLE (h/y) EENS (MWh/y) LOLF (occ/y) LOLD (h/occ)

ORC risk indices 0.7679 129.30 0.4785 1.6047

β (%) (4.08) (4.97) (4.41) -

This simulation does not consider the short and long-term load uncertainty,

however, the wind power forecast error and the generating units forced outages

are taken into account.

6.5 Reference Cases Analyses

This section presents the performance of the reliability indices with no EV in the

grid. The objective is providing reference values to build a comparison basis.

6.5.1 Reference Case of the IEEE Reliability Test System

- 1996 HW

This system follows the description provided in Section 6.3.1. Additionally, the

short and long-term uncertainties of the load are included in the simulation

parameters. The short-term load uncertainty is 2% whilst the long-term load

uncertainty is 0%. The primary and secondary reserves are set to 85 MW and

315 MW, respectively. The static reserve evaluation with no EV, provided the

following risk indices.

Table 6.4: Reference case of the Static reserve evaluation.

LOLE (h/y) EENS (MWh/y) LOLF (occ/y) LOLD (h/occ)

Static risk indices 0.6115 124.08 0.3433 1.7813

β (%) (3.47) (4.99) (2.75) -
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The increase in the reliability indices, from Table 6.2 to Table 6.4, is due to the

added load uncertainty in the simulation parameters. Therefore, the expectation

that the system load will exceed the available generating capacity is, in average,

0.6115 h/y.

From the ORC evaluation perspective, the additional information about the load

uncertainty for the short and long-term increases the risk indices from 0.7679 h/y

(see Table 6.4) to 1.6463 h/y.

Table 6.5: Reference case of the Operating reserve capacity evaluation.

LOLE (h/y) EENS (MWh/y) LOLF (occ/y) LOLD (h/occ)

ORC risk indices 1.6463 388.65 1.2300 1.3384

β (%) (4.03) (4.99) (3.62) -

The LOLE of 1.6463 h/y is the expected average that the system uncertainties

exceed the synchronised plus the available fast tertiary reserve capacity.

6.5.2 Reference Cases of the Real Generating Systems

This section presents the performance of the real generating systems with no EV

in the grid. Their generating systems configurations for 2030 follow the description

given in Section 6.3.2. The stopping criteria for both, static and operating reserve

capacity evaluations, is a β convergence of 5% for all risk indices or a maximum

number of 10,000 sampled years.

Portuguese Generating System - 2030

Table 6.6 presents the static reserve and ORC evaluations for the PGS 2030

configuration.
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Table 6.6: Reserve capacity evaluations - Portuguese reference case.

LOLE (h/y) EENS (MWh/y) LOLF (occ/y) LOLD (h/occ)

Static risk indices 0.0196 4.40 0.0213 0.9220

ORC risk indices 1.0570 548.31 1.2000 0.8808

The low risk indices indicate a robust configuration for the PGS 2030, from the

static reserve and operating reserve capacity perspectives.

Spanish Generating System - 2030

The performance of the SGS for 2030 for the static reserve and ORC evaluations

is presented in Table 6.7.

Table 6.7: Reserve capacity evaluations - Spanish reference case.

LOLE (h/y) EENS (MWh/y) LOLF (occ/y) LOLD (h/occ)

Static risk indices 0.0012 1.31 0.0016 1.25

ORC risk indices 0.2190 190.10 0.3417 0.6409

The high percentage of thermal generation of the SGS for 2030 (see Figure 6.9) is

reflected by the low risk indices estimated in this reference case.

Greek Generating System - 2030

The adequacy evaluation of the GGS 2030 provides the reference risk indices used

through this chapter. The result of the static reserve and ORC evaluations are

presented in Table 6.8.
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Table 6.8: Reserve capacity evaluations - Greek reference case.

LOLE (h/y) EENS (MWh/y) LOLF (occ/y) LOLD (h/occ)

Static reserve 0.6421 346.04 0.3230 1.9879

ORC 2.2090 1,313.08 2.3380 0.9448

From the static evaluation perspective, the low risk indices indicate a robust

configuration for the GGS of 2030. Although the LOLE of 2.2090 h/y estimated

by the ORC evaluation is still low, some utilities may consider it a system

indicator that this configuration is not flexible enough to cope with the system

variabilities.

Next section presents the simulation results considering the EV penetration

scenarios on the test and real system simulations. These simulations also take

into account the different battery charging behaviours. The result comparisons

give support to the discussions.

6.6 Results and Discussions

In this section, the EV scenarios were included in the systems configurations

described in Section 6.3. This section is organised as follows. Section 6.6.1

presents the results for the static reserve evaluation of the real generating

systems under uncontrolled battery charging strategies and for the ORC

evaluation of the real generating systems under uncontrolled and controlled

charging models. Section 6.6.2 presents the results for the static reserve and ORC

evaluations for the RTS 96 HW under uncontrolled charging models using both

HPP and NHPP approaches. The use of the controlled charging models for the

previous system is presented in Section 6.6.3.
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6.6.1 Real Generating Systems

The direct, valley and controlled charging strategies were developed in the

framework of the MERGE project. The EV models included in the Sequential

Monte Carlo Simulation are the ones that were developed through the HPP

approach. An important issue is related to the battery charging coefficient of

Equation (4.7) which, in the framework of the MERGE and REIVE projects, was

set to 1.0 in order to represent the worse scenario. This value means that a fully

battery capacity requirement is assumed for all vehicles that arive at a certain

place in the same hour, during the simulation process. The percentage of vehicles

in controlled battery charging strategy was also modified regarding the one

presented in Section 6.3.3 to 70% with the objective to represent a more realistic

situation.

Static Reserve Evaluation - Direct and Valley Charging Strategies -

HPP Approach - Portuguese Generating System 2030

This section aims to present the reliability indices of the simulations regarding

the PGS for 2030 scenario with and without EV on the grid. Tables 6.9 and 6.10

present the static reserve indices considering direct and valley battery charging

strategies in all three scenarios of EV integration.

Table 6.9: Results for the static reserve evaluation of the PGS 2030 - Direct

charging strategy.

