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Resumo

O objetivo desta tese é melhorar o Planeamento e o Controlo das Redes de
Transportes Públicos Rodoviários (i.e. autocarros e táxis) utilizando os da-
dos geoespaciais transmitidos por cada um dos véıculos em tempo real. Para
tal, propomo-nos a monitorizar as operações dessas redes no sentido de obter
informação que ajude, de alguma forma, a prever os seus futuros estados a cur-
to/médio prazo. Numa primeira abordagem, foi feito um estudo do Estado da
Arte em métodos baseados em dados geoespaciais para resolver problemas rela-
cionados com este tópico. Com este passo, pretendemos identificar problemas
de investigação em que este tipo de métodos possa, de alguma forma, sofrer
e/ou proporcionar algum avanço.

Para resolver tais problemas, propomo-nos a desenvolver algoritmos e/ou
metodologias sustentáveis (dum ponto de vista computacional) para lidar com
estas fontes de grandes quantidades de dados. Estes algoritmos irão contribuir
para uma melhoria na qualidade dos serviços de transportes públicos o que irá,
em última análise, melhorar a mobilidade do Homem nas grandes áreas urbanas.

Na sequência do referido estudo do estado da arte, foi posśıvel identificar
três problemas concretos onde este tipo de dados representa uma mais valia:
(1) Avaliação Automática da Cobertura de Horários em Transportes Coletivos;
(2) Redução em Tempo Real das ocorrências de Bus Bunching (i.e. agrupa-
mentos indesejados de véıculos de Transportes Coletivos) e (3) Recomendações
Inteligentes em Tempo real sobre a praça de Táxis mais conveniente para ir em
cada momento (do ponto de vista dos condutores), de acordo com o presente es-
tado da rede. No sentido de resolver cada um destes problemas, propuseram-se
diferentes metodologias de aprendizagem automática que superam e/ou com-
plementam, de alguma forma, as soluções que já existem atualmente.

O primeiro problema (1) é relativo aos dias que são cobertos pelo mesmo
plano de horário. Normalmente, Esta definição feita durante o planeamento das
rotas e é baseada na relação entre os perfis de procura gerados nesta etapa e
os recursos dispońıveis para servir essa mesma procura. Em consequência deste
facto e tanto quanto sabemos, não existe qualquer trabalho de investigação neste
tópico. Todos os dias cobertos pela mesmo plano de horário possuem exacta-
mente o mesmo perfil diário (i.e. a duração total das viagens em função da sua
hora de partida) pois eles partilham esse mesmo horário. Todavia, os valores
reais desses tempos de viagem pode divergir dos agendados (provocando, desta
forma, uma discrepância indesejada entre os tempos de viagem no horário e
aqueles vividos pelos passageiros no dia-a-dia). Para ultrapassar este problema,
propôs-se avaliar se a cobertura de cada horário é adequada ao comportamento
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dos véıculos no dia-a-dia. Esta avaliação foi feita utilizando uma nova metodolo-
gia de aprendizagem automática desenvolvida especialmente para este efeito.
Esta ferramenta explora as diferenças entre os horários teóricos e os reais para
juntar cada um dos dias em diferentes grupos. Este agrupamento automático
e feito de acordo com uma métrica de distancia calculada sobre os seus perfis.
Em seguida, uma ferramenta de indução e utilizada para extrair regras com-
preenśıveis sobre que dias devem ser cobertos por cada plano de horário. Tais
regras podem ser utilizadas pelos responsáveis de planeamento para proporem
alterações a referida cobertura.

A ocorrência de (2) Bus Bunching (BB) é um dos indicadores mais evidentes
da falta de fiabilidade dum serviço de transporte públicos. Dois (ou mais) au-
tocarros a circular juntos na mesma rota e um sinal inegável de que algo corre
bastante mal nesse mesmo serviço. Tipicamente, o estado da arte neste tópico
passa por assumir que a probabilidade da ocorrência de BB e minimizada por
garantir a estabilidade da frequência entre véıculos. Apesar de valida, esta
abordagem implica adotar múltiplas ações corretivas (ex.: redução da veloci-
dade máxima ou aumento do tempo de paragem). Consequentemente, estes
processos impõe uma sobrecarga de trabalho mental para os condutores que
podem, em ultimo caso, não ser capazes de cumprir tais ordens. Nesse sentido,
propusemos adoptar uma abordagem pro-activa a este problema de controlo
operacional – em oposição as referidas táticas reativas. A ideia passa por es-
timar a probabilidade da ocorrência de BB nas futuras paragens da rota que,
caso ultrapasse um determinado limiar, lança um alarme que pode resultar na
recomendação duma acção de controlo para evitar tal ocorrência. Esta prob-
abilidade é calculada através dum novo método incremental de aprendizagem
automática supervisionada desenvolvido especificamente para este efeito. Este
método explora simultaneamente a base de dados geoespaciais da rota e os dados
transmitidos por cada véıculo em tempo real para, não só reduzir as ocorrências
de BB, mas também a quantidade de recursos necessários para efectuar estas
decisões. Este método inspira-se em diversos metodologias estat́ısticas e de op-
timização tais como redes neuronais, métodos de regressão linear/não linear e
teoria de probabilidades, entre outros.

A (3) inteligência de mobilidade dos condutores de táxis é um fator funda-
mental para maximizar tanto a fiabilidade do serviço, bem como a sua rentabili-
dade. Naturalmente, o conhecimento sobre onde e quando a procura de serviços
de táxi vai emergir acrescenta uma larga vantagem competitiva ao condutor –
especialmente em cenários onde não é viável, dum ponto de vista económico,
conduzir o véıculo aleatoriamente pela cidade até encontrar o próximo pas-
sageiro. A escolha da próxima praça onde parquear o véıculo para aguardar
pelo próximo serviço baseia-se em quatro variáveis: (i) a o preço esperado dum
serviço nas praças ao longo do tempo; (ii) a distância, em tempo ou em espaço,
entre a sua posição atual e a posição das praças; (iii) o numero de táxis já posi-
cionados nas praças neste momento e (iv) a procura em cada praça ao longo
do tempo. Contudo, tanto quanto sabemos, não existe qualquer trabalho de
investigação que considere estas quatro variáveis simultaneamente. O valor da
variável (iii) pode ser obtido diretamente com base na posição dos véıculos da
frota em tempo real – todavia, as restantes três variáveis requerem modelos de
previsão a curto prazo para podermos estimar o seu valor.
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A tipificação da procura de serviços de táxi a curto prazo é um problema
complexo. Essa procura pode ser decomposta em (iv) quantidade de passageiros
(i.e. um número inteiro positivo) e (i) o valor esperado do preço desses mesmos
serviços (i.e. uma categoria de preços). No sentido de resolver este problema,
propôs-se uma metodologia que utiliza alguns métodos de análise de series tem-
porais em conjunto com técnicas de discretização. Esta metodologia distingue-se
das já existentes por ser capaz de aprender incrementalmente e, desta forma,
adaptar-se adequadamente a qualquer cenário de procura (ex.: picos de procura
inesperados).

A variável (ii) diz respeito à quantidade de tempo necessária para chegar a
um ponto da cidade/praça onde existem condições de procura favoráveis (ex.:
uma elevada procura ou uma procura de elevada rentabilidade). Consequente-
mente, este problema consiste numa previsão do tempo de viagem apriori. A
previsão do tempo de viagem é um problema muito estudado na literatura.
Tipicamente, este problema é resolvido com a aplicação direta um algoritmo
de aprendizagem supervisionada já existente. Aqui, decidiu-se apresentar uma
abordagem mais genérica e complexa a este conhecido problema. Esta decisão
baseia-se em dois fatores: (ii-1) a necessidade criar uma forma sustentável de
extrair tanta informação quanto posśıvel dos dados transmitidos por estas redes
veiculares, independentemente do tipo conhecimento (i.e. variável objetivo) que
queremos extrair; (ii-2) garantir que somos capazes incluir múltiplas fontes de
dados para conseguir melhorar a quantidade de informação dispońıvel para os
modelos de aprendizagem. Para resolver este problema neste contexto, propôs-se
uma nova metodologia para manter estat́ısticas suficientes sobre uma ou varias
variáveis de interesse sobre uma matriz de origem-destino dinâmica ao longo do
tempo. Esta metodologia inclui técnicas de aglomeração de dados geoespaciais
e algoritmos de aprendizagem automática incrementais.

Todos estes problemas foram resolvidos utilizando dados reais transmitidos
pelos dois maiores operadores de transportes públicos rodoviários a operar no
Porto (Portugal). Estas frameworks atingiram resultados promissores nas expe-
riencias que foram efetuadas com recurso a esses mesmos dados, demonstrando
assim a sua utilidade no mundo real. Este trabalho resultou em dezasseis pub-
licações de elevada qualidade em conferências e revistas reconhecidas interna-
cionalmente.
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Abstract

This thesis is focused on improving both Operational Planning and Control of
Public Road Transportation (PT) Networks (i.e. buses and taxis) using location-
based data gathered through the Global Positioning System (GPS data). Its
aim is to monitor the operations of these vehicular networks to infer useful in-
formation about their future status on both short-term and long-term horizons.
To do it so, we undertook an explorative approach by surveying the data driven
methods on this topic in order to identify research opportunities worthy to be
further studied. The main idea is to provide sustainable frameworks (in a com-
putational point of view) to handle this massive sources of data. Ultimately, we
want to extract information useful to improve Human Mobility on the major
urban areas.

As result of the abovementioned survey, three concrete problems were ad-
dressed on this thesis: (1) Automatic Evaluation of the Schedule Plan’s Cov-
erage; (2) Real-Time Mitigation of Bus Bunching occurrences; (3) Real-Time
Smart Recommendations about the most adequate stand to head to in each
moment according to the current network status. To do it so, we developed
Machine Learning (ML) frameworks in order to advance the State-of-The-Art
on such problems.

The first problem (1) concerns the days that are covered by the same sched-
ule. This definition is usually made during the design of the network planning
and it is based on the relationship between the demand profiles generated and
the resources available to meet such demand. Consequently, at the best of our
knowledge, there is no research work addressing this topic using GPS data. All
the days covered by the same timetable have exactly the same daily profile due
to the fact that they share the same departing/arrival times. However, the real
values of such times may differ from the original ones (causing an undesired
gap between the defined timetables and the real ones). To overcome this is-
sue, we propose to evaluate if such coverage still meets the network behavior
using a ML framework. It explores such differences by grouping each one of
the days available into one of the possible coverage sets. This grouping is made
according to a distance measured between each pair of days where the criteria
rely on their profiles. As output, rules about which days should be covered by
the same timetables are provided. Such rules can be used by the operational
transportation planners to perform the abovementioned evaluation. These rules
also provide insights on how the current coverage can be changed in order to
achieve that.

The prevalence of (2) Bus Bunching (BB) is one of the most visible charac-
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teristics of an unreliable service. Two (or more) buses running together on the
same route is an undeniable sign that something is going terribly wrong with
the company’s service. Most of the state-of-the-art on this topic departs from
the assumption that the probability of BB events is minimized by maximizing
headway stability. Notwithstanding its validity, this approach requires multiple
control actions (e.g. speed modification, bus holding, etc.) which may impose
high mental workload for drivers and result with low compliance rates. Hereby,
we propose a proactive rather than a reactive operational control framework.
The basic idea is to estimate the likelihood of a BB event occurring further
downstream to then let an event detection threshold triggers the deployment
of a corrective control strategy. To do it so, we propose a Supervised Online
Learning framework. It is focused on exploring both historical and real-time
AVL data to build automatic control strategies, which can mitigate BB from
occurring while reducing the human workload required to make these decisions.
State-of-the-art tools and methodologies such as Regression Analysis, Proba-
bilistic Reasoning and Perceptron constitute building blocks of this predictive
methodology.

The (3) taxi driver mobility intelligence is an important factor to maximize
both profit and reliability within every possible scenario. Knowledge on where
the services (transporting a passenger from a pick-up to a drop-off location)
will actually emerge can be an advantage for the driver - especially when there
is no economic viability of adopting random cruising strategies to find passen-
gers. The stand-choice problem is based on four key variables: (i) the expected
revenue for a service over time, (ii) the distance/cost relation with each stand,
(iii) the number of taxis already waiting at each stand and (iv) the passenger
demand for each stand over time. However, at the best of our knowledge, there
is no work handling this recommendation problem by using these four variables
simultaneously. The variable (iii) can be directly computed by the real-time
vehicle’s position - however, the remaining three need to be estimated for a
short-term time horizon.

To estimate the short-term demand that will emerge at a given taxi stand
is a complex problem. Such demand can be decomposed into two axis: the
(iv) pick-up quantity (i.e. an integer representing the number of services to be
demanded) and (i) the expected revenue for a service over time (i.e. a fare-
based category). To do it so, we propose a framework based on both time series
analysis and discretization techniques which are able to perform such supervised
learning task incrementally.

The variable (ii) is related on how much time it will take to get to a given
urban area/taxi stand where there are favorable service demand conditions (e.g.
high service demand in terms of passenger quantity or revenue-based). Conse-
quently, it is focused on apriori Travel Time Estimation. This problem is vastly
covered on the literature - namely, by using Regression analysis. However, we
propose a most general technique to address this problem. There are two mo-
tivations to do it so: (ii-1) to provide a sustainable way to handle these large
amount of data in order to extract usable information from it independently of
the problem we want to solve (namely, its variable of interest); (ii-2) to be able
to include multiple data sources in order improve the penetration rate (i.e. the
ratio of ground truth information) of our framework. To carry out such task,
we propose incremental discretization techniques to maintain accurate statistics
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of interest over a time-evolving Origin-Destination matrix. These techniques
include spatial clustering and incremental ML algorithms.

All these problems were addressed using real world data collected from two
major public road transportation companies running in Porto, Portugal. These
frameworks achieved promising results on the experiments conducted to validate
them. This work resulted into sixteen high quality peer-reviewed publications
at internationally known venues and journals.
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Résumé

L’objectif de cette thèse est d’améliorer la planification et le contrôle des réseaux
de transport public routier (tels que les bus et les taxis) en utilisant des données
géo-spatiales recueillies par les appareils GPS (Global Positioning System).

D’abord, il faut surveiller les activités de ces réseaux afin d’obtenir des in-
formations que puissent aider à prévoir leurs futurs états dans le court / moyen
terme. Dans une première approche, on a dû conduire une étude de l’état de
l’art à propos des méthodes basées sur les données géo-spatiales pour résoudre
les problèmes liés à ce sujet. Le but de cette étape est d’identifier les problèmes
de recherche où telles méthodes pourraient en quelque sorte être utiles et fournir
une certaine amélioration. L’objectif principal de ce travail est de développer
des algorithmes et / ou des méthodes durables (du point de vue informatique)
pour faire face à ces sources de grandes quantités de données.

En fin de compte, l’objectif est de faire progresser la mobilité de l’homme
dans les grandes zones urbaines. L’analyse de l’état de l’art a rendu possible
d’identifier trois problèmes spécifiques où ces données représentent une grande
valeur ajoutée: (1) l’évaluation automatique de la couverture des horaires dans
les transports en commun; (2) la diminution en temps réel des occurrences de
groupage de bus (groupements indésirables des véhicules de transport en com-
mun) et (3) les recommandations intelligentes en temps réel sur la station de
taxi la plus pratique pour aller à tout moment (du point de vue des chauffeurs)
selon l’état actuel du réseau. Pour résoudre ces problèmes, on propose différentes
méthodes d’apprentissage automatique qui dépassent, en aucune manière, les so-
lutions qui existent déjà aujourd’hui.

Le premier problème (1) est à propos des jours qui sont couverts par le
même plan horaire. Normalement, ce réglage est effectué lors de la planification
des itinéraires et est basé sur le ratio entre les profils de la demande générée
dans cette étape et les ressources disponibles pour servir cette demande. En
conséquence, et aussi loin que nous le savons, il n’y a aucun travail de recherche
sur ce sujet. Chaque jour couvert par le même plan horaire a exactement le
même modèle quotidien (c’est-à-dire, la longueur totale des voyages en fonction
de leur heure de départ) parce qu’ils partagent le même horaire. Pourtant, les
valeurs réelles de ces temps de voyage peuvent différer de ceux prévus (provo-
quant ainsi un décalage indésirable entre les temps de voyage du plan et ceux
subis chaque jour par les passagers).

La survenue de (2) groupage de bus (BB) est l’un des indicateurs les plus
clairs de l’absence de fiabilité d’un service de transport public. Deux (ou plus)
bus fonctionnant ensemble sur le même itinéraire est un signe indéniable que
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quelque chose ne va pas bien dans le service. Typiquement, l’état de la tech-
nique dans cette discussion suppose que la probabilité d’occurrence de BB est
réduite au minimum en assurant la stabilité de fréquence des véhicules. Bien
que valide, cette approche implique l’adoption de plusieurs mesures correctives
(ex: réduction de la vitesse maximale ou accroissement du temps d’arrêt). Par
conséquence, ces procédés nécessitent d’une surcharge de travail mentale pour
les pilotes qui peuvent, à terme, n’être pas en état d’accomplir ces comman-
des. Dans ce sens, nous nous proposons d’adopter une approche proactive à ce
problème de contrôle opérationnel - par opposition à celles tactiques réactives.
L’idée est d’estimer la probabilité de BB dans les arrêts futurs de la route et, si
elle dépasse un certain seuil, déclencher une alarme qui peut aboutir à la recom-
mandation d’une action de contrôle pour prévenir un tel événement. Cette
probabilité est calculée en utilisant une nouvelle méthode d’apprentissage au-
tomatique supervisée incrémentale développée spécifiquement à cette fin. Cette
méthode explore simultanément la base de données géo-spatiales de la route et
les données transmises par chaque véhicule en temps réel non seulement pour
réduire les occurrences BB mais aussi la quantité de ressources nécessaires pour
prendre ces décisions. Cette méthode s’inspire sur diverses méthodologies statis-
tiques et d’optimisation tels que les réseaux de neurones, méthodes de régression
linéaire / non linéaire et la théorie des probabilités, entre autres.

La (3) mobilité intelligente des chauffeurs de taxi est un facteur clé pour
maximiser à la fois la fiabilité du service et sa rentabilité. Bien entendu, la
connaissance sur où et quand la demande pour les services de taxi émergeront
ajoute un grand avantage concurrentiel pour le chauffeur - en particulier dans
les scénarios où il n’est pas viable, d’un point de vue économique, conduire le
véhicule au hasard autour de la ville pour trouver le prochain passager. Le choix
de la prochaine place où garer le véhicule pour attendre le prochain service est
basé sur quatre variables: (i) le prix espéré d’un service dans chaque place au
fil du temps; (ii) la distance, dans le temps ou dans l’espace, entre la position
actuelle du taxi et la position des places; (iii) le nombre de taxis déjà positionnés
dans les places à ce moment-là ; (iv) la demande en chaque place au fil du temps.
A notre connaissance, il n’y a pas de recherche qui considère ces quatre variables
simultanément. La valeur de la variable (iii) peut être obtenue directement
basée sur la position des véhicules de la flotte en temps réel - néanmoins, les
trois variables restantes exigent des modèles de prévision à court terme afin
d’estimer sa valeur.

La classification de la demande pour les services de taxi à court terme est
un problème complexe. Cette recherche peut être décomposé en (iv) le nom-
bre de passagers (soit un entier positif) et (i) la valeur espérée du prix de ces
services (c’est-à-dire, une catégorie de prix). Pour résoudre ce problème, nous
proposons une méthode qui utilise l’analyse de séries temporelles ensemble avec
des techniques de discrétisation. Cette méthode diffère des existantes parce qu’il
apprend progressivement et, de cette façon, il s’adapte de manière appropriée
à n’importe quel scénario de la demande (c’est à dire des pointes de demande
inattendues).

La variable (ii) se rapporte à la quantité de temps nécessaire pour atteindre
un point dans la ville / place où il y a des conditions favorables de la de-
mande (par exemple, une forte demande ou une demande de rentabilité élevée).
Par conséquence, ce problème est une prédiction du temps de voyage a priori.
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La prévision des temps de voyage est un problème amplement étudié dans la
littérature. Toutefois, on a effectué une approche à ce problème plus fondamen-
tale que la simple application d’un algorithme d’apprentissage supervisé exis-
tant. Cette décision est basée sur deux facteurs: (ii-1) créer une manière durable
pour extraire autant d’informations que possible des données envoyées par ces
réseaux d’opérateurs, indépendamment de la connaissance de type (c. vari-
able objectif) que nous voulons extraire; (ii-2) être possible d’inclure plusieurs
sources de données pour être en mesure d’améliorer la quantité d’informations
à la disposition des modèles d’apprentissage. Pour résoudre ce problème, dans
ce contexte, il est proposé une nouvelle méthode pour maintenir des statis-
tiques suffisantes concernant une ou plusieurs variables d’intérêt dans une ma-
trice source-destination dynamique dans le temps. Cette nouvelle méthodologie
comprend des techniques d’agglomération de données géo-spatiales et des algo-
rithmes d’apprentissage automatique incrémentales.

Tous ces problèmes ont été résolus en utilisant des données réelles confiées par
les deux plus grands opérateurs de transport routier public à Porto (Portugal).
Ces méthodologies ont obtenu des résultats encourageants dans les expériences
qui ont été menées en utilisant ces données, et, de cette façon, ont démontré son
utilité dans le monde réel. Ce travail a abouti à seize articles lors de conférences
ou publiés dans des revues internationalement reconnues.
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é fundamental para o ńıvel de qualidade que ele tem hoje. A ele agradeço a
oportunidade que me deu de mostrar o meu valor.

Quero também agradecer aos profs. Jorge Freire de Sousa e Michel Ferreira,
pelos casos de estudo reais em que me possibilitaram trabalhar, pelo acompan-
hamento que deram ao meu trabalho e pelas fontes de financiamento que prov-
idenciaram para suportar este doutoramento. Termino ainda com uma menção
ao profs. Fernando Nunes Ferreira e Augusto Sousa, pelas oportunidades que
me deram de iniciar a minha carreira académica como Monitor e Prof. Assis-
tente, respectivamente, e ao prof. Pavel Brazdil pelo exemplo de simplicidade
que sempre me transmitiu.

Agradeço ao LIAAD-INESC TEC pelo apoio loǵıstico e financeiro que deu
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Tuna de Engenharia da Universidade do Porto, pelas serenatas. E a todos os
outros que não deviam aqui mas que não estão por falta de espaço ou porque
eu como muito queijo. Ah! Ao queijo (bem lembrado)! E ao vinho do Pipa

xvii



xviii
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Chapter 1

Introduction

Nowadays, there are about 800 million vehicles running on our road networks
[Ferreira et al., 2012]. These vehicular networks are crucial for human mo-
bility, regardless of their type. The excessive number of vehicles running on
the world’s biggest urban areas are increasingly discouraging the use of private
transportation vehicles in favor of public transportation.

Such large number of vehicles running worldwide is increasing the complex-
ity of the transportation networks, especially its operations. Therefore, it is
becoming harder to maintain the efficiency of private transportation. These
inefficiencies lead to road congestion, higher levels of pollution, time and energy
wastes. Moreover, the increasing price of fuel is turning private transportation
into a luxury as the cars’ rising operational costs go up to levels which are un-
fordable in most family budgets. For instance, the congestion indexes in the
USA’s urban road networks in 2011 caused a total 5.5 billion hours in travel
delays and 2.9 billion gallons of fuel wasted [Schrank et al., 2012].

In the last decades, public road transportation companies played a central
role in highly populated urban areas, especially by providing fast short distance
transportation services. Inner-city transportation networks are becoming larger
to cover the increasing demand for fast and reliable transportation to and from
their industrial, commercial and residential cores. New challenges await this
industry: the aforementioned increase in fuel costs, its effects on ticket’s pricing,
and the improved offer on railway-based services is forcing the CO2 market to be
more reliable than before so that they can maintain their profitability. In the
US, the savings on congestion costs caused by public transportation services
increased nearly 131% from 1982 to 2005. However, this increase was 10%
between 2005-2011 [Schrank et al., 2012].

Consequently, monitoring their operations is now more relevant than ever.
This thesis is focused on taking advantage of the GPS (Global Positioning
System) to sense each vehicle position. The computer-based applications of
this data to provide innovative services related with different modes of trans-
portation are denominated as Intelligent Transportation Systems (ITS)
[European Parliament, 2010]. However, it is important to retain that ITS can
have a larger scope than this by their different domain applications such as ur-
ban infrastructures [Ferreira et al., 2010; Nunes et al., 2012], traffic management
[Wang, 2005] or even on the different types of data employed on such tasks (e.g.
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Loop Detectors [van Lint and Van der Zijpp, 2003]). From now on, we focus on
GPS-based ITS focused on public road transportation services.

GPS provided an unprecedented opportunity to develop large mobility net-
works. It constitutes an unbounded stream of data that arrives at a high rate.
In the last decades, Machine Learning (ML) research have been essentially
focused on batch learning usually using relatively small datasets. On batch
learning, the training data is assumed to be entirely available to the learn-
ing algorithm. It outputs a decision model after processing the data multiple
times. By doing so, it is expected to uncover patterns that can somehow help
to optimize these networks.

One of the limitations of such batch learning methods is their inability to
change their models after the training stage (i.e. in real-time). Hence, the
vehicular network’s nature is, by definition, highly dynamic. Such nature is
easily illustrated by sporadic traffic jams that may occur under particular con-
texts (e.g. the late afternoon of a particular road during a raining Friday when
there are works on another road directly connected to this one), which were not
within the training dataset. Consequently, these traditional ML algorithms do
not fully exploit the information within such location-based data stream. Such
task requires knowledge discovery methods able to output values while the data
is being collected (i.e. incremental), to react to unexpected situations such
as traffic jams or high demand events (i.e. concept drift) by adapting their
learning models to the current system status.

The aim of this thesis is to monitor the operations of these vehicular networks
to infer useful information about their future status on both short-term and
long-term horizons. To do it so, we start by reviewing the current State-of-the-
Art on data driven methods to improve the Operational Planning and Control
on Public Transportation (PT) Networks. The aim with this step is to identify
research opportunities provided by the GPS-based data which are not properly
covered by the existing literature. Finally, we intend to explore both offline and
online ML algorithms to provide advances on such topics. As an high-level goal,
we expect to increase the profitability of public road transportation companies
by mining this rich data source.

This Chapter begins by introducing a problem overview in Section 1.1. Then,
in Section 1.2 the objectives of this thesis are presented. Finally, the structure
of this document is detailed in Section 1.3.

1.1 Problem Overview

The GPS data comprises an accurate and yet cheap source of spatiotemporal
information. The basic structure of each sample consists on four variables:
(1,2) two coordinates corresponding to the vehicle’s latitude and longitude, (3)
the vehicle status (e.g. engine on/off) and (4) a timestamp (e.g. Julian). An
illustrative example is displayed in Fig. 1.1.

On a first glance, it may seem quite simple to infer the future values of
these traces (e.g. to plot them over a geographic map to predict the vehicle’s
destination). However, these vehicular networks provide hundreds of traces like
this one in real-time (i.e. one per each vehicle) whose values are dependent
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from each other. If we consider to mine the entire urban dynamics, we may
also consider to use additional GPS data sources such as other fleets (e.g. cargo
transportation) or even smartphones (see, for instance, [Do and Gatica-Perez,
2014]). Consequently, automatic techniques to uncover the patterns on such
traces are needed.

Many PT networks around the world already have these GPS devices in
place (e.g. mass transit agencies in New Jersey, Chicago, Minneapolis and
Seattle (USA); Ottawa and Montreal (Canada); Eindhoven and The Hague
(Netherlands) [Furth et al., 2003]). There are also multiple ITS that already
explore successfully this data for Intelligent Routing [Zhu et al., 2010], Bus
Travel Time prediction [Chien et al., 2002] or efficient taxi dispatching [Lee
et al., 2007]. Typically, such ITS frameworks employ (i) simple descriptive
statistics (e.g. moving averages, standard deviations) or (ii) offline ML methods
to extract information from the GPS traces. However, these traces comprise
an unbounded stream of data. This kind of data is produced continuously at
a high speed from multiple locations and time granularities which content is
highly stochastic. This data possess three key characteristics which make the
simple application of the abovementioned learning methods (i,ii) inefficient or
even useless. They are enumerated as follows [Gama, 2010]:

1. They provide an infinite source of spatiotemporal information where novel
concepts are being constantly introduced over time (e.g. an Artificial
Neural Network (ANN) trained using traffic flows collected on sunny days
will not accurately predict their future values on rainy ones);

2. The probability distribution of their values may evolve over time (e.g. a
continuous but speedy vehicular flow on a highway is heavily decreased by
a traffic jam);

3. Its high arrival rate does not allow to perform high demand computational
tasks over the data (i.e. optimal fitting) to extract useful patterns (e.g.
an ANN takes thirty minutes to be fitted to data collected between 2pm
and 4pm. However, during such period, one million of novel data samples
have arrived. Consequently, the obtained ANN is not reliable).

Recently, techniques to learn from data streams had an huge develop-
ment. Its increasing applications on many sensor networks - like our own ones
- proved its efficiency to deal with these characteristics [Rodrigues and Gama,
2009]. In this thesis, we intend to explore such techniques over the GPS streams

Figure 1.1: Illustrative example on a data stream of GPS traces.
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of data broadcasted by the vehicular networks comprised in public transporta-
tion means. They can be used as complement to offline ML methods or stan-
dalone, depending on its final application. The ultimate goal is to produce
sustainable learning frameworks on a computational view point. Such frame-
works must be able to deal with this explosive grow of spatiotemporal data
sources in a reliable way. The aplicational focus of such ITS is to improve the
operational planning and the real-time control of public road transportation
networks. The research question arose on this thesis is defined and discussed
below.

1.2 Research Question

In this PhD thesis, we want to test the validity of the following hypothesis:

Is it possible to improve the operational planning and control in Public Trans-
portation Networks by mining their location-based streaming data using Machine
Learning frameworks?

The scope associated with this hypothesis is wide due to the high number
of problems that can be fitted within. Obviously, we do not intend to solve all
in this thesis. The main idea behind testing such hypothesis is to study the
State-of-the-Art on these problems in order to identifya very small subset which
provide an opportunity to perform significant contributions. By doing so, we
intend to propose novel ways to deal with such large amounts of data which
can not only provide contributions for these industries but also to open novel
research lines on a mid-term future. Such concrete opportunities - as well as
the consequent research goals - are introduced throughout Chapter 2.

This hypothesis will be explored using location based-data from public road
transportation networks, namely, 1) the buses and 2) the taxis ones. These two
networks have some common characteristics and synergies - which corresponds
to the human activities in urban environments. Such synergies suggest
that these networks can be studied together in order to achieve a better com-
prehension of the phenomenons that affect their behavior They are enumerated
as follows:

1. Both are equipped with GPS devices which broadcast data available to
perform this study;

2. Both provide a continuous stream of data about the networks behavior
based not only on the vehicles’ location but also on other status vari-
ables such as the number of passengers traveling within or the vehicles’
mechanical status.

3. Both enclose vehicular networks whose operations rely on a) depen-
dences and/or b) correlations between the vehicles behavior. Some
examples of those could be a) the delay propagation effect on a given high
frequent bus route introduced by one vehicle failing the schedule or b)
the expected distance of a taxi service departing from a location of inter-
est given that the last N vehicles departed from such spot experienced a
cruising distance larger (or inferior) to a given time threshold.
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4. The passenger demand on the transportation services provided by such
networks is highly dependent on the regularities of the human behav-
ior such as the sleep period at night or the difference between the travelers
origins and destinations during workdays/weekends (e.g. the number of
night-time boardings of some bus lines on downtown is highly correlated
with the pick-up quantity on the nearby taxi stands).

5. The long-term planning of these networks is highly dependent on the
seasonality exhibited during the year such as the scholar holiday pe-
riod, the Christmas/Easter time or the Summer time. Important planning
stages on those networks (e.g.: the location of taxi stands on a given urban
area or the definition of the bus schedule plan) are relevant examples of
the dependency in place.

6. The real-time control of both is highly sensitive to anomalous de-
mand events that may unbalance the expected relationship between the
service offer and demand - and thereby provoking unexpected disrup-
tions on such service. Examples on this issue could be overcrowded buses
caused by large scale shows (e.g. sports games, music concerts) or even
the first Autumn rains effects, which may cause a temporary absence of
taxi offers on some location due to an exponential increase on passenger
demand (specially if they are not wearing properly to face such weather
condition).

The aforementioned characteristics represent similarities that are reflected
on the data provided by these networks, namely, 1) by exhibiting the same
granularity of the existent regularities (daily, weekly) and 2) highly correlated
passenger origin/destination matrices; 3) by revealing the existence of anoma-
lous demand events (allowing thereby their detection in both time and space)
or 4) even common data distributions on the time series of passenger counts.
Consequently, such streaming data provide challenging opportunities to improve
both networks operational planning and control by exploring methods to learn
and therefore identify these patterns. An overview on the State-of-the-Art on
AVL-based Intelligent Transportation Systems is presented in Chapter 2. By
surveying this subject, we expect to identify such opportunities by revealing
problems where such approaches may present a contribution to the existent lit-
erature. As consequence, a summary of specific research goals on this topic are
presented in Section 2.4.

1.3 thesis Structure

The remainder of this thesis is structured as follows:

• Part I: The Problem

– Chapter 2 comprises an overview on Intelligent Transportation Sys-
tems focused on improving the PT Planning and Control using stream-
ing location data. We start by reviewing applications focused on im-
proving the Planning on Mass Transit agencies, namely, on evaluat-
ing/improving their Schedule Plan (SP) reliability. Secondly, method-
ologies to build automatic control strategies are briefly surveyed.
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Thirdly, the State-of-the-Art on improving the real-time Control of
Taxi Networks is presented. Then, some research opportunities are
pointed out from those analysis. Finally, the concrete research goals
of these thesis are pointed out. The methodologies proposed to ac-
complish such goals are presented on the Parts II and III of this
thesis.

– Chapter 3 presents an overview on basic methods to learn from data
streams such as algorithms to build incremental histograms, time
series analysis techniques and ensemble frameworks.

• Part II: Mass Transit Agencies

– Chapter 4 details a framework to validate the day coverage of bus
schedule plans by mining its historical GPS data. The aim with this
method is to discover which are the days in the year that should be
included in the same schedule. We did so by (1) firstly extracting
the running times from Automatic Vehicle Location (AVL) data of
just one route. Then, they are clustered to obtain the optimal day
coverage for this specific route. This is done for each route of the
network. Secondly, (2) the schedule coverage of each route is assem-
bled to create a consensual cluster that is common to every route in
the network, using consensual clustering techniques. Finally, (3) the
understandable rules are extracted, obtaining a new schedule plan
day coverage.

– Chapter 5 introduces an Automatic Control framework to avoid Bus
Bunching (BB) occurrences in real-time. This framework relies on
seven different steps: firstly, (1) we perform long term Link Travel
Time Prediction for every future trips on a daily basis using offline re-
gression. These predictions (2) are updated throughout the day using
a first order update scheme based on the offline regression residuals.
Then, (3) the updated predictions are used together with the re-
cent prediction’s residuals to estimate an approximation to headway-
based probability distribution on each stop. These distributions (4)
are used to compute the BB likelihood on each stop. On other hand,
these likelihoods are updated accordingly the prediction updates per-
formed on the step 2. The likelihood of a BB event to occur on the
downstream stops is given by (5) a linear combination of the current
value of these likelihoods (i.e. a BB score). This score triggers an
event alarm every time that it goes above a frequency-based thresh-
old. Finally, these likelihoods are also used (6) to select and (7)
deploy a corrective action to avoid such BB occurrences without any
human intervention.

• Part III: Urban Mobility

– Chapter 6 presents a model to predict with a short periodicity the (1)
number of services that will emerge at multiple taxi stands/city areas
as well as its (2) fare-based type. We did so by employing incremental
techniques to maintain histograms of taxi services on different gran-
ularities. Then, we used time-varying Poisson techniques ensembled
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with time series analysis models which are able to learn and predict
the underlying passenger demand model in real-time. Finally, we
decompose such model into a given number of bins of an histogram
representative of the short-term fare probability distribution function
of each city area/stand.

– Chapter 7 proposes a novel three-step incremental framework to
maintain statistics on the mobility dynamics over a time-evolving
origin-destination (O-D) matrix. (i) Half-Space trees are used to
divide the city area into dense subregions of equal mass. The un-
covered regions are then used to form a quadratic O-D matrix which
can be updated by transforming the trees’ leaves into conditional
nodes (and vice-versa). The (ii) Partioning Incremental Algorithm
is then employed to discretize the target variable’s historical values
on each matrix cell. Finally, a (iii) dimensional hierarchy is defined
to discretize the domains of the independent variables depending on
the cell’s samples. This framework is then applied to perform apriori
Travel Time Estimation on the context of a Taxi Network.

• Part IV: Concluding Remarks

– Chapter 8 concludes this thesis summarizing the work done and de-
scribing how the initial goals were accomplished. Finally, ideas for
future research are pointed out.
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Chapter 2

An Overview on
Location-based Data Driven
Methods for Planning and
Control on Public
Transportation Networks

The Global Positioning System (GPS) is a satellite based navigation system
developed by the US Department of Defense in 1960 [Theiss et al., 2005]. The
system was firstly designed for military purposes to provide navigational fixed
data on an hourly basis; however, it did not represent a reliable data source.
In 1993, the system became operational and available to civilians. However,
its accuracy was low (> 100m). It became available massively in 2000 and
the position accuracy of a basic GPS increased to ∼ 10m. This technology
rapidly became a standard to obtain real-time information not only in profes-
sional transportation fleets, but also in individual vehicles.

Various mass transit agencies have now their fleets equipped with Auto-
mated Data Collection systems in order to track the vehicles’ behavior during
their operation. The deployment of such systems usually consists of equipping
the fleet’s vehicles with (i) a GPS receiver, (ii) sensors of interest and (iii) a
communication device of communicating with a remote server. The informa-
tion obtained is then uploaded to the control center. A simple implementation
of this system is displayed in Fig. 2.1. While the GPS receiver is mainly used to
track the vehicle’s spatial coordinates, other sensors may be employed to collect
other types of data such as the (1) stop and start moment, (2) mechanical flags,
(3) control messages containing corrective actions to apply to the route or (4)
farebox transactions.

The recent large-scale development of this vehicular location data source led
to an explosive grew of the ITS - Intelligent Transportation Systems. The
ITS are advanced applications which aim to provide innovative services related
with different modes of transport and enable the users to be better informed
and to make a smarter use of transport networks [Calabrese et al., 2011]. In

11
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general, an ITS relies on location-based information: it monitors and processes
the location of a certain number of vehicles to obtain information on estimated
travel time, traffic flow and/or incidents, for instance, by monitoring a relatively
large number vehicles, it is possible to anticipate an early stage bottleneck and
to route the traffic away from it using an alternative road way. One of the main
trends of ITS is the improvement of the operational planning and the real-time
control of public road transportation networks [Ge et al., 2010; Ferreira et al.,
2012; Mendes-Moreira et al., 2012; Li et al., 2012]. From now on, we will just
consider this type of ITS applications.

In this Chapter, we review ITS focused on improving public road trans-
portation vehicular networks for passengers - such as buses and taxis - based
on historical GPS data. We do not intend to do an exhaustive survey about
every and each work related with this topic but just an overview about the most
impactful and well known applications of this kind of data on the these type
of networks. Our goal is to identify breakthrough areas and/or research topics
where extra value can be added. The remainder of the Chapter is structured as
follows. In Section 2.1, we cover the AVL-based ITS which aim to improve both
operations and planning of bus networks. The Third Section revises the GPS-
based works focused on the Operational Control on Taxi Networks. Fourthly,
some challenges and research opportunities on these topics are summarized. Fi-
nally, an overview of this State-of-the-Art is presented in Section 2.4, as well as
the research goals addressed on this thesis.

2.1 Mass Public Road Transportation Networks

One of the most important aspects on improving the operations of a given mass
transit company is to determine if and why their buses are failing to meet the
schedule. In fact, reliability problems are a major concern for both passengers
and transit operators. A service that is not on time causes an increased wait-
ing time on stops, uncertainty on travel time (TT), Bus Bunching (BB) (i.e. a

On-Board
Computer

APC, mechanical events, farebox
information, control messages,
stop/start moment, etc..

GPS
Antenna

INTERNETReal-Time 
AVL data

Advanced Traveler
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Data
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Figure 2.1: Typical Implementation of an Automated Data Collection system.
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platoon of two or more vehicles running the same line) events and ultimately,
a general dissatisfaction with the system. An unreliable service may lead to
a major loss of public support as the passengers may leave these networks to
find alternative transportation modes, which leads to a critical loss of revenue
[Abkowitz and Tozzi, 1987; Clotfelter, 1993].

After the Tri-Met experience kicked-off in 1991 [Tri-Met, 1991], many com-
panies started to install new computer-aided Bus Dispatch Systems. Examples
of cities include New Jersey, Chicago, Minneapolis and Seattle (USA); Ottawa
and Montreal (Canada); Eindhoven and The Hague (Netherlands) [Furth et
al., 2003]; Cagliari and Genoa (Italy) [University of Southampton (UOS), 2002;
Barabino et al., 2013]; Melbourne (Australia) [Mazloumi et al., 2010]; Toulouse
(France) [University of Southampton (UOS), 2002] or even London (UK) [Houn-
sell et al., 2012]. Such dispatch systems were based both on the AVL and on the
Automatic Passenger Counting (APC) systems deployed on their fleets. These
systems collect the location of buses usually by broadcasting the sensors’ values
using an interval of 10–30s depending on the radio capacity. Typically, AVL
systems are based on GPS measurements while the APC systems typically rely
on estimation techniques based on door loop counts or weight sensors. These
sensors are installed in every vehicle.

Initially, the service provider only wanted to monitor and control their op-
erations (go to Fig. 2.2 to see a possible example of a monitoring framework).
Nevertheless, the advances in real-time communications and vehicle location
technologies (such as WiFi, 3G and GPS) over the last two decades largely in-
creased the availability of such data. There has been an increasing evolution
from the old asynchronous acquisition methods, where the data acquired in
each vehicle were uploaded to a main server with a large periodicity (commonly
daily), to a synchronous method (i.e. real-time) [Furth et al., 2003]. Such
online technology makes it possible to produce continuous flows of data (also
known as data streams). Each vehicle transmits the data with a very short (but
certain) periodicity to a main server.

In the last decade, many researchers highlighted the potential of the stored
AVL data to provide insights on how to evaluate (and improve) Public Trans-
portation (PT) reliability in mass transit companies by improving Operational
Planning and Control. The technical reports presented by James G. Strath-
man and his team became the backbone of State-of-the-Art on AVL-based eval-
uations of schedule reliability [Strathman et al., 1999; Strathman, 2002; Strath-
man et al., 2003]. However, the real time availability of this AVL data opened
new research directions for improving PT reliability, namely by introducing
real-time decision models to support the Operational Control.

In this Section, we review AVL-based ITS which aim to improve both op-
erations and control of Mass Public Road Transportation Networks. Section
2.1.1 revises fundamental concepts about Operational Planning and Control on
this context. The second Section describes the State-of-the-Art on evaluating
Schedule Reliability. Section 2.1.3 presents the works focused on improving the
Schedule Plan, while Section 2.1.4 revises the research done about real-time
control measures in order to maintain on-going trips up to schedule.
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2.1.1 Fundamental Concepts on Operational Planning and
Control

Often, reliability problems arise in complex public transportation networks with
high demand. It is possible to divide the causes of reliability problems into two
separate groups: (i) Internal and (ii) External. (i) Internal causes include fac-
tors such as driver behavior, passenger boarding and alighting at stops, improper
scheduling, route configuration or inter-bus effects, which represent persistent
problems. (ii) External causes are, by definition, more chaotic and these in-
clude traffic congestion and accidents, weather, traffic signs and interferences
with on-street parking. The (i) persistent problems are addressed using (1)
Operational Planning (OP) strategies, while the (ii) sporadic problems are
mitigated by (2) Control strategies. While the (1) OP strategies are often
referred to as preventive actions which aim to avoid PT unreliability on a long-
term perspective, the (2) Control actions have a corrective purpose in a very
specific and brief moment [Abkowitz and Tozzi, 1987; Fattouche, 2007].

Operational Planning strategies

A typical OP process is carried out by sequentially following four steps [Ceder,
2002; Mendes-Moreira, 2008]:

1. Network Definition: It consists of defining the lines, routes and subse-
quent bus stops. Here, a route is considered a road path between an origin
and a destination which passes by multiple bus stops. A line is defined
as a set of routes (which typically comprises two routes with very similar
paths, but inversely ordered).

Figure 2.2: Diagram about a real-time visual control framework on a given
route at a morning peak hour. The x-axis represents time, and the y-axis is the
vehicle location along its route. The red dots represent the bus stops. Image
originally from [Berkow et al., 2007]

.
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2. Schedule Planning: The trip’s timetables are defined by firstly identi-
fying the set of bus stops for which schedule time points will be set (the
origin/destination stops are always part of this set). Secondly, timestamps
are assigned to previously defined schedule time points. Such timestamps
may be composed of an expected arrival time plus some slack time. How-
ever, in high frequency routes, this timetabling can also be defined by
setting the time between two consecutive trips in the same route (i.e.,
headway-based) [Ceder, 2002]. The set of planned trips is often defined as
the Schedule Plan.

3. Definition of Duties : A duty is a task that a driver and/or a bus must
perform. The definition of the drivers’ duties has much more constraints
than the definition of bus duties (for instance, a driver must stop regularly;
governmental legislation). Commonly, the logical definition of bus duties
is performed prior to the drivers’ duties.

4. Assignment of Duties: It consists of physically assigning the previously
defined logical duties to the companies’ drivers and buses.

The AVL-based OP strategies to improve PT reliability consist into adjusting
the definitions made on such tasks using real-world data. This type of works
focus on (1) restructuring the route and adjusting the existing (2) Schedule
Plan (SP). AVL-based works on this subject follow this trend. The (3) and (4)
resource-based strategies are applied to improve the profitability rather than
the company’s operations. Specifically, the (3) definition and (4) assignment of
duties are commonly performed by using constraint-based methods and not by
analyzing AVL data. In fact, to the best of our knowledge, there is no work
suggesting it so.

Control strategies

It is reasonable to define Control Strategies as real-time responses to sporadic
service problems [Strathman et al., 2000]. The goal is to restore service nor-
mality when deviations occur (i.e., in real-time) [Fattouche, 2007]. It is possible
to divide these strategies into two different applications [Dessouky et al., 2003]:
(i) maintaining schedule reliability using metrics such as on-time performance
or headway stability (to be discussed in Section 2.1.2) and (ii) schedule coordi-
nation at terminals/hubs to facilitate transfers [Hadas and Ceder, 2010]. This
review focuses mainly on the type (i) applications.

Such strategies imply the selection of corrective actions (described in Section
2.1.4) to avoid eminent unreliable contexts, which are particularly chaotic in
high frequency routes.

2.1.2 On Evaluating Schedule Plan Reliability

The SP reliability is a vital component for service quality. Improvements on
reliability may increase the service demand and, consequently, the companies’
profitability. Low reliability levels lead to a limited growth in the number of
passengers and to a decreased perceived comfort [Strathman et al., 1999]. It is
possible to establish three distinct axis on evaluating SP reliability [van Oort,
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Figure 2.3: PT quality factors presented using a Maslow’s pyramid. It defines
the boundary on the desirable/essential factors. Image originally from [Peek
and van Hagen, 2002].

2011]: (1) the unexpected increases on the waiting time on bus stops; (2) the
time spent in crowded situations caused by transport overloading; and (3) delays
on the passengers arrivals due to Travel Time Variability (TTV). The first two
(1-2) axis are mainly related with passengers comfort and experience criteria.
The value of such extra time consumptions vary from the passenger condition
(seated or standing) [Wardman and Whelan, 2011]. However, these two as-
pects are mainly satisfiers: additional aspects that the passengers like to have
but are not essential factors to abandon the services provided by a certain PT
company. On the other hand, the last one (3) is a fundamental issue by the
disturbances that it does on the passengers daily activities [van Oort, 2011].
By affecting directly the convenience and the speed of transportation, it is key
to maintain the travelers confidence on the PT network (i.e. a dissatisfier).
These priorities on the described PT quality factors are illustrated in Fig. 2.3.
Once established, it is expected that a SP meets the passengers’ demand by
following their mobility needs (namely, their daily routines). Typically, service
unreliability is originated by one (or many) of the following causes [Fattouche,
2007; Cham, 2006]: schedule deviations at the terminals, passenger load vari-
ability, running time variability, meteorological factors and driver behavior.

Nowadays, urban areas are characterized by a constant evolution of road
networks, services provided and location (for instance, new commercial and/or
leisure facilities). Therefore, it is highly important to automatically assess how
the Schedule Plan suits the needs of an urban area. An efficient evaluation can
lead to important changes in a SP. These changes will lead to: a reduction in
operational costs (for instance, by reducing the number of daily trips in a given
route) and/or a reliability improvement in the entire transportation network,
which will increase the quality of the passengers’ experience and, therefore, the
number of costumers.

A SP consists of a set S = {S1, S2, ..., Sk} of k schedules which provide de-
tailed information about every trip running on previously defined routes. Each
schedule contains a timetable ti : i ∈ {1, ..., k}. Different routes may have dif-
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ferent timetables. Nevertheless, they share the number k of schedules and the
daily coverage Ci of each schedule.

A Schedule Planning process for a given route relies on three distinct steps:
(i) the first step is defining the number k of schedules and their individual
coverage, Ci. Secondly, (ii) the schedule timepoints are chosen among all bus
stops in the route, and finally, the third step (iii) is defining a timetable ti
for each route schedule Si containing the time the buses pass at each scheduled
timepoint (per trip). This process is done for all routes. It should be guaranteed
that the number k of schedules and the coverage Ci are the same for all routes so
that the passengers easily memorize the SP. To learn more about this topic, the
reader should see the survey on Urban Transit Operational Planning by Ceder
[2002].

From the above mentioned definition of SP, it is possible to divide the SP
evaluation into two different dimensions: the suitability of the number of sched-
ules k and of the set of their daily coverages C = {C1, C2, ..., Ck}, and the
reliability of their timetables {t1, ..., tk} (to test whether the real arrival times
of each vehicle at each bus stop are meeting the previously defined timetable).
Although there is an obvious impact on the definition of the timetable, to the
best of our knowledge there is no research in the literature addressing the eval-
uation of the number of schedules and their daily coverage.

This Section defines and reviews evaluation methodologies regarding the
reliability of timetables.

Evaluation Metrics and Requirements

Firstly, the metrics related to axis (3) are reviewed, as well as the studies that
have employed them. Then, two metrics on the evaluation axis (1-2) are pre-
sented (which were less used by the existing research on AVL-based PT evalu-
ations).

When evaluating a SP, it is important to differentiate low and high frequency
services [Turnquist, 1982]: in low frequency services, passengers arrive at the bus
stops shortly before the bus’s scheduled services, while in high frequency ser-
vices the customers tend to arrive at the stops randomly [Ceder and Marguier,
1985]. In the first scenario, punctuality is the main metric, while the service
regularity is the most important metric in high frequency routes. There is no
exact boundary between these two scenarios. Recent studies used 10-12 minutes
as a threshold between low/high frequency services [Trompet et al., 2011; van
Oort, 2011].

Four main indicators were firstly proposed by Nakanishi [1997] and followed
by other similar studies [Strathman et al., 1999; Barabino et al., 2013]. These
indicators are outlined as follows: (i) On-Time Performance, (ii) Run Time
Variation, (iii) Headway Variation and (iv) Excess Waiting Time. The
first two indicators (i,ii) are more applicable to low frequency routes, while the
last two (iii,iv) focus on the high frequency routes [Turnquist, 1982; Strathman,
1998; Strathman et al., 1999]. This set of indicators are the most widely used
and they are presented below.

(i) On-Time Performance (OTP) indicates the probability that buses will
be where the schedule says they are supposed to be. It is possible to represent
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this metric by an Arrival Delay (AD) in a given trip i, i.e., ADi as function of
both the Scheduled Arrival Time (SATi) and the Actual Arrival Time (AATi).
Therefore, it can be defined as follows [Strathman, 1998]:

ADi = AATi − SATi (2.1)

The (ii) Run Time Variation (RTV) represents the variation on the run
times performed by each trip. Some introductory concepts on this subject will
be presented below. Typically, the TT reports the trip duration, from terminal
to terminal, and is often referred to as round-trip time [Mendes-Moreira, 2008].
TT is often used to define the time required to go from one point of interest
to the other [Turner et al., 1998]. This last definition is used in this review.
One of the factors that mostly affects the RTV is the dwell time, which is the
total time the bus has to stay at a given bus stop for passenger boarding and
alighting [Transportation Research Board, 2003].

From the passenger perspective, a larger variation can mean a longer waiting
time in some stops and/or missed transfers. From the operational planners’
perspective, greater RTV translates into higher costs as a result of the extra
hours that must be added to accommodate passenger load variation [Strathman,
1998]. This indicator is more appropriate for routes that cover long distances,
facing many traffic lights and regular traffic delays [Sterman and Schofer, 1976].

Given a set of n trips of interest, it is possible to compute the RTV as follows
[Strathman et al., 1999]:

RTV = n−1 ×
∑n

i=1
|SATi −AATi| /AATi (2.2)

In highly frequency routes, where the trips start within very short headways,
the on-time performance is not that relevant [Hounsell and McLeod, 1998]. The
(iii) Headway Variation (HV) represents the probability that controllers are
able to maintain a regular and stable headway between each pair of vehicles
running in the same routes.

Let fi,j be the frequency (i.e., scheduled headway) established between a
given pair of trips, (i, j), while Hb

i,j represents the observed headway on such
pair of trips at a bus stop of interest, b. The Headway Ratio on the bus stop b,
i.e., Hrbi,j is defined as follows [Strathman, 1998; Strathman et al., 1999]:

Hrbi,j = (Hb
i,j/f

b
i,j) ∗ 100 (2.3)

where the value 100 represents a perfect SP matching. Given a set of n trips of
interest, it is possible to compute the Standard Deviation and the Mean value of
Hr (σbHr and µbHr, respectively). We can do it so by calculating every possible
Hri,i+1 : i ∈ {1, ..., n − 1} at a bus stop b. Then, it is possible to obtain the
(HV ) at bus stop b throughout these n trips as follows [Lesley, 1975]:

HV b = σbHr/µ
b
Hr (2.4)

The (iv) Excess Waiting Time is an estimation of the excessive waiting time
that passengers experience as a consequence of unreliable service. It is possible
to calculate the Excess Waiting Time at a bus stop b, i.e., EWT b as a function
of HVb. A possible way to do so is presented as follows [Welding, 1957]:

EWT b =
σbHr

2

2× µbHr
(2.5)
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The bus stop b used to compute statistics on the first two indicators (i,ii) is the
destination bus stop. For the last two indicators (iii,iv), any bus stop can be
considered as reference if it has a frequency scheduled to it, i.e., f bi,j . Commonly,
such statistics are computed by the transit companies aggregating its values to
a fixed time granularity (typically, one hour periods) [Barabino et al., 2013], but
they can also be computed according to the trip.

An irregular service implies an unexpected increase in passengers’ waiting
times - which is naturally more related with the first two axis (1,2). This kind of
unreliability could be measured in terms of Average Waiting Time (AWT)

[Cats et al., 2010]. Let PAV
bj
z,k be the arrival time of a given passenger z to a

bus stop bj of a given route immediately before the vehicle performing trip k
arrives to bj . Then, it is possible to compute AWT of a route with s bus stops
and T planned trips as follows

AWT =
1

B
∑T

k=1

∑Bk

z=1

∑s

i=1
AAT bik − PAV

bi
z,k (2.6)

B =
∑T

k=1
Bk;Bk =

∑s

i=1
boik (2.7)

where Bk stands for the total number of passenger boardings on a given trip k
and boik denotes the number of boardings on a given bus stop bi on trip k. This
metric allows to directly assess the impact of alternative operational control
measures on passengers waiting times. However, such measures (e.g. holding
a bus in order to coordinate transfers) may also induce longer in-vehicle times
[Cats et al., 2010]. In order to evaluate the overall impact on passenger travel
times, the Average In-Vehicle Time (AIVT) should also be considered. Let
bsz,k be the boarding stop of a passenger z on a trip k and asz,k the alighting
one on the same trip. The AIV T can be computed as

AIV T =
1

B

T∑
k=1

Bk∑
z=1

(
AAT

asz,k
k −AAT bsz,kk

)
(2.8)

The AWT and the AIVT are relevant metrics when it comes to evaluate the
service convenience on the passengers perspective. However, the State-of-the-
Art on AVL-based evaluations do not account that much on these indicators.
These evaluations were mainly done on the company’s perspective by consider-
ing just metrics addressing how well the network behavior fits to the SP. The
Section below presents a review of the evaluation of SP reliability by measuring
these indicators (i.e. axis (3)) on historical AVL data.

A Review on SP Evaluation Studies

Many works have evaluated schedule reliability by measuring the aforemen-
tioned indicators on historical AVL data sets. Strathman [1998]; Strathman
et al. [1999] evaluated schedule reliability on the Tri-Met by measuring indi-
cators (i-iv), while the work by Bertini and El-Geneidy [2003a] solely focuses
on the first two ratios. Traditionally, the HV was often disregarded by the
transit planners due to the intrinsic chaos assumed (as the schedule timepoints
on the timetables are not the central variable to confirm service reliability).
Nevertheless, recent advances have changed this reality: in [Strathman et al.,
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2003] AVL/APC data was considered to evaluate the impact of the HV on the
operational control. Another perspective of the Tri-Met data is presented in
[Berkow et al., 2007], where an analysis of indicators (ii-iv) demonstrated the
feasibility of using AVL data along with other data sources to better accomplish
their evaluation. Lin and Ruan [2009] formulated a probability-based headway
regularity metric (HV). Then, the authors tested their approach using AVL
data from Chicago. In [Bellei and Gkoumas, 2010], relations between transit
assignment, BB events and operation models are mined from the location-based
data. This study aimed to identify irregularities in HV’s distribution function
caused by an inadequate schedule plan. The reliability of an express service
implemented in Montreal, Canada, is evaluated in [El-Geneidy and Surprenant-
Legault, 2010] by employing the indicators (i) and (ii). A large-scale evaluation
was performed by Hounsell et al. [2012], where the data acquired through the
iBus (an AVL/APC framework installed on a bus fleet running in the city of
London, United Kingdom) was used to evaluate all the four main indicators of
schedule reliability.

Another approach to evaluate schedule reliability on a route is the segment-
based one. It consists of identifying segments/parts of a route where there
are greater schedule deviations and, therefore, the SP should be adjusted by
changing the timetable or by introducing bus priority lanes and/or traffic signals
in intersections. One of the first authors to realize such work was Horbury
[1999] based on the HV. In [Mandelzys and Hellinga, 2010], it is proposed to
measure indicators (i-ii) using stop-based metrics, and to identify the causes
for larger deviations through an empirical framework. The work in [El-Geneidy
et al., 2011] proposes a way of identifying where the schedule is unreliable by
evaluating the first two indicators on the schedule timepoints.

Recently, the methodological approach to evaluate SP reliability has evolved
from the key indicators to using non-parametric deterministic methods such as
Data Envelopment Analysis (DEA) [Mendes-Moreira and Sousa, 2014]. The
main advantage enabled by employing such a complex method is the possibility
of directly comparing metrics from distinct dimensions by introducing decision-
making units. Lin et al. [2008] used AVL data to establish confidence intervals
for the DEA scores based on the four indicators previously introduced. Despite
its usefulness in identifying cost-based relationships between the resources used
and the service produced, the DEA models are not addressed in this review as
they usually address an wider scope on the companies’ management than our
own. A comparative overview of the aforementioned studies on evaluating SP
reliability is presented in Table 2.1.

The four metrics are well established in the literature. However, they focus
mainly on the passengers’ perception of service quality, especially the (iii) HV
and the (iv) EWT. The (i) OTP can help the planners to identify the exact
schedule timepoints to be changed, while the (ii) RTV shows a more general
perspective on network service, which can lead to more profound studies on
the drivers’ behavior, terminal dispatching policies or on the current schedule’s
slack. The (iii) HV is the most used metric. Even so, it is possible to observe
that the companies’ perspective on such RTV is not addressed as a primary
goal of these evaluation studies. Indeed, high frequent routes are usually the
main concern of PT planners because those are the ones more sensitive to small
deviations. Additionally, they are the ones that have more impact on the public
(i.e. more trips and passengers).
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Nevertheless, even if it is possible to identify what is happening and where
changes must be performed to improve SP reliability, it is not easy to identify
how it is possible to improve it. The next Section focuses on the use of AVL
data to develop and/or improve Schedule Planning.

2.1.3 On Improving Schedule Planning

Schedule Planning strategies aim to reduce the likelihood of schedule deviations
responding to persistent and predictable problems [Fattouche, 2007]. The ques-
tions brought about by the researchers when regarding Schedule Planning
address both the evaluation and improvement of company timetabling. The
timetable adjustments can be proposed in three perspectives: (A) slack-time
based, (B) travel-time based and (C) headway based.

In the real world, there is no perfect SP. The PT operations will certainly
experience some TTV which will lead to some unreliability comparatively to
the previously defined timetables. The aforementioned techniques try to reduce
this SP unreliability as much as possible. Typically, (B) the travel-time based
strategies to improve the SP consist of changing the scheduled round-trip times.
For that, these strategies use some inference method in order to predict such
variables. However, any prediction produced has an associated likelihood. Con-
sequently, such prediction values need to be tuned before going to the public
schedule1. One of the most common tuning strategies consists of (A) adding
slack times to these predictions (especially in low frequency routes) based on
such variability, as suggested by [Jorge et al., 2012]. A distinct strategy is
the (C) headway-based ones: they try to establish optimal bus frequencies by
computing a balanced relationship between the expected demand and the avail-
able resources. This Section presents a systematic revision of these optimizing

1 The operational timetable may differ from the one distributed to the general public to
improve the passengers’ perception on the quality of service.

Table 2.1: AVL-based Research on Evaluating the SP Reliability.

Evaluation Indicators
Publication Granularity OTP RTV EWT HV

(i) (ii) (iv) (iii)
([Strathman, 1998; Strathman et al., 1999]) route-based

√ √ √ √

([Horbury, 1999]) segment-based
√

([Strathman et al., 2003]) route-based
√

([Bertini and El-Geneidy, 2003a]) schedule timepoint
√ √

([Berkow et al., 2007]) schedule timepoint
√ √ √

([Lin et al., 2008]) route-based
√ √

([Lin and Ruan, 2009]) schedule timepoint
√

([Mandelzys and Hellinga, 2010]) bus stop-based
√ √

([Mazloumi et al., 2010]) route-based
√

([Bellei and Gkoumas, 2010]) schedule timepoint
√

([El-Geneidy and Surprenant-Legault, 2010],
[El-Geneidy et al., 2011])

schedule timepoint
√ √

([Jorge et al., 2012]) route-based
√

([Moreira-Matias et al., 2012b]) bus stop-based
√

([Hounsell et al., 2012]) schedule timepoint
√ √ √ √

([Barabino et al., 2013]) bus stop-based
√
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strategies for improving the schedule timetables.

(A) Tuning up the Schedule using Slack Times

Operational Planners may add slack times to the timetable when they are build-
ing a schedule for a low frequency route. The slack time is the difference be-
tween the scheduled and the actual expected arrival time [Zhao et al., 2006; Yan
et al., 2012]. It may be seen as a way to accommodate the expected RTV on
a schedule timepoint. The amount of slack introduced can produce large scale
effects on the SP reliability. Insufficient slack times reduce the likelihood of a
bus catching up when it falls behind. On the other hand, excessive slack times
will reduce the service frequency or increase the amount of resources required,
namely, buses and drivers. The definition of an optimal slack time is a problem
that can be expressed as a trade-off function between the service frequency and
its reliability. This Section addresses the problem of improving SP reliability by
determining an optimal slack time based on AVL data.

It is possible define the optimal slack time as follows [Dessouky et al., 1999;

Zhao et al., 2006; Yan et al., 2012]: let SRT bs,bdi be the Scheduled Run Time
for a scheduled trip of interest i between the schedule timepoints bs and bd,
respectively, while ART bs,bdi is the Actual Run Time. It is possible to define
both using the following equations:

SRT bs,bdi = SAT bdi − SDT
bs
i , ART

bs,bd
i = AAT bdi −ADT

bs
i (2.9)

where SAT bdi , AAT bdi are the Scheduled and Actual Arrival Times, respectively,

while SDT bdi , ADT bdi represent the Scheduled and Actual Departure Times be-
tween the schedule timepoints bs and bd. Then, it is possible to define the
Expected Run Time in the same context, i.e., E(RT )bs,bdi as follows:

E(RT )bs,bdi = n−1
∑n

j=1
ART bs,bdj (2.10)

where n represents the number of previous occurrences of the scheduled trip
i (i.e., the same service, day type and Scheduled Departure Time in previous

days) considered to compute E(RT )bs,bdi . Finally, it is possible to define the

optimal slack time to be added to the schedule point bd in the trip i, i.e., stbdi
as follows [Zhao et al., 2006; Yan et al., 2012]:

stbdi = SRT bs,bdi − (SRT bs,bdi

2
/E(RT )bs,bdi ) (2.11)

Although it is common to add slack to the schedule, research focusing on setting
appropriate slack times based on historical AVL data is scarce. It is especially
surprising if we consider that the slack time is defined according to the mean
TT, which can be easily computed using AVL data.

To the best of our knowledge, there are just four works employing AVL data
to optimize slack times in timetables: Dessouky et al. [1999] found an optimal
slack ratio of 0.25 to be added to the SP in place on a transit agency operating
in Los Angeles, USA. In [Mazloumi et al., 2012], two heuristics are proposed
to solve the timetabling problem as an optimization problem by employing two
heuristic procedures, Ant Colony [Dorigo and Gambardella, 1997] and Genetic
Algorithms [Melanie, 1999]. Both the travel and the slack times were considered
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output variables. Such methodology was calibrated using location-based data
from a bus route in Melbourne, Australia. Yan et al. [2012] proposed a novel
optimization model to schedule design by taking into account the bus TT uncer-
tainty and the bus drivers’ schedule recovery efforts. The goal with this model
was to find the optimal slack time to add to the schedule running in the city
of Suzhou, China. Finally, a distribution rule-based methodology is proposed
in [Jorge et al., 2012] and the goal here is to find particular conditions which
lead to schedule unreliability. Then, an optimal slack time equation is formu-
lated based on the probability density function (p.d.f.) found in each unreliable
context in the city of Porto, Portugal.

By adding slack time to their schedules, the operational planners expect
not only to increase the passengers’ satisfaction on service reliability, but also
increase the flexibility of both the operators and controllers so as to take actions
for the vehicles to recover their scheduled times. Often, the slack also addresses
regulatory questions regarding the maximum operator driving time, as well as
other terminal bus dispatching issues. Due to its importance for the operations
and perception on the service quality, further research should be conducted
on this topic based on historical AVL data. Nevertheless, this tuning strategy
highly depends on the scheduled arrival times. The next Section presents a
comprehensive review of AVL-based research techniques to improve these times.

(B) Travel Time Prediction

One of the most common transportation problems is the Travel Time Prediction
(TTP). The literature on this topic is extensive. TTP problems can be used
in several contexts such as fleet management, logistics, individual navigation or
mass transit planning, monitoring and control. This Section provides a review
of the research focusing on TTP based on AVL data to improve public road
transportation planning and monitoring.

TTP consists of predicting the TT for a given trip (or segment). The TT
function is formally defined below. Let TT(i,j) be the run time between two bus
stops of interest bi, bj : j > i. It is possible to compute TT as follows.

TT(i,j) =
∑j−1

k=i
dwTk +RT(k,k+1) (2.12)

where RT(k,k+1) is the non-stop running time in the road segment between two
consecutive bus stops bk, bk+1 and dwTk is the dwell time on the bus stop bk.

Although some approaches seem quite simple, various methodologies are em-
ployed to TTP problems from different research areas. It is possible to divide
such approaches into four distinct categories [Chien et al., 2002; Carrascal, 2012]:
(B-a) Machine Learning (ML) and Regression Methods, (B-b) State-Based and
Time Series models, (B-c) Traffic Theory-based models and (B-d) Historical
data-based models. This last family of naive approaches consists of simple av-
erages and other type of time-varying Poisson processes whose average TT or
speed is achieved by its historical values depending on the day type and/or on
the period of the day [Chung and Shalaby, 2007]. Its simplicity is commonly
reported as an important drawback when representing the complex relation-
ships between the TT and other variables usually established in urban public
transportation networks. Consequently, they present a poor approach to TTP
[Carrascal, 2012; Kieu et al., 2012]. The (B-c) Traffic Theory-based models are
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Table 2.2: Complex Regression models employed in TTP problem-solving.

Publication &
Denomination

Description Examples

Artificial
Neural Networks

(ANN)
[Rosenblatt, 1958]

It uses multiple layers of
artificial neurons which, together
with the link’s weights, are able

to establish complex relationships
between the input and the output values.

[Chien et al., 2002],
[Chen et al., 2004],

[Jeong and Rilett, 2005],
[Patnaik et al., 2006],

[Gurmu, 2010],
[Wong, 2011],

[Khosravi et al., 2011b,a],
[Mazloumi et al., 2011],

[Zaki et al., 2013]

Kernel-based Regression
[Nadaraya, 1964]

Instance-based learning method
that uses a kernel function to

assign weights to each training
sample accordingly with their similarity

to the target one.

[Sinn et al., 2012],
[Dessouky et al., 2003]

k-Nearest
Neighbors Regression

(kNN)
[Cover and Hart, 1967]

This method finds the k closest
samples in the historical

database using some
distance metric of interest

and combines its outputs (usually
by calculating their average).

[Klunder et al., 2007],
[Chang et al., 2010a],
[Baptista et al., 2012],

[Sinn et al., 2012],
[Dong et al., 2013]

Projection Pursuit
Regression

(PPR)
[Friedman and Stuetzle, 1981]

The model consists of
linearly combining non-
linear transformations

in the linear combinations of
explanatory variables.

[Mendes-Moreira et al., 2012]

LOcally WEighted
Scatterplot

Smoothing (LOWESS)
[Cleveland, 1981]

Non-parametric regression
method that combines

multiple classical regression
methods in a kNN meta-model.

[Vu and Khan, 2010]

Support Vector
Regression

(SVR)
[Drucker et al., 1997]

This method uses a max. threshold ε which
stands for the residual between the target
function and any of the training samples.

It is used to establish a hyperplan
to define that function which

contains all these training samples.

[Bin et al., 2006],
[Mendes-Moreira et al., 2012]

Random Forests
(RF)

[Breiman, 2001]

Random Forests is a
bagging-type ensemble method

which employs decision
tree induction where the split

criteria is set using a
randomly selected feature subset.

[Mendes-Moreira et al., 2012]

well known for handling traffic management - but not that commonly applied
on AVL-based TTP methods for improving the schedule planning [Carrascal,
2012] (to read more about this type of formulations, the reader should go to
Section 3.2 in [van Lint, 2004]). For these reasons, just the two first categories
(B-a,B-b) are addressed on this review. Table 2.2 presents a detailed description
of some complex regression models employed in TTP works.

It is possible to differentiate short- and long-term TTP problems according
to the prediction horizon considered. It is common to define such threshold
between 60 to 180 minutes [Carrascal, 2012; Kieu et al., 2012]. The long-term
TTP is most commonly used for the SP definition - which is the functionally
addressed by this review. This is an interesting problem due to the existing
amount of historical AVL data in the agency databases used today. To accom-
plish such goal, the prediction should be valid for a long period (for instance,
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TTP for Monday trips at 8am should be as accurate as possible for the entire
forecasting horizon, i.e., all the days using that planned trip, typically, several
months or even years). However, the State-of-the-Art on long-term TTP is
nearly non-existent. To the best of our knowledge, there are just two works
on it: Klunder et al. [2007] uses kNN with the input variable departure time,
weekday and date; a comparison of State-of-the-Art regression algorithms (SVR,
PPR and RF) for long-term TTP is presented in [Mendes-Moreira et al., 2012].

Almost every TTP approaches consider a short-term horizon. The short-
term TTP is commonly related to the real-time information on arrival time
provided to the clients by the Advanced Traveler Information Systems (ATIS)
in place. It is very useful to passengers as it improves both their traveling
experience and their transfers [Kieu et al., 2012]. The techniques employed to
solve this kind of problems are necessarily different from the long-term TTP2

and are not directly applicable to the Planning stage. However, there are many
synergies and commonalities between these two problems and, consequently,
between the approaches used to solve each one of them: (1) Both are regression
problems; (2) consequently, the majority of the algorithms that can be used
for the first problem can also be applied to the second one; (3) Nowadays,
the information provided by the ATIS on the short-term TT may reduce some
passenger-centered TTV, namely excessive passenger loading at some bus stops
and/or major hub stations. This effect will cause a chain reaction by reducing
firstly the ADTi and consequently the SDTi and the TT associated with such
stops SRTi (see eq. (2.9)). This ultimate effects of this process are the reduction
of the TTV and the consequent increase of the schedule reliability (which are
the goals of long-term TTP on this context). As is further discussed in Section
2.3.3, we believe that the rich literature on short-term TTP can present useful
lessons to improve the current studies on long-term TTP. For these reasons, the
short-term TTP was included in this review’s scope. From now on, we will refer
to TTP using a short-term horizon.

The remainder of this Section reviews the works using the approaches to
TTP from categories (1-3), followed by methods to evaluate the reliability of
such numerical predictions.

(B-a) Machine Learning and Regression Methods

These methods are proposed to infer the arrival times (i.e., a dependent
variable) using a mathematical function based on a set of independent variables
(i.e. decision variables). Over the last two decades, regression models have
been the State-of-the-Art on this kind of approach. Works using such type of
approaches are summarized in Table 2.2. Besides providing accurate TTP, the
regression models are also commonly capable of estimating the impact that each
input variable has on the target variable (i.e., TT). A dwell time-based simple
Linear Regression model is employed by [Bertini and El-Geneidy, 2003b; Bin et
al., 2006; Tan et al., 2008; Tétreault and El-Geneidy, 2010]. However, complex
models such as SVR, kNN, PPR and ANN are the most popular approaches
to this problem due to their ability to find complex non-linear relationships

2 Besides the obvious differences in time horizons, the seasonalities detected and the im-
portance of the decision variables are completely different from one problem to the other. The
differences have a relevant impact when it comes to finding the relationships between these
variables and the target variable.
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between the target variable and the independent ones.
ANN is the most successfully regression method employed on TTP problems:

[Chien et al., 2002; Jeong and Rilett, 2005; Gurmu, 2010; Wong, 2011] use it
over location-based data while the works in [Chen et al., 2004; Patnaik et al.,
2006] use APC-data. However, it presents four main drawbacks comparatively
to other regression methods: (1) a time consuming training procedure [Bin et al.,
2006]; (2) the input-output function is unknown3; (3) a reasonable knowledge of
the problem is usually required to perform an optimal feature selection, hidden
layers and learning rate [Bin et al., 2006], and (4) overfitting is highly possible
[Chen et al., 2004].

Approaches promising to mitigate three of these four limitations have re-
cently been presented: (2) in [Mazloumi et al., 2011] a method to perform
ANalayze Of VAriance (ANOVA) [Box, 1953] to determine feature selection in
order to perform ANN-based TTP; (3) in [Khosravi et al., 2011a], a Genetic
Algorithm [Melanie, 1999] is proposed to find the optimal values for the ANN
parameters in TTP context; (4) in [Khosravi et al., 2011a; Mazloumi et al.,
2011] proposes to find prediction intervals rather than optimal values for TT
to handle the uncertainty within the ANN predictive models. Such prediction
intervals reduce the possibilities of overfitting and can be used to optimize the
schedule’s slack times. However, such additions to the basic ANN model de-
creases even more the (1) traditionally slow training process by adding complex
preprocessing stages.

The SVR have the advantage of being able to incorporate different types
of kernels to find the optimal boundary [Bin et al., 2006], while kNN and ker-
nel based regression models deal more adequately with missing data or with
outliers4.

The AVL-based kNN models for TTP emerged recently [Chang et al., 2010a;
Baptista et al., 2012; Sinn et al., 2012; Dong et al., 2013]. Some works report
that they can outperform ANN [Sinn et al., 2012; Liu et al., 2012]. Besides the
aforementioned characteristics, the kNN is an approach which, conversely to the
ANN or the SVR, does not require any assumption about the functional form of
the relationship between the dependent variables or the statistical distribution
of data (i.e., non-parametric). However, similarly to ANN/SVR methods, its
reliability depends on the availability of a sufficiently large quantity of data [Liu
et al., 2012].

Even though they are useful, most methods reported do not provide a clear
input-output function as Linear Regression models do. Surprisingly, there are
not many works comparing more than two regression methods for TTP [Bin
et al., 2006; Sinn et al., 2012], and there is simply one focusing on ensemble
models [Mendes-Moreira et al., 2012]. Table 2.3 presents a comparison between
the aforementioned regression methods on this specific context. This comparison
follows Section 10.7 in [Trevor et al., 2001].

Recently, promising trajectory-based models employing ML techniques are
being proposed to address TTP in this context. Reference [Tiesyte and Jensen,
2008] presents a Nearest-Neighbor Trajectory (i.e., based on a kNN model) tech-
nique that identifies the historical trajectory that is most similar to the current,

3 It is a black box-type function that just provides an output and not a relationship between
the independent variables and the target variable

4 In this context, outliers may be trips with TT largely higher than expected due to some
random event or other technical reason.
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Table 2.3: A comparison between regression methods used to solve TTP-
problems. Key: � - poor, � - good, • - fair. Based on Table 10.1 in [Trevor
et al., 2001].

Characteristic ANN SVM
Trees
based

kNN
kernel
based

PPR
Linear
Reg.

Methods

Parameter Sensibility
(to variations on the parameters’ set) � � � • � � �
Handling of missing values � � � � � � �
Robustness to outliers
on the training data � � � � � � •

Computational Scalability
(handling large input datasets) � � � � � � �
Ability to establish linear
relationships between features � � � • • � �
Ability to establish non-linear
relationships between features � � � • • � �
Interpretability � � � � � � �
Predictive Power � � � • • � �

partial trajectory of a vehicle. A TTP is provided by inferring the future tra-
jectory of a vehicle. Similar trajectory-based approaches are proposed in [Lee
et al., 2012; Dong et al., 2013]. However, such approaches are not applicable to
long-term TTP because they mainly provide techniques that depend highly on
the information available on the route segment already cruised by the vehicle
(i.e., while the trip is in progress).

(B-b) State-Based and Time Series Models

These type of approaches just rely on the most recent data samples, disre-
garding the remaining historical data. The time series models assume that the
TT is a linear/non-linear combination of its historical values [Cryer and Chan,
2008]. The state-based approaches usually assume that the future state of the
dependent variables only relies on the most recent states. When compared to
the other data-driven methods described previously, the present methods do not
depend as much on the quantity of data and they do not require a large train-
ing period, since they mainly represent Online Learning algorithms (presented
in detail in Chapter 3). Consequently, they are powerful short-term predictors
due to their ability to learn and update in real-time, which does not occur
with batch learning methods such as the ANN or kNN [Gama, 2010; Carrascal,
2012; Kieu et al., 2012]. Nevertheless, the performance of these reactive mod-
els deteriorates when facing longer forecasting horizons (e.g.: [Park and Rilett,
1999]). An overview of the most commonly used state-based/time series models
is presented in Table 2.4. Time Series models assume that the future TT on a
given route depend only on its historical values [Jeong and Rilett, 2005]. The
strength of these models is their high computational speed. However, they are
commonly said to be unable to be built over online data, but only on historical
data [Kieu et al., 2012]. Despite being widely used for traffic flow prediction
[Ihler et al., 2006; Williams and Hoel, 2003; Min and Wynter, 2011], time se-
ries models are not so common in bus TTP. One of the explanations may be
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Table 2.4: (B-b) State-Based and Time Series models commonly used to solve
TTP problems.

Publication Denomination Description Examples

[Markov, 1954]
Markovian
Estimation

Models

State-based estimation models
where the conditional probability

distribution of future system
states depends solely
on the present state.

[Lin and Bertini, 2004],
[Sun et al., 2007],

[Rajbhandari, 2005]

[Kalman, 1960] Kalman Filter

Recursive method to
compute noisy data in
order to determine the

underlying system state.

[Cathey and Dailey, 2003],
[Yu et al., 2010],

[Shalaby and Farhan, 2003],
[Vanajakshi et al., 2009]

[Box et al., 1976]

AutoRegressive
Integrated

Moving Average
(ARIMA)

It combines the most recent
samples from the series to produce

a forecast by following the historical
data autocorrelation profiles.

[Rajbhandari, 2005],
[Suwardo et al., 2010]

[Holt, 2004]
Exponential

Smoothing-based
models

It proposes a way of calculating
average historical samples in a

time series by exponentially
weighting each sample
according to its age.

[Chen et al., 2011]

their high sensitivity to changes in the relationship between historical and real-
time data, especially when a stationary data distribution is assumed [Cryer and
Chan, 2008]. Rajbhandari [2005] proposed an AutoRegressive (AR) model to
capture the temporal variations of bus TT, while [Suwardo et al., 2010] pro-
posed Moving Averages (MA) in the same context. A self-adaptive exponential
smoothing-based algorithm was proposed for interzone link TTP [Chen et al.,
2011].

State-based models are widely reported in TTP literature because they are
capable of handling congested traffic situations [Carrascal, 2012]. The most
commonly used state-based model is the Kalman filter [Wall, 1998; Cathey and
Dailey, 2003; Shalaby and Farhan, 2003; Chen et al., 2004; Vanajakshi et al.,
2009; Yu et al., 2010]. Its main advantage comparatively to Markovian ap-
proaches is its ability to filter noise in the data, which is extremely relevant
in Online Learning tasks for short-term prediction problems. Cathey and Dai-
ley [2003] turns a sequence of AVL measurements into a sequence of vehicle
state estimations (i.e., vehicle speed) to predict the arrival time by employing
a Kalman filter. A similar approach was followed in [Vanajakshi et al., 2009]
and tested using data from buses running in Chennai, India. A model based on
two Kalman filter algorithms was developed by [Shalaby and Farhan, 2003] to
predict running and dwell times alternately in an integrated framework. Such
filters use real-time AVL and APC data, respectively.

Lin and Bertini [2004] employed a simple Markov chain to predict trip arrival
times at each bus stop by formulating a probabilistic transition model between
”on schedule” / ”behind schedule” states (which will represent the probability
of the bus getting back on schedule during the remaining trip). A Finite State
Machine was employed by [Sun et al., 2007] based on the very same concepts.
A Markov model to predict the propagation of bus delays to downstream stops
is proposed by [Rajbhandari, 2005] for TTP.

In fact, these types of online models are not capable of dealing with long-
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term TTP alone. However, some works suggest that these models can be used
as a complement to regression models [Wall, 1998; Chen et al., 2004; Yu et
al., 2010; Zaki et al., 2013]. Such approaches are promising. The regression
models can handle complex relationships between multiple dependent variables
by analyzing historical data. The Online Learning models are capable of using
the stream of GPS data to refine these predictions. Commonly, this type of
hybrid models employs the Kalman filter as an online building block. To the best
of our knowledge, Wall [1998] were the first to suggest this in 1998. The authors
employed a linear regression model to handle the TTP, while the Kalman filter
was simply used to track the exact vehicle position based on the real-time stream
of AVL data, which was not very accurate at the time. In [Chen et al., 2004;
Zaki et al., 2013], the Kalman filter is proposed to fine-tune the TTP prediction
produced by an ANN model based on APC data, while the work in [Yu et
al., 2010] does the same with an SVR model. Table 2.5 shows a high-level
comparison of the AVL-based TTP models presented in this subsection.

(C) Setting Optimal Frequencies

In high frequency routes, the arrival times are not that relevant to the pas-
sengers’ perception of quality service, and even for operational planning and
control. Instead, optimal frequencies are set for such routes and the reliability
studies on these routes usually try to find whether the headway is stable [Houn-
sell and McLeod, 1998]. However, research on setting optimal frequencies in bus

Table 2.5: High-level comparison of short-term TTP models.

Methods Advantages Disadvantages
Reference

Works

ANN,
SVR,
PPR.

Good prediction results;
Ability to discover
non-linear relationships.

Low interpretability;
High volumes of quality
data are required.

[Chien et al., 2002]

Trees-based
Regression

Non-parametric;
High scalability
and Interpretability.

Low Predictive
Power.

[Mendes-Moreira et al., 2012]

kNN,
Kernel-based
Regression

Non-parametric;
Handle missing
data and Outliers.

Low interpretability;
High volumes of
data are required.

[Sinn et al., 2012]

Trajectory-based
kNN

Good approximation
to the vehicle
future’s trajectory.

Do not handle
long-term TTP.

[Tiesyte and Jensen, 2008]

Other statistical
/Reg. methods

Simplicity;
High Interpretability.

Low Predictive Power;
Non-linear relations
are not dealt with.

[Bertini and El-Geneidy, 2003b]

Exponential
Smoothing

Simplicity.

Long-term TTP and
non-linear relations
are not dealt with.
Low Predictive Power.

[Chen et al., 2011]

ARIMA
High computational
speed.

Long-term TTP
is not dealt with.
Highly Sensitive
to Outliers.

[Suwardo et al., 2010]

Markovian
Models

Ability to handle
unknown system states.

Long-term TTP
is not dealt with.

[Lin and Bertini, 2004]

Kalman
Filters

Ability to filter
noisy data

Long-term TTP
is not dealt with

. [Shalaby and Farhan, 2003]
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timetables based on historical AVL data are scarce. Firstly, a formal definition
of the problem is presented based on [Ceder, 2007; Hadas and Shnaiderman,
2012]. Then, research on this topic is presented.

Setting an optimal frequency is a compromise between passenger demand
and resources available. Let L0 be the desired occupancy of the vehicles operat-
ing on a given high frequency route of interest with n bus stops, i.e., {b1, ..., bn}
during a time interval T between two time instants (ti, tj). Then, let d̄bk be the
average demand on a bus stop bk during such period T and N be the number of
departures available in the same period. The optimal headway in this interval,
i.e., H(ti,tj), can be obtained as follows:

H(ti,tj) = min

{
max

(
L0 × T

max(d̄bk)
,
T

N

)
, H0

}
: k ∈ {1, ..., n} (2.13)

where H0 represents the minimum service level on such period. Obviously,
research can be employed to determine the demand levels d̄bk based on AVL
data.

Patnaik et al. [2006] presents a two-fold methodology to set optimal head-
ways. Firstly, the APC data is clustered using Hierarchical Clustering. Each
cluster corresponds to an optimal headway plan. Then, a Classification Tree
is employed to discover rules to classify new instances (i.e., trips) into one of
the available headway plans. A promising approach is introduced by Hadas and
Shnaiderman [2012]: the optimal frequency setting model presented is based on
the theory of supply chain models. The AVL data is used to model the statis-
tical distributions of both demand and TT. Even though these works present
useful insights on headway tuning, we do believe that there is room to explore
AVL data in this specific context.

It is well known that even an optimal Schedule Planning cannot handle all the
problems that arise while the network is operating, especially in high frequency
routes. The next Section presents a summarized review of AVL-based methods
to improve operational control in mass transit companies.

2.1.4 Automatic Strategies on Operational Control

The large-scale introduction of AVL systems in the bus fleets around the globe
opened new horizons to operational controllers. This technology made it possi-
ble to create highly sophisticated control centers to monitor all the vehicles in
real-time. However, this type of control often requires a large number of hu-
man resources, who make decisions on the best strategies for each case/trip. In
the last decade, researchers started to explore the historical AVL data to build
automatic control strategies, which can maintain the buses on schedule while
reducing the human participation on the decisions.

This Section addresses the AVL-based automatic control strategies. Firstly,
the four corrective actions typically recommended by the controllers to the vehi-
cle operators are defined. Then, a systematic review of these automatic control
strategies is both presented and discussed.

Corrective Actions

There are four typical methods employed as real-time control strategies [Strath-
man et al., 2000]. These methods are typically (but not only) applied to highly
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frequent routes. They can be enumerated as follows:

1. Bus Holding: It consists of forcing the driver to increase/reduce the
dwell time on a given bus stop along the route;

2. Speed modification: This strategy forces the driver to set a maximum
cruise speed on its course (lower than usual on that specific route);

3. Stop-Skipping: Skip one or more route stops; also known as short-cutting
when it requires a path change to reduce the original length of the route.

4. Short-Turning: This complex strategy consists of causing a vehicle to
skip the remaining route stops (usually at its terminus) to fill a large
service gap in another route (usually, the same route but in the opposite
direction). In a worst case scenario, the passengers may be subjected to
a transfer.

Bus-Holding control strategies are the most classic way of maintaining the buses
on time. However, this headway alignment is made by increasing the TT of the
passengers running in the vehicle [Strathman et al., 2000]. The same applies
to speed-based techniques. Moreover, stop-skipping/short-turning techniques
align the service headways at the cost of the passengers who have to wait at the
stops that were skipped [Liu et al., 2013].

It is possible to divide the existing bus holding approaches into two main
types [Fu and Yang, 2002]: (i) models that determine holding times on the
basis of a mathematical control formulation with an explicit objective function,
such as minimizing total passenger waiting time, and (ii) threshold-based control
models where buses are held at a control stop on the basis of the deviation of the
current TT from the scheduled headway. These models may assume theoretical
values of dwell-time, TT or passenger demand (i.e., deterministic models) or
assume that such events occur randomly (i.e., stochastic models).

A Review of Automatic Control Strategies

Eberlein et al. [1999] presents a study on three types of control strategies: hold-
ing, short-turning, and stop-skipping. The authors considered a one-way loop
light-rail transit network of two terminals and n intermediate stations. In [Eber-
lein et al., 2001], the optimal holding time at each stop is formulated as a deter-
ministic mathematical optimization problem. The continuous characteristics of
this problem were approached by employing a sliding window. This methodol-
ogy was easily adapted from the originally studied light train to a bus network
by [Zolfaghari et al., 2004]. Hickman [2001] presented an analytical model for
optimizing the holding time at a given control point in the context of a stochas-
tic vehicle operations model. The author formulated the problem as a convex
quadratic program in a single variable, and it is solved using gradient tech-
niques. Zhao et al. [2001] present a multi-agent approach which was based on a
negotiation between the bus and the stop agent to address the optimal holding
problem.

Fu and Yang [2002] proposed a theoretical relationship to express the optimal
holding time at a bus stop based on the current variation of the bus headways
and the expected passenger waiting time. A similar approach was followed in
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[Sun and Hickman, 2008] where the optimal holding problem is formulated ac-
cording to deterministic variables such as the passenger arrival rate, the number
of alighting passengers or the regular dwell time at a bus stop. Then, heuristics
were proposed to solve this optimization model. The authors concluded that
multiple holding locations are beneficial for minimizing total passenger-time, as
opposed to the work in [Eberlein et al., 2001], which assumed that only the orig-
inal terminal should be used as control point. Again, it maintains the limitation
of assuming deterministic variables.

The works in [Chen and Chen, 2009; Cats et al., 2010; Li et al., 2011b] also
propose dynamic bus holding models to avoid headway irregularities in high
frequency routes. The methodology was tested using AVL-based simulations
which assumed stochastic distributions for the decision variables. Delgado et
al. [2009] also suggested preventing passengers from boarding by establishing
maximum holding times to maintain the headway stable. A regression model is
proposed in [Yu and Yang, 2009] to deal with the holding problem: a SVR-based
method forecasts the early bus departure times from the next stop based on four
input variables (time-of-day, segment, the latest speed on the next segment, and
the bus speed on the current segment). Then, an optimization model is employed
to determine the holding time in each (bus, station) pair.

Only a small portion of data based works have employed other preventive
actions than changing the bus holding time. Daganzo and Pilachowski [2011]
proposed a multi-agent system where each bus would cooperate with the fol-
lowing to negotiate a maximum cruise speed to maintain the headway reliable.
Sáez et al. [2012] proposed a dynamic discrete objective function that can detect
disturbances in the headway regularity at each stop by employing a genetic al-
gorithm. Stop-skipping and bus holding are suggested to the driver according to
these events. The increase in the TT for the passengers on board caused by the
holding strategy is taken into consideration in these last optimization models.
Finally, Liu et al. [2013] proposed to study the short-turning as sub-problem of
stop-skipping. A mathematical model is proposed using cost-based variables,
such as the passenger waiting time or the TTV. Their main contribution is that
they remove the common assumption of a deterministic bus TT, which is un-
realistic due to the real-world influence introduced by road traffic conditions.
Table 2.6 presents an overview of these automatic control frameworks.

By analyzing the existing literature on this topic, it is reasonable to conclude
that this is still an open research field. Even if there are consistent studies on the
holding problem, the four preventive actions were not regarded simultaneously
in these works. Moreover, AVL data was used mainly as a proof of concept
or to feed some statistical distributions on stochastic variables, such as TT or
passenger demand. Another issue that is not broadly discussed in the literature
is the threshold definition [Fu and Yang, 2002] (for instance, the minimum level
of headway accepted, H0, or the maximum service gap tolerated), to define
when a control action should be adopted or not.

Despite the intrinsic chaotic characteristics of learning the headway instabil-
ity problem, most techniques employed are mainly adapted to batch or online
models which do not consider historical and real-time AVL data simultaneously.
Even if such models are able to detect the concept drift often introduced by the
unexpected events which occur in the system, such as traffic jams or a massive
demand, few works have reported their deployment in a real-world bus network.
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Table 2.6: Comparative Analysis on AVL-based Automatic Control Frame-
works. Key: S - Stochastic, D - Deterministic, A - Agent-based, R - light-rail
based.

Evaluation Indicators

Publication
Model
Type

Bus
Holding

Speed
Modification

Stop
Skipping

Short
Turning

(1) (2) (3) (4)
([Eberlein et al., 1999]) D;R

√ √ √

([Eberlein et al., 2001]) D
√

([Hickman, 2001]) S
√

([Zhao et al., 2001]) A
√

([Fu and Yang, 2002]) D
√

([Zolfaghari et al., 2004]) D
√

([Sun and Hickman, 2008]) D
√

([Delgado et al., 2009]) S
√

([Chen and Chen, 2009]) S
√

([Yu and Yang, 2009]) S+Reg.
√

([Cats et al., 2010]) S
√

([Li et al., 2011b]) S
√

([Daganzo and Pilachowski, 2011]) A
√

([Sáez et al., 2012]) S
√ √

([Liu et al., 2013]) S
√ √

2.2 Operational Control on Taxi Networks

Taxi service plays a vital role in public transportation by offering passengers
a quick personalized destination service in a semi-private but secure manner.
In Shanghai, for instance, taxi service takes up 23% of the total traffic volume
while a company in New York reports an average driver income per shift of $158
[Shanghai Municipal Statistical Bureau, 2008; Schaller Consulting, 2006]. De-
spite providing a convenient door-to-door service, taxi fleets are known by being
highly inefficient (e.g. [Cheng and Nguyen, 2011] reports that 50% of its time
is spent in idling state). The rapid growth of wireless sensors and development
of Global Positioning System (GPS) technologies make it easier to obtain the
timestamped spatial data reporting the vehicles’ journeys. Typically, these taxis
will report their locations in a certain but short frequency. Data such as its geo-
position, timestamp, occupancy information is constantly recorded (using some
weight-based sensor or by connecting the taxi meter to the communicational
framework).

The Taxi industry have took this technological advances later than the mass
transit companies (at the best of our knowledge, there is no relevant GPS-based
work on improving the Operational Control on Taxi Networks before 2001) due
to two main reasons: the 1) relation between the GPS price and its accuracy
and 2) the personalized characteristics of this transportation service (which re-
quires a lower level of coordination than the bus-based, for instance). Recently,
the large increase on the fuel cost have particularly forced this industry to im-
prove their operations and, more specifically, their control. This factor impelled
both academic and industrial researchers to deeply analyze this spatiotemporal
data to obtain ways to improve their profitability by A) reducing their vacant
cruise time, B) improving their service routing profitability/reliability and C)
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dispatching. The C) Dispatching service was the addressed by improving the
quality of the vehicle selection as well as the passenger waiting time.

The Automatic Vehicle Location and Dispatch Systems (AVLDS) (also known
as Telematics) started by being systems which were able to automatically assign
a service to the nearest available car (from the pick-up point demanded). One
of the first reported systems to do so was located in Singapore (which has one
of the largest taxi fleets in the world), where three companies adopted these
AVLDS systems [Liao, 2001, 2003]. Then, customer-centered services started to
be designed based both on the location and communication systems installed
along such fleets. Booking in advance or automatic response systems improved
the customers experience while ordering a taxi service. Such systems had a
positive impact into reducing the time consumed by the dispatching tasks. In
addition, these systems were able to collect data from each driver experience
such as the GPS data, but also up-to-date information on the traffic conditions,
accidents and jams, for instance (which can be used to improve routing models
and/or functions) [Lee et al., 2007]. The call’s operators also benefit from this
system by reducing misunderstandings and other entropies usually related to
these kind of work. The number of attended calls is also increased, while the
passenger load is fairly distributed along the fleet.

This Sections presents an overview on the GPS-based works focused on the
Operational Control in Taxi Networks. The Section 2.2.1 is focused on works
which evaluate the reliability, the performance and the underlying patterns of
the service provided. Section 2.2.2 deeply revises the routing applications on
reducing the vacant cruise time and/or improving their service routing prof-
itability. Finally, Section 2.2.3 analyses the works focused on predicting the
spatiotemporal distribution of the passenger demand.

2.2.1 Analysis of Service Performance

Taxi services may fall in one of three categories: 1) dispatching, where services
directly demanded to a control center (e.g. by a phone call) are dispatched to
a vehicle, which will pick-up someone in a nearby location; 2) cruising, where
a taxi service is demanded directly, on the street and while the taxi is cruising
(typically by a passenger waving to a taxi driver); 3) standing where the taxi is
parked on a stand waiting for a passenger to get in. Nevertheless, the driver’s
success is highly based on its mobility intelligence. In large-scale cities such
as New York or Beijing, the drivers are known to be experts on the demand
spatiotemporal variability on a given city zone or area - and not in the entire
city. However, they are not always located on their comfort area when they
made their decisions (e.g. Which road/stand should I head to pick up my next
passenger? ). In fact, such decisions were only based on their own experience.
The taxi’s control centers (often defined as simple call centers) emerged to face
this problem. Even so, they were not able to mine such large-scale mobility
patterns. Instead, they provide a convenient but basic on-demand service -
which is not enough to compete with other transportation modes nowadays
(specially to perform daily connections). Such lack of information lead to an
high inefficiency on managing the ratio between the available resources (i.e.
vehicles and fuel) and the existing mobility needs.

Many past research efforts were employed to understand (and improve) the
taxi fleets’ efficiency. A comprehensive study presented by Yang and Wong
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[1998] presented a framework to understand the equilibrium properties of taxis
running in a network (and its relation with their efficiency). An unbalanced ratio
between the passenger demand and the taxi’s offer may lead to one of these two
scenarios: I) an excess of vacant taxis or II) a larger waiting time to pick-up
one of these. Nevertheless, the main reason for the service’ inefficiency is the
poor taxi driver’s mobility intelligence. Such undesirable but typical behavior
provokes a low ratio between the live miles (miles with fare) and cruising miles
(miles without a fare). Some studies report that drivers’ bad decisions may
lead uo to 35-60% of the cruising miles/total miles ratio [Powell et al., 2011],
while others explain such variability on human factors such as the driver’s age
[Hong-Cheng et al., 2010].

The historical archived location-based data of mobility traces can provide
significant information, such as geographical distribution, time varying density
of road traffic and passenger demand, link speed, destination estimation. It is
also essential to implement many ITS applications by analyzing the underlying
patterns on fuel wasting or urban mobility [Hoque et al., 2012]. Although its
numerous possibilities, the research on this topic is still very recent.

One of the first GPS-based works proposed to analyze and generate location
histories is presented by Hariharan and Toyama [2004], where they classified
their historical locations into stays (i.e. spots where a vehicle has spent some
time) and destinations (i.e. clusters of stays). A first-order Markovian model
was employed to do so. However, such model did not considered the specifici-
ties of the taxi trajectories (e.g. the concept of staying or destination may be
irrelevant). Multiple spatial and temporal statistics of taxis’ waiting spots were
extracted from the historical data by Lee et al. [2008]. They also conducted
a spatial clustering to identify some hot spots such as city hall, airport, cen-
tral road and a shopping mart and an analysis on the waiting time on each
stop as well as the success ratio. Cheng and Nguyen [2011] demonstrated a
strong relationship between driver’s movements and the relative attractiveness
of neighboring regions. They did so by developing a multi-agent-based simula-
tion framework which can be fed by real-world operational data. Such frame-
work provide an opportunity to evaluate routing strategies (for the taxi drivers)
as well as new polices and/or mechanisms. A driver-based analysis is provided
by Liu et al. [2010a,b]: the drivers are divided between ordinary and top, based
on their skills/income. A spatiotemporal pattern is mined from the top drivers’
data where the primary focus is to reveal top driver mobility intelligence. The
Traffic Ratio Density was computed to characterize the level of taxi services for
each street district and facilitate the mapping of its spatiotemporal structure
from data acquired from 9921 taxis running in Shanghai [Deng and Ji, 2011].
Another interesting but recent analysis of taxi mobility patterns is presented by
Hoque et al. [2012], by monitoring multiple metrics such as instantaneous veloc-
ity profile, spatiotemporal taxi distribution, frequency distribution of pick-up
and drop-off or hotspots identification.

The existing literature on this topic is mainly performed on an industrial
perspective. However, very recent works have started to focus on the passenger
opinion. Tung et al. [2011] presented a novel index to measure the comfort
provided by the taxi service available on Taipei. One of the main problems on
this industry is the fraud - it typically happens when a passenger is not a local
and it consists into cruising a route between a given origin/destination highly
larger than it could be. This way, some greedy drivers have the opportunity to
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overcharge tourists. A first approach to this problem was presented by Chen
et al. [2012], where an anomalous route detecting model is proposed. Ge et
al. [2011] presented an innovative study on this topic where two fraud evidence
measures were proposed: a travel route evidence and a driving distance evidence.
Statistical models were thereby developed to introduce an algorithm to generate
a typical driving path from one interesting site to another.

Such analysis highlight the importance to improve the taxi driver’s mobility
intelligence. Methods to do so by providing intelligent routing and other GPS-
based recommendation systems are presented in the next Section.

2.2.2 Intelligent Routing and Recommendation Systems

The Intelligent Routing problem concerns the definition of a route through a
given origin/destination which could pass by some Points of Interest (POI)
and/or into finding the fastest (or the shortest) path between such origin/desti-
nation. However, in this Section we review works focused on where the passenger
demand will rapidly emerge. This can be computed using one of two approaches:
1) as a routing problem, where the defined route has an high likelihood to pro-
vide service demands; 2) as a recommendation model, where the target variable
is a zone or a stand where the demand will certainly be high. Many of the
routing works and/or frameworks reported on literature rely on the Dijkstra’s
work and/or on the A∗ algorithm. The recommendation problem - as well as
its relation with the routing one - is formally enunciated below.

Let S = {s1, s2, ..., sN} be the set of N taxi stands of interest and D =
{d1, d2, ..., dj} be a set of j possible passenger destinations. The 2) recommen-
dation problem consists into choosing the best taxi stand at instant t according
to our current sensing (independently on how it is obtained) about passenger
demand distribution over the time stands and/or urban regions for the period
[t, t+P ], as illustrated in Fig. 2.4. The 1) routing problem extends such defini-
tion by adding the notion of POI - Point of Interest. Consequently, the problem
is not only to decide which should be the stand sl : l ∈ {1, ..., N} to head to after
a passenger drop-off in a destination dk : k ∈ {1, ..., j} but also to find a set of
z POIs I = {I1, ..., Iz} along the route between dk and sl where taxi-passenger
demand can rapidly emerge.

Typically, the models based in either one of these approaches aim to maxi-
mize the likelihood of picking-up the next passenger as soon as possible. How-
ever, some works assume that the taxis cruise randomly to find their next pas-
senger - therefore, the models provide a route that aims to reduce the vacant
cruising miles as much as possible [Powell et al., 2011]. An illustration of a real
world instance of the problem is displayed in the Fig. 2.5. After a drop-off, the
driver needs to choose one of the nearby stands (represented by blue dots).

The taxi historical trajectories contain two main types of knowledge [Yuan
et al., 2011b]: the a) passengers’ mobility (i.e. where and when the passen-
gers were picked-up/dropped-off by a taxi) and b) the taxi drivers’ pick-up
behaviors (and its mobility intelligence). Yue et al. [2009] proposed to mine the
Level of Attractiveness (LoA) of each region/zone by defining a time-dependent
origin/destination matrix. They demonstrate its usefulness by quantizing the
attractiveness among clusters. Such results could facilitate our understanding
about the mobility in a city and they are commonly used as input to this rout-
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ing/recommendation models. Chang et al. [2010b] presented a novel insight on
demand prediction: they applied clustering to data extracted from large Asian
cities. They used some key features besides location/time such as the weather.
Their output was a hotness probability ratio over spatial clusters (i.e. real
agglomeration of roads/streets) dependent on the driver location, discarding
however the other taxis position.

Li et al. [2009] proposed a hierarchical GPS-based routing method which is
able to rank the road segments based on the frequency of their use (i.e. an highly
used road will be a road where many taxi drivers pass by). Secondly, a graph-
based algorithm determines the best route based on the drivers’ experience.
An innovative study was presented by Li et al. [2011a]. Their goal was to
validate the triplet Time-Location-Strategy as the key features to build a good
passenger finding strategy. They used a L1-Norm-SVM as a feature selection
tool to discover both efficient and inefficient passenger finding strategies in a
large city in China. They made an empirical study on the impact of the selected
features and its conclusions were validated by the feature selection tool. Lee et
al. [2008] constructed a recommendation model based framework to describe
the spatiotemporal structure of the passenger demand on Jeju Island, South
Korea. Zhang et al. [2012] presented a spatiotemporal clustering framework
able to both mine and select the top-5 valuable pick-up points/clusters. A
time-dependent landmark graph is proposed by Yuan et al. [2010] (a landmark
is considered as a road segment frequently traversed by taxis). Such graph is
used to model the taxi drivers’ mobility intelligence and the links’ weights are
calculated by a clustering process which is able to estimate the distribution
of travel time between two landmarks in different time slots. A Cloud-based
system computing was proposed by Yuan et al. [2011a]: this model is able to
aggregate and mine information from the taxi’ network but also from other
sources on the Internet such as Web maps and Weather forecasts. Based on
such data, the model is able to predict the short-term traffic conditions and to
provide the fastest route to perform the service. This framework was evaluated
using data from 33000 taxis running on the city of Beijing, China.

Powell et al. [2011] proposed to reduce the drivers cruising time by providing
a Spatiotemporal Profitability map which is able to suggest the most profitable

Figure 2.4: Intelligent Routing over taxi networks: a problem illustration.
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Figure 2.5: Illustration about the Recommendation of an highly profitable
stand.

regions on the map based on historical data, the drivers’ current position and the
present time. Ge et al. [2010] provided a cost-efficient route recommendation
model which was able to recommend sequences of pick-up locations. Their
goal was to learn from the historical data transmitted from the most successful
drivers to improve the profit of the remaining ones. Yuan et al. [2011b] presented
a very complete work containing methods about a) how to divide the urban area
into pick-up zones using spatial clustering; b) how a passenger can find a taxi;
and c) which trajectory is the best to pick-up the next passenger. Although their
results are promising, all approaches are focused on improving the trajectory of
a single driver, discarding the current network status (i.e. the position of the
remaining drivers) as well as the real cost (e.g. fuel) to get to the pick-up point.

Hu et al. [2012] proposes an innovative cost-saving model: it firstly mines in-
teresting time-dependent pick-up points by clustering the historical GPS traces;
secondly, a skyline computing-based heuristic computes a pick-up tree where the
taxi current location is the node able to connect all the interesting pick-up points
(i.e. centroids). Thirdly, a probability model to estimate the fuel consumption
is presented and employed as the weight of every route. However, the posi-
tion of the remaining cars is also discarded by this recommendation framework.
Typically, this recommendation depends on four main variables:

1. the apriori distance from our current location to the area/stand we could
head to (it can also be expressed as a cost in currency and/or time);

2. the expected service revenue that we will pick-up on that specific location;

3. the passenger demand expected to emerge on such area/stand in the next
period of P −minutes;

4. how many vacant vehicles are already parked and/or cruising on such
stand/area.

At the best of our knowledge, there is no work in the literature proposing a
recommendation model able to handle these four variables in real-time. While
it is reasonable admit that the variable 4 can be measured in real-time, the
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remaining ones need to mined from the network’s historical GPS data. In fact,
a more realistic estimation of the distance could be to estimate the cost to cruise
such path to this specific area (like it is proposed in [Hu et al., 2012]). A similar
approach could be performed to the variable 4, taking full advantage about the
underlying patterns contained in the previously acquired data. Recently, a few
innovative works regarding the prediction problem on the short-term passenger
demand at a given area/stand (as well as the number of cruising vacant vehicles)
were proposed. Such works can be faced as a straightforward contribution to
the existing recommendation models. They are briefly reviewed in the following
Section.

2.2.3 On Predicting Service Spatiotemporal Patterns

The knowledge of the number of vacant/occupied taxis in different areas in
the city as well as its short-term state provides the information for a better
scheduling. For example, a tourist who arrives at an airport in a transit city
and wants to make a trip inside the city with limited time will benefit from the
service by using it to plan out a series of taxi rides around the city. We will
briefly revise this kind of predictive models over the spatiotemporal distribution
of both the vacant taxis and the passenger demand throughout the city.

A promising framework to predict the number of vacant taxis was presented
by Phithakkitnukoon et al. [2010]. They employed a classifier based on the day
of the week, on a given time of the day and on the weather condition corrected
by an Error-Based Learning method. A dataset containing 4 months of data
from Lisbon, Portugal was successfully used as test bed. A similar work was
presented by Mayuri and Rajesh [2013], where a probability function expresses
the likelihood to find a vacant taxi on a given area based on historical data.
However, this work also provide a probability model to estimate the inverse
event (i.e. the likelihood to pick-up a passenger). In fact, the prediction of the
passenger demand’s spatiotemporal distribution is a hot topic.

Li et al. [2012] present a recommendation system to improve the driver
mobility intelligence. To do so, they used data from a taxi network running in
Hangzhou, China. Firstly, they calculated the city hotspots: urban areas where
pick-ups occur more frequently. Secondly, they used ARIMA to forecast the
pick-up quantity at these hotspots over periods of 60 minutes. Thirdly, they
presented an improved ARIMA dependent both on time and daytype. Finally,
they proposed a recommendation system based on the following variables: 1)
the number of taxis already located at each hotspot; 2) the distance from the
driver location to the hotspot in time and 3) the prediction about the number
of services to be demanded in each one of them. However, their approach also
presents some strong limitations: 1) it just uses the most immediate historical
data, discarding the mid and long-term memory of the system; 2) their test-
bed uses minimum aggregation periods of 60 minutes over offline historical data
(i.e. the next value prediction task on a time series goes easier as long as you
increase its aggregation period). Such method represents the historical time
series as an histogram one. However, once we are in a bin, we will only have a
novel prediction after passing to the next one (i.e. a recommendation model has
to operate in real-time. Therefore, it is inadequate to consider that a prediction
at 2pm, for instance, will be enough to decide at 2:05pm, 2:15pm or 2:35pm); 3)
the paper does not clearly describes how they update both the ARIMA model
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and the weights used by it. Notwithstanding the validity of employing time
series analysis techniques to handle this problem, further research to mitigate
the abovementioned issues is needed to improve their applicability.

2.3 Challenges and Research Opportunities

Throughout this Chapter, the most significant contributions in AVL-based re-
search to improve the service reliability on public transportation networks were
presented. This Section discusses twelve Research Opportunities (i.e. (a-l))
to be explored in the future, as well as open challenges to the research commu-
nity on these topics.

2.3.1 Improving Operational Planning on Mass Transit
Agencies

Section 2.1.1 briefly revises the steps of the traditional OP. Even though AVL-
based research has emerged recently on improving route definition, most AVL-
based works on OP focus on the SP. The State-of-the-Art relies on deterministic
and cost-based models. The AVL data makes it possible to perform a bottom-
up OP evaluation, namely correctly exploring the available resources or even
reducing them if possible to meet the current demand. A (a) complete AVL-
based framework to re-design all the steps of the OP (already discussed in
Section 2.1.1) is a research goal on this topic for the medium term future.

2.3.2 Evaluating SP reliability on Mass Transit Agencies

It is possible to identify two main issues where further AVL-based research
should be employed to improve the evaluation of SP reliability: (b) creating
an unique evaluation indicator, considering the company’s perspective on the
evaluation by including external factors in the evaluations, or by developing cost-
related evaluations and to (c) evaluate the reliability of the current schedule’s
number and coverage. These subjects are described below.

The aforementioned evaluation metrics are classical but widely used in eval-
uation studies. However, distinct metrics (which are highly correlated to the
main ones) are continuously emerging. It is known that the importance of each
one of these indicators depends on the frequency established in the route. How-
ever, to the best of our knowledge, (b) there is no consensual, individual and
integrated reliability ratio.

The first step in building a SP is defining both the schedule’s number and day
coverage. Then, a timetable is assigned to each schedule in a stepwise process
already discussed in Section 2.1.2. This definition has an explicit impact on
the definition of timetables. However, to the best of our knowledge, no research
addresses the evaluation of whether the schedule’s number and coverage still suit
the current demand patterns and network behavior. Consequently, a question
arises: (c) Is it possible to assess whether the schedule’s number and coverage
is suitable for the network needs based on historical AVL data?



2.3. CHALLENGES AND RESEARCH OPPORTUNITIES 41

2.3.3 Improving SP Timetabling on Mass Transit Agen-
cies

In terms of improving SP timetabling based on AVL data, four subjects emerged
as research opportunities as a result of the extensive review of the existing lit-
erature: fine-tuning the Schedule using (d) long-term TTP and (e) optimal
slack times; (f) building automatic methods to perform feature selection
for TTP problems, and (g) performing before-and-after SP evaluations.
These opportunities are now described in detail.

A large gap identified in the literature has to do with the (d) AVL-based
long-term TTP. The regression models represent the most relevant slice of the
State-of-the-Art on AVL-based short-term TTP. However, some works have also
demonstrated their usefulness in long-term problems [Mendes-Moreira et al.,
2012]. The AVL data makes it possible to explore these models to improve the
SP. Such approaches can present a breakthrough for this research area over the
next decade.

In Section 2.1.3, (e) the slack time is introduced in the SP to handle vari-
ability in TT. Prior to deploying Automated Data Collection systems in mass
transit companies, computing that variability was a difficult task. However, the
availability and the reliability of the historical AVL data used today represent
a clear opportunity to improve the schedules using this well-known strategy -
already being explored by a few set of recent works [Mazloumi et al., 2012; Yan
et al., 2012; Jorge et al., 2012].

Even though regression models are simple to apply, they suffer from several
limitations in the context of TTP. The greatest limitation is that many variables
in transportation are highly correlated [Jeong and Rilett, 2005; Wong, 2011].
However, there is not much research on the (f) automatic feature selection for
TTP regression problems [Patnaik et al., 2004; Mendes-Moreira, 2008; Mazloumi
et al., 2011]. This step can be particularly important to facilitate the training
stage of complex regression models such as ANN or SVR.

Evaluating the changes performed on the SP is difficult prior to deploy-
ment. Even though this review discusses various works focused on improving
the SP, not many of them evaluate the impact of the suggested changes. The
(g) before-and-after evaluation studies are crucial to quantify the relevance of
these adjustments. To the best of our knowledge, there is only one AVL-based
study of this type [Tétreault and El-Geneidy, 2010; El-Geneidy and Surprenant-
Legault, 2010]: [Tétreault and El-Geneidy, 2010] select bus stops and estimate
run times for new express services, while [El-Geneidy and Surprenant-Legault,
2010] evaluates the reliability of the route SP after deployment.

2.3.4 Automatic Control Strategies for Mass Transit Agen-
cies

To predict instability and unreliability in the network while the buses are op-
erating is a difficult challenge. Not much research focuses on more than one
preventive action. Moreover, the test-beds employed are mainly proof of con-
cepts because they use limited data collections both in space (i.e., number of
routes) and time. Yet, many mass transit companies have large collections of
data in their databases whose potential is far for being fulfilled. This family
of problems is closely related to the Online Learning problems. Even though
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they are common in TTP problems, ML techniques have rarely been applied to
build automatic control strategies. Problem formulations, such as Stream Event
Detection can represent a breakthrough in the Control area. Moreover if it is
possible to combine Online Learning with patterns mined from historical data.
Such hybrid methodologies (i.e. regression models plus state-based learning)
are being proposed for short-term TTP in the context of Advanced Traveler
Information Systems. However, (h) we believe that these two areas could be an
interesting topic to explore in the Control context.

Recently, researchers focused on building efficient control systems capable
of monitoring headway regularity and of avoiding inconvenient events, such as
BB. Surprisingly, there is not much research on this specific topic. Many of the
existing works focus primarily on the optimal bus holding problem, thus dis-
regarding the remaining corrective actions. Consequently, one challenge arises:
(i) Is it possible to build a methodology that considers and selects one of the
four known corrective control actions based on AVL/APC data? In fact, such
methodology addresses two distinct problems that are not conveniently covered
in the literature: (i-1) Is it possible to define an optimal control threshold? 5.
(i-2) How is it possible to choose the best corrective control action after the
optimal control threshold is reached?

2.3.5 Informed Driving Methods for Taxi Services

The taxi networks are more exposed to the stochastic phenomenons that affect
traffic conditions and the service demand than the inner-city mass transit ser-
vices. Consequently, their control tasks - such as service assignment or route
selection - are highly relevant to maintain their service costs on sustainable lev-
els. However, the introduction of advanced taxi dispatch centers on major urban
areas is even more recent than on mass transit agencies [Lee et al., 2007; Furth
et al., 2003]. Obviously, the most important variable to handle such issue is the
short-term passenger demand. The State-of-the-Art on this topic is still very
limited. Consequently, it is urgent to (j) develop methodologies able to accu-
rately predict the future values of such variable able to handle such stochastic
events.

Moreover, it is known that the driver’s decisions are not only demand-based:
it also concerns the current position of its competitors (i.e. other drivers) and
the (k) apriori travel time estimation (i.e. before the trip starts) between each
origin and destination (e.g. how long a given driver will take to pick-up a
passenger on a specific urban area at a given time of the day). Therefore, a
(l) recommendation model able to provide accurate information on each driver
decision (namely, on finding their next passenger) in real-time can be highly
impactful on this industry. However, at the best of our knowledge, there is no
such model in the State-of-the-Art of this topic.

2.4 Overview and Research Goals

In this Chapter, the location-based ITS applications on improving both the plan-
ning and the control of mass transit transportation networks were revised. In

5 When should a control action be taken to restore real-time service reliability (and avoid
BB occurrences)?
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the last decade, many relevant contributions were presented on this topic. The
spatiotemporal features of this type of data provided new and unprecedented
opportunities to reveal underlying patterns on unexpected behaviors and/or
events which are deteriorating the schedule - and therefore, the service’s qual-
ity. This data availability is now inexpensive and widely spread as a standard
in every mid/large-sized inner city public transportation networks.

The necessity of having a good planning/control of public transportation
networks increases along with the number of vehicles running on the largest
urban areas. These companies face today a strong competition not only from the
individual transport but also from the alternative modes such as the metro, the
tram and the trains - specially considering the rising fuel costs at an worldwide
scale. Such systems are now the truly competitive advantage which can draw
a thin line between the financial success and the bankruptcy. More than a
good operational plan, these networks have an emergent need to be adequately
controlled (preferentially, without human intervention - or, at least, to reduce
it as much as possible).

This need encouraged more and more researchers to focus on mining the GPS
data broadcasted by the vehicles. This data source dramatically changed the
way to improve both the operational planning and control on these networks.
The theoretical models were progressively replaced by complex but efficient
statistical models and ML algorithms. Nowadays, it is even more important to
provide real-time information to the passengers about what is happening in the
network (i.e. on-spot arrival time information). More than building an exact
but time-consuming prediction on the arrival time, the researchers have focused
into building simple frameworks able to constantly learn from location-based
data streams. They did so by proposing online learning models (e.g. Kernel
filters and Markovian models).

However, it was the operational control which benefited the most of these in-
troduction. The old radios and communicational frameworks were now replaced
by high tech large-scale monitoring centers where it is possible to observe the
vehicles/drivers’ behavior in real-time. Recently, the researchers focused their
attention on building automatic but efficient control systems able to monitor
the headway regularity and to avoid inconvenient events such as BB. Surpris-
ingly, there are not so many works regarding the occurrence of BB. Many of the
existing works on improving the operations’ control are focused on the hold-
ing problem (i.e. to discover the optimal holding time of each vehicle/bus stop
pair). Consequently, these works present a reactive nature by introducing cor-
rective action just when the headway is already highly unstable (i.e. BB event).
Many other related problems take similar approaches (e.g. offline taxi-passenger
demand prediction, which does not handle bursty peaks). By generally antic-
ipating these events using ML frameworks, we intend to adopt proactive ap-
proaches from which we take actions (e.g. stop skipping or vehicle re-routing)
to avoid them instead of mitigating their effects.

This PhD thesis take an explorative approach to improving the planning
and control of PT networks using GPS data. Firstly, we departed from a very
general hypothesis (defined in Section 1.2) to review the existing State-of-the-
Art of data driven methods on these topics. The aim of this step was to identify
research opportunities in the literature where advances can be provided based
on the location data broadcast by each vehicle. In the previous Section, twelve
specific research topics were drawn from such review. Hereby, six of these topics



are addressed. To do so, the following research goals were devised:

1. Explore unsupervised offline learning methods to reduce the travel time
variability by automatically evaluating the schedule day coverage and iden-
tify improvement measures (c);

2. Attempt to build online methodologies capable of predicting Bus Bunch-
ing events in real-time (h);

3. To develop a framework able to automatically select and deploy a cor-
rective action given a Bus Bunching alarm (i);

4. Seek a real-time Time Series Analysis method able to predict the short-
term taxi-passenger demand behavior over an urban area (j);

5. Research online learning techniques capable to produce real-time smart
recommendations about the most adequate to head to based on the
current network status (k,l);

Obviously, such goals imply the exploit of distinct data sources (i.e. taxis
and buses networks). However, we believe that the data from such sources share
some characteristics that justify such parallel study - namely, by developing
methods able to use both sources simultaneously. Consequently, a secondary
goal is also established as follows:

6. To explore the synergies between the taxis and buses networks by
developing methodologies to meet any of the abovementioned goals able
to learn from both data sources.

The decision support systems accomplished from the primary goals must
be able to cope with the streaming spatiotemporal information. This aspect
requires streaming data mining algorithms able to continuously maintain de-
cision models consistent with the current state, monitor events in real-time,
detect changes, etc.. We believe that the introduction of these real-time deci-
sion framework can be a novel and major contribution for public transportation
networks.

In the next Chapter, we present a brief overview on adequate online methods
for the problems described above.
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Chapter 3

Fundamental Concepts on
Learning from Data
Streams

In the last decades, Machine Learning (ML) research have focused on batch
learning (i.e. offline learning) usually using relatively small datasets. On batch
learning, the training data is assumed to be entirely available to the algorithm -
which outputs a decision model after processing the data multiple times. How-
ever, most applications require learning algorithms able to act while the data
is being collected. Such algorithms have to be able to incorporate new data
as it arrives - in an incremental manner. Moreover, most of these processes
are non-stationary (i.e. their concepts evolve over time; e.g. a spam filter or
an antivirus scanner) - therefore, it may be not enough to be incremental. A
successful learning algorithm must be also able to handle concept drift, forget
outdated data and adapt to the current state of nature [Gama, 2010].

A greater challenge is now upon the ML community by the introduction of
automatic data feeds. Unlike the human-generated ones, these transient data
streams have a particular but important constraint: it is not feasible to load
the arriving data into a traditional database management system, which is not
designed to directly support the continuous queries required by such appli-
cations. The traditional learning methods (i.e. offline) made some assumptions
which are not compatible with these data streams such as finite data sets, static
models and/or stationary distributions. These aspects are derived from novel
aspects about this kind of data:

• The data is produced/broadcasted through unlimited streams that contin-
uously flow, eventually at high speed, over time;

• The data distribution may be non-stationary (i.e. the underlying regular-
ities may evolve over time);

• The data are now spatially situated (as well as time situated);

But could small adaptations to the traditional ML algorithms suffice to
handle such new data characteristics? Even very basic operations (common

45
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to many of the most successful and widely used algorithms) are challenged with
such new settings. For instance, we can consider a standard procedure to cluster
variables. Typically, these variables are represented by columns in a working
matrix. Such matrix can be clustered by applying any clustering algorithm over
its transpose. However, in a scenario where the data evolve over time, we cannot
use such trick (i.e. the transpose operator cannot be used [Barbará, 2002]).
Therefore, the learner can only afford one pass on each data piece because of
time and memory constraints. When the learner has to decide on the fly what is
relevant and must be processed and what is redundant and could be forgotten?

Formally, we can define Adaptive Learning Algorithms as follows. Let
Et = {~xi, yi : y = f(~x)} be a set of examples available at time {1, 2, 3, ..., i}. A
learning algorithm is adaptive if from the sequence of examples {..., Ej−1, Ej , ...},
produce a sequence of Hypothesis {..., Hj−1, Hj , ...}, where each hypothesis Hi

only depends on previous hypothesis Hi−1 and the example Ei.
An adaptive learning algorithm requires two operators:

• Increment : the example Ek is incorporated in the decision model;

• Decrement : the example Ek is forgotten from the decision model.

In summary, knowledge discovery from data streams implies the following
requirements:

• The algorithms will have to use limited resources, in terms of computa-
tional power, memory, communication, and processing time;

• The algorithms may have to communicate with other agents on limited
bandwidth resources;

• In a community of smart devices geared to ease the life of users in real
time, answers will have to be ready in an anytime protocol ;

• Data gathering and data processing might be distributed.

In this Chapter, we review some of the most well known techniques to learn
from data streams useful for the problems approached on this thesis. This
review is based on a comprehensive survey on this subject presented by Gama
[2010]. However, some prior knowledge on ML basics is recommended - but not
mandatory - to fully acknowledge its insights. To ease the interpretation of this
Section, some definitions about computational learning methods are presented
below.

• Supervised Learning: to infer a function from labeled training data
(e.g. the price of a given product or a military rank). The training data
usually consists into a set of instances with an input object (typically a
vector) and a desired output value. Such function is then used to compute
the value of novel examples where the output value is unknown [Mohri et
al., 2012];

• Unsupervised Learning: to find one (or multiple) hidden structure in
unlabeled data. One of the most well known approaches to unsupervised
learning is clustering [Mohri et al., 2012];
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• Offline Learning: a method able to learn a predictive model from a fi-
nite set of instances where the post-training queries do not improve its
previous training [Burke et al., 2010];

• Incremental Learning: a method able to learn and update its predic-
tive model as long as the true labels of the input samples are known (i.e.
a stepwise method where each step uses one or more samples) [Chalup,
2002];

• Online Learning: an incremental learning method which is able to up-
date the model every time a true label of a newly arrived sample is
known (i.e. it learns from one instance at time)[Burke et al., 2010];

• Real-Time Learning: an online process able to operate in real-time (i.e.
to use the last sample true label to update the predictive model before
the next sample arrives)[Huang et al., 2006];

This Chapter is structured as follows: the Section 3.1 presents some intro-
ductory methods and concepts to analyse a data stream. The third Section
discusses some methods to maintain histograms on this context. The tradi-
tional Time Series Analysis techniques are presented in Section 3.3. Section 3.4
presents State-of-the-Art techniques to ensemble prediction methods working
over a stream of data. Finally, we propose some evaluation metrics to work over
models learned from data streams in Section 3.5.

3.1 Basic Streaming Methods

Data streams are unbounded in length and depth (i.e. the domain of possible
values of an attribute can be very large). For instance, the domain of all pairs of
IP addresses on the Internet: it is almost impossible to store all data and execute
queries over this past data. Most of these types of queries require techniques to
somehow summarize information about the past data. Such techniques usually
require O(N) space...how can we use those in a restricted memory’ (i.e. less
than O(N)) scenario?

There are three main constraints to consider when we are querying data
streams: 1) The amount of memory used to store the information; 2) the time
to process each data element and 3) the time to answer the query of interest.
A summary of the differences between traditional and stream data processing
is presented in Table 3.1.

Algorithms that process data streams are typically sub-linear in time and
space. However, its answer is in some sense approximate. In general, we can
identify two types of approximate answers: 1) ε Approximation: the answer is
correct within some small fraction ε of error; 2) (ε, δ) Approximation: the answer
is within 1 ± ε of the correct result, with probability 1-δ. The constants ε and
δ are strongly correlated with the space complexity of our solution. Typically,
the space is O( 1

ε2 log(1/δ)).
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In this Section, we will briefly present some basic techniques to handle learn-
ing from data streams on three distinct perspectives: 1) Poisson processes, 2)
Sliding Windows and 3) Data Sampling and Summarization.

3.1.1 Poisson Processes

A typical example of a data stream is a Poisson process. We can define it as a
stochastic process in which events occur continuously and independently from
each other. We can easily observe real life examples of this such as the passenger
hopping on/off buses on a given stop, telephone calls arriving or the number of
meals delivered by a take-away restaurant.

A random variable x is said to be a Poisson random variable with parameter
λ if x takes values 0,1,2,...,∞ with:

pl = P (x = k) = e−λ
λk

k!
(3.1)

P (x = k) increases with k from 0 till k ≤ λ and falls off beyond λ. The
mean and variance are E(X) = V ar(X) = λ. The Poisson processes present
some interesting properties such as:

• The number of points ti in an interval (t1, t2) of length t = t2 − t1 is a
Poisson random variable with parameter λt;

• If the intervals (t1, t2) and (t3, t4) are non-overlapping, then the number
of points in these intervals are independent;

• If x1(t) and x2(t) represent two independent Poisson processes with pa-
rameters λ1t and λ2t, their sum x1(t)+x2(t) is also a Poisson process with
parameter (λ1 + λ2)t. However, in many problems, we are not interested
in maintaining statistics over all the past but only over the most recent
one. One of the most used techniques to consider what is old enough to
be forgettable are the sliding windows, described in the following Section.

3.1.2 Sliding Windows

When we want to consider just the most recent observations, a sliding window
of fixed size is the most simple solution. Whenever an element ji is observed
and inserted into the window, another element ji−w (where w represents the

Table 3.1: Differences between traditional and stream data query processing.

Traditional Stream

Number of Passes Multiple Single
Processing Time Unlimited Restricted
Memory Usage Unlimited Restricted
Type of Result Accurate Approximate
Distributed? No Yes
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window size), is forgotten. Babcock et al. [2002] defines two basic types of
sliding windows:

• Sequence based. The size of the window is defined in terms of the
number of observations. Two different models are sliding windows of size
j and landmark windows;

• Timestamp based. The size of the window is defined in terms of dura-
tion. A timestamp window of size t consists of all elements whose times-
tamp is within a time interval t of the current time period.

Note that to calculate statistics over sliding windows, we need to maintain
all elements within the window in memory. Suppose a problem of interest
where we want to maintain a window of 100 samples from 1000 observations
(x1, x2, ..., x900, x901, ..., x1000). Consider the following sufficient statistics (i.e.
statistics over the observations inside the window) after receiving the 1000th
observation:

A =

1000∑
i=901

xi;B =

1000∑
i=901

x2
i (3.2)

Whenever the 1001th value is observed, the sufficient statistics will be up-
dated as A = A + x1001 − x901 and B = B + x2

1001 − x2
901. Even being easy

to update this type of statistics we still need to maintain all the observations
within the window in memory (independently of the window’ size). However,
this forgetting mechanism may not be enough to understand the current data’
nature - specially if it carries seasonality somehow. Another interesting family of
techniques to handle this need to maintain sufficient information about the past
without overloading the memory is the data reduction one. We summarily
describe some of these techniques in the next Section.

3.1.3 Data Sampling and Summarization

The Data Reduction techniques consist in mechanisms to define, maintain and
update data structures which contain sufficient statistics about the past data.
Two of the most commonly used techniques are the 1)sampling and 2)his-
tograms. They are described below.

Sampling

Sampling is a common practice for selecting a subset of data to be analyzed.
Actually, the Sliding Window techniques can be faced as a particular case of
Sampling - where the only criteria to select if we want to maintain a given ob-
servation in memory is if it is recent enough. However, as the Sliding Windows,
the Sampling processes also present strong drawbacks: while they reduce the
amount of data to process, and, by consequence, the computational costs, they
can also increase the number of errors. Therefore, the main problem is to define
the criteria to obtain a representative sample - a subset of data that has approx-
imately the same properties of the original data. Some of the most well-known
techniques to do so are the Reservoir Sampling [Vitter, 1985], the Min-Wise
Sampling [Broder et al., 2000] and the Load Shedding [Tatbul et al., 2003]. The
first one is briefly described below.
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The Reservoir Sampling takes one parameter, i.e. z, which defines the num-
ber of samples to be maintained from the original set of N samples, i.e. S.
Then, a second set is created containing the first z samples in S, i.e. R ⊂ S.
Thirdly, the remaining elements of S are also scanned. For each ith value of S,
a random number is generated, i.e. r ∈ [1, z]. If r ≤ z, the rth is replaced by the
ith value of S, i.e. R[r] ← S[i]. This incremental procedure gives the similar
probability to every elements S to be included on R.

Histograms

Histograms is a summarization technique that can be used to approximate the
frequency distribution of element values in a data stream. It is visualized as
a bar graph that shows frequency data. Using a simplistic approach, we can
build an histogram by sorting the values of a random variable of interest and
placing them into bins (i.e a set of non-overlapping intervals). Each interval is
defined by the boundaries and a frequency count (equal to the number of data
points inside each bin). However, it can be difficult to maintain equally-sized
boundaries from a data stream by two main reasons: firstly, it may be not
possible and/or necessary to keep the same amount of information (i.e. equally
sized bins by width/frequency) from the recent past rather than the oldest one.
Secondly, we can be handling a random variable which do not follow a stationary
distribution. In the following Section, we briefly discuss some specific techniques
to maintain histograms from data streams.

3.2 Maintaining Histograms from Data Streams

Formally, we define a histogram as a set of break points b1, ..., bk−1 and a set of
frequency counts f1, ..., fk−1, fk that define k intervals in the range of the ran-
dom variable: [−∞, b1], ]b1, b2], ..., ]bk−2, bk−1], ]bk−1,∞]. The most commonly
used histograms are either equal width, where the range of observed values is
divided into k intervals fo equal length (∀i, j : (bi− bi−1) = (bj − bj−1), or equal
frequency, where the range of observed values is divided into k bins such that
the counts in all bins are equal (∀i, j : (fi = fj)).

Many of the traditional approaches to build histograms require a user-defined
parameter k, the number of bins. Multiple rules were suggested in the literature
to define it based on the number of observations n (e.g. the Sturge’s rule:
k = 1 + log2(n) [Sturges, 1926]). However, it is not suitable for large values
of n (i.e.n > 200). How can we maintain our histograms representative of the
data distribution of a random variable represented by a stream of values? In
this Section, we will detail three techniques to maintain the histograms up-to-
date on these kind of environments: 1) the K-buckets Histograms [Gibbons et
al., 1997], the PiD algorithm [Gama and Pinto, 2006] and 3) the Exponential
Histograms [Datar et al., 2002].

3.2.1 K-buckets Histograms

Let F = {f1, ..., fk−1, fk} be a series of frequency counts of a given event over
a random variable X. Let the boundaries be defined by the following set of
breaking points B = {b1, ..., bk−1}. Gibbons et al. [1997] proposed an algorithm
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to incrementally maintain histograms with a fixed number of bins: k (which is
previously defined). Firstly, this method consists into defining two thresholds
(one maximum and one minimum) for the frequency in each bin. Secondly, two
rules are build to update the buckets (i.e. bins) size: 1) whenever a frequency
count fi on a given bucket [bi, bi+1], goes greater than the maximum threshold,
it is split in two by creating a new breaking point between its two previous
boundaries bi, bi+1. The next two buckets are merged by removing the breaking
point bi+2. 2) In other hand, if such frequency count fi on a given bucket
[bi, bi+1] goes lower than the minimum threshold, it is merged with a neighbor
bucket (i.e. the one containing the lowest frequency). The bucket containing
the largest frequency is then divided into two.

3.2.2 Partition Incremental Discretization (PiD)

This algorithm was firstly proposed by Gama and Pinto [2006]. It extends the
base idea introduced on the K-buckets histograms by removing the constraint
of maintaining a static number of bins k. It is reasonable to assume that as
more data about a given problem becomes available, it is better to keep more
detailed information to describe it. Such level of detail can be easily achieved
by shrinking the bins width through progressive increases of the number of bins
k. Similarly, it may also be useful to reduce this detail on other situations.

To possess such adaptive characteristics, the PiD algorithm maintains two
distinct layers: one which runs the K-buckets algorithm using only a maximum
frequency threshold (i.e. without merges) and a second one with a dynamic
bin width. The first layer contains an user-defined number of bins k1 which
should be considerably lower than any possible number of desired bins k (i.e.
k1 � k). Then, the second layer is constructed on demand using the parameter
k. It basically works by summing up the bins on the layer 1 to achieve an
equal-width histogram of k bins. Consequently, k = c× k1 : c ∈ N,∀k, k1.

3.2.3 Exponential Histograms

One of the most common data streams consists into timestamped series of 0’s
and 1’s which may refer to a certain event. The idea is to build an histogram
capable of counting the number of 1’s within a certain sliding window of size
N (a user-defined parameter). But what happens if the N is too big for the
resources available (i.e. memory space)? The exponential histogram strategy
presented by Datar et al. [2002] consists of using non-equally sized bins to hold
the data. The histogram is composed by a series of buckets and two additional
variables: LAST and TOTAL. Besides a frequency count, each bucket has a
timestamp associated with it. The variable LAST keeps the size of the last
bucket while the TOTAL stores the buckets’ total size.

When a new 1-type data element arrives, we create a new bucket of size 1
with the current timestamp and we increment the variable TOTAL. As long as
new time series values are known, two mechanisms are employed to reduce the
amount of information kept in memory: 1) to merge buckets and 2) to forget
them. The 1) merge operation consists on merging the two oldest buckets of
the same size whenever there are |1/ε|/2 + 2 or more buckets of the same size
(where ε is a user-defined parameter which represents the admissible relative
error). If the last bucket is merged, we update the LAST variable. The 2)
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forget mechanism depends on the parameter N : all the buckets outside this
time window are instantly dropped (and the variables TOTAL and LAST are
updated according to this operation.

Using such methodology, we are able to maintain an approximate histograms
from streams of data. The estimate of 1’s in the sliding window T is given by
the following equation

T = TOTAL− LAST/2 (3.3)

Datar et al. [2002] demonstrates that using this methodology for the basic count-
ing problem opens the possibility of adapt many other techniques to work for
the sliding window model - not only to maintain approximate histograms but
also hash tables or statistics, for instance. In the next Section, we briefly review
the techniques commonly applied to time series analysis.

3.3 Time Series Analysis

3.3.1 Definition, Trend and Seasonality

We consider as a time series a sequence of numerical values which represents
the evolution of a given random variable over time. Each one of this values has
a timestamp associated which represents its order in the sequence. They can be
either continuous or discrete.

The majority of the time series patterns can be described in terms of trend
and seasonality. The trend represents a general but systematic component (lin-
ear or nonlinear) that evolves over time while the seasonality represents a peri-
odic repetition of these patterns over time. Fig. 3.1 represents the time series
regarding taxi-passenger demand over a month in the city of Porto, Portugal.
It clearly exhibits seasonal patterns (i.e. weekly), where the weekends have a
lower demand than the work days.

In this Section, we will briefly revise some important methods to deal about
the trends and seasonalities underlying in a time series process. Secondly, we

Figure 3.1: Taxi-passenger demand over a month in the city of Porto, Portugal.
The x-axis represent month days while the y-axis is the total number of taxi
assignments on each one of the considered time spans.
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will revise some methods to perform time series prediction and finally we enun-
ciate two State-of-the-Art techniques to measure the similarity between time
series.

Trend

A moving average (MA) is commonly used in time series data to smooth out
short-term fluctuations and highlight trends or cycles. We can distinguish be-
tween two types of MA methods: 1) averaging methods where all data points
have the same relevance and weighted averaging methods where data points are
associated with a weight that strengthens their relevance. There are mainly two
relevant averaging methods:

• Moving Average: The mean of the previous n data points:

MAt = MAt−1 −
xt−n+1

n
+
xt+1

n
(3.4)

• Cumulative moving average: The average of all of the data up until
the current data point:

CAt = CAt−1 +
xt − CAt−1

t
(3.5)

The second group - weighted moving averages - includes:

• Weighted moving average: it has multiplying factors to give different
weights to different data points. The most recent data points are the most
important ones.

WMAt =
nxt + (n− 1)xt−1 + ...+ 2xt−n+2 + xt−n+1

n+ (n− 1) + ...+ 2 + 1
(3.6)

• Exponential moving average: like the previous method, it has weights
for each data point. However, they are decaying exponentially rather than
linearly as they are applied to older data points.