EV penetration levels

No EV Low Moderate Aggressive

LOLE (h/y) 0.0196 0.0611 0.2110 1.3940

EENS (MWh/y) 4.40 17.61 67.31 530.05

LOLF (occ/y) 0.0213 0.0650 0.2187 1.3210

LOLD (h/occ) 0.9201 0.9400 0.9647 1.0552
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The results show that as the EV penetration increases, the performance of the

static reserve gets worse. When DC strategy is applied, the LOLE index increases

from 0.0196 h/y to 1.3940 h/y. Although the magnitude of the index is not big, the

ratio between values is around 71 times. In this sense the static reserve evaluation

shows that even considering the worst case scenario, the estimate of the LOLE

(1.394 h/y), does not jeopardise the generation system adequacy for 2030, in terms

of capacity to deal with the load increase imposed by EV. The LOLE index of

0.0848 h/y of the case using VC strategy, in the aggressive scenario, shows that

this strategy can maintain the risk indices in the same magnitude order than the

scenario with no EV.

Table 6.10: Results for the static reserve evaluation of the PGS 2030 - Valley

charging strategy.

EV penetration levels

No EV Low Moderate Aggressive

LOLE (h/y) 0.0196 0.0196 0.0211 0.0848

EENS (MWh/y) 4.40 4.40 4.52 25.72

LOLF (occ/y) 0.0213 0.0213 0.0230 0.1143

LOLD (h/occ) 0.9201 0.9201 0.9173 0.7426

These differences between direct and valley battery charging strategies reflects

the impact of the EV charging behaviour in the power systems from the demand

perspective. While the DC strategy allows the EV charging throughout the day,

increasing the daily peak demand, the VC strategy commits the EV owner to

charge its EV during the valley hours, where the conventional demand is, generally,

lower.
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Operating Reserve Capacity Evaluation - Direct, Valley and Controlled

Charging Strategies - HPP Approach - Portuguese Generating System

2030

Tables 6.11, 6.12 and 6.13 present the reliability indices of the operating reserve

capacity evaluation of the PGS for 2030. The results on these tables show that

the estimates of the reliability indices of the operating reserve capacity evaluation

increase considerably if DC strategy is applied. Considering the aggressive EV

penetration scenario, the LOLE increases by 8.4 times regarding the scenario with

no EV. It means that the estimates of the reliability indices of the operating

reserve capacity might increase considerably towards values that may be considered

risky by the utilities when using direct charging in the aggressive penetration

scenario.

Table 6.11: Results for the ORC evaluation of the PGS 2030 - Direct charging

strategy.

EV penetration levels

No EV Low Moderate Aggressive

LOLE (h/y) 1.0570 1.8020 3.2620 8.8490

EENS (MWh/y) 548.31 1040.25 2082.05 7027.04

LOLF (occ/y) 1.2000 2.0330 3.6860 9.4590

LOLD (h/occ) 0.8808 0.8863 0.8849 0.9355

However, if a VC strategy is used, the LOLE increases only by 1.1 times in the EV

aggressive scenario (see Table 6.12). This strategy can take advantage of systems

with low conventional demand in the valley hours.

Note that in the EV low scenario the use of the VC strategy can maintain the

magnitude order of the reliability indices.
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Table 6.12: Results for the ORC evaluation of the PGS 2030 - Valley charging

strategy.

EV penetration levels

No EV Low Moderate Aggressive

LOLE (h/y) 1.0570 1.0880 1.2080 1.9910

EENS (MWh/y) 548.31 567.46 643.66 1195.01

LOLF (occ/y) 1.2000 1.2440 1.3960 2.4440

LOLD (h/occ) 0.8808 0.8745 0.8653 0.8146

On the other hand, the CC strategy can decrease the LOLE index from 1.0570 h/y

to 1.0370 h/y in the EV low scenario. The ability of contributing to the operating

reserve of the controlled battery charging strategy is due to the postponement

of the EV charging to a later moment, when the conventional demand is lower

(usually in the valley hours). This strategy makes possible to maintain a similar

performance of the scenario with no EV, mitigating the EV impact on the system

adequacy.

Table 6.13: Results for the ORC evaluation of the PGS 2030 - Controlled charging

strategy.

EV penetration levels

No EV Low Moderate Aggressive

LOLE (h/y) 1.0570 1.0370 1.0480 1.1400

EENS (MWh/y) 548.31 543.14 558.43 601.09

LOLF (occ/y) 1.2000 1.1780 1.1850 1.3000

LOLD (h/occ) 0.8808 0.8803 0.8843 0.8769

By analysing the performance of the static reserve and operating reserve capacity, it

is possible to state that the 2030 configuration of the Portuguese generation system

is adequate to accommodate the expected additional load of EV with exception of

the EV aggressive scenario using direct battery charging strategy.

156



6.6. Results and Discussions

Static Reserve Evaluation - Direct and Valley Charging Strategies -

HPP Approach - Spanish Generating System 2030

Tables 6.14 and Table 6.15 present the static reserve risk indices of the SGS for

2030. The results demonstrated that the use of DC strategy, in the aggressive

scenario, increases the LOLE regarding the scenario with no EV from 0.0012 h/y

to 0.1644 h/y. Although, the later means 137 times the scenario with no EV, the

LOLE index is still low.

Table 6.14: Results for the static reserve evaluation of the SGS 2030 - Direct

charging strategy.

EV penetration levels

No EV Low Moderate Aggressive

LOLE (h/y) 0.0012 0.0061 0.0230 0.1644

EENS (MWh/y) 1.31 7.98 37.16 320.15

LOLF (occ/y) 0.0016 0.0066 0.0210 0.1377

LOLD (h/occ) 0.7500 0.9242 1.0952 1.1938

Regarding the VC strategy, the difference is even smaller than the DC strategy. The

VC strategy presents, in the EV-AL scenario, a LOLE index of 0.0447 h/y.

From the static reserve perspective, the configuration of the Spanish generating

system is robust enough to support the forecasted EV scenarios for 2030

Table 6.15: Results for the static reserve evaluation of the SGS 2030 - Valley

charging strategy.

EV penetration levels

No EV Low Moderate Aggressive

LOLE (h/y) 0.0012 0.0012 0.0019 0.0447

EENS (MWh/y) 1.31 1.31 1.71 80.64

LOLF (occ/y) 0.0016 0.0016 0.0030 0.0666

LOLD (h/occ) 0.7500 0.7500 0.6333 0.6711
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independent of the EV battery charging strategy used.

Operating Reserve Capacity Evaluation - Direct, Valley and

Controlled Charging Strategies - HPP Approach - Spanish Generating

System 2030

The results demonstrate that the estimate of the reliability indices, presented in

Tables 6.16, 6.17 and 6.18, increase considerably with the EV penetration level.

If DC charging is used in the aggressive scenario, the LOLE increases by 4 times

regarding the scenario with no EV. It is still low, highlighting the robustness of

the system, from the static reserve perspective.

Table 6.16: Results for the ORC evaluation of the SGS 2030 - Direct charging

strategy.

EV penetration levels

No EV Low Moderate Aggressive

LOLE (h/y) 0.2190 0.2640 0.3707 0.9374

EENS (MWh/y) 190.10 267.29 493.76 2000.99

LOLF (occ/y) 0.3417 0.4147 0.5753 1.3490

LOLD (h/occ) 0.6409 0.6366 0.6443 0.6948

At the same EV penetration level, aggressive scenario, the use of VC strategy can

increase the LOLE index by 9 times, showing that concentrating the entire EV

load in the valley period, may result in a change of the peak consumption from

the usual peak hours to the valley hours.

In this case, from the operational reserve perspective, it might be better to mix

the EV battery charging strategies between direct and valley charging strategies,

instead of accumulating all EV load in the valley hours.

158



6.6. Results and Discussions

Table 6.17: Results for the ORC evaluation of the SGS 2030 - Valley charging

strategy.

EV penetration levels

No EV Low Moderate Aggressive

LOLE (h/y) 0.2190 0.2190 0.7172 1.9950

EENS (MWh/y) 190.10 190.10 685.43 2869.18

LOLF (occ/y) 0.3417 0.3417 5.0410 2.6845

LOLD (h/occ) 0.6409 0.6409 0.1422 0.7431

The CC strategy remains the best one to mitigate the EV impact on the SGS.

This strategy allows the EV contribution to the operating reserve, resulting in a

LOLE index lower than the scenario with no EV.

Table 6.18: Results for the ORC evaluation of the SGS 2030 - Controlled charging

strategy.

EV penetration levels

No EV Low Moderate Aggressive

LOLE (h/y) 0.2190 0.1505 0.1505 0.1456

EENS (MWh/y) 190.10 170.60 170.60 132.90

LOLF (occ/y) 0.3417 0.1850 0.1850 0.1863

LOLD (h/occ) 0.6409 0.8135 0.8135 0.7815

The results have shown that the configuration of the Spanish generating system is

adequate to meet the additional forecasted EV load for 2030.

Static Reserve Evaluation - Direct and Valley Charging Strategies -

HPP Approach - Greek Generating System 2030

Tables 6.19 and 6.20 present the static reserve indices of the adequacy evaluation of

the GGS for 2030. The results show that the LOLE increases expressively as more
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EV is integrated in the system. The use of DC strategy, in the EV-AL scenario,

results in a LOLE increase of 20 times, in relation to the scenario with no EV,

which is about 13.014 h/y.

Table 6.19: Results for the static reserve evaluation of the GGS 2030 - Direct

charging strategy.

EV penetration levels

No EV Low Moderate Aggressive

LOLE (h/y) 0.6421 1.4340 3.3670 13.0140

EENS (MWh/y) 346.04 732.52 1753.31 7559.81

LOLF (occ/y) 0.3230 0.7847 1.8540 6.8990

LOLD (h/occ) 1.9879 1.8274 1.8160 1.8863

On the other hand, when VC strategy is applied, the increase is only of 4 times,

resulting in a LOLE of 2.668 h/y.

Table 6.20: Results for the static reserve evaluation of the GGS 2030 - Valley

charging strategy.

EV penetration levels

No EV Low Moderate Aggressive

LOLE (h/y) 0.6421 0.6566 0.7498 2.6680

EENS (MWh/y) 346.04 354.18 398.35 1403.45

LOLF (occ/y) 0.3230 0.3493 0.5287 3.4760

LOLD (h/occ) 1.9879 1.8797 1.4181 0.7675

The use of DC strategy leads the GGS to a risk system state. Although the increase

of the LOLE index, using valley battery charging strategy, is significant, when

compared to the case with no EV, the LOLE index is still low. This strategy can

maintain the adequacy of the system, from the static reserve perspective.
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Operating Reserve Capacity Evaluation - Direct, Valley and

Controlled Charging Strategies - HPP Approach - Greek Generating

System 2030

The reliability indices of the operating reserve capacity increase as the penetration

level of EV increases, if DC and/or VC strategies are used (see Tables 6.21 and

6.22).

The EV penetration level have impacted in the generation adequacy of the Greek

system. Even in the low and moderate scenarios the uncontrolled charging

strategies are not able to maintain the risk indices in the same level as the

simulation performed with no EV in the grid.

Table 6.21: Results for the ORC evaluation of the GGS 2030 - Direct charging

strategy.

EV penetration levels

No EV Low Moderate Aggressive

LOLE (h/y) 2.2090 4.2000 8.4880 26.0170

EENS (MWh/y) 1313.08 2895.72 6663.19 24066.34

LOLF (occ/y) 2.3380 3.9190 7.0400 17.7120

LOLD (h/occ) 0.9448 1.0717 1.2056 1.4688

A particularly noteworthy remark is the LOLE obtained using DC strategy in the

aggressive scenario. As it is showed in Table 6.21, this value is very high (26.017

h/y) when compared to the scenario with no EV or even with those obtained using

CC strategy (see Table 6.23).

The VC strategy is able to acomodate the EV penetration for the EV low and

moderate scenarios. The aggressive scenario has reached a LOLE of 9.2060 h/y

when a VC strategy is used.
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Table 6.22: Results for the ORC evaluation of the GGS 2030 - Valley charging

strategy.

EV penetration levels

No EV Low Moderate Aggressive

LOLE (h/y) 2.2090 2.3550 2.7070 9.2060

EENS (MWh/y) 1313.08 1450.92 1851.64 5990.01

LOLF (occ/y) 2.3380 2.5480 3.0490 17.5580

LOLD (h/occ) 0.9448 0.9242 0.8878 0.5243

Table 6.23 presents the reliability indices of the operating reserve capacity

evaluation considering the deployment of the CC strategy. The ability of this

strategy in contributing to the operating reserve decreased the risk indices of the

GGS for 2030.

Table 6.23: Results for the ORC evaluation of the GGS 2030 - Controlled charging

strategy.

EV penetration levels

No EV Low Moderate Aggressive

LOLE (h/y) 2.2090 1.6680 1.6680 1.6670

EENS (MWh/y) 1313.08 1166.39 1165.68 1165.48

LOLF (occ/y) 2.3380 1.6300 1.6310 1.6310

LOLD (h/occ) 0.9448 1.0233 1.0226 1.0220

The GGS may take advantage of the use of advanced control strategies for charging

EV in the 2030 configuration of the Greek generation system is of the utmost

importance in order to maintain the adequacy of the operating reserve capacity in

adequate levels.