EMAt = α× xt + (1− α)× EMAt−1 (3.7)

The exponential moving average has the advantage to not require the main-
tenance of all data points in memory - it fully depends on the α parameter.
However, to find an adequate alpha is not be as trivial as it seems.

Seasonality

The autocorrelation is one of the most useful statistics to mine the seasonalities
within a given time signal. It is the cross-correlation of a time series with itself.
It is commonly used to detect not only the existence of periodic signals but
also its periodicity. We can define r(x, l) the Autocorrelation as the correlation
between x and x− l where l represents the time lag.

r(x, l) =

∑n−1
i=1 (xi − x̄)(xi+l − x̄)∑n

i=1(xi − x̄)2
(3.8)

Fig. 3.2 plots the autocorrelation of a signal highly similar to the one presented
on the Fig. 3.1. It exhibits a clear periodicity of 12 hours.
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Figure 3.2: Correlogram of the demand on taxi services (13 weeks) obtained
from one of the busiest taxi stands in the city (periods of 60-minutes) of Porto,
Portugal. The x-axis has the different period lags studied and the y-axis has
the correlation within the signal. Note the peaks for each 12h periods.

3.3.2 Time Series Prediction

Typically, a prediction about the next value of a time series is made by mining
dependences between time-points. One of the most common ways to define such
dependences over time are the autoregressive models. The simplest autoregres-
sive model of order 1 is:

AR(1) : zt = β0 + β1 × zt−1 + εt (3.9)

The simplest method to learn the parameters of AR(1) model is regress Z on
lagged Z. If the model is able to mine the dependence structure within the
past data points, the residuals are determined without any dependence within.
The Autoregressive Integrated Moving Average (ARIMA) is a State-of-the-Art
method to perform time series prediction which uses both MA and AR models.
It is briefly described in the following Section:

Autoregressive Integrated Moving Average

The AutoRegressive Integrated Moving Average Model (ARIMA) [Box et al.,
1976] is a well-known methodology to both model and forecast univariate time
series. The ARIMA main advantages when compared to other algorithms are
two: 1) it is versatile to represent very different types of time series: the autore-
gressive (AR) ones, the moving average ones (MA) and a combination of those
two (ARMA); 2) on the other hand, it combines the most recent samples from
the series to produce a forecast and to update itself to changes in the model.
A brief presentation of one of the simplest ARIMA models (for non-seasonal
stationary time series) is enunciated below following the existing description
in [Zhang, 2003]. For a more detailed discussion, the reader should consult a
comprehensive time series forecasting text such as Chapters 4 and 5 in [Cryer
and Chan, 2008].

In an autoregressive integrated moving average model, the future value of
a variable is assumed to be a linear function of several past observations and
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random errors. It is possible to formulate the underlying process that generates
the time series (taxi service over time for a given stand k) as

Xt = κ0 + φ1Xt−1 + φ2Xt−2 + ...+ φpXt−p
+εt − κ1εt−1 − κ2εt−2 − ...− κqεt−q

(3.10)

where Xt and {εt, εt−1, εt−2, ...} are the actual value at time period t and the
Gaussian white noise’ error terms observed in the past signal, respectively;
φl(l = 1, 2, ..., p) and κm(m = 0, 1, 2, ..., q) are the model parameters/weights
while p and q are positive integers often referred to as the order of the model.
Both order and weights can be inferred from the historical time series using
both the autocorrelation and partial autocorrelation functions as proposed by
Box and Jenkins in [Box et al., 1976]. They are useful to detect if the signal
is periodic and, most important, which are the frequencies of these periodic-
ities.They are useful to detect if the signal is periodic and, most important,
which are the frequencies of these periodicities.

3.3.3 Similarities between Time-Series

Most of time series analysis techniques such as clustering, classification or
novelty detection, require to measure the similarity between time series. Let
D(Q,S) be defined as a similarity measure between two time series Q,S. A
common way to measure it consists of considering some form of distance be-
tween the two time series. Two of the most commonly used distance metrics
on this context are the Euclidean distance and Dynamic Time Warping
(DTW). Such techniques are enunciated and discussed below.

Euclidean Distance

The Euclidean Distance between two time series corresponds to the square-root
of the sum of the squared distances from each nth point in the other. Given
two time series Q = q1, q2, ..., qn and S = s1, s2, ..., sn, the Euclidean distance
D(Q,S) can be defined as

D(Q,S) =

√√√√ n∑
i=1

(qi − si)2 (3.11)

Despite its utility, this metric requires two time series equally sized (i.e. with
the same number of elements) to work. It can be quite efficient as a distance
but it is not that so as a measure of similarity. For example, if you consider
two identical time series, one slightly shifted along the time axis, you will notice
that this distance will consider them very different from each other. A distance
metric that tries to solve some of this limitations is the DTW [Chu et al., 2002],
presented below.

Dynamic Time Warping

Let Zn and Qm be two sequences having the lengths n,m, respectively, where n
may not be equal to m. If the aim is to align them using DTW, it is necessary to
construct an n-by-m matrix containing the distances between all points in the
two series. Then, a warping path is defined. This warping path is a contiguous
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set of matrix elements that defines a possible and optimized mapping between
Z and Q. The uth element of the warping path is defined as wu = (i, j) , and
therefore we have W = {w1, w2, ...wk, ..., wU}, which requires the validity of the
following in-equation:

max(m,n) ≤ U ≤ m+ n− 1 (3.12)

This path is subjected to three major constraints:

1. Boundary conditions: w1 = (1, 1) and wu = (m,n). This requires that
the warping starts and ends in the diagonally opposite cells of the matrix.

2. Continuity: Let wu = (a, b). Then wu−1 = (a′, b′), where a − a′ ≤ 1
and b − b′ ≤ 1. This restricts the possible steps in the warping path to
adjacent cells (including diagonally adjacent cells).

3. Monotonicity: Let wu = (a, b). Then wu−1 = (a′, b′), where a − a′ ≥ 0
and b− b′ ≥ 0. This forces the points in W to be monotonically spaced in
time.

In order to build an optimized path satisfying the conditions above, it is neces-
sary to minimize the warping cost:

DTW (Z,Q) = min

{√
σUuWu

U

}
(3.13)

3.4 Ensembles on Data Streams

The term ensemble is used to identify a set of predictor models (for instance,
classifiers, regression models or time series analysis ones) for which individ-
ual decisions are in some way combined (typically, by voting or by weighting
their outputs) to predict/classify novel time/data points [Dietterich, 1997]. The
main idea behind any ensemble model is based on the observation that different
learning algorithms explore different representation languages, search spaces
and evaluation functions of the hypothesis. How can we explore such differ-
ences? Specially in the context of dynamic streams, where the target concept
may evolve over time?

In this Section, we will discuss two distinct types of ensembles: 1) Sampling
techniques to select the best learners on the current data distribution are pre-
sented in the Section 3.4.1. 2) in the Section 3.4.2, we will discuss methods
which employ the most typical way of ensembling learners from data streams -
by a linear combination of their outputs.

3.4.1 Sampling from the Training Set

In this Section, we review techniques to combine different prediction models gen-
erated by a single algorithm. Most of these strategies consist into manipulating
the training set to generate multiple hypothesis. Typically, the same algorithm
is trained with distinct and disjunct distributions of the training data - produc-
ing multiple predictive models. Then, these models to classify new examples
and their output is somehow combined - typically by some voting technique.
This is specially efficient for unstable algorithms - their output experience huge
changes even with small fluctuations of the training data.
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Traditional Bagging

Bagging is one of the most effective techniques for variance reduction. The
basic idea firstly proposed by Breiman [1996] consists into producing N repli-
cations of the training set by sampling. The following algorithm description is
focused on classification problems. Each replication of a training set with m
examples is equally sized. The replications may not contain all examples of the
original training set but can contain some repeated examples. This technique
was originally called bootstrap aggregation - and each replicated training set is
called a bootstrap replicate. The probability p of a given example be selected is
given by the following equation.

p = 1− (1− 1/m)m, lim
m→∞

p = 1− 1/ε (3.14)

Each bootstrap contains, on average, 1/ε of duplicated examples. All classifiers
are then used to classify each example in the test set by using a voting scheme.
As described here, this technique requires to perform N random draws from the
original training set to produce N bootstraps replicates. Therefore it requires a
prior knowledge over the entire training set (i.e. a finite one). Such requirement
is not compatible with neverending data streams, where the data examples are
constantly arriving in a unbounded manner.

Online Bagging

Oza [2001] proposed a way to adapt the traditional Bagging (i.e. batch) algo-
rithm to open-ended data streams. A base model is trained with k copies of each
one of the m available training examples where the probability mass function
of k is given by the following equation

Pr(k) =
ε−1

k!
(3.15)

Whenever an example x, y becomes available, each one of the N models is
updated using k repeated instances of x, y. k is randomly chose according
k ∼ Poisson(1). If you notice, the equation 3.15 refers to the probability mass
function of a Poisson process where λ = 1 (i.e. the binomial distribution of k
tends to be a Poisson(1) process as the number of available processes tend to
∞). This is a described as a good approximation of the batch learning since
the bootstrap training sets generated this way have a similar distribution of the
batch ones.

Online Boosting

The boosting algorithm - firstly proposed by Schapire [1990] - proposes to con-
vert a set of weak base learners into a strong one. It maintains a weight for
each example in the training set that reflects its importance. Adjusting the
weights force the learner to focus on different examples, creating distinct pre-
dictive models. In each one of N iterations, the weights are adjusted according
to the performance of the Ni model by increasing the weight of the misclassified
examples. Like bagging, the final iteration consist into aggregate the learned
classifiers - however, the boosting does it so by employing a weighted voting
schema (in opposition to the simple voting using on the bagging).
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The online adaptation of this algorithm - also proposed by Oza [2001] -
has its foundations closely related to the online Bagging one. Let us consider
a set of N predictive models H = h1, h2, ..., hN and two sets of parameters
λc = λ1

c , ..., λ
N
c and λw = λ1

w, ..., λ
N
w which represents the sum of the weights of

the correctly and incorrectly classified samples, respectively, by each individual
classifier hi.

Given a new example (~x, y). Its initial weight is λ = 1. Then, the algorithm
iterates for each hi where i ∈ 1, ..., N . For each hi, it uses k instances of this
new example to update itself - where k follows a Poisson process as Poisson(λ).
Secondly, hi classifies (~x, y). Thirdly, the λcm and λwm parameters are updated
accordingly with the accuracy of its classification. Finally, the example weight
λ is updated using this two parameters values. This process is repeated for each
one of the N predictive models. The reader should consult the Section 4.4 in
[Oza, 2001] to more details about this algorithm.

3.4.2 Linear Combination of Predictors

One of the first online learning ensemble methods is the WinNow algorithm
[Littlestone, 1988]. This algorithm combines the predictions of multiple binary
classifiers. Initially, each expert (i.e. classifier) is assigned with a weight wi = 1.
Whenever the weighted vote misclassifies an example, the weight is multiplied by
an user-defined constant β ≤ 1. An extension of this algorithm was presented by
the same authors as the Weighted-Majority Algorithm (WMA) [Littlestone
and Warmuth, 1994]. It basically sums all the weights of the algorithms that
votes for the same classes. The class with the highest weight sum is our label
prediction. Again, the weight attached to wrong predictions is multiplied by
β. Such sequential learning forces that the series of values of the weight of any
expert in WMA always decreases (i.e. β ≤ 1). This presents a disadvantage
in time-changing streams. One of most used strategies to minimize this issue
consists of normalizing the weights after each update. However, other algorithms
consider update strategies that are more reactive than these ones. One of this
algorithms is Weighted Classifier ensemble [Wang et al., 2003]. This model can
be adapted to the majority of the prediction problems (classification, regression,
time series analysis, etc.). However, the definition below is considered to a time
series analysis problem.

Consider M = {m1,m2, ...,mz} to be a set of z predictors of interest to
model a given time series and F = {f1, f2, ..., fz} to be the set of forecasted
values to be the next data point on the time series. The ensemble forecast Et is
obtained as weighted average of the outputs F. The weight set W = w1, w2...wz
is calculated as wi = 1− ei where 0 ≤ ei ≤ 1 is the error exhibited by the expert
fi on the last H data points. H works as an user defined parameter which
delimits a sliding window where the predictors are evaluated to perform their
output combination for next data point. As long as H decreases, the predictive
model becomes more reactive to changes on the models performance.

Nevertheless, evaluate a model performance on a data streams context may
be a tricky problem by it own. We briefly revise some of these methods in the
next Section.
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3.5 On Evaluating Streaming Algorithms

Evaluating Streaming methods is not a trivial task due to three key character-
istics: 1) the existence of a continuous flow of data instead of a finite training
set; 2) the evolution of decision models over time; 3) data is generated from
non-stationary data distributions. Therefore, the approach we must follow to
evaluate these kind of predictive models must be based on sequential analysis.
Sequential analysis refers to the body of statistical theory and methods where
the sample size may depend in a random manner on the accumulating data
[Ghosh and Sen, 1991].

In this Section, we firstly introduce the two main ways reported in the liter-
ature to evaluate methods that learn from data streams. Then, we will briefly
introduce some State-of-the-Art metrics based on predefined bounds over loss
functions. Thirdly, we will present how to handle the error in time series analysis
problems and with non-stationary data distributions.

3.5.1 Basics of Evaluation Metrics

A loss function is a function that maps an event or values of one or more vari-
ables onto a real number which represents some ”cost” associated with the event.
Typically, in our context, the event in question is some function of the differ-
ence between estimated and true values for an instance of data. The majority of
times, loss functions are employed to evaluate the learners performance. How-
ever, the unique characteristics of continuous flows of data require a specific
experimental setup to work. There are two main ways to evaluate a learning
model on such context:

1. To maintain an independent test set. We can apply a decision model
of interest to such test set on a fixed time interval or each p number of
examples. The loss accumulated by such tests can be used to monitor the
evolution of the model performance.

2. Predictive Sequential: Prequential [Gama et al., 2013] where the error of a
model is computed from the sequence of examples. For each example in the
stream, the decision model makes a prediction based only on the example
attributes. The prequential error Si is calculated using the accumulated
sum of some loss function of interest L. L uses as input the prediction y
and the observed value x as described in the equation below.

Si =
∑i

j=1
L(xj , yj) (3.16)

One of the main advantages of this prequential framework is that it does not
require to know the true value y in every data point. It can be employed in
situations of limited feedback (i.e. by using just the points where yi is known).

3.5.2 Typical Bounded Evaluation

Considering a prequential framework of evaluation, we can define Mi as the
mean loss by the following equation: Mi = 1

n × Si - independently on the loss
function L. Thereby, we can estimate a confidence interval for the probability
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of error, Mi ± ε, using the Chernoff bound [Chernoff, 1952]:

εc =

√
3× µ̄
n

ln(2/δ) (3.17)

where δ is an user-defined confidence level and n are the number of available
examples. If we are using a bounded loss function - like the 0-1 loss function
(see eq. 3.19) - the Hoeffding bound [Hoeffding, 1963] can be used:

εh =

√
R

2n
ln(

2

δ
) (3.18)

where R is the range of the random variable. Both bounds are independent of
the distribution of the random variable. One of the most typical (and simple)
loss functions associated with classification problems is the 0-1 loss function.
Let Li0−1 be the 0-1 loss function relative to example i on the data stream. Let
xi and yi be the predicted and the real label of such example. We can define
Li0−1 as follows.

Li0−1 =

{
0 ifxi 6= yi
1 ifxi = yi

}
(3.19)

3.5.3 On Measuring the Error on Continuous Event Time
Series

So far, we described some generic evaluation frameworks for stream environ-
ments - specially focused on classification problems. However, in many prob-
lems the random variable is bounded on a continuous or discrete domain - rather
than a nominal one. Whenever we face a regression or a time series analysis
task, other type of metrics are employed.

One of the most common is the quadratic loss function λ(x) - defined as
follows:

λ(xi) = C(yi − xi)2 (3.20)

where C is an user defined constant. However, other types of errors exist -
like an accuracy or an error rate. Three of the most well known methods to
do so are the (1) Symmetric Mean Percentage ErrorsMAPE, the (2) Mean
Absolute Error MAE and the Root Mean Squared Error RMSE. They are
usually described as follows1:

sMAPE =
1

n

n∑
i=1

|xi − yi|
xi + yi

(3.21)

MAE =
1

n

n∑
i=1

|xi − yi| (3.22)

RMSE =

√√√√ 1

n

n∑
i=1

(xi − yi|)2 (3.23)

1 The reader can consult the Section 5.8 in [Witten and Frank, 2005] to know more about
such evaluation of numerical predictions.
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However, such metrics may not be that adequate when we are facing non-
stationary distributions of data. Non-stationarity or concept drift means
that the concept behind the data generation may shift from time to time. Dis-
carding loss of generality, we may evaluate a predictive model using distinct
type of metrics such as probability of false alarms or delay detection. In this
case, change detection techniques such as Page-Hinkley test may be useful (the
reader can consult the Section 5.3.4 in Gama [2010] to know more about the
appliance of this algorithm to this specific context).
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Part II

Mass Transit Agencies
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Chapter 4

Validation of Bus
Schedule’s Coverage

This Chapter is focused on improving a relevant step of the Operational Plan-
ning: the Schedule Planning. In Section 2.1.2, we already discussed the lack
of relevant works on evaluating the suitability of the number of schedules, as
well as their day coverage, to the network’ behavior. These stages are crucial
because they are highly influential on the further steps of the Schedule Planning
process - such as the trips’ definition. Moreover, it is well known that a reliable
schedule is a key factor to maximize the profitability of the mass transit com-
panies by increasing the passengers’ satisfaction [Strathman et al., 1999; Ceder,
2002] and also by reducing the road congestion levels [Schrank et al., 2012].

A Schedule Plan (SP) consists of a set S = {S1, S2, ..., Sk} of k schedules
which provide detailed information about every trips running on the previously
defined routes. Each schedule is associated with a timetable ti : i ∈ {1, ..., k}.
Different routes may have different timetables. Nevertheless, they share the
number k of schedules and the day coverage of each schedule (this should be
common to every bus line to help the customers to easily memorize the SP). A
definition of the day coverage Ci in a given schedule Si is presented below.

Let D = {d1, d2, ..., ds} be a set of s days of interest to include in a schedule
plan (typically, s = 365 is used - it corresponds to a one year period). The day
coverage Ci of a given schedule Si is represented by the set of days where its
corresponding timetable ti will be followed. It is possible to define it as:

Ci = {d1, d2, ..., dθi} :

k⋃
i=1

Ci = D ∧ θi > 0 (4.1)

where θi is the number of days covered by the timetable ti. The set of every
schedule day coverages C = {C1, C2, ..., Ck} is called Schedule Coverage. An
illustrative example of that is displayed in Fig. 4.3.

Once established, it is expected that an SP meets the passengers’ demand
by following their mobility needs (namely, their mobility routines). However,
today’s urban areas are characterized by a constant evolution of road networks,
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services provided and location (for instance, new commercial and/or leisure ar-
eas/facilities). Therefore, it is highly important to automatically assess how
the SP suits the needs of an urban area. An efficient evaluation can lead to
important changes on a SP. These changes will lead to: (1) a reduction in op-
erational costs (for instance, by reducing the number of daily trips in a given
route) and/or (2) a reliability improvement in the entire transportation network,
which will increase the quality of the passengers’ experience and, therefore, the
number of costumers [Yan and Chen, 2002]. Departing from the previous defi-
nition of the steps required to build an SP, it is possible to divide the evaluation
into two different dimensions: (1) the suitability of the number of schedules k
and of the set of their day coverages C and (2) the reliability of their timetables
{t1, ..., tk} (to test whether the real arrival times of each vehicle at each bus
stop are meeting the previously defined timetable). Hereby, we are focused on
the first dimension.

To perform such evaluation, two relevant assumptions are stated:

Assumption 4.1. Days with similar profiles should be covered by the same
timetable, which means that they must be included in the same schedule.

Assumption 4.2. The number of schedules to use (k) is already known1;

Theoretically, all the days covered by the same timetable have exactly the
same daily profile due to the fact that they share the same departing/arrival
times. However, the real values of such times (given by the historical AVL data)
may differ from the original ones. This Chapter describes a framework that ex-
plores such differences by grouping each one of the days available dj , j ∈ {1, ..., s}
into one of the possible coverage sets, Ci, i ∈ {1, ..., k}. This grouping is made
according to a distance measured between each pair of days where the criteria
rely on their profiles. As output, rules about which days should be covered by
the same timetables are provided. Such rules can be used by the operational
transportation planners to evaluate whether the current coverage is still meet-
ing the network behavior (that is, the real departure and round-trip times). It
also provides insights on how can the current coverage be changed in order to
achieve that.

The remainder of this Chapter is structured as follows: Section 4.1 describes
the data acquisition process and its preparation in detail. Section 4.2 formally
describes the approach to this problem and its main contributions to the ex-
isting literature. The third Section describes the Experimental Setup used and
the results obtained. Such results are discussed in detail along Section 4.4,
firstly (1) by highlighting the most relevant patterns and (2) by suggesting a
possible Schedule Coverage to meet such constraints. Then, (3) by discussing
the possibilities of deploying such methodology on a real world company and
by quantifying its impact in our case study. Finally, conclusions from the work
hereby described are drawn.

1 The selection of the number of schedules is not within the scope of this thesis - check
Section 2.4



4.1. DATA PREPARATION 67

PROFILE OF THE WORKDAYS (mean & median)

05h 06h 07h 08h 09h 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 20h 21h 22h 23h

Travel Start Time (in hours)

35
m

40
m

45
m

50
m

55
m

60
m

65
m

70
m

75
m

80
m

R
ou

nd
 T

rip
 T

im
e 

(in
 m

in
ut

es
)

Bus Trips in multiple workdays Median Profile of the trips Mean Profile of the trips

Figure 4.1: Daily Profiles of the behavior of a given route on the working days
during a one-year period. The black line represents the median of those profiles
while the blue one represent the mean.

4.1 Data Preparation

The case study in this work was the STCP (Sociedade de Transportes Colectivos
do Porto), the main mass public transportation company in Porto, Portugal.
The STCP has a total of 51 lines operating with their own resources. Their
AVL system collects information on the location of each vehicle running every
30 seconds. Then the data is sent to the main server.

4.1.1 Data Collection

This study was conducted using a heterogeneous group of four lines - corre-
sponding to six routes - that are representative of the entire network behavior
by including all the three possible route types: circular, urban and non-urban
routes. The data was collected during a one year-period from January to De-
cember 2007 (365 days). The selected bus lines were the 300, 301, 205 and
505. All four lines pass by the Hospital São João (HSJ), an important bus/-
light train interface in the city. Lines 300 and 301 are arterial urban circular
lines, each one corresponding to one route. These lines are quite similar, but
with opposite directions and they connect the city center to the HSJ, passing by
another important bus/light train/train interface, which is the São Bento train
station. Lines 205 and 505 both have two routes each: outward and return.
Line 205 follows almost the entire peripheral road that marks the city limits,
crossing several entrances to the city and several mass transport interfaces, such
as Campanhã, which is the main train station. Finally, line 505 serves a sub-
urban area, connecting Porto to a neighboring town, where there is a sea port.
The line ends at the HSJ.

An illustration of these routes on the road network in the urban area of
Porto is displayed in Fig. 4.2. The orange dots represent the bus stops of each
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route.

4.1.2 The Schedule Plan in Place

In any SP studied, it is necessary to detail particular seasons that are important
to the framework due to their impact on the passengers’ behavior. In this case
study, these seasons are (1) Easter time (ET), (2) Christmas time (CT) and
(3) School Holidays (NSP). The ET represents the period contained in the first
eight days of April and the CT corresponds to the last nine days of December.
The NSP was set as the period between 15 July and 15 September (including
these two boundary days).

The SP at the STCP had a total of four schedules (i.e. k = 4) during
the year of 2007. Their Schedule Coverage was arranged as follows: Schedule
1 : Saturdays; Schedule 2 : Sundays and Holidays; Schedule 3 : working days
during school holidays; Schedule 4 : working days outside school holidays. Fig.
4.3 illustrates the Schedule Coverage.

4.1.3 Preprocessing

The data was firstly collected for a PhD study and extensively treated and pre-
pared. This is described in detail for a specific route (78-1-1) in sections 2.5.2
and 5.1 of thesis [Mendes-Moreira, 2008]. A similar process was conducted to

Figure 4.2: Illustration of some routes (one per line) considered over a geograph-
ical representation of the road network in Porto, Portugal. Image obtained from
[STCP - Sociedade de Transportes Colectivos do Porto, 2013].
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obtain the present data and it is briefly described below.

The fleet is equipped with differential GPS devices able to communicate each
vehicle’s position to the AVL data server. This information is automatically sent
to the data server in real-time using General Packet Radio Service (GPRS). The
relevant trip data is stored in two different tables from the AVL data server:
trip starting time and trip ending time. Obtaining the trip data is not a direct
process due to the lack of a primary key identifying each trip individually on the
server’s database. It is necessary to (1) sort the data and then (2) match pairs
of trips starting/ending times, thus making it possible to obtain the round trip
times. The data (1) sorted using the timestamps of vehicle’s location associated
to each trip. The pairs were matched by identifying the records containing each
trip’s beginning/ending - consequently, it is possible to compute the respective
round trip times. Using these times, it is possible to build route datasets.
Each dataset has one entry for each trip containing the following information:
the starting date of the trip, the departure time, the bus model, the code of
the driver, the code of the route service, the day of the year, the type of day
(normal day, holiday and floating holidays) and duration of the trip.

As part of the preprocessing task, new datasets were constructed based on
the original set. We did so because the original database has some missing
values and also an excessive amount of information regarding this specific task.
The new dataset contains only the day, the week day, its type and an ordered
sequence of round-trip times for the trips completed during the day. The first
three variables are used to address the coverage details, while the ordered se-
quence of round-trip times is used to define groups of days with similar profiles
of round-trip times.

Some route values are missing (64 days in 365 × 6 days possible - see Table
4.1) due to the lack of pair matching and/or other communication failures. To
overcome this issue, the expected round-trip time profiles were calculated. An

Figure 4.3: Schedule Coverage in place in the case study. The H-symbols rep-
resent holidays.
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example on these profiles are the light yellow curves in Fig. 4.1. Such curves
represent round-trip time profiles of multiple days calculated from a route of
interest using the data of the remaining days.

The computation of expected round-trip time profiles for the days with miss-
ing data consisted of firstly (1) selecting data from the same route but from
other days with the same type (for instance, if there were missing data about a
certain Tuesday, the information about other Tuesdays would replace it). Then,
(2) an expected round-trip time profile is built by using both (2a) the number
of trips of the most recent similar day (that is the last Tuesday) and (2b) the
round-trip times of every past similar days. This preprocessing method forms
an expected profile for a day with missing data by calculating averages of (2b)
these round-trip times into a number of bins equal to (2a) such number of trips.
The error introduced by such interpolation method is not significant since the
percentage of missing days in every route (2.9% per route on average) is not
sufficient to change the output rules that defines the Schedule Coverage in place
(which would need, in general, a larger support in the input dataset).

4.1.4 Data Description

Table 4.1 presents a summary of the data used. The columns are the six routes
denominated by a XXX Y mask, where the XXX corresponds to each line and
the Y corresponds to the direction considered. The table rows correspond to (1)
the total number of trips considered in each route and (2) the number of days
with missing data - all in the period considered; 3,4) the maximum/minimum
number of daily trips (i.e. DT, in number of trips) in the same period; 5,6)
the maximum/minimum travel time (TT - round trip time, in seconds) ever
registered for a trip on such period; (7) the median, (8) the mean and, finally,
(9) the coefficient of variation of the travel time.

It is possible to observe that line 205 presents a larger number of trips than
any other route considered. Lines 300 and 301 present larger round-trip times
than the other lines. All the lines present approximate Coefficients of Variation
(i.e. the std. dev. of such coefficient from route to route is only σ = 0.0049).
This index can be faced as a relative Standard Deviation which exhibits the TT
relative variability on each route. These results suggest that such variability is
similar from route to route. Yet, it is not possible to infer more than this based
only on such coefficients.

4.2 Methodology

The validation framework is divided into three simple steps: firstly, (1) the
running times are extracted from the AVL data of just one route and clustered
to obtain the optimal2 day coverage for this specific route (each cluster will
correspond to a possible schedule). This step is repeated by every route of
interest. Secondly, (2) the Schedule Coverage of each route is assembled to

2 Throughout this Chapter, the individual coverage obtained to each route is referred
as optimal. In Machine Learning, the concept of optimality often refers to a given fitting
process between a supervised learning algorithm and a given output. This is not the case
of this particular study, where the optimality concept refers to a schedule coverage which is
specifically tuned for a given route.
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create a consensual cluster that is common to every route in the network, using
consensual clustering techniques. Finally, (3) rules are extracted, obtaining
a new SP day coverage (a feasible and readable coverage plan for the entire
network). These steps are described below.

Step 1 starts by clustering the day profiles (extracted from a given route)
into a predefined number of k schedules/clusters. The days in each group will
then indicate the coverages Ci : i ∈ {1, ..., k} for an SP running on a specific
route. Since each route data will produce different partitions (for instance, dif-
ferent day coverages), this specific clustering framework is only able to produce
an individual analysis to one route at a time, which will correspond to the opti-
mal coverage for that single route of interest. Nevertheless, it is not acceptable
that each route has its own Schedule Coverage. Consequently, it is needed to
find some consensus between such route-based partitions in order to increase
the applicability of such clustering framework.

In Step 2, a consensual day coverage for the schedule network is mined from
the partitions extracted from distinct routes. This is done using a well-known
consensual clustering technique [Monti et al., 2003]; finally, in Step 3, rules are
extracted from the consensual clusters obtained and compared to the existing
plan. The aim of this step is to turn the resulting clusters into rules which are
easily understandable by a larger audience. To do so, a rule induction algorithm
was used: the RIPPER [Cohen, 1995].

Naively, the proposed framework can be seen as a hypothesis test having as
null hypothesis the fact that the current SP fits the network behavior (however,
it is not possible to state which is its significance). The identified changes are
the most critical because the network behavior is already conditioned by the
previously defined SP. In the same line, important planning variables, such as
passenger demand and timetable arrival times, are not directly considered (even
when the coverage in place changes are already affecting the round-trip times
and, therefore, the profiles obtained). The evaluation of the timetables and of
the number of schedules is not addressed in this thesis. In fact, it is necessary
to assume a predefined number of schedules to evaluate the Schedule Coverage
using this methodology (go to Assumption 4.2 for more details on this matter).

An illustration of this methodology is presented in Fig. 4.4. A formal defi-
nition of the methodology presented here is enunciated below.

Table 4.1: Trip Statistics per Route.

205 1 205 2 505 1 505 2 300 1 301 1
Number of Trips 21640 20813 9277 5198 13906 14042
Missing Days 16 14 1 3 26 4
Maximum DT 80 78 37 25 58 59
Minimum DT 6 11 7 4 4 6
Maximum TT 4799 4800 4493 4500 5299 5797
Minimum TT 1842 1828 1602 2085 2165 2278
Median TT 3413 3299 3049 3503 4218 4242
Mean TT 3416.04 3313.06 3130.75 3495.10 4203.55 4344.07
Coef. Variation TT 0.1285 0.1349 0.1427 0.1316 0.1279 0.1326
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Figure 4.4: Generic representation of the framework. The left red dotted square
delimits the step 1 while the right blue square highlights the remaining two steps.

4.2.1 Step 1: How can we find the optimal schedule for a
single route using AVL data?

Let X = {x1, x2, ..., xn} be a set of n datasets (for instance, AVL historical
data from n routes) of interest with the same number of samples/trips s. The
initial datasets X were firstly turned into new datasets, having each one an
entry for each day present in the initial dataset. The information stored per
day is a sequence of pairs with the departure time and round trip time. This
forms irregularly spaced data sequences (ISDS) of round trip times (i.e. each
day has a different number of trips).

Departing from assumption 4.1, we proposed to automatically find groups
of days which have similar daily profiles based on the AVL data. Such task is
known as data clustering [Jain, 2010]. A clustering algorithm automatically
finds such groups of samples based on a given distance function which estimates
the similarity between two different samples. To do it so, a quadratic matrix
of distances s × s is firstly computed. Such matrix maintains the distance
between each day based on the ordered series of round trip times (i.e. by
the trip departure times). Then, this matrix is the input of a k-dependent
clustering algorithm of interest that proposes an ideal SP for that specific route
(Pn = {C1n, C2n, ..., Ckn}). However, common distance measures - such as the
Euclidean - are very sensitive to variations in both depth and in granularity of
the time axis, such as the ISDS used here. To overcome this problem, the use of
the Dynamic Time Warping (DTW) distance algorithm is proposed. This was
firstly proposed by Chu et al. [2002] and it was already described in the Section
3.3.3.

4.2.2 Steps 2,3: Finding Consensual Rules to build a Sched-
ule Plan

By partitioning each one of the datasets into k clusters, it is possible to define
the resulting non-overlapping subsets of X, denominated P , according to the
following definition:

P = {P11, P12, ..., P1k, ..., Pn1, Pn2, ..., Pnk}, k ≥ 2 ∧ k ∈ N (4.2)
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k⋃
m=1

Pim = xi, Pij ∩ Pil = ∅,∀i,j,l,k : j 6= l (4.3)

where {Pi1, Pi2, ..., Pik} represents the optimal day coverage for a given route i
(i.e. the schedule day coverage set {Ci1, Ci2, ..., Cik}). By defining P as the k
partitions formed from the n input datasets, it is necessary to establish a new
distance measure between each possible pair of days di based on the agree-
ment between the partitions (i.e. a consensual clustering of the data provided
by every input routes).

Let Mi(s × s) (for instance, a quadratic matrix with the number of days
considered for each route where each position is set as 1 if the days are in the
same schedule and 0 if they are not) be the co-association matrix (or connectivity
matrix) representing the clustering membership for the samples in the Xi data
set and a given number of partitions k. It can be obtained as follows:

Mi(r, j) =

{
1 if r ∈ Pil ∧ j ∈ Pim, l = m
0 if r ∈ Pil ∧ j ∈ Pim, l 6= m

, l,m ∈ {1, ..., k} ∧ l,m ∈ N (4.4)

Then, it is possible to calculate the agreement matrix M (the consensus be-
tween every SP found) and the distance consensus matrix D using the following
equation:

M = Σnm=1

Mm

n
,D = 1−M (4.5)

The resulting matrix D is a quadratic s× s distance matrix related to all sam-
ples (the distances between all days considered). By applying a k-dependent
clustering algorithm of interest to D, it is possible to obtain the dataset P of k
consensual partitions from the datasets in X:

P ≡ clusteringAlgorithm(P, k) ≡ {P1,P2, ...,Pk} (4.6)

where each Pi : i ∈ {1, ..., n} will contain a set of days {d1, ..., dz} : z > 0.
Using the consensus function definition described in equations 4.4 and 4.5, it is
possible to obtain the consensus clustering for the input datasets. Using these
new partitions, logical rules can be extracted using a rule induction algorithm
such as the RIPPER [Cohen, 1995]. The base idea is to train a rule-based
classifier based on the entire dataset by using each sample’s cluster as its own
label.

4.3 Experimental Results

This Section starts by describing the experimental setup used in the experi-
ments. Then, the results obtained with the setup are presented.

4.3.1 Experimental Setup

Firstly, the k-Means [MacQueen, 1967] was chosen as a clustering algorithm
due to its simplicity, efficiency and efficacy [Lloyd, 1982; Ball and Hall, 1965;
Jain, 2010]. To reduce the k-Means random start effects, a deterministic divisive
hierarchical clustering was employed, as proposed in [Su and Dy, 2004].

Secondly, both the individual and the consensual clustering experiments were
carried out using the R language [R Core Team, 2012]. The k parameter values
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varied from 2 to 7. This was done because it is not acceptable and/or common
to have a number of schedules outside this range 3.

Finally, the J-RIP algorithm - the JAVA implementation of the RIPPER
algorithm - was applied to the consensual partitions using the WEKA soft-
ware [Hall et al., 2009]. A set of seven intuitive decision variables (i.e. fea-
tures) was used to characterize each day: (1) WEEKDAY: the day of the
week {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday};
(2) DAYTYPE: the type of the day ({holiday, normal, non working day, week-
end holiday} where a non working day represents a working day where the
public sector does not work - even if it is not an official holiday); (3) MONTH:
{1, ..., 12}; (4) EASTERTIME: boolean, (5) CHRISTMASTIME: boolean and
(6) NONSCHOOLPERIOD: boolean; (7) SCHEDULE: the schedule proposed
for each day {1, ..., k}. Such variables are then used by the RIPPER to output
rules that can meet as much as possible the coverage proposed for each schedule
using the SCHEDULE variable as target.

The RIPPER outputs a set of rules in a hierarchically divisive form (e.g.
like a decision tree based on rules). An accuracy evaluation metric was defined
as

Accuracy =
Number of Days Classified Correctly

Total of Days
(4.7)

Typically, an accuracy metric is employed in classification problems - which is
not our case. Nevertheless, it is employed here to evaluate how representative
the rule set is of the coverage proposed by the consensual clustering process.
This was done by measuring a possible accuracy as if the obtained rule set was
considered as a classifier (which is the core of the J-RIP algorithm). Compar-
ative tests using the same partitions (i.e. training sets) as test sets were then
performed (i.e. each Schedule is considered a possible class (SCHEDULE) and
each day is seen as a sample defined by the values of the remaining six features).

The J-RIP algorithm takes four parameters: (1) FOLDS: it determines the
amount of data used for the pruning stage4; (2) WEIGHT: the minimum total
weight of instances in a rule (i.e. it works like a minimum support threshold to
consider a rule as meaningful); (3) OPTIMIZATIONS: the number of runs in
the optimization process and (4) SEED: a numerical seed used to randomize the
data. The following default values were used to this parameter set: 3, 2, 2 and
1, respectively. The purpose on employing RIPPER is to demonstrate that it is
able to extract rules (which highlight the patterns underlying on our data) for
those who are not familiar with Machine Learning techniques. Consequently, no
sensitivity analysis was carried out on such parameter value combination and
this value set was used in every experiment conducted.

It is relevant to highlight that this methodology is not an automatic classifier
to assign a Schedule to each day. The primary goal of the SP is to meet a certain
expected demand minimizing the quantity of resources employed [Ceder, 2002].
However, changes on the Schedule Coverage (e.g. to force the Saturdays to
have the same timetable as the Sundays and Holidays) may not be possible due
to these previous definitions (e.g. number of drivers and/or vehicles available
on Saturdays). This framework should be seen as a decision support tool that

3 It is desirable to have a number of schedules as low as possible to make it easier for the
passengers to memorize the SP [Furth et al., 2003].

4 The data is divided into multiple folds; typically one of the folds is used on pruning while
the others are used to grow the rules.
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Table 4.2: Daytype distribution for the consensual clusters.

k=2 MON TUE WED THU FRI SAT SUN TOT HOL SHO NSW NSH CHR EAS
1 48 46 47 47 47 1 0 236 0 3 44 0 4 4
2 1 3 2 2 2 48 48 106 12 2 1 17 6 4
k=3 MON TUE WED THU FRI SAT SUN TOT HOL SHO NSW NSH CHR EAS
1 1 3 2 2 2 48 48 106 12 2 1 17 6 4
2 19 19 21 22 18 1 0 100 0 1 11 0 3 0
3 29 27 26 25 29 0 0 136 0 2 33 0 1 4
k=4 MON TUE WED THU FRI SAT SUN TOT HOL SHO NSW NSH CHR EAS
1 25 24 21 22 25 0 0 117 0 1 13 0 2 4
2 1 3 3 1 2 49 48 107 11 2 1 17 6 4
3 12 15 13 15 13 0 0 68 1 1 3 0 2 0
4 11 7 12 11 9 0 0 50 0 1 28 0 0 0
k=5 MON TUE WED THU FRI SAT SUN TOT HOL SHO NSW NSH CHR EAS
1 14 18 11 11 11 0 0 65 0 1 7 0 0 3
2 15 7 14 13 17 0 0 66 0 1 9 0 4 1
3 1 2 1 1 2 9 47 63 8 1 1 8 4 2
4 18 21 21 23 19 0 0 102 0 1 28 0 0 0
5 1 1 2 1 0 40 1 46 4 1 0 9 2 2
k=6 MON TUE WED THU FRI SAT SUN TOT HOL SHO NSW NSH CHR EAS
1 13 14 14 12 10 0 0 63 0 1 2 0 0 3
2 12 11 10 11 13 0 0 57 0 0 11 0 3 1
3 4 0 1 2 2 47 46 57 3 0 3 9 3 2
4 13 10 11 13 17 0 0 64 0 2 24 0 0 0
5 6 11 11 10 6 0 0 44 0 0 4 0 0 0
6 1 3 2 1 1 2 2 57 9 2 1 8 4 2
k=7 MON TUE WED THU FRI SAT SUN TOT HOL SHO NSW NSH CHR EAS
1 6 3 7 9 9 0 0 34 0 0 26 0 0 0
2 8 7 6 7 10 0 0 38 0 0 5 0 1 1
3 2 1 1 0 1 26 19 50 4 0 1 7 1 4
4 2 2 1 2 1 23 29 60 8 2 0 10 6 0
5 7 6 9 5 5 0 0 32 0 1 7 0 0 0
6 11 13 12 11 8 0 0 55 0 1 0 0 0 3
7 13 17 13 15 15 0 0 73 0 1 6 0 2 0

should be used together with other information, namely, the resources available
in each scenario.

4.3.2 Results

The results are displayed in three distinct dimensions: (1) the resulting distri-
bution of days along the clusters is presented in Table 4.2; (2) an illustration of
the distribution of days among the k = 4 clusters (i.e. the Schedule Coverage)
is shown in Fig. 4.5; (3) Fig. 4.6 presents a decision tree exhibiting the rules
learned from the consensus clustering using 2 to 4 schedules.

The acronyms used in Table 4.2 can be defined as follows: TOT is the
total number of days within the cluster; MON (Monday) to SUN (Sunday)
corresponds to the number of days in the cluster by weekdays; the HOL column
represents the holidays (including the ones during the weekend), the SHO is
the sum of the floating holidays and non-working days; the NSW and the NSH
are, respectively, the working days and the weekends during school holidays; the
CHR represents the days in Christmas Time and the EAS is the Easter period.

Fig. 4.5 displays the Schedule Coverage provided by the framework presented
for a scenario with four Schedules. The x-axis represents the days of the year
where the first day of each month is highlighted with an axis caption. The
colored points correspond to the days and the colors represent different months
of the year. The y-axis are the possible schedules where the days can be grouped.
This figure shows seasonalities (i.e. a day of the same type that is grouped in
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different schedules depending on the month) that are not observable in Table
4.2.

In Fig. 4.6, the circles represent the schedule found in each tree leaf, while
the rectangles contain the conditions in each tree node. The left branches should
be followed when the condition is satisfied. The accuracy achieved by each set
of rules in the three Schedule Coverages considered k = {2, 3, 4} were 0.97, 0.78
and 0.77, respectively.

4.4 Discussion

This methodology does not depend on the number of k schedules previously de-
fined, as can easily be observed by the variation of this parameter in Table 4.2.
It can be applied to any public transportation network, even if the experiments
presented here is considering a case study where only one company is running.
For that, it is only necessary to deploy a bus dispatch system whose fleet is
equipped with a communication system capable of automatically transmitting
(with a certain but short periodicity) the vehicle’s position (in GPS coordinates)
associated with a timestamp (also known as AVL system).

The amount of data used to conduct these experiments - for one year - may
not appear to be sufficient to consider all extracted patterns meaningful. How-
ever, by observing Table 4.2, it is possible to state that the results are sound
because they suggest some relevant differences from the Schedule Coverage in
place (please see Fig. 4.3). Its ability to illustrate the similarities between
the daily profiles in different routes (even where each route provides heteroge-
neous insights) is key, especially if we consider that such results already depend
highly on the Schedule Plan (number, coverage and timetables) already in place.

There is a main pattern common to almost every number of schedule k con-
sidered, which is depicted in Table 4.2: Saturdays and Sundays should use the
same timetable. Such conclusion may reduce the number of necessary resources
since the Saturdays used their own timetable in our case study (see Fig. 4.3)

Figure 4.5: Consensual Schedule Coverage proposed for k = 4 along the months
of the year. The point colors represent their months.
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Figure 4.6: Illustration of the rule sets obtained from three consensual Schedule
Coverages k = {2, 3, 4} as decision trees.

- namely the number of driver shifts, driving hours and/or the necessary vehi-
cles. This happens even for large values of k - see cluster number two in Fig.
4.5. Another pattern confirms that the Non School Period working days should
remain with its own individual schedule, while the weekends may be grouped
with the remaining Saturdays and Sundays - as already proposed by the SP in
place.

A relevant but distinct pattern is observable in Fig. 4.6: the working days
in the School Period during the months of September, October, November and
December must be put on an individual schedule. This difference is even more
visible when we consider the same k = 4 schedules that are currently in place in
Porto: it is possible to observe a clear difference between clusters one and three
in Fig. 4.5. Such difference occurs due to a change in the coefficient of variation
of the round-trip times. In fact, they are completely distinct from the remaining
working days (i.e. distinct daily profiles). Such differences correspond to round-
trip times larger than the usual in some periods of the day. This phenomenon
may be explained by the weather conditions in the city of Porto during this
period, where storms are frequent, or by some unexpected event, such as long
term work on an important city road. However, it is not possible to determine
that for sure and the reasons behind this difference are not addressed in this
work.

The rules learned can cover the majority of the days considered (≥ 77%),
thus demonstrating its capacity to turn the Schedule Coverage obtained into
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easy-to-read information that cover almost the entire partitioning found by the
consensual clustering previously applied.

Therefore, it is possible to confirm the importance of this tool as it provides
useful insights on the coverage of the bus schedule. In fact, this framework
can find rules that cannot be discovered using the evaluation methods already
described in the literature. Such insights can be used to produce a new Schedule
Coverage capable of reducing the variability observed between the real and the
scheduled round-trip times. A possible proposal to do that in this specific case
study is described below.

4.4.1 A Schedule Coverage Proposal

From the analysis of the consensus clusters, five novel constraints to our Schedule
Coverage can be drawn:

1. The working days should be in a schedule separated from the remaining
days (as suggested by Table 4.2 where this type of days is commonly
grouped in schedules that are different from the weekends and/or the
holidays one);

2. The working days in a school holiday period should be in an individual
schedule (check the values in bold in the NSW column in Table 4.2 for
k ≥ 3 to see some examples of this pattern);

3. The weekends and the holidays should be in an individual schedule (a
good illustration of these is made by cluster 2 in Fig. 4.5 or in Table 4.2
- especially for k < 5);

4. The CT could be in the same schedule as the weekends and the holidays
(typically Christmas Time days, represented by the CHR column in Table
4.2 are grouped with the weekend days or holidays);

5. There is a clear difference between the working days in the last four months
and those in the remaining months (visible in clusters 1 and 3 of Fig. 4.5).

Following these constraints, several hypotheses can be made to re-arrange
the Schedule Coverage on this case study. However, they must meet other op-
erational planning constraints such as the number of drivers/vehicles available
and their shifts [Ceder, 2002]. For more information on this topic, the reader
can consult the following survey on urban planning for public transportation
companies [Vuchic, 2005].

A possible new Schedule Coverage - according to the current number of
schedules - could be the following:

Schedule 1 working days from January 1st to July 15th (beginning of the
school holiday period);

Schedule 2 working days from July 15th to September 15th (school holiday
period);

Schedule 3 working days from September 15th to December 31st;

Schedule 4 all non-working days including all holidays and weekends.
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4.4.2 Potential Infusion and Impact

The use of the proposed framework depends on the perception that transporta-
tion planners have about its usefulness. In this Section, the main issues on
evaluating the changes to the existing SP coverage are described. Then, an
approach to measure the usefulness of such framework in a way that could be
understood by the planners is presented.

The main obstacle to perform such evaluation is the inexistence of data ob-
tained with both the current and the new schedule plans. In our case study,
evaluating a new SP coverage is hardly done before deployment (see Section
2.3.3 to know more about such issue). The main reason for that is that by using
a different coverage, various schedules should be used in order to better adjust
the schedules to traffic in different days. Despite this difficulty, the proposed
approach must be evaluated prior to deployment.

Reducing the variance of round-trip times originated by the same scheduled
trip has a potential impact on three different components of revenue and costs
for a bus company: (1) the revenue can be increased, (2) and the budgeted costs
and (3) non-budgeted costs can be reduced.

The first component can happen when there is an increase in client satis-
faction as a consequence of the perceived increase in service quality. Measuring
such impact is very difficult without generating data based on the new SP. How-
ever, it is easier to define a scheduled round-trip time (TT) that is more adjusted
to the actual TT when the variance is lower. The method used reduces the vari-
ance inside the groups. For this reason, it is expected that the new schedules
will improve the passengers’ perception of service quality.

The second component is probably the easiest to estimate. In fact, when
the variance of TT inside the groups reduces, it is possible to reduce slack
times, which have an impact on the definition of crew services, increasing the
percentage of driving time in these services. The average cost of the drivers
per minute is an important key performance indicator for a public transport
company and can be used to estimate the reduction of budgeted costs caused
by reducing time × drivers. This cost is the most important of the budgeted
operational costs. It should be emphasized that a small reduction in slack times
can cause an important decrease in operational costs due to the increase of the
averaged travel time per driver duty.

The third component occurs when it is necessary to adopt extra measures.
This happens when there are disruptions between the actual and the scheduled
service. The operational planners can create a tighter or wider schedule. In
the first case, slack times will be shorter but the probability of disruption in-
creases, thus increasing the non-budgeted operational costs. In the second case,
the slack time will be larger, reducing the probability of disruption and, con-
sequently, reducing the non-budgeted operational costs, and yet increasing the
budgeted component of the cost. By reducing the variance inside the groups,
and maintaining the same probability of disruption, budgeted costs must nec-
essarily fall.

In this case, the method proposed was evaluated by estimating the vari-
ance of the trips. This was performed by grouping the trips by route, schedule
and scheduled trip start time, and by calculating the sample variance for each
group. Then, the global variation was calculated for both the current coverage
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and the coverage proposed here using the weighted average of the variances in
all groups previously described. This weighted average reduces the degrees of
freedom in each variance used, as explained in any introductory book on statis-
tics. Comparing the sample standard deviations, the results are inconclusive
(present coverage: 594.3 seconds; proposed coverage: 607.8 seconds). It is im-
portant to emphasize that these results are necessarily biased by the use of trips
generated using the current coverage. Indeed, in such conditions, it is natural
that the generated trips are more adapted to the current schedule. This is par-
ticularly true for circular routes, as it is the case of lines 300 and 301. However,
this result does not invalidate the reasonability of such approach. Its evaluation
after deployment, even if in a controlled way (for instance using only a small
number of routes) would be particularly important.

This work is now ready to be used. However, its usefulness for a bus com-
pany depends on its ability to cover, at least, all functionalities when creating
and maintaining timetables. Moreover, since the definition of timetables has
an impact on the remaining steps of operational planning (as described in Sect.
2.1.2), this kind of software will be especially interesting when included in De-
cision Support Systems that cover all steps of operational planning.

4.5 Final Remarks

Most classical approaches to schedule evaluation rely only on how to change
the defined timetables and driver shifts. However, these definitions are based
on previous definitions which could not be evaluated using an automatic algo-
rithm. Additionally, such changes usually represent an increase in operational
costs, for instance, due to increases in the number of running vehicles, slack
times and/or driver shifts.

To our best knowledge, this is the very first framework capable of evaluating
whether the current coverage fits the network needs. The insights hereby dis-
covered will enhance the operational planning tasks by providing novel decision
variables to the planners. These variables carry information that can cause an
impact on planning: by optimizing the Schedule Coverage, the planners will be
able to take full advantage of the existing resources, or even reduce related costs,
while improving the passengers’ perception of service reliability and providing
SP day coverage according to their mobility needs.

This problem was addressed using a reasonably complex Machine Learning
system. The steps used were: (1) k-means with the DTW distance per route to
find an optimal schedule coverage for each route based on its trip daily profiles,
(2) a Consensual Clustering to find a consensual day partition between all the
considered routes, and (3) rule induction using the RIPPER algorithm to ex-
tract understandable rules. The use of consensual clustering is emphasized to
address an important real problem in the transportation area. The employment
of the rule induction system broadens the target audience for this methodology
by removing the need for a solid background on Machine Learning techniques.

The experiments were conducted in a specific case study, a public transporta-
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tion operator in Porto, Portugal, which highlighted the usefulness of this frame-
work: it is capable of extracting important information regarding the Schedule
Coverage from a vast amount of data. It is independent of the number of sched-
ules k and, more importantly, of the company where the framework will be
deployed (only an AVL communication system is required). We believe that the
work presented along this Chapter is unique due to the type of patterns it can
reveal about the Schedule Coverage. Moreover, it opens new research lines for
evaluating Schedule Plans by broadening its scope to the coverage dimension.
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Chapter 5

Online Bus Bunching
Mitigation

PT reliability could be defined either in terms of punctuality - the extent to
which operations adhere to the planned schedule - or in terms of regularity - the
extent to which vehicles are evenly spaced, implying even headways, the time
interval between successive vehicles running the same route [TCRP, 2003]. In
the case of high-frequency routes (headways of 10 minutes or shorter), regularity
is the main indicator of service reliability since it is the main determinant of
passengers’ waiting time [Cats, 2014]. Headways are inherently instable due
to a positive feedback loop between the headway, the number of passengers
waiting at the stop, dwell times and successive headways [Daganzo, 2009]. For
example, a small bus delay provokes an increase in the number of passengers in
the next stop. This number leads to an increase in the dwell time (bus service
time at a stop) and consequently, it further increases the bus delay. On the
other hand, the next bus will have fewer passengers, shorter dwell times and
will gradually catch up the preceding bus. This snowball effect will result with
the pairs of buses forming a platoon as illustrated in Fig. 5.1. This phenomenon
is denominated as Bus Bunching(BB) [Daganzo, 2009; Moreira-Matias et al.,
2012b, 2014a].

The prevalence of BB is one of the most visible characteristics of an un-
reliable service. Two (or more) buses running together on the same route is
an undeniable sign that something is going terribly wrong with the company’s
service. Operational Control can potentially address BB in real-time. This
Chapter describes a methodology focused on exploring both historical and real-
time AVL data to build automatic control strategies, which can mitigate BB
from occurring while reducing the human workload required to make these de-
cisions. It provides a complete bottom-up methodology, from fundamental
theoretic aspects of capturing the BB process stochasticity to practical issues
involved with actions deployment and on the evaluation of their impacts.

The symbols and notations used throughout this Chapter are provided in
Tables 5.1 and 5.2. The remainder of it is structured as follows: The Data
Collection employed on this study’s experiments is described in Section 5.1,
along with some details about its preprocessing and our real world Case Study.

83
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Section 5.2 introduces some related work on the BB topic, grounding the con-
tributions of this framework to such State-of-the-Art. The third Section details
the proposed stepwise methodology and highlights its main contributions to the
State-of-the-Art on this topic. Section 5.4 presents the experimental setup, by
introducing some evaluation metrics, a tuning framework to adjust the values of
the methodology’s parameters, the artificial demand model employed to produce
synthetic data about the passenger demand and the experimental results. Sec-
tion 5.5 presents some discussion about these results and the potential impact
of this framework on a real world Control center. Finally, some final remarks
are presented along with future research directions on this topic.

5.1 Data Preparation

The real-time framework for detecting and preventing bus bunching is applied
to the same case study of the previous Chapter (i.e. STCP). Conversely to the
task described on that Chapter, this data was masked due to privacy issues.
This BB study was conducted using a heterogeneous group of nine bus lines
(A-I) - that include both urban and non-urban routes covering different parts
of great Porto area. The data were collected during a one year-period from
January to December 2010 (365 days). Each line has two route-directions A1,
A2, B1, ..., I2.

Line A is a commuter line between downtown and Vila D’este, a large poor
neighborhood located in the southern edge of the Douro river which trespasses
many rural areas. Line B is a major urban line that connects the major city
street market to luxurious neighborhood on the city seaside (Castelo do Queijo).
Line C is also a major urban line between Viso (an important neighborhood
in Porto) and Sá da Bandeira, a downtown bus hub. Line D connects down-
town to Hospital São João (HSJ), an important bus/light train terminal in the
northern part of the city. Line E connects downtown to an highly populated
neighborhood in the east (S.Roque). Line F is an arterial urban line. It tra-
verses the main interest points in the city by connecting two important street

Figure 5.1: Bus Bunching illustration.
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markets: Bolhão - located in downtown - and Mercado da Foz, located on the
most luxurious neighborhood in the city. Line G connects the city downtown to
the farthest large-scale neighborhood in the region (Maia). Line H departs from
an important terminal located on the city outskirts (Marquês) to a highly dense
residential area in the east (Rio Tinto). Finally, Line I connects the two major
transport hubs in the city: Trindade, that joins all the five light tram lines in
the city and Sto. Ov́ıdeo, which is the southernmost light tram station that
provides bus connections to most of the neighborhoods located in this region.

Table 5.1: Notation and symbols about the BB Control Framework employed
along this Chapter.

n total number of trips on the dataset of a given route
fi,j Planned Headway established for a given pair of trips, (i, j)
Hb
i,j Observed Headway on a given pair of trips (i, j) at a bus stop b

bi ith bus stop of a given route

T ji arrival time of the bus running the trip i to the bus stop j of a given route
TT(i,j) travel time between two bus stops of interest bi, bj : j > i

RT
(l,l+1)
i non-stop run time of the trip i in the road segment between two consecutive stops bl, bl+1

dwT li dwell time of a given vehicle/trip i on the bus stop bl
s total number of stops of a given route
η headway-based minimum threshold to consider a BB event between two trips

LTT
(l,l+1)
i Link Travel Time between two consecutive stops bl, bl+1

θ number of days employed to build the training set to predict the LTTs on a daily basis
∆yi online update made to the previous LTT prediction yi in place
ry residuals of the predictions made to y
α constant user-defined learning rate of ∆yi

α(ry) dynamic residual-based learning rate of ∆yi

κ2 constant user-defined learning rate of α(ry)
e the index of the most recently completed trip
Pe set of LTT predictions made for the trip e
µe average prediction residual for the completed trip e
φ user-defined maximum threshold for the amount of trip-based residual µe
β2 user-defined residual-based learning rate of α(r) to apply the trip-based update rule
Ec offline prediction for the headways of the current trip c
Ec online prediction for the headways of the current trip c
HRc residuals of the headways’ offline prediction for the current trip c
H ′Rc residuals of the headways’ online prediction for the current trip c
γ(a, z)i dynamic residual-based learning rate for the stop bi given the headway’s residuals a, z
[γmin, γmax] user-defined parameters to bound the domain for the learning rate γ(HRc, HR

′
c)

Dbi Gaussian p.d.f. of the Headway between two consecutive trips on a given bus stop i
µbi mean value for defining the Gaussian distribution Dbi

σbi Standard deviation for defining the Gaussian distribution Dbi

τ user-defined sliding window size to compute the recent Variance of Hi
k,k+1

p(BBik,k+1) BB likelihood for the pair of trips {k, k + 1} on the bus stop bi
Dbj descendant ordered vector of BB likelihoods for the downstream stops of bj
BSbj BB score to quantify the likelihood of occurring a BB event on the downstream stops of bj
nj number of agreements (i.e. positive likelihoods) needed to compute BSbj

ψ frequency-based threshold to trigger a BB alarm on stop Bj given BSbj

ρ user-defined number of discrete bins employed to calculate ψ
bν bus stop for which the BB event is predicted to occur
actj cor. action to be deployed once a BB alarm is triggered on bj for the downstream stops
χ symmetric user-defined min. threshold for the BB likelihood required to deploy a cor. action
χBH min. threshold for the BB likelihood required to deploy Bus Holding
χSS min. threshold for the BB likelihood required to deploy Stop Skipping
HTk Total Bus Holding Time to deploy to trip k
HT ik Bus Holding Time to deploy to trip k on a given bus stop bi
ζ0, ζ user-defined boundaries for the Total Bus Holding Time HTk (in seconds)
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Table 5.2: Notation and symbols about the Simulations and Passenger Demand
Model employed along this Chapter.

RTV Run Time Variation on a given route
SAT Scheduled Arrival Time of a given trip
AAT Actual Arrival Time of a given trip
AWT Average Waiting Time for the passengers of the trips running a given route
AIV T Average In-Vehicle Time for the passengers of the trips running a given route
Bk total number of passenger boardings on a route during a given trip k

PAV
bj
z,k the arrival time of the passenger z to bj immediately before trip’s vehicle k arrival at bj

bsz,k/asz,k boarding/alighting stop of a given passenger z on trip k
boik/alik number of boardings/alightings of the trip k on the bus stop bi
omax maximum passenger capacity of a given bus vehicle
oik occupancy of the bus k after the boardings/alightings at bus stop bi
υ user-defined frequency’s percentage to be used on calculating the passenger arrivals
deik,k+1 num. of passengers arrived to the stop bi during the headway between k and k + 1

λmin, λmax user-defined minimum/maximum threshold for the value of λ(k)
dfi descendant demand factor of the bus stop bi
ϕ expected percentage of the route completed by any passenger on a given trip
nsz,k number of stops traversed by a given passenger z during trip k
fas(z, i, k) function that determines whether the passenger z alighted on the stop i during the trip k
SIM2, SIM1 simulations run by deploying/not deploying automatic corrective actions

∆j
BH,g,∆

j
SS,g

variation on T jg provoked by deploying a cor. action (Bus Holding or Stop Skipping) on
a previously departed trip k

ξ user-defined constant boarding time per passenger
dwTmin, dwTmax user-defined boundaries for the dwell time
∆bogk variation on the boardings of the trip k on a stop bg imposed by a given corrective action
Tgk arrival time of the trip k to the stop g of a given route affected by a corrective action

Eight of these routes are depicted on the road network in the urban area of
Porto in Fig. 5.2. The orange dots represent the bus stops of each route.

5.1.1 Preprocessing

The origin of this data is the same than the one described in Section 4.1. Con-
versely to that dataset, this one is stop-based rather than trip-based. The data
was sorted using the timestamps of vehicle’s location associated to each link.
The pairs were matched by identifying the records containing each trip’s arrival-
s/departures with the defined schedule (which had the bus stops order and the
scheduled arrival times to some of these stops - i.e. time point stops). Based
on this information, it is possible to build route datasets. Each dataset has one
entry for each trip containing the following information: starting date of the
trip, bus vehicle model, Driver ID, day of the year, type of day (normal day,
holiday and floating holidays), departure time from a given bus stop and a stop
ID.

As part of the preprocessing phase, the raw route datasets were processed in
order to make it suitable for later stages. The final route datasets have one entry
for each stop visit along with the respective date (mapped as an incremental
sequence starting in 1 for 01/01/2010), its type (weekdays - MON to SUN, and a
day type - 1 for working days, 2-6 for other day types i.e.: holidays and strikes),
a timestamp, the stop id and the link travel time from the previous stop.

Similarly to the dataset presented in Section 4.1, some data on link travel
times is missing in the dataset. Not surprisingly, its percentage is larger than the
one exhibited by the dataset used on the schedule coverage validation (roughly
10% of the total information - see Table 5.3). To overcome this issue on this



5.1. DATA PREPARATION 87

Figure 5.2: Illustration of some routes (one per line) considered over a geograph-
ical representation of the road network in Porto, Portugal. Image obtained from
[STCP - Sociedade de Transportes Colectivos do Porto, 2013].

particular study, the links for which there is no information are not considered
in our predictive framework1.

1 The predictions are done and updated as for any other links. However, as it is not possible
to obtain the prediction residuals on those stops, they will not be considered to update the
predictive model regarding the headway for the downstream stops. The reader can see Section
5.3 to know more about this particular issue.
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Table 5.3: Descriptive statistics for each route considered. Headways in minutes.

A1 A2 B1 B2 C1 C2 D1 D2 E1 E2
Num. of Trips 10108 10224 24554 24388 20598 20750 25862 25674 18651 18940
Nr. of Stops 18 18 30 30 26 26 22 22 26 26
% of missing data 0.11% 0.09% 5.05% 4.93% 11.44% 6.70% 3.55% 1.20% 8.01% 4.98%
Min. Daily Trips 28 28 50 51 44 45 62 63 51 63
Max. Daily Trips 45 44 98 97 76 76 95 91 67 91
Min. Headway 20 18 10 9 10 11 9 9 14 14
Max. Headway 120 120 61 66 100 92 62 72 111 111
Avg. PH Headway 28.53 30.99 19.81 19.92 16.01 15.64 14.91 14.49 21.35 16.52
Trips w/ BB 19 43 734 811 682 553 1009 885 291 211
% of Bunching 0.18% 0.42% 2.99% 3.33% 3.31% 2.66% 3.90% 3.45% 1.56% 1.11%
BB Avg. Pos. 53.78% 82.94% 58.41% 76.28% 63.22% 74.87% 60.19% 62.13% 53.51% 67.89%

F1 F2 G1 G2 H1 H2 I1 I2
Num. of Trips 20054 19361 26739 26007 11319 11864 15691 14901 00000 00000
Nr. of Stops 32 32 45 45 31 31 24 24
% of missing data 4.34% 2.17% 10.74% 7.5% 0.25% 0.47% 2.25% 7.23%
Min. Daily Trips 56 57 65 71 29 29 35 35
Max. Daily Trips 85 84 100 101 39 42 59 54
Min. Headway 12 13 10 10 20 19 17 19
Max. Headway 112 120 60 101 120 120 120 120
Avg. PH Headway 24.31 24.81 14.44 13.92 31.01 30.65 23.82 22.15
Trips w/ BB 437 364 1917 1702 17 23 388 225
% of Bunching 2.18% 1.88% 7.17% 6.54% 0.15% 0.19% 2.47% 1.51%
BB Avg. Pos. 58.32% 68.55% 49.71% 53.63% 56.57% 52.75% 60.79% 69.70 00.00% 00.00%

5.1.2 Dataset Statistics

Table 5.3 presents summary statistics of the dataset. The columns correspond
to each of the routes included in the case study. The table rows show the fol-
lowing values per route: (1) total number of trips; (2) number of stops; (3)
percentage of missing data for link travel times; (4,5) the maximum/minimum
number of trips per day; (6,7) the maximum/minimum planned headway; (8)
averaged measured headway on Peak Hours (PH); (9) total number of trips
which experienced a headway shorter than 25% of the planned headway at least
once along their trip; (10) the average position where a BB took place along
the route (e.g. 50% means that on average the BB events took place at a stop
situated in the middle of the route). The headway distributions of eight routes
are also presented in Figure 5.3.

It is possible to observe that the routes with the largest number of trips also
exhibit the largest percentage of missing data (except for line D). The minimum
planned headway among these routes is 9 minutes. Nevertheless, it is evident
that headways vary considerably as could be observed in Figure 5.3. In partic-
ular, the thick left and right tails of the headway distributions, are especially
pronounced for routes B1, C1, D2 and G1. These lines are characterized by short
headways. Such tails illustrate that these routes often exhibit headways which
are significantly shorter or longer than the scheduled ones. As a result, these
routes exhibit the highest share of trips containing extremely short headways of
less than 25% of the planned headway (between 3% and 7% of all stop-visits).
While all routes are subject to headway variations, the extent of these varia-
tions vary among the case study lines due to differences in the underlying traffic
conditions and demand profiles.
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(d) Route D2.
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(e) Route E1.
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(f) Route F1.
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(g) Route G1.
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(h) Route I1.

Figure 5.3: Sample-based Headway (discrete) Distribution for eight routes of
this study during the peak hours(truncated between 0 and 1h). Times are in
minutes.

5.2 Related Work

Previous studies have deployed a range of analytical and simulation models to
represent the dynamics of the bus service operations and evaluate the impacts
of alternative control strategies. Early analytical studies that have examined
the BB phenomenon and the characteristics of its instability that could be trig-
gered by recurrent perturbations include Newell and Potts [1964]; Chapman and
Michel [1978]; Powell and Sheffi [1983]. The latter devised a probabilistic model
which built a set of recursive relationships to calculate the p.d.f. to validate the
hypothesis of forming a platoon of vehicles on each stop. More recently, Da-
ganzo [2009] and Daganzo and Pilachowski [2011] developed analytical models
to assess the impacts of an adaptive control strategy which adjusts bus dwell
time at stops and the running times between successive stops based on the re-
spective headways.
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Transit control strategies consist of a wide variety of operational methods
aimed to improve transit performance and level of service. Holding strategies
are among the most widely used transit control methods aimed to improve ser-
vice regularity [Abkowitz and Tozzi, 1987]. In order to design and implement
corrective actions, both the location - where the control decisions should be
deployed [Turnquist and Blume, 1980; Abkowitz and Engelstein, 1984; Eber-
lein et al., 2001; Sun and Hickman, 2008; Cats et al., 2014] and the how - the
criteria for intervening and its specification [Fu and Yang, 2002; Koutsopoulos
and Wang, 2007; Cats et al., 2012] - must be determined. In [Delgado et al.,
2009], a global control unit optimizes the holding times by solving a determin-
istic rolling horizon mathematical programming model which minimizes total
passengers’ waiting times.

Most of the abovementioned State-of-the-Art on this topic departs from the
assumption that the probability of BB events is minimized by maximizing head-
way stability. This is achieved by either minimizing the difference between the
actual headway and the scheduled one or by minimizing the discrepancies be-
tween successive headways. Notwithstanding its validity, this approach requires
multiple control actions (i.e. speed modification, bus holding, etc.) which may
impose high mental workload for drivers and result with low compliance rates.

Hereby, we propose a proactive rather than a reactive operational control
framework. The basic idea is to estimate the likelihood of a BB event occurring
further downstream to then let an event detection threshold triggers the deploy-
ment of a corrective control strategy. This methodology is described along the
next Section.

5.3 Methodology

The occurrence of a BB event is subject to stochastic processes and hence diffi-
cult to predict. Notwithstanding, current system states may uncover such future
occurrences. To do so, it is not sufficient to mine historical AVL data as there
is no obvious trend or a simple static association rule which can explain such
events. Consequently, an off-the-shelf Machine Learning method will not be
sufficient to handle this specific problem.

This Section describes the details of a stepwise learning methodology to
detect and then prevent BB in real-time. It utilizes simultaneously historical
and real-time AVL data. The framework works on two different parts: (I) BB
Event Detection and (II) Corrective Action Deployment. The first part
is an Advanced Machine Learning framework composed of the following three
steps:

• (I-1) an offline regression method is used to predict the Link Travel
Times (i.e. the time interval between the arrival times at two consecutive
bus stops) for every trip in the following day (the forecasting horizon) using
some of the most recent days (the learning period) to train our model;

• (I-2) these predictions are constantly refined (i.e. online learning) using (I-
2a) trip-level information as well as (I-2b) stop-based information. Both
steps are based on the Perceptron’s Delta Rule [Rosenblatt, 1958]
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by reusing each prediction’s residuals to improve successive predictions.
After two consecutive trips of interest depart from their origin stop, a BB
monitoring framework is triggered;

• (I-3) this framework estimates a likelihood of a BB event to occur at
downstream stops by assuming that headway is normally distributed.