162



6.6. Results and Discussions

6.6.2 IEEE Reliability Test System 1996 HW -

Uncontrolled Charging EV Models

This section presents the simulations performed using the uncontrolled battery

charging strategies. The simulations follow the EV scenarios given in Section 6.3.3.

The stopping criteria is a β convergence of 5% for all risk indices or a maximum

number of 10,000 sampled years.

The results are presented considering the HPP and NHPP approaches. The battery

charging coefficient α of Equation (4.7), which calculates the charging time through

the HPP approach, is set to 0.5. In this sense, the charging time assumed in the

HPP approach becomes equal to the mean charging time of the NHPP, presented

in Equation (4.10). Therefore, the results calculated using both HPP and NHPP

approaches can be compared.

Static Reserve Evaluation - Direct and Valley Charging Strategies -

HPP Approach - RTS-96 HW

The goal of this section is to demonstrate the impact that EV, approached by

the homogeneous Poisson process, might have on the reliability of the static

reserve. Figure 6.10, shows the system performance for the EV-LL scenario. The

analysis is made throughout the comparison of the risk indices estimated through

the reference and the EV penetration scenarios.
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Figure 6.10: Results for the static reserve evaluation - EV-LL - HPP approach.

The LOLE of 0.6115 h/y is the reference case, where no EV load is considered.

The addition of EV under DC strategy lead to a LOLE increase to 0.8989 h/y. For

such case, this result means the expected number of hours in which the system

load level exceeds the available system capacity.

The LOLE of 0.6232 h/y is estimated through the use of a VC strategy. This slight

increase, if compared with the case with no EV in the grid, is due to the additional

EV load in the valley hours.

Figure 6.11 presents the LOLE index for both uncontrolled battery charging

strategies, when an EV-ML scenario is considered. The LOLE index of this case

demonstrated that the use of DC strategy can increase the LOLE index to 1.3559

h/y. The deployment of the VC strategy results in an increase 0.6565 h/y.
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Figure 6.11: Results for the static reserve evaluation - EV-ML - HPP approach.

The EV-AL scenario (see Figure 6.12) shows that the estimated risk index almost

double. The direct and valley battery charging strategies led to the LOLE index

of 2.6510 h/y and 1.1856 h/y, respectively. Although this scenario has presented a

greater impact than the EV-ML and EV-LL scenarios, the estimated risk indices

are still low, assuring that the configuration of the generating system is adequate

to accept this level of EV according to these battery charging strategies and EV

penetration levels.

Figure 6.12: Results for the static reserve evaluation - EV-AL - HPP approach.

165



Chapter 6

The difference between the DC and VC strategies is that the conventional load is,

generally, bigger during the day. As the DC strategy follows the mobility profile,

it is expected that it increases the conventional peak load. Therefore, the DC

strategy, in general, has a greater impact on the system adequacy than the VC

strategy. A summary of all risk indices is given in Table 6.24.

Table 6.24: General results for the static reserve evaluation - HPP approach.

LOLE (h/y) EENS (MWh/y) LOLF (occ/y) LOLD (h/occ)

Charging
DC VC DC VC DC VC DC VC

Strategy

No EV 0.6115 124.08 0.3433 1.7813

Low 0.8989 0.6232 180.72 124.23 0.5438 0.3860 1.6529 1.6143

Moderate 1.3559 0.6565 279.23 133.40 0.8041 0.3969 1.6863 1.6539

Aggressive 2.6510 1.1856 575.42 374.09 1.4845 0.9428 1.7857 1.2575

From the static perspective and considering the uncontrolled charging models, the

VC strategy is the adequate one to maintain the risk indices low, up to a certain

level of EV deployment (see Table 6.24), at the same order of the ones estimated

in the scenario with no EV.

Operating Reserve Capacity Evaluation - Direct and Valley Charging

Strategies - HPP Approach - RTS-96 HW

As a load, the EV also affects the ORC evaluation. The load increase means more

synchronised capacity and less available capacity to meet the system requirements

and uncertainties. Figure 6.13 presents the risk indices estimated through the ORC

evaluation taking the EV-LL scenario into account.
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Figure 6.13: Results for the ORC evaluation - EV-LL - HPP approach.

In this case, the LOLE index increased from 1.6463 h/y to 2.0795 h/y when the DC

strategy is deployed. On the other hand, the use of the VC strategy was capable

to maintain the risk indices almost at the same level of the no EV scenario leading

to 1.7161 h/y.

The impact of the EV-ML scenario is presented in Figure 6.14. The DC strategy

presented a LOLE index of 2.9135 h/y whilst the VC strategy is 1.7478 h/y. In this

case, the valley charging strategy allows the penetration of more vehicles in the

system maintaining the risk indices low. Note that almost there are no difference

between the LOLE index, considering the VC strategy, of the EV-LL and EV-ML

scenarios. This means that if EV owners decide to charge their vehicles during

the dawn, the system can accept an increase of EV with almost no impact in the

system adequacy.

The impact of the EV-AL scenario on the ORC evaluation is showed in Figure

6.15. From this, one can see the increase in the LOLE index when both direct and

valley strategies, are used. From the use of a DC strategy, the estimated LOLE

index is 4.8896 h/y whilst the use of a VC strategy produces a LOLE of 2.3239

h/y. In this case, the DC strategy presented a risk index that may compromise the

system adequacy to cope with the system uncertainties.
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Figure 6.14: Results for the ORC evaluation - EV-ML - HPP approach.

Table 6.25 presents all risk indices calculated during the simulation process. These

simulations show that the EV load behaviour, in uncontrolled battery charging

modes, mainly depends of the EV penetration level.

From the simulations performed to the HPP approach it is possible to stress the

necessity of using the valley battery charging, up to a certain level of EV

deployment, in order to keep the risk indices low. For uncontrolled battery

charging strategies the number of synchronised generating units increase as the

number of EV increase in order to meet this new load. Therefore, the total

available reserve to deal with the uncertainties of the system, which are the load

Figure 6.15: Results for the ORC evaluation - EV-AL - HPP approach.
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Table 6.25: General results for the ORC evaluation - HPP approach.

LOLE (h/y) EENS (MWh/y) LOLF (occ/y) LOLD (h/occ)

Charging
DC VC DC VC DC VC DC VC

Strategy

No EV 1.6463 388.65 1.2300 1.3384

Low 2.0795 1.7161 649.42 614.40 1.5394 1.0651 1.3508 1.6111

Moderate 2.9135 1.7478 810.84 628.77 2.0704 1.1188 1.4072 1.5621

Aggressive 4.8896 2.3239 1613.14 988.72 3.3381 2.1427 1.4647 1.0845

and wind power forecast errors and the forced outages of the generating units,

might not be sufficient.