Given a certain user-defined threshold, a BB detection alarm is launched.
The second part consists of the following two steps:

• (II-4) selecting one out of two possible corrective actions (Bus Holding
or Stop Skipping) based on the relative headway deviation;

• (II-5) finally, the exact details of action implementation are specified based
on service conditions and the designed set of corrective actions.

Parts I and II of the methodological framework are illustrated in Figures 5.4
and 5.5, respectively.

5.3.1 Step I-1: Link Travel Time Prediction

Let the trip i of a given bus route be defined by Ti = {T 1
i , T

2
i , ..., T

s
i } where T ji

stands for the arrival time of trip i at bus stop j and s denotes the number of
bus stops along the route.

Consequently, the observed headways between two buses at stop j running
on consecutive trips k,k + 1 is defined as follows

Hk,k+1 = {H1
k,k+1, H

2
k,k+1, ...,H

s
k,k+1} : Hj

k,k+1 = T jk+1 − T
j
k (5.1)

Under optimal conditions, the headway between two consecutive trips is ex-
pected to be constant (i.e. Hi

k,k+1 ' fk,k+1,∀i, k).
However, in reality bus services are subject to uncertainty that results with

service variability as discussed above. A BB event is expected to occur when
headways become unstable until eventually forming a platoon. The operational
control framework proposed in this thesis calls for the deployment of corrective
actions when the headway deviates beyond a certain threshold. The corrective
action is designed to recover to acceptable headway levels. The threshold that
activates an intervention could be defined by the operator. The BB occurrence
is hence defined as a boolean variable as follows

BUNCHING =

{
1 if ∃ Hi

k,k+1 ∈ Hk,k+1 : Hi
k,k+1 < η

0 otherwise
(5.2)

where η stands for the headway-based minimum threshold to consider a BB
event between two consecutive bus trips k and k + 1. The definition of the η
value is usually made as a function of the planned headway, i.e. fk,k+1.

Consequently, it is possible to devise a recursive relationship between BB
occurrences, the observed headway and the arrival time of a given trip i to a
bus stop of interest l, i.e. T li . Let the arrival time be defined as follows

T l+1
i = T li + dwT li +RT

(l,l+1)
i (5.3)
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The Link Travel Time (LTT) between two stops can be defined as follows:

LTT
(l,l+1)
i = dwT li +RT

(l,l+1)
i (5.4)

By observing the eqs. (5.1,5.3,5.4 ), it is possible to infer the following recursive
relationship between headways measured on consecutive bus stops

H l+1
k,k+1 = H l

k,k+1 + LTT
(l,l+1)
k+1 − LTT (l,l+1)

k (5.5)

Logically, it is possible to infer the future values of Hk,k+1 based on the predic-
tions on the future values of LTT. Hereby, we propose to perform long-term
TTP based on the dataset described in Section 5.1 in order to approximate
the headways between every pair of consecutive trips on a daily basis. Depart-
ing from the work of [Mendes-Moreira et al., 2012], it is possible to formulate
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the Link Travel Time prediction problem as an inductive learning regression
problem. It involves inferring the following function

f̄ : X → R : f̄(x) = f(x),∀x ∈ X (5.6)

where X stands for the feature set (i.e. a set of explanatory variables from
which it is possible to establish dependences with the LTT; e.g. time of the
day, type of day, etc.) and f represents the unknown explanatory function. The
algorithm used to obtain the f̄ is denominated learner. This type of algorithms
usually scan one or multiple times a given training set where the true values of
f(x) are known to generalize a function that is able to output such values for
unseen samples (i.e. future values of LTT).

Following [Mendes-Moreira et al., 2012], we use a dynamic training set by
employing a sliding window which only considers the most recent data (i.e.
LTT for the latest θ days, where θ is an user-defined parameter) to train a f̄
able to predict the LTT values for all the trips that take place on the following
day.

By doing so, we aim to obtain an optimal fit of f̄(x) for a given training
set (i.e. f̄(x) = f(x)). This type of learning tasks is often denominated of-
fline learning (as defined in the beginning of Chapter 3). They aim to find an
explanatory function that performs an optimal fitting of unlabelled new data
based on a given training set. Such convergence to optimality is one of the key
characteristics of this type of models. However, it is also regarded as its ma-
jor drawback because it is unable to adjust itself to changes introduced in the
process by stochastic events as discussed in Section 2.1.3, such as traffic jams,
abrupt weather changes or unusual demand peaks.

With this aim, we propose a hybrid learning model - which combines
offline learning and online learning models. The offline regression produces a
context free prediction for the LTT distribution throughout a day on a given
route while the online learning handles the constant drifts that the learning
process introduces due to multiple stochastic events that arise during system
operations. Such online learning task involves updating these predictions based
on the residuals (i.e. the difference between the predicted and the actual val-
ues) produced by earlier predictions. The residual-based update procedure is
described in the following section.

5.3.2 Step I-2: Delta Rule as a Residual-Based Update

One of the most well-known offline learning techniques for regression are Ar-
tificial Neural Networks (ANN) [Bishop and others, 1995]. ANNs are compu-
tational models inspired by the neuron’s brain structure. Perceptrons are the
basic component of an ANN [Rosenblatt, 1958]. They play the role of a neuron
in human brain. Typically, a Perceptron receives a set of inputs and computes
their weighted sum. The output of the Perceptron is computed by an activa-
tion function, e.g. sigmoid, of the weighted sum of the inputs. Learning in a
Perceptron consists of finding the weights, typically using gradient descent, that
minimize the squared difference between the outputs and real values. In ANNs,
Perceptrons are organized in layers, where the output of one layer act as input
to the next layer. ANNs have been used in TTP, for example in Chien et al.
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[2002]; Chen et al. [2004]; Jeong and Rilett [2005]; Mazloumi et al. [2011].

The most typical type of ANNs is a Feedforward Neural Network (FNN)
- where the information just moves forward, from the input nodes to the output
nodes. One of the most well-known algorithms to train FNNs is the Backprop-
agation Algorithm [McClelland et al., 1986]. It basically progresses the outputs
of their nodes forward while the residuals are propagated backwards to update
the network weights until a convergence criteria is met (e.g. the average residual
is below a given threshold). Such learning task is performed by employing the
Delta Rule (DR) [Stone, 1986]. Let wji be the weight of the link connecting
the ith input node (with an input value of xi) to the jth output node where yj
is the node’s current output and tj is the target output. The delta rule updates
the weight by adding to the previous weight wji a given ∆ji as follows

w′ji = wji + ∆ji; ∆ji = α(tj − yj)xi (5.7)

where α stands for an user-defined parameter (i.e. typically, 1 >> α > 0).
By running through multiple iterations, this algorithm will force the weights to
converge in order to find a local minimum of a function (i.e. to minimize the
f̄(x) − f(x)). Obviously, a reasonable knowledge of the problem is normally
required to perform an adequate feature selection and parameter setting such
as the number of hidden layers and learning rate α in order to successfully apply
ANNs to TTP problems [Bin et al., 2006].

Moreover, ANNs also require a comprehensive amount of data and computa-
tional power to allow the learning model absorve all the dependences between
the input and the output values. Nevertheless, they are not able to adapt them-
selves to handle unseen concepts and drift their outputs accordingly. However,
when we are facing a large-scale data stream of information - such as the LTT
dataset communicated by each vehicle - we face an high latency source of spa-
tiotemporal data. Is it possible to turn this high information latency into an
advantage by employing an ANN-based learning?

The need to converge for a local minimum for the residual’s values is the
key for a wide range of applications of ANN in many different research fields.
However, it is also its main limitation as its ambition to generalize all the
dependences decreases its applicability to many cases where there is no time to
carry out such a complex optimization process 2 Instead, we adapt the delta
rule to incrementally update the predictions firstly obtained by the offline
regression learning process. So, we propose to modify eq. 5.7 as follows

y′i = yi ×∆yi ; ∆yi = α(ti−1 − yi−1) (5.8)

turning it into a first-order update rule where the next prediction yi is updated as
soon as the real value of the previous one (i.e. ti−1) is known. It thus consists of
adding a percentage of the residual of yi−1, i.e. ryi−1 = (ti−1−yi−1). The basic
idea is that the learning model will not change dramatically within several hours

2 to learn adequately the concept drifts in the data, a typical backpropagation algorithm
must carry out the full optimization process including the most recent samples on its training
set. However, such process may require a considerable amount of time - especially in complex
problems like our own. Such amount of time may result on an optimal but deprecated target
function - as the concept may have drifted again due to the most recent samples arrived in
the meanwhile.
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(i.e. one day) but it will instead drift gradually as a response to changes in the
expected values (i.e. a large-scale traffic jam). As these types of phenomena are
also temporary they also need to be forgotten as soon as they have terminated
(i.e. as a response to a progressive decrease of the ryi−1 value). We denominate
this update Linear Delta Rule. This algorithm was successfully deployed for
other online learning problems (see, for instance, the incremental computation
of the ARIMA’s weights proposed in Section 6.3.2 ).

To improve the model ability to react, the learning rate α may also be
updated based on the residuals’ progression (i.e. α(ry)). Such update can be
computed as follows

α(ry)′ = α(ry)× (1 + ϑ× (1 + κ2)) (5.9)

where κ2 sets the progression rate of α(ry) and ϑ stands for the number of con-
secutive residual’s with the same signal (i.e. positive/negative). Consequently,
κ2 is a quadratic learning rate (i.e. user-defined) that sets the rate on how the
original learning rate α is updated while ϑ is a variable that refers to trending
in our prediction (i.e. over/under estimation). For a given prediction i, it is
computed recursively as follows

ϑi =

{
ϑi−1 + 1 if

ryi−1

ryi
= 1

0 otherwise.
(5.10)

where ϑ0 = 0. The variation of delta rule described in eqs. (5.9,5.10) is denomi-
nated as Exponential Delta Rule (Exponential DR). This algorithm was also
successfully deployed for other online learning problems (see, for instance, the
incremental exponential adaptation of the interval sizes in [Nunes et al., 2012]).

The Exponential DR is applicable whenever a more sensitive reaction to
changes on the residuals is desirable as compared with the Linear DR which it
is more generic first-order update rule. Sometimes, the Exponential DR can also
be applied directly to the output value as the learning rate α is also learned from
the residual’s distribution (i.e. α(ry)). Consequently, it is possible to re-write
eq. 5.9 as follows

∆yi = α(ry)× yi−1 (5.11)

which gives an even greater reactivity to the learning model [Nunes et al., 2012].
By doing so, this model is named as Greedy Exponential DR.

This type of updating rules can be considered as time-evolving hidden layers
which aim to approximate concepts which were unknown on the generalization
made by the offline regression learning process. In the following couple of sub-
sections, we detail the application of these rules to incrementally update the
LTT predictions.

5.3.3 Step I-2a: Trip-Based Link Travel Time Update

Let e denote the last trip completed before the current trip c starts. The trip-
based refinement compares the predictions of e, i.e. Pe = {P 1

e , P
2
e , ..., P

s
e } with

their real values Te in order to update the value of Pc. Firstly, we compute the
residuals as re = Te − Pe and then its average value (i.e. rP ) as follows

rP = µe =
∑s

i=1

re
i

s
(5.12)
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Secondly, an user-defined percent-wise maximum threshold 0 < φ << 1 is
employed to identify trips with an error larger than expected as φ× fc,e. Then,
a Greedy Exponential DR is employed to update the LTT predictions for the
next trip Pc as follows

P ′c = Pc + ∆Pc ; ∆Pc = (α(rP )× Pc) (5.13)

where the dynamic learning rate α(rP ) is updated as follows

α(rP )′ = α(rP )×
(
1 + ϑ× (1 + β2)

)
(5.14)

where β2 stands for the user-defined quadratic learning rate of the trip-based
α(rP ). The threshold φ × fc,e is employed over the learning rate of α(rP ) by
constraining the progression rate of α(rP ) defined in eq. 5.10 as follows

ϑc =

{
ϑc−1 + 1 if µe

µc
= 1 ∧ µe > (φ× fc,e)

0 otherwise.
(5.15)

These updates are performed incrementally (i.e. every time a link is traversed
and the respective travel time becomes available). Note that the residuals are
always calculated over the regression results Pc and not over the updated arrays
P ′c. Hence, its computation is iterative but not recursive.

5.3.4 Step I-2b: Stop-Based Headway Update

Given the updated predictions of two consecutive trips P ′c, P
′
c+1, it is possible

to obtain the predicted headways Ec = P ′c − P ′c+1 while the actual headways
are computed as Hc = Tc − Tc+1. The calculus of Ec works as an offline
prediction as it does not use information about the current headway. The second
refinement uses the headway residuals HRc = Hc − Ec to update Ec stop-by-
stop. Incrementally, we obtain online headway predictions as Eic = Hi−1

c +Eic−
Ei−1
c ,∀i ∈ {2, s}. The problem is to update the headway online prediction for

the next stop (i.e. Eic) given the value of HRi−1
c . To this end, we employ the

Exponential DR, implemented with the following first-order rule:

Eic = Eic + ∆Eic ; ∆Eic = γi(HRc, H
′Rc)×HRi−1

c (5.16)

The dynamic learning rate γi(HRc, H
′Rc) is updated as follows

γi(HRc, H
′Rc)

′ =

{
γi−1 × (1− γi−1) if |HRi−1

c |> |H ′Ri−1
c |,

γi−1 × (1 + γi−1) otherwise.

subject to γ(HRc, H
′Ri−1
c ) ∈ [γmin, γmax] (5.17)

where |HRc| stands for the absolute residuals for the Headway’s offline predic-
tion Ec, |H ′Rc| denotes the absolute residuals for the Headway’s online predic-
tion Ec and [γmin, γmax] stands for an user-defined boundary for the γr’s range
of values. Again, the entire headway array Eqc , q ∈ {i + 1, s} is constantly up-
dated with the most recent headway value Hi

c as soon as it becomes available.
This scheme provides a certain flexibility to handle the real-time stochasticity
associated with headways. By performing these two steps, it is possible to main-
tain distinct levels of information to approximate the real-time link travel times
incrementally. The propagation of our updates to downstream stops along the
trip is key to BB anticipation, as explained in the following section.
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5.3.5 Step I-3: BB Event Detection

A probabilistic framework for detecting a BB event at downstream stops is
proposed. The likelihood of a BB event to occur at any of the downstream
stops between two consecutive trips (k, k+1) is computed by inferring the short-
term probability distribution function (p.d.f.) of their headways Hk,k+1 at each

stop, i.e D(Hbi
k,k+1) ≡ Dbi ,∀i ∈ {1..s}.

Let M bi
k = {M bi

k−1, ...,M
bi
k−τ} : M bi

j =
∣∣∣Hbi

c,c+1 − Ebic,c+1

∣∣∣ denote an array

containing the most recent τ residuals of the headway predictions made at bus
stop bi, where τ is an user-defined parameter that defines the short-term memory
size. To calculate such a p.d.f., it is postulated that

Assumption 5.1. The Headway p.d.f. on a bus stop bi, i.e. Dbi , follows a
Gaussian distribution defined as Dbi ∼ N (µbi , σbi).

where µbi is the expected headway value defined by µbi = Ec,i while σbi is
approximated by computing the median value of the recent prediction residuals

(i.e. M̃ bi).
Considering the hypothesis of a BB event occurring at this specific stop,

we can express its likelihood as p(BBik,k+1) = p(Hi
k,k+1 ≤ η | Eic,M bi). This

definition allows to quantify the p-value of a BB event to occur at a certain
stop. It is then possible to quantify a Bunching likelihood for all downstream
stops (and also to update them each time we obtain a more up-to-date headway
value).

The aforementioned assumption 5.1 and the approximations made on the
calculus of its parameters might induce a certain error because the headway
distribution on a given stop may follow, on some circumstances, a different
type of p.d.f. [Gentile et al., 2005]. For simplicity and to allow its incremental
computation, we have considered they all to follow a Gaussian distribution.
To handle the error introduced by such assumption, a Bunching Score (BSbj )
is estimated for a given bus stop bj based on the estimations of the headway
distributions Dbi between the trips c and c + 1 for downstream stops. Let
Dbj =

⋃s
i=j+1 p(BB

i
k,k+1) be an ordered vector (descendant) containing the

likelihoods for the downstream bus stops. The BS can be obtained as follows:

BSbj =
1

nj

nj∑
i=1

Dbj ;nj = d3− ((j − 1)× 3/s)e : nj ∈ N (5.18)

where nj is the number of likelihoods used to compute BSbj . nj works as
minimum agreement threshold to set how many stops should somehow agree on
raising a positive alarm on BB. Finally, a BB is said to be likely to occur at
stops downstream of bj if it exceeds a threshold value, ψ, defined as follows

ψ(fc,c+1) = 0.3 + [(fc,c+1 mod ρ) ∗ 0.1] : 0 < ψ(fc,c+1) ≤ 1 (5.19)

where ρ stands for an user-defined parameter for the number of threshold bins
that should be employed.

By employing nj when computing BSbj , the method aims some sort of
consensus by requiring high BB likelihoods for multiple bus stops whenever
the BB events are being predicted at an upstream segment of a given route
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(i.e. longer forecasting horizons). After a BB alarm is triggered on a given bus
stop bj , a corrective action is implemented. In the next section, a process to
automatically determine which action should be deployed in each situation is
described.

5.3.6 Step II-4: Selecting a Corrective Action

In this study, two corrective actions are considered: (1) Bus Holding and (2)
Stop-Skipping. The reason to do it so is their simplicity, easy communication
and deployment [Delgado et al., 2012]. Once a BB event between two consecu-
tive trips c, c+ 1 is predicted for stops located downstream of bj , it is essential
to determine which control strategy should be deployed.

The procedure for strategy selection starts by determining which is the bus
stop where the BB event will most likely occur, i.e. bν - which is determined
by selecting the stop that maximizes the BB likelihood, as described in the
following equation:

bν = argmax
bi

p(BBic,c+1) : j < i ≤ s (5.20)

Let actj ∈ {0, 1, 2} be the corrective action to be applied given that a BB alarm
is triggered for bus stop bj . The value 1 corresponds to deploying Bus Holding,
2 implies Stop Skipping and 0 does not involve any intervention. The value of
actj is selected based on the headways between the current trip c, the previous
one c− 1 and the following one c+ 1, where actj is determined as follows3.

actj =


2 if χBH ≤ p

(
Hbν
c,c+1 ≤ η

)
≥ p

(
Hbν
c−1,c ≥ ((2× σbν )− η)

)
,

1 if p
(
Hbν
c,c+1 ≤ η

)
< p

(
Hbν
c−1,c ≥ ((2× σbν )− η)

)
≥ χSS ,

0 otherwise
(5.21)

where χBH and χSS stands for two user-defined minimum thresholds for the BB
likelihood required to deploy an action for a given PT system. The following step
prescribes how the chosen strategy is implemented. The idea behind eq. 5.21 is
to deploy stop skipping to address very particular situations, when we need not
only to correct the headway between the current vehicle and its subsequent one,
but also the one between the current vehicle and the following one. Such need
arises on situations where this last pair is experiencing very long headways, as
illustrated on Figure 5.6.

5.3.7 Step II-5: Implementing a Corrective Action

Once selected, the implementation of the control strategy has to be specified.
If actj = 1, then the holding time for bus c+ 1 is set as follows

HTc+1 = η −Hj
c+1,c + 10 : HTc+1 ∈ (ζ0 × {1, .., ζ}) (5.22)

where {ζ0, ζ} are user-defined boundaries for the Total Holding Time (in sec-
onds) to realistically reflect the driver-communication system limitations [Cats

3 note that the distributions’ parameter values were omitted to simplify the equation’s
readability;
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Figure 5.6: An illustration of correction action suitability - holding trip c+ 1 at
the next stop (top), trip c skipping the next stop (bottom). Trip c/c+ 1 has to
be slowed down or speeded up depending on subsequent headways.

et al., 2012]. Furthermore, an upper limit is set to holding time per stop due
to passengers’ acceptability reasons. The Total Holding Time is therefore dis-
tributed over multiple stops. Therefore, the bus holding time at each stop,
HT ik, is computed as follows

HTc+1 =

ν∑
i=j+1

HT ic+1 : HT ic+1 ∈ (ζ0 × {1, .., ζ}) ∧
(
HT ic+1 −HT i+1

c+1

)
≤ ζ0

(5.23)
If actj = 2, the bus c is set to skip bus stop bj+1 or the subsequent stop if there
is no possibility of informing passengers beforehand.

The feasibility of the abovementioned framework is investigated through
computer-aided simulations which were executed using real-world data (de-
scribed in Section 5.1). The details of these experiments along with their results
are presented in the following Section.

5.4 Experiments

This Section begins by describing the experimental setup employed. Secondly, a
tuning framework is proposed to adjust the parameter set of this framework for
any case study of interest. Then, the evaluation metrics employed in this work
are described, along with the details of the passenger demand profile generation
process (which is unavailable for the present dataset). Finally, experiments’
results are presented.

5.4.1 Experimental Setup

Throughout this work, the value η was set as η = fk,k+1/4 following previous
studies of this particular case study [Moreira-Matias et al., 2012b]. For the of-
fline regression problem, we also followed a simplified version of the experimental
setup firstly proposed by Mendes-Moreira et al. [2012] using the Random For-
est algorithm with a default parameter setting: {mtry=3, ntrees=750}. The main
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reason to do it so is that the accuracy of the initial offline regression stage is
not our main concern. Consequently, we do not wanted to dispend such a high
computational effort on determining the best regression algorithm for this par-
ticular dataset (as performed by Mendes-Moreira et al. [2012]). Instead, we
proposed to use one (i.e. Random Forests) which is known by having a rea-
sonable performance on this task [Mendes-Moreira et al., 2012]. The value of θ
was set to 1 (i.e. in weeks) following the same logic (in opposition to value 4
employed in [Mendes-Moreira et al., 2012]). Even knowing the results reported
in [Mendes-Moreira et al., 2012], some prior experiments were made to validate
the applicability of such experimental setup. To do it so, we tried to predict the
round-trip times of two routes (i.e. line 205) using the last two months of the
dataset described in Section 4.1 as testing set. The obtained results confirmed
the existence of some convergence on the regression model obtained to the real
output: the predictive model produced a Mean Absolute Error of ' 150 seconds
against a value of 380 seconds obtained by a simple average of historical data
on the same trip.

All the experiments were conducted using the R Software [R Core Team,
2012]. The proposed learning framework contains a total of eleven parameters:
{β2, φ, γ0 (i.e. the first value of the learning rate), γmin, γmax, τ, ρ, χBH , χSS ,
ζ0, ζ}. A symmetric threshold was established in this case study for deploying
corrective actions in this application (i.e. χ ≡ χBH ≡ χSS). However, different
values could be assigned to these parameters, depending on the operational plan
devised for a given system [Carnaghi, 2014].

It is possible to divide this set into two types of parameters: prediction
parameters (the first seven) and the deploying parameters (the last four). The
deploying parameters must be set by the agency due to their close relationship
with the Control policies already in place [Cats, 2014]. To this particular case,
the deploying parameters were set to be {χ = χBH = χSS = 0.5, ζ0 = 30
(in seconds), ζ = 4}. However, the prediction parameters require an adequate
setting for minimizing the framework’s error. Such tuning task is described
below.

5.4.2 Parameter Tuning

The parameters {β2, φ, γ0, γmin, γmax, τ, ρ} can also be divided into three differ-
ent classes: 1) the update rule for the headway predictions (i.e. the first five),
2) the headway p.d.f. estimation (i.e. τ) and the likelihood threshold for event
detection (i.e. ρ). The variation induced to this framework by changing one
of these parameter values is not homogeneous (e.g. a variation on the learning
rate β2 will affect the output values more than a change in the value of τ).
Following the previous experiments of the prediction task [Moreira-Matias et
al., 2014a], the value of γ0 was set as γ0 = 0.1 in a daily basis (as this value just
affects the first stop-based update). The value of ρ was set to ρ = 360 seconds
[Moreira-Matias et al., 2014a].

The values of the remaining parameters must be tuned for each individual
route since they relate to 1) the stochasticity of each BB process on a given
route (i.e. {φ, γmin, γmax}) and 2) the reactivability to sudden changes in
such processes (i.e. {β2, τ}) - which is not necessarily correlated with the one
exhibited by the remaining routes.
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Table 5.4: Resulting Parameter Setting.

Route φ γmin γmax β2 τ Route φ γmin γmax β2 τ

A1 0.100 0.010 0.300 0.010 10 A2 0.100 0.010 0.300 0.010 10
B1 0.050 0.010 0.400 0.300 5 B2 0.050 0.010 0.400 0.300 3
C1 0.050 0.005 0.300 0.300 5 C2 0.050 0.010 0.400 0.300 5
D1 0.075 0.010 0.400 0.500 3 D2 0.100 0.010 0.400 0.300 3
E1 0.050 0.005 0.300 0.300 5 E2 0.100 0.005 0.300 0.100 10
F1 0.050 0.005 0.300 0.300 5 F2 0.050 0.005 0.300 0.300 5
G1 0.050 0.005 0.300 0.300 5 G2 0.050 0.005 0.300 0.300 5
H1 0.050 0.005 0.300 0.100 5 H2 0.100 0.005 0.300 0.100 5
I1 0.050 0.005 0.300 0.300 5 I2 0.050 0.005 0.300 0.300 5

To carry out such tuning, we employ a simplified version of the Sequential
Monte Carlo method [Cappé et al., 2007]. It consists of randomly sampling data
from the training set regarding subsets of its feature space (typically, 10% to
30%) to evaluate what is the combination of parameter values which performs
globally better, on average for these samples. Ideally, the application of this
framework to this problem would consist on randomly selecting a certain number
of individual days of prior data (e.g. from the previous year) which could cover
most of the possible cases (e.g. days from every months, every daytypes and
weekdays). However, in our case, the first seven days of January of 2010 are
the only true training set available - since the remaining days are already being
used to validate our methodology, which does not contain a sufficient amount of
data to carry out such analysis. To overcome this limitation, we overlapped a
bit the test set by using the entire month of January to carry out the analysis.
Ten days were then randomly selected containing every possible weekday and
daytype. Even so, we do want to highlight that the abovementioned procedure
should be ideally conducted on prior data to achieve a satisfactory tuning of the
parameter set.

All possible combinations of the following parameter settings were considered
in our experiments: φ =

{
5e−3, 1e−2, 2e−2, 5e−2, 7.5e−3, 0.1

}
, (γmin, γmax) =

{(1e−3, 0.3), (5e−3, 0.3), (1e−2, 0.3), (1e−3, 0.4), (5e−3, 0.4),
(1e−2, 0.4)}, β2 = {1e−2, 5e−2, 1e−1, 3e−1, 5e−1} and τ = {3, 5, 10, 15}. The
obtained parameter setting is displayed in Table 5.4.

5.4.3 Evaluation Metrics

It is possible to divide the evaluation of our framework on three distinct dimen-
sions: (i) the mean absolute error (MAE) (already defined on eq. 3.22) of the
headway’s predictions, (ii) the BB detection accuracy and (iii) the effect of the
actions deployed in the PT network on travelers.

Concerning the first dimension, (i) a prequential evaluation (see Section 3.5)
was performed by evaluating just the prediction made for the LTT prediction
performed for the next bus stop.

In (ii) the Accuracy, the Precision and the Recall were employed to evaluate
the BB event detection framework. A Weighted Accuracy was also employed to
give greater weight to a false negative versus a false positive, in the detection of
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BB events. It can be computed as

WAcc =
(10× TP ) + TN

(10× TP ) + TN + FP + (10× FN)
(5.24)

The Average Number of Stops Ahead is also displayed to show the forecasting
horizon that this framework can yield.

The most direct metric for dimension (iii) concerns the percentage of BB re-
duced by employing our automatic control actions. Such ratio can be computed
as follows

BBreduction =
BB Trips Without Actions− BB Trips With Actions

BB Trips Without Actions
(5.25)

Nevertheless, the ultimate motivation to avoid the occurrence of BB events is
to improve the global quality of the service provisioned. A BB event does de-
crease the passengers’ perception of the service quality. Moreover, it also yields
longer Passenger Waiting Times for passengers waiting at downstream stops.
However, the deployment of corrective actions can potentially increase Passen-
ger In-Vehicle Time due to prolonged times at stops and on-board inflicted by
holding or stop skipping [Cats et al., 2010]. It is therefore necessary to con-
sider both the Average In-Vehicle Time (AIVT) and the Average Wait-
ing Time (AWT) (already defined in eqs. (2.6,2.8) when evaluating alternative
operational plans. By avoiding the occurrence of BB events, it is expected to re-
verse the well-known snowball effect of the BB process and hence reduce global
AWT on a given route. The deployment should ensure that this is achieved
without compromising global AIVT. In order to evaluate the success of such
minimization task, two large set of simulations were performed: (SIM1) no ac-
tions were deployed on the route and (SIM2) actions were deployed accordingly
to the framework described in Section 5.3.6.

In SIM2, two additional ghost trips were introduced whenever a BB alarm
is triggered. This is done by re-running the two affected trips from the begin-
ning applying the necessary corrective actions and not applying any action at
all on the ghost trips. The idea is to estimate the variation on the dwell times
experienced by both trips to predict the real impact on the vehicle’s LTT and,
consequently, on the AIVT and AWT. Such ghost trips also serve to evaluate
the accuracy of our corrective actions in preventing the occurrence of such BB
event (i.e. actACC).

In the absence of observations of passenger counting, a synthetic demand
profile was devised based on the real world available LTT, on the network’s
schedule plan and on simple load assumptions, as presented in the following
section.

5.4.4 Demand Profile Generation Procedure

Let omax be the maximum passenger capacity of a bus running a given route.
The occupancy of a given vehicle k after departing from a given bus stop i is
given as follows

oik = oi−1
k + boik − alik : oik ≤ omax (5.26)

where boik and alik denote respectively the number of boarding and alighting
passengers for trip k at bus stop i. In the absence of empirical data to calculate
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such values, the following assumptions were devised for constructing a demand
profile:

Assumption 5.2. On high frequent routes, it is assumed that the passengers
arrival process follows an inhomogeneous Poisson process with a given rate λ(t).

It is known that the timetables are designed to accommodate variations in
passenger demand levels by setting different service frequencies for different time
periods and routes (Chapter 4 in [Ceder, 2007]). In order to introduce some per-
turbations in passenger demand, we sampled values from (λ) using a Gaussian
p.d.f.. Such probability distribution is defined based on the frequency fk,k+1

and some user-defined parameter 0 < υ << 1 which basically sets the amount of
white noise introduced on our demand generation model. The sampling process
is defined as follows

λ(k) ∼ N
(
µ = υ × fk,k+1, σ = υ3 × fk,k+1

)
: λmin ≤ λ(k) ≤ λmax, λ(k) ∈ N

(5.27)
where λmin, λmax are user defined boundaries for λ(k). υ denotes the percentage
of the frequency to be used when calculating passenger arrivals and λmin, λmax
are a minimum/maximum threshold for the value of λ(k). Based on such p.d.f.
definition, values for λ(k) can be sampled for each trip k.

From empirical evidence, it is also known that passenger demand also varies
along the route (e.g. [Munizaga and Palma, 2012]). This is captured by incor-
porating a linear descendant demand factor for each bus stop bi, i.e. dfi. It can
be computed as

dfi =

{
2×(s−i+1)

s if i ≤ s,
0 otherwise.

(5.28)

Based on eqs. (5.27,5.28), it is possible to infer the calculus of boik as follows

deik−1,k =
(
Hi
k−1,k × λ(k)× dfi

)
(5.29)

boik = deik−1,k +Nboik−1 : boik ∈ N (5.30)

where Nboik−1 stands for the number of passengers that were not allowed to
board on the vehicle k − 1 and deik−1,k is the number of passengers arrived to
the stop bi during the headway between k and k− 1 (demand generated during
the period of Hi

k−1,k). Nboik−1 > 0 whenever the vehicle k − 1 rides full after
traversing stop i or if the stop i is skipped by bus k as a consequence of a
corrective action.

It is assumed that passengers trip length varies between 25% and 50% of the
respective bus route. The user-defined parameter 25% ≤ ϕ < 50% is introduced
where the number of stops traversed by a given passenger z to the trip k, i.e.
nsz,k is assumed to follow an lognormal distribution, as defined on the equation
below

nsz,k ∼ lnN
(
µ = ln

(
ϕ× dfboz,k × s

)
, σ = ln

(
ϕ3 × dfboz,k × s

))
,

subject to: nsz,k ≥ 1, µ > σ > 1, nsz,k ∈ N (5.31)

where boz,k represents the boarding stop of the passenger z on the trip k. Con-
sequently, it is possible to obtain the alighting stop of z in k as

asz,k = boz,k + nsz,k : asz,k < s (5.32)
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Like the boardings, the alightings also assume some realistic stochasticity by
being sampled from a predefined distribution (and not from an exact mathemat-
ical definition). Again, the demand factor dfi is employed (i.e. the passengers
boarded on the beginning of the routes are likely to traverse more stops than
the ones boarded on its end). Let fas(z, i, k) be a boolean function defined as
follows

fas(z, i, k) =

{
1 if asz,k = i,
0 otherwise.

(5.33)

The number of alightings of a vehicle/trip k at bus stop bj can be hence com-
puted as follows

alik =

Bi∑
z=1

i−1∑
j=1

fas(z, j, k) : alsk = os−1
k (5.34)

Although being enough to compute AIV T , the definitions in eqs. (5.30,5.34)
do not allow to compute the AWT as the arrival time of a given passenger z to

a bus stop bj , PAV
bj
z,k is unknown. To obtain such values, we reverse the effects

imposed by the assumption 5.2 by inferring passengers arrival times, PAV
bj
z,k,

from the respective exponential distribution Exp (λ(k)). This is performed using
the following steps: (a) deik−1,k + 1,∀i, k values are sampled from Exp (λ(k)) to
express the time between each passenger arrival; (b) the values are normalized
to let their sum meet the total elapsed time Hk−1,k) by dividing each sampled
value by their total sum and then multiplying all of them by Hk−1,k; (c) the
arrival times are then incrementally summed to express the time elapsed from

the departure of bj to each passenger arrival time PAV
bj
z,k - which will force one

of these values to be the total sum of values (i.e. Hk−1,k), and (d) the latter

value is then removed to obtain the set of PAV
bj
z,k for the demand generated on

bj between the departures of k − 1 and k, de(k − 1, k)i.
The consequences of deploying a given corrective action on a given trip k

also have to be captured in the simulation model by representing its effects on
LTT. Let ∆j

BH,k and ∆j
SS,k stand for the change in arrival time of trip k to

the following bus stops provoked by deploying a Bus Holding or Stop Skipping
action at bus stop bj , respectively. Such changes can be computed as follows

Tgk = T gk + ∆j
BH,g + ∆SS,g (5.35)

∆g
BH,k =

∑g−1

i=j+1
HT ig : g > j (5.36)

∆g
SS,k = −dwT jk (5.37)

dwT jk = dek−1,k × ξ + dwTmin : dwT jk ≤ dwTmax (5.38)

where dwTmin, dwTmax are two user-defined boundaries for the dwell time and
ξ > 0 is a user-defined constant boarding time per passenger (which will corre-
spond to an excess/reduction). Consequently, Tgk denotes the LTT of k affected
by the deployment of a corrective action on the network. However, by influ-
encing headway stability, the characteristic recursive effect of the BB process
(described in the introductory Section) is reversed (e.g. if some holding is im-
posed on k, bus k+1 will experience shorter dwell times as some of the demand



5.5. DISCUSSION 105

will be accommodated by k). Such effects are also accounted on the simulation
SIM2 by devising the following first order relationships

∆g
BH,k+1 = T gk+1 − (∆bogk × ξ) + ∆g−1

BH,k+1 (5.39)

∆g
SS,k+1 = T gk+1 − (∆bogk × ξ) + ∆g−1

SS,k+1 (5.40)

where ∆bogk stands by the change in the number of boarding passengers for trip
k at bus stop bg attributed to the corrective action deployment. Note that the
recursive relationship imposed by eqs. (5.39,5.40]) is not necessarily constrained
to the trip subsequent to the corrective action deployed (k, k + 1), but also to
the subsequent ones (> k + 1) in a snow ball effect.

The parameters of this demand profile generation procedure were set to
the following values: ξ = 3, dwTmin = 10, dwTmax = 90, υ = 0.2, λmin =
60,λmax = 180,ϕ = 0.25 (all times in seconds). An illustrative example of the
demand profile generated by this model is illustrated in Fig. 5.7. The results
of the experimental simulations described above are presented in the following
section.

5.4.5 Results

Table 5.5 contains the prediction results while the effects of the corrective actions
are introduced in Table 5.6. The reader should analyse these Tables together
with Table 5.3 to understand the differences among the routes.

5.5 Discussion

The performance of the headway predictive framework varies from route to route
- even for opposite directions of the same line. It is peculiar to note, for instance,
that the offline prediction performance on line G, is four times greater for one
of the route-directions than for the other one. Notwithstanding, it is important
to stress out that in both cases the predictive framework performs reasonably
well (i.e. an error of ' 30 sec.). The online learning framework converged to the
real output values by reducing the average error by more than 90% (i.e. with
the exception of route I2).

The long BB prediction horizons (i.e. roughly 11 stops, on average), enables
a gradual and incremental implementation of corrective actions. At the same
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Figure 5.7: Demand Profile Generated for a given trip on the route C1. The
red/blue bars represent the alightings/boardings on each stop, while the dashed
line represents the bus occupancy’s evolution throughout the trip.
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time, the values of the precision are low - especially for certain routes (i.e. lines
A and H) due to triggering more alarms than are really necessary (false posi-
tive). However, such pattern is admissible in the context of this problem - since
it is desired to deploy corrective actions following a more proactive approach
to the BB. The routes with lower precision values are those operated with lower
frequencies. This suggests that the BB detection threshold values (i.e. χ and
η) should not be uniformly specified for the entire network. This could be in-
vestigated in future studies. It is important to highlight that more than 83%
of the BB events that prevailed in the case study dataset were forecasted
accurately.

Table 5.6 summarizes the corrective actions implementation and their impact
on passengers travel times. As expected, Holding is selected in most cases
over Stop Skipping (i.e. 81.68%). However, it is important to highlight that
in a substantial share of BB detection no action was taken (i.e. 30.66% for
the route G2) which relates to the abovementioned need to set route-specific
values of η (i.e. minimum headway threshold for BB). Noticeably, the applied
framework did not prove effective for low-frequency routes (i.e. lines A and
H). This is not surprising as the BB phenomenon is most prevalent on high-
frequency routes and the corrective actions deployed in this study are designed
to regulate headways on high-demand routes. Furthermore, note that the low
value of χ (i.e. symmetric user-defined min. threshold for the BB likelihood
required to deploy a cor. action), constrained the deployment of actions to a
small subset of trips (i.e. between 3% and 7% of the total number of trips - check
Table 5.3). and therefore yielded a reduction of only 4.46% when measured
globally. This reflects however a substantial travel time savings given that a
BB occurs. Moreover, the number of BB events have been reduced by 67.59%
(out of the 83% of the BB forecasted). It clearly demonstrates the usefulness

Table 5.5: Experimental Results regarding the BB predictive framework. The
ALL column corresponds for aggregated results (averaged for the prediction
errors and summed for the total numbers of BB events). Times in Seconds.

A1 A2 B1 B2 C1 C2 D1 D2 E1 E2
MAE offline regression 63.79 83.77 1671.54 765.33 1356.96 643.39 277.78 174.58 255.39 363.91
MAE inter-trip update 31.08 33.87 114.16 62.17 97.87 92.91 49.26 39.31 33.65 91.56
MAE incremental update 30.38 27.97 26.47 17.67 24.14 26.35 34.78 27.74 24.78 16.30
Accuracy 99.34% 99.45% 96.96% 97.86% 97.99% 96.34% 98.57% 98.24% 99.49% 99.24%
Weighted Accuracy 98.38% 97.13% 93.86% 91.81% 93.97% 93.57% 94.41% 93.06% 97.15% 97.46%
Precision 13.85% 36.73% 49.48% 65.97% 65.88% 40.85% 74.30% 72.51% 84.75% 62.09%
Recall 47.37% 41.86% 83.52% 73.61% 81.81% 83.18% 84.54% 78.08% 82.13% 81.57%
Avg. Nr. of Stops Ahead 5.42 3.44 13.18 15.99 11.85 14.78 9.02 8.91 10.21 10.67
Correct BB Predictions 9 18 613 597 558 460 853 691 239 172
Real BB Events 19 43 734 811 682 553 1009 885 291 211

F1 F2 G1 G2 H1 H2 I1 I2 ALL
MAE offline regression 1475.72 1871.01 473.61 2776.57 1719.42 241.56 290.39 157.77 814.91
MAE trip-based update 124.99 148.85 40.65 123.76 105.88 34.40 39.42 31.76 71.98
MAE stop-based update 22.67 13.21 31.78 27.47 19.05 12.65 22.49 38.81 24.71
Accuracy 97.08% 97.83% 96.62% 93.83% 99.81% 99.76% 98.62% 98.44% 98.06%
Weighted Accuracy 94.56% 95.52% 95.72% 91.50% 99.19% 99.01% 94.70% 92.23% 95.19%
Precision 41.53% 45.70% 69.44% 51.67% 40.00% 42.42% 69.39% 48.33% 54.16%
Recall 83.07% 83.24% 94.47% 87.96% 58.82% 60.87% 78.87% 51.56% 74.25%
Avg. Nr. of Stops Ahead 13.88 15.08 12.96 14.51 11.81 6.05 13.90 11.96 11.31
Correct BB Predictions 363 303 1811 1497 10 14 306 116 8630
Real BB Events 437 364 1917 1702 17 23 388 225 10311
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Table 5.6: Experimental Results regarding the deployment of the corrective
actions. The ALL column corresponds to aggregated results (i.e. the sum of
the cor. actions and the weighted average per routes using the number of trips).
Times in Seconds.

A1 A2 B1 B2 C1 C2 D1 D2 E1 E2
Total of Cor. Actions 57 43 1225 874 833 1101 1119 927 276 273
% Bus Holding 80.70% 88.37% 79.02% 89.25% 75.51% 95.00% 86.23% 85.01% 69.57% 86.08%
% Stop Skipping 8.77% 4.65% 9.06% 5.72% 15.61% 0.64% 5.99% 8.52% 25.36% 8.79%
% None 10.53% 6.98% 11.92% 5.03% 8.88% 4.36% 7.78% 6.47% 5.07% 5.13%
Avg. Total Holding Time 93.26 104.21 109.59 114.81 108.79 119.20 115.93 109.72 95.00 107.62

% of BB Reduction 50.98% 65.00% 66.08% 77.83% 65.48% 86.89% 72.09% 71.05% 61.83% 74.90%
AIVT w/ Actions 193 187 725 631 620 515 515 470 530 488
AIVT without Actions 193 187 732 632 614 508 502 463 525 488
AWT w/ Actions 1327 1345 872 1020 715 733 730 788 1288 1350
AWT without Actions 1327 1344 903 1034 749 751 800 839 1322 1380
% of Reduction of AWT 0.00% 0.00% 3.43% 1.35% 4.54% 2.40% 8.75% 6.08% 2.57% 2.17%

F1 F2 G1 G2 H1 H2 I1 I2 ALL
Total of Cor. Actions 856 648 2554 2782 23 29 418 230 14268
% Bus Holding 83.18% 87.81% 89.78% 58.05% 73.91% 90.00% 72.48% 81.30% 81.68%
% Stop Skipping 10.40% 5.40% 4.42% 11.29% 21.74% 3.45% 25.12% 14.35% 10.26%
% None 6.43% 6.79% 5.79% 30.66% 4.35% 6.56% 2.40% 4.35% 8.06%
Avg. Total Holding Time 112.24 116.73 117.50 116.47 105.88 113.08 108.51 111.34 111.16

% of BB Reduction 68.66% 77.15% 66.91% 47.48% 63.64% 65.38% 59.07% 62.72% 67.59%
AIVT w/ Actions 685 928 601 597 739 586 698 498 584.39
AIVT without Actions 678 935 599 603 735 587 699 499 560.41
AWT w/ Actions 915 1070 801 888 1682 1720 1369 1501 1038.40
AWT without Actions 924 1082 933 983 1680 1725 1404 1547 1043.65
% of Reduction of AWT 0.97% 1.11% 14.15% 9.66% -0.00% 0.00% 2.49% 2.97% 4.46%

of our framework on this particular application - which meets no parallel in
the literature. It is also remarkable that such achievement does not induce
an increase in the global In-Vehicle Time. Further gains could be obtained by
setting optimal parameters for each route. A data driven approach to such
problem could utilize the information about the actions currently deployed on
each route.

5.5.1 Potential Deployment and Impact

The main prerequisites for the application of the proposed framework in real-
world operational control of most major PT companies worldwide are already
fulfilled: the existence of AVL data in real time, a control center that monitors
these data also in real time and, finally, the means to establish communication
between the control center and the drivers. The same cannot be said about
the subjective conditions in terms of management perceptions. The prevailing
attitude among PT companies is to regard BB as almost inevitable, considered
to be a constant feature of bus service. Consequently, these companies do not
assign the necessary means for its resolution. This is a question that has to be
faced in the dialogue between researchers and companies, and the remaining of
this Section is a preliminary essay to argue its importance.

The value of preventing BB is not limited to operational costs and the direct
impact on passengers’ experience in terms of travel times and crowding, but is
also related to the overall perception of service quality. The implementation of
an operational system such as the one proposed in this Chapter has therefore
implications on the overall service perception. The feasibility of implementing
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such a system depends on the estimated operational costs that arise in case of
BB. The following is an attempt to quantify these costs.

Each time a BB event occur, the bus driver and the vehicle of the subse-
quent trip may experience delays because the trip takes longer than planned.
This delay is, at most, the frequency of the respective route, typically a short
one; otherwise the occurrence of bus bunching would be unlikely. Since the
occurrence of BB is caused by delays in the front bus and advances in the suc-
cessive, the extra time ETc = fc,c+1 − Hc spent by the front bus c is in the
interval [0, ETc]. Assuming that no measures are taken in order to regulate
the headway, it is expected that BB situations, once started in a route, will
continue as long as the frequency remains high. Assuming the worst scenario
ETc = fc,c+1, and assuming that there are u trips with the same frequency in
that route since the beginning of bus bunching situations, there will be in the
end ETc×u

2 extra time spent.

The cost of such situation is easy to calculate since there is an estimation
of the cost per bus and per driver for each extra minute. This is of course, an
upper bound for the real operational cost of bus bunching situations in terms of
buses and drivers’ duties. These operational costs could then be added to the
benefits in terms of passengers travel time savings (based on the value-of-time
estimations [Wardman, 2004]) to assess the overall benefits from implementing
a framework for preventing BB. In addition to this tangible effects, the impact
of BB on service image and hence attractiveness and ridership could be assessed
using satisfaction surveys in order to support the decision making process.

5.6 Final Remarks

A novel real-time framework to prevent BB from occurring was proposed in this
Chapter. It combines historical and real-time AVL data to predict the occur-
rence of BB events at downstream stops. The prediction output are then used
to select and deploy automatic corrective actions. This framework consists of
advanced Machine Learning methods which are able to gain foresight on the BB
process. Experiments were conducted using a large-scale dataset of real world
data collected in Porto, Portugal. The application yielded a reduction of 68%
in the number of BB events. The results demonstrate that this framework can
be readily deployed for mass transit systems across the world. Moreover, it is
estimated that it could have a real impact on the passengers experience by de-
creasing the average expected waiting time on the stops by approximately 5%
without causing an increase in in-vehicle times.

Future work includes carrying out experiments to optimally set the param-
eters η (i.e. an headway-based minimum threshold to consider a BB event) and
χ (i.e. a minimum BB likelihood threshold to deploy a corrective action) for
each individual route and possibly also time-dependent. Further research can
use for this purpose data about the corrective actions deployed on each route.
Moreover, the assumptions about the headway distribution (i.e. Gaussian) and
their parameter calculus may be too far simplistic for some scenarios. Further
research should be employed on considering more than one type of distributions.



5.6. FINAL REMARKS 109

The parameter estimation can also be improved by employing change detection
techniques (e.g. the CUmulative SUM algorithm [Page, 1954]) able to avoid the
inclusion of outliers on the calculus of the distribution’s parameter - instead of
using a simple median of the recent residuals).

The framework presented in this Chapter could ultimately be embedded into
a decision support system that will be deployed in control rooms of PT agencies
and operators.
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Urban Mobility
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Chapter 6

Short-Term Taxi-Passenger
Demand Prediction

Nowadays, taxi plays a crucial role on the major urban areas worldwide. It rep-
resents a major contribution to improving the quality of the urban mobility by
providing direct, fast and comfortable on-demand connections. The rising cost
of fuel has been reducing the profit for both taxi companies and drivers. This
leads to an unbalanced relationship between passenger demand and the number
of running taxis, which in turn reduces the companies’ profits and also the levels
of passenger satisfaction [Schaller, 2007]. S. Wong presented a relevant mathe-
matical model to express this need for an equilibrium in distinct contexts [Yang
et al., 2001]. A failure in this equilibrium may lead to one of two scenarios:
(Scenario 1) an excess in vacant vehicles and competition; (Scenario 2) larger
waiting times for passengers and lower taxi reliability. Consequently,the follow-
ing question arises: Is it possible to guarantee that the taxi’s spatial distribution
over time will always meet the demand?

The taxi driver mobility intelligence is an important factor to maximize both
profit and reliability within every possible scenario. Knowledge on where the
services (transporting a passenger from a pick-up to a drop-off location) will
actually emerge can be an advantage for the driver - especially when there is
no economic viability of adopting random cruising strategies to find passengers.
The GPS historical data is one of the main variables of this topic because it can
reveal underlying running mobility patterns.

Hereby, we are focused on the real-time choice problem of which is the best
taxi stand to go to after a passenger drop-off (i.e. the stand where another
passenger can be picked-up more quickly). An intelligent approach regarding
this problem will improve network reliability for both companies and clients:
an intelligent distribution of vehicles throughout stands will reduce the average
waiting time to pick-up a passenger while the distance traveled will be more
profitable (by increasing the ratio between vacant and occupied cruising time).
Furthermore, whenever they need a taxi, passengers will also experience a lower
waiting time to get a vacant taxi (automatically dispatched or directly picked-up
at a stand). This is a true advantage for a fleet competitively to its competitors.

The stand-choice problem is based on four key variables: (i) the expected
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revenue for a service over time, (ii) the distance/cost relation with each stand,
(iii) the number of taxis already waiting at each stand and (iv) the passen-
ger demand for each stand over time. However, at the best of our knowledge,
there is no work handling this recommendation problem by using these four
variables simultaneously (see Section 2.2.2 to know more about this topic). In
this thesis, we argue that the taxi vehicular network can be a ubiquitous sensor
of taxi-passenger demand from where the abovementioned variables can be con-
tinuously mined. The variable (iii) can be directly computed by the real-time
vehicle’s position - however, the remaining three need to be estimated for a
short-term time horizon. The variables (i,iv) are handled in this Chapter while
the variable (ii) is addressed in the next one.

This Chapter presents a model to estimate the short-term demand that
will emerge at a given taxi stand. Specifically, it depicts the demand over
space (taxi stand) for a short-time horizon of P-minutes. Such demand can be
decomposed into two axis: the (iv) pick-up quantity (i.e. an integer represent-
ing the number of services to be demanded) and (i) the expected revenue for
a service over time (i.e. a fare-based category). To do it so, this framework
relies on both time series analysis and discretization techniques which are able
to perform such supervised learning task incrementally.

The remainder of this Chapter is structured as follows. The Section 6.1 firstly
describes how the dataset used was acquired and preprocessed. Then, some
statistics about it are presented. The second Section highlights the literature
gaps that are filled by the work described in this Chapter. Section 6.3 formally
presents the methodology employed to carry out this predictive task. Section
6.4 describes how the methodology was tested in a real scenario: firstly, the
experimental setup and metrics used to evaluate the model are introduced;
then, the results obtained are presented in detail, followed by some important
remarks. Finally, conclusions are drawn.

The symbols and notations used throughout this Chapter are provided in
Table 6.1.

6.1 Data Preparation

The stream events data of a taxi company operating in the city of Porto, Portu-
gal, was used as case study. This city is the center of a medium-sized urban area
(consisting of 1.3 million inhabitants) where the passenger demand is lower than
the number of running vacant taxis, resulting in a huge competition between
both companies and drivers. According to a recent aerial survey of the road
traffic of the city [Ferreira et al., 2009], taxis represent 4% of the running vehi-
cles during a non-rush hour period. The existing regulations force the drivers
not to run randomly in the search for passengers; instead, they must choose a
specific taxi stand out of the 63 existing ones in the city and to wait for the
next service immediately after the last passenger drop-off. A map of the stands’
spatial distribution is presented in Fig. 6.1.

There are three main ways to pick-up a passenger: (1) a passenger goes to
a taxi stand and picks-up a taxi – the regulations also force the passengers to
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pick-up the first taxi in line (First In, First Out); (2) a passenger calls the taxi
network central and requests a taxi for a specific location/time – the parked taxis
have priority over the running vacant ones in the central taxi dispatch system;
(3) a passenger picks a vacant taxi while it is going to a taxi stand, on any street.

Next Section describes the company studied, the data acquisition process,
the preprocessing method applied as well as some descriptive statistics on such
data.

6.1.1 Data Acquisition and Preprocessing

The data was continuously acquired using the telematics installed in each one
of the 441 running vehicles of the company fleet. This taxi central usually
runs in one out of three 8h shifts: midnight to 8am, from 8am to 4pm and
from 4pm to midnight. Similarly to the dataset employed on Chapter 5 and
described in Section 5.1, we also take advantage of the continuous GPS trace of
each vehicle broadcasted with a given time periodicity. Each data chunk arrives
each 5 seconds containing the following four attributes: (1) Vehicle Status (i.e.
vacant, heading to pick-up a passenger, busy, etc.), a timestamp and the two
GPS coordinates.

Based on such raw data, a novel trip-based dataset is built. Each sample
corresponds to one non-vacant taxi service. It contains the following nine at-
tributes: (1) TYPE – relative to the type of event reported. It has four possible
values: busy - the driver picked-up a passenger; assign – the dispatch central
assigned a previously required service; free – the driver dropped-off a passenger
and park - the driver parked at a taxi stand. Attribute (2) STOP is an inte-
ger with the ID of the related taxi stand. Attribute (3) TIMESTAMP is the
date/time in seconds of the event, and attribute (4) TAXI is the driver code;
attributes (5) and (6) refer to the LATITUDE and the LONGITUDE corre-
sponding to the acquired GPS position while attributes (7) and (8) refer to the
cruising distance (in meters) and the cruising time (in seconds), respectively.
The ninth attribute is the service fare. Conversely to the remaining ones, these
values are not an exact representation of the ground truth since the farebox

Figure 6.1: Taxi Stand spatial distribution.
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Table 6.1: Notation and symbols employed along this Chapter.

si ith taxi stand/urban area of a given case study
Ci number of taxi vehicles already parked in si
υi waiting time to pick-up the next passenger in si
χ constant cost of letting a vehicle waiting in line at a stand per unit of time
Xk discrete time series with the aggregated pick-up quantities on the taxi stand k
P aggregation period of Xk

N total number of existing taxi stands
λ(t) time-varying expected value of pick-up quantities in place on a Poisson distribution
d(t) weekday 1=Sunday, 2=Monday, ... of λ(t)
δd(t) relative change imposed by the weekday d(t) on λ(t)
h(t) period when time t falls (e.g. the time 00:31 is contained in period 2 for 30-minutes periods)
ηd(t),h(t) relative change for the period h(t) in the day d(t) (e.g. the peak hours)
ω weight set used on the terms of the Weighted Time Varying Poisson Model
γ size of sliding window employed to compute ω
α 0 < α < 1 smoothing factor of the Exponential Smoothing model employed to compute ω

Yk
discrete time series with the aggregated pick-up quantities on the taxi stand k with
a second level of aggregation used to drift Xk for on-demand pick-up quantity predictions

τ aggregation period of Yk
Rk,t numerical prediction about pick-up quantity in the taxi stand k on the time instant t
φ, κ optimal weight sets employed on the distinct terms of the ARIMA model
p, q sizes of the weight sets φ, κ
θ size sliding window employed to compute the ARIMA model
∆w residual-based update performed over φ, κ to approximate their optimal value incrementally
β user-defined parameter to set the reactivability of the incremental update rule ∆w

rk,t
ordered vector containing the revenue values corresponding to the amount paid by each
service which started at the stand k during the time period [t− 1, t]

h(F,B) equal-width histogram employed to approximate the short-term fare p.d.f.
ϕ number of bins of the h(F,B)
F frequency set of h(F,B)
B break points of h(F,B)
bi ith break point of h(F,B)
µ interval width of h(F,B)
mi,ma minimum and maximum value of h(F,B)
l number of predictive models employed in the ensemble
Et Error-based Ensemble of the predictive models about the short-term pick-up quantity prediction
H sliding window size employed on the calculus of Et
Qt Ensemble of the predictive models about the short-term fare-based p.d.f. estimation
% sliding window size employed on the calculus of Qt
W minimum radius to consider a service demand on a given taxi stand
ζ generic error metric

AGζ,t
aggregated error metric given by a weighted average
of the error measured in all stands within the period {1, t}

ψk total of services requested at the taxi stand k

transactions are not part of the studied data stream. To tackle this issue, an
estimation model was developed based on a simplified version of Porto’s taxi
service price structure. It is illustrated in Table 6.2.

Table 6.2: Porto’s taxi service price structure. Both the temporal and spatial
fractions cost 0.15 euros.

Location Time
Minimum

Price
Minimum
Distance

Spatial
Fraction

Temporal
Fraction

Inside the
city limits

6am → 9pm
9pm → 6am

2.00eur. 220.0m 333.3m 37.0 sec.
2.50eur. 176.0m 277.7m 37.0 sec.

Outside the
city limits

6am → 9pm
9pm → 6am

3.25eur. 220.0m 166.6m 37.0 sec.
3.90eur. 176.0m 138.9m 37.0 sec.
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A time series of taxi demand services aggregated for a period of P -minutes
was developed to handle the pick-up quantity prediction problem. There are
three types of events: (1) the busy set directly at a taxi stand; (2) the assign set
directly to a taxi parked at a taxi stand and (3) the busy set while a vacant taxi
is cruising. Both a type 1 and type 2 events were considered as service required.
However, for each type 2 event, the system receives a busy event a few minutes
later – as soon as the driver effectively picks-up the passenger – which is ignored
by our system. Type 3 events are ignored unless they occur in a radius of W
meters from a taxi stand (where W is a user defined parameter). If it does, it
is considered a type 1 event related to the nearest taxi stand according to the
defined criteria. This was done because many regulations prohibit passengers
from being picked-up in a predefined radius around a stop (in Porto, a 50m
radius is in place).

6.1.2 Data Analysis

Statistics about the period studied are presented. Fig. 6.2 presents the sample
distribution of the cruise time of the services demanded. Table 6.3 details the
number of taxi services demanded per daily shift and day type in the two case
studies. Additionally, we could state that, in both cases, the central service
assignment is 24% of the total service (versus the 76% of the one demanded
directly in the street) while 77% of the service demanded directly in the street
is demanded in the stand (and 23% is assigned while they are cruising).

The average waiting time (to pick-up passengers) of a taxi parked at a taxi
stand is 42 minutes while the average time for a service is only 11 minutes and
12 seconds (check the figure 6.2 to know more about the frequency distribution
of the cruise time with passengers).

Fig. 6.3 represents three sample-based normalized estimations of the rev-
enue’s p.d.f.: a global estimation, one for the daytime revenues and another for
the night time revenues. All estimations exhibit a bimodal structure. That
is even clearer when the nightime scenario is analysed. The time lag between
the night time and the remaining p.d.f. indicates that the night time services
usually have larger revenues than daytime services. Fig. 6.4 illustrates an equal-
width revenue histogram and its cumulative frequency. Note that nearly 60%
of the demanded services have a revenue below 6 euros. This pattern shows
how difficult it is to maintain a balanced relationship between service offer and
demand in this particular case study.

These statistics reflect the current economic crisis in Portugal and the inabil-

Table 6.3: Taxi Services Volume (Per Daytype/Shifts on a Daily Basis).

Daytype Total Services Averaged Service Demand per Shift
Group Emerged 0am to 8am 8am to 4pm 4pm to 0am

Workdays 957265 935 2055 1422
Weekends 226504 947 2411 1909

All Daytypes 1380153 1029 2023 1503
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FREQUENCY DISTRIBUTION OF TAXI CRUISE TIME
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Figure 6.2: Frequency Distribution of Taxi Cruise Time for the entire data set.
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Figure 6.4: Revenue Histogram and its cumulative frequency. Left side y-axis
refers to each bin’s frequency (absolute) while the right one reflects the cumu-
lative frequency (in blue).

ity of the regulators to reduce the number of taxis in Porto. It also highlights
the importance of a recommendation system, where the shortness of services
could be mitigated by getting services from the competitors.

6.2 Related Work

More and more datasets containing historical GPS data sets are being explored
to improve taxi driver profitability. Typically, studies just handle this problem
by handling the short-term demand. To do so, one of the two following ap-
proaches are taken: (1) predicting the number of service requests within a given
area or (2) selecting some areas where there will be a high demand for services
in the short-term. This is a relatively new topic. In (1), the State-of-the-Art
approaches are time series analysis techniques [Li et al., 2012] - however, there
are many issues to handle on this topic. Such issues include to (1-i) let these
models evolve continuously (instead of computing each prediction for fixed time
spans) and also to (1-ii) use, somehow, the long term historical data into our
learning model (check Section 2.2.3 to know more about this topic).

Type-2 approaches rely on recommending highly profitable routes. The main
goal of these routing techniques is to establish Origin-Destination matrices to
select demand hotspots (regions that are more likely to provide high demand
rates). Such problem is typically performed using unsupervised learning tech-
niques (namely, Spatial Clustering). Hierarchical clustering is employed in [Yue
et al., 2009; Chang et al., 2010a] while Chang et al. [2010a] explores DBSCAN
[Ester et al., 1996] to mine time-dependent attractive areas by analyzing the his-
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torical time series of demands within predefined time spans. These approaches
were extended by Hu et al. [2012] who proposed a heuristic function to connect
the centroids of the top-k hotspots and a probability model to estimate the
gasoline consumption in every route to compute the link weights.

The abovementioned approaches aim at increasing the ratio between live
and cruising miles. However, this may be misleading as the variability in service
revenue is high, especially from region to region [Powell et al., 2011]. Let us
formulate this issue with a numerical example: a predictive model of interest
forecasted a demand of d1 = 10 and d2 = 6 services in areas/stands s1, s2,
respectively, during the following period of P minutes. Let C1, C2 denote the
number of cars already parked in the stands. The profit at each stand can be
expressed as follows:

sprofit = r −
(C × P

d
× χ

)
(6.1)

where r is the expected service revenue and χ expresses the constant cost of
letting a vehicle wait in line at a stand per unit of time. Assuming that both
are equally distant from our current location and that the number of vehicles
already parked in those areas is similar (i.e. C1 ∼ C2), it is possible to estimate
the relationship between waiting times to pick-up the next passenger at each
stand υ1, υ2 as υ1 = 0.6 × υ2. Considering the waiting time cost independent
from the area under analysis and the average revenue at each stand r1, r2 being,
for instance, $8 and $14, respectively, the most profitable stand would be s2

and not s1. A typical example of this could be airports, where long-runs are
normally provided from city outskirts to downtown areas.

Li et al. [2012] presented a more accurate approach to the profitability prob-
lem by profiling the driver’s experience according to the historical data on high-
profit/low-profit drivers. Powell et al. [2011] presents a model to estimate the
most profitable route by employing a spatial window to model the profitability of
the neighboring regions, regarding the short-term decision on the path to take.
The area’s revenue scores end up being computed based on a moving average
of the fares using a very short time window (i.e. 60 minutes). Notwithstanding
their contributions, the authors oversimplify the concept of ”low/high” fare by
maintaining the fares as continuous variables - which forces to adopt a constant
threshold between both categories. Such threshold can be misleading (e.g. a
$10 dollars service may not be relevant on the morning peak but can be valu-
able on the evening one; a peak value can be harder to predict than a class label).

By maintaining a fair approximation to the revenue p.d.f., the approach
introduced in this thesis is adaptable to every scenario, allowing the user to
decide which should be the rules in place to consider a service revenue high.
Moreover, it combines sliding windows of different lengths to explore the histor-
ical data on different levels. The methodologies to do such demand estimation
are presented in the following Section.

6.3 Methodology

Let Xk = {Xk,0, Xk,1, ..., Xk,t} be a discrete time series (aggregation period of
P -minutes) for the number of demanded services at a taxi stand k. The first
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goal is to build a model which determines the (1) set of service counts Xk,t+1

for instant t + 1 and per taxi stand k ∈ {1, ..., N}. Then, we propose to build
a short-term estimation of the fare-based p.d.f. for each taxi stand k using its
series of service counts (i.e. pick-up quantities Xk). The methodology proposed
to handle such problems is described throughout this Section.

6.3.1 Poisson Processes

Time Varying Poisson Model

This Section presents a model firstly proposed by Ihler et al. [2006]. The demand
for taxi services exhibits, like other modes of road transportation (i.e. buses;
check Section 4.1), a daily periodicity that reflects the patterns of the human
activity. As result, the data appear to be non-homogeneous. Fig. 6.5 illustrates
a one month taxi service analysis extracted from our dataset that illustrates
this periodicity (the dataset is described in detail in Section 6.1).

Consider the probability for n taxi assignments to emerge in a certain time
period - p(n) - following a Poisson Distribution. It is possible to define it
using the following equation

p(n;λ) =
e−λλn

n!
(6.2)

where λ represents the rate (average demand for taxi services) in a fixed time
interval. However, in this specific problem, the rate λ is not constant but time-
variant. Therefore, it was adapted as a function of time, i.e. λ(t), transforming
the Poisson distribution into a non homogeneous one. Let λ0 be the average
(i.e. expected) rate of the Poisson process over a full week. Consider λ(t) to be
defined as follows

λ(t) = λ0δd(t)ηd(t),h(t) (6.3)

where δd(t) is the relative change for the weekday d(t) (e.g.: Saturdays have
lower day rates than Tuesdays); ηd(t),h(t) is the relative change for the period
h(t) in the day d(t) (e.g. the peak hours); d(t) represents the weekday 1=Sunday,
2=Monday, ...; and h(t) represents the period when time t falls (e.g. the time
00:31 is contained in period 2 if we consider 30-minutes periods).

Consider λ(t) to be a discrete function (e.g.: an histogram time series of
event’ counts aggregated in periods of P minutes). The equation (6.3) requires
the validity of both equations

7∑
i=1

δi = 7 (6.4)

I∑
i=1

ηd,i = I, ∀d (6.5)

where I is the number of time intervals in a day. The result is discrete time
series per stand representing the expected demand during an entire week: λ(t)k.
Each value in this series is an average of all demands previously measured in
the same daytype and period (i.e. the expected service demand for a Monday
from 8:00 to 8:30 is the average of the demand on all past Mondays from 8:00
to 8:30).



122 CHAPTER 6. TAXI-PASSENGER DEMAND PREDICTION

Figure 6.5: One month data analysis (total and per shift).

Weighted Time Varying Poisson Model

The model previously presented can be seen as a time-dependent average which
produces predictions based on long-term historical data. However, it is not
guaranteed that every taxi stand will have a highly regular passenger demand:
in fact, the demand in many stands can often be seasonal. The beaches are a
good example of the seasonality demand as taxi demand will be higher during
summer weekends as opposed to other seasons throughout the year.

To face this specific issue, a weighted average model is adopted. Its definition
is based on the model presented before: the goal is to increase the relevance of
the demand pattern observed in the recent week (e.g. what happened on the
previous Tuesday is more relevant than what happened two or three Tuesdays
ago). The weight set ω is calculated using a well-known time series approach to
these type of problems: the Exponential Smoothing [Holt, 2004]. It is possible
to define ω as follows

ω = α ∗ {1, (1− α), (1− α)2, ..., (1− α)γ−1}, γ ∈ N (6.6)

where γ is the number of historical periods considered and 0 < α < 1 is the
smoothing factor (i.e. γ and α are user-defined parameters). Then, based on
the previous definition of λ(t)k, it is possible to define the resulting weighted
average µ(t)k as follows

µ(t)k =

γ∑
i=1

Xt−(θ∗i) ∗ ωi
Ω

,Ω =

γ∑
i=1

ωi (6.7)

where θ is the number of time periods contained in a week.

On Maintaining Histograms Incrementally

These two methods are clearly able to deal to unbounded streams of data: the
first one is incremental because it is possible to maintain the averages additively
by keeping in memory/database just the number of periods considered and the
average of services measured so far; the second one works with a sliding window
of γ weeks, discarding the remaining examples. However, the service counts
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time 09:00 09:05 09:10 09:15 09:20 09:25 09:30 09:35 09:40 09:45 09:50 09:55

index 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 0 1 0 1 0 1 0 2 0

4 4

4 5 4 3 3 4 4 …..

Granularities      minutes

P minutes

𝜏 
𝑡′ = 4 → 𝑋′𝑘,𝑡′ = 𝑋′𝑘,4  

𝑋′𝑘,4 = 𝑋′𝑘,3 + 𝑌𝑘,9  −  𝑌𝑘,3 

𝑋′𝑘,4 = 4 + 1 - 2 = 3 

 𝑌𝑘 

 𝑋𝑘 

 𝑋′𝑘 

Figure 6.6: An example about how can we additively calculate one term of the
series X ′k,t.

are somehow stuck to the bin boundaries (i.e. the start and end time points
defined for each bin). Supposing that we maintain a daily histogram of P = 30
minutes and it starts at midnight but we want to produce predictions with a
periodicity of τ = 10 minutes (the problem can be generalized to all τ 6= P .
The histogram will start at midnight and each bin will have the counts for the
service demanded for periods of 30 minutes. How can we have the information
about what happened between 09:20am and 09:50am if the available bins have
just counts from 09:00am to 09:30am and so on? Is it necessary to maintain
every possible histograms in memory? In this Section, we present a solution to
overcome this issue.