Static Reserve Evaluation - Direct and Valley Charging Strategies -

NHPP Approach - RTS-96 HW

The impact of the EV models, approached by the non-homogeneous Poisson

process, is evaluated throughout this section. This approach allows a more

detailed representation of the EV mobility, evaluating the system adequacy for

each identified EV arrival.

Figure 6.16, presents the LOLE index of the uncontrolled battery charging

strategies. The use of a DC strategy results in a LOLE of 0.6522 h/y whilst the

LOLE index reached through the use of a VC strategy is 0.6168 h/y.

At this EV penetration level, the difference from the HPP approach may be

highlighted when the EV are under direct battery charging. The differences

between the approaches are regarding the individual EV arrivals, provided by the

NHPP, and the different estimation of the charging time. In the HPP approach it

is assumed a fixed charging time whilst in the NHPP approach, the charging

time has a uniformly distributed random term in its equation, which produces

different charging times for each EV. Even though the mean of the charging

time, in the NHPP approach, is the same of the HPP, when α variable is 0.5, the
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Figure 6.16: Results for the static reserve evaluation - EV-LL - NHPP approach.

chronological sequence of events of the NHPP plus the disaggregation

characteristic of the arrivals attenuates the impact of the EV load in the

reliability indices. This observation can be confirmed by the results presented

through this section.

The simulation using the EV-ML scenario shows slight increase in the LOLE index

from both direct and valley battery charging strategies, which are 0.8219 h/y and

0.6300 h/y, respectively (see Figure 6.17). For the same simulation cases, using

the HPP approach, the estimates are 1.3559 h/y and 0.6565 h/y. Even considering

that the differences between indices are not large, it is possible to note that the

HPP results in a greater impact, on the system adequacy, than the NHPP.

A significant increase in the LOLE index, is identified in Figure 6.18, which presents

the results of the EV-AL scenario. However, the LOLE index of 2.1815 h/y, when

the DC strategy is applied, and of 0.9606 h/y, when the VC strategy is used, are

still low. The LOLE indices estimated in the HPP approach are 2.6510 h/y and

1.1856 h/y for both direct and valley charging strategies, respectively.

Table 6.26 presents all risk indices of the performed simulations. Regarding the

battery charging strategies, the representation of the EV arrivals, when the

NHPP approach is applied, lead to an attenuation of the EV impact in the
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Figure 6.17: Results for the static reserve evaluation - EV-ML - NHPP approach.

system adequacy.

On one hand, the computational effort using the HPP is much lower than the use

of the NHPP, however, this subject will be presented later. On the other hand, the

NHPP allows the battery charging requirement for each vehicle, providing a more

detailed representation of the EV behaviour.

Figure 6.18: Results for the static reserve evaluation - EV-AL - NHPP approach.

171



Chapter 6

Table 6.26: General results for the static reserve evaluation - NHPP approach.

LOLE (h/y) EENS (MWh/y) LOLF (occ/y) LOLD (h/occ)

Charging
DC VC DC VC DC VC DC VC

Strategy

No EV 0.6115 124.08 0.3433 1.7813

Low 0.6522 0.6168 125.54 124.47 0.4047 0.3465 1.6116 1.7801

Moderate 0.8219 0.6300 175.83 127.32 0.6772 0.3774 1.2136 1.6691

Aggressive 2.1815 0.9606 497.57 192.86 1.8551 0.7137 1.1759 1.3459

Operating Reserve Capacity Evaluation - Direct and Valley Charging

Strategies - NHPP Approach - RTS-96 HW

The reference case (with no EV in the grid) of the operating reserve capacity

evaluation produces a LOLE index of 1.6463 h/y, as showed in Figure 6.19, which

presents the results for the EV-LL scenario. Using a DC strategy, the LOLE index

reaches 1.8005 h/y. For the same situation, the simulation performed with the

HPP approach estimated a LOLE index of 2.0795 h/y. The LOLE index estimated

by the use of a VC strategy is 1.6615 h/y using the NHPP approach. The HPP

approach estimated a LOLE index of 1.7161 h/y using the same EV scenario.

Figure 6.20 presents the results of the LOLE for the EV-ML scenario. Both direct

Figure 6.19: Results for the ORC evaluation - EV-LL - NHPP approach.
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Figure 6.20: Results for the ORC evaluation - EV-ML - NHPP approach.

and valley battery charging strategies increased their LOLE index as consequence

of the increased EV load. While the LOLE index, estimated through the NHPP, is

2.1671 h/y and 1.7166 h/y for both direct and valley battery charging strategies,

the HPP estimates a LOLE index of 2.9135 h/y and 1.7478 h/y, respectively.

At this EV penetration level, the result differences between both HPP and NHPP

approaches are not large. This differences have a slight increase when the EV

penetration level increases and the DC strategy is used. Figure 6.21 presents the

simulations considering the EV-AL scenario.

The LOLE index estimated through the use of a DC strategy is 3.8674 h/y. The

VC strategy estimates a LOLE of 2.3155 h/y. The HPP approach, for the same

scenario, estimated a LOLE index of 4.8896 h/y, which may compromise the system

adequacy.
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Figure 6.21: Results for the ORC evaluation - EV-AL - NHPP approach.

The LOLE index estimated through the NHPP approach (see Figure 6.21) is also

significant. The VC strategy for both HPP and NHPP approaches has kept the risk

indices low. Table 6.27 summarises all risk indices of the performed simulations

using the NHPP approach.

Next section will present the results for the controlled charging models. The

differences between the HPP and NHPP approaches, aforementioned, are also

identified in the next simulations. However, the NHPP approach allows the

possibility of estimate the SOC of each EV for the V2G strategy, which is not

possible through the use of the HPP approach.

Table 6.27: General results for the ORC evaluation - NHPP approach.

LOLE (h/y) EENS (MWh/y) LOLF (occ/y) LOLD (h/occ)

Charging
DC VC DC VC DC VC DC VC

Strategy

No EV 1.6463 388.65 1.2300 1.3384

Low 1.8005 1.6615 483.01 391.91 1.1702 1.2422 1.5385 1.3375

Moderate 2.1671 1.7166 738.07 400.09 1.6550 1.2989 1.3094 1.3216

Aggressive 3.8674 2.3155 1314.37 528.88 4.5306 1.9031 0.8536 1.2167
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6.6.3 IEEE Reliability Test System 1996 HW - Controlled

Charging Models

The controlled battery charging strategy is able of taking into account the

possibility of controlling the charging rate or even postponing the battery

charging for another moment, when the ORC is threatened. Therefore, when a

failure state occurs in the ORC evaluation, the EV in controlled charging mode

might be turned off to be charged later.

The V2G strategy takes into account the possibility of injecting electric energy

from the batteries back to the grid, when a deficit of the operating reserve

capacity is identified or when the wind variability is greater than an established

threshold.

In one hand, the mobilisation of the EV can lead to the increase of the operating

reserve by injecting the electric energy stored in their batteries. On the other hand,

the use of V2G might mitigate the wind power variation.

The simulation parameters are the ones presented in the reference case (Section

6.5.1). The stopping criterion is β convergence of 5% or 10,000 sampled years.

Operating Reserve Capacity Evaluation - Controlled Charging Strategy

- HPP Approach - RTS-96 HW

Figure 6.22, presents the effect of the controlled battery charging strategy through

the LOLE index using the HPP approach. The LOLE index of 1.2943 h/y shows

the effective contribution of the battery charging postponement for the operating

reserve, once the reference of this index is 1.6463 h/y.
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Figure 6.22: Results for the ORC evaluation - EV-AL - HPP approach - Controlled

strategy.

Table 6.28 presents all risk indices calculated in this simulation. From that it is

possible to confirm the EV contribution to the operating reserve capacity.

Assuming an aggregation entity that is able to send a signal to the EV/charging

point, in order to postpone the battery charging, the generating units

synchronised to meet the EV load will meet the system uncertainties.

If the capacity of these generating units is enough to meet the system uncertainties

that exceed the operating reserve level, then the system failure state is solved.

Table 6.28: General results for the ORC evaluation - HPP approach - Controlled

strategy.

LOLE (h/y) EENS (MWh/y) LOLF (occ/y) LOLD (h/occ)

Charging
CC CC CC CC

Strategy

No EV 1.6463 388.65 1.2300 1.3384

Aggressive 1.2943 453.07 0.8347 1.5506
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Operating Reserve Capacity Evaluation - Controlled Charging Strategy

- NHPP Approach - RTS-96 HW

This case performs the evaluation of the reliability indices using the NHPP

approach. The estimated LOLE index is 1.5839 h/y, which shows the

improvement of the system adequacy under a deployment of the controlled

charging strategy. Figure 6.23 presents this effect.

Figure 6.23: Results for the ORC evaluation - EV-AL - NHPP approach -

Controlled strategy.

Compared to the HPP case, whose result presented a LOLE index of 1.2943 h/y,

the use of the NHPP approach may attenuate this effect. As mentioned before,

the detailed representation of the EV arrivals may mitigate this impact. Table 6.29

presents the estimated risk indices for this simulation.

Table 6.29: General results for the ORC evaluation - NHPP approach - Controlled

strategy.

LOLE (h/y) EENS (MWh/y) LOLF (occ/y) LOLD (h/occ)

Charging
CC CC CC CC

Strategy

No EV 1.6463 388.65 1.2300 1.3384

Aggressive 1.5839 383.91 1.1721 1.3512
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Operating Reserve Capacity Evaluation - V2G Charging Strategy -

NHPP Approach - RTS-96 HW

The main advantage of the NHPP approach is the possibility of monitoring the

battery SOC of each EV. Therefore, the next simulations will present the results

provided by this model under two different operational strategies: to provide an

additional support to the operating reserve capacity and to compensate the wind

power variation.

V2G - Operating Reserve Capacity Support

Table 6.30 presents the conventional reliability indices related to the evaluation of

the RTS-96 HW. The LOLE index of the case with no EV is decreased from 1.6463

h/y to 1.0236 h/y, when the V2G strategy is applied. Comparing to the previous

case, which considers the CC strategy, the LOLE index reached through the use

of V2G decreases from 1.5839 h/y to 1.0236 h/y. This difference is regarding the

increase of the system capacity. This surplus of capacity is then used to deal with

the system uncertainties.

Table 6.30: General results for the ORC evaluation - NHPP approach - V2G

strategy.

LOLE (h/y) EENS (MWh/y) LOLF (occ/y) LOLD (h/occ)

Charging
V2G V2G V2G V2G

Strategy

No EV 1.6463 388.65 1.2300 1.3384

Aggressive 1.0236 232.69 0.7973 1.2838

At the same moment that the vehicles are injecting electric energy back to the grid,

they leave the battery charging mode. Therefore, the availability of the generating

capacity is greater than the case that uses CC strategy. The presented results show

the effective EV contribution to the operating reserve capacity regarding the use

of controlled charging strategies.
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V2G - Wind Power Variability Compensation

The V2G model was also tested through a different operational strategy. The

possibility of charging/discharging vehicle batteries was used to compensate the

wind power forecast error or, in other words, the wind power variation. This

situation is analogue to the storage stationary battery systems, presented in

Chapter 5, which are able to mitigate the impact of the wind power variation.

The goal of this simulation is to verify if the V2G strategy is able to decrease the

wind power variation by the injection of electrical energy in the grid, in terms of

capacity. The following electrical parameters for each battery were used in this

simulation. A minimum and maximum battery SOC of 30% and 80%,

respectively. The maximum charge and discharge rates are 3 kWh/h and 9

kWh/h and, the charging/discharging efficiency is 97.5%.

Figure 6.24 presents the average SOC representation of a sampled day and the wind

power forecast error with and without applying the V2G strategy. Different of the

stationary SBS, the EV have a distributed aspect. This operational strategy may be

applied in modern power systems, as smart grids. In this sense, the EV mobilisation

may compensate the RES variation improving their performances.

Note that the “WFE - after” presents a decrease in its variability due to the

V2G strategy. In this environment, suitable forecasting methods are important to

Figure 6.24: Charge/Discharge cycle of the EV batteries - V2G strategy.
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provide enough information to the decision makers, as the system operators, in

order to mobilise the EV to support this type of operational strategy.

6.7 Computational Burden

The performance of the HPP and NHPP approaches is presented in Table 6.31,

considering the IEEE RTS 1996 HW. The desktop computer description used is

an Intel Core i7-2600 CPU 3.4 GHz and 8 GB of RAM.

Table 6.31: Elapsed CPU Time - RTS-96 HW Simulation Cases.