One of the main ways to handle this type of problems is to perform an
incremental discretization (see, for instance, [Gama and Pinto, 2006]). An
event count Xt in an interval [t, t + P ] will be very similar to the count Xt+1

in the interval [t+ τ, t+ P + τ ] (as much as τ ∼ 0). We can formulate it as

Xt+1 = Xt +X ′[t+P,t+P+τ ] −X
′
[t,t+τ ] (6.8)

where X ′ represents both the continuous event count on the first τ -minutes of
the interval [t, t+ P ] and on the τ -minutes immediately after the same period.
Consequently, it is possible to define two discrete time series of services demand
on a taxi stand k as Xk = {Xk,0, Xk,1, ..., Xk,t} and Yk = {Yk,0, Yk,1, ..., Yk,t′}
(where t′ < t) using granularities of P and τ minutes, respectively. Let X ′k
be the discrete time series needed to predict the event count on the interval
[t′, t′ + τ ]. We can define the event count at the time period [t′, t′ + P ] as
following

X ′k,t′ =

{
X ′k,t′−1 + Yk,t′+P/τ−1 − Yk,t′−1 if t′ > t

Xk,t if t′ = t
(6.9)

We take advantage of the additive characteristics of both time series to rapidly
calculate a new series of interest maintaining two aggregation levels/layers: P
and τ . An illustrative example about how this series can be calculated is pre-
sented in Fig. 6.6.

6.3.2 AutoRegressive Integrated Moving Average Model

The AutoRegressive Integrated Moving Average Model (ARIMA) [Box et al.,
1976] is a well-known methodology to both model and forecast univariate time
series data such as traffic flow data [Min and Wynter, 2011], electricity price
[Contreras et al., 2003] and other short-term prediction problems such as the one
presented here. A detailed description about this method is already presented
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in Section 3.3.2. Let Rk,t be a numerical prediction about pick-up quantity in
the taxi stand k on the time instant t. Given the historical time series of events,
Xk, we can formulate the underlying process that generates the time series (taxi
service over time for a given stand k) based on the general ARIMA equation
(3.10), as

Rk,t = κ0 + φ1Xk,t−1 + φ2Xk,t−2 + ...+ φpXk,t−p
+εk,t − κ1εk,t−1 − κ2εk,t−2 − ...− κqεk,t−q

(6.10)

A study conducted on time series from the demand of taxi services in one of the
busiest taxi stands is presented in Fig. 6.7.

Despite its utility, the ARIMA method is basically an offline method because
it requires the availability of all data points to compute its prediction. This issue
is commonly overcame by introducing a sliding window outside which the data
points are simply discarded (in this work, we also employ such approach; the
sliding window size used to do so is described in Section 6.4.2). Even so, its
optimality is highly correlated with the weights sets κm(m = 0, 1, 2, ..., q) and
φl(l = 1, 2, ..., p) - the weights set to each data point of both autoregressive and
moving average components (check the equation (6.10)). In other words, it is
usually necessary to fit such weight set to the past data points each time we
want to do a prediction [Min and Wynter, 2011; Contreras et al., 2003]. The
computation of such optimal weight set may be heavy - specially if we consider a
high periodicity in our system (i.e τ << P ). A way to avoid such computational
effort is presented below.

An Incremental ARIMA Model

The ARIMA model relies on calculating the present event count using a linear
combination of previous samples. In eq. 6.10 the φl(l = 1, 2, ..., p) and κm(m =
0, 1, 2, ..., q) are the model weights. Such weights usually need to be fitted using
the entire historical time series every time we build a new prediction. This
operation can represent a high computational cost if we employ it at a such
large scale as we do here. Similarly to the Bus Bunching problem presented in

Figure 6.7: Autocorrelation profile for data on the demand for taxi service
obtained from one of the busiest taxi stands in the city. The x-axis has different
period lags studied and the y-axis contains the correlation within the signal.
Note that there are peaks for each 12h periods.
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the previous Chapter, there is not much time to do such optimal training of the
weight set (especially for low values of τ).

To overcome this issue, we propose to use the Linear delta rule (described
in Section 5.3.2) to update these weights recursively instead of re-calculating
them iteratively as we did so far. This rule consists of updating the weights by
increasing/decreasing them using a direct proportion of the difference between
the predicted and the real output. Consider Rk = {Rk,1, Rk,2, ..., Rk,t} to be
a time series with the number of services predicted for a taxi stand of interest
k in the period [1, t] and Xk be the number of services actually emerged in
the same conditions. Let wk,t = {wk,t,1, wk,t,2, ..., wk,t,z} be a set of z weights
of a predictive model of interest (like φ and κ in the ARIMA one) used to
calculate Rk,t. Departing from eq. 5.8, it is possible to calculate the update set
∆wk,t = {∆wk,t,1, ...,∆wk,t,j} as follows

∆wk,t,j = β(Rk,t −Xk,t)wk,t,j ,∀j ∈ {1, ..., z} (6.11)

where β is an user-defined proportionally constant which sets how reactive the
model should be. This way, the ARIMA weights can be incrementally updated.

6.3.3 Fare-based p.d.f. estimation

Let rk,t denote a vector containing the revenue values corresponding to the
amount paid by each service which starts at the stand k at time period t, where
Xk,t = |rk,t|. To characterize the distribution of these values, we propose to
approximate its local p.d.f.. One of the best known ways of doing that is by
discretizing the variable values into intervals using histograms [Gama and Pinto,
2006]. By dividing the number of services Xk,t into ϕ bins according to service
revenue, it is possible to obtain ϕ discrete time series for the number of services
requested within a certain revenue interval. Secondly, a set of fixed rules is em-
ployed to classify the period’s profitability based on those histograms. Thirdly,
the time series analysis above described are employed to estimate the future
frequencies of these ϕ bins. Those values are used to predict the stand’s short-
term profitability class by employing the abovementioned set of rules.

The first goal is to discretize the revenues into a value interval πi = [bi, bi+1) ∈
Π for rk,t such that bi ≤ rk,t < bi+1. Π can be defined as follows

Π = {πi|πi = [bi, bi+1) : bi+1 − bi = bi − bi−1,∀bi ∈ N} (6.12)

where ξ = bi+1 − bi denotes the interval width. Consequently, it is possible to
obtain an equal-width histogram h(F,B) defined by the aforementioned set of
break points B = b1, ..., bϕ−1 and a set of frequency counts F = f1, ..., fϕ. To
define the number of bins ϕ, it is necessary to define the range of the random
variable and the desired interval width. For that, three user-defined parameters
are employed: the interval width µ and a minimum/maximum value as mi,ma,
respectively. Therefore, it is possible to redefine πi as follows:

πi = [mi+ µ× (i− 1),mi+ µ× i) : (mi+ µ× i) ≤ ma (6.13)

An additional last bucket is added to the ones defined in Π to account for all the
revenue values above the threshold value (i.e. ma). Consequently, ϕ = |Π|+1.
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By employing these histograms, it is possible to monitor the evolution of the
revenue’s p.d.f. at a given taxi stand to predict the short-term one. Estimat-
ing the p.d.f. estimation brings a vast range of possibilities when it comes to
building a set of rules (or multiple rules) capable of classifying the stand’s prof-
itability in every time period. The set of rules used in this particular scenario
is described in Section 6.4.1.

Regardless of the evolution of the p.d.f. throughout time, the number of
bins ϕ is constant over time (it only depends on the parameters ma,mi and
µ). Consequently, each bin can be seen as a time series in terms of the num-
ber of services requested at that stand where the revenues are constrained by
a given interval. This observation makes it possible to model the p.d.f. esti-
mation problem as multiple time series forecasting ones. The three predictive
frameworks described along the Sections 6.3.1 and 6.3.2 can be used to perform
three distinct predictions on this variable.

6.3.4 Sliding Window Ensemble Framework

Three distinct predictive models have been proposed which focus on learning
from the long, medium and short-term historical data. However, a question
remains open: Is it possible to combine them all to improve our prediction?
Over the last decade, regression and classification tasks on streams attracted
the community attention due to the need to adapt these supervised learning
models to the concept drifts that are constantly introduced in the data. The
ensembles of such models are one of the ways to handle with such drifts. One of
the most popular ensemble models is the weighted ensemble [Wang et al., 2003].
Two ensemble models are proposed to handle the service count prediction (i.e.
Et) and the fare-based p.d.f. estimation (i.e. Qt), respectively1. Both are based
on such weighted ensemble framework. They are described along this Section.

Consider M = {M1,M2, ...,Ml} to be a set of l models (i.e. hereby, l = 3)
of interest to model a given time series and G = {G1t, G2t, ..., Glt} to be the
set of forecasted values for the pick-up quantities during the next period on the
interval t by those models. The ensemble forecast Et is obtained as

Et =

l∑
i=1

Git ∗ (1− ρiH)

Υ
,Υ =

l∑
i=1

(1− ρiH) (6.14)

where ρiH is the error of the model Mi in the periods contained on the time
window [t−H, t] (H is a user-defined parameter to define the window size) com-
paratively to the real service count time series. As the information is arriving
continuously for the next periods t, t+ 1, t+ 2, ... the window will also slide to
determine how the models are performing in the last H periods. To calculate
such error, the Symmetric Mean Percentage Error (sMAPE ) was used (as it is
further discussed in Section 6.4.2).

Let Gf = {Gf1t, Gf2t, ..., Gflt} be the set of forecasted fare-based labels
during the next period on the interval t by the models in M . A majority

1 Note that both series also depend on the taxi stand k. However, this notation was omitted
in this subsection for simplify its comprehension.
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voting scheme was employed to combine the label outputs according to each
prediction. This simple scheme consists of measuring the average accuracy
of each method on the last % periods - where % is an user-defined parameter.

6.4 Experiments

This Section starts by describing the experimental setup developed to test the
model on the available data. Secondly, the metrics used to evaluate the methods
are enumerated. Finally, the results achieved are presented.

6.4.1 Experimental Setup

Similarly to the work described in the previous Chapter, the test-bed employed
in this study also followed a prequential evaluation scheme. Consequently, two
sliding windows were used to measure the models’ error before each new demand
prediction (i.e. H for the pick-up quantities and % for the fare-based prediction).
The metrics used to do so are defined in Section 6.4.2.

Each data chunk was transmitted and received through a socket. The predic-
tive models were implemented using the R language [R Core Team, 2012]. The
prediction effort was divided into three distinct processes running on a multi-
core CPU (i.e. the time series for each stand is independent from the remaining
ones), which reduced the computational time required for each forecast. Fig.
6.9 illustrates the test-bed described: the PPi...PPt(t = 3) are the independent
predicting processes – each one handles a predetermined group of taxi stands.
The pre-defined functions used and the values set for the model parameters are
described in detail along this Section.

An aggregation period of 30 minutes (i.e. forecast horizon of P = 30 minutes)
and a radius of W = 100m (W > 50 is defined by the existing regulations) were
set. This aggregation was set based on the average waiting time at a taxi stand,
i.e. a forecast horizon lower than 42 minutes. These series were used with a
fixed time-span on the fare-based demand prediction model. However, a new
time series was built for the pick-up quantity prediction model. This was done
to handle the demand peaks and valleys that often arises on some city areas.
This time series has an aggregation period of 5-minutes (τ = 5). It was created
according to the definition presented in Section 6.3.1.

Both the ARIMA model (p, d, q values and seasonality) and the ARIMA
weight sets φ and κ were firstly set (and updated each 24h) by learning/de-
tecting the underlying model (i.e. autocorrelation and partial autocorrelation
analysis) running on the historical time series curve of each stand during the
last two weeks (i.e. period t− 2θ, t). To do so, we used an automatic time series
function from the [forecast] R package - auto-arima – and the arima func-
tion from the built-in R package [stats]. The weight set is then incrementally
updated for each 24h period according with eq. (6.11).

A parameter tuning task was conducted on the parameters α and β based on
a simplified version of Sequential Monte Carlo method (the reader can consult
the survey in [Cappé et al., 2007] to know more about this topic). The goal
was to calibrate the model by finding the optimal subregion on the input space
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α, β ∈ [0, 1] which maximizes the predictive performance. To do so, 100 distinct
samples were generated as admissible values for α and they were tested using
an older and smaller dataset containing data very similar to the one tested in
our experiments (i.e. the same feature space). Since τ << P , it is reasonable
to admit that the ARIMA weight sets φ and κ will have short differences from
prediction to prediction (i.e. β ≤ 0.1). Therefore, 10 admissible values for β
were considered with a step of 0.01 between each one of them satisfying the
following inequation: 0 ≤ β ≤ 0.1. All the possible combinations of these values
of β and α were considered on these tuning tests.

As result, it was possible to determine the ideal values as α = 0.4 and
β = 0.01. These values demonstrated to be robust since small changes did not
cause a relevant impact on the model output. These values remained stable on
the following input space: 0.4± 0.1 and 0.01± 0.005 for α and β, respectively.
Therefore, α = 0.4 and β = 0.01 were used in the experiments. The γ value was
set respecting the following definition

γ = argmin
γ

ωγ : ωγ ≥ 0.01, γ ∈ N (6.15)

Using this equation on our experimental setup, we obtained that α = 0.4 =⇒
γ = 8. Using this very same experimental setup, we repeated the experiments
using all the components of our method (i.e. the ensemble of our three pre-
dictive models) and we tested five possible values for the size of the ensemble
sliding window, H = {2, 4, 6, 8, 10}. The best results were obtained for H = 4
and therefore, this was the value considered (i.e. it represents a sliding window
of 20 minutes).

The parameter setting for (ma,mi, µ) resulted in histograms with three bins
(i.e. ϕ = 3). For this particular scenario, we established a three-class set
to estimate the stands’ profitability (”low”,”medium” and ”high”). A user-
defined set of rules was developed for this particular task adapted to the present
scenario. Its pseudo code is displayed in Fig. 6.8. However, we do want to
sustain that this approach can be adapted by any taxi network by changing ϕ,
the number of classes and the rule set in place.

Table 6.4 summarizes the information about the learning periods used by
each algorithm while Table 6.5 presents the values employed on the remaining
parameters.

Table 6.4: Description of the Learning Periods.

Algorithm Sliding Window Nr. of Periods Considered

Poisson Mean All Data {1, t} N/A: it is calculated incrementally
Weighted Poisson Mean Last two months γ = 8
ARIMA Last two weeks 2 ∗ θ
Pick-Ups Quantity Ensemble Last twenty minutes H = 4
Fare-based Label Ensemble One day % = 48
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1: function classify-period(h(F,B), Xk+t)
2: if Xk+t = 0 then return ”low”;
3: end if
4: if Xk+t <= 5 then
5: if b1 = 0 then return ”medium”;
6: else
7: return ”low”;
8: end if
9: end if

10: b1ratio = b1/Xk+t;
11: if b1ratio < (1− 0.4) then return ”high”;
12: else
13: if b1ratio < (1− 0.2) then return ”medium”;
14: end if
15: end if
16: return ”low”;
17: end function

Figure 6.8: Algorithm for the Period’s Profitability Classification using the
Revenue Histogram. The parameters represent the histogram’s frequencies (F )
and break points (B), as well as its total mass Xk+t.

Figure 6.9: Illustration of the streaming test-bed.

6.4.2 Evaluation Metrics

We used the data obtained from the last four months to evaluate our framework
on the pick-up quantity prediction problem. A well-known error measurement
was employed to evaluate our output: the Symmetric Mean Percentage Error
(sMAPE) (which was formally introduced in Section 3.5). Hereby, we indepen-
dently evaluated the predictions for the pick-up quantities performed for each
taxi stand (i.e. sMAPEk). However, this metric can be too intolerant to small
magnitude errors (e.g. if two services are predicted on a given period for a taxi
stand of interest but no one emerges, the error measured during that period
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Table 6.5: Parameter Setting used in the experiments.

Parameter Value Description
β 0.01 parameter to set the reactivability of the incremental update rule ∆w
α 0.4 parameter to calculate the weight’s curve on the Exponential Smoothing
P 30 aggregation period used to calculate the time series (in minutes)
τ 5 second-level aggregation period used to calculate the time series (in minutes)
mi 2 minimum value in the revenue histogram obtained for each period
ma 10 maximum bounded value in the revenue histogram obtained for each period
µ 4 bounded width of the intervals
W 100 minimum radius to consider a service demand on a given taxi stand (in meters)

would be 1). To produce more accurate statistics about series containing very
small numbers, a Laplace estimator [Jaynes, 2003] is commonly added to eq.
3.21. In this case, we perform such normalization by adding a constant c to
the denominator (i.e.: originally, it was added to the numerator to estimate a
success rate [Jaynes, 2003]). The (sMAPEk) (i.e.: the error measured on the
time series of services predicted to the stand k) can be defined as

sMAPEk =
1

t

t∑
i=1

|Rk,i −Xk,i|
Rk,i +Xk,i + c

(6.16)

where c is a user-defined constant. To simplify the theorem application, we
consider its most common use: c = 1 [Jaynes, 2003].

This metric is focused just on one time series for a given taxi stand k.
However, the results presented below use an averaged error measure based on
all stands series – AG. Consider ζ to be an error metric of interest. AGζ,t is
an aggregated metric given by a weighted average of the error measured in all
stands in the period 1, t. It is formally presented in the following equations:

AGζ,t =

N∑
k=1

ζt,k ∗ ψk
Ψ

(6.17)

ψk =

t∑
i=1

Xk,i,Ψ =

N∑
k=1

ψk (6.18)

where ψk is the total of services requested at the taxi stand k; ζt,k is the error
measured by ζ at the stand k and Ψ is the total of services emerged at all stands
thus far.

The Accuracy (ACC) was used as evaluation metric on the fare-based stand
classification problem. Moreover, the accuracy error was divided into higher-

prediction and lower-prediction to discover when the predicted profitability is
higher/lower than the real one. It was calculated for the N periods considered
in the test set. They were then aggregated by calculating a weighted mean of
their values at the existing taxi stands. Each stand’s weight corresponds to the
number of services requested on them.

6.4.3 Results

This Section starts by introducing the results obtained on the Pick-up Quan-
tity Prediction problem. Then, the results obtained on the fare-based stand
classification task are presented.
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Table 6.6: Error Measured on the Stand-based Pick-up Quantity Prediction
problem using sMAPE.

Periods
Model

00h−08h 08h−16h 16h−00h 24h

Poisson Mean 27.67% 24.29% 25.27% 25.32%
W. Poisson Mean 27.27% 24.62% 25.66% 25.28%

ARIMA 28.47% 24.80% 25.60% 26.21%
Ensemble 24.86% 23.14% 24.07% 23.77%

Figure 6.10: Pick-Up Quantity Ensemble evaluation on a typical Saturday. The
results were aggregated from all stands.

Pick-up Quantity Prediction

The results on the pick-up quantity prediction are presented over four distinct
perspectives: 1) averaged error of the proposed methods; 2) a comparative
analysis of the ensemble performance versus the remaining models; 3) a direct
analysis of output examples, and 4) a report on the computational time required
to forecast the next period.

Firstly, the error measured for each model is presented in Table 6.6. The
results are firstly presented per shift and then globally. The results were aggre-
gated using the AGβ previously defined over the sMAPE metric.

Secondly, Fig. 6.10 presents a comparison between our Ensemble and the
other predictive models on a typical weekend day. These values were calculated
using the same 20-minutes sliding window of the ensemble (the error of the
instant t is the error measured at period [t−H, t], H = 4) with a periodicity of
P = 30 minutes.
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Thirdly, two distinct weekly analyses of the discrepancies between the de-
mand predicted and the services actually provided are displayed in Fig. 6.11.
It exhibits the demand prediction and its real outcome during a week in two
distinct stands. It considers just the predictions made each period of P = 30
minutes.

The model forecasted the spatiotemporal taxi-passenger demand for a time
horizon of 30-minutes with a periodicity of 5 minutes. It used (on average)
37.92 seconds (i.e. 0.607 seconds per time series/stand) using just one iterative
process – one program, one CPU core:PP1. The ARIMA model update was also
fast: 48.12 seconds (mean value) were used to do so each 24h. Further offline
experiments determined that such time can be reduced by 70% if we consider
a parallel computing architecture like it is suggested in Fig. 6.9. These results
are discussed next.

Fare-based Stand Classification

Fig. 6.12 presents descriptive statistics on the bin values of one of the busiest
taxi stands in this case study. This statistics are divided by profitability class
and also by day period. This division shows how the classification rule set (Fig.
6.8) works over the histograms. Using these rules, the following class distribution
was obtained: ”low”: 81.57%; ”medium”: 13.10%; ”high”: 5.33%. Table 6.7
presents a detailed evaluation of the five classification frameworks employed in
this task. Finally, Fig. 6.13 divides the ensemble accuracy between each of the
63 taxi stands in Porto grouped with the number of services requested at the
stand during the test period.

Figure 6.11: Weekly comparison between the services forecasted and the services
emerged on two distinct scenarios regarding different taxi stands and weeks.
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Figure 6.12: Descriptive Statistics on each bin values for different periods and
profitability classes at taxi stand 57.
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6.5 Discussion

The overall performance is very good: (1) the maximum value of the pick-up
quantity error was 27.67% while (2) the profitability-based stand classification
method surpasses the majority class - what is especially significant if we consider
that we are facing an unbalanced classification task (i.e. 81.57% of the true labels
are ”low”. The sliding window ensemble is always the best model in every shift
and period considered for both prediction tasks.

6.5.1 Pick-up Quantity Prediction

The ensemble methodology is robust comparatively to the remaining models:
in Fig. 6.10 it is possible to identify a point where the ensemble maintained its
performance while two other methods suffered a significant decrease in perfor-
mance, highlighting the inherited learning of the ensemble approach. Fig. 6.11
presents two distinct scenarios to compare the forecasted and the real demand:
in A), the demand corresponds to an irregular taxi stand where services do not
have a usual pattern to emerge (even if the demand is low); in B), the chart
corresponds to a completely regular stand behavior. The two examples illus-
trate that the ensemble can correctly forecast the demand in distinct scenarios,
periods and time horizons.

In the present case study, the target variable is the number of services to arise
at a taxi stand network during a pre-defined period of time. This variable was
chosen due to the stand relevance in this scenario (where 76% of the total num-
ber of services is directly required to vehicles parked on them). However, this is
not the reality in many large cities around the world due to their (de)regulation
[Schaller, 2007]. Most authors in the literature on this topic divide their sce-
narios/urban areas into spatial clusters - as exemplified in Fig. 6.14 - to predict
and/or characterize the pick-up quantity distribution on a short-term time hori-
zon [Deng and Ji, 2011; Liu et al., 2009; Yue et al., 2009; Ge et al., 2010; Yuan
et al., 2011b; Chang et al., 2010b; Li et al., 2012]. This mathematical model
does not depend on how the services historical data are spatially aggregated
(i.e. by stand or by spatial cluster) but only on the aggregation period of P -
minutes (which is user-defined). Therefore, it also represents a straightforward
contribution to previous work.

Table 6.7: Profitability Prediction Evaluation.

Method Accuracy
lower

prediction error
higher

prediction error

Poisson Mean 73.63% 16.83% 9.54%
Exponential Smoothing 71.57% 16.66% 11.77%
ARIMA 70.91% 17.90% 11.19%
Majority Class 65.19% 22.18% 12.64%
Ensemble 73.99% 17.88% 8.13%
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Figure 6.13: Ensemble evaluation detailed by stand. The grouped bars represent
the accuracy (light red) and the number of services requested at each stand (dark
blue).

6.5.2 Fare-based Stand Classification

Fig. 6.12 exemplifies the histograms distribution on distinct classes and sce-
narios. Note that the class (”low”/”medium”/”high”) does not have a direct
relationship with the bins frequencies.

To approximate p.d.f. using histograms may seem quite simpler while com-
pared with other estimation methods (e.g. kernel estimation). It may partially
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Figure 6.14: Example of a possible grid-based spatial clustering of the city of
Porto, Portugal.

explain the accuracy errors on the stand revenue’s classification. However, this
method have a strong advantage facing the most common ones: it can be com-
puted nearly incrementally, using one or just some of the most recent samples
to estimate the next p.d.f..

The low number of bins (three) employed is a rough approximation of the
true revenue p.d.f.. This level of detail is user-defined, along with the histogram
classification rule set. The reduced length of the test set (i.e. one month) may
not be enough to assume this setting as the best possible for this case study.
Moreover, in more complex urban areas, it may be relevant to explore more
complex p.d.f. approximations by determining which are the best parameter
settings (i.e. ma, mi, µ and rule set) for each scenario. However, this discus-
sion is not addressed in this thesis.

In Fig. 6.13, it is possible to observe that the ensemble method has an accu-
racy ≥ 90% in most stands. The busiest stands present a lower accuracy than
expected. This behavior may indicate that there is a persistent error on this
type of stand. However, a stand-based analysis on the algorithm’s behavior is
required to reach these conclusions.

Despite the limitations mentioned above, this work is only a fair proof of
concept for using the demand numerical predictions to uncover the stands’ prof-
itability. Note that nearly 70% of the classification error results in a profitability
class that is lower than the period’s true label. This shows how reliable this
methodology can be by being cautious to predict high-revenues.

6.6 Conclusions

In this Chapter, we presented a novel application of time series forecasting
techniques to improve the taxi driver mobility intelligence. It was done
so by transforming both GPS and event signals emitted by taxi vehicles from
a company operating in Porto, Portugal into time series of interest containing
demand-based information. Secondly, time series analysis techniques were used
to estimate the future values of these series. Then, these predictions were de-
composed to build a fare-based p.d.f. able to classify each stand regarding the



6.6. CONCLUSIONS 137

profitability of the services that will be demanded in a short-term. As a result,
the model presented was able to predict the taxi-passenger demand at each one
of the stands regarding both the pick-up quantities and the type of services to
be demanded. It does it so with a short term horizon of P = 30 minutes and
with a periodicity of τ = 5 minutes.

The model presented a more than satisfactory performance, correctly pre-
dicting all the tested service with an aggregated error measurement lower than
26%. It is our belief that this model is a true novelty and a major con-
tribution to the area due to its adapting characteristics:

• It mines both the periodicity and seasonality of the passenger demand,
updating itself regularly;

• It simultaneously uses long-term, mid-term and short term historical data
as a learning base;

• It takes advantage of the ubiquitous characteristics of a taxi network,
assembling the experience and the knowledge of all vehicles/drivers while
they usually use just their own;

• It covers the short-term demand estimation in absolute terms (i.e. pick-up
quantities) and also on its fare-based types (i.e. revenues);

• These predictions can be done on-demand and not using any pre-defined
time spans;

Notwithstanding the promising results obtained on this particular case study,
there are still some issues to handle on future research. Porto is an interesting
case study. However, it is just a mid-sized city. Consequently, the latency
required to let this models compute their predictions properly do not fill their
full potential. These models should be tested on other type of case studies with
a larger volume of services and relationship between demand and supply (i.e.
Scenario 2). Moreover, these framework is still dependent on a comprehensive
set of parameters. Some of them suffered a tuning stage before using - however,
others did not (i.e. ma,mi, µ). The fare-based p.d.f. also depends on an user-
defined rule set. It is important to develop automatic frameworks to overcome
such limitations in the near future. Such topics still comprise open research
questions.
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Chapter 7

Time-Evolving O-D Matrix
Estimation

Nowadays, there is a wide range of ITS applications that are being developed to
improve the Urban Mobility. Such improvements are focused on three distinct
dimensions: infrastructural, resource usage and passenger oriented. GPS traces
are one of the most powerful tools on this research area (independently of their
source) by providing a real-time monitoring framework of such mobility. TTP
is a relevant problem in many research areas. Throughout Chapter 2 it was
possible to observe that it is also transversal to many of the problems addressed
in this thesis.

A review on the State-of-the-Art on TTP was already introduced in Section
2.1.3. On the context of Operational control on Taxi Networks, TTP is highly
relevant on two decision stages: (i) service selection and (ii) passenger finding.
The (i) first one is related with taking/not taking a given service based on its
destination. This destination may force to an undesired large vacant cruise time
on the return trip due to its running distance or to the poor traffic conditions
on a particular pair of road/timestamp. The last one is related on how much
time it will take to get to a given urban area/taxi stand where there are favor-
able service demand conditions (e.g. high service demand in terms of passenger
quantity or revenue-based). This Chapter addresses this last problem. By doing
so, we expect to meet all the estimations needed to perform a real-time recom-
mendation on the most profitable stand/area to head to in each moment in order
to pick-up the next passenger (already referred in Section 2.2.2): the number of
services to be demanded in such stand/area (addressed in Chapter 6), the prof-
itability of the services to be demanded in such stand/area (also addressed in
Chapter 6) and the travel time needed to go from my current point to that area.

The Origin-Destination (O-D) matrix is a State-of-the-Art technique to
analyze urban mobility in TN [Lee et al., 2008; Yue et al., 2009; Phithakkit-
nukoon et al., 2010]. It consists of dividing an urban area into two finite sets
of ko, kd non-overlapping subregions which entirely cover the initial one. Then,
each cell of a (jo × jd): jo ≤ ko ∧ jd ≤ kd matrix is used to generate rele-
vant information on the city dynamics, including traffic flow analysis and trans-
portation supply/demand prediction, among others. This information is often
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inferred using a broad range of algorithms and statistical models over the GPS
data streams produced by each network’s vehicle. Commonly, an O-D matrix
comprises a time-dimension in its cells. Consequently, it is a discretization
method for both time and space. Despite the continuous characteristics of the
GPS streams, most works on O-D matrices based on taxi GPS traces employ
batch learning methods [Lee et al., 2008; Liu et al., 2009; Yue et al., 2009;
Phithakkitnukoon et al., 2010; Zhang et al., 2011; Qi et al., 2011] which are
unable to adapt themselves to sudden drifts on the network status.

The previous Chapter introduced a demand prediction model based on taxi
GPS traces. Such demand was decomposed into two axis: the (1) pick-up
quantity and (2) the type of service demanded (i.e. long or short connections).
While the first axis regards only the number of services demanded on each taxi
stand, the second one aims to typify such service. The two most important
variables on such typification are the service distance and its travel time (as
suggested by the model to compute the service’s revenues presented in Section
6.1.1). The approach made to this problem is quite simplistic as we are not
interested into determining the exact future revenue value but just a fare-based
category (which has a much more narrower domain). But could it be fully or
partially applied to Travel Time Prediction (TTP)?

Section 6.5 argued that such model is applicable to any demand predic-
tion problem, independently on its spatial discretization (i.e. stop/stand or city
area). Basically, it relies on time series describing what happens on a given area.
However, the construction of such series require to maintain a static definition
on the spatial discretization level (which is referred by Castro et al. [2013] as the
most popular approach to this problem). One of the most important issues on
building O-D matrices automatically is the penetration rate (i.e. the quantity of
ground truth information about the urban mobility on absolute terms) [Tucker,
2009]. The inclusion of multiple data sources to compute such matrix (e.g. bus,
taxis, smartphones) can increase this rate. Consequently, this demand predic-
tive model is not a reasonable approach to this problem as it cannot adequately
combine such distinct granularities of information.

This Chapter proposes incremental discretization techniques to maintain
accurate statistics of interest over a time-evolving O-D matrix. These statis-
tics can be used as a bedrock for real-time analysis on human mobility dynamics,
or as a valuable training input for machine learning algorithms. TTP was se-
lected as a demonstrative application case of this framework using trip-based
taxi data. The main contribution of this framework is its applicability to the
online estimation of any urban mobility variable of interest using one or multiple
data sources, independently of their spatial and/or temporal granularities.

The remainder of this Chapter is structured as follows: Section 7.1 defines
the problem while Section 7.2 describes the Case Study addressed in this work
along with some details about the data employed in the experiments. The
third Section describes the two-layer framework employed to incrementally es-
timate the O-D matrix. Section 7.4 starts by describing a histogram-based
technique to discretize the target variable; then, a discussion is provided on
how the histograms can follow the evolution of the O-D matrix. A multidimen-
sional discretization model is also proposed to handle discretization in multiple
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dimensions. Section 7.5 starts by presenting an application case for the method-
ology (i.e. TTE), along with the experimental setup and its results. Section 7.6
discusses the results obtained, as well as the application of this framework in
real-world problems. The related work is briefly revised in Section 7.7. Finally,
conclusions are drawn, as well as future research directions on this topic.

7.1 Problem Statement

O-D matrices are a widespread analysis technique employed in many research
fields. This work addresses both the generation and maintenance of O-D ma-
trices by mining (A) a high-speed continuous flow of origin/destination spatial
points (discarding the path followed between the points). This task can be di-
vided into two distinct stages. Firstly, (B) the urban area is divided into two
finite sets of non-overlapping ko, kd subregions. Then, (C) the origin and desti-
nation (i.e. jo, jd : jo ≤ ko ∧ jd ≤ kd) subregions of those initial decomposition
are selected as Regions of Interest (ROI) to form the final O-D matrix. A ROI
corresponds to an O-D hotspot in a city. These problems are formulated along
this Section. The symbols and notations used in this Chapter are provided in
Table 7.1.

7.1.1 Learning from High Speed Data Streams

Typically, data streams comprise a (a) neverending flow of data samples.
Moreover, the (b) data distribution may not be stationary. These character-
istics disable the use of many State-of-the-Art ML algorithms. High-speed
data streams assume that it is not possible to scan all the past samples be-
fore predicting the target value of the following sample [Gama, 2010]. Let
X = {x1, x2, ..., xn} be a dataset produced by a high-speed data stream until
time instant t. Let learner() be a batch learning algorithm of interest where
model(X, t) is the predictive model inferred by it at instant t. Finally, let λX
be the expected sample arrival rate. The worst-case time complexity of the
learner() is, at best, a single-scan complexity (i.e. O(n)). (c) High-speed data
streams assume the validity of the following equation

T (n) = c× n : lim
n→∞

λX
T (n)

= 0 (7.1)

where T (n) is the time required by the learner algorithm to perform an individ-
ual scan for every past n samples, and c is the constant time required to process
each sample. In fact, the average number of samples that may be used by any
learning algorithm applicable to X is given by τ = c

λX
. In these conditions,

a learner is allowed to inspect just a small number of past samples to update
its model before the following sample arrives. In extreme scenarios, the learner
may be forced to process just one instance at a time (i.e. τ = 1). This is
called an incremental learning method. This work follows two assumptions: (1)
a GPS data source is an (a) infinite stream of (b) time-evolving data; (2) its (c)
high arrival rate implies processing one instance at time.
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7.1.2 City Decomposition

A city region is a continuous two-dimensional area (i.e. a subset of R2), which
is difficult to work with. Consequently, it is common practice to decompose the
city into k disjoint areas to perform any data analysis of interest [Castro et
al., 2013]. Let va(lata, lona) be a pair of geographic coordinates representing a
location. Let D ⊆ R2 be an urban area of interest defined by two rectangular
vertices with the coordinates (v1, v2) : lat1 > lat2 ∧ lon1 < lon2. Implicitly, it
is possible to infer the following

D = [lon1, lon2]× [lat2, lat1] (7.2)

The city decomposition is a pair (Ψ, ψ), where Ψ is a finite set of regions and
ψ : D → Ψ is a membership function mapping any location va ∈ D to a region
given by ψ(va) ∈ Ψ. This work uses the definitions in the eq. 7.3 presented
below. An example of this process is illustrated in Fig. 7.1.

k⋃
i=1

Ψi = D ∧Ψi ∩Ψl = ∅ , ∀i, l ∈ {1, ..., k} : i 6= l (7.3)

Table 7.1: Notation and symbols employed along this Section.

D urban area to decompose
v(lat, lon) an O-D location represented by a pair of coordinates
Ψ set of initial subregions / stage1 city decomposition
ψ membership function to get the location’s region in Ψ
k number of subregions after the stage1 city decomposition
Γ Parameter set to refine each subregion by density (stage2)
γi ith member of Γ
Ω set of final subregions / stage2 city decomposition
ω membership function to get the location’s region in Ω
j number of subregions after the stage2 city decomposition
M resulting O-D matrix
S initial finite dataset of O-D locations
si data points inside the region Psii or Ωi
hDimi dimension chosen to split a subregion Psii or Ωi (i.e. lat./lon.)
θi break point to split a subregion in the hDimi

C Regions of Psii that must be refined (i.e. candidates)
c number of regions in C
κ maximum number of points in memory about one region
si set of data points inside the region Psii or Ωi kept in memory
n total number of data points/locations in memory
N total number of data points/locations processed
α max. threshold for the mass ratio contained in a single O-D region
rt min. threshold for excessive mass ratio to refine a O-D region
ξ min. threshold for mass ratio contained in a O-D region
φ min. threshold for mass density in a O-D region
p split/merging test periodicity on the layer-on

ρi mass density of a region Ψi

ai area occupied by a region Ψi

smi set of data points in region Ψi

sui number of data points contained in a region Ψi after its last update
ϑ highest mass value contained inside one subregion
θΨi split point to divide a region Ψi into two with equal masses
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Origins − 50%
Destinations − 50%

(a) 5000 O-D pairs’ coordinates.
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(b) Grid-Based City Decomposition.

Figure 7.1: A naive example on City Decomposition.

7.1.3 ROI selection

The ROI selection is commonly made by employing a threshold-based 0-1 func-
tion ω over some user-defined continuous criteria γi, such as the O-D location
number or density within an input subregion Ψi. Formally, it is possible to de-
fine ω : Ψ→ Ω as a membership function ω(Γ), which can be used to iteratively
form the ROI set Ω from the original subregion set Ψ. It does so based on the
criteria set Γ =

⋃k
i=1 γi. Consequently, k ≡ |Ψ| ∧ j ≡ |Θ|: j ≤ k ∧Θ ⊆ Ψ.

In various works, only one spatial dimension is considered as they decompose
the city according to the destinations or the origins, and not based on the
relationship between these locations (e.g., the passenger demand [Lee et al.,
2008] or the service offer quantity analysis [Phithakkitnukoon et al., 2010]). An
O-D matrix M comprises the relationships between two ROI sets (i.e. origin and
destination). It can be formed using two distinct approaches: (i) a unique pair of
functions (ψ, ω) to generate both the O-D ROI sets (Ωo,Ωd) or (ii) two distinct
pairs of functions {(ψo, ωo), (ψd, ωd)} that produce two separate decompositions
on the discretization of the origin/destination continuous spaces. In large TNs,
it is expected that Ωo ' Ωd as they contain the city’s ROI. However, it is
very common to observe seasonal changes throughout time (i.e.: similarly to
human behavior). Therefore, it is common to employ a type-i approach where
Ω ≡ Ωo ≡ Ωd. Consequently, M is represented as a quadratic matrix with size
jo × jd : jo = jd. The temporal discretization is then performed on the matrix
cells (as suggested by previous works on related topics [Lee et al., 2008; Yue et
al., 2009; Phithakkitnukoon et al., 2010]). The present work follows a type-i
approach which also benefits from those assumptions.

7.2 Data Preparation

The case study is the same of the dataset presented in Section 6.1 and so is the
data preprocessing. The data was gathered through a non-stop period of nine
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Figure 7.2: Kernel Density Estimation (Gaussian) of the Travel Time (in min-
utes). Note the lognormal form and the low density values (< 0.0014).

months between August 2011 and April 2012. However, in this study the data
is organized by trips (similarly to the problem introduced in Chapter 4). Each
processed data chunk contains the following seven attributes: the driver’s ID, a
Julian timestamp, the taxi status (zero/one for vacant/busy), the information
about whether the data record concerns the origin or with the destination of
the trip, the trip ID and the latitude/longitude coordinates.

The variable of interest in this study is the travel time between two O-D
locations. This data stream contains two million O-D locations. They corre-
spond to one million taxi trips performed during this period. Fig. 7.2 represents
a sample-based estimation of the p.d.f.. The lognormal form indicates that the
taxi services in the city are usually short timed (such as 50% < 10m). How-
ever, at this granularity, it is not possible to infer more than this as this density
illustration chart concerns the trips from several O-D pairs simultaneously.

7.3 Online O-D Matrix Estimation

One of the major problems of decomposing an area into a set of subregions Ψ is
guaranteeing that each subregion contains sufficient data points to characterize
it. An example of this problem is the popular grid-based decomposition (see
Fig. 7.1b), where the city is decomposed on equal-sized regions based on a user-
defined width/height [Castro et al., 2013]. Its popularity resides on its simplicity.
However, it is naive as it is independent from the data spatial distribution. It
results in regions containing an excess/deficit of data samples. The goal with
this work is to decompose a city area into equal-sized subregions regarding the
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number of points within (i.e. mass).
Let S = {v1, v2, ..., vn} : S ⊆ D be a set of n O-D locations of interest and

spcls be a data driven spatial discretization function defined as follows

spcls(D, S,Γ) = {Ψ, ψ,Ω, ω} : γi = γl,∀i, l ∈ {1, ..., k} (7.4)

Finally, let si ⊆ S be the set of data points contained in a subregion Ψi, where
|si| is the region mass. The high-level goal is to build an online unsupervised
learning method spcls that minimizes the value of mass standard deviation
(σ|si|).

The incremental estimation of an O-D Matrix without any prior knowledge is
a difficult task. A two-layer discretization algorithm is proposed to overcome this
problem. In the layer-off, (A) a batch learning algorithm starts by performing
hierarchical mass-based clustering [Ting and Wells, 2010] to find the best k
subregions that meet this last high-level goal. Then, a density-based function
is defined as ω. Finally, the O-D matrix is built based on the resulting Ω.
The second layer (layer-on) (B) goes from the output of the previous layer to
incrementally update a sufficient amount of statistics about the regions in Ω.
This methodology is thoroughly described along the next Section.

7.3.1 layer-off: Batch O-D matrix Estimation

Let Ψi be a rectangular subregion defined by two vertices vi,1, vi,2 whose coor-
dinates are defined as follows:

lati,1 = max(lati), loni,1 = min(loni),

lati,2 = min(lati), loni,2 = max(loni) : lati, loni ∈ Ψi (7.5)

This algorithm starts by initializing Ψ = Ψ1, k = 1 : Ψ1 = D. Then, it iter-
atively runs a cycle composed of five steps: firstly, it selects the ith subregion
as arg max i∈{1,...,k}|Ψi|. Secondly, the length of the vertical/horizontal ith sub-
region is computed using the Haversine distance between two geographic coor-
dinates [Robusto, 1957]. Then, one of the latitude/longitude is selected as the
largest/shortest dimension hDimi, lDimi based on that length. The third step
consists on finding the binary split point θΨ which divides the region space Ψ
into two regions with equal masses. Fourthly, it creates a new k + 1th subregion
defined by {Ψk+1, sk+1}, where Ψk+1 ⊂ Ψi is defined by the area’s breakpoint
θΨ of the hDimi dimension. sk+1 is defined as follows:

sk+1 =
{
vo| vo[hDimi] ≥ θΨ,∀o ∈ {1, ..., |si|}

}
(7.6)

Finally, the algorithm updates the k number of partitions as k′ = k+ 1, as well
as the sets Ψi, si as Ψ′i, s

′
i defined in the following equations (where Ψk′ stands

for the latest created subregion).

Ψ′i = {vo| vo ∈ Ψi ∧ vo /∈ Ψk′ ,∀o} (7.7)

s′i = {vq|vq ∈ si ∧ vq /∈ sk′ ,∀q} (7.8)

This cycle only stops when ϑ ≤ α, where α is a user-defined parameter (com-
monly a small ratio of n) and ϑ = max i∈{1,...,k}|si|. It defines the desired
granularity level.
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The suggested mass-based partitioning method follows closely the method
proposed by Ting and Wells [2010]. This application case is a two-dimensional
case as D ⊆ R2. Its implementation is also made through a Half-Space tree
where the concept of space is given by each region’s mass. The split point θ
is computed as the median value of hDimi on si. Consequently, ψ will be a
decision tree where the leaves will contain a subregion and the nodes will contain
a split-point condition regarding one of the two spatial dimensions.

After the initial decomposition, a ROI selection is performed. Let ρi be the
mass density of a region Ψi given by ρi = |si|/ai,∀i, where ai is an area occupied
by the region Φi. Let φ, rt be a user-defined minimum density-based threshold
and a mass-based threshold ratio, respectively. Let ξ denotes a minimum mass-
based threshold ratio where ξ � α. The membership function ω : Ψ→ Ω1 can
be defined as follows:

ω1(ρi, φ) =

{
1 if ρi ≥ φ ∨ |si|≥ α×n

1+rt

0 if ρi < φ ∧ |si|< α×n
1+rt

: 0 < rt� 1 (7.9)

The remaining regions form a set of c region candidates C = {Ψi|Ψi ∈ Ψ ∧
ψ /∈ Ω1} which may need to be refined. The goal now is to find subregions in
each region Ci which have, at least, 1 − rt percentage of the total data points
∈ Ci, i.e. |si|. For that, the method runs a four-step cycle: firstly, it selects
the ith subregion candidate as arg min i∈{1,...,c} ρi. Secondly, it discards the
candidate Ci if |si|< ξ × n. Such test aims to filter regions without a relevant
quantity of O-D flows within. Thirdly, it finds a split point θ to divide Ci
into {Cc+1, Cc+2} as |sc+1|/|sc+2|' rt, using an approach similar to the one
employed in stage 1. Finally, C and Ψ are updated as follows C ′ = C \ Ci
and Ψ′ = Ψ \ {Ci} ∪ {Cc+1} ∪ {Cc+2}. The ROI set Ω is updated as Ω′ =
Ω ∪ {Cc+2} if ω(ρc+2, φ) = 1. Otherwise, Cc+2 returns to the candidate set as
C ′′ = C ′ ∪ {Cc+2}. This cycle runs continuous until C ≡ ∅.

7.3.2 layer-on: Incremental O-D matrix Estimation

Let St = {v1, v2, ...} be an infinite set of locations where N is the number of
samples achieved at time instant t defined as |St|= N : limt→∞N = ∞. Let
sm = {sm1, ..., smk} be the set containing the set of data points smi within
a subregion Ψi and n be the number of points stored in memory at instant t.
After performing the first run of layer-off, n = N and s ≡ sm. However, this
relationship cannot be maintained as the memory has a bounded domain, while
N has an unbounded domain. Therefore, n is constrained as limt→∞ n� N .

To define the domain boundaries of n, it is necessary to describe the min-
imum amount of information required to characterize the spatial data distri-
bution in Ψ. This information can be used to reconstruct Ψ,Ω at all times by
using the points in sm :

∑k
i=1|smi|= n. To do so, the layer-on starts by setting

the maximum number of points κ = arg maxi∈{1..k}|smi| as the one obtained
at the time instant immediately after the first run of layer-off. Consequently,
the domain of n meets its constraint as limt→∞ n = κ× k � N .

Let ¯lati, ¯loni be the average latitude/longitude of the |si| O-D points in re-
gion Ψi at time instant t. This algorithm iteratively processes each new sample
vN ∈ St in a three-step loop: firstly, it determines Ri = ψ(vN ) : Ri ∈ Ψ
as the O-D subregion to which vN belongs. Secondly, it updates the num-
ber of points |si|, as well as ¯lati, ¯loni, based on vN . smi is also updated as
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sm′i = smi ∪ {vN}. However, if |sm′i|> κ, a forgetting mechanism is launched.
The algorithm deletes the most outdated data point (smi

′
1) from the memory

as sm′′i = sm′i \ {smi
′
1}. Its goal is to maintain the n inside a bounded domain.

Finally, the algorithm determines which of the current partitions in Ψ meets
the merge/split criteria. This operation is periodically performed, where p
represents its period. p can be defined in time (i.e. p ≥ λSt, where λSt stands
for the expected arrival rate of new locations vN ∈ St) or in space (i.e. each p
samples) as p ≥ 1. The value of p sets how reactive our model will be.

Merging Partitions

By merging, the algorithm aims at recovering the regions from the ROI set Ω
where the number of O-D points increases more than expected. Let su represent
the region mass after its last update (i.e. merge/split). su is initialized as
sui = |smi|: i ∈ {1, ..., k} right after the last run of the layer-off. The merge

operator is launched in every region in C = {Ci|Ci /∈ Ω∧Ci ∈ Ψ∧|si|> 2×sui}.
The merge operation starts by finding the deepest conditional node of ψ which
divides Ci from another region Ψold (it is an operation with a worst-case time
complexity of O(k)). Secondly, the operation transforms the node into a leaf
node with the cluster of the newest region Ψnew defined as Ψnew = Ψold∪Ci. Ψ,
k and s are updated accordingly as Ψ′ = Ψ∪{Ψnew} \ {Ψold} \ {Ci}, k′ = k+ 1
and s′ = s ∪ {snew} \ {sold} \ {si}. Ω and su are also updated as Ψnew ∈ Ω :
|snew|≥ ξ ×N and sunew = |snew|.

Splitting Partitions

The splits follow a similar approach as the one proposed in Stage 1 of the
layer-off. The split operator is triggered in every region in C = {Ci|Ci ∈ C :
Ci ∈ Ω ∧ |si|> α × N}. The main difference resides in defining the split point
θ. In this layer, it is not possible to conduct a single-scan operation on multiple
data points ∈ smi to calculate the median. Instead, ¯lati, ¯loni are used, - which
are easily maintained following an incremental logic.

7.3.3 Two-layer framework

Similarly to many incremental learning algorithms [Gama and Pinto, 2006], the
spcls(D, S,Γ) maintains two distinct layers: the layer-off, which determines
the best possible ROI set Ω by employing unsupervised batch learning methods
over the entire dataset available, and layer-on, which approximates Ω by up-
dating itself to each new data point. This flexibility comprises an error which
grows as the split operator is invoked in the layer-on. To mitigate this effect,
the framework can launch the layer-off on-demand. The foundation for this
ability is s. It is a set of data points that keeps the most recent data points of
each existing region Ψi. s is maintained using a sliding window whose size is
determined by the constant κ, which is obviously correlated to the parameters
α and n.

Therefore, the spcls can be classified as an unsupervised learning method
which is also incremental. Its parameter set Γ is defined as Γ = {n, α, φ, rt, ξ, p}.
The most sensitive parameters are φ and ξ as they define the boundaries of Ω. rt
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just defines if a region may be refined or not. n and α affect spatial complexity,
while p causes small drifts on the time complexity.

The pseudo code of this two-stage partitioning is displayed in Fig. 7.3 and
Fig. 7.4. The O-D matrix is formed as M [r, i] denotes a cell containing infor-
mation on the mobility flows from the region Ωr to the region Ωi. The matrix
evolution over time poses constrains when storing this information, because not
only should it be maintained incrementally, but it should also be easily decom-
posed in order to follow the splits/merges performed. Incremental Histograms
are proposed to meet these constraints, which are described in the following
Section.

1: function stage1-city-decomp(D, S, n, α)
2: s[1]← S; Ψ[1, ]← D;np[1], ϑ← n;
3: ψ ← leaf(1); k, i← 1;
4: while (ϑ > (α× n)) do
5: lenlat ← haversineDist(Ψ[i][1, 1],Ψ[i][2, 1]);
6: lenlon ← haversineDist(Ψ[i][1, 2],Ψ[i][2, 2]);
7: hdim← 1; k ← k + 1;
8: If (lenlon > lenlat) then
9: hdim← 2;

10: θΨ ← median(s[i][, hdim]);
11: s[k], np[k]← getDataPoints(hdim, θΨ, s[i]);
12: s[i]← getDisjointDataPoints(s[i], s[k]);
13: ψ ← updateLeafToCondition(i, k, hdim, θΨ);
14: np[i]← |np[i]− np[k]|;
15: i, ϑ← maxMassCluster(np);
16: end while
17: Ψ← runTree(D, ψ); return {Ψ, ψ, s, k, np};
18: end function

Figure 7.3: Stage 1 City Decomposition.

7.4 Incremental Data Discretization using His-
tograms

Histograms are a State-of-the-Art method in exploratory data analysis. They
make it possible to discretize continuous variables into intervals. This approach
is a common building block of many machine learning algorithms (e.g. Bayesian
Learning [Domingos and Pazzani, 1997]), and for that reason it is proposed as
a tool to maintain accurate statistics over a time-evolving O-D matrix.

Let H be defined as the set of all histograms in M (i.e. the histograms
describing a variable of interest in each cell of M). Let ho,d ∈ H represent
a histogram of q intervals discretizing a continuous spatiotemporal variable of
interest Xo,d = {(xi, vi)|vi ∈ Ψo ∀i} and |ho,d| denotes the mass within. Xo,d

describes directional interactions between the O-D regions Ψo,Ψd ∈ Ω (e.g.:
xi may represent a value of any variable of interest). ho,d = (B,F ) can be
defined as a set of breakpoints B = {b1, ..., bq−1} and a set of frequency counts
F = {f1, ..., fq}. This Section describes a fully incremental strategy to maintain
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1: function stage2-dnsty-refin(Ψ, ψ, s, k, np, α, υ, rt)
2: c← 0; j ← 0;
3: for i ∈ {1, ..., k} do
4: ρ[i]← np[i]/getArea(Ψ[i]);
5: if (ω1(ρ[i], υ) = 1) then
6: j ← j + 1; Ω[j, ]← Ψ[i];
7: else
8: c← c+ 1;C[c, ]← Ψ[i];
9: end if

10: end for
11: while c > 0 do
12: i, j ← minDensityCluster(Ψ, C, s);
13: if (np[i] < n× ξ) then
14: C, c← removeRegionFromCandidates(C,C[j, ], c);
15: Continue;
16: end if
17: lenlat ← haversineDist(Ψ[i][1, 1],Ψ[i][2, 1]);
18: lenlon ← haversineDist(Ψ[i][1, 2],Ψ[i][2, 2]);
19: hdim← 1; c← c+ 1;
20: If (lenlon > lenlat) then
21: hdim← 2;
22: θC ← getSplitPoint(s[i][, hdim], rt);
23: k ← k + 1; c← c+ 1;
24: s[k], np[k]← getDataPoints(hdim, θC , s[i]);
25: s[i]← getDisjointDataPoints(s[i], s[k]);
26: ψ ← updateLeafToCondition(i, k, hdim, θC);
27: np[i]← |np[i]− np[k]|;
28: Ψ[k]← Ψ[i]; Ψ[i]← ψ(Ψ[i]); Ψ[k]← ψ(Ψ[k]);
29: C, c← removeRegionFromCandidates(C,C[j, ], c);
30: ρ[k]← np[k]/getArea(Ψk);
31: if (ω(ρ[k], υ) = 1) then
32: j ← j + 1; Ω[j, ]← Ψk;
33: else
34: c← c+ 1;C[c, ]← Ψk;
35: end if
36: end while
37: return {Ψ, ψ, k,Ω, j, s, np};
38: end function

Figure 7.4: Stage 2 Density-based ROI Selection.

histograms on Xo,d in real-time on distinct dimensional levels.

7.4.1 The Partition Incremental Discretization PiD

The PiD is a fully incremental algorithm capable of maintaining accurate his-
tograms of never-ending streams of data [Gama and Pinto, 2006]. We propose
the employment of the algorithm to maintain histograms of equal width, such
as (bi − bi−1) = (bl − bl−1) = δq, ∀i, l.

This algorithm works on two different layers. Let q, q1 be two user-defined
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number of bins and [ν1 : ν2] be the range of Xo,d. q stands for the desired
number of bins, while q1 is used as input parameter to the layer1 defined as
q1 � q. The layer1 is initialized as F = {fi|fi = 0, ∀i} and B = {ν1, ..., ν2} :
(bi − bi−1) = δq1 ,∀i. Then, the algorithm runs continuously, incrementing fi
every time a sample (xa, va) is added, where va ∈ Ψo. If xa < ν1 ∨ xa ≥ ν2,
a new bin is added to such extremity with the step δq1 . The split operator is
triggered on a bin if fi > η, where η is a user-defined parameter usually defined
as a ratio of the histogram mass. Consequently, two bins are created, each
one comprising half of the interval [bi, bi+1] and containing the same frequency
f ′i = fi/2 : f ′i ∈ N.

The layer2 is launched every time the user needs to analyze the data. It
iteratively merges the bins in layer1 to meet the desired q in terms of size inter-
vals δq. The main advantage of maintaining these layers is that it is possible to
easily produce histograms of different sizes each time it is necessary to discretize
the domain variable. Additional details on the PiD algorithm are provided in
[Gama and Pinto, 2006].

7.4.2 Following the O-D Matrix Evolution

One of the major issues of building histograms is the definition of q. There is
not a well-established general strategy to do so. Different strategies may be
employed depending on the user’s purposes. The main contribution of PiD is
that q does not need to be constant: it can be either time or sample dependent.
Whenever Ψ, Ω and M change over time, H must follow the merge and split
operations. Let δmin be the minimum interval size in H. The interval widths
in H must be subjected to the following constraint:

H = {hi(B,F )| ∃ a ∈ N : (bl − bl−1) = δmin × 2a−1, ∀i, l} (7.10)

Consequently, the problem of merging two histograms ho1,d, ho2,d into a single
one ho,d can be defined as

qo,d =
max bl −min bl

δo,d
: bl ∈ {Bo1,d ∪Bo2,d} (7.11)

where δo,d = max(δo1,d, δo2,d). Then, the layer2 is employed to turn the his-
tograms ho1,d, ho2,d into equal-width histograms as qo1,d ≡ qo2,d ≡ qo,d. Finally,
the frequency set is defined as Fo,d = {fi|fi = fio1,d + fio2,d, ∀i ∈ {1, ..., qo,d}}.

The constraint defined in eq. 7.10 makes the layer2 task easier by guarantee-
ing that δi mod δmin = 0,∀i. This property guarantees that all the histograms
in H are additive between each other. The division of ho,d into ho1,d, ho2,d is a
simple operation where Bo1,d = Bo2,d = Bo,d and Fo1,d = Fo2,d = {fi ∈ N|fi '
fiod/2 ,∀i}.

7.4.3 Dimensions and Hierarchies

The histograms are a well-known approach to provide sample-based discrete
approximations of a Probability Density Function (p.d.f.) on the value of a
continuous variable Xo,d. However, it is known that the mobility dynamics
(such as the number of taxi pick-ups/drop-offs [Yue et al., 2009] in a region, or
a bus round-trip time [Matias et al., 2010]), follow a bimodal distribution (e.g.
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peak/non-peak hour) throughout the day. Mobility dynamics can even be multi-
modal if a larger time span is considered, such as one week (workday/weekend).
This p.d.f. can be difficult to learn online. To overcome this problem, Di-
mensional Hierarchies are proposed as a flexible method to discretize other
dimensions describing Xo,d (e.g. the temporal).

Let Z be a set of χ dimensions related to Xo,d, where Zi ∈ Z denotes a
hierarchized set of |Zi| dimensional attributes. Chen et al. [2005] firstly propose
it as a method to discretize Xo,d on multiple χ dimensional axis. Depending on
the amount of data available on Xo,d, the discretization layers on each axis may
have different information granularities (i.e. zoom values).

This work adapts this definition by redefining Z as a hierarchical set of di-
mensions. Let Zχ =

⋃χ
i=1 Zi be an ordered set of multidimensional attributes

where the order is user-defined (depending on the purpose of the histogram).
The discretization intervals in each zoom level may also be user-defined or data-
driven (e.g. breakpoints on average values and/or quartiles). The proposed
framework maintains distinct histograms ho,d,i on every zoom level i by contin-
uously running the layer1 over the histograms. The layer2 is triggered prior to
each statistical analysis of ho,d,i only if |ho,d,i|> εi = 2× ε0. ε0 denotes a user-
defined parameter for the minimum amount of available data points to trigger
the layer2 on the zero-level dimensional hierarchy (i.e. base histogram; with-
out dimensional discretization). An illustrative example of this framework is
provided in the Fig. 7.5. In this example, h1 stands for a histogram of the max-
imum instant speed of a taxi driven from region o to region d by a 40-year-old
female subject between 07am and 11am.

Zχ establishes relationships between attributes of distinct dimensions. Con-
versely to Z, initially proposed in [Chen et al., 2005], Zχ does not allow different
levels of discretization in different dimensions. It is necessary to maintain ad-
ditional histograms if this analysis is intended. This step works as a threshold
search for the nearest neighbor, which tries to build statistics using past samples
where the descriptive variables are similar to the present variables. It does so by
maintaining a decision tree of each O-D where the goal is to find the histogram
which gives the best approximation to the present scenario. Consequently, the
goal is to describe Xo,d using multiple attribute-based histograms which are
more likely to approximate unimodal p.d.f. (rather than multimodal p.d.f.).

7.5 Experiments

This Section presents the experimental work performed in this context. It starts
by describing a naive online learning model built over the proposed framework to
perform Travel Time Estimation (TTE). Secondly, the experimental setup and
the evaluation metrics are described. Finally, the results obtained are presented.

It is important to highlight that we do not want to claim this induction
model as a contribution to the TTE problem per se. The literature on this
topic is extensive [Mendes-Moreira et al., 2012]. The results obtained thorough
this model work as a proof of concept on the applicability of this framework to
maintain accurate real-time statistics on the TN-based urban dynamics.
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07am-
11am

All

Female Male

< 40 yrs ≥ 40 yrs ≥ 45 yrs

11am-
4pm

h1 h2

h4

h5

h6

𝑍0
𝜒

= None

𝑍1
𝜒

= Gender

𝑍2
𝜒

= Age

𝑍3
𝜒
= Daytime h3

Figure 7.5: Example of a multidimensional hierarchy to discretize attributes.
Note that the zoom level and the discretization intervals may not be constant.

7.5.1 An Application for Travel Time Estimation

TTE aims to predict the cruise time of a given trip between an O-D pair of
locations. It can be defined as short or long-term depending on the predicting
horizons [Mendes-Moreira et al., 2012]. The most common is the short-term one.
It is commonly employed in Automatic Traveler Information Systems (ATIS)
and Navigational GPS devices [Chien et al., 2002; Carrascal, 2012]. Producing
online predictions on this stochastic variable is a difficult problem. Typically,
these systems employ batch regression models along with online models (such as
time-series analysis and/or state-based induction models) to update the initial
predictions using the real-time vehicle trace [Chien et al., 2002; Chen et al.,
2004; Bin et al., 2006].

This work considers the TTE in a more classical approach: given a pair of
O-D locations (vo, vd) at time instant t, the target variable is the cruise time
between these locations, expressed as βo,d,t. Let ho,d,z be the most suitable
histogram to describe the present scenario given the values of the dimensional
attributes defined in Zχ. Let b̄i = (bi− bi−1)/2 denote the center of the interval
corresponding to the upper and lower bounds on the bin i. βo,d,t can be obtained
as follows:

(7.12)βo,d,t =
1

Υ
×
qo,d,z∑
i=1

[(
fo,d,z,i

max(fo,d,z,i)

)2

× ¯bo,d,z,i

]

Υ =

qo,d,z∑
i=1

(
fo,d,z,i

max(fo,d,z,i)

)2

(7.13)

where T denotes the time elapsed between t and t − 1. The quadratic nor-
malization of the frequencies in the eq. 7.12 aims at minimizing the well-known
vulnerability of equal-width discretization techniques: outliers [Gama and Pinto,
2006].
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7.5.2 Experimental Setup

To define qo,d,i, it was necessary to have a rule capable of dealing with large
volumes of samples as long as it meets the constraint expressed in the eq. 7.11.
It can be expressed as follows:

qo,d,i ' d|ho,d,i|(
2
3 )e : bo,d,i − bo,d,i−1 ≤ 120 ∧ qo,d,i ∈ N (7.14)

This rule is merely user defined and it was chose after carrying out a sensitiv-
ity analysis on five different equations to set the number of bins qo,d,i. These
methods were developed following closely the Section 2 in [Birge and Rozen-
holc, 2006]. A sensitivity analysis was performed for the parameters n, rt, φ, ξ
and α based on a simplified version of Sequential Monte Carlo method over an
older dataset (the reader can consult the survey in [Cappé et al., 2007] to know
more about this topic). These parameters were chose because are the ones
which variations reflected some changes on the method outcome during such
analysis. The tested values were all the admissible combinations (i.e. α > ξ)
on the following ranges: n = {2000, 4000, 6000, 10000}, α = {0.02, 0.05, 0.10},
rt = {0.1, 0.2, 0.3}, ξ = {0.005, 0.01} and φ = {0.3, 0.5, 0.8}. The best combi-
nation of values for this set of parameters was then selected to conduct these
experiments. This combinations is is detailed in Table 7.2, along with the re-
maining ones.

In the experiments, the time dimension is expressed in seconds. They were
conducted using the R Software [R Core Team, 2012]. The graphical representa-
tions of the city O-D regions were obtained using the package [RGoogleMaps]. The
layer-off was just triggered once to start the algorithm. Z = {Distance, T ime}
were the dimensions considered, while Zχ = {haversineDistance, dayTime, weekType,
dayType} was defined as the multidimensional hierarchy set.

The (1) haversineDistance has an unique breakpoint based on historical data
(the average distance in the trips described by ho,d,0). The remaining three at-
tributes have breakpoints for their intervals defined as (2) {07h-11h, 11h-16h,16h-21h, 21h-07h},
(3) {Workday,Weekend} and the (4) seven days of the week, respectively. The
sea was considered a constraint to compute a region area. This was done by
defining a minimum longitude along the coast. The areas were calculated by
approximating the constraints using trapezoids.

The histograms built were used as input for the prediction model presented
here to infer the travel times of the most recent 250,000 trip samples (i.e. O-D
trip pairs (vo, vd)). The attribute values of each sample were used to select the
most suitable histogram. The option chosen was to build histograms in every
region Ψi ∈ Ψ, maintaining a quadratic k × k O-D matrix over the entire city.
However, the histograms were not employed if Ψo /∈ Ω in the current time in-
stant. Whenever there is no zero-level histogram available, a naive approach is
followed by assuming a constant cruising velocity of 30 km/h. Predictions were
also produced on the travel time interval by selecting the minimum number of
consecutive bins containing, at least, 75% of the mass |ho,d,i|.

To demonstrate robustness, the model was tested in three distinct scenarios:
maintaining the histogram framework over an O-D matrix built on a grid-based
City Decomposition (by dividing the city into 7 × 7 equally sized areas) and
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Table 7.2: Parameter Setting used in the experiments.

Parameter Value Description
n 6000 number of O-D points used on the layer-off

α 0.05×N maximum mass ratio contained in a O-D subregion
rt 0.1 minimum excessive mass ratio to refine a O-D subregion
ξ 0.01×N minimum mass ratio contained in a O-D subregion

φ
0.5 of the avg.
mass density

minimum mass density in a O-D subregion

p each sample split/merging test periodicity on the layer-on

qo,d,i eq. 7.14 desired number of bins on layer2

q1
270 :

width (δq1)=10s
initial number of bins in layer1

ε0 100
minimum number of samples to

build a zero-level histogram
δmin 2s minimum interval width for the histograms
η 0.30 maximum total mass ratio contained on a single bin in layer1

comparing it with the mass-based approach; employing zero-level histograms
vs. the proposed multidimensional discretization, and monitoring the perfor-
mance of the induction algorithm over time against two State-of-the-Art offline
regression methods on TTP: the Random Forests [Mendes-Moreira et al., 2012]
and the Support Vector Machines [Mendes-Moreira et al., 2012; Bin et al., 2006].
The regression features were defined as follows: (1) Day, coded as a sequence of
integer numbers; (2) Starting Time (in seconds) and (3) Day of the week. The
packages [randomForest], [e1071] provided the methods’ implementations used in
the experiments. They were executed using their default parameter setting.
Each O-D pair was treated as an independent regression problem (as in the
induction model proposed).

7.5.3 Results

Fig. 7.6 illustrates the multiple stages of estimating the O-D matrix using HS
Trees. The first four subfigures report the Offline Estimation process, while the
fifth reports a layer-on iteration. The fifth subfigure compares the memory used
during the online estimation with the number of data points processed. The last
subfigure reports the evolution of the algorithms’ prediction error throughout
time. This report is based on a normalized RMSE. This metric is calculated
firstly by computing the average RMSE throughout time for each predictive
method. Then, all the series obtained are divided by the same maximum value.
The aggregated results for all the tested samples are presented in Tables 7.3 and
7.4. The effects of the multidimensional discretization framework are exempli-
fied in Fig. 7.7. In average, the layer-off took 92 sec. of computational time
on each run, while the layer-on just took 0.01sec. per iteration.

7.6 Discussion

Five main conclusions can be drawn from the results presented. The (1) pro-
posed O-D matrix estimation method is able to discover dense ROI. Note the
evolution from Fig. 7.6a to Fig. 7.6c. The area uncovered in the northwest area
is the city’s airport. This ROI was initially contained in a vast area, but the
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26 − 3 %
27 − 3 %
28 − 3 %
29 − 3 %
30 − 3 %
31 − 3 %
32 − 3 %

(a) Final City Decomposition.
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1 − 0 %
2 − 3 %
3 − 1 %
4 − 3 %
5 − 3 %
6 − 3 %
7 − 3 %
8 − 3 %
9 − 1 %
10 − 1 %
11 − 3 %
12 − 3 %
13 − 3 %
14 − 1 %
15 − 3 %
16 − 3 %
17 − 3 %
18 − 3 %
19 − 1 %
20 − 3 %
21 − 3 %
22 − 3 %
23 − 3 %
24 − 3 %
25 − 3 %
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●
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●

●

●

●

●

●

26 − 3 %
27 − 3 %
28 − 3 %
29 − 2 %
30 − 3 %
31 − 3 %
32 − 2 %
33 − 2 %
34 − 1 %
35 − 3 %
36 − 2 %
37 − 2 %
38 − 2 %
39 − 1 %
40 − 2 %
41 − 1 %

(b) An iteration on the
Density-based ROI Selection.
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(c) Final O-D regions after
the layer-off process.

(d) O-D Regions after processing
200,000 data points.
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Figure 7.6: Illustration of the Time-Evolving OD-Matrix Estimation Process.
Note the density refinement in the northwest airport area discovered in C), the
ability to adapt to a large increase in the region’s mass in (D), and the low
memory requirements to maintain a time-evolving framework in (E).

TT Histogram between O−D pair (22,11), zoom=0

0 132 308 484 660 836 1012 1232 1452 1672 1892 2112 2332 2552 2772

0
4

8
12

16
20

24
28

32
36

40
44

(a) Zero-Level
Bimodal Histogram.
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(c) Zoom Level 2 of
dimensional discretization.

Figure 7.7: Example of the multidimensional discretization effects of the travel
time density function. Note that the zero-level histogram approximates a bi-
modal p.d.f while the zoom=2 in (C) highlights a unimodal p.d.f. by selecting
the trips occurred in 11am-4pm.

density refinement staged uncovered its true shape. However, such refinement is
only performed by launching the layer-off. This is one of the main drawbacks
of this methodology. Setting an adequate periodicity to launch this layer pre-
pares the system’s ability to react to the formation of highly dense zones. Yet, a
high periodicity will largely increase the computational effort in the processing
task.
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Table 7.3: TTE Prediction Evaluation comparing a Grid-Based City Decompo-
sition and a Mass-Based City Division.

RMSE MAE Average Interval Width In Interval (%)

Grid-Based 349.33 222.22 466.06 66.54 %
Mass-Based 306.34 198.66 531.47 79.10 %

Table 7.4: Comparison of different online/batch predictive models on TTE.

RMSE MAE Average Interval Width In Interval (%)
Random Forests 307.94 209.89 Not Applicable
SVM-linear 321.96 189.87 Not Applicable
Histogram-Based MaxZoom=0 316.69 210.60 557.38 79.13 %
Histogram-Based MaxZoom=4 306.34 198.66 531.47 79.10 %

The system is able to maintain a (2) flexible O-D matrix over time by up-
dating the low levels of memory required. Fig. 7.6d highlights the framework’s
flexibility to sudden changes in the cluster’s masses. Fig. 7.6e shows that the
algorithm maintains a logarithmic space complexity. Note that this complexity
is not affected by the layer-off launching periodicity.

The mass-based city decomposition (3) outperforms the grid-based one. It
is not only able to discover equal-mass ROI, but also to maintain equally-sized
cells on the O-D matrix. It is not surprising to find that the grid-based his-
tograms are less suitable than the histogram proposed in this thesis for TTE
(as observed in Table 7.3). The grid-based simplicity is its best quality as well
as a strong drawback. The proposed HS trees are also simple but data driven,
which strengthens the distribution of data in their leaves.

This incremental approach (4) is more suitable than the State-of-the-Art
batch regression models in the present TTE scenario. Since the models obtained
from the training set are not updated using the newly arrived samples, their per-
formance decreases throughout time (see Fig. 7.6f and Table 7.4). Even if the
SVM-linear presents the lower MAE in Table 7.4, it is highly questionable to
claim that it would be able to maintain such performance, especially if we see
its evolution in Fig. 7.6f. The mean deviation (i.e. ' 200sec.) also reflects the
stochasticity of the variable, demonstrated in Fig. 7.2.

It is also important to highlight the histogram’s ability to produce accurate
intervals in the domain of the target variable. The accuracy of these inter-
vals can be partially user-defined by setting a minimum mass ratio, similarly to
what was done in these experiments. However, it also depends on the quality
of the histograms provided. Table 7.4 denotes (5) that the multidimensional
discretization of the explanatory variables has a considerable effect on the pre-
diction’s quality. This reduction of the target variable’s variability is explained
on the example provided in Fig. 7.7 (where it is possible to reduce the initial
number of modes to just one).
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Despite its contributions to the estimation of urban dynamics and related
problems, the proposed methodology also presents two drawbacks: the afore-
mentioned need to launch the layer-off from time to time, and the large amount
of parameters. A sensitivity analysis was carried out on the most sensible subset
of parameters, which strengthens its values. It is claimed that most parameters
only have an impact on the granularity or reactiveness of the model. However,
the truth is that its setting, even considering some apriori parameter fitting
methodology, requires some previous experience on this problem.

It is also important to sustain that this framework does not address the
presence of constraints (i.e. the river). This may cause clusters containing the
two unconnected river margins to be formed. Fig. 7.6 exemplifies this undesir-
able effect, especially for ROI downtown. However, its effects are minimal in
this specific study, which happens due to the high number of bridges in these
regions (four), and due to their high density levels. To learn more about this
topic, go to [Tung et al., 2001].

This framework is applicable and/or adjustable to any urban analysis prob-
lem. Yet, it may not present a meaningful contribution to problems where the
expected sample rate is large enough to employ batch learning models. However,
this is not the case of real-time decision support systems, such as the recommen-
dation models. Typically, their ability to produce accurate recommendations for
the passenger finding problem depends on the production of reliable predic-
tions on some dependent variables, such as the spatiotemporal distribution of
the demand (as described on Chapter 6) and the regions’ profitability [Yuan et
al., 2011b]. We want to claim this work as a straightforward contribution
to maintain statistics of interest and/or induction models about the decision
variables of real-time recommendation models on this topic, regardless of their
target variable.

7.7 Related Work

The estimation of time-dependent O-D Matrices is a thrilling problem in many
research areas. Each area may face the problem using different approaches,
assumptions and ends. One of the most classical approaches is the real-time
estimation of traffic flows on a freeway network. It consists of estimating the O-
D flows using the real-time link counts and/or Automatic Vehicle Identification
systems. The State-of-the-Art techniques to address this problem are Kalman
Filters and the Generalized Least Squares [Dixon and Rilett, 2002; Zhou and
Mahmassani, 2006; Zhu and others, 2007; Barceló et al., 2013].

This work focuses on analyzing the O-D urban dynamics and it differs from
the freeway-based approaches because it focuses on human behavioral patterns
rather than on traffic modeling itself. Recently, a promising approach was also
presented in [Zheng et al., 2011]. This work also models urban mobility using
O-D matrix matrices. However, they constrain the matrix boundaries to be
major roads - which can be faced as a limitation of such approach.

The employment of ubiquitous (such as the ones provided by the taxi net-
works) rather than static sensors is also a key feature in this approach. The
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different discretization levels of this framework can be seen as an opportunity
to maintain multiple statistics of interest of the O-D patterns instead of just
one. The multidimensional tree-based discretization of the trips’ attributes is
straightforward on the real-time O-D matrix estimation problem, regardless of
the research goal and scope.

7.8 Conclusions

This Chapter proposes a novel technique to maintain statistics regarding the re-
lationships between Regions of Interest (ROI) in a urban area. This technique
distinguishes itself from the existing State-of-the-Art because it employs mul-
tiple discretization levels over both the explanatory and target variables.
Experiments conducted in a real-world case study validated its contributions
in different aspects of this problem. Such experiments focused on a particu-
lar task (apriori Travel Time Estimation) using only one data source (i.e. taxi
networks). However, this framework is prepared to handle other variables and
multiple data sources. Its incrementality is the key of its adaptive charac-
teristics. Due to these reasons, it represents a relevant contribution for those
interested in inferring the future values of urban dynamic variables in real-time.

The three previous Chapters of this thesis addressed concrete Planning and
Control problems on PT networks. However, this framework has a wider scope
by addressing a more fundamental problem. Concretely, it focuses on a most
general topic that is directly related with this thesis: How can we take full
advantage on the multiple high-speed GPS data streams that are being produced
on an urban environment? By answering this question, we intended to provide a
sustainable way to handle these large amount of data in order to extract usable
information from it. Such information is valuable in many research topics. It
will be key to maintain the current quality levels of human mobility on the
major metropolis worldwide.

As many other incremental frameworks, the error introduced by the con-
tinuous approximations performed by the different discretization levels make it
necessary to maintain an offline operator which may be triggered from time to
time to reduce the error. The most relevant aspect of the error introduced is the
absence of an online density refinement of the mass-based clusters obtained
through split/merge operations. Density-based spatial clustering algorithms are
seen as promising approaches to address this issue. However, it is not possible
to confirm if they are directly applicable to this specific context. This problem
is an open research question.
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Chapter 8

Conclusions

Today, there are multiple sources of rich spatiotemporal data related with the
human mobility in the major urban areas. One of the most well known ex-
amples of such sources is the GPS. This location-based data contain patterns
that can lead to a global optimization of the way that people can actual travel
from one point to another. Such optimization can provoke multiple benefits
from both passengers and mass transit agencies. In this thesis, we are focused
on improving the profitability of such transit agencies by mining the GPS data
broadcasted by their fleets (namely, taxis and buses networks). These vehicular
networks provided an unprecedented opportunity of learning the human mo-
bility behavior. Both comprise real-time sources of spatiotemporal data with a
high level of detail whose, together, meet no parallel in the current literature.
Consequently, our ultimate goal is to take advantage of the unique character-
istics of these data sources to improve their operations. More than performing
data analysis to uncover useful information to support the decision makers, we
aimed to perform it in real-time.

To accomplish such goal, we undertook an explorative approach. We started
it so with an analysis to the current State-of-the-Art to identify research oppor-
tunities to be explored by mining the GPS data broadcasted by these vehicles.
The ultimate goal is to provide sustainable frameworks, from the computational
point of view, to deal with such massive amounts of data in order to extract
as much as possible usable information from them. As result, twelve specific
research topics were drawn from such review (which are identified in Section
2.3). Six of these topics were covered by the research goals proposed to this the-
sis (defined in Section 2.4). The research performed to accomplish such goals
provided contributions that resulted on a total of sixteen publications (two
are still under peer review). They are ready to be deployed on any mass transit
agency possessing a fleet equipped with GPS devices (on the case of the Control
frameworks) and/or containing large-scale historical traces of their operations
(to perform Planning tasks).

This Section starts by summarizing these contributions, to then describe
how these goals were accomplished, as well as the publications that resulted
from such contributions. Finally, some future research lines are pointed out.
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8.1 Contributions

This thesis provided multiple contributions on this topic. These contributions
were already described throughout this document. Even so, they are summa-
rized as follows.

The Part I provides an overview of the problematic that we are addressing
on this thesis divided on three chapters. It (1) starts with a brief introduction
on the basics about public transportation problems and spatiotemporal data.
Then, (2) a survey on the current State-of-the-Art on data driven methods for
Planning and Control on Public Transportation Networks is provided in Chap-
ter 2. It allowed to identify multiple issues on the current systems that could
be improved by mining GPS data giving certainly opportunities of research. It
concluded that it is mostly the Operational Control that is benefiting from this
technology - while the Planning tasks are commonly carried out using traditional
methods on transportation engineering. Hence, there are multiple research op-
portunities provided by this type of spatiotemporal data that were identified on
this study. Some of them were already addressed in this study. Nevertheless,
the Chapter 2 can be faced as a landmark review from which other researchers
can build their work on. This Part ends with Chapter 3, where an overview of
the online learning techniques and methods is provided.

The problematics about the Planning and Control on Mass Transit agencies
studied on this thesis are detailed throughout the Part II - which contains two
chapters. We departed from a (4) more persistent planning problem concerning
the evaluation of the Schedule Plan’s Coverage to then address (5) a real-time
data driven Control framework able to tackle every kind of sporadic issues.

The SP coverage evaluation (4) concerns to assess whether the schedule
coverage, in terms of the days covered by each schedule (e.g. Saturdays and
Sundays, Workdays and Holidays), still meets the network behavior. Chapter 4
describes a ML framework which explores the variances of the round-trip times.
It does it so by grouping each one of the days available into one of the possible
coverage sets. This grouping is made according to a distance measured between
each pair of days where the criteria rely on their profiles. As output, rules about
which days should be covered by the same timetables are provided. Such rules
can be used by the operational transportation planners to perform the above-
mentioned evaluation. These rules also provide insights on how can the current
coverage be changed in order to achieve that.

Chapter 4 presents an Automatic Control framework to mitigate the forma-
tion of (5) Bus Bunching in real-time. The framework depicts a powerful combi-
nation of State-of-the-art tools and methodologies such as Regression Analysis,
Probabilistic Reasoning and Perceptron. The prediction’s output is then used
to select and deploy a corrective action (e.g. stop skipping) to automatically
prevent bus bunching. Simulation results demonstrate that this method could
eliminate most of the bunching occurrences and still decrease average passenger
waiting times without prolonging in-vehicle times.

Both frameworks are ready to be deployed on any mass transit agency that
have historical spatiotemporal data and fleets equipped with a full Automated
Data Collection system. They can be used together or standalone and they
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meet no parallel on the literature by the novel types of information that they
can provide about the network behavior.

The problem approached in Chapter 4 uncovered the need of monitoring
closely the regularities in the human behavior in order to antecipate demand
patterns such as recurrent (i.e. under certain conditions) peaks or valleys. This
problematic is deeply approached in Part III, which analyses the urban mobility
problems through a taxi company’s perspective. Throughout the two Chapters
of this Part, we study the taxi stand recommendation problem. It concerns not
only the (6) short-term demand but also their profit and (7) the travel time
prediction between different city areas.

Chapter 5 depicts a predictive framework to typify the short-term taxi-
passenger demand over an urban area. It does so by (1) predicting the number
of services to be demanded in each area/stand as well as their (2) fare-based
profitability. This framework uses time series analysis methods such as non-
homogeneous Poisson processes and ARIMA to perform such estimation on the
demand’s future values. It accomplished a low error rate when evaluated using
real world data. Its adaptive characteristics represent an advance to the current
State-of-the-Art because they allow to increase the flexibility of the service offer
in order to successfully handle bursty demand peaks.

Chapter 6 introduces a novel three-step incremental framework to maintain
statistics on the mobility dynamics over a time-evolving origin -destination (O-
D) matrix. This framework intend to provide a sustainable way to handle these
large amount of data in order to extract usable information from it indepen-
dently of the problem we want to solve (namely, its variable of interest). It
relies on multiple incremental methods which discretize the data over its multi-
ple dimensions to approximate, as much as possible, the p.d.f. in place at each
moment. The Travel Time Estimation (TTE) problem was regarded as a real-
world application by predicting how much (vacant) time a Taxi Driver would
take to go from a given city area to another after dropping-off a passenger.
This work also enables the possibility of easily merge location-based data from
multiple sources (e.g. buses, taxis, smartphones), independently of its spatial
granularity.

All the abovementioned ML frameworks were successfully evaluated using
data broadcasted by major bus and taxis operators running in the city of Porto,
Portugal. The publications resulted from these contributions are described be-
low.

8.2 Publications

This work resulted on a total of 16 publications: 5 journal papers (where two
are still under peer review), 5 book chapters, 4 conference papers and 2 other
workshop papers.

The Chapter 2 resulted into a survey in the IEEE Transactions on Intelli-
gent Transportation Systems (IEEE TITS) [Moreira-Matias et al., 2015]. The
work of Chapter 4 was published on a conference paper published on the IEEE
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International Conference on Intelligent Transportation Systems (ITSC) [Matias
et al., 2010] and extended later to a journal paper published on the Information
Sciences Mendes-Moreira et al. [2015]. The framework described in Chapter 5
led to a total of 5 papers: firstly, an offline unsupervised learning technique was
developed to analyze the causes of such BB events. Such work was published on
a workshop Moreira-Matias et al. [2012c] and later, on a book chapter Moreira-
Matias et al. [2012b]. Then, this work was extended to a real-time predictive
methodology published on a book chapter Moreira-Matias et al. [2014a] and on
a journal paper submitted to the Journal of Applied Soft Computing (and still
under peer review). The results of this work were also published on the PhD
spotlight session of European Conference of Machine Learning (ECML) together
with some results of the Chapter 6 [Moreira-Matias et al., 2014c]. Chapter six’s
work led to a total of 5 publications: an offline demand prediction method on
the ITSC Moreira-Matias et al. [2012d] and a book chapter published by the
International Symposium of Intelligent Data Analysis (IDA) Moreira-Matias et
al. [2012e] where the ITSC’s work is tested on a real-time environment. Then,
this work was extended to a fully incremental methodology by suggesting the
employment of first-order updates to compute the ARIMA’s weights in the Por-
tuguese Conference on Artificial Intelligence Moreira-Matias et al. [2013a] (book
chapter). All this work was then summarized in a journal paper on IEEE TITS
Moreira-Matias et al. [2013b]. Finally, The fare-based stand classification frame-
work was recently published as a conference paper on ITSC Moreira-Matias et
al. [2014b]. The Chapter 7 work led to one journal publication which is still
under peer review on the Expert Systems with Applications. Two more publi-
cations were made to extend the work of Chapters 6 and 7 towards a real-time
recommendation model: a conference paper on the IEEE Vehicular Network
Conference (VNC) Moreira-Matias et al. [2012a] and also on a workshop paper
on the International Joint Conference on Artificial Inteligence (IJCAI) Moreira-
Matias et al. [2013c].

Throughout this thesis, some additional research was performed. Such works
were also about applying ML frameworks to real world problems from different
domains. Some examples are Wind Ramp Detection Ferreira et al. [2011], Text
Mining Moreira-Matias et al. [2012f], Discretization methods for the Scheduling
of Call Center’s Agents Moreira-Matias et al. [2014d], on optimizing autonomous
parking lots Nunes et al. [2014] or on data driven driver detection (a journal
paper still under peer review on Transportation Research: Part F).

8.3 Goal Evaluation

Five primary goals were established to this thesis in Section 2.4. All were
accomplished throughout this thesis. The real-time smart recommendations
about the most adequate taxi stand to head to based on the current network
status encloses the research goal which was not 100% accomplished. However,
we must highlight that the ground breaking research is presented on this thesis
while the work to be done is focused on secondary issues that, despite their
relevance, do not comprise the major engine behind this problem.

As it was previously described in Section 2.2.2, such Recommendation relies
on four variables from which three need to be predicted somehow. All these
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variables can be predicted using the frameworks introduced in Chapters 5 and
6. Any recommendation model will depend on the accuracy of these frameworks
- which as been demonstrated to be high throughout this thesis on this specific
context. Even so, we did not provided any evidence on how we could combine
these multiple outputs on a single recommendation model (which is discussed
in the next section).

The secondary goal was accomplished by the work described in Chapter 6.
The time-evolving O-D matrix estimation framework can be fed by any source
of spatiotemporal data concerning the human mobility, independently of the
variable of interest and of the data granularity. Some examples on how this
could be explored are provided as follows: (1) to estimate flow counts by joining
up the AVL/APC data broadcasted by the buses to the taxi GPS traces or
to (2) simply use the AVL data of buses traversing non-stop route sections
(i.e. without bus stops) with the taxi traces to perform travel time estimation.
Moreover, the results presented in Section 7.5 already demonstrated that this
framework increases its accuracy along the amount of data available to it (i.e.
by increasing the zoom level on the multidimensional attribute discretization).
However, such concept still requires a proper proof of concept to demonstrate
its complete validity.

8.4 Future Work

Today, we live in a true Big Data era. The problem is not how to obtain the
data anymore...but how we handle the data that we have. As the value of the
data availability goes down (ex.: many transportation companies already pub-
lish their AVL data for free access on the web [Dublinked, 2015; Beijing City
Lab, 2015] ), the value of the information we are able to extract from it rises at
a same rate. It happens so because it is getting harder to mine all these sources
of information on a sustainable way.

This thesis is focused on Public Transportation problems. However, some
of the methods developed can be applied to a wider range of problems (e.g.:
web traffic management using the work of Chapter 7). Moreover, we approach
the problematic of mixing multiple data sources into one single framework (also
known as Data Fusion). Such topic provide ground-breaking opportunities for
the data mining research community throughout the next few years (e.g. on the
estimation of time-evolving O-D matrices).

Throughout this document, promising opportunities and issues to be solved
on future research were already identified (see, for instance, Section 2.3). It
is possible to summarize them into five large areas: (1) parametrization, (2)
evaluation, (3) framework development, (4) feature generation and (5) recom-
mendation. Specific topics on each one of this areas are pointed out below,
followed by some final remarks.
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8.4.1 Parametrization

1. How can we determine the optimal number of schedules k to build a Sched-
ule Plan given the current network and demand behavior (i.e. AVL data)?

2. How can we perform a dynamic setting of the parameters η (i.e. an
headway-based minimum threshold to consider a BB event) and χ (i.e.
a minimum BB likelihood threshold to deploy a corrective action) for
each individual route and possibly also time-dependent (i.e. η(t, route),
χ(t, route))?

3. How is it possible to define a good granularity for each case study of
interest on the fare-based model (i.e. histogram parameters, discretization
rule set, etc.)?

8.4.2 Evaluation

1. To create an unique, integrated and global evaluation indicator on the
SP reliability considering the company’s perspective on the evaluation by
including external factors in the evaluations, or by developing cost-related
evaluations;

2. Evaluating the changes performed on the SP is difficult prior to deploy-
ment. Even there are various works focused on improving the SP, not
many of them evaluate the impact of the suggested changes. The before-
and-after evaluation studies are crucial to quantify the relevance of these
adjustments.

3. To evaluate the taxi-passenger demand model on Scenario 2 urban areas,
where the demand is larger than the service offer.

8.4.3 Framework Development

1. A large gap identified in the literature has to do with the AVL-based
long-term TTP. The regression models represent the most relevant slice of
the State-of-the-Art on AVL-based short-term TTP. However, some works
have also demonstrated their usefulness in long-term problems [Mendes-
Moreira et al., 2012]. The AVL data makes it possible to explore these
models to improve the SP (e.g. the timetabling or the driver’s scheduling).

2. Slack time is a well-known technique to accommodate travel time variabil-
ity. The availability and the reliability of the historical AVL data used
today represent a clear opportunity to improve the schedules using this
well-known strategy by, for instance, setting optimal slack times to each
trip.

3. The work on Chapter 7 relies on isothetic boundaries for the spatial cluster
definition. Is it possible to relax this constrain to consider more realistic
approaches to the real ROI shapes and still maintain their incrementality?

4. Is it possible to also consider density-based approaches to improve the
spatial clustering framework in place on the O-D matrix estimation frame-
work?
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8.4.4 Feature Generation

1. Feature Selection and Generation are important building blocks of any re-
gression analysis. However, there is not much research on performing this
task specifically for TTP. This is significantly important when employing
some type of regression algorithms (such as SVR and ANN), which are
highly sensitive on the feature set.

2. The Multidimensional Discretization method suggested in Chapter 7 used
a predefined hierarchy of features. However, their relevance could also be
mined from the data directly by using, for instance, Principal Component
Analysis.

8.4.5 Recommendation

1. Most AVL-based works on improving Operational Planning (OP) on Mass
Transit Agencies focus on the Schedule Plan. The AVL data makes it pos-
sible to perform a bottom-up OP evaluation, namely correctly exploring
the available resources or even reducing them if possible to meet the cur-
rent demand. A complete AVL-based framework to re-design all the
steps of the OP is a research goal on this topic for the medium term
future.

2. How can we combine all the decision variables on taxi stand choice problem
to obtain an integrated recommendation model? One possibility is to as-
sign a score to each stand k computed as linear combination of the values
of such variables in the current instant (i.e. RSk(t) =

∑
i = Pri(t)× wi :∑

i = wi = 1 where Pri(t) denotes the variable’s values on each moment
and wi denote their relevance, computed as an weight). Consequently, the
problem would be to obtain such weights.

3. On these dynamic problems, the weight sets associated to the decision
variables are commonly time dependent (i.e. wi(t)). An initial approach to
such problem was performed in [Moreira-Matias et al., 2012a] by assigning
wi(t) with a normalized version of each prediction residuals. However, this
work just uses demand-based information to perform a proof of concept
of its utility. Further experiments are required to demonstrate its validity.

8.5 Final Remarks

Novel challenges awaits the data enthusiasts. The speed of data communication
and its rising quantity push the Machine Learning methods beyond unprece-
dented borders. Now, it is not enough to extract information from data in
real-time. We need to be able to quantify its relevance at each moment for
every decision making process - and, obviously, to continuously learn from their
outcomes. Moreover, we have to do it combining multiple sources such as differ-
ent vehicles, devices and types of information (e.g. weather, telecommunications
and shopping records, etc.). This thesis provided surveys, data driven methods
and mathematical formulations that minimized the distance between such fu-
turistic vision and the present reality. Its impact on the Public Transportation
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problems approached in this document is undeniable. These solutions are the
novel State-of-the-Art on such topics.
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Appendix A

Source Code of Consensual
Clustering

1 consensusMatr ix=function ( c l )
2 {
3 l en=length ( c l$ c l u s t e r )
4 m<matrix (0 , len , l en )
5 for ( i in 1 : l en )
6 {
7 for ( j in 1 : l en )
8 {
9 i f ( c l$ c l u s t e r [ i ]==c l$ c l u s t e r [ j ] )

10 {
11 m[ i , j ]=1
12 }
13 }
14 }
15 return (m)
16 }
17 l i s t matrix dtw=function (X)
18 {
19 m<matrix (0 ,365 ,356)
20 l s mdtw< l i s t ( )
21
22 for ( j in X)
23 {
24 s< s p r i n t f ( ”%s . csv ” , j )
25 o r i g . data< read . csv ( s )
26 new . data< Gera ( o r i g . data )
27 l s mdtw< c ( l s mdtw, l i s t (DTW( o r i g . data ,new . data ) ) )
28 s< s p r i n t f ( ”%s proce s sed ” , j )
29 print ( s )
30
31 }
32 return ( l s mdtw)
33
34 }
35

171
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36 generate consensus c l u s t e r=function ( l s mdtw,X, h ,maxK,PATH)
37 {
38 s< s p r i n t f ( ”%s . csv ” ,X[ 1 ] )
39 o r i g . data< read . csv ( s )
40 c l u s t e r l s t < l i s t ( )
41 for ( k in 2 :maxK)
42 {
43 i < 0
44 m<matrix (0 ,365 ,365)
45 for ( j in 1 : length ( l s mdtw) )
46 {
47 for ( l in 1 : h)
48 {
49
50 c l < kmeans ( l s mdtw [ [ j ] ] , k , n s t a r t =10)
51 m<m+consensusMatr ix ( c l )
52 i < i+1
53 }
54 }
55
56 m<m/ i
57 m< 1 m
58
59
60 dt< s p r i n t f ( ”” )
61 s< s p r i n t f ( ”%sConsensua lDayDistr ibut ion . txt ” ,PATH)
62
63 i f ( k==2)
64 write (dt , f i l e=s ,append=FALSE)
65
66 c l < kmeans (m, k , n s t a r t =10)
67 c l u s t e r l s t < c ( c l u s t e r l s t , l i s t ( c l ) )
68 d< dayDi s t r ibut i on ( c l , o r i g . data )
69 write . table (d , f i l e=s , col .names=TRUE,append=TRUE, sep=”\ t ” ,row

.names=TRUE)
70 }
71
72 dt< s p r i n t f ( ”Legenda : SEGUNDA FE,TER,QUA,QUI ,SEX,SAB,DOM>

Numero de Dias da Semana no Clus te r ; FER,PON,NOR,TOL>
Tipo de Dias no Clus te r ; FDS > Fins de Semana no Clus te r ;
SP >Dias da Semana e de Fim de Semana em Periodo Nao
Esco la r ; DTO> Total de Dias no Clus te r ” )

73 write (dt , f i l e=s ,append=TRUE)
74 return ( c l u s t e r l s t )
75 #consensus< genera te consensus c l u s t e r ( l s mdtw , c (”300 1

1” ,”301 1 1” ,”205 1 1” ,”205 1 2” ,”505 1 1” ,”505 1 2”)
,10 ,4 ,”T:\\”)

76
77 }
78 consensus c l u s t e r bus=function (X, h ,maxK,PATH)
79 {
80 l s mdtw< l i s t matrix dtw(X)
81 consensus< generate consensus c l u s t e r ( l s mdtw,X, h ,maxK,PATH)
82 return ( consensus )
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83 }
84
85
86
87 graph bus=function (CLUSTER,PATH)
88 {
89 #1264 x695
90 n< length (unique (CLUSTER$ c l u s t e r ) )
91 s< s p r i n t f ( ”%s f i g u r e k=%03d . png” ,PATH, n)
92 png ( f i l ename=s , he ight =695 , width=1264 , bg=”white ” )
93 l en < length (CLUSTER$ c l u s t e r )
94 mes< c (31 ,28 ,31 ,30 ,31 ,30 ,31 ,31 ,30 ,31 ,30 ,31 )
95 l en a< round( l en/31)
96 plot ( 1 : length (CLUSTER$ c l u s t e r ) ,CLUSTER$ c l u s t e r , type=” l ” )
97 a=1; for ( i in 1 : l en a ) {points ( a : ( a+mes [ i ] ) ,CLUSTER$ c l u s t e r [ a

: ( a+mes [ i ] ) ] , col=i ) ; a< a+mes [ i ]}
98 dev . of f ( )
99 }

100
101
102
103 saveData=function (DATA,SOURCE,ARR,PATH,BUS ID ,ALGORITM)
104 {
105 dt< s p r i n t f ( ”” )
106 s< s p r i n t f ( ”%s%sdayDi s t r i bu t i on . txt ” ,PATH,BUS ID)
107 write (dt , f i l e=s ,append=FALSE)
108 i f (ALGORITM==” consensus ” )
109 {
110 l ibrary ( ConsensusClusterPlus )
111 r e s u l t s < ConsensusClusterPlus (SOURCE,maxK=7, reps=50,pItem

=0.8 , pFeature=1)
112 }
113 for ( i in ARR)
114 {
115 sk< s p r i n t f ( ”%s%skmeansk=%d . txt ” ,PATH,BUS ID , i )
116 i f (ALGORITM==”kmeans” )
117 {
118 k< kmeans (SOURCE, i )
119 }
120 else
121 {
122 k< data . frame ( c l u s t e r=r e s u l t s [ [ i ] ] [ [ ” consensusClas s ” ] ] )
123 }
124 d< dayDi s t r ibut i on (k ,DATA)
125 write . table (d , f i l e=s , col .names=TRUE,append=TRUE, sep=”\ t ” ,row

.names=TRUE)
126 sg< s p r i n t f ( ”%s%s” ,PATH,BUS ID)
127 graph bus (k , sg )
128 dt< data . frame (DAYS=c ( 1 : length ( k$ c l u s t e r ) ) ,CLUSTER=k$ c l u s t e r

,CENTERS=k$ c en t e r s [ k$ c l u s t e r ] ,SUM SQERR=k$wi th in s s [ k$
c l u s t e r ] )

129 write . table (dt , f i l e=sk , col .names=TRUE,append=FALSE, sep=”\ t ” ,
row .names=FALSE)

130 }
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131 #return ( data . frame (SEGUNDA FE=segunda f e i r a ,TER=terca f e i r a ,
QUA=quarta f e i r a , QUI=quin ta f e i r a , SEX=sex t a f e i r a , SAB=
sabado ,DOM=domingo ,FER=fer iado ,PON=ponte ,NOR=normal ,TOL=
to l e r anc i a ,FDS=sabado+domingo ,SP=dias semana per iodo ne ,
FP=dias f d s per iodo ne ,DTO=t o t a l ) )

132 dt< s p r i n t f ( ”Legenda : SEGUNDA FE,TER,QUA,QUI ,SEX,SAB,DOM>
Numero de Dias da Semana no Clus te r ; FER,PON,NOR,TOL>
Tipo de Dias no Clus te r ; FDS > Fins de Semana no Clus te r ;
SP >Dias da Semana e de Fim de Semana em Periodo Nao
Esco la r ; DTO> Total de Dias no Clus te r ” )

133 write (dt , f i l e=s ,append=TRUE)
134 }
135
136 generateData=function (DATA,ARR,PATH,BUS ID)
137 {
138 new . data< Gera (DATA)
139 matrix . dtw<DTW(DATA,new . data )
140 saveData (DATA,matrix . dtw ,ARR,PATH,BUS ID , ”kmeans” )
141 return (matrix . dtw)
142 }
143
144 conta in s=function (CLUSTER,DATA,CLUSTERNUMBER)
145 {
146 l i s t a < c ( )
147 vec<which(CLUSTER$ c l u s t e r==CLUSTERNUMBER)
148 for ( j in 1 : length ( vec ) )
149 {
150 day< c (unique (DATA$DiaSemana [DATA$DiaAno==vec [ j ] ] ) )
151 l i s t a < c ( l i s t a , day )
152 day< c (unique (DATA$TipoDia [DATA$DiaAno==vec [ j ] ] ) )
153 day< day+7
154 l i s t a < c ( l i s t a , day )
155
156 }
157 vec1< vec
158 #Periodo nao l e c t i v o
159 vec< vec [ vec>(31+28+31+30+31+30+14) & vec

<(31+28+31+30+31+30+31+31+15) ]
160 for ( j in 1 : length ( vec ) )
161 {
162 aux< c (unique (DATA$DiaSemana [DATA$DiaAno==vec [ j ] ] ) )
163 i f ( length ( aux )>0 & ! i s .na( aux [ 1 ] ) )
164 {
165 i f ( aux [1]==4) n< 13
166 i f ( aux [1]==1) n< 13
167 i f ( aux [1]>1 & aux [1]<4) n< 12
168 i f ( aux [1]>4 & aux [1]<8) n< 12
169 l i s t a < c ( l i s t a , c (n) )
170 }
171 }
172 #pascoa
173 vec2< vec1 [ vec1>89 & vec1<98]
174 for ( j in 1 : length ( vec2 ) )
175 {
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176 aux< c (unique (DATA$DiaSemana [DATA$DiaAno==vec2 [ j ] ] ) )
177 i f ( length ( aux )>0 & ! i s .na( aux [ 1 ] ) )
178 {
179 l i s t a < c ( l i s t a , c (15) )
180 }
181 }
182 #nata l
183 vec2< vec1 [ vec1>355 & vec1 <366]
184 for ( j in 1 : length ( vec2 ) )
185 {
186 aux< c (unique (DATA$DiaSemana [DATA$DiaAno==vec2 [ j ] ] ) )
187 i f ( length ( aux )>0 & ! i s .na( aux [ 1 ] ) )
188 {
189 l i s t a < c ( l i s t a , c (16) )
190 }
191 }
192 return ( l i s t a )
193 }
194
195 dayDi s t r ibut i on=function (CLUSTER,DATA)
196 {
197 segunda f e i r a < c ( )
198 t e r ca f e i r a < c ( )
199 quarta f e i r a < c ( )
200 quinta f e i r a < c ( )
201 sexta f e i r a < c ( )
202 sabado< c ( )
203 domingo< c ( )
204 f e r i a d o < c ( )
205 normal< c ( )
206 ponte< c ( )
207 t o l e r a n c i a < c ( )
208 t o t a l < c ( )
209 d ia s semana per iodo ne< c ( )
210 d ia s fd s per iodo ne< c ( )
211 d ia s nata l < c ( )
212 d ia s pascoa< c ( )
213 for ( j in 1 : length (unique (CLUSTER$ c l u s t e r ) ) )
214 {
215 l i s t a < conta in s (CLUSTER,DATA, j )
216 segunda f e i r a < c ( segunda f e i r a ,sum( l i s t a ==5))
217 t e r ca f e i r a < c ( t e r ca f e i r a ,sum( l i s t a ==7))
218 quarta f e i r a < c ( quarta f e i r a ,sum( l i s t a ==2))
219 quinta f e i r a < c ( quinta f e i r a ,sum( l i s t a ==3))
220 sexta f e i r a < c ( sexta f e i r a ,sum( l i s t a ==6))
221 sabado< c ( sabado ,sum( l i s t a ==4))
222 domingo< c ( domingo ,sum( l i s t a ==1))
223
224 f e r i a d o < c ( f e r i ado ,sum( l i s t a ==8))
225 ponte< c ( ponte ,sum( l i s t a ==11))
226 normal< c ( normal ,sum( l i s t a ==9))
227 t o l e r a n c i a < c ( t o l e r an c i a ,sum( l i s t a ==10))
228 t o t a l < c ( t o ta l ,sum( l i s t a <8) )
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229 d ia s semana per iodo ne< c ( d i a s semana per iodo ne ,sum( l i s t a
==12))

230 d i a s fd s per iodo ne< c ( d i a s fd s per iodo ne ,sum( l i s t a ==13))
231 d i a s nata l < c ( d i a s natal ,sum( l i s t a ==16))
232 d i a s pascoa< c ( d i a s pascoa ,sum( l i s t a ==15))
233 }
234 return (data . frame (SEGUNDA FE=segunda f e i r a ,TER=te r ca f e i r a ,

QUA=quarta f e i r a , QUI=quinta f e i r a , SEX=sexta f e i r a , SAB=
sabado ,DOM=domingo ,FER=fe r i ado ,PON=ponte ,NOR=normal ,TOL=
to l e r an c i a ,FDS=sabado+domingo , SP=d ia s semana per iodo ne ,
FP=dia s fd s per iodo ne ,DNA=dia s natal ,DPA=dia s pascoa ,DTO
=to t a l ) )

235 }
236
237 prof i le type=function (ORIGDATA,NEWDATA, dia )
238 {
239 k< 0
240 t ipoDia< c ( )
241 dia< ( d ia%%7)+7
242 while ( length ( t ipoDia )==0)
243 {
244 dia< dia+k
245 t ipoDia< c (unique (ORIGDATA$DiaSemana [ORIGDATA$DiaAno==dia ] ) )
246 k< k+7
247 }
248 vecDiasMesmoTipo< c (unique (ORIGDATA$DiaAno [ c (ORIGDATA$

DiaSemana )==tipoDia [ 1 ] ] ) )
249 vecDiasMesmoTipo< vecDiasMesmoTipo [ vecDiasMesmoTipo<366]
250 n< c ( )
251 for ( j in vecDiasMesmoTipo )
252 {
253 s e r i e <NEWDATA[ j , ] [ ! i s .na(NEWDATA[ j , ] ) ]
254
255 i f ( length ( s e r i e )>3)
256 {
257 n< c (n , length ( s e r i e ) )
258 }
259 }
260
261 n< round(mean(n) )
262 nova s e r i e < c ( 1 : n )∗0
263 d imnser i e < c ( 1 : n )∗0
264
265 for ( j in vecDiasMesmoTipo )
266 {
267 s e r i e <NEWDATA[ j , ] [ ! i s .na(NEWDATA[ j , ] ) ]
268 i f ( length ( s e r i e )>3)
269 {
270 pos< 0
271 for ( i in s e r i e )
272 {
273 nova s e r i e [ pos ] < nova s e r i e [ pos]+ s e r i e [ pos ]
274 d imnser i e [ pos ] < dimnser i e [ pos ]+1
275 pos< pos+1
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276 }
277 }
278 }
279 n< dimnser i e [ d imnser ie >0]
280 s e r i e < c ( )
281 for ( i in 1 : length ( d imnser i e ) )
282 {
283 s e r i e < c ( s e r i e , round( nova s e r i e [ i ] /dimnser i e [ i ] ) )
284 }
285 return ( s e r i e [ ! i s .na( s e r i e ) ] )
286 #matrix . dtw< generateData ( o r i g . data , c ( 2 : 7 ) ,”T:\\”)
287 }
288
289 DTW=function (ORIGDATA,NEWDATA)
290 {
291 l ibrary (dtw)
292 new<matrix (0 ,nrow=length (NEWDATA[ , 1 ] ) ,ncol=length (NEWDATA

[ , 1 ] ) , byrow=TRUE)
293 x< 1
294 while (x<=length (NEWDATA[ , 1 ] ) )
295 {
296 y< 1
297 s e r i e 1 <NEWDATA[ x , ] [ ! i s .na(NEWDATA[ x , ] ) ]
298 while (y<=length (NEWDATA[ , 1 ] ) )
299 {
300 s e r i e 2 <NEWDATA[ y , ] [ ! i s .na(NEWDATA[ y , ] ) ]
301 i f (sum( ! i s .na( s e r i e 1 ) )<3)
302 {
303 s e r i e 1 < prof i le type (ORIGDATA,NEWDATA, x )
304
305 }
306 i f (sum( ! i s .na( s e r i e 2 ) )<3)
307 {
308 s e r i e 2 < prof i le type (ORIGDATA,NEWDATA, y )
309
310 }
311 i f (new [ x , y]==0)
312 new [ x , y ] < dtw( s e r i e 1 , s e r i e 2 )$distance
313 print (c (x , y ) )
314 y< y+1
315 }
316 x< x+1
317 }
318 #matrix norma l i za t ion
319 new<new/mean(new)
320 return (new)
321 }
322
323 Gera=function (X)
324 {
325 nr<min(max(X$DiaAno ) ,365)
326 new . l i s t <matrix (nrow=nr , ncol=100 ,byrow=TRUE)
327 diaActual< 0
328 viagem< 0
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329 viagem . dia< 0
330 for ( d ia in X$DiaAno )
331 {
332 viagem< viagem+1
333 viagem . dia< viagem . dia+1
334 i f ( dia>diaActual )
335 {
336 i f ( diaActual >0)
337 {
338 viagem . dia< 1
339 }
340 i f ( d iaActual==nr )
341 {
342 return (new . l i s t )
343 }
344 diaActual< dia
345 }
346 new . l i s t [ d iaActual , viagem . dia ] <X$Duracao [ viagem ]
347 }
348 remove( viagem )
349 remove( viagem . dia )
350 remove( d iaActual )
351 remove( d ia )
352 return (new . l i s t )
353 remove(new . l i s t )
354 }
355
356
357 median prof i le chart< function ( route s )
358 {
359 for ( r t s in route s )
360 {
361 f i l ename < s p r i n t f ( ”%s%s%s” , ”median p r o f i l e ” , r t s , ” . eps ” )#

he i g h t =842, width=1500,
362 postscript ( f i l ename , bg=”white ” , h o r i z on t a l=FALSE, o n e f i l e =

FALSE, paper = ” s p e c i a l ” , he ight=9, width=13)
363 #pdf ( f i lename , bg=”whi te ” , width=13, h e i g h t =9)
364 par (oma=c ( 1 . 5 , 2 . 5 , 1 , 0 ) )
365 f i l ename < s p r i n t f ( ”%s%s” , r t s , ” . csv ” )
366 data< read . csv ( f i l e=fi lename , sep=” , ” )
367
368 data$Data< as . character (data$Data )
369 data$DiaSemana< as . character (data$DiaSemana )
370 data$TipoDia< as . character (data$TipoDia )
371
372 data< data [ data$DiaSemana !=”domingo ” & data$DiaSemana

!=” sabado ” & data$TipoDia==”normal” , ]
373 d i a s < unique (data$Data )
374 id < 1
375
376 #min y<min( data$Duracao )
377 min y< 2000
378 max y<max(data$Duracao )
379 #max y< 4500
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380
381 #min x<min( data$ InicioViagem )
382 min x< 20000
383 #max x<max( data$ InicioViagem )
384 max x< 81000
385
386 y< rep ( ”” ,24)
387 x< y
388 for ( i in c ( 1 : 2 4 ) )
389 {
390 y [ i ] < to s t r i n g ( i , ”h” )
391 x [ i ] < to s t r i n g ( i ∗5 , ”m” )
392 }
393
394
395
396 #l i nha s das v iagens
397 for (dt in d i a s )
398 {
399 my day< data [ data$Data==dt , ]
400 my day<my day [ with (my day , order ( In ic ioViagem ) ) , ]
401 my x<my day$ In ic ioViagem
402 my y<my day$Duracao
403 #s t r (my x )
404 #s t r (my y )
405 i f ( id==1)
406 {
407 plot ( x=my x , y=my y , type=” l ” , col=”yel low2 ” , ylim=c (min y ,max

y ) , xl im=c (20000 ,max x ) ,main=”PROFILE OF THE WORKDAYS
(mean & median ) ” , axes=” f a l s e ” , cex . main=2, xlab=”” , ylab
=”” )

408 axis (1 , c ( 1 : 2 4 )∗3600 ,y , cex . axis=1.4)
409 mtext( ”Travel S ta r t Time ( in hours ) ” , s i d e =1,col=”black ” ,

l i n e =3.5 , cex=2)
410 axis (2 , c ( 1 : 2 4 )∗300 ,x , cex . axis=1.4)
411 mtext( ”Round Trip Time ( in minutes ) ” , s i d e =2,col=”black ” ,

l i n e =3.5 , cex=2)
412 }
413 else
414 {
415 l ines ( x=my x , y=my y , type=” l ” , col=”yel low2 ” )
416 }
417 id < id+1
418 }
419
420 #bins
421 max<max x
422 min<min x
423 nbins< 25
424
425 b ins < seq ( from=min , to=max,by=(max min)/nbins )
426 step< ( (max min)/nbins )/2
427 time day< bins [ 1 : ( nbins 1 ) ]+step
428 durat ion< time day
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429 durat ion2< time day
430 id < 1
431 t o t a l < 0
432 samples< 0
433 for ( i in c ( 1 : ( nbins 1 ) ) )
434 {
435 #pr in t ( b in s [ i ] )
436 tempos< data$Duracao [which(data$ Inic ioViagem>=bins [ i ] & data

$ Inic ioViagem<=bins [ i +1]) ]
437 #pr in t ( tempos )
438 durat ion [ id ] <median( tempos )
439 durat ion2 [ id ] <mean( tempos )
440 t o t a l < t o t a l+sum( tempos )
441 samples< samples+length ( tempos )
442 id < id+1
443 }
444 l ines ( x=time day , y=duration , type=” l ” , col=”black ” , lwd=2.0)
445 l ines ( x=time day , y=duration2 , type=” l ” , l t y =2,col=”blue ” , lwd

=2.0)
446 legend ( l i s t ( x = 19000 , y = 40∗60) , legend=c ( ”Bus Trips in

mul t ip l e workdays” , ”Median P r o f i l e o f the t r i p s ” , ”Mean
P r o f i l e o f the t r i p s ” ) , cex =1.28 , col=c ( ” ye l low2 ” , ”
black ” , ” blue ” ) , bty=” l ” , l t y=c ( 1 , 1 , 2 ) , lwd=c ( 1 , 2 , 2 ) , ho r i z
=TRUE)

447 print ( r t s )
448 print ( t o t a l/samples )
449 dev . of f ( )
450 }
451 }
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Source Code of Bus
Bunching Mitigation

1 #preproce s s ing f o r Random Fores t s
2 prepare . r e g r e s s i o n < function (D)
3 {
4 LINK STOPS< as . character (D$LINK STOPS)
5 LINK STOPS[which(LINK STOPS==”0” ) ] < ”0 0”
6 LINK STOPS< unlist ( s trsp l i t (LINK STOPS, ” [ ] ” ) )
7 idx<which(names(D) %in% c ( ”NR ORDEM PARAGEM” , ”NR PTPARAGEM” ,

”ID PARAGEM STCP” , ”DATE” , ”HOUR” , ”MINUTES” , ”SECONDS” , ”TRIP
” , ”ALL SECONDS” , ”LINK STOPS” , ”NR MAT” ) )

8 D<D[ , idx ]
9 idx1< seq (1 , length (LINK STOPS) 1 , 2 )

10 idx2< seq (2 , length (LINK STOPS) ,2 )
11 l i nk1 <LINK STOPS[ idx1 ]
12
13 l i nk2 <LINK STOPS[ idx2 ]
14
15 D< cbind (D, LINK START=l ink1 ,LINK END=l i nk2 )
16
17 D$LINK START< as . factor (D$LINK START)
18 D$LINK END< as . factor (D$LINK END)
19
20
21 i f ( length (unique (D$LINK START) )>32)
22 {
23 s tops < unique (as . character (D$LINK START) )
24 stops1 < s tops [ 1 : 3 0 ]
25 s tops2 < s tops [ 3 1 : length ( s tops ) ]
26
27 LINK START1< as . character (D$LINK START)
28 for ( s t in s tops2 )
29 LINK START1[which(as . character (LINK START1)==st ) ] < ”1”
30 LINK START2< as . character (D$LINK START)
31 for ( s t in s tops1 )
32 LINK START2[which(as . character (LINK START2)==st ) ] < ”1”
33

181
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34 s tops < unique (as . character (D$LINK END) )
35 stops1 < s tops [ 1 : 3 0 ]
36 s tops2 < s tops [ 3 1 : length ( s tops ) ]
37
38 LINK END1< as . character (D$LINK END)
39 for ( s t in s tops2 )
40 LINK END1[which(as . character (LINK END1)==st ) ] < ”1”
41 LINK END2< as . character (D$LINK END)
42 for ( s t in s tops1 )
43 LINK END2[which(as . character (LINK END2)==st ) ] < ”1”
44
45 idx<which(names(D) %in% c ( ”LINK START” , ”LINK END” ) )
46 D<D[ , idx ]
47 D< cbind (D, LINK START=LINK START1,LINK START2=LINK START2,

LINK END=LINK END1,LINK END2=LINK END2)
48 D$LINK START1< as . factor (D$LINK START)
49 D$LINK END1< as . factor (D$LINK END)
50 D$LINK START2< as . factor (D$LINK START2)
51 D$LINK END2< as . factor (D$LINK END2)
52 }
53
54 D$NR TURNO< as . factor (D$NR TURNO)
55 print ( length (unique (D$NR TURNO) ) )
56 D$NR VIAGEM< as .numeric (D$NR VIAGEM)
57 print ( length (unique (D$NR VIAGEM) ) )
58 D$HOLIDAY< as . factor (D$HOLIDAY)
59 print ( length (unique (D$HOLIDAY) ) )
60 D$DAYNUMBER< as .numeric (D$DAYNUMBER)
61 D$WEEKDAY< as . factor (D$WEEKDAY)
62 s t r (D)
63
64 return (D)
65
66 }
67
68 #o f f l i n e r e g r e s s i on us ing Random Fores t s
69 l ink time o f f l i n e r e g r e s s i o n < function ( l i n e , way , npastdays=7,

l i b=NULL)
70 {
71 f i l ename < s p r i n t f ( ”Line%d S%d . csv ” , l i n e , way)
72 D< read . csv2 ( f i l ename )
73 f i l ename < s p r i n t f ( ”Line%d S%d pr ed i c t i o n t ra indays%d . csv ” ,

l i n e , way , npastdays )
74 datase t < prepare . r e g r e s s i o n (D)
75 D< cbind (D, p r ed i c t i on RF=rep (0 , length (D[ , 2 ] ) ) , p r ed i c t i o n PPR=

rep (0 , length (D[ , 2 ] ) ) )
76
77 l i b r a r i e s 2 ( l i b )
78
79 tes tday < npastdays+1
80 idx<which( datase t$DAYNUMBER<te s tday )
81 D$p r ed i c t i o n RF[ idx ] < 0/0
82 D$p r ed i c t i o n PPR[ idx ] < 0/0
83
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84 while ( testday<=max( datase t$DAYNUMBER) )
85 {
86 print ( ”” )
87 print ( ”” )
88 print ( te s tday )
89 print ( ”” )
90 print ( ”” )
91
92 entrou< 0
93 while ( entrou==0 | | length ( t e s t [ 1 , ] ) ==0)
94 {
95 entrou< 1
96 t r a i n < datase t [which( datase t$DAYNUMBER<te s tday & datase t$

DAYNUMBER>=(testday npastdays ) ) , ]
97 idx<which(as . character ( t r a i n$LINK START) !=”0” )
98 t r a i n < t r a i n [ idx , ]
99 t e s t < datase t [which( datase t$DAYNUMBER==testday ) , ]

100 i f ( length ( t e s t [ 1 , ] ) ==0)
101 {
102 print ( s p r i n t f ( ”day %d non ex i s t e n t . . . ” , t e s tday ) )
103 tes tday < te s tday+1
104 }
105
106 }
107 print ( ” t r a i n s e t . . . ” )
108 print (print ( t r a i n [ 1 : 1 0 0 , ] ) )
109 print ( length ( t r a i n [ , 1 ] ) )
110
111 print ( ” t e s t s e t . . . ” )
112 print (print ( t e s t [ 1 : 1 0 0 , ] ) )
113 print ( length ( t e s t [ , 1 ] ) )
114
115
116 print ( ” t r a i n i n g RF . . . ” )
117 model< randomForest (LINK TIME ˜ . , data=tra in , mtry=3,

n t r e e s =10)
118
119 print ( ” t e s t i n g RF . . . ” )
120 r e s < predict (model , t e s t )
121 r e s [which( res <0) ] < 0
122 idx<which(D$DAYNUMBER==testday )
123 D$p r ed i c t i o n RF[ idx ] < r e s
124 print ( r e s )
125
126 print ( ” t r a i n i n g PPR . . . ” )
127 model< ppr (LINK TIME ˜ . , data=tra in , nterms=2, max. terms=5)
128 print ( ” t e s t i n g PPR . . . ” )
129 r e s < predict (model , t e s t )
130 r e s [which( res <0) ] < 0
131 D$p r ed i c t i o n PPR[ idx ] < r e s
132 print ( r e s )
133 i f ( ( te s tday%%5)==0)
134 {
135 write . csv2 (D, f i l ename )
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136 }
137 tes tday < te s tday+1
138
139 }
140
141 idx<which(as . character (D$LINK START)==”0” )
142 i f ( length ( idx )>0)
143 D<D [ idx , ]
144
145 write . csv2 (D, f i l ename )
146 }
147
148 #compute bus bunching t r i p s
149 generate bunching< function ( l i n e , way , f r e q BB r a t i o =0.25)
150 {
151 f i l ename < s p r i n t f ( ”Line%d S%d . csv ” , l i n e , way)
152 D< read . csv2 ( f i l ename )
153 D$ID PARAGEM STCP< as . character (D$ID PARAGEM STCP)
154 D$DATE< as . character (D$DATE)
155 D$WEEKDAY< as . character (D$WEEKDAY)
156 D$LINK STOPS< as . character (D$LINK STOPS)
157 bunching<D[which(D$LINK STOP==”0” ) , ]
158
159 idx<which(names( bunching ) %in% c ( ”NR ORDEM PARAGEM” , ”NR

PTPARAGEM” , ”ID PARAGEM STCP” , ”LINK STOPS” , ”NR MAT” , ”LINK
TIME” ) )

160 bunching< bunching [ , idx ]
161 bunching< cbind ( bunching ,FREQUENCY=bunching$ALL SECONDS,

BUNCHING=rep ( ”NO BUNCHING” , length ( bunching [ , 1 ] ) ) ,STOP=rep
( ”N/A” , length ( bunching [ , 1 ] ) ) )

162 idx<which(names( bunching ) %in% c ( ”ALL SECONDS” ) )
163 bunching< bunching [ , idx ]
164
165 bunching$BUNCHING< as . character ( bunching$BUNCHING)
166 bunching$BUNCHING[ 1 ] < ”N/A”
167 bunching$STOP< as . character ( bunching$STOP)
168 bunching$FREQUENCY[ 2 : length ( bunching$FREQUENCY) ] < bunching$

FREQUENCY[ 2 : length ( bunching$FREQUENCY) ] bunching$
FREQUENCY[ 1 : ( length ( bunching$FREQUENCY) 1 ) ]

169
170
171
172 t r i p s < unique ( bunching$TRIP)
173 for ( idx in c ( 2 : length ( t r i p s ) ) )
174 {
175 t r i p 1 < t r i p s [ idx 1 ]
176 t r i p 2 < t r i p s [ idx ]
177 print ( ”” )
178 bunching th<max( f r e q BB r a t i o∗bunching$FREQUENCY[which(

bunching$TRIP==t r i p 2 ) ] , f r e q BB r a t i o∗120)
179 print ( s p r i n t f ( ”Threshold : %.4 f seconds ” , bunching th ) )
180
181 t r i p 1 <D[which(D$TRIP==t r i p 1 ) , ]
182 t r i p 2 <D[which(D$TRIP==t r i p 2 ) , ]
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183 trocou< 0
184 i f ( length ( t r i p 1 [ , 1 ] )<length ( t r i p 2 [ , 1 ] ) )
185 {
186 t r i p aux< t r i p 1
187 t r i p 1 < t r i p 2
188 t r i p 2 < t r i p aux
189 trocou< 1
190 }
191
192
193 common stops < unique (c ( t r i p 1$ID PARAGEM STCP, t r i p 2$ID

PARAGEM STCP) )
194
195 d i s j o i n t s tops < unique (c (common stops [which( ! (common stops %

in% t r i p 1$ID PARAGEM STCP) ) ] , common stops [which( ! (common
stops %in% t r i p 2$ID PARAGEM STCP) ) ] ) )

196
197 i f ( length ( d i s j o i n t s tops )>0)
198 common stops < common stops [which( ! (common stops %in%

d i s j o i n t s tops ) ) ]
199
200
201
202 i f ( trocou==1)
203 {
204 t r i p aux< t r i p 1
205 t r i p 1 < t r i p 2
206 t r i p 2 < t r i p aux
207 }
208
209 idx1<which( t r i p 1$ID PARAGEM STCP %in% common stops )
210 stops1 < t r i p 1$ID PARAGEM STCP[ idx1 ]
211 idx2<which( t r i p 2$ID PARAGEM STCP %in% common stops )
212 stops2 < t r i p 2$ID PARAGEM STCP[ idx2 ]
213
214
215 max l en <min( length ( idx1 ) , length ( idx2 ) )
216 idx1< idx1 [ 1 :max l en ]
217 idx2< idx2 [ 1 :max l en ]
218
219
220 headways< abs ( t r i p 2$ALL SECONDS[ idx2 ] t r i p 1$ALL SECONDS[ idx1

] )
221 print ( ”Common stops : ” )
222 print (common stops )
223 print ( ”Headways : ” )
224 print ( headways )
225 bunching s tops <which( headways<bunching th )
226 i f ( length ( bunching s tops )>0)
227 {
228 idx stop< bunching s tops [ 1 ]
229 idx stop< idx1 [ idx stop ]
230 bunching$STOP[ idx ] < t r i p 1$ID PARAGEM STCP[ idx stop ]
231 bunching$BUNCHING[ idx ] < ”BUNCHING”
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232 }
233 print ( ”Result : ” )
234 print ( bunching [ idx , ] )
235 #x< scan ()
236 }
237 f i l ename=s p r i n t f ( ”LINE%d S%d bunching . csv ” , l i n e , way)
238 write . csv2 ( bunching , f i l ename )
239 }
240
241 #tr i p based update
242 add i n t e r t r a v e l p r ed i c t i o n < function ( l i n e , way , t r a i n hor iz , l i b

=NULL, f o l d e r=NULL, beta=10, th r e sho ld=60∗60∗60 ,max beta
value =2.0 , f a s t r educt ion r a t i o =0.5 , l a r g e e r r o r r a t i o =0.25 ,
step . r a t i o =0.3)

243 {
244 l i b r a r i e s 2 ( l i b )
245 beta value< beta/1000
246 print ( f o l d e r )
247 i f ( length ( f o l d e r )==0)
248 f i l ename < s p r i n t f ( ”Line%d S%d pr ed i c t i o n t ra indays%d updated

beta10 FINAL. csv ” , l i n e , way , t r a i n ho r i z )
249 else
250 f i l ename < s p r i n t f ( ”%s/Line%d S%d pr ed i c t i o n t ra indays%d

updated beta10 FINAL. csv ” , f o l d e r , l i n e , way , t r a i n ho r i z )
251
252 print ( f i l ename )
253 D< read . csv2 ( f i l ename )
254 D<D[ , 1 ]
255
256
257
258 for ( i in c ( 1 : length (D[ 1 , ] ) ) )
259 D[ , i ] < as . character (D[ , i ] )
260
261 idx .numeric<which(names(D) %in% c ( ”NR TURNO” , ”NR VIAGEM” , ”NR

ORDEM PARAGEM” , ”NR PT PARAGEM” , ”NR MAT” , ”HOUR” , ”MINUTES”
, ”SECONDS” , ”TRIP” , ”DAYNUMBER” , ”ALL SECONDS” , ”LINK TIME” , ”
p r ed i c t i o n RF” , ” p r ed i c t i on PPR” , ” p r ed i c t i o n de l t a r u l e RF
” , ” p r ed i c t i on s l i d i n g window” ) )

262 for ( i in idx .numeric )
263 D[ , i ] < as .numeric (D[ , i ] )
264 #feed wi th NAs
265
266 idx . rem<which(names(D) %in% c ( ” p r ed i c t i on de l t a r u l e RF” , ”

p r ed i c t i o n de l t a ru l e 2 RF” , ” p r ed i c t i on de l t a ru l e 3 RF” ) )
267 D<D[ , idx . rem ]
268
269 D< cbind (D, p r ed i c t i on de l t a r u l e RF=D$p r ed i c t i o n RF,

p r ed i c t i o n s l i d i n g window=D$p r ed i c t i o n RF)
270 D$p r ed i c t i o n de l t a r u l e RF< as .numeric (D$p r ed i c t i o n de l t a

r u l e RF)
271 D$p r ed i c t i o n s l i d i n g window< as .numeric (D$p r ed i c t i on s l i d i n g

window)
272 #ge t the t r i p s
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273 j <which(names(D)==” p r ed i c t i o n RF” )
274 D<D[which( ! i s .na(D[ , j ] ) ) , ]
275 t r i p s < unique (D$TRIP)
276
277
278 bunching<D[which(D$LINK STOP==”0” ) , ]
279
280 idx<which(names( bunching ) %in% c ( ”NR ORDEM PARAGEM” , ”NR

PTPARAGEM” , ”ID PARAGEM STCP” , ”LINK STOPS” , ”NR MAT” , ”LINK
TIME” ) )

281 bunching< bunching [ , idx ]
282 bunching< cbind ( bunching ,FREQUENCY=bunching$ALL SECONDS)
283 idx<which(names( bunching ) %in% c ( ”ALL SECONDS” ) )
284 bunching< bunching [ , idx ]
285
286 bunching$FREQUENCY< as .numeric (as . character ( bunching$

FREQUENCY) )
287
288
289 bunching$FREQUENCY[ 2 : length ( bunching$FREQUENCY) ] < bunching$

FREQUENCY[ 2 : length ( bunching$FREQUENCY) ] bunching$
FREQUENCY[ 1 : ( length ( bunching$FREQUENCY) 1 ) ]

290
291 idx<which(names( bunching ) %in% c ( ”TRIP” , ”FREQUENCY” ) )
292 f r e qu en c i e s < bunching [ , idx ]
293
294 f r e qu en c i e s$TRIP< as .numeric ( f r e qu en c i e s$TRIP)
295 s t r ( f r e qu en c i e s )
296
297 na idx<which( i s .na(D[ , j ] ) )
298 idx< rev (na idx ) [1 ]+1
299
300 base . step< 0 .01
301 cur rent . step< base . step
302 neg . counter< 0
303 pos . counter< 0
304
305 neg . counter2< 0
306 pos . counter2< 0
307 beta value2< beta value
308 for ( t r in ( 1 : ( length ( t r i p s ) 1 ) ) )
309 {
310
311 t r i p 1 < t r i p s [ t r ]
312 t r i p 2 < t r i p s [ t r +1]
313 s e l t r i p 2 < t r i p 2
314 print ( ”” )
315
316 t r i p 1 <D[which(D$TRIP==t r i p 1 ) , ]
317 t r i p 2 <D[which(D$TRIP==t r i p 2 ) , ]
318
319
320
321
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322
323 print ( ” r e a l ” )
324 print ( t r i p 1$LINK TIME)
325 print ( ” p r ed i c t ed ” )
326 pre< round( t r i p 1$p r ed i c t i on RF)
327 print ( pre )
328 print ( ”” )
329 frequency< t r i p 2$ALL SECONDS [ 1 ] t r i p 1$ALL SECONDS[ 1 ]
330 e r r o r th< 0 .25∗frequency/10/2
331
332 #RF preproce s s ing
333 t r i p 1$p r ed i c t i on RF[ 1 ] < 0
334 s e l .max<which( t r i p 1$p r ed i c t i o n RF>3600)
335 i f ( length ( s e l .max)>0)
336 t r i p 1$p r ed i c t i o n RF[ s e l .max] < 3600
337
338 print ( ” admissable e r r o r ” )
339 print ( e r r o r th )
340 print ( ”” )
341
342 print ( ”RF” )
343 ar r < t r i p 1$p r ed i c t i o n RF t r i p 1$LINK TIME
344 ar r < ar r [which( ! i s .na( a r r ) ) ]
345 print ( a r r )
346 s imple . vot ing <mean( a r r )
347 print (sum(abs ( a r r ) ) )
348
349 #de l t a r u l e p r eproce s s ing
350 t r i p 1$p r ed i c t i on s l i d i n g window [ 1 ] < 0
351 s e l .max<which( t r i p 1$p r ed i c t i o n s l i d i n g window>3600)
352 i f ( length ( s e l .max)>0)
353 t r i p 1$p r ed i c t i o n s l i d i n g window [ s e l .max] < 3600
354
355 t r i p 1$p r ed i c t i on s l i d i n g window [ 1 ] < 0
356 s e l .max<which( t r i p 1$p r ed i c t i o n s l i d i n g window>3600)
357 i f ( length ( s e l .max)>0)
358 t r i p 1$p r ed i c t i o n s l i d i n g window [ s e l .max] < 3600
359
360
361 print ( ” de l t a r u l e ” )
362 arr2 < t r i p 1$p r ed i c t i o n de l t a r u l e RF t r i p 1$LINK TIME
363 arr2 < arr2 [which( ! i s .na( ar r2 ) ) ]
364 print ( ar r2 )
365 print (sum(abs ( ar r2 ) ) )
366
367 print ( ” s l i d i n g window ru l e ” )
368 arr3 < t r i p 1$p r ed i c t i o n s l i d i n g window t r i p 1$LINK TIME
369 arr3 < arr3 [which( ! i s .na( ar r3 ) ) ]
370 print ( ar r3 )
371 print (sum(abs ( ar r3 ) ) )
372
373
374 t r i p 2$p r ed i c t i on de l t a r u l e RF[ 1 ] < 0
375 s e l .max<which( t r i p 2$p r ed i c t i o n de l t a r u l e RF>3600)



189

376 i f ( length ( s e l .max)>0)
377 t r i p 2$p r ed i c t i on de l t a r u l e RF[ s e l .max] < 3600
378
379 t r i p 2$p r ed i c t i o n s l i d i n g window< t r i p 2$p r ed i c t i on de l t a r u l e

RF
380
381 t r i p 2$p r ed i c t i o n de l t a r u l e RF< t r i p 2$p r ed i c t i o n s l i d i n g

window
382 t r i p 1$p r ed i c t i o n de l t a r u l e RF< t r i p 1$p r ed i c t i o n s l i d i n g

window
383 neg<which( arr< ( 5 ) )
384 pos<which( arr >5)
385 perc . neg< length ( neg )/length ( a r r )
386 perc . pos< length (pos )/length ( a r r )
387
388 print ( ”” )
389 print ( ” perc s neg” )
390 print ( perc . neg )
391 i f ( frequency<(120∗60) )
392 {
393 i f ( ! i s .na( perc . neg ) && ! i s .na( perc . pos ) && perc . neg>perc .

pos && perc . neg>0.3)
394 {
395 print ( ” entrou ” )
396 neg . counter< neg . counter+1
397 t r i p 2$p r ed i c t i o n de l t a r u l e RF< t r i p 2$p r ed i c t i on de l t a

r u l e RF+(abs ( t r i p 2$p r ed i c t i on de l t a r u l e RF)∗ (beta
value ) )

398 beta value< beta value+(neg . counter∗ 1 . 3 )∗base . step
399 }
400
401
402 print ( ” perc s pos” )
403 print ( perc . pos )
404
405 i f ( ! i s .na( perc . neg ) && ! i s .na( perc . pos ) && perc .pos>perc .

neg && perc .pos>0.3)
406 {
407 print ( ” entrou ” )
408 pos . counter< pos . counter+1
409 t r i p 2$p r ed i c t i on de l t a r u l e RF< t r i p 2$p r ed i c t i on de l t a

r u l e RF ( abs ( t r i p 2$p r ed i c t i on de l t a r u l e RF)∗ (beta
value ) )

410 beta value< beta value+(pos . counter∗ 1 . 3 )∗base . step
411 }
412 }
413
414 i f ( i s .na( perc . neg ) | | i s .na( perc . pos ) | | ! ( ( perc .pos>perc .

neg && perc .pos>0.3) | | ( perc . neg>perc . pos && perc . neg
>0.3) ) | | sum(abs ( ar r2 ) )>sum(abs ( a r r ) ) | | frequency
>=(120∗60) )

415 {
416 pos . counter< 0
417 neg . counter< 0
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418 beta value< base . step
419 }
420
421
422
423
424
425 i f ( ! i s .na( s imple . vot ing ) && abs ( s imple . vot ing )>=er r o r th )
426 {
427 i f ( s imple . voting >0)
428 {
429 print ( ” entrou ” )
430 neg . counter2< neg . counter2+1
431 t r i p 2$p r ed i c t i o n s l i d i n g window< t r i p 2$p r ed i c t i on s l i d i n g

window ( abs ( t r i p 2$p r ed i c t i o n s l i d i n g window)∗ (beta
value2 ) )

432 beta value2< beta value2+(neg . counter2∗ 1 . 3 )∗base . step
433
434 }
435 else
436 {
437
438 print ( ” entrou ” )
439 pos . counter2< pos . counter2+1
440 t r i p 2$p r ed i c t i o n s l i d i n g window< t r i p 2$p r ed i c t i on s l i d i n g

window+(abs ( t r i p 2$p r ed i c t i o n s l i d i n g window)∗ (beta
value2 ) )

441 beta value2< beta value2+(pos . counter2∗ 1 . 3 )∗base . step
442 }
443 }
444 else
445 {
446 pos . counter2< 0
447 neg . counter2< 0
448 beta value2< base . step
449
450 }
451
452
453
454 D$p r ed i c t i on RF[which(D$TRIP==s e l t r i p 2 ) [ 1 ] ] < 0
455 D$p r ed i c t i on de l t a r u l e RF[which(D$TRIP==s e l t r i p 2 ) ] < t r i p 2$

p r ed i c t i o n de l t a r u l e RF
456 D$p r ed i c t i on s l i d i n g window [which(D$TRIP==s e l t r i p 2 ) ] < t r i p 2$

p r ed i c t i o n s l i d i n g window
457 beta value<min(beta value , 0 . 3 )
458 beta value2<min(beta value2 , 0 . 3 )
459 print (beta value )
460 print (beta value2 )
461
462
463 i f ( t r%%10==0)
464 {
465 i f ( length ( f o l d e r )==0)
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466 f i l ename < s p r i n t f ( ”Line%d S%d pr ed i c t i on t ra indays%d
updated beta%d . csv ” , l i n e , way , t r a i n hor iz , beta )

467 else
468 f i l ename < s p r i n t f ( ”%s/Line%d S%d pr ed i c t i o n t ra indays%d

updated beta%d . csv ” , f o l d e r , l i n e , way , t r a i n hor iz , beta )
469
470 write . csv2 (D, f i l ename )
471 }
472 }
473 i f ( length ( f o l d e r )==0)
474 f i l ename < s p r i n t f ( ”Line%d S%d pr ed i c t i o n t ra indays%d updated

beta%d FINAL2 . csv ” , l i n e , way , t r a i n hor iz , beta )
475 else
476 f i l ename < s p r i n t f ( ”%s/Line%d S%d pr ed i c t i o n t ra indays%d

updated beta%d FINAL2 . csv ” , f o l d e r , l i n e , way , t r a i n hor iz ,
beta )

477
478 write . csv2 (D, f i l ename )
479
480 }
481
482
483 #pred i c t bunching and dep loy con t r o l a c t i on s
484 predict bunching< function ( l i n e , way , time=” shor t ” ,DO ACTIONS=”

ACTIONS” , f i r s t t r i p index=1, f r e q BB r a t i o =0.25 , nstops=4,
s l i d i n g window MAE s i z e =5,beta=0.1 , max frequency pass=60,
bus capac i ty =150 ,new s tops demand=4, perc e x i t s =0.2 ,max
pas senge r s stop=50,demand var=0.2 ,PLOT DEMAND=TRUE, prob th
min=0.4 ,minimum hold ing time=30)

485 {
486
487 #reading data and preproce s s ing
488 f i l ename < s p r i n t f ( ”Line%d S%d pr ed i c t i on t ra indays7 updated

beta10 FINAL2 . csv ” , l i n e , way)
489 D< read . csv2 ( f i l ename )
490 D$ID PARAGEM STCP< as . character (D$ID PARAGEM STCP)
491 D$DATE< as . character (D$DATE)
492 D$WEEKDAY< as . character (D$WEEKDAY)
493 D$LINK STOPS< as . character (D$LINK STOPS)
494 bunching<D[which(D$LINK STOP==”0” ) , ]
495
496 idx<which(names( bunching ) %in% c ( ”NR ORDEM PARAGEM” , ”NR