No EV Low Moderate Aggressive

DC VC DC VC DC VC CC

HPP ≈ 2 h ≈ 1 h ≈ 2 h ≈ 45 min. ≈ 2 h ≈ 30 min. ≈ 40 min. ≈ 1 h

NHPP ≈ 10.5 h ≈ 10 h ≈ 10.5 h ≈ 9.5 h ≈ 10.5 h ≈ 5.5 h ≈ 9.5 h ≈ 4.5 h

In this sense, the main differences between the HPP and NHPP approaches lie on

the clustered and individual monitoring of the EV arrivals. The NHPP approach

generates a much greater number of EV arrivals than the HPP approach, increasing

the computational effort.

6.8 Final Remarks

This chapter has presented several simulations of test and real systems in order

to demonstrate the EV impact on the security of supply. The evaluation is made

through the reliability indices analysis provided by the SMCS process.

For such task, three EV scenarios were used regarding their penetration level in

the electric systems: low, moderate and aggressive. The test system was assessed

by the use of different proposed EV scenarios and battery charging strategies.
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From the uncontrolled charging models, the use of the valley hours to charge EV

batteries has been a good strategy to keep the reliability indices on the same

level as the case with no EV in the grid. However, the impact on the system

adequacy, regarding the uncontrolled battery charging strategies, increases as the

EV deployment increase. In order to effectively alleviate the EV impact on the

system adequacy, the controlled battery models should be applied. They have

demonstrated the best system performance to mitigate the EV impact and to

provide ancillary services to the power systems.

Regarding the real system assessments, only the HPP approach was considered.

The PGS, SGS and GGS have shown that the system configurations are robust

enough, from the static reserve perspective, to receive a massive EV penetration

scenario without system reinforcement, excepting by some cases where

uncontrolled charging strategies were considered. The controlled charging

strategy has demonstrated the most suitable one to mitigate the EV impact on

the system adequacy. These results point out that under adequate control

schemes, more vehicles can be included in the power systems without

compromising the system adequacy.

Regarding the used approaches to model the EV load, the results have shown that

there are no large differences between the estimated risk indices using both HPP

and NHPP approaches. Therefore, from the computational effort perspective, the

use of the HPP may is more adequate to achieve the reliability indices to measure

the system adequacy using the DC, VC and CC strategies. However, the detailed

representation of the EV arrivals provided by the NHPP approach makes it possible

to monitor the individual charging requirement and battery SOC of the EV. This

feature allowed the development of a V2G strategy considering a more realistic

behaviour of the vehicles.
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Conclusions and Future Work

This dissertation has presented the developments carried out within the objectives’

framework proposed in Chapter 1. The main conclusions, contributions and the

identification of some research topics for future work are presented throughout this

chapter.

7.1 Conclusions

A stochastic methodology for developing EV models has been proposed, in order

to evaluate their impact on the adequacy of the security of supply in systems with

high integration level of RES. The conclusions are divided in proposed modelling

methodology, EV charging strategies and real system analysis.

The main conclusions regarding the developed methodologies are:

• The proposed EV models based on the HPP estimate the number of EV

arrivals, which proceed to battery charging, in order to calculate the EV

load taking into account its mobility behaviour. This approach aggregates the

counted arrivals in an hourly basis promoting less computational effort and,
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consequently, faster results. However, the fixed battery charging requirement,

assumed in this approach, has produced a slight different estimates of the

reliability indices when compared to the NHPP approach.

• The proposed EV models based on the NHPP estimate the individual EV

arrivals addressing the arrival time on the problem. For each EV arrival is

estimated a battery charging time, which is calculated based on an uniform

distribution, in order to represent different battery charging requirement

for each vehicle. The disaggregated EV arrivals and the way how the

battery charging time is estimated are the main differences between both

HPP and NHPP approaches. These differences led to an attenuation of the

EV impact on the reliability indices when the NHPP is applied. Moreover,

the NHPP algorithm clearly requires more computational effort increasing

the simulation time on account of the EV penetration level increases. On

the other hand, the NHPP allows the V2G modelling, once it is possible to

monitor the individual arrival and departure times of the vehicles.

The proposed EV models are able to assess the impact of different types of battery

charging schemes. In Chapter 6, it was demonstrated the effect of these strategies

on the adequacy of different generating systems. The main conclusions regarding

the modelled battery charging strategies are:

• Direct Charging – This strategy, in fact, is the absence of a charging

strategy. The use of such battery charging strategy in the simulations has

demonstrated an increase in the daily peak demand, mainly because this

strategy follows the population mobility. Therefore, considering the increase

of the peak demand, the generation capacity should be increased in order

to meet this additional load.

• Valley Charging – This strategy consists of charging the EV batteries only

in the valley period. Up to a certain level of EV integration, the valley

battery charging has presented good performances. From the static and

operating reserves perspectives, the reliability indices were kept low, close
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to the ones calculated without EV deployment. Although it does not

comprise an intelligent procedure, the valley hours is an appropriate period

to charge the EV batteries due to the low conventional demand. On the

other hand, above a certain level of EV deployment, this strategy might

move the peak hour from the evening to the beginning of the dawn, as

showed in Chapter 6, compromising the system.

• Controlled Charging – This strategy consists of an opportunity to provide

active demand side management through an aggregation entity, which will

be responsible to manage the EV charging. The main idea is to postpone the

EV charging or decrease its charging rate to increase the operating reserve

capacity through the release of the generating units scheduled to meet the

EV load. The results have shown, through the reliability indices analyses,

that this strategy can maintain the system adequacy, allowing the increase

of the EV penetration level and/or postponing the system reinforcement.

Assuming that most of the EV owners follow this strategy, it was showed

that the reliability indices might be better than the ones calculated to a

scenario without EV, since the battery charging postponement effectively

contributes to increase the available operating reserve capacity.

• V2G Charging – The results have shown the improvement on the reliability

indices through the electric energy injection from a set of EV to the grid,

increasing the available capacity of the operating reserve. In this sense, the

aggregation entity is essential for the success of such strategy in order to

mobilise the EV to provide the electric energy needed. This thesis also

researched the possibility of EV to compensate the variation of the wind

power. The results have demonstrated the decrease of the wind power

variation, when a set of EV is mobilised to inject the stored electrical

energy back to the grid.

The conclusions, regarding the real system studies, are described as follows:

• Portuguese Generating System – From the static reserve perspective, the
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performance of the PGS configuration for 2030 has demonstrated the

robustness of this system. From the operating reserve capacity perspective,

the performance of the EV models under the aggressive scenario has shown

that the use of direct charging strategy impacts the adequacy of the PGS

with significant reliability indices, which may compromise the system

configuration for 2030. However, the valley or controlled charging strategies

are able to maintain the reliability indices at the same level of the no EV

scenario. Therefore, it is desirable the use of these strategies in order to

mitigate the EV impact on the system adequacy and postpone the

necessity of increasing the generating capacity of the PGS for 2030 to

accept a higher EV penetration level.