PTPARAGEM” , ”ID PARAGEM STCP” , ”LINK STOPS” , ”NR MAT” , ”
p r ed i c t i on RF” , ” p r ed i c t i on PPR” , ” p r ed i c t i o n de l t a r u l e RF
” ) )

497 bunching< bunching [ , idx ]
498 bunching< cbind ( bunching ,FREQUENCY=bunching$ALL SECONDS,

BUNCHING=rep ( ”NO BUNCHING” , length ( bunching [ , 1 ] ) ) ,STOP=rep
( ”N/A” , length ( bunching [ , 1 ] ) ) ,PROBABILITY1=rep (0 , length (
bunching$ALL SECONDS) ) ,PROBABILITY2=rep (0 , length ( bunching
$ALL SECONDS) ) , headway MAE de l t a ru l e on l i n e=rep (0 , length
( bunching$ALL SECONDS) ) , headway MAE in t e r t r i p=rep (0 ,
length ( bunching$ALL SECONDS) ) , on l i n e de l t a r u l e=rep (0 ,
length ( bunching$ALL SECONDS) ) , nstops=rep (0 , length (
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bunching$ALL SECONDS) ) , stop pred i c t ed=rep ( 1 , length (
bunching$ALL SECONDS) ) , stop action=rep ( 1 , length ( bunching
$ALL SECONDS) ) , stop ocurred=rep ( 1 , length ( bunching$ALL
SECONDS) ) , p r ed i c t i o n stop=rep ( 1 , length ( bunching$ALL
SECONDS) ) ,BUNCHING ONLINE=rep ( ”NO BUNCHING” , length (
bunching [ , 1 ] ) ) ,TWT=0,TIVT=0,TB1=0,TB2=0,ACTION=rep ( ”N/A” ,
length ( bunching [ , 1 ] ) ) , time amount=rep (0 , length ( bunching
[ , 1 ] ) ) ,RESULTED=rep (0 , length ( bunching [ , 1 ] ) ) )

499 idx<which(names( bunching ) %in% c ( ”ALL SECONDS” ) )
500 bunching< bunching [ , idx ]
501
502 bunching$BUNCHING< as . character ( bunching$BUNCHING)
503 bunching$BUNCHING ONLINE< as . character ( bunching$BUNCHING

ONLINE)
504 bunching$ACTION< as . character ( bunching$ACTION)
505 bunching$BUNCHING[ 1 ] < ”N/A”
506 bunching$ACTION[ 1 ] < ”N/A”
507 bunching$BUNCHING ONLINE[ 1 ] < ”N/A”
508 bunching$STOP< as . character ( bunching$STOP)
509 bunching$FREQUENCY[ 2 : length ( bunching$FREQUENCY) ] < bunching$

FREQUENCY[ 2 : length ( bunching$FREQUENCY) ] bunching$
FREQUENCY[ 1 : ( length ( bunching$FREQUENCY) 1 ) ]

510
511 #va r i a b l e i n i t i a l i z a t i o n
512 TIVT< 0
513 TWT< 0
514 TB1< 0
515 TB2< 0
516 sample pass capac i ty1 < 10000000
517 i v t s < rep (0 , sample pass capac i ty1 )
518 npass s t a t 1 < 0
519 sample pass capac i ty2 < 10000000
520 wts< rep (0 , sample pass capac i ty2 )
521 sample pass capac i ty3 < 10000000
522 headways array< rep (0 , sample pass capac i ty3 )
523 plot p e r i o d i c i t y < 0
524 plot p e r i o d i c i t y 2 < 0
525 npass s t a t 2 < 0
526 npass s t a t 3 < 0
527 chart sample p e r i o d i c i t y < 5000
528
529 min dwel l time< 10
530 time for boarding per passenger < 3
531
532 #syn t en t i c demand matrix i n i t i a l i z a t i o n
533 m<matrix ( ”0” ,100000 ,4)
534 m< as . data . frame (m)
535 names(m)< c ( ”STOP” , ”ACTIV” , ”LAST UPDATED” , ”PASSENGERS WAITING

” )
536 for ( i in c ( 2 : 4 ) )
537 m[ , i ] < as .numeric (m[ , i ] )
538 m[ , 1 ] < as . character (m[ , 1 ] )
539 pas senge r s s tops2 <m
540 n pass s tops < 0
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541
542
543 t r i p s < unique ( bunching$TRIP)
544 recent maes< rep (20 , s l i d i n g window MAE s i z e )
545
546 e r ro paragem< rep (60 ,60)
547 n e r r o s paragem< rep (1 , 60 )
548 s e l e c t action< 0
549
550
551 idx< f i r s t t r i p index
552 t r i p action< 0
553 cons< 0
554 i f ( time==” shor t ” )
555 time< round ( 0 . 05∗length ( t r i p s ) )
556 else
557 time< length ( t r i p s )
558
559 start time< as .numeric (proc . time ( ) [ 3 ] )
560
561 #for a l l t r i p s
562 while ( idx<time )
563 {
564 #ghos t t r i p
565 i f ( s e l e c t action>0)
566 {
567 print ( ”Action” )
568 print ( s e l e c t action )
569 print ( ”Undoing . . . ” )
570 #repea t in g l a s t t r i p
571 idx< idx 1
572 npass s t a t 2 < old npass s t a t 2
573 npass s t a t 1 < old npass s t a t 1
574 pas senge r s s tops2 < old . pa s s enge r s s tops2
575
576 cons< cons+1
577
578 }
579
580 old . pa s s enge r s s tops2 < pas senge r s s tops2
581 idx< idx+1
582
583 old npass s t a t 2 < npass s t a t 2
584 old npass s t a t 1 < npass s t a t 1
585
586 #ge t t i n g pa i r o f t r i p s o f i n t e r e s t
587 t r i p 1 < t r i p s [ idx 1 ]
588 t r i p 2 < t r i p s [ idx ]
589 print ( ”” )
590 my f r e q <max( bunching$FREQUENCY[which( bunching$TRIP==t r i p 2 )

] , 1 2 0 )
591 bunching th<max( f r e q BB r a t i o∗my freq , f r e q BB r a t i o∗120)
592 bunching th sup< ( f r e q BB r a t i o +0.05)∗bunching$FREQUENCY[

which( bunching$TRIP==t r i p 2 ) ]
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593 bunching th i n f < ( f r e q BB ra t i o 0 . 0 5 ) ∗bunching$FREQUENCY[
which( bunching$TRIP==t r i p 2 ) ]

594 print ( s p r i n t f ( ”Threshold : %.4 f seconds ” , bunching th ) )
595
596 t r i p 1 <D[which(D$TRIP==t r i p 1 ) , ]
597 t r i p 2 <D[which(D$TRIP==t r i p 2 ) , ]
598 trocou< 0
599 i f ( length ( t r i p 1 [ , 1 ] )<length ( t r i p 2 [ , 1 ] ) )
600 {
601 t r i p aux< t r i p 1
602 t r i p 1 < t r i p 2
603 t r i p 2 < t r i p aux
604 trocou< 1
605 }
606
607 #avo id ing miss ing data
608 common stops < unique (c ( t r i p 1$ID PARAGEM STCP, t r i p 2$ID

PARAGEM STCP) )
609
610 d i s j o i n t s tops < unique (c (common stops [which( ! (common stops %

in% t r i p 1$ID PARAGEM STCP) ) ] , common stops [which( ! (common
stops %in% t r i p 2$ID PARAGEM STCP) ) ] ) )

611
612 i f ( length ( d i s j o i n t s tops )>0)
613 common stops < common stops [which( ! (common stops %in%

d i s j o i n t s tops ) ) ]
614
615
616 i f ( trocou==1)
617 {
618 t r i p aux< t r i p 1
619 t r i p 1 < t r i p 2
620 t r i p 2 < t r i p aux
621 }
622
623 idx1<which( t r i p 1$ID PARAGEM STCP %in% common stops )
624 stops1 < t r i p 1$ID PARAGEM STCP[ idx1 ]
625 idx2<which( t r i p 2$ID PARAGEM STCP %in% common stops )
626 stops2 < t r i p 2$ID PARAGEM STCP[ idx2 ]
627
628
629
630 max l en <min( length ( idx1 ) , length ( idx2 ) )
631 idx1< idx1 [ 1 :max l en ]
632 idx2< idx2 [ 1 :max l en ]
633
634
635 #ca l c u l a t e a r r i v a l t imes
636 i f ( length ( idx1 )>1)
637 {
638 s t a r t 1 < t r i p 1$ALL SECONDS[ idx1 ] [ 1 ]
639
640 start t r i p day seconds< t r i p 1$HOUR[ idx1 ] [ 1 ] ∗3600+ t r i p 1$

MINUTES[ idx1 ] [ 1 ] ∗60+t r i p 1$SECONDS[ idx1 ] [ 1 ]
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641 start day date< t r i p 1$DATE[ 1 ]
642 start weekday< t r i p 1$WEEKDAY[ 1 ]
643 year date< substr ( start day date , 1 , 4 )
644 month date< substr ( start day date , 6 , 7 )
645 day date< substr ( start day date , 9 , 1 0 )
646
647 f a c t o r e s procura< rep (2 , length (common stops ) ) ( c ( 0 : length (

common stops ) )∗2/rep ( length (common stops ) , length (common
stops ) ) )

648
649
650 #parameters o f the demand model
651 expected lambda< 90
652 perc f r e q demand< 0 .15
653 expected perc route completed< 0 .25
654
655 #burs t y demand even t s ( d e a c t i v a t e d )
656 bursty s tops < c ( )
657
658
659 max frequency pass<min(max(my f r e q∗perc f r e q demand ,

expected lambda ) ,2∗expected lambda/3+expected lambda )
660
661 #r e a l i s t i c demand s imu la t i on wi th gauss ian no i se
662 weights demand< rnorm( length ( f a c t o r e s procura ) ,max

frequency pass ,max frequency pass∗demand var )
663 s e l . c o r r e c t i o n <which(weights demand<(expected lambda/2) )
664 i f ( length ( s e l . c o r r e c t i o n )>0)
665 weights demand [ s e l . c o r r e c t i o n ] < expected lambda/2
666
667
668 i f ( length ( bursty s tops )>0)
669 weights demand [ bursty s tops ] <weights demand [ bursty s tops ]

∗bursty demand quant
670
671
672
673 bus switch< 0
674
675 for ( i in c ( 1 : length (common stops ) ) )
676 {
677 #demand generaton
678 new s tops < common stops [ i ]
679 s e l . s tops <which( pas s enge r s s tops2$STOP==new s tops &

pas senge r s s tops2$ACTIV==1)
680 i f ( length ( s e l . s tops )>0 && ! i s .na( real t imes df$real t imes

[ i ] ) )
681 {
682 de l t a <max(0 , real t imes df$real t imes [ i ] pa s s enge r s

s tops2$LAST UPDATED[ s e l . s tops ] )
683
684 i f ( i s .na( d e l t a ) | | i s .na(max frequency pass ) )
685 {
686 #error
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687 print ( ”NA1” )
688 }
689 i f ( de l ta <(max frequency pass∗60) )
690 {
691 pas senge r s s tops2$PASSENGERS WAITING[ s e l . s tops ] <min(

pas s enge r s s tops2$PASSENGERS WAITING[ s e l . s tops ]+
round( d e l t a%/%weights demand [ i ] ∗ f a c t o r e s procura [ i ] )
,min(round(max pas senge r s stop∗ f a c t o r e s procura [ idx
] ) ,max pas senge r s stop ) )

692 i f ( i==length (weights demand) )
693 pas senge r s s tops2$PASSENGERS WAITING[ s e l . s tops ] < 0
694 }
695
696 else
697 pas senge r s s tops2$PASSENGERS WAITING[ s e l . s tops ] <min(

round(new s tops demand∗ f a c t o r e s procura [ i ] ) ,min(
round(max pas senge r s stop∗ f a c t o r e s procura [ idx ] ) ,max
pas senge r s stop ) )

698
699 i f (round( d e l t a%/%weights demand [ i ] ∗ ( f a c t o r e s procura [ i ] /

2) )>30 | | round( d e l t a%/%weights demand [ i ] ∗ ( f a c t o r e s
procura [ i ] /2) )<0)

700 {
701 #error
702 print ( ”ALARME1” )
703 }
704
705 pas senge r s s tops2$LAST UPDATED[ s e l . s tops ] < s t a r t 1
706 }
707 else
708 {
709 n pass s tops < n pass s tops+1
710 pas senge r s s tops2$LAST UPDATED[ n pass s tops ] < s t a r t 1
711 pas senge r s s tops2$ACTIV[ n pass s tops ] < 1
712 pas senge r s s tops2$STOP[ n pass s tops ] <new s tops
713 pas senge r s s tops2$PASSENGERS WAITING[ n pass s tops ]
714 pas senge r s s tops2$PASSENGERS WAITING[ n pass s tops ] <min(

round(new s tops demand∗ f a c t o r e s procura [ i ] ) ,max
pas senge r s stop )

715 }
716 }
717
718
719 pre1< t r i p 1$p r ed i c t i on s l i d i n g window [ idx1 ]
720 a l l seconds< rep (0 , length ( pre1 ) )
721 pre1 [ 1 ] < s t a r t 1
722 for ( i in c ( 2 : length ( pre1 ) ) )
723 pre1 [ i ] < pre1 [ i ]+pre1 [ i 1 ]
724
725 s t a r t 2 < t r i p 2$ALL SECONDS[ idx2 ] [ 1 ]
726
727 pre2< t r i p 2$p r ed i c t i on s l i d i n g window [ idx2 ]
728 a l l seconds< rep (0 , length ( pre2 ) )
729 pre2 [ 1 ] < s t a r t 2
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730 for ( i in c ( 2 : length ( pre2 ) ) )
731 pre2 [ i ] < pre2 [ i ]+pre2 [ i 1 ]
732
733 real t imes1< t r i p 1$LINK TIME[ idx1 ]
734 real t imes2< t r i p 2$LINK TIME[ idx2 ]
735
736 real t imes1 [ 1 ] < s t a r t 1
737 for ( i in c ( 2 : length ( real t imes1 ) ) )
738 real t imes1 [ i ] < real t imes1 [ i ]+ real t imes1 [ i 1 ]
739
740 real t imes2 [ 1 ] < s t a r t 2
741 for ( i in c ( 2 : length ( real t imes2 ) ) )
742 real t imes2 [ i ] < real t imes2 [ i ]+ real t imes2 [ i 1 ]
743
744
745 i f ( length (common stops ) !=length ( real t imes1 ) )
746 {
747 real t imes1< real t imes1 [ 1 : length (common stops ) ]
748 real t imes2< real t imes2 [ 1 : length (common stops ) ]
749 }
750
751 #dep loy ing c o r r e c t i v e ac t i on s on ghos t t r i p s
752 i f ( t r i p action==2 && s e l e c t action>0)
753 real t imes2 [ s tops action ] < real t imes2 [ s tops action ]+

amount spread
754
755
756 i f ( t r i p action==1 && s e l e c t action>0)
757 real t imes1 [ s tops action ] < real t imes1 [ s tops action ]+

amount spread
758
759
760 ar r < c ( real times1 , real t imes2 )
761 s e l . nas<which( i s .na( a r r ) )
762 i f ( length ( s e l . nas )>0)
763 ar r < ar r [ s e l . nas ]
764
765 #bunching d e t e c t i on
766 real t imes df< data . frame ( real t imes=arr , bus=c ( rep (1 , length

( a r r )/2) , rep (2 , length ( a r r )/2) ) , stop=c (common stops ,
common stops ) )

767
768 real t imes df$stop=as . character (common stops )
769 real t imes df< real t imes df [ with ( real t imes df , order ( real

times , bus , stop ) ) , ]
770
771
772 bus1< rep (0 , length (common stops ) )
773 bus2< rep (0 , length (common stops ) )
774
775 pass in s tops1 < rep (0 , length (common stops ) )
776 e x i t s in s tops1 < rep (0 , length (common stops ) )
777 pass in s tops2 < rep (0 , length (common stops ) )
778 e x i t s in s tops2 < rep (0 , length (common stops ) )
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779 cur rent time< start t r i p day seconds
780 cur rent date< start day date
781 idx bus1< 0
782 idx bus2< 0
783 idx
784 for ( i in c ( 1 : length ( real t imes df [ , 1 ] ) ) )
785 {
786
787
788 i f ( real t imes df$bus [ i ]==1)
789 {
790 my bus< bus1
791 idx bus1< idx bus1+1
792 idx bus< idx bus1
793 pass in s tops < pass in s tops1
794 e x i t s in s tops < e x i t s in s tops1
795
796 }
797 else
798 {
799 i f ( bus switch==0)
800 {
801 bus switch< 1
802 #backup to ghos t t r i p
803 pas senge r s s tops < pas senge r s s tops2
804 }
805 my bus< bus2
806 idx bus2< idx bus2+1
807 idx bus< idx bus2
808 pass in s tops < pass in s tops2
809 e x i t s in s tops < e x i t s in s tops2
810
811 }
812
813 new s tops < real t imes df$stop [ i ]
814 ns<new s tops
815 s e l . s tops <which( pas s enge r s s tops2$STOP==new s tops &

pas senge r s s tops2$ACTIV==1)
816
817 de l t a <max( real t imes df$real t imes [ i ] pa s s enge r s s tops2$

LAST UPDATED[ s e l . s tops ] , 0 )
818
819 i f ( i s .na( d e l t a ) | | i s .na(max frequency pass ) )
820 {
821 print ( ”NA2” )
822
823
824 }
825 i f ( de l ta <(max frequency pass∗60) )
826 {
827 pas senge r s s tops2$PASSENGERS WAITING[ s e l . s tops ] <min(

pas s enge r s s tops2$PASSENGERS WAITING[ s e l . s tops ]+round
( d e l t a%/%weights demand [ idx bus ] ∗ ( f a c t o r e s procura [
idx bus ] /2) ) ,min(round(max pas senge r s stop∗ f a c t o r e s
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procura [ idx bus ] ) ,max pas senge r s stop ) )
828 i f ( i==length (weights demand) )
829 pas senge r s s tops2$PASSENGERS WAITING[ s e l . s tops ] < 0
830 }
831 else
832 pas senge r s s tops2$PASSENGERS WAITING[ s e l . s tops ] <min(

round(new s tops demand∗ f a c t o r e s procura [ idx bus ] ) ,min
(round(max pas senge r s stop∗ f a c t o r e s procura [ idx bus ] )
,max pas senge r s stop ) )

833
834 i f (round( d e l t a%/%weights demand [ idx bus ] ∗ ( f a c t o r e s

procura [ idx bus ] /2) )>30 | | round( d e l t a%/%weights
demand [ idx bus ] ∗ ( f a c t o r e s procura [ idx bus ] /2) )<0)

835 {
836 print ( ”ALARME2” )
837
838 }
839
840 pas senge r s s tops2$LAST UPDATED[ s e l . s tops ] < real t imes df$

real t imes [ i ]
841
842
843
844 #occupancy
845 pass in s tops [ idx bus ] < pas senge r s s tops2$PASSENGERS

WAITING[ s e l . s tops ]
846
847 #outbounded demand co r r e c t i on s
848 i f ( i s .na( pass in s tops [ idx bus ] ) )
849 {
850 pas senge r s s tops2$PASSENGERS WAITING[ s e l . s tops ] <min(

round(new s tops demand∗ f a c t o r e s procura [ idx bus ] ) ,min
(round(max pas senge r s stop∗ f a c t o r e s procura [ idx bus ] )
,max pas senge r s stop ) )

851 pass in s tops [ idx bus ] < pas senge r s s tops2$PASSENGERS
WAITING[ s e l . s tops ]

852 }
853 i f ( idx bus==length ( f a c t o r e s procura ) )
854 pass in s tops [ idx bus ] < 0
855
856
857
858 #dep loy ing ac t i on s e f f e c t s on consecu t i v e t r i p s
859 i f ( real t imes df$bus [ i ]==2 && s e l e c t action>1 && ( idx bus

%in% stops action ) )
860 {
861 propagate pass< ( pass in s tops [ idx bus ] prev . pass in

s tops2 [ idx bus ] ) ∗3
862 i f ( ( propagate pass>0 && s e l e c t action>=2))
863 {
864 print ( ” o ld t imes : ” )
865 print ( real t imes2 )
866 real t imes2 [ ( idx bus+1) : length ( real t imes2 ) ] < rep (

propagate pass , length (c ( ( idx bus+1) : length ( real
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t imes2 ) ) ) )+real t imes2 [ ( idx bus+1) : length ( real
t imes2 ) ]

867
868
869 s e l . nas<which( i s .na( real t imes2 ) )
870 i f ( length ( s e l . nas )>0)
871 real t imes2< real t imes2 [ s e l . nas ]
872 else
873 {
874 for ( zz in c ( ( i +1) : length ( real t imes df [ , 1 ] ) ) )
875 {
876 old . va lue< real t imes df$bus [ zz ]
877 i f ( ! i s .na( real t imes df$bus [ zz ] ) && real t imes df$bus [

zz]==real t imes df$bus [ i ] )
878 real t imes df$real t imes [ zz ] < real t imes df$real

t imes [ zz ]+propagate pass
879 i f ( i s .na( real t imes df$bus [ zz ] ) )
880 real t imes df$bus [ zz ] < old . va lue
881 }
882 }
883 print ( ”new times : ” )
884 print ( real t imes2 )
885 }
886 }
887
888 #dep loy ing ac t i on s e f f e c t s on consecu t i v e t r i p s
889 i f ( real t imes df$bus [ i ]==1 && s e l e c t action>1 && ( idx bus

%in% stops action ) )
890 {
891 propagate pass< ( pass in s tops [ idx bus ] prev . pass in

s tops1 [ idx bus ] ) ∗time for boarding per passenger
892 i f ( ( propagate pass<0 && s e l e c t action==3))
893 {
894 print ( ” o ld t imes : ” )
895 print ( real t imes1 )
896 real t imes1 [ ( idx bus+1) : length ( real t imes1 ) ] < rep (

propagate pass , length (c ( ( idx bus+1) : length ( real
t imes1 ) ) ) )+real t imes1 [ ( idx bus+1) : length ( real
t imes1 ) ]

897 s e l . nas<which( i s .na( real t imes1 ) )
898 i f ( length ( s e l . nas )>0)
899
900 real t imes1< real t imes1 [ s e l . nas ]
901 else
902 {
903 for ( zz in c ( ( i +1) : length ( real t imes df [ , 1 ] ) ) )
904 {
905 old . va lue< real t imes df$bus [ zz ]
906 i f ( ! i s .na( real t imes df$bus [ zz ] ) && real t imes df$bus [

zz]==real t imes df$bus [ i ] )
907 real t imes df$real t imes [ zz ] < real t imes df$real

t imes [ zz ]+propagate pass
908 i f ( i s .na( real t imes df$bus [ zz ] ) )
909 real t imes df$bus [ zz ] < old . va lue
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910 }
911 }
912 print ( ”new times : ” )
913 print ( real t imes1 )
914 }
915 }
916
917 #a l i g h t i n g s genera t ion . . .
918 i f ( idx bus>1)
919 {
920 i f ( idx bus==length ( e x i t s in s tops ) )
921 {
922 e x i t s in s tops [ idx bus ] <my bus [ idx bus 1 ]
923 }
924 else
925 {
926 s tops to exit< round(rlnorm ( pass in s tops [ idx bus 1 ] , log

(max( expected perc route completed∗length ( f a c t o r e s
procura )∗ f a c t o r e s procura [ idx bus ] ∗ 0 . 75 , 1 ) ) , log (max
(1 , expected perc route completed∗length ( f a c t o r e s
procura )∗ 0 . 2 ) ) ) )

927
928 s e l . s tops . exit<which( s tops to exit<1)
929 i f ( length ( s e l . s tops . exit )>0)
930 s tops to exit [ s e l . s tops . exit ] < 1
931
932 s tops to exit< s tops to exit+idx bus 1
933 s e l . s tops . exit<which( s tops to exit>length ( f a c t o r e s

procura ) )
934 i f ( length ( s e l . s tops . exit )>0)
935 s tops to exit [ s e l . s tops . exit ] < length ( f a c t o r e s procura )
936
937 indexes < as .numeric (as . character (as . data . frame ( table (

s tops to exit ) )$ s tops to exit ) )
938 f r e q s < c (as . data . frame ( table ( s tops to exit ) )$Freq )
939 e x i t s in s tops [ indexes ] < e x i t s in s tops [ indexes ]+ f r e q s
940
941 i f ( s e l e c t action==3 && s tops action [1]== idx bus && real

t imes df$bus [ i ]==1)
942 {
943 e x i t s in s tops [ idx bus+1]< e x i t s in s tops [ idx bus+1]+

e x i t s in s tops [ idx bus ]
944 e x i t s in s tops [ idx bus ] < 0
945 }
946 s e l . nas<which( i s .na( e x i t s in s tops ) )
947 i f ( length ( s e l . nas )>0)
948 e x i t s in s tops [ s e l . nas ] < rev ( f r e q s ) [ 1 ]
949
950 my s t a r t i n g stop< idx bus 1
951
952 for ( j l in c ( 1 : length ( indexes ) ) )
953 {
954 my ending stop< indexes [ j l ]
955
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956 i f ( pass in s tops [ idx bus 1 ] >0 && length (my ending stop
)==0)

957 my ending stop< length ( real t imes1 )
958 else
959 {
960 i f ( pass in s tops [ idx bus 1 ] >0 )
961 {
962 i f ( ! i s .na(my ending stop ) && ! i s .na( length ( real

t imes1 ) ) && my ending stop>length ( real t imes1 ) )
963 my ending stop< length ( real t imes1 )
964 }
965 }
966 i f ( real t imes df$bus [ i ]==1 && f r e q s [ j l ]>0 && ! i s .na(my

ending stop ) && ! i s .na(my s t a r t i n g stop ) && length (
real t imes1 [my ending stop ] real t imes1 [my
s t a r t i n g stop ] )>0 && ! i s .na( real t imes1 [my ending
stop ] real t imes1 [my s t a r t i n g stop ] ) )

967 {
968 for ( zz in c ( 1 : f r e q s [ j l ] ) )
969 {
970 i f ( npass s t a t 1==sample pass capac i ty1 )
971 i v t s < c ( i v t s , rep (0 , sample pass capac i ty1 ) )
972 sample pass capac i ty1 < 2∗sample pass capac i ty1
973 npass s t a t 1 < npass s t a t 1+1
974
975 i v t s [ npass s t a t 1 ] < real t imes1 [my ending stop ] real

t imes1 [my s t a r t i n g stop ]
976
977 i f ( ( real t imes1 [my ending stop ] real t imes1 [my

s t a r t i n g stop ] )<0)
978 npass s t a t 1 < npass stat1 1
979 }
980 }
981 }
982 }
983 }
984 else
985 e x i t s in s tops [ idx bus ] < 0
986
987
988 i f ( idx bus>1)
989 my bus [ idx bus ] <my bus [ idx bus 1 ] e x i t s in s tops [ idx bus

]
990 else
991 my bus [ idx bus ] < pass in s tops [ idx bus ]
992
993 #ac t i on s deployment . . .
994 i f ( s e l e c t action==3 && s tops action [1]== idx bus && real

t imes df$bus [ i ]==1)
995 {
996 print ( s p r i n t f ( ” stop %d was skipped by bus 1 ! ! ! ” , idx bus ) )
997
998 pass in s tops [ idx bus ] < 0
999
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1000 }
1001
1002 #f i l l e d bus case on board ings
1003 f r e e space< bus capac i ty my bus [ idx bus ]
1004 i f ( pass in s tops [ idx bus]> f r e e space )
1005 {
1006 pass in s tops [ idx bus ] < f r e e space
1007 pas senge r s s tops2$PASSENGERS WAITING[ s e l . s tops ] <

pas senge r s s tops2$PASSENGERS WAITING[ s e l . s tops ] f r e e
space

1008 my bus [ idx bus ] < bus capac i ty
1009 }
1010 else
1011 {
1012 #base case on board ings . . . .
1013 my bus [ idx bus ] <my bus [ idx bus ]+pass in s tops [ idx bus ]
1014 pas senge r s s tops2$PASSENGERS WAITING[ s e l . s tops ] < 0
1015 }
1016
1017 #passenger wa i t ing t imes genera t ion
1018 i f ( real t imes df$bus [ i ]==2 && ! i s .na( real t imes2 [ idx bus ]

real t imes1 [ idx bus ] ) && ! i s .na( pass in s tops [ idx bus
] ) && ( real t imes2 [ idx bus]> real t imes1 [ idx bus ] ) )

1019 {
1020 i f ( pass in s tops [ idx bus ]>0)
1021 {
1022 a r r i v a l t imes pass< round(rexp ( pass in s tops [ idx bus ]+1 ,

pass in s tops [ idx bus ] ) ∗abs ( real t imes2 [ idx bus ]
real t imes1 [ idx bus ] ) )

1023 i f (sum( a r r i v a l t imes pass )>abs ( real t imes2 [ idx bus ]
real t imes1 [ idx bus ] ) )

1024 {
1025 a r r i v a l t imes pass< a r r i v a l t imes pass∗abs ( real t imes2 [

idx bus ] real t imes1 [ idx bus ] ) /sum( a r r i v a l t imes
pass )

1026 }
1027 a r r i v a l t imes pass< rev ( rev ( a r r i v a l t imes pass ) [ 1 ] )
1028
1029 i f ( length ( a r r i v a l t imes pass )>0)
1030 {
1031
1032 su< abs ( real t imes2 [ idx bus ] real t imes1 [ idx bus ] )
1033 i f ( length ( a r r i v a l t imes pass )>1)
1034 {
1035 for ( zz in c ( 2 : ( length ( a r r i v a l t imes pass ) ) ) )
1036 a r r i v a l t imes pass [ zz ] < a r r i v a l t imes pass [ zz ]+

a r r i v a l t imes pass [ zz 1 ]
1037
1038 a r r i v a l t imes pass< round( su a r r i v a l t imes pass )
1039
1040 }
1041
1042
1043 }
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1044
1045 i f ( length ( a r r i v a l t imes pass )>0)
1046 {
1047 for ( j l in c ( 1 : pass in s tops [ idx bus ] ) )
1048 {
1049 i f ( ! i s .na( a r r i v a l t imes pass [ j l ] ) )
1050 {
1051
1052 i f ( npass s t a t 2==sample pass capac i ty2 )
1053 wts< c (wts , rep (0 , sample pass capac i ty2 ) )
1054 npass s t a t 2 < npass s t a t 2+1
1055
1056
1057 wts [ npass s t a t 2 ] < a r r i v a l t imes pass [ j l ]
1058 i f ( wts [ npass s t a t 2 ]>3600∗2)
1059 npass s t a t 2 < npass stat2 1
1060 }
1061 }
1062
1063 }
1064 }
1065 }
1066
1067
1068 for ( j in c ( 1 : length (common stops ) ) )
1069 {
1070 new s tops < common stops [ j ]
1071 s e l . s tops <which( pas s enge r s s tops2$STOP==new s tops &

pas senge r s s tops2$ACTIV==1)
1072 i f ( length ( s e l . s tops )>0)
1073 {
1074 de l t a <max(0 , real t imes df$real t imes [ i ] pa s s enge r s

s tops2$LAST UPDATED[ s e l . s tops ] )
1075 i f ( i s .na( d e l t a ) | | i s .na(max frequency pass ) )
1076 {
1077 print ( ”NA3” )
1078 }
1079 i f ( de l ta <(max frequency pass∗60) )
1080 pas senge r s s tops2$PASSENGERS WAITING[ s e l . s tops ] <min(

pas s enge r s s tops2$PASSENGERS WAITING[ s e l . s tops ]+
round( d e l t a%/%weights demand [ idx bus ] ∗ ( f a c t o r e s
procura [ idx bus ] ) ) ,min(round(max pas senge r s stop∗
f a c t o r e s procura [ idx bus ] ) ,max pas senge r s stop ) )

1081 else
1082 pas senge r s s tops2$PASSENGERS WAITING[ s e l . s tops ] <min(

round(new s tops demand∗ f a c t o r e s procura [ idx bus ] ) ,
min(round(max pas senge r s stop∗ f a c t o r e s procura [ idx
bus ] ) ,max pas senge r s stop ) )

1083
1084 i f (round( d e l t a%/%weights demand [ idx bus ] ∗ ( f a c t o r e s

procura [ idx bus ] /2) )>30 | | round( d e l t a%/%weights
demand [ idx bus ] ∗ ( f a c t o r e s procura [ idx bus ] /2) )<0)

1085 {
1086 print ( ”ALARME3” )
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1087
1088 }
1089
1090 pas senge r s s tops2$LAST UPDATED[ s e l . s tops ] < real t imes df

$real t imes [ i ]
1091
1092 }
1093 }
1094 cur rent time< cur rent time+de l t a
1095
1096 i f ( real t imes df$bus [ i ]==1)
1097 {
1098 bus1<my bus
1099 pass in s tops1 < pass in s tops
1100 e x i t s in s tops1 < e x i t s in s tops
1101 }
1102 else
1103 {
1104 bus2<my bus
1105 pass in s tops2 < pass in s tops
1106 e x i t s in s tops2 < e x i t s in s tops
1107 }
1108
1109 }
1110 e x i t s in s tops1 [ idx bus ] < e x i t s in s tops1 [ idx bus ]+(sum(

pass in s tops1 [ 1 : idx bus ] ) sum( e x i t s in s tops1 [ 1 : idx
bus ] ) )

1111
1112
1113 prev . pass in s tops1 < pass in s tops1 [ 1 : idx bus ]
1114
1115 #p l o t t i n g
1116 i f (PLOT DEMAND==TRUE && s e l e c t action>0 )
1117 {
1118 i f ( s e l e c t action==1)
1119 a c t i o n s t r < ”NONE”
1120 i f ( s e l e c t action==2)
1121 a c t i o n s t r < ”BUS HOLDING”
1122 i f ( s e l e c t action==3)
1123 a c t i o n s t r < ”STOP SKIPPING”
1124 demand chart (as .numeric ( year date ) , as .numeric (month date ) ,

as .numeric ( day date ) , start weekday , cur r ent time%/%
3600 ,round ( ( ( cur rent time/3600) ( cur r ent time%/%3600) )
∗60) , s p r i n t f ( ”%s %s” , l i n e , way) , bus1 [ 1 : idx bus ] , pass in
s tops1 [ 1 : idx bus ] , e x i t s in s tops1 [ 1 : idx bus ] , bus

capac i ty ,PLOT DEMAND, ac t i on s t r , s tops action [ 1 ] )
1125 }
1126 #Total In Veh ic l e Time
1127 LTT< real t imes1 [ 2 : idx bus ] real t imes1 [ 1 : ( idx bus 1 ) ]
1128 IVT<sum(LTT∗bus1 [ 1 : ( idx bus 1 ) ] )
1129 i f ( i s .na(IVT) )
1130 IVT< 0
1131 TIVT< IVT+TIVT
1132
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1133 B1<sum( pass in s tops1 )
1134 i f ( i s .na(B1) )
1135 B1< 0
1136 TB1<TB1+B1
1137
1138 e x i t s in s tops2 [ idx bus ] < e x i t s in s tops2 [ idx bus ]+(sum(

pass in s tops2 [ 1 : idx bus ] ) sum( e x i t s in s tops2 [ 1 : idx
bus ] ) )

1139 prev . pass in s tops2 < pass in s tops2 [ 1 : idx bus ]
1140
1141
1142 #Total Waiting Time
1143 stop hdw< real times2 real t imes1
1144 PWT<sum( stop hdw/2∗pass in s tops2 )
1145 i f ( i s .na(PWT) )
1146 PWT< 0
1147
1148
1149 TWT<PWT+TWT
1150
1151 B2<sum( pass in s tops2 )
1152 i f ( i s .na(B2) )
1153 B2< 0
1154 TB2<TB2+B2
1155
1156 pas senge r s s tops2 < pas senge r s s tops
1157 real headways< abs ( real times2 real t imes1 )
1158 }
1159 else
1160 {
1161 pre1< 0
1162 pre2< 100000
1163 real headways< 100000
1164 }
1165 #BB de t e c t i on
1166 headways< abs ( pre2 pre1 )
1167 print ( ”Common stops : ” )
1168 print (common stops )
1169
1170 print ( ”Headways : ” )
1171
1172 bunching s tops <which( headways<bunching th )
1173 bunching stops2 <which( headways<(bunching th i n f ) )
1174 bunching stops3 <which( headways<(bunching th sup ) )
1175 i f ( length ( bunching s tops )>0)
1176 {
1177 idx stop< bunching s tops [ 1 ]
1178 idx stop< idx1 [ idx stop ]
1179 bunching$STOP[ idx ] < t r i p 1$ID PARAGEM STCP[ idx stop ]
1180 bunching$BUNCHING[ idx ] < ”BUNCHING”
1181 bunching$PROBABILITY1[ idx ] <min( (min(1 , length ( bunching

stops3 )/9)/2)+(min(1 , length ( bunching s tops )/6)/3)+(min
(1 , length ( bunching stops2 )/3)/6) ,1 )

1182 }
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1183 else
1184 {
1185 bunching$PROBABILITY1[ idx ] < (min(1 , length ( bunching stops3 )/

9)/2)
1186 }
1187
1188 mode< ” incrementa l ”
1189
1190 #BB p r o b a b i l i s t i c model
1191 i f ( length ( idx1 )>10)
1192 {
1193 i f (mode==” o f f l i n e ” )
1194 {
1195 on l i n e headways< headways
1196 on l i n e headways [ 1 ] < real headways [ 1 ]
1197 for ( i in c ( 2 : length ( headways ) ) )
1198 on l i n e headways [ i ] < real headways [ i 1 ]+ headways [ i ]

headways [ i 1 ]
1199
1200 beta i < beta
1201 on l i n e de l t a r u l e < on l i n e headways
1202 for ( i in c ( 2 : length ( headways ) ) )
1203 {
1204 on l i n e de l t a r u l e [ i ] < on l i n e de l t a r u l e [ i ]+(( real

headways [ i 1 ] on l i n e de l t a r u l e [ i 1 ] ) ∗beta i )
1205 i f (abs ( on l i n e de l t a r u l e [ i ] real headways [ i ] )>abs ( on l i n e

headways [ i ] real headways [ i ] ) )
1206 beta i < beta i ∗ ( 1 0 . 1 )
1207 else
1208 i f (abs (abs ( on l i n e de l t a r u l e [ i ] real headways [ i ] ) abs (

on l i n e headways [ i ] real headways [ i ] ) )>10)
1209 beta i < beta i ∗ (1+0.1)
1210 beta i <min(max( 0 . 005 ,beta i ) , 0 . 3 )
1211 }
1212 headways up< on l i n e de l t a r u l e+median( r e c en t maes )
1213 headways down< on l i n e de l t a ru le median( r e c en t maes )
1214 bunching prob< rep ( bunching th , length ( on l i n e de l t a r u l e ) )
1215
1216
1217 s e l idx<which( bunching prob>=headways up)
1218 s e l idx2<which( bunching prob<headways up & bunching prob>

headways down)
1219 s e l idx3<which( bunching prob<=headways down)
1220 i f ( length ( s e l idx )>0)
1221 bunching prob [ s e l idx ] < 1
1222
1223 i f ( length ( s e l idx3 )>0)
1224 bunching prob [ s e l idx3 ] < 0
1225 bunching prob [ s e l idx2 ] < abs ( bunching prob [ s e l idx2 ]

headways down [ s e l idx2 ] ) /(2∗median( r e c en t maes ) )
1226
1227 bunching$PROBABILITY2[ idx ] <max( bunching prob )
1228
1229 for ( i in c ( 1 : ( s l i d i n g window MAE s i z e 1 ) ) )
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1230 recent maes [ i ] < r e c en t maes [ i +1]
1231
1232 d i f headways< real headways on l i n e de l t a r u l e
1233
1234 recent maes [ length ( r e c en t maes ) ] <mean(abs ( d i f headways ) )
1235
1236 bunching$headway MAE de l t a ru l e on l i n e [ idx ] <mean(abs ( real

headways on l i n e headways ) )
1237 bunching$headway MAE in t e r t r i p [ idx ] <mean(abs ( real

headways headways ) )
1238 bunching$ on l i n e de l t a r u l e <mean(abs ( real headways on l i n e

de l t a r u l e ) )
1239 bunching$nstops [ idx ] < length ( headways )
1240 }
1241 else
1242 {
1243 on l i n e headways< headways
1244 on l i n e headways [ 1 ] < real headways [ 1 ]
1245 for ( i in c ( 2 : length ( headways ) ) )
1246 on l i n e headways [ i ] < real headways [ i 1 ]+ headways [ i ]

headways [ i 1 ]
1247
1248 beta i < beta
1249 on l i n e de l t a r u l e < on l i n e headways
1250 for ( i in c ( 2 : length ( headways ) ) )
1251 {
1252 on l i n e de l t a r u l e [ i ] < on l i n e de l t a r u l e [ i ]+(( real

headways [ i 1 ] on l i n e de l t a r u l e [ i 1 ] ) ∗beta i )
1253 i f ( i s .na( on l i n e de l t a r u l e [ i ] ) )
1254 idx1< 1
1255 else
1256 {
1257 #NA cor r e c t i on s due to miss ing va l u e s
1258 i f ( ! i s .na( real headways [ i ] ) && abs ( on l i n e de l t a r u l e [ i

] real headways [ i ] )>abs ( on l i n e headways [ i ] real
headways [ i ] ) )

1259 beta i < beta i ∗ ( 1 0 . 1 )
1260 else
1261 i f ( ! i s .na( real headways [ i ] ) && abs (abs ( on l i n e de l t a

r u l e [ i ] real headways [ i ] ) abs ( on l i n e headways [ i ]
real headways [ i ] ) )>10)

1262 beta i < beta i ∗ (1+0.1)
1263 beta i <min(max( 0 . 0 05 ,beta i ) , 0 . 3 )
1264 }
1265 }
1266
1267 nparagens< length ( idx1 )
1268 pred i c t ed headways< headways
1269 pred i c t ed headways [ 1 ] < real headways [ 1 ]
1270 stop s c o r e s < (c ( 1 : nparagens ) 1 ) /nparagens
1271 np< 2
1272 bunching s co r e < 0
1273 s co r e th< 0 .7
1274
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1275 while (np <=nparagens && max( bunching s co r e )<=sco r e th &&
length ( idx1 )>10)

1276 {
1277 print ( s p r i n t f ( ” t r i p :%d , stop %d” , idx , np ) )
1278 pred i c t ed headways [ np ] < on l i n e de l t a r u l e [ np ]
1279
1280 print ( ” paragens ” )
1281 print (c ( ( np+1) : nparagens ) )
1282
1283 for ( i in c ( ( np+1) : nparagens ) )
1284 {
1285 pred i c t ed headways [ i ] < on l i n e de l t a r u l e [ i 1 ] + headways [ i

] headways [ i 1 ]
1286
1287 }
1288
1289 #res i dua l ’ s array
1290 e r r o r s < abs ( p r ed i c t ed headways [ c (np : nparagens ) ] real

headways [ c (np : nparagens ) ] )
1291 i f ( length ( i s .na( e r r o r s ) )>0)
1292 {
1293 s e l . nas<which( i s .na( e r r o r s ) )
1294 e r r o r s [ s e l . nas ] < 0
1295 }
1296 e r ro paragem [ 1 : length ( e r r o r s ) ] < e r ro paragem [ 1 : length (

e r r o r s ) ]+ e r r o r s
1297 n e r r o s paragem [ 1 : length ( e r r o r s ) ] < n e r r o s paragem [ 1 :

length ( e r r o r s ) ]+1
1298
1299 con f idence < sqrt ( ( e r r o paragem [ 1 : length ( e r r o r s ) ] /n e r r o s

paragem [ 1 : length ( e r r o r s ) ] ) /rep (my freq , length ( e r r o r s )
) )

1300 idx ze ro s <which( con f idence <0)
1301 idx ones<which( con f idence >1)
1302 i f ( length ( idx z e ro s )>0)
1303 con f idence [ idx z e ro s ] < 0
1304 i f ( length ( idx ones )>0)
1305 con f idence [ idx ones ] < 1
1306 con f idence < 1 conf idence ( 0 . 1 5 ∗stop s c o r e s [ 1 : length (

con f id ence ) ] )
1307
1308 e r r o r s < ( e r r o paragem [ 1 : length ( e r r o r s ) ] /n e r r o s paragem

[ 1 : length ( e r r o r s ) ] )
1309
1310 p r o j e c t i o n s up< pred i c t ed headways [ c (np : nparagens ) ]+

e r r o r s
1311 p r o j e c t i o n s down< pred i c t ed headways [ c (np : nparagens ) ]

e r r o r s
1312
1313 bunching prob< rep ( bunching th , length ( p r o j e c t i o n s up) )
1314
1315 s e l idx<which( bunching prob>=pro j e c t i o n s up)
1316 s e l idx2<which( bunching prob<p r o j e c t i o n s up & bunching

prob>p r o j e c t i o n s down)



210 APPENDIX B. SOURCE CODE OF BUS BUNCHING MITIGATION

1317 s e l idx3<which( bunching prob<=pro j e c t i o n s down)
1318 i f ( length ( s e l idx )>0)
1319 bunching prob [ s e l idx ] < 1
1320
1321 i f ( length ( s e l idx3 )>0)
1322 bunching prob [ s e l idx3 ] < 0
1323 i f ( length ( s e l idx2 )>0)
1324 bunching prob [ s e l idx2 ] < abs ( bunching prob [ s e l idx2 ]

p r o j e c t i o n s down [ s e l idx2 ] ) /(2∗ e r r o r s [ s e l idx2 ] )
1325
1326
1327 s e l real<which( real headways<bunching th )
1328 i f ( length ( s e l real )>1)
1329 s e l real< s e l real [ 1 ]
1330
1331 #ca l c u l u s o f bunching score
1332 bunching s c o r e s < bunching prob
1333 i f ( length ( bunching s c o r e s )>1)
1334 {
1335 num sco r e s <max(round ( ( 1 stop s c o r e s [ np ] ) ∗3) ,1 )
1336 bunching s co r e <mean( rev ( sort ( bunching s c o r e s ) ) [ 1 : num

s co r e s ] )
1337 }
1338 else
1339 bunching s co r e < bunching s c o r e s
1340
1341 #BB th r e s h o l d f o r bunching schore
1342 s co r e th< 0.3+((my f r e q%/%(3∗120) )∗ 0 . 1 )
1343
1344 i f ( bunching score>s c o r e th )
1345 {
1346
1347 s e l <which( bunching s c o r e s==max( bunching s c o r e s ) )
1348 i f ( length ( s e l )>1)
1349 s e l < sample ( s e l ) [ 1 ]
1350 s e l r e l a t i v e < s e l
1351 s e l < s e l+np 1
1352 s e l action< round(rlnorm (1 , np+2, log (max( 2 , 0 . 2∗length (c (

np+1) : s e l ) ) ) ) )
1353 i f ( s e l action>=s e l | | s e l action<3 | | s e l action<np)
1354 s e l action< np+1
1355
1356 i f ( s e l action>s e l )
1357 s e l action< s e l
1358
1359 i f ( s e l e c t action==0)
1360 {
1361 i f (DO ACTIONS==”ACTIONS” )
1362 {
1363 prob bus ho ld ing < bunching s co r e
1364
1365 i f ( prob bus ho ld ing==1)
1366 {
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1367 prob stop sk ipp ing <min(1 ,max(0 ,rnorm(1 , prob bus
holding , 0 . 1 ) ) )

1368 prob bus ho ld ing <min(1 ,max(0 ,rnorm(1 , prob bus
ho ld ing∗ 0 . 5 , 0 . 1 ) ) )

1369 }
1370 else
1371 prob stop sk ipp ing < 0
1372
1373 print ( s p r i n t f ( ”bus ho ld ing l i k e l i h o o d : %f ” , prob bus

ho ld ing ) )
1374
1375 print ( s p r i n t f ( ” stop sk ipp ing l i k e l i h o o d : %f ” , prob stop

sk ipp ing ) )
1376
1377
1378 i f (max( prob bus holding , prob stop sk ipp ing )>prob th

min)
1379 {
1380 #s e l e c t one o f the ac t i on s
1381 #2 bus ho l d ing
1382 #3 stop s k i pp in g
1383 i f ( prob bus holding>=prob stop sk ipp ing )
1384 {
1385 s e l e c t action< 2
1386 amount< (round(abs ( p r o j e c t i o n s down [ s e l r e l a t i v e ]

bunching th )∗ (1+0.1) )%/%minimum hold ing time+1)∗
minimum hold ing time

1387 nstops action<max(1 ,min( amount%/%minimum hold ing
time , ( s e l s e l action+1) ) )

1388
1389 amount spread< rep (minimum hold ing time , nstops

action )
1390
1391 idx amount< 1
1392 while (sum( amount spread )<amount )
1393 {
1394 i f ( idx amount>length ( amount spread ) )
1395 idx amount< 1
1396 amount spread [ idx amount ] < amount spread [ idx amount

]+minimum hold ing time
1397 idx amount< idx amount+1
1398 }
1399
1400 print ( s p r i n t f ( ”Bus Holding ! To add the f o l l ow i n g

seconds on the dwel l time o f s tops : ” ) )
1401 s tops action< c ( s e l action : ( s e l action+nstops action

1 ) )
1402 print ( s tops action )
1403 print ( amount spread )
1404
1405 i f ( length ( amount spread )>1)
1406 {
1407 for ( zz in c ( 2 : length ( amount spread ) ) )
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1408 amount spread [ zz ] < amount spread [ zz 1 ]+ amount
spread [ zz ]

1409 }
1410 i f ( rev ( s tops action ) [1]< nparagens )
1411 {
1412 amount spread< c ( amount spread , rep ( rev ( amount

spread ) [ 1 ] , nparagens rev ( s tops action ) [ 1 ] ) )
1413 s tops action< c ( s tops action , c ( ( rev ( s tops action )

[ 1 ]+1) : nparagens ) )
1414 }
1415 t r i p action< 2
1416 }
1417 else
1418 {
1419 s e l e c t action< 3
1420
1421 amount spread<max(90 , pass in s tops1 [ s e l action ] ∗

time for boarding per passenger+min dwel l time )∗
1

1422 i f ( i s .na( amount spread ) )
1423 amount spread< 3 0
1424 print ( s p r i n t f ( ”Stop Skipping ! To s e t the dwel l time

on stop %d on (%d seconds ) ” , s e l action , amount
spread ) )

1425 s tops action< s e l action
1426 amount< amount spread
1427 i f ( s e l action<nparagens )
1428 {
1429 amount spread< c ( amount spread , rep ( amount spread ,

nparagens s e l action ) )
1430 s tops action< c ( s tops action , c ( ( rev ( s tops action )

[ 1 ]+1) : nparagens ) )
1431 }
1432 t r i p action< 1
1433
1434 }
1435 }
1436 else
1437 {
1438 s e l e c t action< 1
1439 s tops action< 0
1440 amount< 0
1441 }
1442 }
1443 else
1444 {
1445 s e l e c t action< 1
1446 s tops action< 0
1447 print ( ”no ac t i on ” )
1448 amount< 0
1449 }
1450 print ( ” d e c i s i o n ” )
1451 print ( s e l e c t action )
1452 }
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1453 else
1454 {
1455 i f ( s e l e c t action==1)
1456 bunching$ACTION[ idx ] < ”NONE”
1457 i f ( s e l e c t action==2)
1458 bunching$ACTION[ idx ] < ”BUS HOLDING”
1459 i f ( s e l e c t action==3)
1460 bunching$ACTION[ idx ] < ”STOP SKIPPING”
1461
1462 s e l e c t action< 0
1463 cons< 0
1464
1465 bunching$time amount [ idx ] < amount
1466 bunching$RESULTED[ idx ] < 0
1467 }
1468 print ( s p r i n t f ( ”Bunching Pred ic ted on the stop %d .

Horizon : %d stops . Action recomended on the stop %d
( at most ! ) ” , s e l , s e l np , s e l action ) )

1469 i f ( length ( s e l real )==1)
1470 {
1471 print ( s p r i n t f ( ”CORRECT! Bunching on the stop %d” , s e l

real ) )
1472 bunching$stop ocurred [ idx ] < s e l real
1473 }
1474 else
1475 {
1476 print ( ”WRONG: there i s no bunching” )
1477
1478 }
1479
1480 bunching$BUNCHING ONLINE[ idx ] < ”BUNCHING”
1481 bunching$stop pred i c t ed [ idx ] < s e l
1482 bunching$stop action [ idx ] < s e l action
1483 bunching$p r ed i c t i o n stop [ idx ] < np
1484 bunching$nstops [ idx ] < length ( headways )
1485 }
1486 else
1487 {
1488 cons< 0
1489
1490 i f ( length ( s e l real )>=1 && s e l real<=np)
1491 {
1492 print ( s p r i n t f ( ”UNDETECTED BUNCHING OCCURRED ON stop %d”

,np) )
1493 bunching s co r e < 1
1494 bunching$stop ocurred [ idx ] < s e l real
1495 bunching$stop pred i c t ed [ idx ] < s e l real
1496 bunching$stop action [ idx ] < s e l real
1497 bunching$p r ed i c t i on stop [ idx ] < s e l real
1498 bunching$nstops [ idx ] < length ( headways )
1499 s e l e c t action< 0
1500 }
1501 }
1502
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1503 np< np+1
1504 }
1505
1506 i f ( length ( s e l real )==0 && s e l e c t action>0)
1507 {
1508 i f ( s e l e c t action==1)
1509 bunching$ACTION[ idx ] < ”NONE”
1510 i f ( s e l e c t action==2)
1511 bunching$ACTION[ idx ] < ”BUS HOLDING”
1512 i f ( s e l e c t action==3)
1513 bunching$ACTION[ idx ] < ”STOP SKIPPING”
1514 s e l e c t action< 0
1515 cons< 0
1516
1517 bunching$time amount [ idx ] < amount
1518
1519 bunching$RESULTED[ idx ] < 1
1520
1521 s e l e c t action< 0
1522 }
1523 }
1524
1525 }
1526 else
1527 {
1528 bunching$headway MAE de l t a ru l e on l i n e [ idx ] < 1
1529 bunching$headway MAE in t e r t r i p [ idx ] < 1
1530 bunching$ on l i n e de l t a r u l e [ idx ] < 1
1531 bunching$nstops [ idx ] < length ( headways )
1532 }
1533 i f ( bunching$PROBABILITY2[ idx ]>0.75)
1534 bunching$BUNCHING[ idx ] < ”BUNCHING”
1535 else
1536 bunching$BUNCHING[ idx ] < ”NO BUNCHING”
1537 i f ( length ( idx1 )<=10)
1538 {
1539 bunching$BUNCHING[ idx ] < ”N/A”
1540 bunching$BUNCHING ONLINE[ idx ] < ”N/A”
1541 TWT<TWTPWT
1542 TIVT<TIVT IVT
1543 TB1<TB1 B1
1544 TB2<TB2 B2
1545 npass s t a t 2 < old npass s t a t 2
1546 npass s t a t 1 < old npass s t a t 1
1547 }
1548 else
1549 {
1550 bunching$TWT[ idx ] < round(sum( wts [ 1 : npass s t a t 2 ] ) /npass

s t a t 2 )
1551 bunching$TIVT[ idx ] < round(sum( i v t s [ 1 : npass s t a t 1 ] ) /npass

s t a t 1 )
1552 bunching$TB2[ idx ] < npass s t a t 2
1553 bunching$TB1[ idx ] < npass s t a t 1
1554
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1555 i f ( npass s t a t 2%/%(plot p e r i o d i c i t y+chart sample p e r i o d i c i t y
)>0)

1556 {
1557 plot p e r i o d i c i t y < plot p e r i o d i c i t y+chart sample

p e r i o d i c i t y
1558
1559 histogram equal width (as .numeric ( year date ) , as .numeric (

month date ) , as .numeric ( day date ) , s p r i n t f ( ”%s %s” , l i n e ,
way) , wts [ 1 : npass s t a t 2 ] , ”Waiting Time” ,DO ACTIONS)

1560 print ( length (which( wts [ 1 : npass s t a t 2 ]<60) )/npass s t a t 2 )
1561 }
1562
1563 s e l . nas<which( i s .na( real headways ) )
1564 i f ( length ( s e l . nas )>0)
1565 real headways< real headways [ s e l . nas ]
1566
1567 i f ( npass s t a t 3+length ( real headways )>sample pass capac i ty3 )
1568 {
1569 headways array< c ( headways array , rep (0 , sample pass

capac i ty3 ) )
1570 sample pass capac i ty3 < 2∗sample pass capac i ty3
1571 }
1572
1573 for ( zz in c ( 1 : length ( real headways ) ) )
1574 {
1575 npass s t a t 3 < npass s t a t 3+1
1576 headways array [ npass s t a t 3 ] < real headways [ zz ]
1577 i f ( headways array [ npass s t a t 3 ]<0 | | headways array [ npass

s t a t 3 ]>(3600∗ 1 . 5 ) )
1578 npass s t a t 3 < npass stat3 1
1579 }
1580
1581 i f ( npass s t a t 3%/%(plot p e r i o d i c i t y 2+chart sample

p e r i o d i c i t y )>0)
1582 {
1583 plot p e r i o d i c i t y 2 < plot p e r i o d i c i t y 2+chart sample

p e r i o d i c i t y
1584 histogram equal width (as .numeric ( year date ) , as .numeric (

month date ) , as .numeric ( day date ) , s p r i n t f ( ”%s %s” , l i n e ,
way) , headways array [ 1 : npass s t a t 3 ] , ”Headway” ,DO
ACTIONS)

1585 }
1586
1587 }
1588 print ( ”Result : ” )
1589 cur time< round(as .numeric (proc . time ( ) [ 3 ] ) start time )
1590 avg time t r i p < (cur time )/ ( idx )
1591 hours time< cur time%/%3600
1592 cur time< cur time ( hours time∗3600)
1593 minutes time< cur time%/%60
1594 cur time< cur time ( minutes time∗60)
1595
1596 expected time to f i n i s h < round( avg time t r i p )∗ (time idx )
1597 hours time2< expected time to f i n i s h%/%3600
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1598 expected time to f i n i s h < expected time to f i n i s h ( hours
time2∗3600)

1599 minutes time2< expected time to f i n i s h%/%60
1600 expected time to f i n i s h < expected time to f i n i s h ( minutes

time2∗60)
1601
1602 }
1603 f i l ename=s p r i n t f ( ”LINE%d S%d bunching pred i c t ed s l i d i n g de l t a

on l i n e v3 f r e q%d %s . csv ” , l i n e , way , round( f r e q BB r a t i o∗
100) ,DO ACTIONS)

1604 write . csv2 ( bunching , f i l ename )
1605 }



Appendix C

Source Code of Taxi
Demand Prediction

1 #rea l time t a x i demand p r e d i c t i on ( pick up quan t i t y )
2 p r ed i c t i on < function (myPart , t e s t e i d , t s e r i e s 3 0 , t s e r i e s 5 ,BEG

LEARN,END LEARN, alpha =0.4 ,gamma=8, theta=2,H=8)
3 {
4 #preproce s s ing and l i b r a r i e s l oad ing
5 l i b r a r i e s 2 ( )
6 curDate< incrementa data (END LEARN, ”/” )
7 #s e l e c t the s t op s correspondent to the par t
8 s tops < unique ( t s e r i e s 3 0 $Praca )
9 s tops < s tops [ ten f o l d i n t e r v a l ( length ( s tops ) ,myPart ) ]

10 l en < length ( t s e r i e s 5 $Data )
11 DATA FIM< t s e r i e s 5 $Data [ l en ]
12 DATA FIM< substr (DATA FIM,1 , 1 0 )
13
14 l en arima=48∗7∗ theta
15 models< as . data . frame (matrix ( 1 , length ( s tops ) ,4 ) )
16 models [ , 1 ] < s tops
17 names( models )< c ( ” stand” , ”p” , ”d” , ”q” )
18
19 weight set< c a l c u l a pesos ( alpha ,gamma, 0 )
20
21 l en < (24∗5)∗30∗12∗100
22 measures<matrix ( ” 1 ” , len , 8 )
23
24 step< 5
25
26 idx< 0
27
28 DATA FIM< decrementa data (DATA FIM, ”/” )
29
30 #for every da te s in the stream
31 while ( curDate<=DATA FIM)
32 {
33 diaSemana< date to dayweek ( curDate )
34 for ( s t in s tops )
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35 {
36 nprev< 0
37 query s tops <which( t s e r i e s 5 $Praca==st )
38 data s tops5 < t s e r i e s 5 [ query stops , ]
39
40 query s tops <which( t s e r i e s 3 0 $Praca==st )
41 data s tops30< t s e r i e s 3 0 [ query stops , ]
42 h1 30< 0
43 m1 30< 0
44
45 nhm< next time ( h1 30 ,m1 30 ,30)
46 h2 30<nhm [ 1 ]
47 m2 30<nhm [ 2 ]
48
49 nhm< next time ( h2 30 ,m2 30 ,30)
50 h3 30<nhm [ 1 ]
51 m3 30<nhm [ 2 ]
52
53
54 while ( h1 30<24)
55 {
56
57 i f ( h1 30==23 && m1 30==30)
58 {
59 ult imo<which( t s e r i e s 5 $Data==incrementa data ( curDate , ”

/” ) & t s e r i e s 5 $Praca==st )
60 ult imo5< t s e r i e s 5 [ ultimo , ]
61 ult imo5< ult imo5 [ 1 : 6 , ]
62 }
63 des l i zamentos < 0
64
65 h1 5< h1 30
66 m1 5<m1 30
67
68 #30 minutes his togram ( f i r s t l e v e l )
69 query s e r i e 3 0 <which( ( ( (data s tops30$Hora<h2 30) | (

data s tops30$Hora==h2 30 & data s tops30$Minutos<m2
30) ) & data s tops30$Data==curDate ) | (data s tops30
$Data<curDate ) )

70 s e r i e 3 0 < data s tops30 [ query s e r i e 30 , ]
71
72 #5 minutes his togram ( second l e v e l )
73 query s e r i e 5 <which(data s tops5$Data<incrementa data (

curDate , ”/” ) )
74 s e r i e 5 < data s tops5 [ query s e r i e 5 , ]
75
76 #add i t i v e histogram ’ s s c r o l l i n g
77 while ( des l i zamentos <6)
78 {
79 s e r i e s < s e r i e 3 0
80 i f ( des l i zamentos >0)
81 {
82 d e s l i z a sub t r a i idx<which( s e r i e 5 $Hora==h1 5 &

s e r i e 5 $Minutos==m1 5 & s e r i e 5 $Data==curDate )
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83 d e s l i z a sub t r a i idx< rev ( seq ( from=d e s l i z a sub t r a i
idx [ 1 ] , to=1,by= 6) )

84 d e s l i z a soma idx< d e s l i z a sub t r a i idx+6
85
86 s e r i e sub t ra i 5 < s e r i e 5 $numEventos [ d e s l i z a sub t r a i

idx ]
87 print ( length ( d e s l i z a sub t r a i idx ) )
88 i f ( h1 30==23 && m1 30==30)
89 {
90 s e r i e soma5< s e r i e 5 $numEventos [ d e s l i z a sub t r a i

idx [ 2 : length ( d e s l i z a sub t r a i idx ) ] ]
91 s e r i e soma5< c ( s e r i e soma5 , ult imo5$numEventos [

de s l i zamentos ] )
92 }
93 else
94 {
95 s e r i e soma5< s e r i e 5 $numEventos [ d e s l i z a soma idx ]
96 }
97
98 s e r i e s $numEventos< s e r i e s $numEventos s e r i e sub t ra i 5

+s e r i e soma5
99 m1 5<m1 5+5

100
101 }
102
103 #rea l number o f pick ups
104 mylen< length ( s e r i e s $numEventos )
105 contagem real< s e r i e s $numEventos [ mylen ]
106 mylen<mylen 1
107 s e r i e arima< s e r i e s $numEventos [ ( mylen l en arima+1) :

mylen ]
108 i f ( models$p [ models$stand==st ]== 1 | | ( h1 30==3 &&

m1 5==0))
109 {
110
111 #arima ’ s model computation
112 r e s < calculaModeloArima ( s e r i e arima )
113 models$p [ models$stand==st ] < r e s [ 1 ]
114 models$d [ models$stand==st ] < r e s [ 2 ]
115 models$q [ models$stand==st ] < r e s [ 3 ]
116
117 msg< s p r i n t f ( ”Novo Modelo : %d %d %d” , r e s [ 1 ] , r e s [ 2 ] ,

r e s [ 3 ] )
118 print (msg)
119
120 }
121
122 model=c ( models$p [ models$stand==st ] , models$d [ models$

stand==st ] , models$q [ models$stand==st ] )
123
124 query media<which( s e r i e s $DiaSemana==diaSemana &

s e r i e s $Data<curDate & s e r i e s $Minutos==m1 30 &
s e r i e s $Hora==h1 30)

125 s e r i e avg< s e r i e s $numEventos [ query media ]
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126
127 va lo r real< contagem real
128
129 #Arima
130 prev i s ao arima< previsaoArima (model , s e r i e arima )
131 #Time vary ing po i s son model
132 prev i s ao media<mean( s e r i e avg )
133 #weighted Time vary ing po i s son model
134 mylen< length ( s e r i e avg )
135 prev i s ao media pesada< c a l c u l a wpoisson ( s e r i e avg [ (

mylen gamma+1) : mylen ] , weight set )
136
137 nprev< nprev+1
138 i f ( ( nprev 1 )<H)
139 {
140 prev i s ao < round( p r ev i s ao media pesada )
141 }
142 else
143 {
144 idx media pesada<which(measures [ ,7]==”WPoisson” )
145 idx media<which(measures [ ,7]==”Media” )
146 idx arima<which(measures [ ,7]==”Arima” )
147 idx real<which(measures [ ,7]==”Real ” )
148
149 l en e r ro < length ( idx media pesada )
150 idx media pesada< idx media pesada [ ( l en erro H+1) :

l en e r ro ]
151 idx media< idx media [ ( l en erro H+1) : l en e r ro ]
152 idx arima< idx arima [ ( l en erro H+1) : l en e r ro ]
153 idx real< idx real [ ( l en erro H+1) : l en e r ro ]
154
155 past media pesada< as .numeric (measures [ idx media

pesada , 8 ] )
156 past media< as .numeric (measures [ idx media , 8 ] )
157 past arima< as .numeric (measures [ idx arima , 8 ] )
158 past real< as .numeric (measures [ idx real , 8 ] )
159
160 errA< 1 sMAPE agg ( past arima , past real )
161 errM< 1 sMAPE agg ( past media , past real )
162 errMP< 1 sMAPE agg ( past media pesada , past real )
163
164 i f ( p r ev i s ao arima==1000)
165 errA< 0
166
167 prev i s ao < round ( ( ( errA∗prev i s ao arima )+(errM∗

prev i s ao media )+(errMP∗prev i s ao media pesada ) )/
( errA+errM+errMP) )

168 }
169
170 print ( ”” )
171 print ( ”” )
172 print ( s t )
173 print ( curDate )
174 print ( h1 30)
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175 print (m1 5)
176 print ( p r ev i s ao )
177 msg< s p r i n t f ( ”Praca:%d Data : %s Hora : %2d:%2d

Eventos Pr ev i s t o s : %d” , st , curDate , h1 30 ,m1 5 ,as .
numeric ( p r ev i s ao ) )

178 print (msg)
179 print ( ”” )
180
181 print (c ( ” Index” , ”Praca” , ”DiaSemana” , ”Data” , ”Hora” , ”

Minutos” , ”Algoritmo” , ”numEventos” ) )
182
183 idx< idx+1
184
185 print (c ( idx , st , diaSemana , curDate , h1 30 ,m1 5 , ”Media” ,

round( p r ev i s ao media ) ) )
186 measures [ idx , ] < c ( idx , st , diaSemana , curDate , h1 30 ,m1

5 , ”Media” ,round( p r ev i s ao media ) )
187
188 idx< idx+1
189
190 print (c ( idx , st , diaSemana , curDate , h1 30 ,m1 5 , ”Arima” ,

round( p r ev i s ao arima ) ) )
191 measures [ idx , ] < c ( idx , st , diaSemana , curDate , h1 30 ,m1

5 , ”Arima” ,round( p r ev i s ao arima ) )
192
193 idx< idx+1
194
195 print (c ( idx , st , diaSemana , curDate , h1 30 ,m1 5 , ”

WPoisson” ,round( p r ev i s ao media pesada ) ) )
196 measures [ idx , ] < c ( idx , st , diaSemana , curDate , h1 30 ,m1

5 , ”WPoisson” ,round( p r ev i s ao media pesada ) )
197
198 idx< idx+1
199
200 print (c ( idx , st , diaSemana , curDate , h1 30 ,m1 5 , ”

Prev i sao ” ,round( p r ev i s ao ) ) )
201 measures [ idx , ] < c ( idx , st , diaSemana , curDate , h1 30 ,m1

5 , ” Prev i sao ” ,round( p r ev i s ao ) )
202
203 idx< idx+1
204
205 print (c ( idx , st , diaSemana , curDate , h1 5 ,m1 5 , ”Real ” ,

round( contagem real ) ) )
206 measures [ idx , ] < c ( idx , st , diaSemana , curDate , h1 30 ,m1

5 , ”Real ” ,round( contagem real ) )
207
208 des l i zamentos < des l i zamentos+1
209
210 }
211
212 h1 30< h2 30
213 m1 30<m2 30
214
215 nhm< next time ( h1 30 ,m1 30 ,30)
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216 h2 30<nhm [ 1 ]
217 m2 30<nhm [ 2 ]
218
219 nhm< next time ( h2 30 ,m2 30 ,30)
220 h3 30<nhm [ 1 ]
221 m3 30<nhm [ 2 ]
222
223 }
224
225 }
226 curDate< incrementa data ( curDate , ”/” )
227
228 measures2<measures [ 1 : idx , ]
229 measures2< as . data . frame ( measures2 )
230 names( measures2 )< c ( ” Index” , ”Praca” , ”DiaSemana” , ”Data” , ”

Hora” , ”Minutos” , ”Algoritmo” , ”numEventos” )
231 f i l ename < s p r i n t f ( ” t e s t e%d part%d . csv ” , t e s t e i d , myPart )
232 write . csv2 ( measures2 , f i l ename )
233 }
234
235 measures<measures [ 1 : idx , ]
236 measures< as . data . frame (measures )
237 names(measures )< c ( ” Index” , ”Praca” , ”DiaSemana” , ”Data” , ”Hora”

, ”Minutos” , ”Algoritmo” , ”numEventos” )
238 f i l ename < s p r i n t f ( ” t e s t e%d part%d . csv ” , t e s t e i d , myPart )
239 write . csv2 (measures , f i l ename )
240 return (measures )
241 }
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Source Code of O-D Matrix
Estimation