• Spanish Generating System – The SGS configuration, from the static

reserve assessment, did not show significant reliability indices. Therefore,

the adequacy evaluation of the security of supply has demonstrated the

robustness of this system. From the operating reserve capacity perspective,

the SGS configuration is also flexible enough to keep the system robustness,

even with the integration of EV in the system. The obtained reliability

indices are not significant, however, during the ORC evaluation an interest

result was identified. The performance of the aggressive scenario adopting

the valley charging strategy has presented a LOLE index of 1.9950 h/y

whilst the performance adopting the direct strategy has presented a LOLE

index of 0.9374 h/y. Although the estimated low risk indices, this behaviour

change means that the valley charging strategy might affect the ordinary

peak demand, moving it to the beginning of the dawn.

• Greek Generating System – The GGS configuration for 2030 has presented

the highest reliability values from the static reserve perspective when the

EV are integrated in the system. The direct charging strategy has

demonstrated significant impact even under the moderate scenario in both

static and operating reserve evaluations. From the static perspective, the

performance of the EV penetration scenarios through the valley charging
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strategy allowed to keep the reliability indices low. However, the

performance of the operating reserve capacity evaluation has shown a

significant increase of the reliability indices. The moderate and aggressive

scenarios have demonstrated reliability indices that point out to a need for

revision of the GGS configuration for 2030.

In a general way, the EV deployment, under controlled charging strategies, will

not require the necessity of increasing the generating capacity for the years to

come. In this sense, it is essential to invest on the standardization and

implementation of communication infrastructures and an aggregation entity that

allows the management of the controlled charging strategies. Otherwise, a

massive integration of EV will increase the total system demand compromising

the adequacy of the security of supply.

7.2 Main Contributions

The main contribution of this thesis is to allow the evaluation of the EV impact

on the adequacy of the security of supply through the static and operating

reserve assessments. The other contributions of this thesis are divided as follows:

the development of the HPP approach, the development of the NHPP approach,

the modelling of the EV battery charging strategies and the studies using four

different generating systems, which allows taking conclusions about the different

battery charging models behaviour.

• The proposed EV models based on the HPP enabled to address the EV load

in the same time basis of the conventional demand using a fixed charging

time for the set of vehicles in charging mode. This characteristic impacts on

the system adequacy, producing slight different risk indices if compared to

the ones estimated through the NHPP. However, this approach has a lower

computational effort reaching the result convergence much faster than the

NHPP.
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• The proposed EV models based on the NHPP evaluates the EV arrivals

individually, addressing the arrival time and a random charging time for

each vehicle. The methodology allows evaluating the battery SOC for each

vehicle supporting the development of the V2G model. The more detailed

representation is both the advantage and disadvantage of such approach. On

one hand the simulations have taken long time to reach the stopping criteria,

because of the increase in the number of system evaluations. On the other

hand, the variable battery charging for each vehicle may represent a more

realistic situation.

The developed HPP and NHPP approaches can be extended to components that

have similar behaviour to be addressed in the adequacy evaluation of the security

of supply.

The modelling of the battery charging strategies is another contribution of this

thesis. The uncontrolled charging models represent the situation where no

aggregation entity exists. The controlled charging models allows to evaluate the

EV contribution to the system. The increase in the operating reserve capacity

through the use of controlled battery charging strategies increases the system

flexibility. These strategies have demonstrated good results in order to maintain

the risk indices low in systems with large EV deployment and high level of wind

power, such as Portugal and the RTS 96 HW. The V2G charging strategy was

implemented under two approaches. Firstly, the EV contribution for operating

reserve capacity was taken into account. This scheme has demonstrated the

decrease of risk indices allowing to integrate more EV. Secondly, the EV

contribution to compensate the wind power variation. The different results have

shown that the V2G strategy can decrease the wind power variation produced by

the generating systems. This scheme may allow to integrate more wind power

sources in a more reliable way. The proposed methodologies presented the

inclusion of the EV charging strategies in the Sequential Monte Carlo Simulation

method, which has demonstrated the possibility of performing two different

stochastic processes in the same simulation framework (Markovian and Poisson
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processes), representing at the same time the state transitions of the electrical

components and the EV arrivals.

The performed studies using four different generating systems allowed to take

conclusions about the EV models and the impact of each battery charging

strategy on the system adequacy. These studies also allow to verify the behaviour

of the operating reserve capacity with and without EV in the system. The results

presented good performances of the controlled and V2G charging strategy

regarding the EV contribution to the operating reserve capacity. Although both

CC and V2G strategies are capable of decreasing the risk indices, the V2G has

demonstrated even better results.

7.3 Future Work

The following topics, related to the proposed methodology, were identified to be

explored in future researches:

• Improvement of the HPP assumptions : the HPP approach has been

developed under the assumption that the clustered EV have the same and

fixed battery charging requirement. The development of new assumptions

may lead to an decrease in the result difference when compared to the

NHPP approach. For instance, the random battery capacity requirement

used in the NHPP approach could be addressed in the HPP approach.

• Improvement of the NHPP algorithm: the NHPP approach is suitable to

represent the EV arrivals dependent of the arrival time. However, the SMCS

method visits all accepted EV arrivals and departures estimated through

the NHPP, which has led to an huge increase in the number of evaluations.

This approach might be improved by using different techniques as the ones

presented in Section 2.3.4 in order to spent less computational time during

the simulations.
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• Improvement of the V2G strategy : this strategy can be improved through

the enhancement of the battery SOC model, which currently is estimated by

sampling its value for each vehicle. The use of statistical data could improve

the mobility representation of the model.

• Usage of the EV models : the current studies were based on the adequacy

evaluation of the generating systems, which does not comprise the electrical

network. The proposed EV models can be used in the adequacy of the power

systems at transmission and distribution levels in order to determine the EV

impact on the level of network congestion, for instance.

• Communication infrastructure impact on the reliability of the power systems :

the current methodology does not account for the communication failures

that may happen during the transmission of signals between the aggregation

entity and the vehicles/charger point. The development of a communication

model may enhance and complete the EV models proposed in this thesis.

The topic related to the EV mobility behaviour was also identified to be further

explored. Different assumptions can be made assuming, for instance, specific

periods to provide V2G service for the system. This type of assumption may

increase the representative analysis of the proposed controlled EV models. Other

issue is related to the use of different mobility patterns. An extensive study for

different mobility patterns may identify a more generalised benefits of using the

different EV models.
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