1 #preproce s s ing da t a s e t
2 generate t r i p s datase t < function ( ds , s p a t i a l data set , s ta r tday

=0,endday=”2012/05/29” )
3 {
4 vars< c ( ” s t a r t day” , ” s t a r t i n g hour” , ” s t a r t i n g minutes ” , ”

weekday” , ” l a t 1 ” , ” lon1 ” , ” l a t 2 ” , ” lon2 ” , ” d i s t ance ” , ” t r a v e l
time” )

5 datase t < data . frame ( t ax i=ds$ tax i , type=ds$type , timestamp=ds$
timestamp , l a t=ds$ l a t i t ude , lon=ds$ l ong i tude )

6 datase t$timestamp< as . character ( datase t$timestamp )
7
8 i f ( i s . character ( s ta r tday ) )
9 {

10
11 datase t < datase t [which( datase t$timestamp>=star tday ) , ]
12
13 }
14 datase t < datase t [ which( datase t$timestamp>=endday ) , ]
15
16
17 my search<which( substr ( datase t$timestamp ,11 , 11 ) !=” ” )
18 datase t$timestamp [my search ] < s p r i n t f ( ”%s %s” , substr ( datase t$

timestamp [my search ] , 1 , 1 0 ) , substr ( datase t$timestamp [my
search ] , 1 1 , length ( datase t$timestamp [my search ] ) ) )

19
20 datase t < datase t [ which( datase t$ l a t==0) , ]
21
22 datase t < datase t [ which( datase t$ l on==0) , ]
23
24 datase t$type< as . character ( datase t$type )
25 datase t < datase t [ which( datase t$type==” as s i gn ” ) , ]
26
27 print ( ”matrix ready” )
28 m<matrix ( ”0” ,round( length ( datase t$timestamp )/2) , length ( vars )

)
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29 tax i < unique ( datase t$ t ax i )
30
31 i < 1
32 for ( t in t ax i )
33 {
34 ds t ax i < datase t [which( datase t$ t ax i==t ) , ]
35 idx busy<which( ds t ax i$type==”busy” )
36 print ( s p r i n t f ( ” t ax i : %d , p o t e n t i a l t r i p s : %d” , t , round( length

( idx busy ) ) ) )
37
38 i f ( length ( idx busy )>0)
39 {
40 for ( idx in idx busy )
41 {
42 idx f r e e < idx+1
43
44 while ( ! i s .na( ds t ax i$type [ idx f r e e ] ) && ds t ax i$type [ idx

f r e e ] !=” f r e e ” )
45 idx f r e e < idx f r e e+1
46 i f ( ! i s .na( ds t ax i$type [ idx f r e e ] ) )
47 {
48 start day< substr (as . character ( ds t ax i$timestamp [ idx ] )

, 1 , 10 )
49 print ( ds t ax i$timestamp [ idx ] )
50 print (as . character ( ds t ax i$timestamp [ idx ] ) )
51 print ( start day )
52
53 start hour< substr (as . character ( ds t ax i$timestamp [ idx ] )

, 12 ,13)
54 print ( start hour )
55
56 s t a r t i n g minutes< (as .numeric ( substr (as . character ( ds t ax i

$timestamp [ idx ] ) , 12 ,13) )∗60)+as .numeric ( substr (as .
character ( ds t ax i$timestamp [ idx ] ) , 15 ,16) )

57 print ( s t a r t i n g minutes )
58
59 dow<DAY OF WEEK( as . character ( ds t ax i$timestamp [ idx ] ) )
60 print (dow)
61
62 l a t 1 < ds t ax i$ l a t [ idx ]
63 lon1< ds t ax i$ l on [ idx ]
64 l a t 2 < ds t ax i$ l a t [ idx f r e e ]
65 lon2< ds t ax i$ l on [ idx f r e e ]
66
67 distance< Havers ineDis tanceObstacu le s ( ds t ax i$ l a t [ idx ] , ds

t ax i$ l on [ idx ] , ds t ax i$ l a t [ idx f r e e ] , ds t ax i$ l on [ idx
f r e e ] )

68
69 t r a v e l time< ge tDi f fSeconds ( ds t ax i$timestamp [ idx f r e e ] ,

ds t ax i$timestamp [ idx ] )
70 m[ i , ] < c ( start day , start hour , s t a r t i n g minutes , dow , lat1 ,

lon1 , la t2 , lon2 , distance , t r a v e l time )
71
72 i < i+1
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73 }
74 }
75 }
76 }
77 print ( i )
78 m<m[ 1 : ( i 1 ) , ]
79 m< as . data . frame (m)
80 names(m)< vars
81 m$ l a t 1 < as . double (as . character (m$ l a t 1 ) )
82 m$ lon1< as . double (as . character (m$ lon1 ) )
83 m$ l a t 2 < as . double (as . character (m$ l a t 2 ) )
84 m$ lon2< as . double (as . character (m$ lon2 ) )
85 m$ s t a r t i n g minutes< as .numeric (as . character (m$ s t a r t i n g

minutes ) )
86 m$distance< as . double (as . character (m$distance ) )
87 m$ t r a v e l time< as .numeric (as . character (m$ t r a v e l time ) )
88 s t r (m)
89 print ( vars )
90 myname< s p r i n t f ( ” t r i p t r a v e l t im e s n t r i p s=%d v2 . csv ” , i )
91 print (myname)
92 write . csv2 (m,myname)
93 return (m)
94 }
95
96 #f i l t e r i n g the data to be used in the exper iments based on

user de f ined parameters
97 p r ep ro c e s s i ng datase t < function ( ds , r ad iu s =12000 , c ent e r=”Porto”

)
98 {
99 i f ( c en te r==”Porto” )

100 cente r=c ( 4 1 . 1 5 3972 , 8 . 6 1 295 ) ;
101
102 ds< data . frame ( t ax i=ds$ tax i , type=as . character ( ds$type ) , l a t=

ds$ l a t i t ude , lon=ds$ l ong i tude , timestamp=as . character ( ds$
timestamp ) )

103
104 idx<which( ds$ l a t==0)
105 i f ( length ( idx )>0)
106 ds< ds [ idx , ]
107
108 idx<which( ds$ l on==0)
109 i f ( length ( idx )>0)
110 ds< ds [ idx , ]
111
112 idx<which( i s .na( ds$ l on ) )
113 i f ( length ( idx )>0)
114 ds< ds [ idx , ]
115
116 idx<which( ds$ t ax i==0)
117 i f ( length ( idx )>0)
118 ds< ds [ idx , ]
119
120 idx<which( i s .na( ds$ t ax i ) )
121 i f ( length ( idx )>0)
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122 ds< ds [ idx , ]
123
124 hs< Havers ineDistance ( rep ( c en te r [ 1 ] , length ( ds [ , 1 ] ) ) , rep (

c en te r [ 2 ] , length ( ds [ , 1 ] ) ) , ds$ l a t , ds$ l on )
125 idx<which( hs>rad iu s )
126 print ( s p r i n t f ( ”%d po in t s f a r t h e s t than %d meters removed” ,

length ( idx ) , r ad iu s ) )
127 ds< ds [ idx , ]
128
129 ds$timestamp< as . character ( ds$timestamp )
130 ds$type< as . character ( ds$type )
131
132 ds< ds [ with ( ds , order ( timestamp ) ) , ]
133
134 return ( ds )
135 }
136
137 #compute c en t r o i d s f o r naive c l u s t e r i n g
138 generateCentro ids < function ( cente r s , k )
139 {
140 l a rgu ra < seq ( from=cen t e r s$ l a t [ 1 ] , to=cen t e r s$ l a t [ 3 ] ,by=(

cen t e r s$ l a t [ 3 ] c en t e r s$ l a t [ 1 ] ) /k ) +((( c en t e r s$ l a t [ 3 ]
c en t e r s$ l a t [ 1 ] ) /k )/2)

141 a l tu r a < seq ( from=cen t e r s$ l on [ 1 ] , to=cen t e r s$ l on [ 2 ] ,by=(cen t e r s
$ l on [ 2 ] c en t e r s$ l on [ 1 ] ) /k ) +((( c en t e r s$ l on [ 2 ] c en t e r s$ l on
[ 1 ] ) /k )/2)

142 m<matrix (0 , k∗k , 2 )
143 id < 1
144 for ( i in c ( 1 : ( k ) ) )
145 for ( j in c ( 1 : ( k ) ) )
146 {
147 m[ id , 1 ] < l a r gu ra [ i ]
148 m[ id , 2 ] < a l tu r a [ j ]
149 print ( s p r i n t f ( ”%f ,% f ” , l a rgu ra [ i ] , a l t u r a [ j ] ) )
150 id < id+1
151 }
152 m< as . data . frame (m)
153 names(m)< c ( ” l a t ” , ” lon ” )
154 return (m)
155 }
156
157 #ge t c l u s t e r f o r data po in t on naive c l u s t e r i n g
158 cent ro idClus < function ( l a t , lon , c en t r o i d s )
159 {
160 distance< Havers ineDistance ( la t , lon , c en t r o i d s$ l a t , c en t r o i d s$

l on )
161 return (which(distance==min(distance ) ) )
162 }
163
164 #naive c l u s t e r i n g func t i on
165 na iv eC lu s t e r i ng < function ( l a t , lon , c en t r o i d s )
166 {
167 l en < length ( l a t )
168 c l u s t e r s < rep (1 , l en )
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169 for ( i in 1 : l en )
170 {
171 c l u s t e r s [ i ] < cent ro idClus ( l a t [ i ] , lon [ i ] , c e n t r o i d s )
172 print ( s p r i n t f ( ” l a t :%f , lon :%f , c l u s t e r :%d” , l a t [ i ] , lon [ i ] ,

c l u s t e r s [ i ] ) )
173 }
174
175 return ( c l u s t e r s )
176 }
177
178 #i n i t i a l i z e s h a l f space t r e e
179 bu i ld . t r e e < function (maxDim)
180 {
181 vars< c ( ”IDnode” , ”node type” , ” cond i t i on type” , ” operator ” , ”

va lue ” , ” l e f t ” , ” r i g h t ” )
182 m<matrix ( ”0” ,maxDim, length ( vars ) )
183 print ( ” bu i l d i ng new t r e e . . . ” )
184 print ( s p r i n t f ( ”Maximum number o f nodes : %d . . . ” ,maxDim) )
185
186 m[ 1 , ] < c ( ”1” , ” cond i t i on ” , ” l a t ” , ” g r e a t e r ” , ” 67 .098 ” , ”3” , ”4” )
187 m[ 2 , ] < c ( ”2” , ” c l u s t e r ” , ” lon ” , ” lower ” , ” 4 7 . 0 9 8 ” , ”2” , ”NA” )
188
189 m< as . data . frame (m)
190 names(m)< vars
191 m$IDnode< as .numeric (m$IDnode )
192 m$node type< as . factor (m$node type )
193 m$ cond i t i on type< as . factor (m$ cond i t i on type )
194 m$operator < as . factor (m$operator )
195 m$value< as .numeric (m$value )
196 m$ l e f t < as .numeric (m$ l e f t )
197 m$ r i g h t < as .numeric (m$ r i g h t )
198
199 s t r (m)
200 return ( l i s t (m, 0 ,maxDim) )
201 }
202
203 #c l u s t e r i n g us ing h a l f space t r e e
204 getTreeClus te r < function ( l a t , lon , t r e e )
205 {
206 node< t r e e [ [ 1 ] ] [ 1 , ]
207
208 nchamadas< 0
209 while ( node$node type !=” c l u s t e r ” )
210 {
211 i f ( node$ cond i t i on type==” l a t ” )
212 {
213 i f ( l a t>node$value )
214 newnode< node$ r i g h t
215 else
216 newnode< node$ l e f t
217 }
218 else
219 {
220 i f ( lon>node$value )
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221 newnode< node$ r i g h t
222 else
223 newnode< node$ l e f t
224 }
225
226 idxnode<which( t r e e [ [ 1 ] ] $IDnode==newnode ) [ 1 ]
227 node< t r e e [ [ 1 ] ] [ idxnode , ]
228
229 }
230 return ( node$value )
231 }
232
233
234 #o f f l i n e c l u s t e r i n g
235 mass based c l u s t e r i n g < function ( ds ,N, p l o t t i n g=TRUE,max. points .

perc =0.05 , optimal . r a t i o . sp l i t=0.1 ,minimum . density . r a t i o .
sp l i t=0.1 , i n t e r e s t . r a t i o =0.01 ,kMax=200 ,mytree=0, c l u s t e r s
=0, n t r i p s tosave=5,rect . p ropor t ion=3)

236 {
237 l ibrary ( sp )
238 t r i p s < ds
239 t o t a l . l en . t r i p s < length ( ds [ , 1 ] )
240
241 #data read ing
242 new . ds< data . frame ( l a t=c ( ds$ l a t 1 [ 1 :N] , ds$ l a t 2 [ 1 :N] ) , lon=c ( ds$

lon1 [ 1 :N] , ds$ lon2 [ 1 :N] ) )
243 new . ds$ l a t [ seq ( from=1, to=N∗ 2 1 , 2 ) ] < ds$ l a t 1 [ 1 :N]
244 new . ds$ l on [ seq ( from=1, to=N∗ 2 1 , 2 ) ] < ds$ lon1 [ 1 :N]
245 new . ds$ l a t [ seq ( from=2, to=N∗2 ,2) ] < ds$ l a t 2 [ 1 :N]
246 new . ds$ l on [ seq ( from=2, to=N∗2 ,2) ] < ds$ lon2 [ 1 :N]
247 ds<new . ds
248
249 s t r ( ds )
250
251 N<N∗2
252 l en < length ( ds [ , 1 ] )
253 nsample<min(N,5000 )
254 r e s < a l l . grid ( ds , 4 , nsample ) [ [ 3 ] ]
255 map . c en te r < c ( r e s$ l a t . center , r e s$ l on . c en t e r )
256
257 t o p l e f t < c ( r e s$BBOX$ l l [ 1 , 1 ] , r e s$BBOX$ l l [ 1 , 2 ] )
258 r ightbottom< c ( r e s$BBOX$ur [ 1 , 1 ] , r e s$BBOX$ur [ 1 , 2 ] )
259
260 obst< read . ob s t a cu l e s ( )
261 #var i a b l e ’ s i n i t i a l i z a t i o n
262 i f ( ! i s . data . frame ( mytree ) )
263 {
264 mytree< bu i ld . t r e e (kMax∗5)
265
266 mytree [ [ 1 ] ] < insertNode (mytree [ [ 1 ] ] , 1 , ” c l u s t e r ” ,NA,NA, 1 ,NA,

NA)
267 mytree [ [ 2 ] ] < 1
268
269
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270 vars2< c ( ” c l u s t e r ” , ”mass” , ” l a t 1 ” , ” lon1 ” , ” l a t 2 ” , ” lon2 ” , ”
polygonType” , ”polygonID” )

271 print ( ”Bui ld new c l u s t e r s t r u c tu r e . . . ” )
272 c l u s t e r <matrix (0 ,kMax , length ( vars2 ) )
273 c l u s t e r [ 1 , ] < c (1 ,N, t o p l e f t [ 1 ] , t o p l e f t [ 2 ] , r ightbottom [ 1 ] ,

r ightbottom [ 2 ] , ” cutted ” ,1 )
274 c l u s t e r < as . data . frame ( c l u s t e r )
275 names( c l u s t e r )< vars2
276 c l u s t e r $polygonType< as . character ( c l u s t e r $polygonType )
277 c l u s t e r $polygonID< as .numeric (as . character ( c l u s t e r $polygonID

) )
278 for ( i in c ( 1 : 6 ) )
279 c l u s t e r [ , i ] < as .numeric (as . character ( c l u s t e r [ , i ] ) )
280 c l u s t e r s < l i s t ( c l u s t e r , 1 , kMax)
281
282 ope ra t i on s <matrix (0 ,kMax∗2 ,4)
283 vars3< c ( ” o r i g i n a l ” , ”new1” , ”new2” , ” type” )
284 ope ra t i on s < as . data . frame ( ope ra t i on s )
285 names( ope ra t i on s )< vars3
286 ope ra t i on s < l i s t ( operat ions , 0 , kMax∗2)
287
288 vars4< c ( ”polygonID” , ” l a t 1 ” , ” lon1 ” , ” l a t 2 ” , ” lon2 ” , ” l a t 3 ” , ”

lon3 ” , ” l a t 4 ” , ” lon4 ” )
289 i r rPo lygons <matrix (0 ,kMax , length ( vars4 ) )
290
291 names( i r rPo lygons )< vars4
292 i r rPo lygons < as . data . frame ( i r rPo lygons )
293 i r rPo lygons < l i s t ( i r rPo lygons , 0 , kMax)
294
295 obj< updateIPoly ( c l u s t e r s , 1 , i r rPo lygons , g e t I r r egu l a rPo lygon (

t o p l e f t [ 1 ] , t o p l e f t [ 2 ] , r ightbottom [ 1 ] , r ightbottom [ 2 ] , obst
) )

296 i r rPo lygons < obj [ [ 2 ] ]
297 c l u s t e r s < obj [ [ 1 ] ]
298 }
299
300 i t e r a t i o n < 1
301 ma<max( c l u s t e r s [ [ 1 ] ] $mass [ 1 : c l u s t e r s [ [ 2 ] ] ] )
302 t o t a l . c l u s t e r s < rep (1 ,N)
303
304
305 c o l o r p a l l e t t e ba s i c < primary . colors (30 ,3 , ”FALSE” )
306 c o l o r p a l l e t t e complex< sample ( primary . colors (100 ,5 , ”FALSE” ) )
307 c o l o r p a l l e t t e complex< c o l o r p a l l e t t e complex [ which( c o l o r

p a l l e t t e complex %in% co l o r p a l l e t t e ba s i c ) ]
308 c o l o r p a l l e t t e < c ( c o l o r p a l l e t t e bas ic , sample ( c o l o r p a l l e t t e

complex) )
309
310 #o f f l i n e s t a g e ha l f space t r e e
311 while (ma>round(max. points . perc∗N) )
312 {
313 c l u s t e r to d iv id e < c l u s t e r s [ [ 1 ] ] $ c l u s t e r [which( c l u s t e r s [ [ 1 ] ]

$mass==ma) ]
314 c l u s t e r to d iv id e < c l u s t e r to d iv id e [ 1 ]
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315 idxnode<which( mytree [ [ 1 ] ] $node type [ 1 : mytree [ [ 2 ] ] ]== ”
c l u s t e r ” & mytree [ [ 1 ] ] $value [ 1 : mytree [ [ 2 ] ] ]== c l u s t e r to
d iv id e )

316 ID l ea f < mytree [ [ 1 ] ] $IDnode [ idxnode ]
317 ds . c l u s t e r < ds [which( t o t a l . c l u s t e r s==c l u s t e r to d iv id e ) , ]
318
319 #ob ta in s the c l u s t e r d i v i s i o n . . . which would be the

median in t h i s s t a g e
320 opt< find optimal d i v i s i o n ( ds . c l u s t e r , c l u s t e r s [ [ 1 ] ] $mass [

c l u s t e r to d iv id e ] , c l u s t e r s [ [ 1 ] ] $ l a t 1 [ c l u s t e r to d iv id e
] , c l u s t e r s [ [ 1 ] ] $ lon1 [ c l u s t e r to d iv id e ] , c l u s t e r s [ [ 1 ] ] $
l a t 2 [ c l u s t e r to d iv id e ] , c l u s t e r s [ [ 1 ] ] $ lon2 [ c l u s t e r to
d iv id e ] , opt imal . r a t i o . sp l i t )

321
322 #genera t e s nove l c l u s t e r s
323 my. poly< getPolygonExtremes ( c l u s t e r s [ [ 1 ] ] $ l a t 1 [ c l u s t e r to

d iv id e ] , c l u s t e r s [ [ 1 ] ] $ lon1 [ c l u s t e r to d iv id e ] , c l u s t e r s
[ [ 1 ] ] $ l a t 2 [ c l u s t e r to d iv id e ] , c l u s t e r s [ [ 1 ] ] $ lon2 [ c l u s t e r
to d iv id e ] , opt [ [ 1 ] ] , opt [ [ 2 ] ] )

324 s t r (my. poly )
325 c l u s t e r s [ [ 1 ] ] [ c l u s t e r to d iv ide , ] < c ( c l u s t e r to d iv ide ,

c l u s t e r s [ [ 1 ] ] $mass [ c l u s t e r to d iv id e ] opt [ [ 3 ] ] ,my. poly
[ [ 1 ] ] [ 1 ] ,my. poly [ [ 1 ] ] [ 2 ] ,my. poly [ [ 1 ] ] [ 3 ] ,my. poly
[ [ 1 ] ] [ 4 ] , 0 , 0 )

326 obj< updateIPoly ( c l u s t e r s , c l u s t e r to d iv ide , i r rPo lygons ,
g e t I r r egu l a rPo lygon (my. poly [ [ 1 ] ] [ 1 ] ,my. poly [ [ 1 ] ] [ 2 ] ,my.
poly [ [ 1 ] ] [ 3 ] ,my. poly [ [ 1 ] ] [ 4 ] , obst ) )

327 i r rPo lygons < obj [ [ 2 ] ]
328 c l u s t e r s < obj [ [ 1 ] ]
329 c l u s t e r s [ [ 2 ] ] < c l u s t e r s [ [ 2 ] ] + 1
330 new . c l u s t e r < c l u s t e r s [ [ 2 ] ]
331 c l u s t e r s [ [ 1 ] ] [ new . c l u s t e r , ] < c (new . c l u s t e r , opt [ [ 3 ] ] ,my. poly

[ [ 2 ] ] [ 1 ] ,my. poly [ [ 2 ] ] [ 2 ] ,my. poly [ [ 2 ] ] [ 3 ] ,my. poly
[ [ 2 ] ] [ 4 ] , 0 , 0 )

332 obj< updateIPoly ( c l u s t e r s ,new . c l u s t e r , i r rPo lygons ,
g e t I r r egu l a rPo lygon (my. poly [ [ 2 ] ] [ 1 ] ,my. poly [ [ 2 ] ] [ 2 ] ,my.
poly [ [ 2 ] ] [ 3 ] ,my. poly [ [ 2 ] ] [ 4 ] , obst ) )

333 i r rPo lygons < obj [ [ 2 ] ]
334 c l u s t e r s < obj [ [ 1 ] ]
335
336 ope ra t i on s [ [ 2 ] ] < ope ra t i on s [ [ 2 ] ] + 1
337 ope ra t i on s [ [ 1 ] ] [ ope ra t i on s [ [ 2 ] ] , ] < c ( c l u s t e r to d iv ide ,

c l u s t e r to d iv ide ,new . c l u s t e r , 1 )
338
339 mytree [ [ 1 ] ] < insertNode (mytree [ [ 1 ] ] , IDlea f , ” cond i t i on ” , opt

[ [ 1 ] ] , opt [ [ 4 ] ] , opt [ [ 2 ] ] , mytree [ [ 2 ] ] + 1 , mytree [ [ 2 ] ] + 2 )
340 mytree [ [ 2 ] ] < mytree [ [ 2 ] ] + 2
341
342 i f ( mytree [ [ 2 ] ] >mytree [ [ 3 ] ] )
343 mytree< expanding . t r e e ( mytree )
344
345 mytree [ [ 1 ] ] < insertNode (mytree [ [ 1 ] ] , mytree [ [ 2 ] ] 1 , ” c l u s t e r ” ,

NA,NA, c l u s t e r to d iv ide ,NA,NA)
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346 mytree [ [ 1 ] ] < insertNode (mytree [ [ 1 ] ] , mytree [ [ 2 ] ] , ” c l u s t e r ” ,NA
,NA,new . c l u s t e r ,NA,NA)

347 print ( mytree [ [ 1 ] ] [ 1 : mytree [ [ 2 ] ] , ] )
348
349 #proces s the c l u s t e r i n g
350 t o t a l . c l u s t e r s < run t r e e ( ds , mytree , p l o t t i n g )
351
352 i f ( p l o t t i n g )
353 {
354 s p a t i a l c l u s t e r i n g ( ”mass c l u s t e r i n g ” , c l u s t e r s [ [ 2 ] ] , ds ,NULL,

zoom=12, t o t a l . c l u s t e r s , l i s t ( c l u s t e r s [ [ 1 ] ] [ 1 : c l u s t e r s
[ [ 2 ] ] , ] , c o l o r p a l l e t t e ) ,FALSE,FALSE,TRUE,TRUE,TRUE,
i t e r a t i o n , ”pdf ” ,map . center , i r rPo lygons )

355 }
356
357 ma<max( c l u s t e r s [ [ 1 ] ] $mass [ 1 : c l u s t e r s [ [ 2 ] ] ] )
358 i t e r a t i o n < i t e r a t i o n+1
359 }
360
361 #i n i t i a l i z a t i o n o f nove l parameters f o r the re f inement

s t a g e
362 areas < rep (0 , c l u s t e r s [ [ 2 ] ] )
363 i s . l a r g e < areas
364 for ( c l in c ( 1 : c l u s t e r s [ [ 2 ] ] ) )
365 {
366 areas [ c l ] < c a l cAr ea I r r ( c l , c l u s t e r s [ [ 1 ] ] , i r rPo lygons [ [ 1 ] ] )
367 i s . l a r g e [ c l ] < i s . l a r g e . r e c t ang l e ( rect . proport ion , c l u s t e r s

[ [ 1 ] ] [ c l , ] )
368 }
369
370 my. density< c l u s t e r s [ [ 1 ] ] $mass [ 1 : c l u s t e r s [ [ 2 ] ] ] /areas
371 mean . density<median(my. density [ 1 : c l u s t e r s [ [ 2 ] ] ] )
372 th r e sho ld . density<mean . density∗ ( 0 . 5 )
373 c l u s t e r s [ [ 1 ] ] < cbind ( c l u s t e r s [ [ 1 ] ] , density=my. density [ 1 :

c l u s t e r s [ [ 3 ] ] ] )
374 c l u s t e r s [ [ 1 ] ] < cbind ( c l u s t e r s [ [ 1 ] ] , i n t e r e s t=rep (1 , c l u s t e r s

[ [ 3 ] ] ) )
375 my. c l u s t e r s < c l u s t e r s [ [ 1 ] ] [ 1 : c l u s t e r s [ [ 2 ] ] , ]
376 mi<min(my. density [ 1 : c l u s t e r s [ [ 2 ] ] ] )
377
378 dense areas < areas [which(my. c l u s t e r s $density<th r e sho ld .

density | i s . l a r g e==1) ]
379 maxareas<max( dense areas )
380 idxdens<which( a reas==maxareas )
381
382 #ref inement c y c l e
383 while ( (mi<th r e sho ld . density && length ( idxdens )>0) )
384 {
385 c l u s t e r to d iv id e < c l u s t e r s [ [ 1 ] ] $ c l u s t e r [ idxdens ]
386 idxnode<which( mytree [ [ 1 ] ] $node type [ 1 : mytree [ [ 2 ] ] ]== ”

c l u s t e r ” & mytree [ [ 1 ] ] $value [ 1 : mytree [ [ 2 ] ] ]== c l u s t e r to
d iv id e )

387 ID l ea f < mytree [ [ 1 ] ] $IDnode [ idxnode ]
388
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389 ds . c l u s t e r < ds [which( t o t a l . c l u s t e r s==c l u s t e r to d iv id e ) , ]
390
391 #ob ta in s the b e s t p o s s i b l e d i v i s i o n f o r a g iven

c l u s t e r
392 opt< find optimal d i v i s i o n ( ds . c l u s t e r , c l u s t e r s [ [ 1 ] ] $mass [

c l u s t e r to d iv id e ] , c l u s t e r s [ [ 1 ] ] $ l a t 1 [ c l u s t e r to d iv id e
] , c l u s t e r s [ [ 1 ] ] $ lon1 [ c l u s t e r to d iv id e ] , c l u s t e r s [ [ 1 ] ] $
l a t 2 [ c l u s t e r to d iv id e ] , c l u s t e r s [ [ 1 ] ] $ lon2 [ c l u s t e r to
d iv id e ] ,minimum . density . r a t i o . spl it , ” dens i ty ” )

393 old . poly< c ( c l u s t e r s [ [ 1 ] ] $ l a t 1 [ c l u s t e r to d iv id e ] , c l u s t e r s
[ [ 1 ] ] $ lon1 [ c l u s t e r to d iv id e ] , c l u s t e r s [ [ 1 ] ] $ l a t 2 [ c l u s t e r
to d iv id e ] , c l u s t e r s [ [ 1 ] ] $ lon2 [ c l u s t e r to d iv id e ] )

394
395 my. poly< getPolygonExtremes ( c l u s t e r s [ [ 1 ] ] $ l a t 1 [ c l u s t e r to

d iv id e ] , c l u s t e r s [ [ 1 ] ] $ lon1 [ c l u s t e r to d iv id e ] , c l u s t e r s
[ [ 1 ] ] $ l a t 2 [ c l u s t e r to d iv id e ] , c l u s t e r s [ [ 1 ] ] $ lon2 [ c l u s t e r
to d iv id e ] , opt [ [ 1 ] ] , opt [ [ 2 ] ] )

396 s t r (my. poly )
397
398 c l u s t e r s [ [ 1 ] ] [ c l u s t e r to d iv ide , ] < c ( c l u s t e r to d iv ide ,

c l u s t e r s [ [ 1 ] ] $mass [ c l u s t e r to d iv id e ] opt [ [ 3 ] ] ,my. poly
[ [ 1 ] ] [ 1 ] ,my. poly [ [ 1 ] ] [ 2 ] ,my. poly [ [ 1 ] ] [ 3 ] ,my. poly
[ [ 1 ] ] [ 4 ] , 0 , 0 , 0 , 1 )

399
400 obj< updateIPoly ( c l u s t e r s , c l u s t e r to d iv ide , i r rPo lygons ,

g e t I r r egu l a rPo lygon (my. poly [ [ 1 ] ] [ 1 ] ,my. poly [ [ 1 ] ] [ 2 ] ,my.
poly [ [ 1 ] ] [ 3 ] ,my. poly [ [ 1 ] ] [ 4 ] , obst ) )

401 i r rPo lygons < obj [ [ 2 ] ]
402 c l u s t e r s < obj [ [ 1 ] ]
403
404 area1< c a l cAr ea I r r ( c l u s t e r to d iv ide , c l u s t e r s [ [ 1 ] ] ,

i r rPo lygons [ [ 1 ] ] )
405 c l u s t e r s [ [ 1 ] ] $density [ c l u s t e r to d iv id e ] < c l u s t e r s [ [ 1 ] ] $mass

[ c l u s t e r to d iv id e ] /area1
406 c l u s t e r s [ [ 2 ] ] < c l u s t e r s [ [ 2 ] ] + 1
407 new . c l u s t e r < c l u s t e r s [ [ 2 ] ]
408
409 c l u s t e r s [ [ 1 ] ] [ new . c l u s t e r , ] < c (new . c l u s t e r , opt [ [ 3 ] ] ,my. poly

[ [ 2 ] ] [ 1 ] ,my. poly [ [ 2 ] ] [ 2 ] ,my. poly [ [ 2 ] ] [ 3 ] ,my. poly
[ [ 2 ] ] [ 4 ] , 0 , 0 , 0 , 1 )

410 obj< updateIPoly ( c l u s t e r s ,new . c l u s t e r , i r rPo lygons ,
g e t I r r egu l a rPo lygon (my. poly [ [ 2 ] ] [ 1 ] ,my. poly [ [ 2 ] ] [ 2 ] ,my.
poly [ [ 2 ] ] [ 3 ] ,my. poly [ [ 2 ] ] [ 4 ] , obst ) )

411 i r rPo lygons < obj [ [ 2 ] ]
412 c l u s t e r s < obj [ [ 1 ] ]
413
414 area2< c a l cAr ea I r r (new . c l u s t e r , c l u s t e r s [ [ 1 ] ] , i r rPo lygons

[ [ 1 ] ] )
415 c l u s t e r s [ [ 1 ] ] $density [new . c l u s t e r ] < c l u s t e r s [ [ 1 ] ] $mass [new .

c l u s t e r ] /area2
416
417 count . i n t e r e s t < 0
418
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419 #removal o f c l u s t e r s wi thout in format ion from the ROI
matrix

420 i f ( c l u s t e r s [ [ 1 ] ] $mass [ c l u s t e r to d iv id e ]<=( i n t e r e s t . r a t i o∗
sum( c l u s t e r s [ [ 1 ] ] $mass [ 1 : c l u s t e r s [ [ 2 ] ] ] ) ) )

421 {
422 c l u s t e r s [ [ 1 ] ] $ i n t e r e s t [ c l u s t e r to d iv id e ] < 0
423 print ( s p r i n t f ( ” Clus te r %d i s no l onge r o f i n t e r e s t . . . ” ,

c l u s t e r to d iv id e ) )
424 count . i n t e r e s t < count . i n t e r e s t+1
425 }
426 i f ( c l u s t e r s [ [ 1 ] ] $mass [new . c l u s t e r ]<=( i n t e r e s t . r a t i o∗sum(

c l u s t e r s [ [ 1 ] ] $mass [ 1 : c l u s t e r s [ [ 2 ] ] ] ) ) )
427 {
428 c l u s t e r s [ [ 1 ] ] $ i n t e r e s t [new . c l u s t e r ] < 0
429 print ( s p r i n t f ( ” Clus te r %d i s no l onge r o f i n t e r e s t . . . ” ,new .

c l u s t e r ) )
430 count . i n t e r e s t < count . i n t e r e s t+1
431 }
432
433 #genera t ion o f nove l r e f i n e d c l u s t e r s
434 i f (count . i n t e r e s t==2)
435 {
436 c l u s t e r s [ [ 1 ] ] [ c l u s t e r to d iv ide , ] < c ( c l u s t e r to d iv ide ,

c l u s t e r s [ [ 1 ] ] $mass [ c l u s t e r to d iv id e ]+opt [ [ 3 ] ] , old . poly
[ 1 ] , old . poly [ 2 ] , old . poly [ 3 ] , old . poly [ 4 ] , 0 , 0 , 0 , 2 )

437 obj< updateIPoly ( c l u s t e r s , c l u s t e r to d iv ide , i r rPo lygons ,
g e t I r r egu l a rPo lygon (old . poly [ 1 ] , old . poly [ 2 ] , old . poly
[ 3 ] , old . poly [ 4 ] , obst ) )

438 i r rPo lygons < obj [ [ 2 ] ]
439 c l u s t e r s < obj [ [ 1 ] ]
440 area1< c a l cAr ea I r r ( c l u s t e r to d iv ide , c l u s t e r s [ [ 1 ] ] ,

i r rPo lygons [ [ 1 ] ] )
441 c l u s t e r s [ [ 1 ] ] $density [ c l u s t e r to d iv id e ] < c l u s t e r s [ [ 1 ] ] $

mass [ c l u s t e r to d iv id e ] /area1
442 c l u s t e r s [ [ 2 ] ] < c l u s t e r s [ [ 2 ] ] 1
443 }
444 else
445 {
446 ope ra t i on s [ [ 2 ] ] < ope ra t i on s [ [ 2 ] ] + 1
447 ope ra t i on s [ [ 1 ] ] [ ope ra t i on s [ [ 2 ] ] , ] < c ( c l u s t e r to d iv ide ,

c l u s t e r to d iv ide ,new . c l u s t e r , 1 )
448 print ( s p r i n t f ( ”Updating t r e e node %d from l e a f to

c ond i t i o na l . . . ” , ID l ea f ) )
449 mytree [ [ 1 ] ] < insertNode (mytree [ [ 1 ] ] , IDlea f , ” cond i t i on ” , opt

[ [ 1 ] ] , opt [ [ 4 ] ] , opt [ [ 2 ] ] , mytree [ [ 2 ] ] + 1 , mytree [ [ 2 ] ] + 2 )
450 print ( s p r i n t f ( ”Creat ing two new l e av e s %d and %d” , mytree

[ [ 2 ] ] + 1 , mytree [ [ 2 ] ] + 2 ) )
451 mytree [ [ 2 ] ] < mytree [ [ 2 ] ] + 2
452
453 i f ( mytree [ [ 2 ] ] >mytree [ [ 3 ] ] )
454 mytree< expanding . t r e e ( mytree )
455
456 mytree [ [ 1 ] ] < insertNode (mytree [ [ 1 ] ] , mytree [ [ 2 ] ] 1 , ” c l u s t e r ”

,NA,NA, c l u s t e r to d iv ide ,NA,NA)
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457 mytree [ [ 1 ] ] < insertNode (mytree [ [ 1 ] ] , mytree [ [ 2 ] ] , ” c l u s t e r ” ,
NA,NA,new . c l u s t e r ,NA,NA)

458
459 t o t a l . c l u s t e r s < run t r e e ( ds , mytree , p l o t t i n g )
460 print ( t o t a l . c l u s t e r s )
461 }
462
463 i f ( p l o t t i n g )
464 {
465 s p a t i a l c l u s t e r i n g ( ”mass c l u s t e r i n g ” , c l u s t e r s [ [ 2 ] ] , ds ,NULL,

zoom=12, t o t a l . c l u s t e r s , l i s t ( c l u s t e r s [ [ 1 ] ] [ 1 : c l u s t e r s
[ [ 2 ] ] , ] , c o l o r p a l l e t t e ) ,FALSE,FALSE,TRUE,TRUE,TRUE,
i t e r a t i o n , ”pdf ” ,map . center , i r rPo lygons )

466 }
467
468 i t e r a t i o n < i t e r a t i o n+1
469
470 my. c l u s t e r s < c l u s t e r s [ [ 1 ] ] [ 1 : c l u s t e r s [ [ 2 ] ] , ]
471 print (my. c l u s t e r s )
472 mean . density<median(my. c l u s t e r s $density [which(my. c l u s t e r s $

i n t e r e s t==1) ] )
473
474 mi<min(my. c l u s t e r s $density [which(my. c l u s t e r s $ i n t e r e s t==1) ] )
475
476 areas < rep (0 , c l u s t e r s [ [ 2 ] ] )
477 i s . l a r g e < areas
478 for ( c l in c ( 1 : c l u s t e r s [ [ 2 ] ] ) )
479 {
480 areas [ c l ] < c a l cAr ea I r r ( c l , c l u s t e r s [ [ 1 ] ] , i r rPo lygons [ [ 1 ] ] )
481 i s . l a r g e [ c l ] < i s . l a r g e . r e c t ang l e ( rect . proport ion , c l u s t e r s

[ [ 1 ] ] [ c l , ] )
482 }
483 dense areas < areas [which ( (my. c l u s t e r s $density<th r e sho ld .

density | i s . l a r g e==1) & my. c l u s t e r s $ i n t e r e s t==1) ]
484
485 maxareas<max( dense areas )
486 idxdens<which( a reas==maxareas )
487 }
488 s p a t i a l c l u s t e r i n g ( ”mass c l u s t e r i n g ” , c l u s t e r s [ [ 2 ] ] , ds ,NULL,

zoom=12, t o t a l . c l u s t e r s , l i s t ( c l u s t e r s [ [ 1 ] ] [ 1 : c l u s t e r s
[ [ 2 ] ] , ] , c o l o r p a l l e t t e ) ,FALSE,FALSE,TRUE,TRUE,TRUE,
i t e r a t i o n , c ( ”pdf ” , ” f i n a l ” ) ,map . center , i r rPo lygons )

489
490 return ( l i s t ( ds , t o t a l . c l u s t e r s , mytree , c l u s t e r s , operat ions ,

i r rPo lygons , t r i p s ) )
491 }
492
493
494
495 #on l ine c l u s t e r i n g
496 mass c l u s t e r i n g stream< function ( obj , ds , plot . step=1000 , sp l i t .

t e s t . step=1000 , sp l i t . r a t i o =0.05 , i n t e r e s t . r a t i o =0.01 ,
optimal . r a t i o . sp l i t=0.1 ,minimum . area=1,merge . s i z e . r a t i o
=1.5 , rect . p ropor t ion=4,minimum . density . r a t i o . sp l i t=0.1 ,
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begin . t e s t =200000 ,end . t e s t =400000 ,min . perc . mass . t r a v e l .
time=0.75 , p l o t t i n g=TRUE)

497 {
498 #data read ing
499 my. ds< obj [ [ 1 ] ]
500 t o t a l . c l u s t e r s < obj [ [ 2 ] ]
501 mytree< obj [ [ 3 ] ]
502 c l u s t e r s < obj [ [ 4 ] ]
503 ope ra t i on s < obj [ [ 5 ] ]
504 i r rPo lygons < obj [ [ 6 ] ]
505 ds< obj [ [ 7 ] ]
506
507 #preproce s s ing
508 N< 200000
509 new . ds< data . frame ( l a t=c ( ds$ l a t 1 [ 1 :N] , ds$ l a t 2 [ 1 :N] ) , lon=c ( ds$

lon1 [ 1 :N] , ds$ lon2 [ 1 :N] ) )
510 new . ds$ l a t [ seq ( from=1, to=N∗ 2 1 , 2 ) ] < ds$ l a t 1 [ 1 :N]
511 new . ds$ l on [ seq ( from=1, to=N∗ 2 1 , 2 ) ] < ds$ lon1 [ 1 :N]
512 new . ds$ l a t [ seq ( from=2, to=N∗2 ,2) ] < ds$ l a t 2 [ 1 :N]
513 new . ds$ l on [ seq ( from=2, to=N∗2 ,2) ] < ds$ lon2 [ 1 :N]
514 ds<new . ds
515 N<N∗2
516
517 npo ints <matrix (0 ,1000000 ,2)
518
519 i n i t i a l N < c ( 1 : length (my. ds [ , 1 ] ) )
520 ds< ds [ i n i t i a lN , ]
521
522 #ge t t i n g map dimensions
523 i n i t i a l N <max( i n i t i a l N )
524 nsample<min( i n i t i a lN ,5000 )
525 i n i t i a lK < c l u s t e r s [ [ 2 ] ]
526 r e s < a l l . grid (my. ds , 4 , nsample ) [ [ 3 ] ]
527 map . c en te r < c ( r e s$ l a t . center , r e s$ l on . c en t e r )
528
529 #ge t t i n g g l o b a l s t a t i s t i c s
530 t o t a l . mass<sum( c l u s t e r s [ [ 1 ] ] $mass [ 1 : c l u s t e r s [ [ 2 ] ] ] )
531 max. mass<max( c l u s t e r s [ [ 1 ] ] $mass [ 1 : c l u s t e r s [ [ 2 ] ] ] )
532
533 t o t a l . c l u s t e r s < run t r e e (my. ds , mytree ,TRUE)
534
535 #ge t t i n g map o b s t a c u l e s
536 obst< read . ob s t a cu l e s ( )
537
538 #adding mean l a t i t u d e s and l on g i t u d e s
539 va lue s < rep (0 , c l u s t e r s [ [ 3 ] ] )
540 c l u s t e r s [ [ 1 ] ] < cbind ( c l u s t e r s [ [ 1 ] ] , meanlat=va lues )
541 c l u s t e r s [ [ 1 ] ] < cbind ( c l u s t e r s [ [ 1 ] ] , meanlon=va lues )
542
543 c l u s t e r s [ [ 1 ] ] < cbind ( c l u s t e r s [ [ 1 ] ] , i n i t i a lMas sRa t i o=c l u s t e r s

[ [ 1 ] ] $mass/ t o t a l . mass )
544
545 for ( i in c ( 1 : c l u s t e r s [ [ 2 ] ] ) )
546 {
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547 idx<which( t o t a l . c l u s t e r s==i )
548 c l u s t e r s [ [ 1 ] ] $meanlat [ i ] <mean(my. ds$ l a t [ idx ] )
549 c l u s t e r s [ [ 1 ] ] $meanlon [ i ] <mean(my. ds$ l on [ idx ] )
550 }
551
552 c o l o r p a l l e t t e ba s i c < primary . colors (30 ,3 , ”FALSE” )
553 c o l o r p a l l e t t e complex< sample ( primary . colors (100 ,5 , ”FALSE” ) )
554 c o l o r p a l l e t t e complex< c o l o r p a l l e t t e complex [ which( c o l o r

p a l l e t t e complex %in% co l o r p a l l e t t e ba s i c ) ]
555 c o l o r p a l l e t t e < c ( c o l o r p a l l e t t e bas ic , sample ( c o l o r p a l l e t t e

complex) )
556
557 l en < length ( ds [ , 1 ] )
558 count< 0
559
560 l en . datase t < length (my. ds [ , 1 ] )
561
562 np< 1
563 for ( idx in c ( 1 : l en ) )
564 {
565 po int< ds [ idx , ]
566
567 c l u s t e r < run t r e e ( point , mytree ,TRUE, idx+i n i t i a l N )
568 t o t a l . c l u s t e r s < c ( t o t a l . c l u s t e r s , c l u s t e r )
569 l en . datase t < l en . datase t+1
570 my. ds [ l en . dataset , ] < point
571
572 c l u s t e r s [ [ 1 ] ] $meanlat [ c l u s t e r ] < c l u s t e r s [ [ 1 ] ] $meanlat [

c l u s t e r ] ∗ c l u s t e r s [ [ 1 ] ] $mass [ c l u s t e r ]
573 c l u s t e r s [ [ 1 ] ] $meanlat [ c l u s t e r ] < c l u s t e r s [ [ 1 ] ] $meanlat [

c l u s t e r ]+ point$ l a t
574 c l u s t e r s [ [ 1 ] ] $meanlon [ c l u s t e r ] < c l u s t e r s [ [ 1 ] ] $meanlon [

c l u s t e r ] ∗ c l u s t e r s [ [ 1 ] ] $mass [ c l u s t e r ]
575 c l u s t e r s [ [ 1 ] ] $meanlon [ c l u s t e r ] < c l u s t e r s [ [ 1 ] ] $meanlon [

c l u s t e r ]+ point$ l on
576 c l u s t e r s [ [ 1 ] ] $mass [ c l u s t e r ] < c l u s t e r s [ [ 1 ] ] $mass [ c l u s t e r ]+1
577 c l u s t e r s [ [ 1 ] ] $meanlat [ c l u s t e r ] < c l u s t e r s [ [ 1 ] ] $meanlat [

c l u s t e r ] / c l u s t e r s [ [ 1 ] ] $mass [ c l u s t e r ]
578 c l u s t e r s [ [ 1 ] ] $meanlon [ c l u s t e r ] < c l u s t e r s [ [ 1 ] ] $meanlon [

c l u s t e r ] / c l u s t e r s [ [ 1 ] ] $mass [ c l u s t e r ]
579
580 area1< c a l cAr ea I r r ( c l u s t e r , c l u s t e r s [ [ 1 ] ] , i r rPo lygons [ [ 1 ] ] )
581 c l u s t e r s [ [ 1 ] ] $density [ c l u s t e r ] < c l u s t e r s [ [ 1 ] ] $mass [ c l u s t e r ] /

area1
582
583
584
585 t o t a l . mass< t o t a l . mass+1
586 count< count+1
587
588 #remove outdated samples
589 i f ( c l u s t e r s [ [ 1 ] ] $mass [ c l u s t e r ]>max. mass )
590 {
591 idx<which( t o t a l . c l u s t e r s==c l u s t e r )
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592 idx< idx [ 1 ]
593
594 my. ds<my. ds [ idx , ]
595 t o t a l . c l u s t e r s < t o t a l . c l u s t e r s [ idx ]
596 l en . datase t < l en . dataset 1
597 }
598
599 i f ( ( count%%spl i t . t e s t . step )==0)
600 {
601 changes< 0
602
603 i d x s e l <which( c l u s t e r s [ [ 1 ] ] $ i n t e r e s t [ 1 : c l u s t e r s [ [ 2 ] ] ] > 0 &

c l u s t e r s [ [ 1 ] ] $mass [ 1 : c l u s t e r s [ [ 2 ] ] ] > ( sp l i t . r a t i o∗ t o t a l .
mass ) & ca lcArea ( c l u s t e r s [ [ 1 ] ] $ l a t 1 [ 1 : c l u s t e r s [ [ 2 ] ] ] ,
c l u s t e r s [ [ 1 ] ] $ lon1 [ 1 : c l u s t e r s [ [ 2 ] ] ] , c l u s t e r s [ [ 1 ] ] $ l a t 2
[ 1 : c l u s t e r s [ [ 2 ] ] ] , c l u s t e r s [ [ 1 ] ] $ lon2 [ 1 : c l u s t e r s [ [ 2 ] ] ] )>
minimum . area )

604 i f ( length ( i d x s e l )>0)
605 {
606 for ( idx in i d x s e l )
607 {
608 changes< changes+1
609 c l u s t e r to d iv id e < c l u s t e r s [ [ 1 ] ] $ c l u s t e r [ idx ]
610 idxnode<which( mytree [ [ 1 ] ] $node type [ 1 : mytree [ [ 2 ] ] ]== ”

c l u s t e r ” & mytree [ [ 1 ] ] $value [ 1 : mytree [ [ 2 ] ] ]== c l u s t e r
to d iv id e )

611 ID l ea f < mytree [ [ 1 ] ] $IDnode [ idxnode ]
612
613
614 ds . c l u s t e r <my. ds [which( t o t a l . c l u s t e r s==c l u s t e r to d iv id e

) , ]
615
616 mean . density<median( c l u s t e r s [ [ 1 ] ] $density [ 1 : c l u s t e r s

[ [ 2 ] ] ] )
617 th r e sho ld . density<mean . density∗ ( 0 . 5 )
618 #approximation to the median f o r g e t t i n g the i d e a l s p l i t

po in t
619 i f ( c l u s t e r s [ [ 1 ] ] $density [ c l u s t e r to d iv id e ]< th r e sho ld .

density | | i s . l a r g e . r e c t ang l e ( rect . proport ion ,
c l u s t e r s [ [ 1 ] ] [ c l u s t e r to d iv ide , ] ) ==1)

620 {
621 opt< find optimal d i v i s i o n ( ds . c l u s t e r , c l u s t e r s [ [ 1 ] ] $mass

[ c l u s t e r to d iv id e ] , c l u s t e r s [ [ 1 ] ] $ l a t 1 [ c l u s t e r to
d iv id e ] , c l u s t e r s [ [ 1 ] ] $ lon1 [ c l u s t e r to d iv id e ] ,
c l u s t e r s [ [ 1 ] ] $ l a t 2 [ c l u s t e r to d iv id e ] , c l u s t e r s [ [ 1 ] ] $
lon2 [ c l u s t e r to d iv id e ] ,minimum . density . r a t i o . spl it ,
” dens i ty ” )

622 i f ( opt [ [ 5 ] ] > 1 )
623 opt [ [ 5 ] ] < opt [ [ 5 ] ] ˆ 1
624
625 }
626 else
627 opt< find optimal d i v i s i o n ( ds . c l u s t e r , c l u s t e r s [ [ 1 ] ] $mass

[ c l u s t e r to d iv id e ] , c l u s t e r s [ [ 1 ] ] $ l a t 1 [ c l u s t e r to
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d iv id e ] , c l u s t e r s [ [ 1 ] ] $ lon1 [ c l u s t e r to d iv id e ] ,
c l u s t e r s [ [ 1 ] ] $ l a t 2 [ c l u s t e r to d iv id e ] , c l u s t e r s [ [ 1 ] ] $
lon2 [ c l u s t e r to d iv id e ] , opt imal . r a t i o . spl it , ”none” )

628
629 my. poly< getPolygonExtremes ( c l u s t e r s [ [ 1 ] ] $ l a t 1 [ c l u s t e r to

d iv id e ] , c l u s t e r s [ [ 1 ] ] $ lon1 [ c l u s t e r to d iv id e ] ,
c l u s t e r s [ [ 1 ] ] $ l a t 2 [ c l u s t e r to d iv id e ] , c l u s t e r s [ [ 1 ] ] $
lon2 [ c l u s t e r to d iv id e ] , opt [ [ 1 ] ] , opt [ [ 2 ] ] )

630 s t r (my. poly )
631
632
633 mass2< round( c l u s t e r s [ [ 1 ] ] $mass [ c l u s t e r to d iv id e ] ∗opt

[ [ 5 ] ] )
634 mass1< c l u s t e r s [ [ 1 ] ] $mass [ c l u s t e r to d iv id e ] mass2
635 po int s1 < s e l e c tPo i n t s ( ds . c l u s t e r , ” lower ” , opt [ [ 1 ] ] , opt

[ [ 2 ] ] )
636 po int s2 < s e l e c tPo i n t s ( ds . c l u s t e r , ” g r e a t e r ” , opt [ [ 1 ] ] , opt

[ [ 2 ] ] )
637
638 print ( s p r i n t f ( ”Updating c l u s t e r %d to %d mass po in t s . . .

” , c l u s t e r to d iv ide , mass1 ) )
639 c l u s t e r s [ [ 1 ] ] [ c l u s t e r to d iv ide , ] < c ( c l u s t e r to d iv ide ,

mass1 ,my. poly [ [ 1 ] ] [ 1 ] ,my. poly [ [ 1 ] ] [ 2 ] ,my. poly
[ [ 1 ] ] [ 3 ] ,my. poly [ [ 1 ] ] [ 4 ] , 0 , 0 , 0 , 1 ,mean( po int s1$ l a t ) ,
mean( po int s1$ l on ) ,mass1/ t o t a l . mass )

640
641 obj< updateIPoly ( c l u s t e r s , c l u s t e r to d iv ide , i r rPo lygons ,

g e t I r r egu l a rPo lygon (my. poly [ [ 1 ] ] [ 1 ] ,my. poly [ [ 1 ] ] [ 2 ] ,
my. poly [ [ 1 ] ] [ 3 ] ,my. poly [ [ 1 ] ] [ 4 ] , obst ) )

642 i r rPo lygons < obj [ [ 2 ] ]
643 c l u s t e r s < obj [ [ 1 ] ]
644
645 area1< c a l cAr ea I r r ( c l u s t e r to d iv ide , c l u s t e r s [ [ 1 ] ] ,

i r rPo lygons [ [ 1 ] ] )
646 c l u s t e r s [ [ 1 ] ] $density [ c l u s t e r to d iv id e ] < c l u s t e r s [ [ 1 ] ] $

mass [ c l u s t e r to d iv id e ] /area1
647 i f ( i r rPo lygons [ [ 2 ] ]== i r rPo lygons [ [ 3 ] ] )
648 {
649 print ( s p r i n t f ( ”Doubling I r r e g u l a r Polygons l i s t ’

capac i ty from %d to %d . . . ” , i r rPo lygons [ [ 2 ] ] ,
i r rPo lygons [ [ 2 ] ] ∗2) )

650 i r rPo lygons < double . i r rPo lygon ( i r rPo lygons )
651 }
652
653 #crea t i n g new c l u s t e r
654 c l u s t e r s [ [ 2 ] ] < c l u s t e r s [ [ 2 ] ] + 1
655 new . c l u s t e r < c l u s t e r s [ [ 2 ] ]
656 print ( s p r i n t f ( ”Creat ing c l u s t e r %d with %d mass po in t s . . .

” ,new . c l u s t e r , mass2 ) )
657 c l u s t e r s [ [ 1 ] ] [ new . c l u s t e r , ] < c (new . c l u s t e r , mass2 ,my. poly

[ [ 2 ] ] [ 1 ] ,my. poly [ [ 2 ] ] [ 2 ] ,my. poly [ [ 2 ] ] [ 3 ] ,my. poly
[ [ 2 ] ] [ 4 ] , 0 , 0 , 0 , 1 ,mean( po int s2$ l a t ) ,mean( po int s2$ l on ) ,
mass2/ t o t a l . mass )
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658 obj< updateIPoly ( c l u s t e r s ,new . c l u s t e r , i r rPo lygons ,
g e t I r r egu l a rPo lygon (my. poly [ [ 2 ] ] [ 1 ] ,my. poly [ [ 2 ] ] [ 2 ] ,
my. poly [ [ 2 ] ] [ 3 ] ,my. poly [ [ 2 ] ] [ 4 ] , obst ) )

659 i r rPo lygons < obj [ [ 2 ] ]
660 c l u s t e r s < obj [ [ 1 ] ]
661 area2< c a l cAr ea I r r (new . c l u s t e r , c l u s t e r s [ [ 1 ] ] , i r rPo lygons

[ [ 1 ] ] )
662 c l u s t e r s [ [ 1 ] ] $density [new . c l u s t e r ] < c l u s t e r s [ [ 1 ] ] $mass [

new . c l u s t e r ] /area2
663 i f ( i r rPo lygons [ [ 2 ] ]== i r rPo lygons [ [ 3 ] ] )
664 {
665 print ( s p r i n t f ( ”Doubling I r r e g u l a r Polygons l i s t ’

capac i ty from %d to %d . . . ” , i r rPo lygons [ [ 2 ] ] ,
i r rPo lygons [ [ 2 ] ] ∗2) )

666 i r rPo lygons < double . i r rPo lygon ( i r rPo lygons )
667 }
668
669
670 i f ( c l u s t e r s [ [ 2 ] ]== c l u s t e r s [ [ 3 ] ] )
671 {
672 print ( s p r i n t f ( ”Doubling c l u s t e r s capac i ty from %d to %d

. . . ” , c l u s t e r s [ [ 2 ] ] , c l u s t e r s [ [ 2 ] ] ∗2) )
673 m<matrix (0 , c l u s t e r s [ [ 2 ] ] ∗2 , length (names( c l u s t e r s [ [ 1 ] ] ) )

)
674 m< as . data . frame (m)
675 names(m)<names( c l u s t e r s [ [ 1 ] ] )
676 for ( i in c ( 1 : length (names( c l u s t e r s [ [ 1 ] ] ) ) ) )
677 m[ , i ] < c ( c l u s t e r s [ [ 1 ] ] [ , i ] , c l u s t e r s [ [ 1 ] ] [ , i ] )
678 c l u s t e r s [ [ 3 ] ] < c l u s t e r s [ [ 2 ] ]
679 }
680
681
682 #record ing opera t i ons
683 ope ra t i on s [ [ 2 ] ] < ope ra t i on s [ [ 2 ] ] + 1
684 ope ra t i on s [ [ 1 ] ] [ ope ra t i on s [ [ 2 ] ] , ] < c ( c l u s t e r to d iv ide ,

c l u s t e r to d iv ide ,new . c l u s t e r , 1 )
685 i f ( ope ra t i on s [ [ 2 ] ]== ope ra t i on s [ [ 3 ] ] )
686 ope ra t i on s < double . ope ra t i on s ( ope ra t i on s )
687
688 mytree [ [ 1 ] ] < insertNode (mytree [ [ 1 ] ] , IDlea f , ” cond i t i on ” ,

opt [ [ 1 ] ] , opt [ [ 4 ] ] , opt [ [ 2 ] ] , mytree [ [ 2 ] ] + 1 , mytree
[ [ 2 ] ] + 2 )

689 mytree [ [ 2 ] ] < mytree [ [ 2 ] ] + 2
690
691 i f ( mytree [ [ 2 ] ] >mytree [ [ 3 ] ] )
692 mytree< expanding . t r e e ( mytree )
693
694
695 mytree [ [ 1 ] ] < insertNode (mytree [ [ 1 ] ] , mytree [ [ 2 ] ] 1 , ”

c l u s t e r ” ,NA,NA, c l u s t e r to d iv ide ,NA,NA)
696 mytree [ [ 1 ] ] < insertNode (mytree [ [ 1 ] ] , mytree [ [ 2 ] ] , ” c l u s t e r ”

,NA,NA,new . c l u s t e r ,NA,NA)
697
698 }
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699 }
700
701 npo ints [ np , ] < c ( length ( t o t a l . c l u s t e r s ) ,count )
702 npo ints2< npo ints [ 1 : ( np+1) , ]
703 s t r ( npo ints2 )
704 npo ints2< as . data . frame ( npo ints2 )
705 s t r ( npo ints2 )
706 names( npo ints2 )< c ( ”Memory” , ” Rea l i ty ” )
707 write . csv2 ( npoints2 , ” po int r a t i o . csv ” )
708 np< np+1
709
710 #check merging c r i t e r i o n
711 i d x s e l <which( c l u s t e r s [ [ 1 ] ] $ i n t e r e s t [ 1 : c l u s t e r s [ [ 2 ] ] ]==0 &

( c l u s t e r s [ [ 1 ] ] $mass [ 1 : c l u s t e r s [ [ 2 ] ] ] / t o t a l . mass )>(
c l u s t e r s [ [ 1 ] ] $ i n i t i a lMa s sRa t i o [ 1 : c l u s t e r s [ [ 2 ] ] ] ∗merge .
s i z e . r a t i o ) )

712
713 while ( length ( i d x s e l )>0)
714 {
715 idx< i d x s e l [ 1 ]
716 changes< changes+1
717
718 #ge t c l u s t e r to merge
719 c l u s t e r to merge< c l u s t e r s [ [ 1 ] ] $ c l u s t e r [ idx ]
720 print ( ”merging c l u s t e r . . . ” )
721 print ( s p r i n t f ( ” C lu s t e r i ng to merge : %d” , c l u s t e r to merge) )
722
723 i d x c l u s t e r o r i g i n a l <which( ope ra t i on s [ [ 1 ] ] $new1 [ 1 :

ope ra t i on s [ [ 2 ] ] ]== c l u s t e r to merge | ope ra t i on s [ [ 1 ] ] $
new2 [ 1 : ope ra t i on s [ [ 2 ] ] ]== c l u s t e r to merge)

724 i d x c l u s t e r o r i g i n a l <max( i d x c l u s t e r o r i g i n a l )
725
726 #ge t c l u s t e r s to merge
727 o r i g i n a l < ope ra t i on s [ [ 1 ] ] $ o r i g i n a l [ i d x c l u s t e r o r i g i n a l ]
728 new1< ope ra t i on s [ [ 1 ] ] $new1 [ i d x c l u s t e r o r i g i n a l ]
729 new2< ope ra t i on s [ [ 1 ] ] $new2 [ i d x c l u s t e r o r i g i n a l ]
730
731 i f ( o r i g i n a l !=new1)
732 new< new1
733 else
734 new< new2
735
736 ope ra t i on s [ [ 1 ] ] < ope ra t i on s [ [ 1 ] ] [ i d x c l u s t e r o r i g i n a l , ]
737 ope ra t i on s [ [ 2 ] ] < ope ra t i on s [ [ 2 ] ] 1
738 ope ra t i on s [ [ 3 ] ] < ope ra t i on s [ [ 3 ] ] 1
739
740 idxnode1<which( mytree [ [ 1 ] ] $node type [ 1 : mytree [ [ 2 ] ] ]== ”

c l u s t e r ” & mytree [ [ 1 ] ] $value [ 1 : mytree [ [ 2 ] ] ]== o r i g i n a l )
741 idxnode2<which( mytree [ [ 1 ] ] $node type [ 1 : mytree [ [ 2 ] ] ]== ”

c l u s t e r ” & mytree [ [ 1 ] ] $value [ 1 : mytree [ [ 2 ] ] ]==new)
742 idxnode1< mytree [ [ 1 ] ] $IDnode [ idxnode1 ]
743 idxnode2< mytree [ [ 1 ] ] $IDnode [ idxnode2 ]
744
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745 idxnode<which ( ( mytree [ [ 1 ] ] $ l e f t==idxnode1 & mytree [ [ 1 ] ] $
r i g h t==idxnode2 ) | ( mytree [ [ 1 ] ] $ l e f t==idxnode2 &
mytree [ [ 1 ] ] $ r i g h t==idxnode1 ) ) [ 1 ]

746 idxnode< mytree [ [ 1 ] ] $IDnode [ idxnode ]
747
748 d i v i s e type< mytree [ [ 1 ] ] $ cond i t i on type [which( mytree [ [ 1 ] ] $

IDnode==idxnode ) ]
749 l a t l o n value< mytree [ [ 1 ] ] $value [which( mytree [ [ 1 ] ] $IDnode==

idxnode ) ]
750
751 c l u s t e r to remove<max( o r i g i n a l ,new)
752 c l u s t e r to maintain<min( o r i g i n a l ,new)
753
754 mytree [ [ 1 ] ] < insertNode (mytree [ [ 1 ] ] , idxnode , ” c l u s t e r ” ,NA,

NA, c l u s t e r to maintain ,NA,NA)
755
756 c l 1 <which( c l u s t e r s [ [ 1 ] ] $ c l u s t e r==c l u s t e r to maintain )
757 c l 2 <which( c l u s t e r s [ [ 1 ] ] $ c l u s t e r==c l u s t e r to remove)
758
759 new . poly<merge . c l u s t e r s (c ( c l u s t e r s [ [ 1 ] ] [ c l1 , c ( 3 : 6 ) ] ) ,c (

c l u s t e r s [ [ 1 ] ] [ c l2 , c ( 3 : 6 ) ] ) , d i v i s e type , l a t l o n value )
760 mass< c l u s t e r s [ [ 1 ] ] $mass [ c l 1 ]+ c l u s t e r s [ [ 1 ] ] $mass [ c l 2 ]
761
762 new . meanlat< ( ( c l u s t e r s [ [ 1 ] ] $meanlat [ c l 1 ] ∗ c l u s t e r s [ [ 1 ] ] $

mass [ c l 1 ] ) +( c l u s t e r s [ [ 1 ] ] $meanlat [ c l 2 ] ∗ c l u s t e r s [ [ 1 ] ] $
mass [ c l 2 ] ) )/ ( c l u s t e r s [ [ 1 ] ] $mass [ c l 1 ]+ c l u s t e r s [ [ 1 ] ] $
mass [ c l 2 ] )

763 new . meanlon< ( ( c l u s t e r s [ [ 1 ] ] $meanlon [ c l 1 ] ∗ c l u s t e r s [ [ 1 ] ] $
mass [ c l 1 ] ) +( c l u s t e r s [ [ 1 ] ] $meanlon [ c l 2 ] ∗ c l u s t e r s [ [ 1 ] ] $
mass [ c l 2 ] ) )/ ( c l u s t e r s [ [ 1 ] ] $mass [ c l 1 ]+ c l u s t e r s [ [ 1 ] ] $
mass [ c l 2 ] )

764
765 c l u s t e r s [ [ 1 ] ] [ c l1 , ] < c ( c l u s t e r to maintain , mass ,new . poly

[ 1 ] ,new . poly [ 2 ] ,new . poly [ 3 ] ,new . poly [ 4 ] , 0 , 0 , 0 , 1 ,new .
meanlat ,new . meanlon , mass/ t o t a l . mass )

766
767 obj< updateIPoly ( c l u s t e r s , c l u s t e r to maintain , i r rPo lygons ,

g e t I r r egu l a rPo lygon (new . poly [ 1 ] ,new . poly [ 2 ] ,new . poly
[ 3 ] ,new . poly [ 4 ] , obst ) )

768 i r rPo lygons < obj [ [ 2 ] ]
769 c l u s t e r s < obj [ [ 1 ] ]
770
771 #updat ing d en s i t y . . .
772 area2< c a l cAr ea I r r ( c l1 , c l u s t e r s [ [ 1 ] ] , i r rPo lygons [ [ 1 ] ] )
773 c l u s t e r s [ [ 1 ] ] $density [ c l 1 ] < c l u s t e r s [ [ 1 ] ] $mass [ c l 1 ] /area2
774
775 idx<which( c l u s t e r s [ [ 1 ] ] $ c l u s t e r>=c l u s t e r to remove)
776
777 c l u s t e r s [ [ 1 ] ] $ c l u s t e r [ idx ] < c l u s t e r s [ [ 1 ] ] $ c l u s t e r [ idx ] 1
778 c l u s t e r s [ [ 1 ] ] < c l u s t e r s [ [ 1 ] ] [ c l2 , ]
779 c l u s t e r s [ [ 2 ] ] < c l u s t e r s [ [ 2 ] ] 1
780 c l u s t e r s [ [ 3 ] ] < c l u s t e r s [ [ 3 ] ] 1
781
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782 idx<which( mytree [ [ 1 ] ] $node type==” c l u s t e r ” & mytree [ [ 1 ] ] $
value>=c l u s t e r to remove)

783 mytree [ [ 1 ] ] $value [ idx ] < mytree [ [ 1 ] ] $value [ idx ] 1
784
785 idx<which( ope ra t i on s [ [ 1 ] ] $ o r i g i n a l>=c l u s t e r to remove)
786 ope ra t i on s [ [ 1 ] ] $ o r i g i n a l [ idx ] < ope ra t i on s [ [ 1 ] ] $ o r i g i n a l [

idx ] 1
787
788 idx<which( ope ra t i on s [ [ 1 ] ] $new1>=c l u s t e r to remove)
789 ope ra t i on s [ [ 1 ] ] $new1 [ idx ] < ope ra t i on s [ [ 1 ] ] $new1 [ idx ] 1
790
791 idx<which( ope ra t i on s [ [ 1 ] ] $new2>=c l u s t e r to remove)
792 ope ra t i on s [ [ 1 ] ] $new2 [ idx ] < ope ra t i on s [ [ 1 ] ] $new2 [ idx ] 1
793
794 i d x s e l <which( c l u s t e r s [ [ 1 ] ] $ i n t e r e s t [ 1 : c l u s t e r s [ [ 2 ] ] ]==0 &

( c l u s t e r s [ [ 1 ] ] $mass [ 1 : c l u s t e r s [ [ 2 ] ] ] / t o t a l . mass )>(
c l u s t e r s [ [ 1 ] ] $ i n i t i a lMa s sRa t i o [ 1 : c l u s t e r s [ [ 2 ] ] ] ∗ 1 . 5 ) )

795 }
796
797 i f ( changes>0)
798 {
799 t o t a l . c l u s t e r s < run t r e e (my. ds , mytree ,TRUE)
800 }
801
802 idx<which( c l u s t e r s [ [ 1 ] ] $ i n t e r e s t [ 1 : c l u s t e r s [ [ 2 ] ] ] > 0 & (

c l u s t e r s [ [ 1 ] ] $mass [ 1 : c l u s t e r s [ [ 2 ] ] ] ) <( i n t e r e s t . r a t i o∗
t o t a l . mass ) )

803 i f ( length ( idx )>0)
804 {
805 c l u s t e r s [ [ 1 ] ] $ i n t e r e s t [ idx ] < 0
806 }
807 }
808
809 i f ( ( count%%plot . step )==0)
810 {
811
812 i f ( p l o t t i n g )
813 s p a t i a l c l u s t e r i n g ( ”mass c l u s t e r i n g ” , c l u s t e r s [ [ 2 ] ] ,my. ds ,

NULL, zoom=12, t o t a l . c l u s t e r s , l i s t ( c l u s t e r s [ [ 1 ] ] [ , 1 : 1 0 ] ,
c o l o r p a l l e t t e ) ,FALSE,FALSE,TRUE,TRUE,TRUE, count+
in i t i a lK , c ( ”pdf ” , ” black ” ) ,map . center , i r rPo lygons )

814 }
815 }
816 }
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